1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/mm.h> 26 #include <linux/proc_fs.h> 27 #include <linux/tty.h> 28 #include <linux/binfmts.h> 29 #include <linux/coredump.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/ptrace.h> 33 #include <linux/signal.h> 34 #include <linux/signalfd.h> 35 #include <linux/ratelimit.h> 36 #include <linux/task_work.h> 37 #include <linux/capability.h> 38 #include <linux/freezer.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/nsproxy.h> 41 #include <linux/user_namespace.h> 42 #include <linux/uprobes.h> 43 #include <linux/compat.h> 44 #include <linux/cn_proc.h> 45 #include <linux/compiler.h> 46 #include <linux/posix-timers.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 #include <linux/sysctl.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/signal.h> 53 54 #include <asm/param.h> 55 #include <linux/uaccess.h> 56 #include <asm/unistd.h> 57 #include <asm/siginfo.h> 58 #include <asm/cacheflush.h> 59 #include <asm/syscall.h> /* for syscall_get_* */ 60 61 /* 62 * SLAB caches for signal bits. 63 */ 64 65 static struct kmem_cache *sigqueue_cachep; 66 67 int print_fatal_signals __read_mostly; 68 69 static void __user *sig_handler(struct task_struct *t, int sig) 70 { 71 return t->sighand->action[sig - 1].sa.sa_handler; 72 } 73 74 static inline bool sig_handler_ignored(void __user *handler, int sig) 75 { 76 /* Is it explicitly or implicitly ignored? */ 77 return handler == SIG_IGN || 78 (handler == SIG_DFL && sig_kernel_ignore(sig)); 79 } 80 81 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 82 { 83 void __user *handler; 84 85 handler = sig_handler(t, sig); 86 87 /* SIGKILL and SIGSTOP may not be sent to the global init */ 88 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 89 return true; 90 91 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 92 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 93 return true; 94 95 /* Only allow kernel generated signals to this kthread */ 96 if (unlikely((t->flags & PF_KTHREAD) && 97 (handler == SIG_KTHREAD_KERNEL) && !force)) 98 return true; 99 100 return sig_handler_ignored(handler, sig); 101 } 102 103 static bool sig_ignored(struct task_struct *t, int sig, bool force) 104 { 105 /* 106 * Blocked signals are never ignored, since the 107 * signal handler may change by the time it is 108 * unblocked. 109 */ 110 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 111 return false; 112 113 /* 114 * Tracers may want to know about even ignored signal unless it 115 * is SIGKILL which can't be reported anyway but can be ignored 116 * by SIGNAL_UNKILLABLE task. 117 */ 118 if (t->ptrace && sig != SIGKILL) 119 return false; 120 121 return sig_task_ignored(t, sig, force); 122 } 123 124 /* 125 * Re-calculate pending state from the set of locally pending 126 * signals, globally pending signals, and blocked signals. 127 */ 128 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 129 { 130 unsigned long ready; 131 long i; 132 133 switch (_NSIG_WORDS) { 134 default: 135 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 136 ready |= signal->sig[i] &~ blocked->sig[i]; 137 break; 138 139 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 140 ready |= signal->sig[2] &~ blocked->sig[2]; 141 ready |= signal->sig[1] &~ blocked->sig[1]; 142 ready |= signal->sig[0] &~ blocked->sig[0]; 143 break; 144 145 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 146 ready |= signal->sig[0] &~ blocked->sig[0]; 147 break; 148 149 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 150 } 151 return ready != 0; 152 } 153 154 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 155 156 static bool recalc_sigpending_tsk(struct task_struct *t) 157 { 158 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 159 PENDING(&t->pending, &t->blocked) || 160 PENDING(&t->signal->shared_pending, &t->blocked) || 161 cgroup_task_frozen(t)) { 162 set_tsk_thread_flag(t, TIF_SIGPENDING); 163 return true; 164 } 165 166 /* 167 * We must never clear the flag in another thread, or in current 168 * when it's possible the current syscall is returning -ERESTART*. 169 * So we don't clear it here, and only callers who know they should do. 170 */ 171 return false; 172 } 173 174 /* 175 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 176 * This is superfluous when called on current, the wakeup is a harmless no-op. 177 */ 178 void recalc_sigpending_and_wake(struct task_struct *t) 179 { 180 if (recalc_sigpending_tsk(t)) 181 signal_wake_up(t, 0); 182 } 183 184 void recalc_sigpending(void) 185 { 186 if (!recalc_sigpending_tsk(current) && !freezing(current)) 187 clear_thread_flag(TIF_SIGPENDING); 188 189 } 190 EXPORT_SYMBOL(recalc_sigpending); 191 192 void calculate_sigpending(void) 193 { 194 /* Have any signals or users of TIF_SIGPENDING been delayed 195 * until after fork? 196 */ 197 spin_lock_irq(¤t->sighand->siglock); 198 set_tsk_thread_flag(current, TIF_SIGPENDING); 199 recalc_sigpending(); 200 spin_unlock_irq(¤t->sighand->siglock); 201 } 202 203 /* Given the mask, find the first available signal that should be serviced. */ 204 205 #define SYNCHRONOUS_MASK \ 206 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 207 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 208 209 int next_signal(struct sigpending *pending, sigset_t *mask) 210 { 211 unsigned long i, *s, *m, x; 212 int sig = 0; 213 214 s = pending->signal.sig; 215 m = mask->sig; 216 217 /* 218 * Handle the first word specially: it contains the 219 * synchronous signals that need to be dequeued first. 220 */ 221 x = *s &~ *m; 222 if (x) { 223 if (x & SYNCHRONOUS_MASK) 224 x &= SYNCHRONOUS_MASK; 225 sig = ffz(~x) + 1; 226 return sig; 227 } 228 229 switch (_NSIG_WORDS) { 230 default: 231 for (i = 1; i < _NSIG_WORDS; ++i) { 232 x = *++s &~ *++m; 233 if (!x) 234 continue; 235 sig = ffz(~x) + i*_NSIG_BPW + 1; 236 break; 237 } 238 break; 239 240 case 2: 241 x = s[1] &~ m[1]; 242 if (!x) 243 break; 244 sig = ffz(~x) + _NSIG_BPW + 1; 245 break; 246 247 case 1: 248 /* Nothing to do */ 249 break; 250 } 251 252 return sig; 253 } 254 255 static inline void print_dropped_signal(int sig) 256 { 257 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 258 259 if (!print_fatal_signals) 260 return; 261 262 if (!__ratelimit(&ratelimit_state)) 263 return; 264 265 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 266 current->comm, current->pid, sig); 267 } 268 269 /** 270 * task_set_jobctl_pending - set jobctl pending bits 271 * @task: target task 272 * @mask: pending bits to set 273 * 274 * Clear @mask from @task->jobctl. @mask must be subset of 275 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 276 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 277 * cleared. If @task is already being killed or exiting, this function 278 * becomes noop. 279 * 280 * CONTEXT: 281 * Must be called with @task->sighand->siglock held. 282 * 283 * RETURNS: 284 * %true if @mask is set, %false if made noop because @task was dying. 285 */ 286 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 287 { 288 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 289 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 290 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 291 292 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 293 return false; 294 295 if (mask & JOBCTL_STOP_SIGMASK) 296 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 297 298 task->jobctl |= mask; 299 return true; 300 } 301 302 /** 303 * task_clear_jobctl_trapping - clear jobctl trapping bit 304 * @task: target task 305 * 306 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 307 * Clear it and wake up the ptracer. Note that we don't need any further 308 * locking. @task->siglock guarantees that @task->parent points to the 309 * ptracer. 310 * 311 * CONTEXT: 312 * Must be called with @task->sighand->siglock held. 313 */ 314 void task_clear_jobctl_trapping(struct task_struct *task) 315 { 316 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 317 task->jobctl &= ~JOBCTL_TRAPPING; 318 smp_mb(); /* advised by wake_up_bit() */ 319 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 320 } 321 } 322 323 /** 324 * task_clear_jobctl_pending - clear jobctl pending bits 325 * @task: target task 326 * @mask: pending bits to clear 327 * 328 * Clear @mask from @task->jobctl. @mask must be subset of 329 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 330 * STOP bits are cleared together. 331 * 332 * If clearing of @mask leaves no stop or trap pending, this function calls 333 * task_clear_jobctl_trapping(). 334 * 335 * CONTEXT: 336 * Must be called with @task->sighand->siglock held. 337 */ 338 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 339 { 340 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 341 342 if (mask & JOBCTL_STOP_PENDING) 343 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 344 345 task->jobctl &= ~mask; 346 347 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 348 task_clear_jobctl_trapping(task); 349 } 350 351 /** 352 * task_participate_group_stop - participate in a group stop 353 * @task: task participating in a group stop 354 * 355 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 356 * Group stop states are cleared and the group stop count is consumed if 357 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 358 * stop, the appropriate `SIGNAL_*` flags are set. 359 * 360 * CONTEXT: 361 * Must be called with @task->sighand->siglock held. 362 * 363 * RETURNS: 364 * %true if group stop completion should be notified to the parent, %false 365 * otherwise. 366 */ 367 static bool task_participate_group_stop(struct task_struct *task) 368 { 369 struct signal_struct *sig = task->signal; 370 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 371 372 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 373 374 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 375 376 if (!consume) 377 return false; 378 379 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 380 sig->group_stop_count--; 381 382 /* 383 * Tell the caller to notify completion iff we are entering into a 384 * fresh group stop. Read comment in do_signal_stop() for details. 385 */ 386 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 387 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 388 return true; 389 } 390 return false; 391 } 392 393 void task_join_group_stop(struct task_struct *task) 394 { 395 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 396 struct signal_struct *sig = current->signal; 397 398 if (sig->group_stop_count) { 399 sig->group_stop_count++; 400 mask |= JOBCTL_STOP_CONSUME; 401 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 402 return; 403 404 /* Have the new thread join an on-going signal group stop */ 405 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 406 } 407 408 /* 409 * allocate a new signal queue record 410 * - this may be called without locks if and only if t == current, otherwise an 411 * appropriate lock must be held to stop the target task from exiting 412 */ 413 static struct sigqueue * 414 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 415 int override_rlimit, const unsigned int sigqueue_flags) 416 { 417 struct sigqueue *q = NULL; 418 struct ucounts *ucounts = NULL; 419 long sigpending; 420 421 /* 422 * Protect access to @t credentials. This can go away when all 423 * callers hold rcu read lock. 424 * 425 * NOTE! A pending signal will hold on to the user refcount, 426 * and we get/put the refcount only when the sigpending count 427 * changes from/to zero. 428 */ 429 rcu_read_lock(); 430 ucounts = task_ucounts(t); 431 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 432 rcu_read_unlock(); 433 if (!sigpending) 434 return NULL; 435 436 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 437 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 438 } else { 439 print_dropped_signal(sig); 440 } 441 442 if (unlikely(q == NULL)) { 443 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 444 } else { 445 INIT_LIST_HEAD(&q->list); 446 q->flags = sigqueue_flags; 447 q->ucounts = ucounts; 448 } 449 return q; 450 } 451 452 static void __sigqueue_free(struct sigqueue *q) 453 { 454 if (q->flags & SIGQUEUE_PREALLOC) 455 return; 456 if (q->ucounts) { 457 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 458 q->ucounts = NULL; 459 } 460 kmem_cache_free(sigqueue_cachep, q); 461 } 462 463 void flush_sigqueue(struct sigpending *queue) 464 { 465 struct sigqueue *q; 466 467 sigemptyset(&queue->signal); 468 while (!list_empty(&queue->list)) { 469 q = list_entry(queue->list.next, struct sigqueue , list); 470 list_del_init(&q->list); 471 __sigqueue_free(q); 472 } 473 } 474 475 /* 476 * Flush all pending signals for this kthread. 477 */ 478 void flush_signals(struct task_struct *t) 479 { 480 unsigned long flags; 481 482 spin_lock_irqsave(&t->sighand->siglock, flags); 483 clear_tsk_thread_flag(t, TIF_SIGPENDING); 484 flush_sigqueue(&t->pending); 485 flush_sigqueue(&t->signal->shared_pending); 486 spin_unlock_irqrestore(&t->sighand->siglock, flags); 487 } 488 EXPORT_SYMBOL(flush_signals); 489 490 #ifdef CONFIG_POSIX_TIMERS 491 static void __flush_itimer_signals(struct sigpending *pending) 492 { 493 sigset_t signal, retain; 494 struct sigqueue *q, *n; 495 496 signal = pending->signal; 497 sigemptyset(&retain); 498 499 list_for_each_entry_safe(q, n, &pending->list, list) { 500 int sig = q->info.si_signo; 501 502 if (likely(q->info.si_code != SI_TIMER)) { 503 sigaddset(&retain, sig); 504 } else { 505 sigdelset(&signal, sig); 506 list_del_init(&q->list); 507 __sigqueue_free(q); 508 } 509 } 510 511 sigorsets(&pending->signal, &signal, &retain); 512 } 513 514 void flush_itimer_signals(void) 515 { 516 struct task_struct *tsk = current; 517 unsigned long flags; 518 519 spin_lock_irqsave(&tsk->sighand->siglock, flags); 520 __flush_itimer_signals(&tsk->pending); 521 __flush_itimer_signals(&tsk->signal->shared_pending); 522 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 523 } 524 #endif 525 526 void ignore_signals(struct task_struct *t) 527 { 528 int i; 529 530 for (i = 0; i < _NSIG; ++i) 531 t->sighand->action[i].sa.sa_handler = SIG_IGN; 532 533 flush_signals(t); 534 } 535 536 /* 537 * Flush all handlers for a task. 538 */ 539 540 void 541 flush_signal_handlers(struct task_struct *t, int force_default) 542 { 543 int i; 544 struct k_sigaction *ka = &t->sighand->action[0]; 545 for (i = _NSIG ; i != 0 ; i--) { 546 if (force_default || ka->sa.sa_handler != SIG_IGN) 547 ka->sa.sa_handler = SIG_DFL; 548 ka->sa.sa_flags = 0; 549 #ifdef __ARCH_HAS_SA_RESTORER 550 ka->sa.sa_restorer = NULL; 551 #endif 552 sigemptyset(&ka->sa.sa_mask); 553 ka++; 554 } 555 } 556 557 bool unhandled_signal(struct task_struct *tsk, int sig) 558 { 559 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 560 if (is_global_init(tsk)) 561 return true; 562 563 if (handler != SIG_IGN && handler != SIG_DFL) 564 return false; 565 566 /* If dying, we handle all new signals by ignoring them */ 567 if (fatal_signal_pending(tsk)) 568 return false; 569 570 /* if ptraced, let the tracer determine */ 571 return !tsk->ptrace; 572 } 573 574 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 575 bool *resched_timer) 576 { 577 struct sigqueue *q, *first = NULL; 578 579 /* 580 * Collect the siginfo appropriate to this signal. Check if 581 * there is another siginfo for the same signal. 582 */ 583 list_for_each_entry(q, &list->list, list) { 584 if (q->info.si_signo == sig) { 585 if (first) 586 goto still_pending; 587 first = q; 588 } 589 } 590 591 sigdelset(&list->signal, sig); 592 593 if (first) { 594 still_pending: 595 list_del_init(&first->list); 596 copy_siginfo(info, &first->info); 597 598 *resched_timer = 599 (first->flags & SIGQUEUE_PREALLOC) && 600 (info->si_code == SI_TIMER) && 601 (info->si_sys_private); 602 603 __sigqueue_free(first); 604 } else { 605 /* 606 * Ok, it wasn't in the queue. This must be 607 * a fast-pathed signal or we must have been 608 * out of queue space. So zero out the info. 609 */ 610 clear_siginfo(info); 611 info->si_signo = sig; 612 info->si_errno = 0; 613 info->si_code = SI_USER; 614 info->si_pid = 0; 615 info->si_uid = 0; 616 } 617 } 618 619 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 620 kernel_siginfo_t *info, bool *resched_timer) 621 { 622 int sig = next_signal(pending, mask); 623 624 if (sig) 625 collect_signal(sig, pending, info, resched_timer); 626 return sig; 627 } 628 629 /* 630 * Dequeue a signal and return the element to the caller, which is 631 * expected to free it. 632 * 633 * All callers have to hold the siglock. 634 */ 635 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 636 kernel_siginfo_t *info, enum pid_type *type) 637 { 638 bool resched_timer = false; 639 int signr; 640 641 /* We only dequeue private signals from ourselves, we don't let 642 * signalfd steal them 643 */ 644 *type = PIDTYPE_PID; 645 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 646 if (!signr) { 647 *type = PIDTYPE_TGID; 648 signr = __dequeue_signal(&tsk->signal->shared_pending, 649 mask, info, &resched_timer); 650 #ifdef CONFIG_POSIX_TIMERS 651 /* 652 * itimer signal ? 653 * 654 * itimers are process shared and we restart periodic 655 * itimers in the signal delivery path to prevent DoS 656 * attacks in the high resolution timer case. This is 657 * compliant with the old way of self-restarting 658 * itimers, as the SIGALRM is a legacy signal and only 659 * queued once. Changing the restart behaviour to 660 * restart the timer in the signal dequeue path is 661 * reducing the timer noise on heavy loaded !highres 662 * systems too. 663 */ 664 if (unlikely(signr == SIGALRM)) { 665 struct hrtimer *tmr = &tsk->signal->real_timer; 666 667 if (!hrtimer_is_queued(tmr) && 668 tsk->signal->it_real_incr != 0) { 669 hrtimer_forward(tmr, tmr->base->get_time(), 670 tsk->signal->it_real_incr); 671 hrtimer_restart(tmr); 672 } 673 } 674 #endif 675 } 676 677 recalc_sigpending(); 678 if (!signr) 679 return 0; 680 681 if (unlikely(sig_kernel_stop(signr))) { 682 /* 683 * Set a marker that we have dequeued a stop signal. Our 684 * caller might release the siglock and then the pending 685 * stop signal it is about to process is no longer in the 686 * pending bitmasks, but must still be cleared by a SIGCONT 687 * (and overruled by a SIGKILL). So those cases clear this 688 * shared flag after we've set it. Note that this flag may 689 * remain set after the signal we return is ignored or 690 * handled. That doesn't matter because its only purpose 691 * is to alert stop-signal processing code when another 692 * processor has come along and cleared the flag. 693 */ 694 current->jobctl |= JOBCTL_STOP_DEQUEUED; 695 } 696 #ifdef CONFIG_POSIX_TIMERS 697 if (resched_timer) { 698 /* 699 * Release the siglock to ensure proper locking order 700 * of timer locks outside of siglocks. Note, we leave 701 * irqs disabled here, since the posix-timers code is 702 * about to disable them again anyway. 703 */ 704 spin_unlock(&tsk->sighand->siglock); 705 posixtimer_rearm(info); 706 spin_lock(&tsk->sighand->siglock); 707 708 /* Don't expose the si_sys_private value to userspace */ 709 info->si_sys_private = 0; 710 } 711 #endif 712 return signr; 713 } 714 EXPORT_SYMBOL_GPL(dequeue_signal); 715 716 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 717 { 718 struct task_struct *tsk = current; 719 struct sigpending *pending = &tsk->pending; 720 struct sigqueue *q, *sync = NULL; 721 722 /* 723 * Might a synchronous signal be in the queue? 724 */ 725 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 726 return 0; 727 728 /* 729 * Return the first synchronous signal in the queue. 730 */ 731 list_for_each_entry(q, &pending->list, list) { 732 /* Synchronous signals have a positive si_code */ 733 if ((q->info.si_code > SI_USER) && 734 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 735 sync = q; 736 goto next; 737 } 738 } 739 return 0; 740 next: 741 /* 742 * Check if there is another siginfo for the same signal. 743 */ 744 list_for_each_entry_continue(q, &pending->list, list) { 745 if (q->info.si_signo == sync->info.si_signo) 746 goto still_pending; 747 } 748 749 sigdelset(&pending->signal, sync->info.si_signo); 750 recalc_sigpending(); 751 still_pending: 752 list_del_init(&sync->list); 753 copy_siginfo(info, &sync->info); 754 __sigqueue_free(sync); 755 return info->si_signo; 756 } 757 758 /* 759 * Tell a process that it has a new active signal.. 760 * 761 * NOTE! we rely on the previous spin_lock to 762 * lock interrupts for us! We can only be called with 763 * "siglock" held, and the local interrupt must 764 * have been disabled when that got acquired! 765 * 766 * No need to set need_resched since signal event passing 767 * goes through ->blocked 768 */ 769 void signal_wake_up_state(struct task_struct *t, unsigned int state) 770 { 771 lockdep_assert_held(&t->sighand->siglock); 772 773 set_tsk_thread_flag(t, TIF_SIGPENDING); 774 775 /* 776 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 777 * case. We don't check t->state here because there is a race with it 778 * executing another processor and just now entering stopped state. 779 * By using wake_up_state, we ensure the process will wake up and 780 * handle its death signal. 781 */ 782 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 783 kick_process(t); 784 } 785 786 /* 787 * Remove signals in mask from the pending set and queue. 788 * Returns 1 if any signals were found. 789 * 790 * All callers must be holding the siglock. 791 */ 792 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 793 { 794 struct sigqueue *q, *n; 795 sigset_t m; 796 797 sigandsets(&m, mask, &s->signal); 798 if (sigisemptyset(&m)) 799 return; 800 801 sigandnsets(&s->signal, &s->signal, mask); 802 list_for_each_entry_safe(q, n, &s->list, list) { 803 if (sigismember(mask, q->info.si_signo)) { 804 list_del_init(&q->list); 805 __sigqueue_free(q); 806 } 807 } 808 } 809 810 static inline int is_si_special(const struct kernel_siginfo *info) 811 { 812 return info <= SEND_SIG_PRIV; 813 } 814 815 static inline bool si_fromuser(const struct kernel_siginfo *info) 816 { 817 return info == SEND_SIG_NOINFO || 818 (!is_si_special(info) && SI_FROMUSER(info)); 819 } 820 821 /* 822 * called with RCU read lock from check_kill_permission() 823 */ 824 static bool kill_ok_by_cred(struct task_struct *t) 825 { 826 const struct cred *cred = current_cred(); 827 const struct cred *tcred = __task_cred(t); 828 829 return uid_eq(cred->euid, tcred->suid) || 830 uid_eq(cred->euid, tcred->uid) || 831 uid_eq(cred->uid, tcred->suid) || 832 uid_eq(cred->uid, tcred->uid) || 833 ns_capable(tcred->user_ns, CAP_KILL); 834 } 835 836 /* 837 * Bad permissions for sending the signal 838 * - the caller must hold the RCU read lock 839 */ 840 static int check_kill_permission(int sig, struct kernel_siginfo *info, 841 struct task_struct *t) 842 { 843 struct pid *sid; 844 int error; 845 846 if (!valid_signal(sig)) 847 return -EINVAL; 848 849 if (!si_fromuser(info)) 850 return 0; 851 852 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 853 if (error) 854 return error; 855 856 if (!same_thread_group(current, t) && 857 !kill_ok_by_cred(t)) { 858 switch (sig) { 859 case SIGCONT: 860 sid = task_session(t); 861 /* 862 * We don't return the error if sid == NULL. The 863 * task was unhashed, the caller must notice this. 864 */ 865 if (!sid || sid == task_session(current)) 866 break; 867 fallthrough; 868 default: 869 return -EPERM; 870 } 871 } 872 873 return security_task_kill(t, info, sig, NULL); 874 } 875 876 /** 877 * ptrace_trap_notify - schedule trap to notify ptracer 878 * @t: tracee wanting to notify tracer 879 * 880 * This function schedules sticky ptrace trap which is cleared on the next 881 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 882 * ptracer. 883 * 884 * If @t is running, STOP trap will be taken. If trapped for STOP and 885 * ptracer is listening for events, tracee is woken up so that it can 886 * re-trap for the new event. If trapped otherwise, STOP trap will be 887 * eventually taken without returning to userland after the existing traps 888 * are finished by PTRACE_CONT. 889 * 890 * CONTEXT: 891 * Must be called with @task->sighand->siglock held. 892 */ 893 static void ptrace_trap_notify(struct task_struct *t) 894 { 895 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 896 lockdep_assert_held(&t->sighand->siglock); 897 898 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 899 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 900 } 901 902 /* 903 * Handle magic process-wide effects of stop/continue signals. Unlike 904 * the signal actions, these happen immediately at signal-generation 905 * time regardless of blocking, ignoring, or handling. This does the 906 * actual continuing for SIGCONT, but not the actual stopping for stop 907 * signals. The process stop is done as a signal action for SIG_DFL. 908 * 909 * Returns true if the signal should be actually delivered, otherwise 910 * it should be dropped. 911 */ 912 static bool prepare_signal(int sig, struct task_struct *p, bool force) 913 { 914 struct signal_struct *signal = p->signal; 915 struct task_struct *t; 916 sigset_t flush; 917 918 if (signal->flags & SIGNAL_GROUP_EXIT) { 919 if (signal->core_state) 920 return sig == SIGKILL; 921 /* 922 * The process is in the middle of dying, drop the signal. 923 */ 924 return false; 925 } else if (sig_kernel_stop(sig)) { 926 /* 927 * This is a stop signal. Remove SIGCONT from all queues. 928 */ 929 siginitset(&flush, sigmask(SIGCONT)); 930 flush_sigqueue_mask(&flush, &signal->shared_pending); 931 for_each_thread(p, t) 932 flush_sigqueue_mask(&flush, &t->pending); 933 } else if (sig == SIGCONT) { 934 unsigned int why; 935 /* 936 * Remove all stop signals from all queues, wake all threads. 937 */ 938 siginitset(&flush, SIG_KERNEL_STOP_MASK); 939 flush_sigqueue_mask(&flush, &signal->shared_pending); 940 for_each_thread(p, t) { 941 flush_sigqueue_mask(&flush, &t->pending); 942 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 943 if (likely(!(t->ptrace & PT_SEIZED))) { 944 t->jobctl &= ~JOBCTL_STOPPED; 945 wake_up_state(t, __TASK_STOPPED); 946 } else 947 ptrace_trap_notify(t); 948 } 949 950 /* 951 * Notify the parent with CLD_CONTINUED if we were stopped. 952 * 953 * If we were in the middle of a group stop, we pretend it 954 * was already finished, and then continued. Since SIGCHLD 955 * doesn't queue we report only CLD_STOPPED, as if the next 956 * CLD_CONTINUED was dropped. 957 */ 958 why = 0; 959 if (signal->flags & SIGNAL_STOP_STOPPED) 960 why |= SIGNAL_CLD_CONTINUED; 961 else if (signal->group_stop_count) 962 why |= SIGNAL_CLD_STOPPED; 963 964 if (why) { 965 /* 966 * The first thread which returns from do_signal_stop() 967 * will take ->siglock, notice SIGNAL_CLD_MASK, and 968 * notify its parent. See get_signal(). 969 */ 970 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 971 signal->group_stop_count = 0; 972 signal->group_exit_code = 0; 973 } 974 } 975 976 return !sig_ignored(p, sig, force); 977 } 978 979 /* 980 * Test if P wants to take SIG. After we've checked all threads with this, 981 * it's equivalent to finding no threads not blocking SIG. Any threads not 982 * blocking SIG were ruled out because they are not running and already 983 * have pending signals. Such threads will dequeue from the shared queue 984 * as soon as they're available, so putting the signal on the shared queue 985 * will be equivalent to sending it to one such thread. 986 */ 987 static inline bool wants_signal(int sig, struct task_struct *p) 988 { 989 if (sigismember(&p->blocked, sig)) 990 return false; 991 992 if (p->flags & PF_EXITING) 993 return false; 994 995 if (sig == SIGKILL) 996 return true; 997 998 if (task_is_stopped_or_traced(p)) 999 return false; 1000 1001 return task_curr(p) || !task_sigpending(p); 1002 } 1003 1004 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 1005 { 1006 struct signal_struct *signal = p->signal; 1007 struct task_struct *t; 1008 1009 /* 1010 * Now find a thread we can wake up to take the signal off the queue. 1011 * 1012 * Try the suggested task first (may or may not be the main thread). 1013 */ 1014 if (wants_signal(sig, p)) 1015 t = p; 1016 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1017 /* 1018 * There is just one thread and it does not need to be woken. 1019 * It will dequeue unblocked signals before it runs again. 1020 */ 1021 return; 1022 else { 1023 /* 1024 * Otherwise try to find a suitable thread. 1025 */ 1026 t = signal->curr_target; 1027 while (!wants_signal(sig, t)) { 1028 t = next_thread(t); 1029 if (t == signal->curr_target) 1030 /* 1031 * No thread needs to be woken. 1032 * Any eligible threads will see 1033 * the signal in the queue soon. 1034 */ 1035 return; 1036 } 1037 signal->curr_target = t; 1038 } 1039 1040 /* 1041 * Found a killable thread. If the signal will be fatal, 1042 * then start taking the whole group down immediately. 1043 */ 1044 if (sig_fatal(p, sig) && 1045 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1046 !sigismember(&t->real_blocked, sig) && 1047 (sig == SIGKILL || !p->ptrace)) { 1048 /* 1049 * This signal will be fatal to the whole group. 1050 */ 1051 if (!sig_kernel_coredump(sig)) { 1052 /* 1053 * Start a group exit and wake everybody up. 1054 * This way we don't have other threads 1055 * running and doing things after a slower 1056 * thread has the fatal signal pending. 1057 */ 1058 signal->flags = SIGNAL_GROUP_EXIT; 1059 signal->group_exit_code = sig; 1060 signal->group_stop_count = 0; 1061 t = p; 1062 do { 1063 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1064 sigaddset(&t->pending.signal, SIGKILL); 1065 signal_wake_up(t, 1); 1066 } while_each_thread(p, t); 1067 return; 1068 } 1069 } 1070 1071 /* 1072 * The signal is already in the shared-pending queue. 1073 * Tell the chosen thread to wake up and dequeue it. 1074 */ 1075 signal_wake_up(t, sig == SIGKILL); 1076 return; 1077 } 1078 1079 static inline bool legacy_queue(struct sigpending *signals, int sig) 1080 { 1081 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1082 } 1083 1084 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1085 struct task_struct *t, enum pid_type type, bool force) 1086 { 1087 struct sigpending *pending; 1088 struct sigqueue *q; 1089 int override_rlimit; 1090 int ret = 0, result; 1091 1092 lockdep_assert_held(&t->sighand->siglock); 1093 1094 result = TRACE_SIGNAL_IGNORED; 1095 if (!prepare_signal(sig, t, force)) 1096 goto ret; 1097 1098 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1099 /* 1100 * Short-circuit ignored signals and support queuing 1101 * exactly one non-rt signal, so that we can get more 1102 * detailed information about the cause of the signal. 1103 */ 1104 result = TRACE_SIGNAL_ALREADY_PENDING; 1105 if (legacy_queue(pending, sig)) 1106 goto ret; 1107 1108 result = TRACE_SIGNAL_DELIVERED; 1109 /* 1110 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1111 */ 1112 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1113 goto out_set; 1114 1115 /* 1116 * Real-time signals must be queued if sent by sigqueue, or 1117 * some other real-time mechanism. It is implementation 1118 * defined whether kill() does so. We attempt to do so, on 1119 * the principle of least surprise, but since kill is not 1120 * allowed to fail with EAGAIN when low on memory we just 1121 * make sure at least one signal gets delivered and don't 1122 * pass on the info struct. 1123 */ 1124 if (sig < SIGRTMIN) 1125 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1126 else 1127 override_rlimit = 0; 1128 1129 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1130 1131 if (q) { 1132 list_add_tail(&q->list, &pending->list); 1133 switch ((unsigned long) info) { 1134 case (unsigned long) SEND_SIG_NOINFO: 1135 clear_siginfo(&q->info); 1136 q->info.si_signo = sig; 1137 q->info.si_errno = 0; 1138 q->info.si_code = SI_USER; 1139 q->info.si_pid = task_tgid_nr_ns(current, 1140 task_active_pid_ns(t)); 1141 rcu_read_lock(); 1142 q->info.si_uid = 1143 from_kuid_munged(task_cred_xxx(t, user_ns), 1144 current_uid()); 1145 rcu_read_unlock(); 1146 break; 1147 case (unsigned long) SEND_SIG_PRIV: 1148 clear_siginfo(&q->info); 1149 q->info.si_signo = sig; 1150 q->info.si_errno = 0; 1151 q->info.si_code = SI_KERNEL; 1152 q->info.si_pid = 0; 1153 q->info.si_uid = 0; 1154 break; 1155 default: 1156 copy_siginfo(&q->info, info); 1157 break; 1158 } 1159 } else if (!is_si_special(info) && 1160 sig >= SIGRTMIN && info->si_code != SI_USER) { 1161 /* 1162 * Queue overflow, abort. We may abort if the 1163 * signal was rt and sent by user using something 1164 * other than kill(). 1165 */ 1166 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1167 ret = -EAGAIN; 1168 goto ret; 1169 } else { 1170 /* 1171 * This is a silent loss of information. We still 1172 * send the signal, but the *info bits are lost. 1173 */ 1174 result = TRACE_SIGNAL_LOSE_INFO; 1175 } 1176 1177 out_set: 1178 signalfd_notify(t, sig); 1179 sigaddset(&pending->signal, sig); 1180 1181 /* Let multiprocess signals appear after on-going forks */ 1182 if (type > PIDTYPE_TGID) { 1183 struct multiprocess_signals *delayed; 1184 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1185 sigset_t *signal = &delayed->signal; 1186 /* Can't queue both a stop and a continue signal */ 1187 if (sig == SIGCONT) 1188 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1189 else if (sig_kernel_stop(sig)) 1190 sigdelset(signal, SIGCONT); 1191 sigaddset(signal, sig); 1192 } 1193 } 1194 1195 complete_signal(sig, t, type); 1196 ret: 1197 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1198 return ret; 1199 } 1200 1201 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1202 { 1203 bool ret = false; 1204 switch (siginfo_layout(info->si_signo, info->si_code)) { 1205 case SIL_KILL: 1206 case SIL_CHLD: 1207 case SIL_RT: 1208 ret = true; 1209 break; 1210 case SIL_TIMER: 1211 case SIL_POLL: 1212 case SIL_FAULT: 1213 case SIL_FAULT_TRAPNO: 1214 case SIL_FAULT_MCEERR: 1215 case SIL_FAULT_BNDERR: 1216 case SIL_FAULT_PKUERR: 1217 case SIL_FAULT_PERF_EVENT: 1218 case SIL_SYS: 1219 ret = false; 1220 break; 1221 } 1222 return ret; 1223 } 1224 1225 int send_signal_locked(int sig, struct kernel_siginfo *info, 1226 struct task_struct *t, enum pid_type type) 1227 { 1228 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1229 bool force = false; 1230 1231 if (info == SEND_SIG_NOINFO) { 1232 /* Force if sent from an ancestor pid namespace */ 1233 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1234 } else if (info == SEND_SIG_PRIV) { 1235 /* Don't ignore kernel generated signals */ 1236 force = true; 1237 } else if (has_si_pid_and_uid(info)) { 1238 /* SIGKILL and SIGSTOP is special or has ids */ 1239 struct user_namespace *t_user_ns; 1240 1241 rcu_read_lock(); 1242 t_user_ns = task_cred_xxx(t, user_ns); 1243 if (current_user_ns() != t_user_ns) { 1244 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1245 info->si_uid = from_kuid_munged(t_user_ns, uid); 1246 } 1247 rcu_read_unlock(); 1248 1249 /* A kernel generated signal? */ 1250 force = (info->si_code == SI_KERNEL); 1251 1252 /* From an ancestor pid namespace? */ 1253 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1254 info->si_pid = 0; 1255 force = true; 1256 } 1257 } 1258 return __send_signal_locked(sig, info, t, type, force); 1259 } 1260 1261 static void print_fatal_signal(int signr) 1262 { 1263 struct pt_regs *regs = task_pt_regs(current); 1264 struct file *exe_file; 1265 1266 exe_file = get_task_exe_file(current); 1267 if (exe_file) { 1268 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n", 1269 exe_file, current->comm, signr); 1270 fput(exe_file); 1271 } else { 1272 pr_info("%s: potentially unexpected fatal signal %d.\n", 1273 current->comm, signr); 1274 } 1275 1276 #if defined(__i386__) && !defined(__arch_um__) 1277 pr_info("code at %08lx: ", regs->ip); 1278 { 1279 int i; 1280 for (i = 0; i < 16; i++) { 1281 unsigned char insn; 1282 1283 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1284 break; 1285 pr_cont("%02x ", insn); 1286 } 1287 } 1288 pr_cont("\n"); 1289 #endif 1290 preempt_disable(); 1291 show_regs(regs); 1292 preempt_enable(); 1293 } 1294 1295 static int __init setup_print_fatal_signals(char *str) 1296 { 1297 get_option (&str, &print_fatal_signals); 1298 1299 return 1; 1300 } 1301 1302 __setup("print-fatal-signals=", setup_print_fatal_signals); 1303 1304 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1305 enum pid_type type) 1306 { 1307 unsigned long flags; 1308 int ret = -ESRCH; 1309 1310 if (lock_task_sighand(p, &flags)) { 1311 ret = send_signal_locked(sig, info, p, type); 1312 unlock_task_sighand(p, &flags); 1313 } 1314 1315 return ret; 1316 } 1317 1318 enum sig_handler { 1319 HANDLER_CURRENT, /* If reachable use the current handler */ 1320 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1321 HANDLER_EXIT, /* Only visible as the process exit code */ 1322 }; 1323 1324 /* 1325 * Force a signal that the process can't ignore: if necessary 1326 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1327 * 1328 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1329 * since we do not want to have a signal handler that was blocked 1330 * be invoked when user space had explicitly blocked it. 1331 * 1332 * We don't want to have recursive SIGSEGV's etc, for example, 1333 * that is why we also clear SIGNAL_UNKILLABLE. 1334 */ 1335 static int 1336 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1337 enum sig_handler handler) 1338 { 1339 unsigned long int flags; 1340 int ret, blocked, ignored; 1341 struct k_sigaction *action; 1342 int sig = info->si_signo; 1343 1344 spin_lock_irqsave(&t->sighand->siglock, flags); 1345 action = &t->sighand->action[sig-1]; 1346 ignored = action->sa.sa_handler == SIG_IGN; 1347 blocked = sigismember(&t->blocked, sig); 1348 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1349 action->sa.sa_handler = SIG_DFL; 1350 if (handler == HANDLER_EXIT) 1351 action->sa.sa_flags |= SA_IMMUTABLE; 1352 if (blocked) { 1353 sigdelset(&t->blocked, sig); 1354 recalc_sigpending_and_wake(t); 1355 } 1356 } 1357 /* 1358 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1359 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1360 */ 1361 if (action->sa.sa_handler == SIG_DFL && 1362 (!t->ptrace || (handler == HANDLER_EXIT))) 1363 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1364 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1365 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1366 1367 return ret; 1368 } 1369 1370 int force_sig_info(struct kernel_siginfo *info) 1371 { 1372 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1373 } 1374 1375 /* 1376 * Nuke all other threads in the group. 1377 */ 1378 int zap_other_threads(struct task_struct *p) 1379 { 1380 struct task_struct *t = p; 1381 int count = 0; 1382 1383 p->signal->group_stop_count = 0; 1384 1385 while_each_thread(p, t) { 1386 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1387 /* Don't require de_thread to wait for the vhost_worker */ 1388 if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER) 1389 count++; 1390 1391 /* Don't bother with already dead threads */ 1392 if (t->exit_state) 1393 continue; 1394 sigaddset(&t->pending.signal, SIGKILL); 1395 signal_wake_up(t, 1); 1396 } 1397 1398 return count; 1399 } 1400 1401 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1402 unsigned long *flags) 1403 { 1404 struct sighand_struct *sighand; 1405 1406 rcu_read_lock(); 1407 for (;;) { 1408 sighand = rcu_dereference(tsk->sighand); 1409 if (unlikely(sighand == NULL)) 1410 break; 1411 1412 /* 1413 * This sighand can be already freed and even reused, but 1414 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1415 * initializes ->siglock: this slab can't go away, it has 1416 * the same object type, ->siglock can't be reinitialized. 1417 * 1418 * We need to ensure that tsk->sighand is still the same 1419 * after we take the lock, we can race with de_thread() or 1420 * __exit_signal(). In the latter case the next iteration 1421 * must see ->sighand == NULL. 1422 */ 1423 spin_lock_irqsave(&sighand->siglock, *flags); 1424 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1425 break; 1426 spin_unlock_irqrestore(&sighand->siglock, *flags); 1427 } 1428 rcu_read_unlock(); 1429 1430 return sighand; 1431 } 1432 1433 #ifdef CONFIG_LOCKDEP 1434 void lockdep_assert_task_sighand_held(struct task_struct *task) 1435 { 1436 struct sighand_struct *sighand; 1437 1438 rcu_read_lock(); 1439 sighand = rcu_dereference(task->sighand); 1440 if (sighand) 1441 lockdep_assert_held(&sighand->siglock); 1442 else 1443 WARN_ON_ONCE(1); 1444 rcu_read_unlock(); 1445 } 1446 #endif 1447 1448 /* 1449 * send signal info to all the members of a group 1450 */ 1451 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1452 struct task_struct *p, enum pid_type type) 1453 { 1454 int ret; 1455 1456 rcu_read_lock(); 1457 ret = check_kill_permission(sig, info, p); 1458 rcu_read_unlock(); 1459 1460 if (!ret && sig) 1461 ret = do_send_sig_info(sig, info, p, type); 1462 1463 return ret; 1464 } 1465 1466 /* 1467 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1468 * control characters do (^C, ^Z etc) 1469 * - the caller must hold at least a readlock on tasklist_lock 1470 */ 1471 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1472 { 1473 struct task_struct *p = NULL; 1474 int retval, success; 1475 1476 success = 0; 1477 retval = -ESRCH; 1478 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1479 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1480 success |= !err; 1481 retval = err; 1482 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1483 return success ? 0 : retval; 1484 } 1485 1486 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1487 { 1488 int error = -ESRCH; 1489 struct task_struct *p; 1490 1491 for (;;) { 1492 rcu_read_lock(); 1493 p = pid_task(pid, PIDTYPE_PID); 1494 if (p) 1495 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1496 rcu_read_unlock(); 1497 if (likely(!p || error != -ESRCH)) 1498 return error; 1499 1500 /* 1501 * The task was unhashed in between, try again. If it 1502 * is dead, pid_task() will return NULL, if we race with 1503 * de_thread() it will find the new leader. 1504 */ 1505 } 1506 } 1507 1508 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1509 { 1510 int error; 1511 rcu_read_lock(); 1512 error = kill_pid_info(sig, info, find_vpid(pid)); 1513 rcu_read_unlock(); 1514 return error; 1515 } 1516 1517 static inline bool kill_as_cred_perm(const struct cred *cred, 1518 struct task_struct *target) 1519 { 1520 const struct cred *pcred = __task_cred(target); 1521 1522 return uid_eq(cred->euid, pcred->suid) || 1523 uid_eq(cred->euid, pcred->uid) || 1524 uid_eq(cred->uid, pcred->suid) || 1525 uid_eq(cred->uid, pcred->uid); 1526 } 1527 1528 /* 1529 * The usb asyncio usage of siginfo is wrong. The glibc support 1530 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1531 * AKA after the generic fields: 1532 * kernel_pid_t si_pid; 1533 * kernel_uid32_t si_uid; 1534 * sigval_t si_value; 1535 * 1536 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1537 * after the generic fields is: 1538 * void __user *si_addr; 1539 * 1540 * This is a practical problem when there is a 64bit big endian kernel 1541 * and a 32bit userspace. As the 32bit address will encoded in the low 1542 * 32bits of the pointer. Those low 32bits will be stored at higher 1543 * address than appear in a 32 bit pointer. So userspace will not 1544 * see the address it was expecting for it's completions. 1545 * 1546 * There is nothing in the encoding that can allow 1547 * copy_siginfo_to_user32 to detect this confusion of formats, so 1548 * handle this by requiring the caller of kill_pid_usb_asyncio to 1549 * notice when this situration takes place and to store the 32bit 1550 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1551 * parameter. 1552 */ 1553 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1554 struct pid *pid, const struct cred *cred) 1555 { 1556 struct kernel_siginfo info; 1557 struct task_struct *p; 1558 unsigned long flags; 1559 int ret = -EINVAL; 1560 1561 if (!valid_signal(sig)) 1562 return ret; 1563 1564 clear_siginfo(&info); 1565 info.si_signo = sig; 1566 info.si_errno = errno; 1567 info.si_code = SI_ASYNCIO; 1568 *((sigval_t *)&info.si_pid) = addr; 1569 1570 rcu_read_lock(); 1571 p = pid_task(pid, PIDTYPE_PID); 1572 if (!p) { 1573 ret = -ESRCH; 1574 goto out_unlock; 1575 } 1576 if (!kill_as_cred_perm(cred, p)) { 1577 ret = -EPERM; 1578 goto out_unlock; 1579 } 1580 ret = security_task_kill(p, &info, sig, cred); 1581 if (ret) 1582 goto out_unlock; 1583 1584 if (sig) { 1585 if (lock_task_sighand(p, &flags)) { 1586 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1587 unlock_task_sighand(p, &flags); 1588 } else 1589 ret = -ESRCH; 1590 } 1591 out_unlock: 1592 rcu_read_unlock(); 1593 return ret; 1594 } 1595 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1596 1597 /* 1598 * kill_something_info() interprets pid in interesting ways just like kill(2). 1599 * 1600 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1601 * is probably wrong. Should make it like BSD or SYSV. 1602 */ 1603 1604 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1605 { 1606 int ret; 1607 1608 if (pid > 0) 1609 return kill_proc_info(sig, info, pid); 1610 1611 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1612 if (pid == INT_MIN) 1613 return -ESRCH; 1614 1615 read_lock(&tasklist_lock); 1616 if (pid != -1) { 1617 ret = __kill_pgrp_info(sig, info, 1618 pid ? find_vpid(-pid) : task_pgrp(current)); 1619 } else { 1620 int retval = 0, count = 0; 1621 struct task_struct * p; 1622 1623 for_each_process(p) { 1624 if (task_pid_vnr(p) > 1 && 1625 !same_thread_group(p, current)) { 1626 int err = group_send_sig_info(sig, info, p, 1627 PIDTYPE_MAX); 1628 ++count; 1629 if (err != -EPERM) 1630 retval = err; 1631 } 1632 } 1633 ret = count ? retval : -ESRCH; 1634 } 1635 read_unlock(&tasklist_lock); 1636 1637 return ret; 1638 } 1639 1640 /* 1641 * These are for backward compatibility with the rest of the kernel source. 1642 */ 1643 1644 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1645 { 1646 /* 1647 * Make sure legacy kernel users don't send in bad values 1648 * (normal paths check this in check_kill_permission). 1649 */ 1650 if (!valid_signal(sig)) 1651 return -EINVAL; 1652 1653 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1654 } 1655 EXPORT_SYMBOL(send_sig_info); 1656 1657 #define __si_special(priv) \ 1658 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1659 1660 int 1661 send_sig(int sig, struct task_struct *p, int priv) 1662 { 1663 return send_sig_info(sig, __si_special(priv), p); 1664 } 1665 EXPORT_SYMBOL(send_sig); 1666 1667 void force_sig(int sig) 1668 { 1669 struct kernel_siginfo info; 1670 1671 clear_siginfo(&info); 1672 info.si_signo = sig; 1673 info.si_errno = 0; 1674 info.si_code = SI_KERNEL; 1675 info.si_pid = 0; 1676 info.si_uid = 0; 1677 force_sig_info(&info); 1678 } 1679 EXPORT_SYMBOL(force_sig); 1680 1681 void force_fatal_sig(int sig) 1682 { 1683 struct kernel_siginfo info; 1684 1685 clear_siginfo(&info); 1686 info.si_signo = sig; 1687 info.si_errno = 0; 1688 info.si_code = SI_KERNEL; 1689 info.si_pid = 0; 1690 info.si_uid = 0; 1691 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1692 } 1693 1694 void force_exit_sig(int sig) 1695 { 1696 struct kernel_siginfo info; 1697 1698 clear_siginfo(&info); 1699 info.si_signo = sig; 1700 info.si_errno = 0; 1701 info.si_code = SI_KERNEL; 1702 info.si_pid = 0; 1703 info.si_uid = 0; 1704 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1705 } 1706 1707 /* 1708 * When things go south during signal handling, we 1709 * will force a SIGSEGV. And if the signal that caused 1710 * the problem was already a SIGSEGV, we'll want to 1711 * make sure we don't even try to deliver the signal.. 1712 */ 1713 void force_sigsegv(int sig) 1714 { 1715 if (sig == SIGSEGV) 1716 force_fatal_sig(SIGSEGV); 1717 else 1718 force_sig(SIGSEGV); 1719 } 1720 1721 int force_sig_fault_to_task(int sig, int code, void __user *addr 1722 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1723 , struct task_struct *t) 1724 { 1725 struct kernel_siginfo info; 1726 1727 clear_siginfo(&info); 1728 info.si_signo = sig; 1729 info.si_errno = 0; 1730 info.si_code = code; 1731 info.si_addr = addr; 1732 #ifdef __ia64__ 1733 info.si_imm = imm; 1734 info.si_flags = flags; 1735 info.si_isr = isr; 1736 #endif 1737 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1738 } 1739 1740 int force_sig_fault(int sig, int code, void __user *addr 1741 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1742 { 1743 return force_sig_fault_to_task(sig, code, addr 1744 ___ARCH_SI_IA64(imm, flags, isr), current); 1745 } 1746 1747 int send_sig_fault(int sig, int code, void __user *addr 1748 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1749 , struct task_struct *t) 1750 { 1751 struct kernel_siginfo info; 1752 1753 clear_siginfo(&info); 1754 info.si_signo = sig; 1755 info.si_errno = 0; 1756 info.si_code = code; 1757 info.si_addr = addr; 1758 #ifdef __ia64__ 1759 info.si_imm = imm; 1760 info.si_flags = flags; 1761 info.si_isr = isr; 1762 #endif 1763 return send_sig_info(info.si_signo, &info, t); 1764 } 1765 1766 int force_sig_mceerr(int code, void __user *addr, short lsb) 1767 { 1768 struct kernel_siginfo info; 1769 1770 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1771 clear_siginfo(&info); 1772 info.si_signo = SIGBUS; 1773 info.si_errno = 0; 1774 info.si_code = code; 1775 info.si_addr = addr; 1776 info.si_addr_lsb = lsb; 1777 return force_sig_info(&info); 1778 } 1779 1780 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1781 { 1782 struct kernel_siginfo info; 1783 1784 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1785 clear_siginfo(&info); 1786 info.si_signo = SIGBUS; 1787 info.si_errno = 0; 1788 info.si_code = code; 1789 info.si_addr = addr; 1790 info.si_addr_lsb = lsb; 1791 return send_sig_info(info.si_signo, &info, t); 1792 } 1793 EXPORT_SYMBOL(send_sig_mceerr); 1794 1795 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1796 { 1797 struct kernel_siginfo info; 1798 1799 clear_siginfo(&info); 1800 info.si_signo = SIGSEGV; 1801 info.si_errno = 0; 1802 info.si_code = SEGV_BNDERR; 1803 info.si_addr = addr; 1804 info.si_lower = lower; 1805 info.si_upper = upper; 1806 return force_sig_info(&info); 1807 } 1808 1809 #ifdef SEGV_PKUERR 1810 int force_sig_pkuerr(void __user *addr, u32 pkey) 1811 { 1812 struct kernel_siginfo info; 1813 1814 clear_siginfo(&info); 1815 info.si_signo = SIGSEGV; 1816 info.si_errno = 0; 1817 info.si_code = SEGV_PKUERR; 1818 info.si_addr = addr; 1819 info.si_pkey = pkey; 1820 return force_sig_info(&info); 1821 } 1822 #endif 1823 1824 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1825 { 1826 struct kernel_siginfo info; 1827 1828 clear_siginfo(&info); 1829 info.si_signo = SIGTRAP; 1830 info.si_errno = 0; 1831 info.si_code = TRAP_PERF; 1832 info.si_addr = addr; 1833 info.si_perf_data = sig_data; 1834 info.si_perf_type = type; 1835 1836 /* 1837 * Signals generated by perf events should not terminate the whole 1838 * process if SIGTRAP is blocked, however, delivering the signal 1839 * asynchronously is better than not delivering at all. But tell user 1840 * space if the signal was asynchronous, so it can clearly be 1841 * distinguished from normal synchronous ones. 1842 */ 1843 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1844 TRAP_PERF_FLAG_ASYNC : 1845 0; 1846 1847 return send_sig_info(info.si_signo, &info, current); 1848 } 1849 1850 /** 1851 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1852 * @syscall: syscall number to send to userland 1853 * @reason: filter-supplied reason code to send to userland (via si_errno) 1854 * @force_coredump: true to trigger a coredump 1855 * 1856 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1857 */ 1858 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1859 { 1860 struct kernel_siginfo info; 1861 1862 clear_siginfo(&info); 1863 info.si_signo = SIGSYS; 1864 info.si_code = SYS_SECCOMP; 1865 info.si_call_addr = (void __user *)KSTK_EIP(current); 1866 info.si_errno = reason; 1867 info.si_arch = syscall_get_arch(current); 1868 info.si_syscall = syscall; 1869 return force_sig_info_to_task(&info, current, 1870 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1871 } 1872 1873 /* For the crazy architectures that include trap information in 1874 * the errno field, instead of an actual errno value. 1875 */ 1876 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1877 { 1878 struct kernel_siginfo info; 1879 1880 clear_siginfo(&info); 1881 info.si_signo = SIGTRAP; 1882 info.si_errno = errno; 1883 info.si_code = TRAP_HWBKPT; 1884 info.si_addr = addr; 1885 return force_sig_info(&info); 1886 } 1887 1888 /* For the rare architectures that include trap information using 1889 * si_trapno. 1890 */ 1891 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1892 { 1893 struct kernel_siginfo info; 1894 1895 clear_siginfo(&info); 1896 info.si_signo = sig; 1897 info.si_errno = 0; 1898 info.si_code = code; 1899 info.si_addr = addr; 1900 info.si_trapno = trapno; 1901 return force_sig_info(&info); 1902 } 1903 1904 /* For the rare architectures that include trap information using 1905 * si_trapno. 1906 */ 1907 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1908 struct task_struct *t) 1909 { 1910 struct kernel_siginfo info; 1911 1912 clear_siginfo(&info); 1913 info.si_signo = sig; 1914 info.si_errno = 0; 1915 info.si_code = code; 1916 info.si_addr = addr; 1917 info.si_trapno = trapno; 1918 return send_sig_info(info.si_signo, &info, t); 1919 } 1920 1921 int kill_pgrp(struct pid *pid, int sig, int priv) 1922 { 1923 int ret; 1924 1925 read_lock(&tasklist_lock); 1926 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1927 read_unlock(&tasklist_lock); 1928 1929 return ret; 1930 } 1931 EXPORT_SYMBOL(kill_pgrp); 1932 1933 int kill_pid(struct pid *pid, int sig, int priv) 1934 { 1935 return kill_pid_info(sig, __si_special(priv), pid); 1936 } 1937 EXPORT_SYMBOL(kill_pid); 1938 1939 /* 1940 * These functions support sending signals using preallocated sigqueue 1941 * structures. This is needed "because realtime applications cannot 1942 * afford to lose notifications of asynchronous events, like timer 1943 * expirations or I/O completions". In the case of POSIX Timers 1944 * we allocate the sigqueue structure from the timer_create. If this 1945 * allocation fails we are able to report the failure to the application 1946 * with an EAGAIN error. 1947 */ 1948 struct sigqueue *sigqueue_alloc(void) 1949 { 1950 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1951 } 1952 1953 void sigqueue_free(struct sigqueue *q) 1954 { 1955 unsigned long flags; 1956 spinlock_t *lock = ¤t->sighand->siglock; 1957 1958 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1959 /* 1960 * We must hold ->siglock while testing q->list 1961 * to serialize with collect_signal() or with 1962 * __exit_signal()->flush_sigqueue(). 1963 */ 1964 spin_lock_irqsave(lock, flags); 1965 q->flags &= ~SIGQUEUE_PREALLOC; 1966 /* 1967 * If it is queued it will be freed when dequeued, 1968 * like the "regular" sigqueue. 1969 */ 1970 if (!list_empty(&q->list)) 1971 q = NULL; 1972 spin_unlock_irqrestore(lock, flags); 1973 1974 if (q) 1975 __sigqueue_free(q); 1976 } 1977 1978 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1979 { 1980 int sig = q->info.si_signo; 1981 struct sigpending *pending; 1982 struct task_struct *t; 1983 unsigned long flags; 1984 int ret, result; 1985 1986 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1987 1988 ret = -1; 1989 rcu_read_lock(); 1990 1991 /* 1992 * This function is used by POSIX timers to deliver a timer signal. 1993 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1994 * set), the signal must be delivered to the specific thread (queues 1995 * into t->pending). 1996 * 1997 * Where type is not PIDTYPE_PID, signals must be delivered to the 1998 * process. In this case, prefer to deliver to current if it is in 1999 * the same thread group as the target process, which avoids 2000 * unnecessarily waking up a potentially idle task. 2001 */ 2002 t = pid_task(pid, type); 2003 if (!t) 2004 goto ret; 2005 if (type != PIDTYPE_PID && same_thread_group(t, current)) 2006 t = current; 2007 if (!likely(lock_task_sighand(t, &flags))) 2008 goto ret; 2009 2010 ret = 1; /* the signal is ignored */ 2011 result = TRACE_SIGNAL_IGNORED; 2012 if (!prepare_signal(sig, t, false)) 2013 goto out; 2014 2015 ret = 0; 2016 if (unlikely(!list_empty(&q->list))) { 2017 /* 2018 * If an SI_TIMER entry is already queue just increment 2019 * the overrun count. 2020 */ 2021 BUG_ON(q->info.si_code != SI_TIMER); 2022 q->info.si_overrun++; 2023 result = TRACE_SIGNAL_ALREADY_PENDING; 2024 goto out; 2025 } 2026 q->info.si_overrun = 0; 2027 2028 signalfd_notify(t, sig); 2029 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 2030 list_add_tail(&q->list, &pending->list); 2031 sigaddset(&pending->signal, sig); 2032 complete_signal(sig, t, type); 2033 result = TRACE_SIGNAL_DELIVERED; 2034 out: 2035 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2036 unlock_task_sighand(t, &flags); 2037 ret: 2038 rcu_read_unlock(); 2039 return ret; 2040 } 2041 2042 static void do_notify_pidfd(struct task_struct *task) 2043 { 2044 struct pid *pid; 2045 2046 WARN_ON(task->exit_state == 0); 2047 pid = task_pid(task); 2048 wake_up_all(&pid->wait_pidfd); 2049 } 2050 2051 /* 2052 * Let a parent know about the death of a child. 2053 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2054 * 2055 * Returns true if our parent ignored us and so we've switched to 2056 * self-reaping. 2057 */ 2058 bool do_notify_parent(struct task_struct *tsk, int sig) 2059 { 2060 struct kernel_siginfo info; 2061 unsigned long flags; 2062 struct sighand_struct *psig; 2063 bool autoreap = false; 2064 u64 utime, stime; 2065 2066 WARN_ON_ONCE(sig == -1); 2067 2068 /* do_notify_parent_cldstop should have been called instead. */ 2069 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2070 2071 WARN_ON_ONCE(!tsk->ptrace && 2072 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2073 2074 /* Wake up all pidfd waiters */ 2075 do_notify_pidfd(tsk); 2076 2077 if (sig != SIGCHLD) { 2078 /* 2079 * This is only possible if parent == real_parent. 2080 * Check if it has changed security domain. 2081 */ 2082 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2083 sig = SIGCHLD; 2084 } 2085 2086 clear_siginfo(&info); 2087 info.si_signo = sig; 2088 info.si_errno = 0; 2089 /* 2090 * We are under tasklist_lock here so our parent is tied to 2091 * us and cannot change. 2092 * 2093 * task_active_pid_ns will always return the same pid namespace 2094 * until a task passes through release_task. 2095 * 2096 * write_lock() currently calls preempt_disable() which is the 2097 * same as rcu_read_lock(), but according to Oleg, this is not 2098 * correct to rely on this 2099 */ 2100 rcu_read_lock(); 2101 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2102 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2103 task_uid(tsk)); 2104 rcu_read_unlock(); 2105 2106 task_cputime(tsk, &utime, &stime); 2107 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2108 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2109 2110 info.si_status = tsk->exit_code & 0x7f; 2111 if (tsk->exit_code & 0x80) 2112 info.si_code = CLD_DUMPED; 2113 else if (tsk->exit_code & 0x7f) 2114 info.si_code = CLD_KILLED; 2115 else { 2116 info.si_code = CLD_EXITED; 2117 info.si_status = tsk->exit_code >> 8; 2118 } 2119 2120 psig = tsk->parent->sighand; 2121 spin_lock_irqsave(&psig->siglock, flags); 2122 if (!tsk->ptrace && sig == SIGCHLD && 2123 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2124 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2125 /* 2126 * We are exiting and our parent doesn't care. POSIX.1 2127 * defines special semantics for setting SIGCHLD to SIG_IGN 2128 * or setting the SA_NOCLDWAIT flag: we should be reaped 2129 * automatically and not left for our parent's wait4 call. 2130 * Rather than having the parent do it as a magic kind of 2131 * signal handler, we just set this to tell do_exit that we 2132 * can be cleaned up without becoming a zombie. Note that 2133 * we still call __wake_up_parent in this case, because a 2134 * blocked sys_wait4 might now return -ECHILD. 2135 * 2136 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2137 * is implementation-defined: we do (if you don't want 2138 * it, just use SIG_IGN instead). 2139 */ 2140 autoreap = true; 2141 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2142 sig = 0; 2143 } 2144 /* 2145 * Send with __send_signal as si_pid and si_uid are in the 2146 * parent's namespaces. 2147 */ 2148 if (valid_signal(sig) && sig) 2149 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2150 __wake_up_parent(tsk, tsk->parent); 2151 spin_unlock_irqrestore(&psig->siglock, flags); 2152 2153 return autoreap; 2154 } 2155 2156 /** 2157 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2158 * @tsk: task reporting the state change 2159 * @for_ptracer: the notification is for ptracer 2160 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2161 * 2162 * Notify @tsk's parent that the stopped/continued state has changed. If 2163 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2164 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2165 * 2166 * CONTEXT: 2167 * Must be called with tasklist_lock at least read locked. 2168 */ 2169 static void do_notify_parent_cldstop(struct task_struct *tsk, 2170 bool for_ptracer, int why) 2171 { 2172 struct kernel_siginfo info; 2173 unsigned long flags; 2174 struct task_struct *parent; 2175 struct sighand_struct *sighand; 2176 u64 utime, stime; 2177 2178 if (for_ptracer) { 2179 parent = tsk->parent; 2180 } else { 2181 tsk = tsk->group_leader; 2182 parent = tsk->real_parent; 2183 } 2184 2185 clear_siginfo(&info); 2186 info.si_signo = SIGCHLD; 2187 info.si_errno = 0; 2188 /* 2189 * see comment in do_notify_parent() about the following 4 lines 2190 */ 2191 rcu_read_lock(); 2192 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2193 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2194 rcu_read_unlock(); 2195 2196 task_cputime(tsk, &utime, &stime); 2197 info.si_utime = nsec_to_clock_t(utime); 2198 info.si_stime = nsec_to_clock_t(stime); 2199 2200 info.si_code = why; 2201 switch (why) { 2202 case CLD_CONTINUED: 2203 info.si_status = SIGCONT; 2204 break; 2205 case CLD_STOPPED: 2206 info.si_status = tsk->signal->group_exit_code & 0x7f; 2207 break; 2208 case CLD_TRAPPED: 2209 info.si_status = tsk->exit_code & 0x7f; 2210 break; 2211 default: 2212 BUG(); 2213 } 2214 2215 sighand = parent->sighand; 2216 spin_lock_irqsave(&sighand->siglock, flags); 2217 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2218 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2219 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2220 /* 2221 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2222 */ 2223 __wake_up_parent(tsk, parent); 2224 spin_unlock_irqrestore(&sighand->siglock, flags); 2225 } 2226 2227 /* 2228 * This must be called with current->sighand->siglock held. 2229 * 2230 * This should be the path for all ptrace stops. 2231 * We always set current->last_siginfo while stopped here. 2232 * That makes it a way to test a stopped process for 2233 * being ptrace-stopped vs being job-control-stopped. 2234 * 2235 * Returns the signal the ptracer requested the code resume 2236 * with. If the code did not stop because the tracer is gone, 2237 * the stop signal remains unchanged unless clear_code. 2238 */ 2239 static int ptrace_stop(int exit_code, int why, unsigned long message, 2240 kernel_siginfo_t *info) 2241 __releases(¤t->sighand->siglock) 2242 __acquires(¤t->sighand->siglock) 2243 { 2244 bool gstop_done = false; 2245 2246 if (arch_ptrace_stop_needed()) { 2247 /* 2248 * The arch code has something special to do before a 2249 * ptrace stop. This is allowed to block, e.g. for faults 2250 * on user stack pages. We can't keep the siglock while 2251 * calling arch_ptrace_stop, so we must release it now. 2252 * To preserve proper semantics, we must do this before 2253 * any signal bookkeeping like checking group_stop_count. 2254 */ 2255 spin_unlock_irq(¤t->sighand->siglock); 2256 arch_ptrace_stop(); 2257 spin_lock_irq(¤t->sighand->siglock); 2258 } 2259 2260 /* 2261 * After this point ptrace_signal_wake_up or signal_wake_up 2262 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2263 * signal comes in. Handle previous ptrace_unlinks and fatal 2264 * signals here to prevent ptrace_stop sleeping in schedule. 2265 */ 2266 if (!current->ptrace || __fatal_signal_pending(current)) 2267 return exit_code; 2268 2269 set_special_state(TASK_TRACED); 2270 current->jobctl |= JOBCTL_TRACED; 2271 2272 /* 2273 * We're committing to trapping. TRACED should be visible before 2274 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2275 * Also, transition to TRACED and updates to ->jobctl should be 2276 * atomic with respect to siglock and should be done after the arch 2277 * hook as siglock is released and regrabbed across it. 2278 * 2279 * TRACER TRACEE 2280 * 2281 * ptrace_attach() 2282 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2283 * do_wait() 2284 * set_current_state() smp_wmb(); 2285 * ptrace_do_wait() 2286 * wait_task_stopped() 2287 * task_stopped_code() 2288 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2289 */ 2290 smp_wmb(); 2291 2292 current->ptrace_message = message; 2293 current->last_siginfo = info; 2294 current->exit_code = exit_code; 2295 2296 /* 2297 * If @why is CLD_STOPPED, we're trapping to participate in a group 2298 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2299 * across siglock relocks since INTERRUPT was scheduled, PENDING 2300 * could be clear now. We act as if SIGCONT is received after 2301 * TASK_TRACED is entered - ignore it. 2302 */ 2303 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2304 gstop_done = task_participate_group_stop(current); 2305 2306 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2307 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2308 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2309 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2310 2311 /* entering a trap, clear TRAPPING */ 2312 task_clear_jobctl_trapping(current); 2313 2314 spin_unlock_irq(¤t->sighand->siglock); 2315 read_lock(&tasklist_lock); 2316 /* 2317 * Notify parents of the stop. 2318 * 2319 * While ptraced, there are two parents - the ptracer and 2320 * the real_parent of the group_leader. The ptracer should 2321 * know about every stop while the real parent is only 2322 * interested in the completion of group stop. The states 2323 * for the two don't interact with each other. Notify 2324 * separately unless they're gonna be duplicates. 2325 */ 2326 if (current->ptrace) 2327 do_notify_parent_cldstop(current, true, why); 2328 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2329 do_notify_parent_cldstop(current, false, why); 2330 2331 /* 2332 * Don't want to allow preemption here, because 2333 * sys_ptrace() needs this task to be inactive. 2334 * 2335 * XXX: implement read_unlock_no_resched(). 2336 */ 2337 preempt_disable(); 2338 read_unlock(&tasklist_lock); 2339 cgroup_enter_frozen(); 2340 preempt_enable_no_resched(); 2341 schedule(); 2342 cgroup_leave_frozen(true); 2343 2344 /* 2345 * We are back. Now reacquire the siglock before touching 2346 * last_siginfo, so that we are sure to have synchronized with 2347 * any signal-sending on another CPU that wants to examine it. 2348 */ 2349 spin_lock_irq(¤t->sighand->siglock); 2350 exit_code = current->exit_code; 2351 current->last_siginfo = NULL; 2352 current->ptrace_message = 0; 2353 current->exit_code = 0; 2354 2355 /* LISTENING can be set only during STOP traps, clear it */ 2356 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2357 2358 /* 2359 * Queued signals ignored us while we were stopped for tracing. 2360 * So check for any that we should take before resuming user mode. 2361 * This sets TIF_SIGPENDING, but never clears it. 2362 */ 2363 recalc_sigpending_tsk(current); 2364 return exit_code; 2365 } 2366 2367 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2368 { 2369 kernel_siginfo_t info; 2370 2371 clear_siginfo(&info); 2372 info.si_signo = signr; 2373 info.si_code = exit_code; 2374 info.si_pid = task_pid_vnr(current); 2375 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2376 2377 /* Let the debugger run. */ 2378 return ptrace_stop(exit_code, why, message, &info); 2379 } 2380 2381 int ptrace_notify(int exit_code, unsigned long message) 2382 { 2383 int signr; 2384 2385 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2386 if (unlikely(task_work_pending(current))) 2387 task_work_run(); 2388 2389 spin_lock_irq(¤t->sighand->siglock); 2390 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2391 spin_unlock_irq(¤t->sighand->siglock); 2392 return signr; 2393 } 2394 2395 /** 2396 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2397 * @signr: signr causing group stop if initiating 2398 * 2399 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2400 * and participate in it. If already set, participate in the existing 2401 * group stop. If participated in a group stop (and thus slept), %true is 2402 * returned with siglock released. 2403 * 2404 * If ptraced, this function doesn't handle stop itself. Instead, 2405 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2406 * untouched. The caller must ensure that INTERRUPT trap handling takes 2407 * places afterwards. 2408 * 2409 * CONTEXT: 2410 * Must be called with @current->sighand->siglock held, which is released 2411 * on %true return. 2412 * 2413 * RETURNS: 2414 * %false if group stop is already cancelled or ptrace trap is scheduled. 2415 * %true if participated in group stop. 2416 */ 2417 static bool do_signal_stop(int signr) 2418 __releases(¤t->sighand->siglock) 2419 { 2420 struct signal_struct *sig = current->signal; 2421 2422 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2423 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2424 struct task_struct *t; 2425 2426 /* signr will be recorded in task->jobctl for retries */ 2427 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2428 2429 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2430 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2431 unlikely(sig->group_exec_task)) 2432 return false; 2433 /* 2434 * There is no group stop already in progress. We must 2435 * initiate one now. 2436 * 2437 * While ptraced, a task may be resumed while group stop is 2438 * still in effect and then receive a stop signal and 2439 * initiate another group stop. This deviates from the 2440 * usual behavior as two consecutive stop signals can't 2441 * cause two group stops when !ptraced. That is why we 2442 * also check !task_is_stopped(t) below. 2443 * 2444 * The condition can be distinguished by testing whether 2445 * SIGNAL_STOP_STOPPED is already set. Don't generate 2446 * group_exit_code in such case. 2447 * 2448 * This is not necessary for SIGNAL_STOP_CONTINUED because 2449 * an intervening stop signal is required to cause two 2450 * continued events regardless of ptrace. 2451 */ 2452 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2453 sig->group_exit_code = signr; 2454 2455 sig->group_stop_count = 0; 2456 2457 if (task_set_jobctl_pending(current, signr | gstop)) 2458 sig->group_stop_count++; 2459 2460 t = current; 2461 while_each_thread(current, t) { 2462 /* 2463 * Setting state to TASK_STOPPED for a group 2464 * stop is always done with the siglock held, 2465 * so this check has no races. 2466 */ 2467 if (!task_is_stopped(t) && 2468 task_set_jobctl_pending(t, signr | gstop)) { 2469 sig->group_stop_count++; 2470 if (likely(!(t->ptrace & PT_SEIZED))) 2471 signal_wake_up(t, 0); 2472 else 2473 ptrace_trap_notify(t); 2474 } 2475 } 2476 } 2477 2478 if (likely(!current->ptrace)) { 2479 int notify = 0; 2480 2481 /* 2482 * If there are no other threads in the group, or if there 2483 * is a group stop in progress and we are the last to stop, 2484 * report to the parent. 2485 */ 2486 if (task_participate_group_stop(current)) 2487 notify = CLD_STOPPED; 2488 2489 current->jobctl |= JOBCTL_STOPPED; 2490 set_special_state(TASK_STOPPED); 2491 spin_unlock_irq(¤t->sighand->siglock); 2492 2493 /* 2494 * Notify the parent of the group stop completion. Because 2495 * we're not holding either the siglock or tasklist_lock 2496 * here, ptracer may attach inbetween; however, this is for 2497 * group stop and should always be delivered to the real 2498 * parent of the group leader. The new ptracer will get 2499 * its notification when this task transitions into 2500 * TASK_TRACED. 2501 */ 2502 if (notify) { 2503 read_lock(&tasklist_lock); 2504 do_notify_parent_cldstop(current, false, notify); 2505 read_unlock(&tasklist_lock); 2506 } 2507 2508 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2509 cgroup_enter_frozen(); 2510 schedule(); 2511 return true; 2512 } else { 2513 /* 2514 * While ptraced, group stop is handled by STOP trap. 2515 * Schedule it and let the caller deal with it. 2516 */ 2517 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2518 return false; 2519 } 2520 } 2521 2522 /** 2523 * do_jobctl_trap - take care of ptrace jobctl traps 2524 * 2525 * When PT_SEIZED, it's used for both group stop and explicit 2526 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2527 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2528 * the stop signal; otherwise, %SIGTRAP. 2529 * 2530 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2531 * number as exit_code and no siginfo. 2532 * 2533 * CONTEXT: 2534 * Must be called with @current->sighand->siglock held, which may be 2535 * released and re-acquired before returning with intervening sleep. 2536 */ 2537 static void do_jobctl_trap(void) 2538 { 2539 struct signal_struct *signal = current->signal; 2540 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2541 2542 if (current->ptrace & PT_SEIZED) { 2543 if (!signal->group_stop_count && 2544 !(signal->flags & SIGNAL_STOP_STOPPED)) 2545 signr = SIGTRAP; 2546 WARN_ON_ONCE(!signr); 2547 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2548 CLD_STOPPED, 0); 2549 } else { 2550 WARN_ON_ONCE(!signr); 2551 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2552 } 2553 } 2554 2555 /** 2556 * do_freezer_trap - handle the freezer jobctl trap 2557 * 2558 * Puts the task into frozen state, if only the task is not about to quit. 2559 * In this case it drops JOBCTL_TRAP_FREEZE. 2560 * 2561 * CONTEXT: 2562 * Must be called with @current->sighand->siglock held, 2563 * which is always released before returning. 2564 */ 2565 static void do_freezer_trap(void) 2566 __releases(¤t->sighand->siglock) 2567 { 2568 /* 2569 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2570 * let's make another loop to give it a chance to be handled. 2571 * In any case, we'll return back. 2572 */ 2573 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2574 JOBCTL_TRAP_FREEZE) { 2575 spin_unlock_irq(¤t->sighand->siglock); 2576 return; 2577 } 2578 2579 /* 2580 * Now we're sure that there is no pending fatal signal and no 2581 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2582 * immediately (if there is a non-fatal signal pending), and 2583 * put the task into sleep. 2584 */ 2585 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2586 clear_thread_flag(TIF_SIGPENDING); 2587 spin_unlock_irq(¤t->sighand->siglock); 2588 cgroup_enter_frozen(); 2589 schedule(); 2590 } 2591 2592 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2593 { 2594 /* 2595 * We do not check sig_kernel_stop(signr) but set this marker 2596 * unconditionally because we do not know whether debugger will 2597 * change signr. This flag has no meaning unless we are going 2598 * to stop after return from ptrace_stop(). In this case it will 2599 * be checked in do_signal_stop(), we should only stop if it was 2600 * not cleared by SIGCONT while we were sleeping. See also the 2601 * comment in dequeue_signal(). 2602 */ 2603 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2604 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2605 2606 /* We're back. Did the debugger cancel the sig? */ 2607 if (signr == 0) 2608 return signr; 2609 2610 /* 2611 * Update the siginfo structure if the signal has 2612 * changed. If the debugger wanted something 2613 * specific in the siginfo structure then it should 2614 * have updated *info via PTRACE_SETSIGINFO. 2615 */ 2616 if (signr != info->si_signo) { 2617 clear_siginfo(info); 2618 info->si_signo = signr; 2619 info->si_errno = 0; 2620 info->si_code = SI_USER; 2621 rcu_read_lock(); 2622 info->si_pid = task_pid_vnr(current->parent); 2623 info->si_uid = from_kuid_munged(current_user_ns(), 2624 task_uid(current->parent)); 2625 rcu_read_unlock(); 2626 } 2627 2628 /* If the (new) signal is now blocked, requeue it. */ 2629 if (sigismember(¤t->blocked, signr) || 2630 fatal_signal_pending(current)) { 2631 send_signal_locked(signr, info, current, type); 2632 signr = 0; 2633 } 2634 2635 return signr; 2636 } 2637 2638 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2639 { 2640 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2641 case SIL_FAULT: 2642 case SIL_FAULT_TRAPNO: 2643 case SIL_FAULT_MCEERR: 2644 case SIL_FAULT_BNDERR: 2645 case SIL_FAULT_PKUERR: 2646 case SIL_FAULT_PERF_EVENT: 2647 ksig->info.si_addr = arch_untagged_si_addr( 2648 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2649 break; 2650 case SIL_KILL: 2651 case SIL_TIMER: 2652 case SIL_POLL: 2653 case SIL_CHLD: 2654 case SIL_RT: 2655 case SIL_SYS: 2656 break; 2657 } 2658 } 2659 2660 bool get_signal(struct ksignal *ksig) 2661 { 2662 struct sighand_struct *sighand = current->sighand; 2663 struct signal_struct *signal = current->signal; 2664 int signr; 2665 2666 clear_notify_signal(); 2667 if (unlikely(task_work_pending(current))) 2668 task_work_run(); 2669 2670 if (!task_sigpending(current)) 2671 return false; 2672 2673 if (unlikely(uprobe_deny_signal())) 2674 return false; 2675 2676 /* 2677 * Do this once, we can't return to user-mode if freezing() == T. 2678 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2679 * thus do not need another check after return. 2680 */ 2681 try_to_freeze(); 2682 2683 relock: 2684 spin_lock_irq(&sighand->siglock); 2685 2686 /* 2687 * Every stopped thread goes here after wakeup. Check to see if 2688 * we should notify the parent, prepare_signal(SIGCONT) encodes 2689 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2690 */ 2691 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2692 int why; 2693 2694 if (signal->flags & SIGNAL_CLD_CONTINUED) 2695 why = CLD_CONTINUED; 2696 else 2697 why = CLD_STOPPED; 2698 2699 signal->flags &= ~SIGNAL_CLD_MASK; 2700 2701 spin_unlock_irq(&sighand->siglock); 2702 2703 /* 2704 * Notify the parent that we're continuing. This event is 2705 * always per-process and doesn't make whole lot of sense 2706 * for ptracers, who shouldn't consume the state via 2707 * wait(2) either, but, for backward compatibility, notify 2708 * the ptracer of the group leader too unless it's gonna be 2709 * a duplicate. 2710 */ 2711 read_lock(&tasklist_lock); 2712 do_notify_parent_cldstop(current, false, why); 2713 2714 if (ptrace_reparented(current->group_leader)) 2715 do_notify_parent_cldstop(current->group_leader, 2716 true, why); 2717 read_unlock(&tasklist_lock); 2718 2719 goto relock; 2720 } 2721 2722 for (;;) { 2723 struct k_sigaction *ka; 2724 enum pid_type type; 2725 2726 /* Has this task already been marked for death? */ 2727 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2728 signal->group_exec_task) { 2729 clear_siginfo(&ksig->info); 2730 ksig->info.si_signo = signr = SIGKILL; 2731 sigdelset(¤t->pending.signal, SIGKILL); 2732 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2733 &sighand->action[SIGKILL - 1]); 2734 recalc_sigpending(); 2735 goto fatal; 2736 } 2737 2738 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2739 do_signal_stop(0)) 2740 goto relock; 2741 2742 if (unlikely(current->jobctl & 2743 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2744 if (current->jobctl & JOBCTL_TRAP_MASK) { 2745 do_jobctl_trap(); 2746 spin_unlock_irq(&sighand->siglock); 2747 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2748 do_freezer_trap(); 2749 2750 goto relock; 2751 } 2752 2753 /* 2754 * If the task is leaving the frozen state, let's update 2755 * cgroup counters and reset the frozen bit. 2756 */ 2757 if (unlikely(cgroup_task_frozen(current))) { 2758 spin_unlock_irq(&sighand->siglock); 2759 cgroup_leave_frozen(false); 2760 goto relock; 2761 } 2762 2763 /* 2764 * Signals generated by the execution of an instruction 2765 * need to be delivered before any other pending signals 2766 * so that the instruction pointer in the signal stack 2767 * frame points to the faulting instruction. 2768 */ 2769 type = PIDTYPE_PID; 2770 signr = dequeue_synchronous_signal(&ksig->info); 2771 if (!signr) 2772 signr = dequeue_signal(current, ¤t->blocked, 2773 &ksig->info, &type); 2774 2775 if (!signr) 2776 break; /* will return 0 */ 2777 2778 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2779 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2780 signr = ptrace_signal(signr, &ksig->info, type); 2781 if (!signr) 2782 continue; 2783 } 2784 2785 ka = &sighand->action[signr-1]; 2786 2787 /* Trace actually delivered signals. */ 2788 trace_signal_deliver(signr, &ksig->info, ka); 2789 2790 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2791 continue; 2792 if (ka->sa.sa_handler != SIG_DFL) { 2793 /* Run the handler. */ 2794 ksig->ka = *ka; 2795 2796 if (ka->sa.sa_flags & SA_ONESHOT) 2797 ka->sa.sa_handler = SIG_DFL; 2798 2799 break; /* will return non-zero "signr" value */ 2800 } 2801 2802 /* 2803 * Now we are doing the default action for this signal. 2804 */ 2805 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2806 continue; 2807 2808 /* 2809 * Global init gets no signals it doesn't want. 2810 * Container-init gets no signals it doesn't want from same 2811 * container. 2812 * 2813 * Note that if global/container-init sees a sig_kernel_only() 2814 * signal here, the signal must have been generated internally 2815 * or must have come from an ancestor namespace. In either 2816 * case, the signal cannot be dropped. 2817 */ 2818 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2819 !sig_kernel_only(signr)) 2820 continue; 2821 2822 if (sig_kernel_stop(signr)) { 2823 /* 2824 * The default action is to stop all threads in 2825 * the thread group. The job control signals 2826 * do nothing in an orphaned pgrp, but SIGSTOP 2827 * always works. Note that siglock needs to be 2828 * dropped during the call to is_orphaned_pgrp() 2829 * because of lock ordering with tasklist_lock. 2830 * This allows an intervening SIGCONT to be posted. 2831 * We need to check for that and bail out if necessary. 2832 */ 2833 if (signr != SIGSTOP) { 2834 spin_unlock_irq(&sighand->siglock); 2835 2836 /* signals can be posted during this window */ 2837 2838 if (is_current_pgrp_orphaned()) 2839 goto relock; 2840 2841 spin_lock_irq(&sighand->siglock); 2842 } 2843 2844 if (likely(do_signal_stop(ksig->info.si_signo))) { 2845 /* It released the siglock. */ 2846 goto relock; 2847 } 2848 2849 /* 2850 * We didn't actually stop, due to a race 2851 * with SIGCONT or something like that. 2852 */ 2853 continue; 2854 } 2855 2856 fatal: 2857 spin_unlock_irq(&sighand->siglock); 2858 if (unlikely(cgroup_task_frozen(current))) 2859 cgroup_leave_frozen(true); 2860 2861 /* 2862 * Anything else is fatal, maybe with a core dump. 2863 */ 2864 current->flags |= PF_SIGNALED; 2865 2866 if (sig_kernel_coredump(signr)) { 2867 if (print_fatal_signals) 2868 print_fatal_signal(ksig->info.si_signo); 2869 proc_coredump_connector(current); 2870 /* 2871 * If it was able to dump core, this kills all 2872 * other threads in the group and synchronizes with 2873 * their demise. If we lost the race with another 2874 * thread getting here, it set group_exit_code 2875 * first and our do_group_exit call below will use 2876 * that value and ignore the one we pass it. 2877 */ 2878 do_coredump(&ksig->info); 2879 } 2880 2881 /* 2882 * PF_USER_WORKER threads will catch and exit on fatal signals 2883 * themselves. They have cleanup that must be performed, so 2884 * we cannot call do_exit() on their behalf. 2885 */ 2886 if (current->flags & PF_USER_WORKER) 2887 goto out; 2888 2889 /* 2890 * Death signals, no core dump. 2891 */ 2892 do_group_exit(ksig->info.si_signo); 2893 /* NOTREACHED */ 2894 } 2895 spin_unlock_irq(&sighand->siglock); 2896 out: 2897 ksig->sig = signr; 2898 2899 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2900 hide_si_addr_tag_bits(ksig); 2901 2902 return ksig->sig > 0; 2903 } 2904 2905 /** 2906 * signal_delivered - called after signal delivery to update blocked signals 2907 * @ksig: kernel signal struct 2908 * @stepping: nonzero if debugger single-step or block-step in use 2909 * 2910 * This function should be called when a signal has successfully been 2911 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2912 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2913 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2914 */ 2915 static void signal_delivered(struct ksignal *ksig, int stepping) 2916 { 2917 sigset_t blocked; 2918 2919 /* A signal was successfully delivered, and the 2920 saved sigmask was stored on the signal frame, 2921 and will be restored by sigreturn. So we can 2922 simply clear the restore sigmask flag. */ 2923 clear_restore_sigmask(); 2924 2925 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2926 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2927 sigaddset(&blocked, ksig->sig); 2928 set_current_blocked(&blocked); 2929 if (current->sas_ss_flags & SS_AUTODISARM) 2930 sas_ss_reset(current); 2931 if (stepping) 2932 ptrace_notify(SIGTRAP, 0); 2933 } 2934 2935 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2936 { 2937 if (failed) 2938 force_sigsegv(ksig->sig); 2939 else 2940 signal_delivered(ksig, stepping); 2941 } 2942 2943 /* 2944 * It could be that complete_signal() picked us to notify about the 2945 * group-wide signal. Other threads should be notified now to take 2946 * the shared signals in @which since we will not. 2947 */ 2948 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2949 { 2950 sigset_t retarget; 2951 struct task_struct *t; 2952 2953 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2954 if (sigisemptyset(&retarget)) 2955 return; 2956 2957 t = tsk; 2958 while_each_thread(tsk, t) { 2959 if (t->flags & PF_EXITING) 2960 continue; 2961 2962 if (!has_pending_signals(&retarget, &t->blocked)) 2963 continue; 2964 /* Remove the signals this thread can handle. */ 2965 sigandsets(&retarget, &retarget, &t->blocked); 2966 2967 if (!task_sigpending(t)) 2968 signal_wake_up(t, 0); 2969 2970 if (sigisemptyset(&retarget)) 2971 break; 2972 } 2973 } 2974 2975 void exit_signals(struct task_struct *tsk) 2976 { 2977 int group_stop = 0; 2978 sigset_t unblocked; 2979 2980 /* 2981 * @tsk is about to have PF_EXITING set - lock out users which 2982 * expect stable threadgroup. 2983 */ 2984 cgroup_threadgroup_change_begin(tsk); 2985 2986 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 2987 sched_mm_cid_exit_signals(tsk); 2988 tsk->flags |= PF_EXITING; 2989 cgroup_threadgroup_change_end(tsk); 2990 return; 2991 } 2992 2993 spin_lock_irq(&tsk->sighand->siglock); 2994 /* 2995 * From now this task is not visible for group-wide signals, 2996 * see wants_signal(), do_signal_stop(). 2997 */ 2998 sched_mm_cid_exit_signals(tsk); 2999 tsk->flags |= PF_EXITING; 3000 3001 cgroup_threadgroup_change_end(tsk); 3002 3003 if (!task_sigpending(tsk)) 3004 goto out; 3005 3006 unblocked = tsk->blocked; 3007 signotset(&unblocked); 3008 retarget_shared_pending(tsk, &unblocked); 3009 3010 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3011 task_participate_group_stop(tsk)) 3012 group_stop = CLD_STOPPED; 3013 out: 3014 spin_unlock_irq(&tsk->sighand->siglock); 3015 3016 /* 3017 * If group stop has completed, deliver the notification. This 3018 * should always go to the real parent of the group leader. 3019 */ 3020 if (unlikely(group_stop)) { 3021 read_lock(&tasklist_lock); 3022 do_notify_parent_cldstop(tsk, false, group_stop); 3023 read_unlock(&tasklist_lock); 3024 } 3025 } 3026 3027 /* 3028 * System call entry points. 3029 */ 3030 3031 /** 3032 * sys_restart_syscall - restart a system call 3033 */ 3034 SYSCALL_DEFINE0(restart_syscall) 3035 { 3036 struct restart_block *restart = ¤t->restart_block; 3037 return restart->fn(restart); 3038 } 3039 3040 long do_no_restart_syscall(struct restart_block *param) 3041 { 3042 return -EINTR; 3043 } 3044 3045 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3046 { 3047 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3048 sigset_t newblocked; 3049 /* A set of now blocked but previously unblocked signals. */ 3050 sigandnsets(&newblocked, newset, ¤t->blocked); 3051 retarget_shared_pending(tsk, &newblocked); 3052 } 3053 tsk->blocked = *newset; 3054 recalc_sigpending(); 3055 } 3056 3057 /** 3058 * set_current_blocked - change current->blocked mask 3059 * @newset: new mask 3060 * 3061 * It is wrong to change ->blocked directly, this helper should be used 3062 * to ensure the process can't miss a shared signal we are going to block. 3063 */ 3064 void set_current_blocked(sigset_t *newset) 3065 { 3066 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3067 __set_current_blocked(newset); 3068 } 3069 3070 void __set_current_blocked(const sigset_t *newset) 3071 { 3072 struct task_struct *tsk = current; 3073 3074 /* 3075 * In case the signal mask hasn't changed, there is nothing we need 3076 * to do. The current->blocked shouldn't be modified by other task. 3077 */ 3078 if (sigequalsets(&tsk->blocked, newset)) 3079 return; 3080 3081 spin_lock_irq(&tsk->sighand->siglock); 3082 __set_task_blocked(tsk, newset); 3083 spin_unlock_irq(&tsk->sighand->siglock); 3084 } 3085 3086 /* 3087 * This is also useful for kernel threads that want to temporarily 3088 * (or permanently) block certain signals. 3089 * 3090 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3091 * interface happily blocks "unblockable" signals like SIGKILL 3092 * and friends. 3093 */ 3094 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3095 { 3096 struct task_struct *tsk = current; 3097 sigset_t newset; 3098 3099 /* Lockless, only current can change ->blocked, never from irq */ 3100 if (oldset) 3101 *oldset = tsk->blocked; 3102 3103 switch (how) { 3104 case SIG_BLOCK: 3105 sigorsets(&newset, &tsk->blocked, set); 3106 break; 3107 case SIG_UNBLOCK: 3108 sigandnsets(&newset, &tsk->blocked, set); 3109 break; 3110 case SIG_SETMASK: 3111 newset = *set; 3112 break; 3113 default: 3114 return -EINVAL; 3115 } 3116 3117 __set_current_blocked(&newset); 3118 return 0; 3119 } 3120 EXPORT_SYMBOL(sigprocmask); 3121 3122 /* 3123 * The api helps set app-provided sigmasks. 3124 * 3125 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3126 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3127 * 3128 * Note that it does set_restore_sigmask() in advance, so it must be always 3129 * paired with restore_saved_sigmask_unless() before return from syscall. 3130 */ 3131 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3132 { 3133 sigset_t kmask; 3134 3135 if (!umask) 3136 return 0; 3137 if (sigsetsize != sizeof(sigset_t)) 3138 return -EINVAL; 3139 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3140 return -EFAULT; 3141 3142 set_restore_sigmask(); 3143 current->saved_sigmask = current->blocked; 3144 set_current_blocked(&kmask); 3145 3146 return 0; 3147 } 3148 3149 #ifdef CONFIG_COMPAT 3150 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3151 size_t sigsetsize) 3152 { 3153 sigset_t kmask; 3154 3155 if (!umask) 3156 return 0; 3157 if (sigsetsize != sizeof(compat_sigset_t)) 3158 return -EINVAL; 3159 if (get_compat_sigset(&kmask, umask)) 3160 return -EFAULT; 3161 3162 set_restore_sigmask(); 3163 current->saved_sigmask = current->blocked; 3164 set_current_blocked(&kmask); 3165 3166 return 0; 3167 } 3168 #endif 3169 3170 /** 3171 * sys_rt_sigprocmask - change the list of currently blocked signals 3172 * @how: whether to add, remove, or set signals 3173 * @nset: stores pending signals 3174 * @oset: previous value of signal mask if non-null 3175 * @sigsetsize: size of sigset_t type 3176 */ 3177 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3178 sigset_t __user *, oset, size_t, sigsetsize) 3179 { 3180 sigset_t old_set, new_set; 3181 int error; 3182 3183 /* XXX: Don't preclude handling different sized sigset_t's. */ 3184 if (sigsetsize != sizeof(sigset_t)) 3185 return -EINVAL; 3186 3187 old_set = current->blocked; 3188 3189 if (nset) { 3190 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3191 return -EFAULT; 3192 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3193 3194 error = sigprocmask(how, &new_set, NULL); 3195 if (error) 3196 return error; 3197 } 3198 3199 if (oset) { 3200 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3201 return -EFAULT; 3202 } 3203 3204 return 0; 3205 } 3206 3207 #ifdef CONFIG_COMPAT 3208 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3209 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3210 { 3211 sigset_t old_set = current->blocked; 3212 3213 /* XXX: Don't preclude handling different sized sigset_t's. */ 3214 if (sigsetsize != sizeof(sigset_t)) 3215 return -EINVAL; 3216 3217 if (nset) { 3218 sigset_t new_set; 3219 int error; 3220 if (get_compat_sigset(&new_set, nset)) 3221 return -EFAULT; 3222 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3223 3224 error = sigprocmask(how, &new_set, NULL); 3225 if (error) 3226 return error; 3227 } 3228 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3229 } 3230 #endif 3231 3232 static void do_sigpending(sigset_t *set) 3233 { 3234 spin_lock_irq(¤t->sighand->siglock); 3235 sigorsets(set, ¤t->pending.signal, 3236 ¤t->signal->shared_pending.signal); 3237 spin_unlock_irq(¤t->sighand->siglock); 3238 3239 /* Outside the lock because only this thread touches it. */ 3240 sigandsets(set, ¤t->blocked, set); 3241 } 3242 3243 /** 3244 * sys_rt_sigpending - examine a pending signal that has been raised 3245 * while blocked 3246 * @uset: stores pending signals 3247 * @sigsetsize: size of sigset_t type or larger 3248 */ 3249 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3250 { 3251 sigset_t set; 3252 3253 if (sigsetsize > sizeof(*uset)) 3254 return -EINVAL; 3255 3256 do_sigpending(&set); 3257 3258 if (copy_to_user(uset, &set, sigsetsize)) 3259 return -EFAULT; 3260 3261 return 0; 3262 } 3263 3264 #ifdef CONFIG_COMPAT 3265 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3266 compat_size_t, sigsetsize) 3267 { 3268 sigset_t set; 3269 3270 if (sigsetsize > sizeof(*uset)) 3271 return -EINVAL; 3272 3273 do_sigpending(&set); 3274 3275 return put_compat_sigset(uset, &set, sigsetsize); 3276 } 3277 #endif 3278 3279 static const struct { 3280 unsigned char limit, layout; 3281 } sig_sicodes[] = { 3282 [SIGILL] = { NSIGILL, SIL_FAULT }, 3283 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3284 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3285 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3286 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3287 #if defined(SIGEMT) 3288 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3289 #endif 3290 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3291 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3292 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3293 }; 3294 3295 static bool known_siginfo_layout(unsigned sig, int si_code) 3296 { 3297 if (si_code == SI_KERNEL) 3298 return true; 3299 else if ((si_code > SI_USER)) { 3300 if (sig_specific_sicodes(sig)) { 3301 if (si_code <= sig_sicodes[sig].limit) 3302 return true; 3303 } 3304 else if (si_code <= NSIGPOLL) 3305 return true; 3306 } 3307 else if (si_code >= SI_DETHREAD) 3308 return true; 3309 else if (si_code == SI_ASYNCNL) 3310 return true; 3311 return false; 3312 } 3313 3314 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3315 { 3316 enum siginfo_layout layout = SIL_KILL; 3317 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3318 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3319 (si_code <= sig_sicodes[sig].limit)) { 3320 layout = sig_sicodes[sig].layout; 3321 /* Handle the exceptions */ 3322 if ((sig == SIGBUS) && 3323 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3324 layout = SIL_FAULT_MCEERR; 3325 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3326 layout = SIL_FAULT_BNDERR; 3327 #ifdef SEGV_PKUERR 3328 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3329 layout = SIL_FAULT_PKUERR; 3330 #endif 3331 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3332 layout = SIL_FAULT_PERF_EVENT; 3333 else if (IS_ENABLED(CONFIG_SPARC) && 3334 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3335 layout = SIL_FAULT_TRAPNO; 3336 else if (IS_ENABLED(CONFIG_ALPHA) && 3337 ((sig == SIGFPE) || 3338 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3339 layout = SIL_FAULT_TRAPNO; 3340 } 3341 else if (si_code <= NSIGPOLL) 3342 layout = SIL_POLL; 3343 } else { 3344 if (si_code == SI_TIMER) 3345 layout = SIL_TIMER; 3346 else if (si_code == SI_SIGIO) 3347 layout = SIL_POLL; 3348 else if (si_code < 0) 3349 layout = SIL_RT; 3350 } 3351 return layout; 3352 } 3353 3354 static inline char __user *si_expansion(const siginfo_t __user *info) 3355 { 3356 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3357 } 3358 3359 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3360 { 3361 char __user *expansion = si_expansion(to); 3362 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3363 return -EFAULT; 3364 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3365 return -EFAULT; 3366 return 0; 3367 } 3368 3369 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3370 const siginfo_t __user *from) 3371 { 3372 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3373 char __user *expansion = si_expansion(from); 3374 char buf[SI_EXPANSION_SIZE]; 3375 int i; 3376 /* 3377 * An unknown si_code might need more than 3378 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3379 * extra bytes are 0. This guarantees copy_siginfo_to_user 3380 * will return this data to userspace exactly. 3381 */ 3382 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3383 return -EFAULT; 3384 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3385 if (buf[i] != 0) 3386 return -E2BIG; 3387 } 3388 } 3389 return 0; 3390 } 3391 3392 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3393 const siginfo_t __user *from) 3394 { 3395 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3396 return -EFAULT; 3397 to->si_signo = signo; 3398 return post_copy_siginfo_from_user(to, from); 3399 } 3400 3401 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3402 { 3403 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3404 return -EFAULT; 3405 return post_copy_siginfo_from_user(to, from); 3406 } 3407 3408 #ifdef CONFIG_COMPAT 3409 /** 3410 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3411 * @to: compat siginfo destination 3412 * @from: kernel siginfo source 3413 * 3414 * Note: This function does not work properly for the SIGCHLD on x32, but 3415 * fortunately it doesn't have to. The only valid callers for this function are 3416 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3417 * The latter does not care because SIGCHLD will never cause a coredump. 3418 */ 3419 void copy_siginfo_to_external32(struct compat_siginfo *to, 3420 const struct kernel_siginfo *from) 3421 { 3422 memset(to, 0, sizeof(*to)); 3423 3424 to->si_signo = from->si_signo; 3425 to->si_errno = from->si_errno; 3426 to->si_code = from->si_code; 3427 switch(siginfo_layout(from->si_signo, from->si_code)) { 3428 case SIL_KILL: 3429 to->si_pid = from->si_pid; 3430 to->si_uid = from->si_uid; 3431 break; 3432 case SIL_TIMER: 3433 to->si_tid = from->si_tid; 3434 to->si_overrun = from->si_overrun; 3435 to->si_int = from->si_int; 3436 break; 3437 case SIL_POLL: 3438 to->si_band = from->si_band; 3439 to->si_fd = from->si_fd; 3440 break; 3441 case SIL_FAULT: 3442 to->si_addr = ptr_to_compat(from->si_addr); 3443 break; 3444 case SIL_FAULT_TRAPNO: 3445 to->si_addr = ptr_to_compat(from->si_addr); 3446 to->si_trapno = from->si_trapno; 3447 break; 3448 case SIL_FAULT_MCEERR: 3449 to->si_addr = ptr_to_compat(from->si_addr); 3450 to->si_addr_lsb = from->si_addr_lsb; 3451 break; 3452 case SIL_FAULT_BNDERR: 3453 to->si_addr = ptr_to_compat(from->si_addr); 3454 to->si_lower = ptr_to_compat(from->si_lower); 3455 to->si_upper = ptr_to_compat(from->si_upper); 3456 break; 3457 case SIL_FAULT_PKUERR: 3458 to->si_addr = ptr_to_compat(from->si_addr); 3459 to->si_pkey = from->si_pkey; 3460 break; 3461 case SIL_FAULT_PERF_EVENT: 3462 to->si_addr = ptr_to_compat(from->si_addr); 3463 to->si_perf_data = from->si_perf_data; 3464 to->si_perf_type = from->si_perf_type; 3465 to->si_perf_flags = from->si_perf_flags; 3466 break; 3467 case SIL_CHLD: 3468 to->si_pid = from->si_pid; 3469 to->si_uid = from->si_uid; 3470 to->si_status = from->si_status; 3471 to->si_utime = from->si_utime; 3472 to->si_stime = from->si_stime; 3473 break; 3474 case SIL_RT: 3475 to->si_pid = from->si_pid; 3476 to->si_uid = from->si_uid; 3477 to->si_int = from->si_int; 3478 break; 3479 case SIL_SYS: 3480 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3481 to->si_syscall = from->si_syscall; 3482 to->si_arch = from->si_arch; 3483 break; 3484 } 3485 } 3486 3487 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3488 const struct kernel_siginfo *from) 3489 { 3490 struct compat_siginfo new; 3491 3492 copy_siginfo_to_external32(&new, from); 3493 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3494 return -EFAULT; 3495 return 0; 3496 } 3497 3498 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3499 const struct compat_siginfo *from) 3500 { 3501 clear_siginfo(to); 3502 to->si_signo = from->si_signo; 3503 to->si_errno = from->si_errno; 3504 to->si_code = from->si_code; 3505 switch(siginfo_layout(from->si_signo, from->si_code)) { 3506 case SIL_KILL: 3507 to->si_pid = from->si_pid; 3508 to->si_uid = from->si_uid; 3509 break; 3510 case SIL_TIMER: 3511 to->si_tid = from->si_tid; 3512 to->si_overrun = from->si_overrun; 3513 to->si_int = from->si_int; 3514 break; 3515 case SIL_POLL: 3516 to->si_band = from->si_band; 3517 to->si_fd = from->si_fd; 3518 break; 3519 case SIL_FAULT: 3520 to->si_addr = compat_ptr(from->si_addr); 3521 break; 3522 case SIL_FAULT_TRAPNO: 3523 to->si_addr = compat_ptr(from->si_addr); 3524 to->si_trapno = from->si_trapno; 3525 break; 3526 case SIL_FAULT_MCEERR: 3527 to->si_addr = compat_ptr(from->si_addr); 3528 to->si_addr_lsb = from->si_addr_lsb; 3529 break; 3530 case SIL_FAULT_BNDERR: 3531 to->si_addr = compat_ptr(from->si_addr); 3532 to->si_lower = compat_ptr(from->si_lower); 3533 to->si_upper = compat_ptr(from->si_upper); 3534 break; 3535 case SIL_FAULT_PKUERR: 3536 to->si_addr = compat_ptr(from->si_addr); 3537 to->si_pkey = from->si_pkey; 3538 break; 3539 case SIL_FAULT_PERF_EVENT: 3540 to->si_addr = compat_ptr(from->si_addr); 3541 to->si_perf_data = from->si_perf_data; 3542 to->si_perf_type = from->si_perf_type; 3543 to->si_perf_flags = from->si_perf_flags; 3544 break; 3545 case SIL_CHLD: 3546 to->si_pid = from->si_pid; 3547 to->si_uid = from->si_uid; 3548 to->si_status = from->si_status; 3549 #ifdef CONFIG_X86_X32_ABI 3550 if (in_x32_syscall()) { 3551 to->si_utime = from->_sifields._sigchld_x32._utime; 3552 to->si_stime = from->_sifields._sigchld_x32._stime; 3553 } else 3554 #endif 3555 { 3556 to->si_utime = from->si_utime; 3557 to->si_stime = from->si_stime; 3558 } 3559 break; 3560 case SIL_RT: 3561 to->si_pid = from->si_pid; 3562 to->si_uid = from->si_uid; 3563 to->si_int = from->si_int; 3564 break; 3565 case SIL_SYS: 3566 to->si_call_addr = compat_ptr(from->si_call_addr); 3567 to->si_syscall = from->si_syscall; 3568 to->si_arch = from->si_arch; 3569 break; 3570 } 3571 return 0; 3572 } 3573 3574 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3575 const struct compat_siginfo __user *ufrom) 3576 { 3577 struct compat_siginfo from; 3578 3579 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3580 return -EFAULT; 3581 3582 from.si_signo = signo; 3583 return post_copy_siginfo_from_user32(to, &from); 3584 } 3585 3586 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3587 const struct compat_siginfo __user *ufrom) 3588 { 3589 struct compat_siginfo from; 3590 3591 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3592 return -EFAULT; 3593 3594 return post_copy_siginfo_from_user32(to, &from); 3595 } 3596 #endif /* CONFIG_COMPAT */ 3597 3598 /** 3599 * do_sigtimedwait - wait for queued signals specified in @which 3600 * @which: queued signals to wait for 3601 * @info: if non-null, the signal's siginfo is returned here 3602 * @ts: upper bound on process time suspension 3603 */ 3604 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3605 const struct timespec64 *ts) 3606 { 3607 ktime_t *to = NULL, timeout = KTIME_MAX; 3608 struct task_struct *tsk = current; 3609 sigset_t mask = *which; 3610 enum pid_type type; 3611 int sig, ret = 0; 3612 3613 if (ts) { 3614 if (!timespec64_valid(ts)) 3615 return -EINVAL; 3616 timeout = timespec64_to_ktime(*ts); 3617 to = &timeout; 3618 } 3619 3620 /* 3621 * Invert the set of allowed signals to get those we want to block. 3622 */ 3623 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3624 signotset(&mask); 3625 3626 spin_lock_irq(&tsk->sighand->siglock); 3627 sig = dequeue_signal(tsk, &mask, info, &type); 3628 if (!sig && timeout) { 3629 /* 3630 * None ready, temporarily unblock those we're interested 3631 * while we are sleeping in so that we'll be awakened when 3632 * they arrive. Unblocking is always fine, we can avoid 3633 * set_current_blocked(). 3634 */ 3635 tsk->real_blocked = tsk->blocked; 3636 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3637 recalc_sigpending(); 3638 spin_unlock_irq(&tsk->sighand->siglock); 3639 3640 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3641 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3642 HRTIMER_MODE_REL); 3643 spin_lock_irq(&tsk->sighand->siglock); 3644 __set_task_blocked(tsk, &tsk->real_blocked); 3645 sigemptyset(&tsk->real_blocked); 3646 sig = dequeue_signal(tsk, &mask, info, &type); 3647 } 3648 spin_unlock_irq(&tsk->sighand->siglock); 3649 3650 if (sig) 3651 return sig; 3652 return ret ? -EINTR : -EAGAIN; 3653 } 3654 3655 /** 3656 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3657 * in @uthese 3658 * @uthese: queued signals to wait for 3659 * @uinfo: if non-null, the signal's siginfo is returned here 3660 * @uts: upper bound on process time suspension 3661 * @sigsetsize: size of sigset_t type 3662 */ 3663 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3664 siginfo_t __user *, uinfo, 3665 const struct __kernel_timespec __user *, uts, 3666 size_t, sigsetsize) 3667 { 3668 sigset_t these; 3669 struct timespec64 ts; 3670 kernel_siginfo_t info; 3671 int ret; 3672 3673 /* XXX: Don't preclude handling different sized sigset_t's. */ 3674 if (sigsetsize != sizeof(sigset_t)) 3675 return -EINVAL; 3676 3677 if (copy_from_user(&these, uthese, sizeof(these))) 3678 return -EFAULT; 3679 3680 if (uts) { 3681 if (get_timespec64(&ts, uts)) 3682 return -EFAULT; 3683 } 3684 3685 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3686 3687 if (ret > 0 && uinfo) { 3688 if (copy_siginfo_to_user(uinfo, &info)) 3689 ret = -EFAULT; 3690 } 3691 3692 return ret; 3693 } 3694 3695 #ifdef CONFIG_COMPAT_32BIT_TIME 3696 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3697 siginfo_t __user *, uinfo, 3698 const struct old_timespec32 __user *, uts, 3699 size_t, sigsetsize) 3700 { 3701 sigset_t these; 3702 struct timespec64 ts; 3703 kernel_siginfo_t info; 3704 int ret; 3705 3706 if (sigsetsize != sizeof(sigset_t)) 3707 return -EINVAL; 3708 3709 if (copy_from_user(&these, uthese, sizeof(these))) 3710 return -EFAULT; 3711 3712 if (uts) { 3713 if (get_old_timespec32(&ts, uts)) 3714 return -EFAULT; 3715 } 3716 3717 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3718 3719 if (ret > 0 && uinfo) { 3720 if (copy_siginfo_to_user(uinfo, &info)) 3721 ret = -EFAULT; 3722 } 3723 3724 return ret; 3725 } 3726 #endif 3727 3728 #ifdef CONFIG_COMPAT 3729 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3730 struct compat_siginfo __user *, uinfo, 3731 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3732 { 3733 sigset_t s; 3734 struct timespec64 t; 3735 kernel_siginfo_t info; 3736 long ret; 3737 3738 if (sigsetsize != sizeof(sigset_t)) 3739 return -EINVAL; 3740 3741 if (get_compat_sigset(&s, uthese)) 3742 return -EFAULT; 3743 3744 if (uts) { 3745 if (get_timespec64(&t, uts)) 3746 return -EFAULT; 3747 } 3748 3749 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3750 3751 if (ret > 0 && uinfo) { 3752 if (copy_siginfo_to_user32(uinfo, &info)) 3753 ret = -EFAULT; 3754 } 3755 3756 return ret; 3757 } 3758 3759 #ifdef CONFIG_COMPAT_32BIT_TIME 3760 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3761 struct compat_siginfo __user *, uinfo, 3762 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3763 { 3764 sigset_t s; 3765 struct timespec64 t; 3766 kernel_siginfo_t info; 3767 long ret; 3768 3769 if (sigsetsize != sizeof(sigset_t)) 3770 return -EINVAL; 3771 3772 if (get_compat_sigset(&s, uthese)) 3773 return -EFAULT; 3774 3775 if (uts) { 3776 if (get_old_timespec32(&t, uts)) 3777 return -EFAULT; 3778 } 3779 3780 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3781 3782 if (ret > 0 && uinfo) { 3783 if (copy_siginfo_to_user32(uinfo, &info)) 3784 ret = -EFAULT; 3785 } 3786 3787 return ret; 3788 } 3789 #endif 3790 #endif 3791 3792 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3793 { 3794 clear_siginfo(info); 3795 info->si_signo = sig; 3796 info->si_errno = 0; 3797 info->si_code = SI_USER; 3798 info->si_pid = task_tgid_vnr(current); 3799 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3800 } 3801 3802 /** 3803 * sys_kill - send a signal to a process 3804 * @pid: the PID of the process 3805 * @sig: signal to be sent 3806 */ 3807 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3808 { 3809 struct kernel_siginfo info; 3810 3811 prepare_kill_siginfo(sig, &info); 3812 3813 return kill_something_info(sig, &info, pid); 3814 } 3815 3816 /* 3817 * Verify that the signaler and signalee either are in the same pid namespace 3818 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3819 * namespace. 3820 */ 3821 static bool access_pidfd_pidns(struct pid *pid) 3822 { 3823 struct pid_namespace *active = task_active_pid_ns(current); 3824 struct pid_namespace *p = ns_of_pid(pid); 3825 3826 for (;;) { 3827 if (!p) 3828 return false; 3829 if (p == active) 3830 break; 3831 p = p->parent; 3832 } 3833 3834 return true; 3835 } 3836 3837 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3838 siginfo_t __user *info) 3839 { 3840 #ifdef CONFIG_COMPAT 3841 /* 3842 * Avoid hooking up compat syscalls and instead handle necessary 3843 * conversions here. Note, this is a stop-gap measure and should not be 3844 * considered a generic solution. 3845 */ 3846 if (in_compat_syscall()) 3847 return copy_siginfo_from_user32( 3848 kinfo, (struct compat_siginfo __user *)info); 3849 #endif 3850 return copy_siginfo_from_user(kinfo, info); 3851 } 3852 3853 static struct pid *pidfd_to_pid(const struct file *file) 3854 { 3855 struct pid *pid; 3856 3857 pid = pidfd_pid(file); 3858 if (!IS_ERR(pid)) 3859 return pid; 3860 3861 return tgid_pidfd_to_pid(file); 3862 } 3863 3864 /** 3865 * sys_pidfd_send_signal - Signal a process through a pidfd 3866 * @pidfd: file descriptor of the process 3867 * @sig: signal to send 3868 * @info: signal info 3869 * @flags: future flags 3870 * 3871 * The syscall currently only signals via PIDTYPE_PID which covers 3872 * kill(<positive-pid>, <signal>. It does not signal threads or process 3873 * groups. 3874 * In order to extend the syscall to threads and process groups the @flags 3875 * argument should be used. In essence, the @flags argument will determine 3876 * what is signaled and not the file descriptor itself. Put in other words, 3877 * grouping is a property of the flags argument not a property of the file 3878 * descriptor. 3879 * 3880 * Return: 0 on success, negative errno on failure 3881 */ 3882 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3883 siginfo_t __user *, info, unsigned int, flags) 3884 { 3885 int ret; 3886 struct fd f; 3887 struct pid *pid; 3888 kernel_siginfo_t kinfo; 3889 3890 /* Enforce flags be set to 0 until we add an extension. */ 3891 if (flags) 3892 return -EINVAL; 3893 3894 f = fdget(pidfd); 3895 if (!f.file) 3896 return -EBADF; 3897 3898 /* Is this a pidfd? */ 3899 pid = pidfd_to_pid(f.file); 3900 if (IS_ERR(pid)) { 3901 ret = PTR_ERR(pid); 3902 goto err; 3903 } 3904 3905 ret = -EINVAL; 3906 if (!access_pidfd_pidns(pid)) 3907 goto err; 3908 3909 if (info) { 3910 ret = copy_siginfo_from_user_any(&kinfo, info); 3911 if (unlikely(ret)) 3912 goto err; 3913 3914 ret = -EINVAL; 3915 if (unlikely(sig != kinfo.si_signo)) 3916 goto err; 3917 3918 /* Only allow sending arbitrary signals to yourself. */ 3919 ret = -EPERM; 3920 if ((task_pid(current) != pid) && 3921 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3922 goto err; 3923 } else { 3924 prepare_kill_siginfo(sig, &kinfo); 3925 } 3926 3927 ret = kill_pid_info(sig, &kinfo, pid); 3928 3929 err: 3930 fdput(f); 3931 return ret; 3932 } 3933 3934 static int 3935 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3936 { 3937 struct task_struct *p; 3938 int error = -ESRCH; 3939 3940 rcu_read_lock(); 3941 p = find_task_by_vpid(pid); 3942 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3943 error = check_kill_permission(sig, info, p); 3944 /* 3945 * The null signal is a permissions and process existence 3946 * probe. No signal is actually delivered. 3947 */ 3948 if (!error && sig) { 3949 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3950 /* 3951 * If lock_task_sighand() failed we pretend the task 3952 * dies after receiving the signal. The window is tiny, 3953 * and the signal is private anyway. 3954 */ 3955 if (unlikely(error == -ESRCH)) 3956 error = 0; 3957 } 3958 } 3959 rcu_read_unlock(); 3960 3961 return error; 3962 } 3963 3964 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3965 { 3966 struct kernel_siginfo info; 3967 3968 clear_siginfo(&info); 3969 info.si_signo = sig; 3970 info.si_errno = 0; 3971 info.si_code = SI_TKILL; 3972 info.si_pid = task_tgid_vnr(current); 3973 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3974 3975 return do_send_specific(tgid, pid, sig, &info); 3976 } 3977 3978 /** 3979 * sys_tgkill - send signal to one specific thread 3980 * @tgid: the thread group ID of the thread 3981 * @pid: the PID of the thread 3982 * @sig: signal to be sent 3983 * 3984 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3985 * exists but it's not belonging to the target process anymore. This 3986 * method solves the problem of threads exiting and PIDs getting reused. 3987 */ 3988 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3989 { 3990 /* This is only valid for single tasks */ 3991 if (pid <= 0 || tgid <= 0) 3992 return -EINVAL; 3993 3994 return do_tkill(tgid, pid, sig); 3995 } 3996 3997 /** 3998 * sys_tkill - send signal to one specific task 3999 * @pid: the PID of the task 4000 * @sig: signal to be sent 4001 * 4002 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4003 */ 4004 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4005 { 4006 /* This is only valid for single tasks */ 4007 if (pid <= 0) 4008 return -EINVAL; 4009 4010 return do_tkill(0, pid, sig); 4011 } 4012 4013 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4014 { 4015 /* Not even root can pretend to send signals from the kernel. 4016 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4017 */ 4018 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4019 (task_pid_vnr(current) != pid)) 4020 return -EPERM; 4021 4022 /* POSIX.1b doesn't mention process groups. */ 4023 return kill_proc_info(sig, info, pid); 4024 } 4025 4026 /** 4027 * sys_rt_sigqueueinfo - send signal information to a signal 4028 * @pid: the PID of the thread 4029 * @sig: signal to be sent 4030 * @uinfo: signal info to be sent 4031 */ 4032 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4033 siginfo_t __user *, uinfo) 4034 { 4035 kernel_siginfo_t info; 4036 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4037 if (unlikely(ret)) 4038 return ret; 4039 return do_rt_sigqueueinfo(pid, sig, &info); 4040 } 4041 4042 #ifdef CONFIG_COMPAT 4043 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4044 compat_pid_t, pid, 4045 int, sig, 4046 struct compat_siginfo __user *, uinfo) 4047 { 4048 kernel_siginfo_t info; 4049 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4050 if (unlikely(ret)) 4051 return ret; 4052 return do_rt_sigqueueinfo(pid, sig, &info); 4053 } 4054 #endif 4055 4056 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4057 { 4058 /* This is only valid for single tasks */ 4059 if (pid <= 0 || tgid <= 0) 4060 return -EINVAL; 4061 4062 /* Not even root can pretend to send signals from the kernel. 4063 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4064 */ 4065 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4066 (task_pid_vnr(current) != pid)) 4067 return -EPERM; 4068 4069 return do_send_specific(tgid, pid, sig, info); 4070 } 4071 4072 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4073 siginfo_t __user *, uinfo) 4074 { 4075 kernel_siginfo_t info; 4076 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4077 if (unlikely(ret)) 4078 return ret; 4079 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4080 } 4081 4082 #ifdef CONFIG_COMPAT 4083 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4084 compat_pid_t, tgid, 4085 compat_pid_t, pid, 4086 int, sig, 4087 struct compat_siginfo __user *, uinfo) 4088 { 4089 kernel_siginfo_t info; 4090 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4091 if (unlikely(ret)) 4092 return ret; 4093 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4094 } 4095 #endif 4096 4097 /* 4098 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4099 */ 4100 void kernel_sigaction(int sig, __sighandler_t action) 4101 { 4102 spin_lock_irq(¤t->sighand->siglock); 4103 current->sighand->action[sig - 1].sa.sa_handler = action; 4104 if (action == SIG_IGN) { 4105 sigset_t mask; 4106 4107 sigemptyset(&mask); 4108 sigaddset(&mask, sig); 4109 4110 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4111 flush_sigqueue_mask(&mask, ¤t->pending); 4112 recalc_sigpending(); 4113 } 4114 spin_unlock_irq(¤t->sighand->siglock); 4115 } 4116 EXPORT_SYMBOL(kernel_sigaction); 4117 4118 void __weak sigaction_compat_abi(struct k_sigaction *act, 4119 struct k_sigaction *oact) 4120 { 4121 } 4122 4123 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4124 { 4125 struct task_struct *p = current, *t; 4126 struct k_sigaction *k; 4127 sigset_t mask; 4128 4129 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4130 return -EINVAL; 4131 4132 k = &p->sighand->action[sig-1]; 4133 4134 spin_lock_irq(&p->sighand->siglock); 4135 if (k->sa.sa_flags & SA_IMMUTABLE) { 4136 spin_unlock_irq(&p->sighand->siglock); 4137 return -EINVAL; 4138 } 4139 if (oact) 4140 *oact = *k; 4141 4142 /* 4143 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4144 * e.g. by having an architecture use the bit in their uapi. 4145 */ 4146 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4147 4148 /* 4149 * Clear unknown flag bits in order to allow userspace to detect missing 4150 * support for flag bits and to allow the kernel to use non-uapi bits 4151 * internally. 4152 */ 4153 if (act) 4154 act->sa.sa_flags &= UAPI_SA_FLAGS; 4155 if (oact) 4156 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4157 4158 sigaction_compat_abi(act, oact); 4159 4160 if (act) { 4161 sigdelsetmask(&act->sa.sa_mask, 4162 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4163 *k = *act; 4164 /* 4165 * POSIX 3.3.1.3: 4166 * "Setting a signal action to SIG_IGN for a signal that is 4167 * pending shall cause the pending signal to be discarded, 4168 * whether or not it is blocked." 4169 * 4170 * "Setting a signal action to SIG_DFL for a signal that is 4171 * pending and whose default action is to ignore the signal 4172 * (for example, SIGCHLD), shall cause the pending signal to 4173 * be discarded, whether or not it is blocked" 4174 */ 4175 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4176 sigemptyset(&mask); 4177 sigaddset(&mask, sig); 4178 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4179 for_each_thread(p, t) 4180 flush_sigqueue_mask(&mask, &t->pending); 4181 } 4182 } 4183 4184 spin_unlock_irq(&p->sighand->siglock); 4185 return 0; 4186 } 4187 4188 #ifdef CONFIG_DYNAMIC_SIGFRAME 4189 static inline void sigaltstack_lock(void) 4190 __acquires(¤t->sighand->siglock) 4191 { 4192 spin_lock_irq(¤t->sighand->siglock); 4193 } 4194 4195 static inline void sigaltstack_unlock(void) 4196 __releases(¤t->sighand->siglock) 4197 { 4198 spin_unlock_irq(¤t->sighand->siglock); 4199 } 4200 #else 4201 static inline void sigaltstack_lock(void) { } 4202 static inline void sigaltstack_unlock(void) { } 4203 #endif 4204 4205 static int 4206 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4207 size_t min_ss_size) 4208 { 4209 struct task_struct *t = current; 4210 int ret = 0; 4211 4212 if (oss) { 4213 memset(oss, 0, sizeof(stack_t)); 4214 oss->ss_sp = (void __user *) t->sas_ss_sp; 4215 oss->ss_size = t->sas_ss_size; 4216 oss->ss_flags = sas_ss_flags(sp) | 4217 (current->sas_ss_flags & SS_FLAG_BITS); 4218 } 4219 4220 if (ss) { 4221 void __user *ss_sp = ss->ss_sp; 4222 size_t ss_size = ss->ss_size; 4223 unsigned ss_flags = ss->ss_flags; 4224 int ss_mode; 4225 4226 if (unlikely(on_sig_stack(sp))) 4227 return -EPERM; 4228 4229 ss_mode = ss_flags & ~SS_FLAG_BITS; 4230 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4231 ss_mode != 0)) 4232 return -EINVAL; 4233 4234 /* 4235 * Return before taking any locks if no actual 4236 * sigaltstack changes were requested. 4237 */ 4238 if (t->sas_ss_sp == (unsigned long)ss_sp && 4239 t->sas_ss_size == ss_size && 4240 t->sas_ss_flags == ss_flags) 4241 return 0; 4242 4243 sigaltstack_lock(); 4244 if (ss_mode == SS_DISABLE) { 4245 ss_size = 0; 4246 ss_sp = NULL; 4247 } else { 4248 if (unlikely(ss_size < min_ss_size)) 4249 ret = -ENOMEM; 4250 if (!sigaltstack_size_valid(ss_size)) 4251 ret = -ENOMEM; 4252 } 4253 if (!ret) { 4254 t->sas_ss_sp = (unsigned long) ss_sp; 4255 t->sas_ss_size = ss_size; 4256 t->sas_ss_flags = ss_flags; 4257 } 4258 sigaltstack_unlock(); 4259 } 4260 return ret; 4261 } 4262 4263 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4264 { 4265 stack_t new, old; 4266 int err; 4267 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4268 return -EFAULT; 4269 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4270 current_user_stack_pointer(), 4271 MINSIGSTKSZ); 4272 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4273 err = -EFAULT; 4274 return err; 4275 } 4276 4277 int restore_altstack(const stack_t __user *uss) 4278 { 4279 stack_t new; 4280 if (copy_from_user(&new, uss, sizeof(stack_t))) 4281 return -EFAULT; 4282 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4283 MINSIGSTKSZ); 4284 /* squash all but EFAULT for now */ 4285 return 0; 4286 } 4287 4288 int __save_altstack(stack_t __user *uss, unsigned long sp) 4289 { 4290 struct task_struct *t = current; 4291 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4292 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4293 __put_user(t->sas_ss_size, &uss->ss_size); 4294 return err; 4295 } 4296 4297 #ifdef CONFIG_COMPAT 4298 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4299 compat_stack_t __user *uoss_ptr) 4300 { 4301 stack_t uss, uoss; 4302 int ret; 4303 4304 if (uss_ptr) { 4305 compat_stack_t uss32; 4306 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4307 return -EFAULT; 4308 uss.ss_sp = compat_ptr(uss32.ss_sp); 4309 uss.ss_flags = uss32.ss_flags; 4310 uss.ss_size = uss32.ss_size; 4311 } 4312 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4313 compat_user_stack_pointer(), 4314 COMPAT_MINSIGSTKSZ); 4315 if (ret >= 0 && uoss_ptr) { 4316 compat_stack_t old; 4317 memset(&old, 0, sizeof(old)); 4318 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4319 old.ss_flags = uoss.ss_flags; 4320 old.ss_size = uoss.ss_size; 4321 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4322 ret = -EFAULT; 4323 } 4324 return ret; 4325 } 4326 4327 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4328 const compat_stack_t __user *, uss_ptr, 4329 compat_stack_t __user *, uoss_ptr) 4330 { 4331 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4332 } 4333 4334 int compat_restore_altstack(const compat_stack_t __user *uss) 4335 { 4336 int err = do_compat_sigaltstack(uss, NULL); 4337 /* squash all but -EFAULT for now */ 4338 return err == -EFAULT ? err : 0; 4339 } 4340 4341 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4342 { 4343 int err; 4344 struct task_struct *t = current; 4345 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4346 &uss->ss_sp) | 4347 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4348 __put_user(t->sas_ss_size, &uss->ss_size); 4349 return err; 4350 } 4351 #endif 4352 4353 #ifdef __ARCH_WANT_SYS_SIGPENDING 4354 4355 /** 4356 * sys_sigpending - examine pending signals 4357 * @uset: where mask of pending signal is returned 4358 */ 4359 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4360 { 4361 sigset_t set; 4362 4363 if (sizeof(old_sigset_t) > sizeof(*uset)) 4364 return -EINVAL; 4365 4366 do_sigpending(&set); 4367 4368 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4369 return -EFAULT; 4370 4371 return 0; 4372 } 4373 4374 #ifdef CONFIG_COMPAT 4375 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4376 { 4377 sigset_t set; 4378 4379 do_sigpending(&set); 4380 4381 return put_user(set.sig[0], set32); 4382 } 4383 #endif 4384 4385 #endif 4386 4387 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4388 /** 4389 * sys_sigprocmask - examine and change blocked signals 4390 * @how: whether to add, remove, or set signals 4391 * @nset: signals to add or remove (if non-null) 4392 * @oset: previous value of signal mask if non-null 4393 * 4394 * Some platforms have their own version with special arguments; 4395 * others support only sys_rt_sigprocmask. 4396 */ 4397 4398 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4399 old_sigset_t __user *, oset) 4400 { 4401 old_sigset_t old_set, new_set; 4402 sigset_t new_blocked; 4403 4404 old_set = current->blocked.sig[0]; 4405 4406 if (nset) { 4407 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4408 return -EFAULT; 4409 4410 new_blocked = current->blocked; 4411 4412 switch (how) { 4413 case SIG_BLOCK: 4414 sigaddsetmask(&new_blocked, new_set); 4415 break; 4416 case SIG_UNBLOCK: 4417 sigdelsetmask(&new_blocked, new_set); 4418 break; 4419 case SIG_SETMASK: 4420 new_blocked.sig[0] = new_set; 4421 break; 4422 default: 4423 return -EINVAL; 4424 } 4425 4426 set_current_blocked(&new_blocked); 4427 } 4428 4429 if (oset) { 4430 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4431 return -EFAULT; 4432 } 4433 4434 return 0; 4435 } 4436 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4437 4438 #ifndef CONFIG_ODD_RT_SIGACTION 4439 /** 4440 * sys_rt_sigaction - alter an action taken by a process 4441 * @sig: signal to be sent 4442 * @act: new sigaction 4443 * @oact: used to save the previous sigaction 4444 * @sigsetsize: size of sigset_t type 4445 */ 4446 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4447 const struct sigaction __user *, act, 4448 struct sigaction __user *, oact, 4449 size_t, sigsetsize) 4450 { 4451 struct k_sigaction new_sa, old_sa; 4452 int ret; 4453 4454 /* XXX: Don't preclude handling different sized sigset_t's. */ 4455 if (sigsetsize != sizeof(sigset_t)) 4456 return -EINVAL; 4457 4458 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4459 return -EFAULT; 4460 4461 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4462 if (ret) 4463 return ret; 4464 4465 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4466 return -EFAULT; 4467 4468 return 0; 4469 } 4470 #ifdef CONFIG_COMPAT 4471 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4472 const struct compat_sigaction __user *, act, 4473 struct compat_sigaction __user *, oact, 4474 compat_size_t, sigsetsize) 4475 { 4476 struct k_sigaction new_ka, old_ka; 4477 #ifdef __ARCH_HAS_SA_RESTORER 4478 compat_uptr_t restorer; 4479 #endif 4480 int ret; 4481 4482 /* XXX: Don't preclude handling different sized sigset_t's. */ 4483 if (sigsetsize != sizeof(compat_sigset_t)) 4484 return -EINVAL; 4485 4486 if (act) { 4487 compat_uptr_t handler; 4488 ret = get_user(handler, &act->sa_handler); 4489 new_ka.sa.sa_handler = compat_ptr(handler); 4490 #ifdef __ARCH_HAS_SA_RESTORER 4491 ret |= get_user(restorer, &act->sa_restorer); 4492 new_ka.sa.sa_restorer = compat_ptr(restorer); 4493 #endif 4494 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4495 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4496 if (ret) 4497 return -EFAULT; 4498 } 4499 4500 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4501 if (!ret && oact) { 4502 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4503 &oact->sa_handler); 4504 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4505 sizeof(oact->sa_mask)); 4506 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4507 #ifdef __ARCH_HAS_SA_RESTORER 4508 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4509 &oact->sa_restorer); 4510 #endif 4511 } 4512 return ret; 4513 } 4514 #endif 4515 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4516 4517 #ifdef CONFIG_OLD_SIGACTION 4518 SYSCALL_DEFINE3(sigaction, int, sig, 4519 const struct old_sigaction __user *, act, 4520 struct old_sigaction __user *, oact) 4521 { 4522 struct k_sigaction new_ka, old_ka; 4523 int ret; 4524 4525 if (act) { 4526 old_sigset_t mask; 4527 if (!access_ok(act, sizeof(*act)) || 4528 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4529 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4530 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4531 __get_user(mask, &act->sa_mask)) 4532 return -EFAULT; 4533 #ifdef __ARCH_HAS_KA_RESTORER 4534 new_ka.ka_restorer = NULL; 4535 #endif 4536 siginitset(&new_ka.sa.sa_mask, mask); 4537 } 4538 4539 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4540 4541 if (!ret && oact) { 4542 if (!access_ok(oact, sizeof(*oact)) || 4543 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4544 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4545 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4546 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4547 return -EFAULT; 4548 } 4549 4550 return ret; 4551 } 4552 #endif 4553 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4554 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4555 const struct compat_old_sigaction __user *, act, 4556 struct compat_old_sigaction __user *, oact) 4557 { 4558 struct k_sigaction new_ka, old_ka; 4559 int ret; 4560 compat_old_sigset_t mask; 4561 compat_uptr_t handler, restorer; 4562 4563 if (act) { 4564 if (!access_ok(act, sizeof(*act)) || 4565 __get_user(handler, &act->sa_handler) || 4566 __get_user(restorer, &act->sa_restorer) || 4567 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4568 __get_user(mask, &act->sa_mask)) 4569 return -EFAULT; 4570 4571 #ifdef __ARCH_HAS_KA_RESTORER 4572 new_ka.ka_restorer = NULL; 4573 #endif 4574 new_ka.sa.sa_handler = compat_ptr(handler); 4575 new_ka.sa.sa_restorer = compat_ptr(restorer); 4576 siginitset(&new_ka.sa.sa_mask, mask); 4577 } 4578 4579 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4580 4581 if (!ret && oact) { 4582 if (!access_ok(oact, sizeof(*oact)) || 4583 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4584 &oact->sa_handler) || 4585 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4586 &oact->sa_restorer) || 4587 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4588 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4589 return -EFAULT; 4590 } 4591 return ret; 4592 } 4593 #endif 4594 4595 #ifdef CONFIG_SGETMASK_SYSCALL 4596 4597 /* 4598 * For backwards compatibility. Functionality superseded by sigprocmask. 4599 */ 4600 SYSCALL_DEFINE0(sgetmask) 4601 { 4602 /* SMP safe */ 4603 return current->blocked.sig[0]; 4604 } 4605 4606 SYSCALL_DEFINE1(ssetmask, int, newmask) 4607 { 4608 int old = current->blocked.sig[0]; 4609 sigset_t newset; 4610 4611 siginitset(&newset, newmask); 4612 set_current_blocked(&newset); 4613 4614 return old; 4615 } 4616 #endif /* CONFIG_SGETMASK_SYSCALL */ 4617 4618 #ifdef __ARCH_WANT_SYS_SIGNAL 4619 /* 4620 * For backwards compatibility. Functionality superseded by sigaction. 4621 */ 4622 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4623 { 4624 struct k_sigaction new_sa, old_sa; 4625 int ret; 4626 4627 new_sa.sa.sa_handler = handler; 4628 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4629 sigemptyset(&new_sa.sa.sa_mask); 4630 4631 ret = do_sigaction(sig, &new_sa, &old_sa); 4632 4633 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4634 } 4635 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4636 4637 #ifdef __ARCH_WANT_SYS_PAUSE 4638 4639 SYSCALL_DEFINE0(pause) 4640 { 4641 while (!signal_pending(current)) { 4642 __set_current_state(TASK_INTERRUPTIBLE); 4643 schedule(); 4644 } 4645 return -ERESTARTNOHAND; 4646 } 4647 4648 #endif 4649 4650 static int sigsuspend(sigset_t *set) 4651 { 4652 current->saved_sigmask = current->blocked; 4653 set_current_blocked(set); 4654 4655 while (!signal_pending(current)) { 4656 __set_current_state(TASK_INTERRUPTIBLE); 4657 schedule(); 4658 } 4659 set_restore_sigmask(); 4660 return -ERESTARTNOHAND; 4661 } 4662 4663 /** 4664 * sys_rt_sigsuspend - replace the signal mask for a value with the 4665 * @unewset value until a signal is received 4666 * @unewset: new signal mask value 4667 * @sigsetsize: size of sigset_t type 4668 */ 4669 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4670 { 4671 sigset_t newset; 4672 4673 /* XXX: Don't preclude handling different sized sigset_t's. */ 4674 if (sigsetsize != sizeof(sigset_t)) 4675 return -EINVAL; 4676 4677 if (copy_from_user(&newset, unewset, sizeof(newset))) 4678 return -EFAULT; 4679 return sigsuspend(&newset); 4680 } 4681 4682 #ifdef CONFIG_COMPAT 4683 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4684 { 4685 sigset_t newset; 4686 4687 /* XXX: Don't preclude handling different sized sigset_t's. */ 4688 if (sigsetsize != sizeof(sigset_t)) 4689 return -EINVAL; 4690 4691 if (get_compat_sigset(&newset, unewset)) 4692 return -EFAULT; 4693 return sigsuspend(&newset); 4694 } 4695 #endif 4696 4697 #ifdef CONFIG_OLD_SIGSUSPEND 4698 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4699 { 4700 sigset_t blocked; 4701 siginitset(&blocked, mask); 4702 return sigsuspend(&blocked); 4703 } 4704 #endif 4705 #ifdef CONFIG_OLD_SIGSUSPEND3 4706 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4707 { 4708 sigset_t blocked; 4709 siginitset(&blocked, mask); 4710 return sigsuspend(&blocked); 4711 } 4712 #endif 4713 4714 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4715 { 4716 return NULL; 4717 } 4718 4719 static inline void siginfo_buildtime_checks(void) 4720 { 4721 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4722 4723 /* Verify the offsets in the two siginfos match */ 4724 #define CHECK_OFFSET(field) \ 4725 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4726 4727 /* kill */ 4728 CHECK_OFFSET(si_pid); 4729 CHECK_OFFSET(si_uid); 4730 4731 /* timer */ 4732 CHECK_OFFSET(si_tid); 4733 CHECK_OFFSET(si_overrun); 4734 CHECK_OFFSET(si_value); 4735 4736 /* rt */ 4737 CHECK_OFFSET(si_pid); 4738 CHECK_OFFSET(si_uid); 4739 CHECK_OFFSET(si_value); 4740 4741 /* sigchld */ 4742 CHECK_OFFSET(si_pid); 4743 CHECK_OFFSET(si_uid); 4744 CHECK_OFFSET(si_status); 4745 CHECK_OFFSET(si_utime); 4746 CHECK_OFFSET(si_stime); 4747 4748 /* sigfault */ 4749 CHECK_OFFSET(si_addr); 4750 CHECK_OFFSET(si_trapno); 4751 CHECK_OFFSET(si_addr_lsb); 4752 CHECK_OFFSET(si_lower); 4753 CHECK_OFFSET(si_upper); 4754 CHECK_OFFSET(si_pkey); 4755 CHECK_OFFSET(si_perf_data); 4756 CHECK_OFFSET(si_perf_type); 4757 CHECK_OFFSET(si_perf_flags); 4758 4759 /* sigpoll */ 4760 CHECK_OFFSET(si_band); 4761 CHECK_OFFSET(si_fd); 4762 4763 /* sigsys */ 4764 CHECK_OFFSET(si_call_addr); 4765 CHECK_OFFSET(si_syscall); 4766 CHECK_OFFSET(si_arch); 4767 #undef CHECK_OFFSET 4768 4769 /* usb asyncio */ 4770 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4771 offsetof(struct siginfo, si_addr)); 4772 if (sizeof(int) == sizeof(void __user *)) { 4773 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4774 sizeof(void __user *)); 4775 } else { 4776 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4777 sizeof_field(struct siginfo, si_uid)) != 4778 sizeof(void __user *)); 4779 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4780 offsetof(struct siginfo, si_uid)); 4781 } 4782 #ifdef CONFIG_COMPAT 4783 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4784 offsetof(struct compat_siginfo, si_addr)); 4785 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4786 sizeof(compat_uptr_t)); 4787 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4788 sizeof_field(struct siginfo, si_pid)); 4789 #endif 4790 } 4791 4792 #if defined(CONFIG_SYSCTL) 4793 static struct ctl_table signal_debug_table[] = { 4794 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE 4795 { 4796 .procname = "exception-trace", 4797 .data = &show_unhandled_signals, 4798 .maxlen = sizeof(int), 4799 .mode = 0644, 4800 .proc_handler = proc_dointvec 4801 }, 4802 #endif 4803 { } 4804 }; 4805 4806 static int __init init_signal_sysctls(void) 4807 { 4808 register_sysctl_init("debug", signal_debug_table); 4809 return 0; 4810 } 4811 early_initcall(init_signal_sysctls); 4812 #endif /* CONFIG_SYSCTL */ 4813 4814 void __init signals_init(void) 4815 { 4816 siginfo_buildtime_checks(); 4817 4818 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4819 } 4820 4821 #ifdef CONFIG_KGDB_KDB 4822 #include <linux/kdb.h> 4823 /* 4824 * kdb_send_sig - Allows kdb to send signals without exposing 4825 * signal internals. This function checks if the required locks are 4826 * available before calling the main signal code, to avoid kdb 4827 * deadlocks. 4828 */ 4829 void kdb_send_sig(struct task_struct *t, int sig) 4830 { 4831 static struct task_struct *kdb_prev_t; 4832 int new_t, ret; 4833 if (!spin_trylock(&t->sighand->siglock)) { 4834 kdb_printf("Can't do kill command now.\n" 4835 "The sigmask lock is held somewhere else in " 4836 "kernel, try again later\n"); 4837 return; 4838 } 4839 new_t = kdb_prev_t != t; 4840 kdb_prev_t = t; 4841 if (!task_is_running(t) && new_t) { 4842 spin_unlock(&t->sighand->siglock); 4843 kdb_printf("Process is not RUNNING, sending a signal from " 4844 "kdb risks deadlock\n" 4845 "on the run queue locks. " 4846 "The signal has _not_ been sent.\n" 4847 "Reissue the kill command if you want to risk " 4848 "the deadlock.\n"); 4849 return; 4850 } 4851 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4852 spin_unlock(&t->sighand->siglock); 4853 if (ret) 4854 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4855 sig, t->pid); 4856 else 4857 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4858 } 4859 #endif /* CONFIG_KGDB_KDB */ 4860