1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/mm.h> 26 #include <linux/proc_fs.h> 27 #include <linux/tty.h> 28 #include <linux/binfmts.h> 29 #include <linux/coredump.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/ptrace.h> 33 #include <linux/signal.h> 34 #include <linux/signalfd.h> 35 #include <linux/ratelimit.h> 36 #include <linux/task_work.h> 37 #include <linux/capability.h> 38 #include <linux/freezer.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/nsproxy.h> 41 #include <linux/user_namespace.h> 42 #include <linux/uprobes.h> 43 #include <linux/compat.h> 44 #include <linux/cn_proc.h> 45 #include <linux/compiler.h> 46 #include <linux/posix-timers.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 #include <linux/sysctl.h> 50 #include <uapi/linux/pidfd.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/signal.h> 54 55 #include <asm/param.h> 56 #include <linux/uaccess.h> 57 #include <asm/unistd.h> 58 #include <asm/siginfo.h> 59 #include <asm/cacheflush.h> 60 #include <asm/syscall.h> /* for syscall_get_* */ 61 62 /* 63 * SLAB caches for signal bits. 64 */ 65 66 static struct kmem_cache *sigqueue_cachep; 67 68 int print_fatal_signals __read_mostly; 69 70 static void __user *sig_handler(struct task_struct *t, int sig) 71 { 72 return t->sighand->action[sig - 1].sa.sa_handler; 73 } 74 75 static inline bool sig_handler_ignored(void __user *handler, int sig) 76 { 77 /* Is it explicitly or implicitly ignored? */ 78 return handler == SIG_IGN || 79 (handler == SIG_DFL && sig_kernel_ignore(sig)); 80 } 81 82 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 83 { 84 void __user *handler; 85 86 handler = sig_handler(t, sig); 87 88 /* SIGKILL and SIGSTOP may not be sent to the global init */ 89 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 90 return true; 91 92 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 93 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 94 return true; 95 96 /* Only allow kernel generated signals to this kthread */ 97 if (unlikely((t->flags & PF_KTHREAD) && 98 (handler == SIG_KTHREAD_KERNEL) && !force)) 99 return true; 100 101 return sig_handler_ignored(handler, sig); 102 } 103 104 static bool sig_ignored(struct task_struct *t, int sig, bool force) 105 { 106 /* 107 * Blocked signals are never ignored, since the 108 * signal handler may change by the time it is 109 * unblocked. 110 */ 111 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 112 return false; 113 114 /* 115 * Tracers may want to know about even ignored signal unless it 116 * is SIGKILL which can't be reported anyway but can be ignored 117 * by SIGNAL_UNKILLABLE task. 118 */ 119 if (t->ptrace && sig != SIGKILL) 120 return false; 121 122 return sig_task_ignored(t, sig, force); 123 } 124 125 /* 126 * Re-calculate pending state from the set of locally pending 127 * signals, globally pending signals, and blocked signals. 128 */ 129 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 130 { 131 unsigned long ready; 132 long i; 133 134 switch (_NSIG_WORDS) { 135 default: 136 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 137 ready |= signal->sig[i] &~ blocked->sig[i]; 138 break; 139 140 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 141 ready |= signal->sig[2] &~ blocked->sig[2]; 142 ready |= signal->sig[1] &~ blocked->sig[1]; 143 ready |= signal->sig[0] &~ blocked->sig[0]; 144 break; 145 146 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 147 ready |= signal->sig[0] &~ blocked->sig[0]; 148 break; 149 150 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 151 } 152 return ready != 0; 153 } 154 155 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 156 157 static bool recalc_sigpending_tsk(struct task_struct *t) 158 { 159 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 160 PENDING(&t->pending, &t->blocked) || 161 PENDING(&t->signal->shared_pending, &t->blocked) || 162 cgroup_task_frozen(t)) { 163 set_tsk_thread_flag(t, TIF_SIGPENDING); 164 return true; 165 } 166 167 /* 168 * We must never clear the flag in another thread, or in current 169 * when it's possible the current syscall is returning -ERESTART*. 170 * So we don't clear it here, and only callers who know they should do. 171 */ 172 return false; 173 } 174 175 void recalc_sigpending(void) 176 { 177 if (!recalc_sigpending_tsk(current) && !freezing(current)) 178 clear_thread_flag(TIF_SIGPENDING); 179 180 } 181 EXPORT_SYMBOL(recalc_sigpending); 182 183 void calculate_sigpending(void) 184 { 185 /* Have any signals or users of TIF_SIGPENDING been delayed 186 * until after fork? 187 */ 188 spin_lock_irq(¤t->sighand->siglock); 189 set_tsk_thread_flag(current, TIF_SIGPENDING); 190 recalc_sigpending(); 191 spin_unlock_irq(¤t->sighand->siglock); 192 } 193 194 /* Given the mask, find the first available signal that should be serviced. */ 195 196 #define SYNCHRONOUS_MASK \ 197 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 198 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 199 200 int next_signal(struct sigpending *pending, sigset_t *mask) 201 { 202 unsigned long i, *s, *m, x; 203 int sig = 0; 204 205 s = pending->signal.sig; 206 m = mask->sig; 207 208 /* 209 * Handle the first word specially: it contains the 210 * synchronous signals that need to be dequeued first. 211 */ 212 x = *s &~ *m; 213 if (x) { 214 if (x & SYNCHRONOUS_MASK) 215 x &= SYNCHRONOUS_MASK; 216 sig = ffz(~x) + 1; 217 return sig; 218 } 219 220 switch (_NSIG_WORDS) { 221 default: 222 for (i = 1; i < _NSIG_WORDS; ++i) { 223 x = *++s &~ *++m; 224 if (!x) 225 continue; 226 sig = ffz(~x) + i*_NSIG_BPW + 1; 227 break; 228 } 229 break; 230 231 case 2: 232 x = s[1] &~ m[1]; 233 if (!x) 234 break; 235 sig = ffz(~x) + _NSIG_BPW + 1; 236 break; 237 238 case 1: 239 /* Nothing to do */ 240 break; 241 } 242 243 return sig; 244 } 245 246 static inline void print_dropped_signal(int sig) 247 { 248 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 249 250 if (!print_fatal_signals) 251 return; 252 253 if (!__ratelimit(&ratelimit_state)) 254 return; 255 256 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 257 current->comm, current->pid, sig); 258 } 259 260 /** 261 * task_set_jobctl_pending - set jobctl pending bits 262 * @task: target task 263 * @mask: pending bits to set 264 * 265 * Clear @mask from @task->jobctl. @mask must be subset of 266 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 267 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 268 * cleared. If @task is already being killed or exiting, this function 269 * becomes noop. 270 * 271 * CONTEXT: 272 * Must be called with @task->sighand->siglock held. 273 * 274 * RETURNS: 275 * %true if @mask is set, %false if made noop because @task was dying. 276 */ 277 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 278 { 279 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 280 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 281 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 282 283 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 284 return false; 285 286 if (mask & JOBCTL_STOP_SIGMASK) 287 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 288 289 task->jobctl |= mask; 290 return true; 291 } 292 293 /** 294 * task_clear_jobctl_trapping - clear jobctl trapping bit 295 * @task: target task 296 * 297 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 298 * Clear it and wake up the ptracer. Note that we don't need any further 299 * locking. @task->siglock guarantees that @task->parent points to the 300 * ptracer. 301 * 302 * CONTEXT: 303 * Must be called with @task->sighand->siglock held. 304 */ 305 void task_clear_jobctl_trapping(struct task_struct *task) 306 { 307 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 308 task->jobctl &= ~JOBCTL_TRAPPING; 309 smp_mb(); /* advised by wake_up_bit() */ 310 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 311 } 312 } 313 314 /** 315 * task_clear_jobctl_pending - clear jobctl pending bits 316 * @task: target task 317 * @mask: pending bits to clear 318 * 319 * Clear @mask from @task->jobctl. @mask must be subset of 320 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 321 * STOP bits are cleared together. 322 * 323 * If clearing of @mask leaves no stop or trap pending, this function calls 324 * task_clear_jobctl_trapping(). 325 * 326 * CONTEXT: 327 * Must be called with @task->sighand->siglock held. 328 */ 329 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 330 { 331 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 332 333 if (mask & JOBCTL_STOP_PENDING) 334 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 335 336 task->jobctl &= ~mask; 337 338 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 339 task_clear_jobctl_trapping(task); 340 } 341 342 /** 343 * task_participate_group_stop - participate in a group stop 344 * @task: task participating in a group stop 345 * 346 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 347 * Group stop states are cleared and the group stop count is consumed if 348 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 349 * stop, the appropriate `SIGNAL_*` flags are set. 350 * 351 * CONTEXT: 352 * Must be called with @task->sighand->siglock held. 353 * 354 * RETURNS: 355 * %true if group stop completion should be notified to the parent, %false 356 * otherwise. 357 */ 358 static bool task_participate_group_stop(struct task_struct *task) 359 { 360 struct signal_struct *sig = task->signal; 361 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 362 363 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 364 365 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 366 367 if (!consume) 368 return false; 369 370 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 371 sig->group_stop_count--; 372 373 /* 374 * Tell the caller to notify completion iff we are entering into a 375 * fresh group stop. Read comment in do_signal_stop() for details. 376 */ 377 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 378 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 379 return true; 380 } 381 return false; 382 } 383 384 void task_join_group_stop(struct task_struct *task) 385 { 386 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 387 struct signal_struct *sig = current->signal; 388 389 if (sig->group_stop_count) { 390 sig->group_stop_count++; 391 mask |= JOBCTL_STOP_CONSUME; 392 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 393 return; 394 395 /* Have the new thread join an on-going signal group stop */ 396 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 397 } 398 399 /* 400 * allocate a new signal queue record 401 * - this may be called without locks if and only if t == current, otherwise an 402 * appropriate lock must be held to stop the target task from exiting 403 */ 404 static struct sigqueue * 405 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 406 int override_rlimit, const unsigned int sigqueue_flags) 407 { 408 struct sigqueue *q = NULL; 409 struct ucounts *ucounts; 410 long sigpending; 411 412 /* 413 * Protect access to @t credentials. This can go away when all 414 * callers hold rcu read lock. 415 * 416 * NOTE! A pending signal will hold on to the user refcount, 417 * and we get/put the refcount only when the sigpending count 418 * changes from/to zero. 419 */ 420 rcu_read_lock(); 421 ucounts = task_ucounts(t); 422 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 423 rcu_read_unlock(); 424 if (!sigpending) 425 return NULL; 426 427 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 428 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 429 } else { 430 print_dropped_signal(sig); 431 } 432 433 if (unlikely(q == NULL)) { 434 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 435 } else { 436 INIT_LIST_HEAD(&q->list); 437 q->flags = sigqueue_flags; 438 q->ucounts = ucounts; 439 } 440 return q; 441 } 442 443 static void __sigqueue_free(struct sigqueue *q) 444 { 445 if (q->flags & SIGQUEUE_PREALLOC) 446 return; 447 if (q->ucounts) { 448 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 449 q->ucounts = NULL; 450 } 451 kmem_cache_free(sigqueue_cachep, q); 452 } 453 454 void flush_sigqueue(struct sigpending *queue) 455 { 456 struct sigqueue *q; 457 458 sigemptyset(&queue->signal); 459 while (!list_empty(&queue->list)) { 460 q = list_entry(queue->list.next, struct sigqueue , list); 461 list_del_init(&q->list); 462 __sigqueue_free(q); 463 } 464 } 465 466 /* 467 * Flush all pending signals for this kthread. 468 */ 469 void flush_signals(struct task_struct *t) 470 { 471 unsigned long flags; 472 473 spin_lock_irqsave(&t->sighand->siglock, flags); 474 clear_tsk_thread_flag(t, TIF_SIGPENDING); 475 flush_sigqueue(&t->pending); 476 flush_sigqueue(&t->signal->shared_pending); 477 spin_unlock_irqrestore(&t->sighand->siglock, flags); 478 } 479 EXPORT_SYMBOL(flush_signals); 480 481 #ifdef CONFIG_POSIX_TIMERS 482 static void __flush_itimer_signals(struct sigpending *pending) 483 { 484 sigset_t signal, retain; 485 struct sigqueue *q, *n; 486 487 signal = pending->signal; 488 sigemptyset(&retain); 489 490 list_for_each_entry_safe(q, n, &pending->list, list) { 491 int sig = q->info.si_signo; 492 493 if (likely(q->info.si_code != SI_TIMER)) { 494 sigaddset(&retain, sig); 495 } else { 496 sigdelset(&signal, sig); 497 list_del_init(&q->list); 498 __sigqueue_free(q); 499 } 500 } 501 502 sigorsets(&pending->signal, &signal, &retain); 503 } 504 505 void flush_itimer_signals(void) 506 { 507 struct task_struct *tsk = current; 508 unsigned long flags; 509 510 spin_lock_irqsave(&tsk->sighand->siglock, flags); 511 __flush_itimer_signals(&tsk->pending); 512 __flush_itimer_signals(&tsk->signal->shared_pending); 513 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 514 } 515 #endif 516 517 void ignore_signals(struct task_struct *t) 518 { 519 int i; 520 521 for (i = 0; i < _NSIG; ++i) 522 t->sighand->action[i].sa.sa_handler = SIG_IGN; 523 524 flush_signals(t); 525 } 526 527 /* 528 * Flush all handlers for a task. 529 */ 530 531 void 532 flush_signal_handlers(struct task_struct *t, int force_default) 533 { 534 int i; 535 struct k_sigaction *ka = &t->sighand->action[0]; 536 for (i = _NSIG ; i != 0 ; i--) { 537 if (force_default || ka->sa.sa_handler != SIG_IGN) 538 ka->sa.sa_handler = SIG_DFL; 539 ka->sa.sa_flags = 0; 540 #ifdef __ARCH_HAS_SA_RESTORER 541 ka->sa.sa_restorer = NULL; 542 #endif 543 sigemptyset(&ka->sa.sa_mask); 544 ka++; 545 } 546 } 547 548 bool unhandled_signal(struct task_struct *tsk, int sig) 549 { 550 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 551 if (is_global_init(tsk)) 552 return true; 553 554 if (handler != SIG_IGN && handler != SIG_DFL) 555 return false; 556 557 /* If dying, we handle all new signals by ignoring them */ 558 if (fatal_signal_pending(tsk)) 559 return false; 560 561 /* if ptraced, let the tracer determine */ 562 return !tsk->ptrace; 563 } 564 565 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 566 bool *resched_timer) 567 { 568 struct sigqueue *q, *first = NULL; 569 570 /* 571 * Collect the siginfo appropriate to this signal. Check if 572 * there is another siginfo for the same signal. 573 */ 574 list_for_each_entry(q, &list->list, list) { 575 if (q->info.si_signo == sig) { 576 if (first) 577 goto still_pending; 578 first = q; 579 } 580 } 581 582 sigdelset(&list->signal, sig); 583 584 if (first) { 585 still_pending: 586 list_del_init(&first->list); 587 copy_siginfo(info, &first->info); 588 589 *resched_timer = 590 (first->flags & SIGQUEUE_PREALLOC) && 591 (info->si_code == SI_TIMER) && 592 (info->si_sys_private); 593 594 __sigqueue_free(first); 595 } else { 596 /* 597 * Ok, it wasn't in the queue. This must be 598 * a fast-pathed signal or we must have been 599 * out of queue space. So zero out the info. 600 */ 601 clear_siginfo(info); 602 info->si_signo = sig; 603 info->si_errno = 0; 604 info->si_code = SI_USER; 605 info->si_pid = 0; 606 info->si_uid = 0; 607 } 608 } 609 610 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 611 kernel_siginfo_t *info, bool *resched_timer) 612 { 613 int sig = next_signal(pending, mask); 614 615 if (sig) 616 collect_signal(sig, pending, info, resched_timer); 617 return sig; 618 } 619 620 /* 621 * Try to dequeue a signal. If a deliverable signal is found fill in the 622 * caller provided siginfo and return the signal number. Otherwise return 623 * 0. 624 */ 625 int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type) 626 { 627 struct task_struct *tsk = current; 628 bool resched_timer = false; 629 int signr; 630 631 lockdep_assert_held(&tsk->sighand->siglock); 632 633 *type = PIDTYPE_PID; 634 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 635 if (!signr) { 636 *type = PIDTYPE_TGID; 637 signr = __dequeue_signal(&tsk->signal->shared_pending, 638 mask, info, &resched_timer); 639 #ifdef CONFIG_POSIX_TIMERS 640 /* 641 * itimer signal ? 642 * 643 * itimers are process shared and we restart periodic 644 * itimers in the signal delivery path to prevent DoS 645 * attacks in the high resolution timer case. This is 646 * compliant with the old way of self-restarting 647 * itimers, as the SIGALRM is a legacy signal and only 648 * queued once. Changing the restart behaviour to 649 * restart the timer in the signal dequeue path is 650 * reducing the timer noise on heavy loaded !highres 651 * systems too. 652 */ 653 if (unlikely(signr == SIGALRM)) { 654 struct hrtimer *tmr = &tsk->signal->real_timer; 655 656 if (!hrtimer_is_queued(tmr) && 657 tsk->signal->it_real_incr != 0) { 658 hrtimer_forward(tmr, tmr->base->get_time(), 659 tsk->signal->it_real_incr); 660 hrtimer_restart(tmr); 661 } 662 } 663 #endif 664 } 665 666 recalc_sigpending(); 667 if (!signr) 668 return 0; 669 670 if (unlikely(sig_kernel_stop(signr))) { 671 /* 672 * Set a marker that we have dequeued a stop signal. Our 673 * caller might release the siglock and then the pending 674 * stop signal it is about to process is no longer in the 675 * pending bitmasks, but must still be cleared by a SIGCONT 676 * (and overruled by a SIGKILL). So those cases clear this 677 * shared flag after we've set it. Note that this flag may 678 * remain set after the signal we return is ignored or 679 * handled. That doesn't matter because its only purpose 680 * is to alert stop-signal processing code when another 681 * processor has come along and cleared the flag. 682 */ 683 current->jobctl |= JOBCTL_STOP_DEQUEUED; 684 } 685 #ifdef CONFIG_POSIX_TIMERS 686 if (resched_timer) { 687 /* 688 * Release the siglock to ensure proper locking order 689 * of timer locks outside of siglocks. Note, we leave 690 * irqs disabled here, since the posix-timers code is 691 * about to disable them again anyway. 692 */ 693 spin_unlock(&tsk->sighand->siglock); 694 posixtimer_rearm(info); 695 spin_lock(&tsk->sighand->siglock); 696 697 /* Don't expose the si_sys_private value to userspace */ 698 info->si_sys_private = 0; 699 } 700 #endif 701 return signr; 702 } 703 EXPORT_SYMBOL_GPL(dequeue_signal); 704 705 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 706 { 707 struct task_struct *tsk = current; 708 struct sigpending *pending = &tsk->pending; 709 struct sigqueue *q, *sync = NULL; 710 711 /* 712 * Might a synchronous signal be in the queue? 713 */ 714 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 715 return 0; 716 717 /* 718 * Return the first synchronous signal in the queue. 719 */ 720 list_for_each_entry(q, &pending->list, list) { 721 /* Synchronous signals have a positive si_code */ 722 if ((q->info.si_code > SI_USER) && 723 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 724 sync = q; 725 goto next; 726 } 727 } 728 return 0; 729 next: 730 /* 731 * Check if there is another siginfo for the same signal. 732 */ 733 list_for_each_entry_continue(q, &pending->list, list) { 734 if (q->info.si_signo == sync->info.si_signo) 735 goto still_pending; 736 } 737 738 sigdelset(&pending->signal, sync->info.si_signo); 739 recalc_sigpending(); 740 still_pending: 741 list_del_init(&sync->list); 742 copy_siginfo(info, &sync->info); 743 __sigqueue_free(sync); 744 return info->si_signo; 745 } 746 747 /* 748 * Tell a process that it has a new active signal.. 749 * 750 * NOTE! we rely on the previous spin_lock to 751 * lock interrupts for us! We can only be called with 752 * "siglock" held, and the local interrupt must 753 * have been disabled when that got acquired! 754 * 755 * No need to set need_resched since signal event passing 756 * goes through ->blocked 757 */ 758 void signal_wake_up_state(struct task_struct *t, unsigned int state) 759 { 760 lockdep_assert_held(&t->sighand->siglock); 761 762 set_tsk_thread_flag(t, TIF_SIGPENDING); 763 764 /* 765 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 766 * case. We don't check t->state here because there is a race with it 767 * executing another processor and just now entering stopped state. 768 * By using wake_up_state, we ensure the process will wake up and 769 * handle its death signal. 770 */ 771 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 772 kick_process(t); 773 } 774 775 /* 776 * Remove signals in mask from the pending set and queue. 777 * Returns 1 if any signals were found. 778 * 779 * All callers must be holding the siglock. 780 */ 781 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 782 { 783 struct sigqueue *q, *n; 784 sigset_t m; 785 786 sigandsets(&m, mask, &s->signal); 787 if (sigisemptyset(&m)) 788 return; 789 790 sigandnsets(&s->signal, &s->signal, mask); 791 list_for_each_entry_safe(q, n, &s->list, list) { 792 if (sigismember(mask, q->info.si_signo)) { 793 list_del_init(&q->list); 794 __sigqueue_free(q); 795 } 796 } 797 } 798 799 static inline int is_si_special(const struct kernel_siginfo *info) 800 { 801 return info <= SEND_SIG_PRIV; 802 } 803 804 static inline bool si_fromuser(const struct kernel_siginfo *info) 805 { 806 return info == SEND_SIG_NOINFO || 807 (!is_si_special(info) && SI_FROMUSER(info)); 808 } 809 810 /* 811 * called with RCU read lock from check_kill_permission() 812 */ 813 static bool kill_ok_by_cred(struct task_struct *t) 814 { 815 const struct cred *cred = current_cred(); 816 const struct cred *tcred = __task_cred(t); 817 818 return uid_eq(cred->euid, tcred->suid) || 819 uid_eq(cred->euid, tcred->uid) || 820 uid_eq(cred->uid, tcred->suid) || 821 uid_eq(cred->uid, tcred->uid) || 822 ns_capable(tcred->user_ns, CAP_KILL); 823 } 824 825 /* 826 * Bad permissions for sending the signal 827 * - the caller must hold the RCU read lock 828 */ 829 static int check_kill_permission(int sig, struct kernel_siginfo *info, 830 struct task_struct *t) 831 { 832 struct pid *sid; 833 int error; 834 835 if (!valid_signal(sig)) 836 return -EINVAL; 837 838 if (!si_fromuser(info)) 839 return 0; 840 841 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 842 if (error) 843 return error; 844 845 if (!same_thread_group(current, t) && 846 !kill_ok_by_cred(t)) { 847 switch (sig) { 848 case SIGCONT: 849 sid = task_session(t); 850 /* 851 * We don't return the error if sid == NULL. The 852 * task was unhashed, the caller must notice this. 853 */ 854 if (!sid || sid == task_session(current)) 855 break; 856 fallthrough; 857 default: 858 return -EPERM; 859 } 860 } 861 862 return security_task_kill(t, info, sig, NULL); 863 } 864 865 /** 866 * ptrace_trap_notify - schedule trap to notify ptracer 867 * @t: tracee wanting to notify tracer 868 * 869 * This function schedules sticky ptrace trap which is cleared on the next 870 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 871 * ptracer. 872 * 873 * If @t is running, STOP trap will be taken. If trapped for STOP and 874 * ptracer is listening for events, tracee is woken up so that it can 875 * re-trap for the new event. If trapped otherwise, STOP trap will be 876 * eventually taken without returning to userland after the existing traps 877 * are finished by PTRACE_CONT. 878 * 879 * CONTEXT: 880 * Must be called with @task->sighand->siglock held. 881 */ 882 static void ptrace_trap_notify(struct task_struct *t) 883 { 884 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 885 lockdep_assert_held(&t->sighand->siglock); 886 887 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 888 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 889 } 890 891 /* 892 * Handle magic process-wide effects of stop/continue signals. Unlike 893 * the signal actions, these happen immediately at signal-generation 894 * time regardless of blocking, ignoring, or handling. This does the 895 * actual continuing for SIGCONT, but not the actual stopping for stop 896 * signals. The process stop is done as a signal action for SIG_DFL. 897 * 898 * Returns true if the signal should be actually delivered, otherwise 899 * it should be dropped. 900 */ 901 static bool prepare_signal(int sig, struct task_struct *p, bool force) 902 { 903 struct signal_struct *signal = p->signal; 904 struct task_struct *t; 905 sigset_t flush; 906 907 if (signal->flags & SIGNAL_GROUP_EXIT) { 908 if (signal->core_state) 909 return sig == SIGKILL; 910 /* 911 * The process is in the middle of dying, drop the signal. 912 */ 913 return false; 914 } else if (sig_kernel_stop(sig)) { 915 /* 916 * This is a stop signal. Remove SIGCONT from all queues. 917 */ 918 siginitset(&flush, sigmask(SIGCONT)); 919 flush_sigqueue_mask(&flush, &signal->shared_pending); 920 for_each_thread(p, t) 921 flush_sigqueue_mask(&flush, &t->pending); 922 } else if (sig == SIGCONT) { 923 unsigned int why; 924 /* 925 * Remove all stop signals from all queues, wake all threads. 926 */ 927 siginitset(&flush, SIG_KERNEL_STOP_MASK); 928 flush_sigqueue_mask(&flush, &signal->shared_pending); 929 for_each_thread(p, t) { 930 flush_sigqueue_mask(&flush, &t->pending); 931 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 932 if (likely(!(t->ptrace & PT_SEIZED))) { 933 t->jobctl &= ~JOBCTL_STOPPED; 934 wake_up_state(t, __TASK_STOPPED); 935 } else 936 ptrace_trap_notify(t); 937 } 938 939 /* 940 * Notify the parent with CLD_CONTINUED if we were stopped. 941 * 942 * If we were in the middle of a group stop, we pretend it 943 * was already finished, and then continued. Since SIGCHLD 944 * doesn't queue we report only CLD_STOPPED, as if the next 945 * CLD_CONTINUED was dropped. 946 */ 947 why = 0; 948 if (signal->flags & SIGNAL_STOP_STOPPED) 949 why |= SIGNAL_CLD_CONTINUED; 950 else if (signal->group_stop_count) 951 why |= SIGNAL_CLD_STOPPED; 952 953 if (why) { 954 /* 955 * The first thread which returns from do_signal_stop() 956 * will take ->siglock, notice SIGNAL_CLD_MASK, and 957 * notify its parent. See get_signal(). 958 */ 959 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 960 signal->group_stop_count = 0; 961 signal->group_exit_code = 0; 962 } 963 } 964 965 return !sig_ignored(p, sig, force); 966 } 967 968 /* 969 * Test if P wants to take SIG. After we've checked all threads with this, 970 * it's equivalent to finding no threads not blocking SIG. Any threads not 971 * blocking SIG were ruled out because they are not running and already 972 * have pending signals. Such threads will dequeue from the shared queue 973 * as soon as they're available, so putting the signal on the shared queue 974 * will be equivalent to sending it to one such thread. 975 */ 976 static inline bool wants_signal(int sig, struct task_struct *p) 977 { 978 if (sigismember(&p->blocked, sig)) 979 return false; 980 981 if (p->flags & PF_EXITING) 982 return false; 983 984 if (sig == SIGKILL) 985 return true; 986 987 if (task_is_stopped_or_traced(p)) 988 return false; 989 990 return task_curr(p) || !task_sigpending(p); 991 } 992 993 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 994 { 995 struct signal_struct *signal = p->signal; 996 struct task_struct *t; 997 998 /* 999 * Now find a thread we can wake up to take the signal off the queue. 1000 * 1001 * Try the suggested task first (may or may not be the main thread). 1002 */ 1003 if (wants_signal(sig, p)) 1004 t = p; 1005 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1006 /* 1007 * There is just one thread and it does not need to be woken. 1008 * It will dequeue unblocked signals before it runs again. 1009 */ 1010 return; 1011 else { 1012 /* 1013 * Otherwise try to find a suitable thread. 1014 */ 1015 t = signal->curr_target; 1016 while (!wants_signal(sig, t)) { 1017 t = next_thread(t); 1018 if (t == signal->curr_target) 1019 /* 1020 * No thread needs to be woken. 1021 * Any eligible threads will see 1022 * the signal in the queue soon. 1023 */ 1024 return; 1025 } 1026 signal->curr_target = t; 1027 } 1028 1029 /* 1030 * Found a killable thread. If the signal will be fatal, 1031 * then start taking the whole group down immediately. 1032 */ 1033 if (sig_fatal(p, sig) && 1034 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1035 !sigismember(&t->real_blocked, sig) && 1036 (sig == SIGKILL || !p->ptrace)) { 1037 /* 1038 * This signal will be fatal to the whole group. 1039 */ 1040 if (!sig_kernel_coredump(sig)) { 1041 /* 1042 * Start a group exit and wake everybody up. 1043 * This way we don't have other threads 1044 * running and doing things after a slower 1045 * thread has the fatal signal pending. 1046 */ 1047 signal->flags = SIGNAL_GROUP_EXIT; 1048 signal->group_exit_code = sig; 1049 signal->group_stop_count = 0; 1050 __for_each_thread(signal, t) { 1051 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1052 sigaddset(&t->pending.signal, SIGKILL); 1053 signal_wake_up(t, 1); 1054 } 1055 return; 1056 } 1057 } 1058 1059 /* 1060 * The signal is already in the shared-pending queue. 1061 * Tell the chosen thread to wake up and dequeue it. 1062 */ 1063 signal_wake_up(t, sig == SIGKILL); 1064 return; 1065 } 1066 1067 static inline bool legacy_queue(struct sigpending *signals, int sig) 1068 { 1069 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1070 } 1071 1072 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1073 struct task_struct *t, enum pid_type type, bool force) 1074 { 1075 struct sigpending *pending; 1076 struct sigqueue *q; 1077 int override_rlimit; 1078 int ret = 0, result; 1079 1080 lockdep_assert_held(&t->sighand->siglock); 1081 1082 result = TRACE_SIGNAL_IGNORED; 1083 if (!prepare_signal(sig, t, force)) 1084 goto ret; 1085 1086 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1087 /* 1088 * Short-circuit ignored signals and support queuing 1089 * exactly one non-rt signal, so that we can get more 1090 * detailed information about the cause of the signal. 1091 */ 1092 result = TRACE_SIGNAL_ALREADY_PENDING; 1093 if (legacy_queue(pending, sig)) 1094 goto ret; 1095 1096 result = TRACE_SIGNAL_DELIVERED; 1097 /* 1098 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1099 */ 1100 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1101 goto out_set; 1102 1103 /* 1104 * Real-time signals must be queued if sent by sigqueue, or 1105 * some other real-time mechanism. It is implementation 1106 * defined whether kill() does so. We attempt to do so, on 1107 * the principle of least surprise, but since kill is not 1108 * allowed to fail with EAGAIN when low on memory we just 1109 * make sure at least one signal gets delivered and don't 1110 * pass on the info struct. 1111 */ 1112 if (sig < SIGRTMIN) 1113 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1114 else 1115 override_rlimit = 0; 1116 1117 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1118 1119 if (q) { 1120 list_add_tail(&q->list, &pending->list); 1121 switch ((unsigned long) info) { 1122 case (unsigned long) SEND_SIG_NOINFO: 1123 clear_siginfo(&q->info); 1124 q->info.si_signo = sig; 1125 q->info.si_errno = 0; 1126 q->info.si_code = SI_USER; 1127 q->info.si_pid = task_tgid_nr_ns(current, 1128 task_active_pid_ns(t)); 1129 rcu_read_lock(); 1130 q->info.si_uid = 1131 from_kuid_munged(task_cred_xxx(t, user_ns), 1132 current_uid()); 1133 rcu_read_unlock(); 1134 break; 1135 case (unsigned long) SEND_SIG_PRIV: 1136 clear_siginfo(&q->info); 1137 q->info.si_signo = sig; 1138 q->info.si_errno = 0; 1139 q->info.si_code = SI_KERNEL; 1140 q->info.si_pid = 0; 1141 q->info.si_uid = 0; 1142 break; 1143 default: 1144 copy_siginfo(&q->info, info); 1145 break; 1146 } 1147 } else if (!is_si_special(info) && 1148 sig >= SIGRTMIN && info->si_code != SI_USER) { 1149 /* 1150 * Queue overflow, abort. We may abort if the 1151 * signal was rt and sent by user using something 1152 * other than kill(). 1153 */ 1154 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1155 ret = -EAGAIN; 1156 goto ret; 1157 } else { 1158 /* 1159 * This is a silent loss of information. We still 1160 * send the signal, but the *info bits are lost. 1161 */ 1162 result = TRACE_SIGNAL_LOSE_INFO; 1163 } 1164 1165 out_set: 1166 signalfd_notify(t, sig); 1167 sigaddset(&pending->signal, sig); 1168 1169 /* Let multiprocess signals appear after on-going forks */ 1170 if (type > PIDTYPE_TGID) { 1171 struct multiprocess_signals *delayed; 1172 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1173 sigset_t *signal = &delayed->signal; 1174 /* Can't queue both a stop and a continue signal */ 1175 if (sig == SIGCONT) 1176 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1177 else if (sig_kernel_stop(sig)) 1178 sigdelset(signal, SIGCONT); 1179 sigaddset(signal, sig); 1180 } 1181 } 1182 1183 complete_signal(sig, t, type); 1184 ret: 1185 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1186 return ret; 1187 } 1188 1189 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1190 { 1191 bool ret = false; 1192 switch (siginfo_layout(info->si_signo, info->si_code)) { 1193 case SIL_KILL: 1194 case SIL_CHLD: 1195 case SIL_RT: 1196 ret = true; 1197 break; 1198 case SIL_TIMER: 1199 case SIL_POLL: 1200 case SIL_FAULT: 1201 case SIL_FAULT_TRAPNO: 1202 case SIL_FAULT_MCEERR: 1203 case SIL_FAULT_BNDERR: 1204 case SIL_FAULT_PKUERR: 1205 case SIL_FAULT_PERF_EVENT: 1206 case SIL_SYS: 1207 ret = false; 1208 break; 1209 } 1210 return ret; 1211 } 1212 1213 int send_signal_locked(int sig, struct kernel_siginfo *info, 1214 struct task_struct *t, enum pid_type type) 1215 { 1216 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1217 bool force = false; 1218 1219 if (info == SEND_SIG_NOINFO) { 1220 /* Force if sent from an ancestor pid namespace */ 1221 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1222 } else if (info == SEND_SIG_PRIV) { 1223 /* Don't ignore kernel generated signals */ 1224 force = true; 1225 } else if (has_si_pid_and_uid(info)) { 1226 /* SIGKILL and SIGSTOP is special or has ids */ 1227 struct user_namespace *t_user_ns; 1228 1229 rcu_read_lock(); 1230 t_user_ns = task_cred_xxx(t, user_ns); 1231 if (current_user_ns() != t_user_ns) { 1232 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1233 info->si_uid = from_kuid_munged(t_user_ns, uid); 1234 } 1235 rcu_read_unlock(); 1236 1237 /* A kernel generated signal? */ 1238 force = (info->si_code == SI_KERNEL); 1239 1240 /* From an ancestor pid namespace? */ 1241 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1242 info->si_pid = 0; 1243 force = true; 1244 } 1245 } 1246 return __send_signal_locked(sig, info, t, type, force); 1247 } 1248 1249 static void print_fatal_signal(int signr) 1250 { 1251 struct pt_regs *regs = task_pt_regs(current); 1252 struct file *exe_file; 1253 1254 exe_file = get_task_exe_file(current); 1255 if (exe_file) { 1256 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n", 1257 exe_file, current->comm, signr); 1258 fput(exe_file); 1259 } else { 1260 pr_info("%s: potentially unexpected fatal signal %d.\n", 1261 current->comm, signr); 1262 } 1263 1264 #if defined(__i386__) && !defined(__arch_um__) 1265 pr_info("code at %08lx: ", regs->ip); 1266 { 1267 int i; 1268 for (i = 0; i < 16; i++) { 1269 unsigned char insn; 1270 1271 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1272 break; 1273 pr_cont("%02x ", insn); 1274 } 1275 } 1276 pr_cont("\n"); 1277 #endif 1278 preempt_disable(); 1279 show_regs(regs); 1280 preempt_enable(); 1281 } 1282 1283 static int __init setup_print_fatal_signals(char *str) 1284 { 1285 get_option (&str, &print_fatal_signals); 1286 1287 return 1; 1288 } 1289 1290 __setup("print-fatal-signals=", setup_print_fatal_signals); 1291 1292 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1293 enum pid_type type) 1294 { 1295 unsigned long flags; 1296 int ret = -ESRCH; 1297 1298 if (lock_task_sighand(p, &flags)) { 1299 ret = send_signal_locked(sig, info, p, type); 1300 unlock_task_sighand(p, &flags); 1301 } 1302 1303 return ret; 1304 } 1305 1306 enum sig_handler { 1307 HANDLER_CURRENT, /* If reachable use the current handler */ 1308 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1309 HANDLER_EXIT, /* Only visible as the process exit code */ 1310 }; 1311 1312 /* 1313 * Force a signal that the process can't ignore: if necessary 1314 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1315 * 1316 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1317 * since we do not want to have a signal handler that was blocked 1318 * be invoked when user space had explicitly blocked it. 1319 * 1320 * We don't want to have recursive SIGSEGV's etc, for example, 1321 * that is why we also clear SIGNAL_UNKILLABLE. 1322 */ 1323 static int 1324 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1325 enum sig_handler handler) 1326 { 1327 unsigned long int flags; 1328 int ret, blocked, ignored; 1329 struct k_sigaction *action; 1330 int sig = info->si_signo; 1331 1332 spin_lock_irqsave(&t->sighand->siglock, flags); 1333 action = &t->sighand->action[sig-1]; 1334 ignored = action->sa.sa_handler == SIG_IGN; 1335 blocked = sigismember(&t->blocked, sig); 1336 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1337 action->sa.sa_handler = SIG_DFL; 1338 if (handler == HANDLER_EXIT) 1339 action->sa.sa_flags |= SA_IMMUTABLE; 1340 if (blocked) 1341 sigdelset(&t->blocked, sig); 1342 } 1343 /* 1344 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1345 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1346 */ 1347 if (action->sa.sa_handler == SIG_DFL && 1348 (!t->ptrace || (handler == HANDLER_EXIT))) 1349 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1350 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1351 /* This can happen if the signal was already pending and blocked */ 1352 if (!task_sigpending(t)) 1353 signal_wake_up(t, 0); 1354 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1355 1356 return ret; 1357 } 1358 1359 int force_sig_info(struct kernel_siginfo *info) 1360 { 1361 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1362 } 1363 1364 /* 1365 * Nuke all other threads in the group. 1366 */ 1367 int zap_other_threads(struct task_struct *p) 1368 { 1369 struct task_struct *t; 1370 int count = 0; 1371 1372 p->signal->group_stop_count = 0; 1373 1374 for_other_threads(p, t) { 1375 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1376 count++; 1377 1378 /* Don't bother with already dead threads */ 1379 if (t->exit_state) 1380 continue; 1381 sigaddset(&t->pending.signal, SIGKILL); 1382 signal_wake_up(t, 1); 1383 } 1384 1385 return count; 1386 } 1387 1388 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1389 unsigned long *flags) 1390 { 1391 struct sighand_struct *sighand; 1392 1393 rcu_read_lock(); 1394 for (;;) { 1395 sighand = rcu_dereference(tsk->sighand); 1396 if (unlikely(sighand == NULL)) 1397 break; 1398 1399 /* 1400 * This sighand can be already freed and even reused, but 1401 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1402 * initializes ->siglock: this slab can't go away, it has 1403 * the same object type, ->siglock can't be reinitialized. 1404 * 1405 * We need to ensure that tsk->sighand is still the same 1406 * after we take the lock, we can race with de_thread() or 1407 * __exit_signal(). In the latter case the next iteration 1408 * must see ->sighand == NULL. 1409 */ 1410 spin_lock_irqsave(&sighand->siglock, *flags); 1411 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1412 break; 1413 spin_unlock_irqrestore(&sighand->siglock, *flags); 1414 } 1415 rcu_read_unlock(); 1416 1417 return sighand; 1418 } 1419 1420 #ifdef CONFIG_LOCKDEP 1421 void lockdep_assert_task_sighand_held(struct task_struct *task) 1422 { 1423 struct sighand_struct *sighand; 1424 1425 rcu_read_lock(); 1426 sighand = rcu_dereference(task->sighand); 1427 if (sighand) 1428 lockdep_assert_held(&sighand->siglock); 1429 else 1430 WARN_ON_ONCE(1); 1431 rcu_read_unlock(); 1432 } 1433 #endif 1434 1435 /* 1436 * send signal info to all the members of a thread group or to the 1437 * individual thread if type == PIDTYPE_PID. 1438 */ 1439 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1440 struct task_struct *p, enum pid_type type) 1441 { 1442 int ret; 1443 1444 rcu_read_lock(); 1445 ret = check_kill_permission(sig, info, p); 1446 rcu_read_unlock(); 1447 1448 if (!ret && sig) 1449 ret = do_send_sig_info(sig, info, p, type); 1450 1451 return ret; 1452 } 1453 1454 /* 1455 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1456 * control characters do (^C, ^Z etc) 1457 * - the caller must hold at least a readlock on tasklist_lock 1458 */ 1459 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1460 { 1461 struct task_struct *p = NULL; 1462 int ret = -ESRCH; 1463 1464 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1465 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1466 /* 1467 * If group_send_sig_info() succeeds at least once ret 1468 * becomes 0 and after that the code below has no effect. 1469 * Otherwise we return the last err or -ESRCH if this 1470 * process group is empty. 1471 */ 1472 if (ret) 1473 ret = err; 1474 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1475 1476 return ret; 1477 } 1478 1479 static int kill_pid_info_type(int sig, struct kernel_siginfo *info, 1480 struct pid *pid, enum pid_type type) 1481 { 1482 int error = -ESRCH; 1483 struct task_struct *p; 1484 1485 for (;;) { 1486 rcu_read_lock(); 1487 p = pid_task(pid, PIDTYPE_PID); 1488 if (p) 1489 error = group_send_sig_info(sig, info, p, type); 1490 rcu_read_unlock(); 1491 if (likely(!p || error != -ESRCH)) 1492 return error; 1493 /* 1494 * The task was unhashed in between, try again. If it 1495 * is dead, pid_task() will return NULL, if we race with 1496 * de_thread() it will find the new leader. 1497 */ 1498 } 1499 } 1500 1501 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1502 { 1503 return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID); 1504 } 1505 1506 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1507 { 1508 int error; 1509 rcu_read_lock(); 1510 error = kill_pid_info(sig, info, find_vpid(pid)); 1511 rcu_read_unlock(); 1512 return error; 1513 } 1514 1515 static inline bool kill_as_cred_perm(const struct cred *cred, 1516 struct task_struct *target) 1517 { 1518 const struct cred *pcred = __task_cred(target); 1519 1520 return uid_eq(cred->euid, pcred->suid) || 1521 uid_eq(cred->euid, pcred->uid) || 1522 uid_eq(cred->uid, pcred->suid) || 1523 uid_eq(cred->uid, pcred->uid); 1524 } 1525 1526 /* 1527 * The usb asyncio usage of siginfo is wrong. The glibc support 1528 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1529 * AKA after the generic fields: 1530 * kernel_pid_t si_pid; 1531 * kernel_uid32_t si_uid; 1532 * sigval_t si_value; 1533 * 1534 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1535 * after the generic fields is: 1536 * void __user *si_addr; 1537 * 1538 * This is a practical problem when there is a 64bit big endian kernel 1539 * and a 32bit userspace. As the 32bit address will encoded in the low 1540 * 32bits of the pointer. Those low 32bits will be stored at higher 1541 * address than appear in a 32 bit pointer. So userspace will not 1542 * see the address it was expecting for it's completions. 1543 * 1544 * There is nothing in the encoding that can allow 1545 * copy_siginfo_to_user32 to detect this confusion of formats, so 1546 * handle this by requiring the caller of kill_pid_usb_asyncio to 1547 * notice when this situration takes place and to store the 32bit 1548 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1549 * parameter. 1550 */ 1551 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1552 struct pid *pid, const struct cred *cred) 1553 { 1554 struct kernel_siginfo info; 1555 struct task_struct *p; 1556 unsigned long flags; 1557 int ret = -EINVAL; 1558 1559 if (!valid_signal(sig)) 1560 return ret; 1561 1562 clear_siginfo(&info); 1563 info.si_signo = sig; 1564 info.si_errno = errno; 1565 info.si_code = SI_ASYNCIO; 1566 *((sigval_t *)&info.si_pid) = addr; 1567 1568 rcu_read_lock(); 1569 p = pid_task(pid, PIDTYPE_PID); 1570 if (!p) { 1571 ret = -ESRCH; 1572 goto out_unlock; 1573 } 1574 if (!kill_as_cred_perm(cred, p)) { 1575 ret = -EPERM; 1576 goto out_unlock; 1577 } 1578 ret = security_task_kill(p, &info, sig, cred); 1579 if (ret) 1580 goto out_unlock; 1581 1582 if (sig) { 1583 if (lock_task_sighand(p, &flags)) { 1584 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1585 unlock_task_sighand(p, &flags); 1586 } else 1587 ret = -ESRCH; 1588 } 1589 out_unlock: 1590 rcu_read_unlock(); 1591 return ret; 1592 } 1593 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1594 1595 /* 1596 * kill_something_info() interprets pid in interesting ways just like kill(2). 1597 * 1598 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1599 * is probably wrong. Should make it like BSD or SYSV. 1600 */ 1601 1602 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1603 { 1604 int ret; 1605 1606 if (pid > 0) 1607 return kill_proc_info(sig, info, pid); 1608 1609 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1610 if (pid == INT_MIN) 1611 return -ESRCH; 1612 1613 read_lock(&tasklist_lock); 1614 if (pid != -1) { 1615 ret = __kill_pgrp_info(sig, info, 1616 pid ? find_vpid(-pid) : task_pgrp(current)); 1617 } else { 1618 int retval = 0, count = 0; 1619 struct task_struct * p; 1620 1621 for_each_process(p) { 1622 if (task_pid_vnr(p) > 1 && 1623 !same_thread_group(p, current)) { 1624 int err = group_send_sig_info(sig, info, p, 1625 PIDTYPE_MAX); 1626 ++count; 1627 if (err != -EPERM) 1628 retval = err; 1629 } 1630 } 1631 ret = count ? retval : -ESRCH; 1632 } 1633 read_unlock(&tasklist_lock); 1634 1635 return ret; 1636 } 1637 1638 /* 1639 * These are for backward compatibility with the rest of the kernel source. 1640 */ 1641 1642 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1643 { 1644 /* 1645 * Make sure legacy kernel users don't send in bad values 1646 * (normal paths check this in check_kill_permission). 1647 */ 1648 if (!valid_signal(sig)) 1649 return -EINVAL; 1650 1651 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1652 } 1653 EXPORT_SYMBOL(send_sig_info); 1654 1655 #define __si_special(priv) \ 1656 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1657 1658 int 1659 send_sig(int sig, struct task_struct *p, int priv) 1660 { 1661 return send_sig_info(sig, __si_special(priv), p); 1662 } 1663 EXPORT_SYMBOL(send_sig); 1664 1665 void force_sig(int sig) 1666 { 1667 struct kernel_siginfo info; 1668 1669 clear_siginfo(&info); 1670 info.si_signo = sig; 1671 info.si_errno = 0; 1672 info.si_code = SI_KERNEL; 1673 info.si_pid = 0; 1674 info.si_uid = 0; 1675 force_sig_info(&info); 1676 } 1677 EXPORT_SYMBOL(force_sig); 1678 1679 void force_fatal_sig(int sig) 1680 { 1681 struct kernel_siginfo info; 1682 1683 clear_siginfo(&info); 1684 info.si_signo = sig; 1685 info.si_errno = 0; 1686 info.si_code = SI_KERNEL; 1687 info.si_pid = 0; 1688 info.si_uid = 0; 1689 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1690 } 1691 1692 void force_exit_sig(int sig) 1693 { 1694 struct kernel_siginfo info; 1695 1696 clear_siginfo(&info); 1697 info.si_signo = sig; 1698 info.si_errno = 0; 1699 info.si_code = SI_KERNEL; 1700 info.si_pid = 0; 1701 info.si_uid = 0; 1702 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1703 } 1704 1705 /* 1706 * When things go south during signal handling, we 1707 * will force a SIGSEGV. And if the signal that caused 1708 * the problem was already a SIGSEGV, we'll want to 1709 * make sure we don't even try to deliver the signal.. 1710 */ 1711 void force_sigsegv(int sig) 1712 { 1713 if (sig == SIGSEGV) 1714 force_fatal_sig(SIGSEGV); 1715 else 1716 force_sig(SIGSEGV); 1717 } 1718 1719 int force_sig_fault_to_task(int sig, int code, void __user *addr, 1720 struct task_struct *t) 1721 { 1722 struct kernel_siginfo info; 1723 1724 clear_siginfo(&info); 1725 info.si_signo = sig; 1726 info.si_errno = 0; 1727 info.si_code = code; 1728 info.si_addr = addr; 1729 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1730 } 1731 1732 int force_sig_fault(int sig, int code, void __user *addr) 1733 { 1734 return force_sig_fault_to_task(sig, code, addr, current); 1735 } 1736 1737 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t) 1738 { 1739 struct kernel_siginfo info; 1740 1741 clear_siginfo(&info); 1742 info.si_signo = sig; 1743 info.si_errno = 0; 1744 info.si_code = code; 1745 info.si_addr = addr; 1746 return send_sig_info(info.si_signo, &info, t); 1747 } 1748 1749 int force_sig_mceerr(int code, void __user *addr, short lsb) 1750 { 1751 struct kernel_siginfo info; 1752 1753 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1754 clear_siginfo(&info); 1755 info.si_signo = SIGBUS; 1756 info.si_errno = 0; 1757 info.si_code = code; 1758 info.si_addr = addr; 1759 info.si_addr_lsb = lsb; 1760 return force_sig_info(&info); 1761 } 1762 1763 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1764 { 1765 struct kernel_siginfo info; 1766 1767 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1768 clear_siginfo(&info); 1769 info.si_signo = SIGBUS; 1770 info.si_errno = 0; 1771 info.si_code = code; 1772 info.si_addr = addr; 1773 info.si_addr_lsb = lsb; 1774 return send_sig_info(info.si_signo, &info, t); 1775 } 1776 EXPORT_SYMBOL(send_sig_mceerr); 1777 1778 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1779 { 1780 struct kernel_siginfo info; 1781 1782 clear_siginfo(&info); 1783 info.si_signo = SIGSEGV; 1784 info.si_errno = 0; 1785 info.si_code = SEGV_BNDERR; 1786 info.si_addr = addr; 1787 info.si_lower = lower; 1788 info.si_upper = upper; 1789 return force_sig_info(&info); 1790 } 1791 1792 #ifdef SEGV_PKUERR 1793 int force_sig_pkuerr(void __user *addr, u32 pkey) 1794 { 1795 struct kernel_siginfo info; 1796 1797 clear_siginfo(&info); 1798 info.si_signo = SIGSEGV; 1799 info.si_errno = 0; 1800 info.si_code = SEGV_PKUERR; 1801 info.si_addr = addr; 1802 info.si_pkey = pkey; 1803 return force_sig_info(&info); 1804 } 1805 #endif 1806 1807 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1808 { 1809 struct kernel_siginfo info; 1810 1811 clear_siginfo(&info); 1812 info.si_signo = SIGTRAP; 1813 info.si_errno = 0; 1814 info.si_code = TRAP_PERF; 1815 info.si_addr = addr; 1816 info.si_perf_data = sig_data; 1817 info.si_perf_type = type; 1818 1819 /* 1820 * Signals generated by perf events should not terminate the whole 1821 * process if SIGTRAP is blocked, however, delivering the signal 1822 * asynchronously is better than not delivering at all. But tell user 1823 * space if the signal was asynchronous, so it can clearly be 1824 * distinguished from normal synchronous ones. 1825 */ 1826 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1827 TRAP_PERF_FLAG_ASYNC : 1828 0; 1829 1830 return send_sig_info(info.si_signo, &info, current); 1831 } 1832 1833 /** 1834 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1835 * @syscall: syscall number to send to userland 1836 * @reason: filter-supplied reason code to send to userland (via si_errno) 1837 * @force_coredump: true to trigger a coredump 1838 * 1839 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1840 */ 1841 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1842 { 1843 struct kernel_siginfo info; 1844 1845 clear_siginfo(&info); 1846 info.si_signo = SIGSYS; 1847 info.si_code = SYS_SECCOMP; 1848 info.si_call_addr = (void __user *)KSTK_EIP(current); 1849 info.si_errno = reason; 1850 info.si_arch = syscall_get_arch(current); 1851 info.si_syscall = syscall; 1852 return force_sig_info_to_task(&info, current, 1853 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1854 } 1855 1856 /* For the crazy architectures that include trap information in 1857 * the errno field, instead of an actual errno value. 1858 */ 1859 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1860 { 1861 struct kernel_siginfo info; 1862 1863 clear_siginfo(&info); 1864 info.si_signo = SIGTRAP; 1865 info.si_errno = errno; 1866 info.si_code = TRAP_HWBKPT; 1867 info.si_addr = addr; 1868 return force_sig_info(&info); 1869 } 1870 1871 /* For the rare architectures that include trap information using 1872 * si_trapno. 1873 */ 1874 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1875 { 1876 struct kernel_siginfo info; 1877 1878 clear_siginfo(&info); 1879 info.si_signo = sig; 1880 info.si_errno = 0; 1881 info.si_code = code; 1882 info.si_addr = addr; 1883 info.si_trapno = trapno; 1884 return force_sig_info(&info); 1885 } 1886 1887 /* For the rare architectures that include trap information using 1888 * si_trapno. 1889 */ 1890 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1891 struct task_struct *t) 1892 { 1893 struct kernel_siginfo info; 1894 1895 clear_siginfo(&info); 1896 info.si_signo = sig; 1897 info.si_errno = 0; 1898 info.si_code = code; 1899 info.si_addr = addr; 1900 info.si_trapno = trapno; 1901 return send_sig_info(info.si_signo, &info, t); 1902 } 1903 1904 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1905 { 1906 int ret; 1907 read_lock(&tasklist_lock); 1908 ret = __kill_pgrp_info(sig, info, pgrp); 1909 read_unlock(&tasklist_lock); 1910 return ret; 1911 } 1912 1913 int kill_pgrp(struct pid *pid, int sig, int priv) 1914 { 1915 return kill_pgrp_info(sig, __si_special(priv), pid); 1916 } 1917 EXPORT_SYMBOL(kill_pgrp); 1918 1919 int kill_pid(struct pid *pid, int sig, int priv) 1920 { 1921 return kill_pid_info(sig, __si_special(priv), pid); 1922 } 1923 EXPORT_SYMBOL(kill_pid); 1924 1925 /* 1926 * These functions support sending signals using preallocated sigqueue 1927 * structures. This is needed "because realtime applications cannot 1928 * afford to lose notifications of asynchronous events, like timer 1929 * expirations or I/O completions". In the case of POSIX Timers 1930 * we allocate the sigqueue structure from the timer_create. If this 1931 * allocation fails we are able to report the failure to the application 1932 * with an EAGAIN error. 1933 */ 1934 struct sigqueue *sigqueue_alloc(void) 1935 { 1936 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1937 } 1938 1939 void sigqueue_free(struct sigqueue *q) 1940 { 1941 spinlock_t *lock = ¤t->sighand->siglock; 1942 unsigned long flags; 1943 1944 if (WARN_ON_ONCE(!(q->flags & SIGQUEUE_PREALLOC))) 1945 return; 1946 /* 1947 * We must hold ->siglock while testing q->list 1948 * to serialize with collect_signal() or with 1949 * __exit_signal()->flush_sigqueue(). 1950 */ 1951 spin_lock_irqsave(lock, flags); 1952 q->flags &= ~SIGQUEUE_PREALLOC; 1953 /* 1954 * If it is queued it will be freed when dequeued, 1955 * like the "regular" sigqueue. 1956 */ 1957 if (!list_empty(&q->list)) 1958 q = NULL; 1959 spin_unlock_irqrestore(lock, flags); 1960 1961 if (q) 1962 __sigqueue_free(q); 1963 } 1964 1965 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1966 { 1967 int sig = q->info.si_signo; 1968 struct sigpending *pending; 1969 struct task_struct *t; 1970 unsigned long flags; 1971 int ret, result; 1972 1973 if (WARN_ON_ONCE(!(q->flags & SIGQUEUE_PREALLOC))) 1974 return 0; 1975 if (WARN_ON_ONCE(q->info.si_code != SI_TIMER)) 1976 return 0; 1977 1978 ret = -1; 1979 rcu_read_lock(); 1980 1981 /* 1982 * This function is used by POSIX timers to deliver a timer signal. 1983 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1984 * set), the signal must be delivered to the specific thread (queues 1985 * into t->pending). 1986 * 1987 * Where type is not PIDTYPE_PID, signals must be delivered to the 1988 * process. In this case, prefer to deliver to current if it is in 1989 * the same thread group as the target process, which avoids 1990 * unnecessarily waking up a potentially idle task. 1991 */ 1992 t = pid_task(pid, type); 1993 if (!t) 1994 goto ret; 1995 if (type != PIDTYPE_PID && same_thread_group(t, current)) 1996 t = current; 1997 if (!likely(lock_task_sighand(t, &flags))) 1998 goto ret; 1999 2000 ret = 1; /* the signal is ignored */ 2001 result = TRACE_SIGNAL_IGNORED; 2002 if (!prepare_signal(sig, t, false)) 2003 goto out; 2004 2005 ret = 0; 2006 if (unlikely(!list_empty(&q->list))) { 2007 /* 2008 * If an SI_TIMER entry is already queue just increment 2009 * the overrun count. 2010 */ 2011 q->info.si_overrun++; 2012 result = TRACE_SIGNAL_ALREADY_PENDING; 2013 goto out; 2014 } 2015 q->info.si_overrun = 0; 2016 2017 signalfd_notify(t, sig); 2018 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 2019 list_add_tail(&q->list, &pending->list); 2020 sigaddset(&pending->signal, sig); 2021 complete_signal(sig, t, type); 2022 result = TRACE_SIGNAL_DELIVERED; 2023 out: 2024 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2025 unlock_task_sighand(t, &flags); 2026 ret: 2027 rcu_read_unlock(); 2028 return ret; 2029 } 2030 2031 void do_notify_pidfd(struct task_struct *task) 2032 { 2033 struct pid *pid = task_pid(task); 2034 2035 WARN_ON(task->exit_state == 0); 2036 2037 __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0, 2038 poll_to_key(EPOLLIN | EPOLLRDNORM)); 2039 } 2040 2041 /* 2042 * Let a parent know about the death of a child. 2043 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2044 * 2045 * Returns true if our parent ignored us and so we've switched to 2046 * self-reaping. 2047 */ 2048 bool do_notify_parent(struct task_struct *tsk, int sig) 2049 { 2050 struct kernel_siginfo info; 2051 unsigned long flags; 2052 struct sighand_struct *psig; 2053 bool autoreap = false; 2054 u64 utime, stime; 2055 2056 WARN_ON_ONCE(sig == -1); 2057 2058 /* do_notify_parent_cldstop should have been called instead. */ 2059 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2060 2061 WARN_ON_ONCE(!tsk->ptrace && 2062 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2063 /* 2064 * tsk is a group leader and has no threads, wake up the 2065 * non-PIDFD_THREAD waiters. 2066 */ 2067 if (thread_group_empty(tsk)) 2068 do_notify_pidfd(tsk); 2069 2070 if (sig != SIGCHLD) { 2071 /* 2072 * This is only possible if parent == real_parent. 2073 * Check if it has changed security domain. 2074 */ 2075 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2076 sig = SIGCHLD; 2077 } 2078 2079 clear_siginfo(&info); 2080 info.si_signo = sig; 2081 info.si_errno = 0; 2082 /* 2083 * We are under tasklist_lock here so our parent is tied to 2084 * us and cannot change. 2085 * 2086 * task_active_pid_ns will always return the same pid namespace 2087 * until a task passes through release_task. 2088 * 2089 * write_lock() currently calls preempt_disable() which is the 2090 * same as rcu_read_lock(), but according to Oleg, this is not 2091 * correct to rely on this 2092 */ 2093 rcu_read_lock(); 2094 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2095 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2096 task_uid(tsk)); 2097 rcu_read_unlock(); 2098 2099 task_cputime(tsk, &utime, &stime); 2100 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2101 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2102 2103 info.si_status = tsk->exit_code & 0x7f; 2104 if (tsk->exit_code & 0x80) 2105 info.si_code = CLD_DUMPED; 2106 else if (tsk->exit_code & 0x7f) 2107 info.si_code = CLD_KILLED; 2108 else { 2109 info.si_code = CLD_EXITED; 2110 info.si_status = tsk->exit_code >> 8; 2111 } 2112 2113 psig = tsk->parent->sighand; 2114 spin_lock_irqsave(&psig->siglock, flags); 2115 if (!tsk->ptrace && sig == SIGCHLD && 2116 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2117 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2118 /* 2119 * We are exiting and our parent doesn't care. POSIX.1 2120 * defines special semantics for setting SIGCHLD to SIG_IGN 2121 * or setting the SA_NOCLDWAIT flag: we should be reaped 2122 * automatically and not left for our parent's wait4 call. 2123 * Rather than having the parent do it as a magic kind of 2124 * signal handler, we just set this to tell do_exit that we 2125 * can be cleaned up without becoming a zombie. Note that 2126 * we still call __wake_up_parent in this case, because a 2127 * blocked sys_wait4 might now return -ECHILD. 2128 * 2129 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2130 * is implementation-defined: we do (if you don't want 2131 * it, just use SIG_IGN instead). 2132 */ 2133 autoreap = true; 2134 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2135 sig = 0; 2136 } 2137 /* 2138 * Send with __send_signal as si_pid and si_uid are in the 2139 * parent's namespaces. 2140 */ 2141 if (valid_signal(sig) && sig) 2142 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2143 __wake_up_parent(tsk, tsk->parent); 2144 spin_unlock_irqrestore(&psig->siglock, flags); 2145 2146 return autoreap; 2147 } 2148 2149 /** 2150 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2151 * @tsk: task reporting the state change 2152 * @for_ptracer: the notification is for ptracer 2153 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2154 * 2155 * Notify @tsk's parent that the stopped/continued state has changed. If 2156 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2157 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2158 * 2159 * CONTEXT: 2160 * Must be called with tasklist_lock at least read locked. 2161 */ 2162 static void do_notify_parent_cldstop(struct task_struct *tsk, 2163 bool for_ptracer, int why) 2164 { 2165 struct kernel_siginfo info; 2166 unsigned long flags; 2167 struct task_struct *parent; 2168 struct sighand_struct *sighand; 2169 u64 utime, stime; 2170 2171 if (for_ptracer) { 2172 parent = tsk->parent; 2173 } else { 2174 tsk = tsk->group_leader; 2175 parent = tsk->real_parent; 2176 } 2177 2178 clear_siginfo(&info); 2179 info.si_signo = SIGCHLD; 2180 info.si_errno = 0; 2181 /* 2182 * see comment in do_notify_parent() about the following 4 lines 2183 */ 2184 rcu_read_lock(); 2185 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2186 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2187 rcu_read_unlock(); 2188 2189 task_cputime(tsk, &utime, &stime); 2190 info.si_utime = nsec_to_clock_t(utime); 2191 info.si_stime = nsec_to_clock_t(stime); 2192 2193 info.si_code = why; 2194 switch (why) { 2195 case CLD_CONTINUED: 2196 info.si_status = SIGCONT; 2197 break; 2198 case CLD_STOPPED: 2199 info.si_status = tsk->signal->group_exit_code & 0x7f; 2200 break; 2201 case CLD_TRAPPED: 2202 info.si_status = tsk->exit_code & 0x7f; 2203 break; 2204 default: 2205 BUG(); 2206 } 2207 2208 sighand = parent->sighand; 2209 spin_lock_irqsave(&sighand->siglock, flags); 2210 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2211 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2212 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2213 /* 2214 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2215 */ 2216 __wake_up_parent(tsk, parent); 2217 spin_unlock_irqrestore(&sighand->siglock, flags); 2218 } 2219 2220 /* 2221 * This must be called with current->sighand->siglock held. 2222 * 2223 * This should be the path for all ptrace stops. 2224 * We always set current->last_siginfo while stopped here. 2225 * That makes it a way to test a stopped process for 2226 * being ptrace-stopped vs being job-control-stopped. 2227 * 2228 * Returns the signal the ptracer requested the code resume 2229 * with. If the code did not stop because the tracer is gone, 2230 * the stop signal remains unchanged unless clear_code. 2231 */ 2232 static int ptrace_stop(int exit_code, int why, unsigned long message, 2233 kernel_siginfo_t *info) 2234 __releases(¤t->sighand->siglock) 2235 __acquires(¤t->sighand->siglock) 2236 { 2237 bool gstop_done = false; 2238 2239 if (arch_ptrace_stop_needed()) { 2240 /* 2241 * The arch code has something special to do before a 2242 * ptrace stop. This is allowed to block, e.g. for faults 2243 * on user stack pages. We can't keep the siglock while 2244 * calling arch_ptrace_stop, so we must release it now. 2245 * To preserve proper semantics, we must do this before 2246 * any signal bookkeeping like checking group_stop_count. 2247 */ 2248 spin_unlock_irq(¤t->sighand->siglock); 2249 arch_ptrace_stop(); 2250 spin_lock_irq(¤t->sighand->siglock); 2251 } 2252 2253 /* 2254 * After this point ptrace_signal_wake_up or signal_wake_up 2255 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2256 * signal comes in. Handle previous ptrace_unlinks and fatal 2257 * signals here to prevent ptrace_stop sleeping in schedule. 2258 */ 2259 if (!current->ptrace || __fatal_signal_pending(current)) 2260 return exit_code; 2261 2262 set_special_state(TASK_TRACED); 2263 current->jobctl |= JOBCTL_TRACED; 2264 2265 /* 2266 * We're committing to trapping. TRACED should be visible before 2267 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2268 * Also, transition to TRACED and updates to ->jobctl should be 2269 * atomic with respect to siglock and should be done after the arch 2270 * hook as siglock is released and regrabbed across it. 2271 * 2272 * TRACER TRACEE 2273 * 2274 * ptrace_attach() 2275 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2276 * do_wait() 2277 * set_current_state() smp_wmb(); 2278 * ptrace_do_wait() 2279 * wait_task_stopped() 2280 * task_stopped_code() 2281 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2282 */ 2283 smp_wmb(); 2284 2285 current->ptrace_message = message; 2286 current->last_siginfo = info; 2287 current->exit_code = exit_code; 2288 2289 /* 2290 * If @why is CLD_STOPPED, we're trapping to participate in a group 2291 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2292 * across siglock relocks since INTERRUPT was scheduled, PENDING 2293 * could be clear now. We act as if SIGCONT is received after 2294 * TASK_TRACED is entered - ignore it. 2295 */ 2296 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2297 gstop_done = task_participate_group_stop(current); 2298 2299 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2300 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2301 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2302 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2303 2304 /* entering a trap, clear TRAPPING */ 2305 task_clear_jobctl_trapping(current); 2306 2307 spin_unlock_irq(¤t->sighand->siglock); 2308 read_lock(&tasklist_lock); 2309 /* 2310 * Notify parents of the stop. 2311 * 2312 * While ptraced, there are two parents - the ptracer and 2313 * the real_parent of the group_leader. The ptracer should 2314 * know about every stop while the real parent is only 2315 * interested in the completion of group stop. The states 2316 * for the two don't interact with each other. Notify 2317 * separately unless they're gonna be duplicates. 2318 */ 2319 if (current->ptrace) 2320 do_notify_parent_cldstop(current, true, why); 2321 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2322 do_notify_parent_cldstop(current, false, why); 2323 2324 /* 2325 * The previous do_notify_parent_cldstop() invocation woke ptracer. 2326 * One a PREEMPTION kernel this can result in preemption requirement 2327 * which will be fulfilled after read_unlock() and the ptracer will be 2328 * put on the CPU. 2329 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for 2330 * this task wait in schedule(). If this task gets preempted then it 2331 * remains enqueued on the runqueue. The ptracer will observe this and 2332 * then sleep for a delay of one HZ tick. In the meantime this task 2333 * gets scheduled, enters schedule() and will wait for the ptracer. 2334 * 2335 * This preemption point is not bad from a correctness point of 2336 * view but extends the runtime by one HZ tick time due to the 2337 * ptracer's sleep. The preempt-disable section ensures that there 2338 * will be no preemption between unlock and schedule() and so 2339 * improving the performance since the ptracer will observe that 2340 * the tracee is scheduled out once it gets on the CPU. 2341 * 2342 * On PREEMPT_RT locking tasklist_lock does not disable preemption. 2343 * Therefore the task can be preempted after do_notify_parent_cldstop() 2344 * before unlocking tasklist_lock so there is no benefit in doing this. 2345 * 2346 * In fact disabling preemption is harmful on PREEMPT_RT because 2347 * the spinlock_t in cgroup_enter_frozen() must not be acquired 2348 * with preemption disabled due to the 'sleeping' spinlock 2349 * substitution of RT. 2350 */ 2351 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2352 preempt_disable(); 2353 read_unlock(&tasklist_lock); 2354 cgroup_enter_frozen(); 2355 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2356 preempt_enable_no_resched(); 2357 schedule(); 2358 cgroup_leave_frozen(true); 2359 2360 /* 2361 * We are back. Now reacquire the siglock before touching 2362 * last_siginfo, so that we are sure to have synchronized with 2363 * any signal-sending on another CPU that wants to examine it. 2364 */ 2365 spin_lock_irq(¤t->sighand->siglock); 2366 exit_code = current->exit_code; 2367 current->last_siginfo = NULL; 2368 current->ptrace_message = 0; 2369 current->exit_code = 0; 2370 2371 /* LISTENING can be set only during STOP traps, clear it */ 2372 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2373 2374 /* 2375 * Queued signals ignored us while we were stopped for tracing. 2376 * So check for any that we should take before resuming user mode. 2377 * This sets TIF_SIGPENDING, but never clears it. 2378 */ 2379 recalc_sigpending_tsk(current); 2380 return exit_code; 2381 } 2382 2383 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2384 { 2385 kernel_siginfo_t info; 2386 2387 clear_siginfo(&info); 2388 info.si_signo = signr; 2389 info.si_code = exit_code; 2390 info.si_pid = task_pid_vnr(current); 2391 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2392 2393 /* Let the debugger run. */ 2394 return ptrace_stop(exit_code, why, message, &info); 2395 } 2396 2397 int ptrace_notify(int exit_code, unsigned long message) 2398 { 2399 int signr; 2400 2401 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2402 if (unlikely(task_work_pending(current))) 2403 task_work_run(); 2404 2405 spin_lock_irq(¤t->sighand->siglock); 2406 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2407 spin_unlock_irq(¤t->sighand->siglock); 2408 return signr; 2409 } 2410 2411 /** 2412 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2413 * @signr: signr causing group stop if initiating 2414 * 2415 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2416 * and participate in it. If already set, participate in the existing 2417 * group stop. If participated in a group stop (and thus slept), %true is 2418 * returned with siglock released. 2419 * 2420 * If ptraced, this function doesn't handle stop itself. Instead, 2421 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2422 * untouched. The caller must ensure that INTERRUPT trap handling takes 2423 * places afterwards. 2424 * 2425 * CONTEXT: 2426 * Must be called with @current->sighand->siglock held, which is released 2427 * on %true return. 2428 * 2429 * RETURNS: 2430 * %false if group stop is already cancelled or ptrace trap is scheduled. 2431 * %true if participated in group stop. 2432 */ 2433 static bool do_signal_stop(int signr) 2434 __releases(¤t->sighand->siglock) 2435 { 2436 struct signal_struct *sig = current->signal; 2437 2438 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2439 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2440 struct task_struct *t; 2441 2442 /* signr will be recorded in task->jobctl for retries */ 2443 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2444 2445 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2446 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2447 unlikely(sig->group_exec_task)) 2448 return false; 2449 /* 2450 * There is no group stop already in progress. We must 2451 * initiate one now. 2452 * 2453 * While ptraced, a task may be resumed while group stop is 2454 * still in effect and then receive a stop signal and 2455 * initiate another group stop. This deviates from the 2456 * usual behavior as two consecutive stop signals can't 2457 * cause two group stops when !ptraced. That is why we 2458 * also check !task_is_stopped(t) below. 2459 * 2460 * The condition can be distinguished by testing whether 2461 * SIGNAL_STOP_STOPPED is already set. Don't generate 2462 * group_exit_code in such case. 2463 * 2464 * This is not necessary for SIGNAL_STOP_CONTINUED because 2465 * an intervening stop signal is required to cause two 2466 * continued events regardless of ptrace. 2467 */ 2468 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2469 sig->group_exit_code = signr; 2470 2471 sig->group_stop_count = 0; 2472 if (task_set_jobctl_pending(current, signr | gstop)) 2473 sig->group_stop_count++; 2474 2475 for_other_threads(current, t) { 2476 /* 2477 * Setting state to TASK_STOPPED for a group 2478 * stop is always done with the siglock held, 2479 * so this check has no races. 2480 */ 2481 if (!task_is_stopped(t) && 2482 task_set_jobctl_pending(t, signr | gstop)) { 2483 sig->group_stop_count++; 2484 if (likely(!(t->ptrace & PT_SEIZED))) 2485 signal_wake_up(t, 0); 2486 else 2487 ptrace_trap_notify(t); 2488 } 2489 } 2490 } 2491 2492 if (likely(!current->ptrace)) { 2493 int notify = 0; 2494 2495 /* 2496 * If there are no other threads in the group, or if there 2497 * is a group stop in progress and we are the last to stop, 2498 * report to the parent. 2499 */ 2500 if (task_participate_group_stop(current)) 2501 notify = CLD_STOPPED; 2502 2503 current->jobctl |= JOBCTL_STOPPED; 2504 set_special_state(TASK_STOPPED); 2505 spin_unlock_irq(¤t->sighand->siglock); 2506 2507 /* 2508 * Notify the parent of the group stop completion. Because 2509 * we're not holding either the siglock or tasklist_lock 2510 * here, ptracer may attach inbetween; however, this is for 2511 * group stop and should always be delivered to the real 2512 * parent of the group leader. The new ptracer will get 2513 * its notification when this task transitions into 2514 * TASK_TRACED. 2515 */ 2516 if (notify) { 2517 read_lock(&tasklist_lock); 2518 do_notify_parent_cldstop(current, false, notify); 2519 read_unlock(&tasklist_lock); 2520 } 2521 2522 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2523 cgroup_enter_frozen(); 2524 schedule(); 2525 return true; 2526 } else { 2527 /* 2528 * While ptraced, group stop is handled by STOP trap. 2529 * Schedule it and let the caller deal with it. 2530 */ 2531 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2532 return false; 2533 } 2534 } 2535 2536 /** 2537 * do_jobctl_trap - take care of ptrace jobctl traps 2538 * 2539 * When PT_SEIZED, it's used for both group stop and explicit 2540 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2541 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2542 * the stop signal; otherwise, %SIGTRAP. 2543 * 2544 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2545 * number as exit_code and no siginfo. 2546 * 2547 * CONTEXT: 2548 * Must be called with @current->sighand->siglock held, which may be 2549 * released and re-acquired before returning with intervening sleep. 2550 */ 2551 static void do_jobctl_trap(void) 2552 { 2553 struct signal_struct *signal = current->signal; 2554 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2555 2556 if (current->ptrace & PT_SEIZED) { 2557 if (!signal->group_stop_count && 2558 !(signal->flags & SIGNAL_STOP_STOPPED)) 2559 signr = SIGTRAP; 2560 WARN_ON_ONCE(!signr); 2561 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2562 CLD_STOPPED, 0); 2563 } else { 2564 WARN_ON_ONCE(!signr); 2565 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2566 } 2567 } 2568 2569 /** 2570 * do_freezer_trap - handle the freezer jobctl trap 2571 * 2572 * Puts the task into frozen state, if only the task is not about to quit. 2573 * In this case it drops JOBCTL_TRAP_FREEZE. 2574 * 2575 * CONTEXT: 2576 * Must be called with @current->sighand->siglock held, 2577 * which is always released before returning. 2578 */ 2579 static void do_freezer_trap(void) 2580 __releases(¤t->sighand->siglock) 2581 { 2582 /* 2583 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2584 * let's make another loop to give it a chance to be handled. 2585 * In any case, we'll return back. 2586 */ 2587 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2588 JOBCTL_TRAP_FREEZE) { 2589 spin_unlock_irq(¤t->sighand->siglock); 2590 return; 2591 } 2592 2593 /* 2594 * Now we're sure that there is no pending fatal signal and no 2595 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2596 * immediately (if there is a non-fatal signal pending), and 2597 * put the task into sleep. 2598 */ 2599 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2600 clear_thread_flag(TIF_SIGPENDING); 2601 spin_unlock_irq(¤t->sighand->siglock); 2602 cgroup_enter_frozen(); 2603 schedule(); 2604 2605 /* 2606 * We could've been woken by task_work, run it to clear 2607 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary. 2608 */ 2609 clear_notify_signal(); 2610 if (unlikely(task_work_pending(current))) 2611 task_work_run(); 2612 } 2613 2614 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2615 { 2616 /* 2617 * We do not check sig_kernel_stop(signr) but set this marker 2618 * unconditionally because we do not know whether debugger will 2619 * change signr. This flag has no meaning unless we are going 2620 * to stop after return from ptrace_stop(). In this case it will 2621 * be checked in do_signal_stop(), we should only stop if it was 2622 * not cleared by SIGCONT while we were sleeping. See also the 2623 * comment in dequeue_signal(). 2624 */ 2625 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2626 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2627 2628 /* We're back. Did the debugger cancel the sig? */ 2629 if (signr == 0) 2630 return signr; 2631 2632 /* 2633 * Update the siginfo structure if the signal has 2634 * changed. If the debugger wanted something 2635 * specific in the siginfo structure then it should 2636 * have updated *info via PTRACE_SETSIGINFO. 2637 */ 2638 if (signr != info->si_signo) { 2639 clear_siginfo(info); 2640 info->si_signo = signr; 2641 info->si_errno = 0; 2642 info->si_code = SI_USER; 2643 rcu_read_lock(); 2644 info->si_pid = task_pid_vnr(current->parent); 2645 info->si_uid = from_kuid_munged(current_user_ns(), 2646 task_uid(current->parent)); 2647 rcu_read_unlock(); 2648 } 2649 2650 /* If the (new) signal is now blocked, requeue it. */ 2651 if (sigismember(¤t->blocked, signr) || 2652 fatal_signal_pending(current)) { 2653 send_signal_locked(signr, info, current, type); 2654 signr = 0; 2655 } 2656 2657 return signr; 2658 } 2659 2660 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2661 { 2662 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2663 case SIL_FAULT: 2664 case SIL_FAULT_TRAPNO: 2665 case SIL_FAULT_MCEERR: 2666 case SIL_FAULT_BNDERR: 2667 case SIL_FAULT_PKUERR: 2668 case SIL_FAULT_PERF_EVENT: 2669 ksig->info.si_addr = arch_untagged_si_addr( 2670 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2671 break; 2672 case SIL_KILL: 2673 case SIL_TIMER: 2674 case SIL_POLL: 2675 case SIL_CHLD: 2676 case SIL_RT: 2677 case SIL_SYS: 2678 break; 2679 } 2680 } 2681 2682 bool get_signal(struct ksignal *ksig) 2683 { 2684 struct sighand_struct *sighand = current->sighand; 2685 struct signal_struct *signal = current->signal; 2686 int signr; 2687 2688 clear_notify_signal(); 2689 if (unlikely(task_work_pending(current))) 2690 task_work_run(); 2691 2692 if (!task_sigpending(current)) 2693 return false; 2694 2695 if (unlikely(uprobe_deny_signal())) 2696 return false; 2697 2698 /* 2699 * Do this once, we can't return to user-mode if freezing() == T. 2700 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2701 * thus do not need another check after return. 2702 */ 2703 try_to_freeze(); 2704 2705 relock: 2706 spin_lock_irq(&sighand->siglock); 2707 2708 /* 2709 * Every stopped thread goes here after wakeup. Check to see if 2710 * we should notify the parent, prepare_signal(SIGCONT) encodes 2711 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2712 */ 2713 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2714 int why; 2715 2716 if (signal->flags & SIGNAL_CLD_CONTINUED) 2717 why = CLD_CONTINUED; 2718 else 2719 why = CLD_STOPPED; 2720 2721 signal->flags &= ~SIGNAL_CLD_MASK; 2722 2723 spin_unlock_irq(&sighand->siglock); 2724 2725 /* 2726 * Notify the parent that we're continuing. This event is 2727 * always per-process and doesn't make whole lot of sense 2728 * for ptracers, who shouldn't consume the state via 2729 * wait(2) either, but, for backward compatibility, notify 2730 * the ptracer of the group leader too unless it's gonna be 2731 * a duplicate. 2732 */ 2733 read_lock(&tasklist_lock); 2734 do_notify_parent_cldstop(current, false, why); 2735 2736 if (ptrace_reparented(current->group_leader)) 2737 do_notify_parent_cldstop(current->group_leader, 2738 true, why); 2739 read_unlock(&tasklist_lock); 2740 2741 goto relock; 2742 } 2743 2744 for (;;) { 2745 struct k_sigaction *ka; 2746 enum pid_type type; 2747 2748 /* Has this task already been marked for death? */ 2749 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2750 signal->group_exec_task) { 2751 signr = SIGKILL; 2752 sigdelset(¤t->pending.signal, SIGKILL); 2753 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2754 &sighand->action[SIGKILL-1]); 2755 recalc_sigpending(); 2756 /* 2757 * implies do_group_exit() or return to PF_USER_WORKER, 2758 * no need to initialize ksig->info/etc. 2759 */ 2760 goto fatal; 2761 } 2762 2763 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2764 do_signal_stop(0)) 2765 goto relock; 2766 2767 if (unlikely(current->jobctl & 2768 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2769 if (current->jobctl & JOBCTL_TRAP_MASK) { 2770 do_jobctl_trap(); 2771 spin_unlock_irq(&sighand->siglock); 2772 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2773 do_freezer_trap(); 2774 2775 goto relock; 2776 } 2777 2778 /* 2779 * If the task is leaving the frozen state, let's update 2780 * cgroup counters and reset the frozen bit. 2781 */ 2782 if (unlikely(cgroup_task_frozen(current))) { 2783 spin_unlock_irq(&sighand->siglock); 2784 cgroup_leave_frozen(false); 2785 goto relock; 2786 } 2787 2788 /* 2789 * Signals generated by the execution of an instruction 2790 * need to be delivered before any other pending signals 2791 * so that the instruction pointer in the signal stack 2792 * frame points to the faulting instruction. 2793 */ 2794 type = PIDTYPE_PID; 2795 signr = dequeue_synchronous_signal(&ksig->info); 2796 if (!signr) 2797 signr = dequeue_signal(¤t->blocked, &ksig->info, &type); 2798 2799 if (!signr) 2800 break; /* will return 0 */ 2801 2802 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2803 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2804 signr = ptrace_signal(signr, &ksig->info, type); 2805 if (!signr) 2806 continue; 2807 } 2808 2809 ka = &sighand->action[signr-1]; 2810 2811 /* Trace actually delivered signals. */ 2812 trace_signal_deliver(signr, &ksig->info, ka); 2813 2814 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2815 continue; 2816 if (ka->sa.sa_handler != SIG_DFL) { 2817 /* Run the handler. */ 2818 ksig->ka = *ka; 2819 2820 if (ka->sa.sa_flags & SA_ONESHOT) 2821 ka->sa.sa_handler = SIG_DFL; 2822 2823 break; /* will return non-zero "signr" value */ 2824 } 2825 2826 /* 2827 * Now we are doing the default action for this signal. 2828 */ 2829 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2830 continue; 2831 2832 /* 2833 * Global init gets no signals it doesn't want. 2834 * Container-init gets no signals it doesn't want from same 2835 * container. 2836 * 2837 * Note that if global/container-init sees a sig_kernel_only() 2838 * signal here, the signal must have been generated internally 2839 * or must have come from an ancestor namespace. In either 2840 * case, the signal cannot be dropped. 2841 */ 2842 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2843 !sig_kernel_only(signr)) 2844 continue; 2845 2846 if (sig_kernel_stop(signr)) { 2847 /* 2848 * The default action is to stop all threads in 2849 * the thread group. The job control signals 2850 * do nothing in an orphaned pgrp, but SIGSTOP 2851 * always works. Note that siglock needs to be 2852 * dropped during the call to is_orphaned_pgrp() 2853 * because of lock ordering with tasklist_lock. 2854 * This allows an intervening SIGCONT to be posted. 2855 * We need to check for that and bail out if necessary. 2856 */ 2857 if (signr != SIGSTOP) { 2858 spin_unlock_irq(&sighand->siglock); 2859 2860 /* signals can be posted during this window */ 2861 2862 if (is_current_pgrp_orphaned()) 2863 goto relock; 2864 2865 spin_lock_irq(&sighand->siglock); 2866 } 2867 2868 if (likely(do_signal_stop(signr))) { 2869 /* It released the siglock. */ 2870 goto relock; 2871 } 2872 2873 /* 2874 * We didn't actually stop, due to a race 2875 * with SIGCONT or something like that. 2876 */ 2877 continue; 2878 } 2879 2880 fatal: 2881 spin_unlock_irq(&sighand->siglock); 2882 if (unlikely(cgroup_task_frozen(current))) 2883 cgroup_leave_frozen(true); 2884 2885 /* 2886 * Anything else is fatal, maybe with a core dump. 2887 */ 2888 current->flags |= PF_SIGNALED; 2889 2890 if (sig_kernel_coredump(signr)) { 2891 if (print_fatal_signals) 2892 print_fatal_signal(signr); 2893 proc_coredump_connector(current); 2894 /* 2895 * If it was able to dump core, this kills all 2896 * other threads in the group and synchronizes with 2897 * their demise. If we lost the race with another 2898 * thread getting here, it set group_exit_code 2899 * first and our do_group_exit call below will use 2900 * that value and ignore the one we pass it. 2901 */ 2902 do_coredump(&ksig->info); 2903 } 2904 2905 /* 2906 * PF_USER_WORKER threads will catch and exit on fatal signals 2907 * themselves. They have cleanup that must be performed, so we 2908 * cannot call do_exit() on their behalf. Note that ksig won't 2909 * be properly initialized, PF_USER_WORKER's shouldn't use it. 2910 */ 2911 if (current->flags & PF_USER_WORKER) 2912 goto out; 2913 2914 /* 2915 * Death signals, no core dump. 2916 */ 2917 do_group_exit(signr); 2918 /* NOTREACHED */ 2919 } 2920 spin_unlock_irq(&sighand->siglock); 2921 2922 ksig->sig = signr; 2923 2924 if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2925 hide_si_addr_tag_bits(ksig); 2926 out: 2927 return signr > 0; 2928 } 2929 2930 /** 2931 * signal_delivered - called after signal delivery to update blocked signals 2932 * @ksig: kernel signal struct 2933 * @stepping: nonzero if debugger single-step or block-step in use 2934 * 2935 * This function should be called when a signal has successfully been 2936 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2937 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2938 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2939 */ 2940 static void signal_delivered(struct ksignal *ksig, int stepping) 2941 { 2942 sigset_t blocked; 2943 2944 /* A signal was successfully delivered, and the 2945 saved sigmask was stored on the signal frame, 2946 and will be restored by sigreturn. So we can 2947 simply clear the restore sigmask flag. */ 2948 clear_restore_sigmask(); 2949 2950 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2951 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2952 sigaddset(&blocked, ksig->sig); 2953 set_current_blocked(&blocked); 2954 if (current->sas_ss_flags & SS_AUTODISARM) 2955 sas_ss_reset(current); 2956 if (stepping) 2957 ptrace_notify(SIGTRAP, 0); 2958 } 2959 2960 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2961 { 2962 if (failed) 2963 force_sigsegv(ksig->sig); 2964 else 2965 signal_delivered(ksig, stepping); 2966 } 2967 2968 /* 2969 * It could be that complete_signal() picked us to notify about the 2970 * group-wide signal. Other threads should be notified now to take 2971 * the shared signals in @which since we will not. 2972 */ 2973 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2974 { 2975 sigset_t retarget; 2976 struct task_struct *t; 2977 2978 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2979 if (sigisemptyset(&retarget)) 2980 return; 2981 2982 for_other_threads(tsk, t) { 2983 if (t->flags & PF_EXITING) 2984 continue; 2985 2986 if (!has_pending_signals(&retarget, &t->blocked)) 2987 continue; 2988 /* Remove the signals this thread can handle. */ 2989 sigandsets(&retarget, &retarget, &t->blocked); 2990 2991 if (!task_sigpending(t)) 2992 signal_wake_up(t, 0); 2993 2994 if (sigisemptyset(&retarget)) 2995 break; 2996 } 2997 } 2998 2999 void exit_signals(struct task_struct *tsk) 3000 { 3001 int group_stop = 0; 3002 sigset_t unblocked; 3003 3004 /* 3005 * @tsk is about to have PF_EXITING set - lock out users which 3006 * expect stable threadgroup. 3007 */ 3008 cgroup_threadgroup_change_begin(tsk); 3009 3010 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 3011 sched_mm_cid_exit_signals(tsk); 3012 tsk->flags |= PF_EXITING; 3013 cgroup_threadgroup_change_end(tsk); 3014 return; 3015 } 3016 3017 spin_lock_irq(&tsk->sighand->siglock); 3018 /* 3019 * From now this task is not visible for group-wide signals, 3020 * see wants_signal(), do_signal_stop(). 3021 */ 3022 sched_mm_cid_exit_signals(tsk); 3023 tsk->flags |= PF_EXITING; 3024 3025 cgroup_threadgroup_change_end(tsk); 3026 3027 if (!task_sigpending(tsk)) 3028 goto out; 3029 3030 unblocked = tsk->blocked; 3031 signotset(&unblocked); 3032 retarget_shared_pending(tsk, &unblocked); 3033 3034 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3035 task_participate_group_stop(tsk)) 3036 group_stop = CLD_STOPPED; 3037 out: 3038 spin_unlock_irq(&tsk->sighand->siglock); 3039 3040 /* 3041 * If group stop has completed, deliver the notification. This 3042 * should always go to the real parent of the group leader. 3043 */ 3044 if (unlikely(group_stop)) { 3045 read_lock(&tasklist_lock); 3046 do_notify_parent_cldstop(tsk, false, group_stop); 3047 read_unlock(&tasklist_lock); 3048 } 3049 } 3050 3051 /* 3052 * System call entry points. 3053 */ 3054 3055 /** 3056 * sys_restart_syscall - restart a system call 3057 */ 3058 SYSCALL_DEFINE0(restart_syscall) 3059 { 3060 struct restart_block *restart = ¤t->restart_block; 3061 return restart->fn(restart); 3062 } 3063 3064 long do_no_restart_syscall(struct restart_block *param) 3065 { 3066 return -EINTR; 3067 } 3068 3069 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3070 { 3071 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3072 sigset_t newblocked; 3073 /* A set of now blocked but previously unblocked signals. */ 3074 sigandnsets(&newblocked, newset, ¤t->blocked); 3075 retarget_shared_pending(tsk, &newblocked); 3076 } 3077 tsk->blocked = *newset; 3078 recalc_sigpending(); 3079 } 3080 3081 /** 3082 * set_current_blocked - change current->blocked mask 3083 * @newset: new mask 3084 * 3085 * It is wrong to change ->blocked directly, this helper should be used 3086 * to ensure the process can't miss a shared signal we are going to block. 3087 */ 3088 void set_current_blocked(sigset_t *newset) 3089 { 3090 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3091 __set_current_blocked(newset); 3092 } 3093 3094 void __set_current_blocked(const sigset_t *newset) 3095 { 3096 struct task_struct *tsk = current; 3097 3098 /* 3099 * In case the signal mask hasn't changed, there is nothing we need 3100 * to do. The current->blocked shouldn't be modified by other task. 3101 */ 3102 if (sigequalsets(&tsk->blocked, newset)) 3103 return; 3104 3105 spin_lock_irq(&tsk->sighand->siglock); 3106 __set_task_blocked(tsk, newset); 3107 spin_unlock_irq(&tsk->sighand->siglock); 3108 } 3109 3110 /* 3111 * This is also useful for kernel threads that want to temporarily 3112 * (or permanently) block certain signals. 3113 * 3114 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3115 * interface happily blocks "unblockable" signals like SIGKILL 3116 * and friends. 3117 */ 3118 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3119 { 3120 struct task_struct *tsk = current; 3121 sigset_t newset; 3122 3123 /* Lockless, only current can change ->blocked, never from irq */ 3124 if (oldset) 3125 *oldset = tsk->blocked; 3126 3127 switch (how) { 3128 case SIG_BLOCK: 3129 sigorsets(&newset, &tsk->blocked, set); 3130 break; 3131 case SIG_UNBLOCK: 3132 sigandnsets(&newset, &tsk->blocked, set); 3133 break; 3134 case SIG_SETMASK: 3135 newset = *set; 3136 break; 3137 default: 3138 return -EINVAL; 3139 } 3140 3141 __set_current_blocked(&newset); 3142 return 0; 3143 } 3144 EXPORT_SYMBOL(sigprocmask); 3145 3146 /* 3147 * The api helps set app-provided sigmasks. 3148 * 3149 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3150 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3151 * 3152 * Note that it does set_restore_sigmask() in advance, so it must be always 3153 * paired with restore_saved_sigmask_unless() before return from syscall. 3154 */ 3155 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3156 { 3157 sigset_t kmask; 3158 3159 if (!umask) 3160 return 0; 3161 if (sigsetsize != sizeof(sigset_t)) 3162 return -EINVAL; 3163 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3164 return -EFAULT; 3165 3166 set_restore_sigmask(); 3167 current->saved_sigmask = current->blocked; 3168 set_current_blocked(&kmask); 3169 3170 return 0; 3171 } 3172 3173 #ifdef CONFIG_COMPAT 3174 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3175 size_t sigsetsize) 3176 { 3177 sigset_t kmask; 3178 3179 if (!umask) 3180 return 0; 3181 if (sigsetsize != sizeof(compat_sigset_t)) 3182 return -EINVAL; 3183 if (get_compat_sigset(&kmask, umask)) 3184 return -EFAULT; 3185 3186 set_restore_sigmask(); 3187 current->saved_sigmask = current->blocked; 3188 set_current_blocked(&kmask); 3189 3190 return 0; 3191 } 3192 #endif 3193 3194 /** 3195 * sys_rt_sigprocmask - change the list of currently blocked signals 3196 * @how: whether to add, remove, or set signals 3197 * @nset: stores pending signals 3198 * @oset: previous value of signal mask if non-null 3199 * @sigsetsize: size of sigset_t type 3200 */ 3201 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3202 sigset_t __user *, oset, size_t, sigsetsize) 3203 { 3204 sigset_t old_set, new_set; 3205 int error; 3206 3207 /* XXX: Don't preclude handling different sized sigset_t's. */ 3208 if (sigsetsize != sizeof(sigset_t)) 3209 return -EINVAL; 3210 3211 old_set = current->blocked; 3212 3213 if (nset) { 3214 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3215 return -EFAULT; 3216 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3217 3218 error = sigprocmask(how, &new_set, NULL); 3219 if (error) 3220 return error; 3221 } 3222 3223 if (oset) { 3224 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3225 return -EFAULT; 3226 } 3227 3228 return 0; 3229 } 3230 3231 #ifdef CONFIG_COMPAT 3232 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3233 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3234 { 3235 sigset_t old_set = current->blocked; 3236 3237 /* XXX: Don't preclude handling different sized sigset_t's. */ 3238 if (sigsetsize != sizeof(sigset_t)) 3239 return -EINVAL; 3240 3241 if (nset) { 3242 sigset_t new_set; 3243 int error; 3244 if (get_compat_sigset(&new_set, nset)) 3245 return -EFAULT; 3246 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3247 3248 error = sigprocmask(how, &new_set, NULL); 3249 if (error) 3250 return error; 3251 } 3252 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3253 } 3254 #endif 3255 3256 static void do_sigpending(sigset_t *set) 3257 { 3258 spin_lock_irq(¤t->sighand->siglock); 3259 sigorsets(set, ¤t->pending.signal, 3260 ¤t->signal->shared_pending.signal); 3261 spin_unlock_irq(¤t->sighand->siglock); 3262 3263 /* Outside the lock because only this thread touches it. */ 3264 sigandsets(set, ¤t->blocked, set); 3265 } 3266 3267 /** 3268 * sys_rt_sigpending - examine a pending signal that has been raised 3269 * while blocked 3270 * @uset: stores pending signals 3271 * @sigsetsize: size of sigset_t type or larger 3272 */ 3273 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3274 { 3275 sigset_t set; 3276 3277 if (sigsetsize > sizeof(*uset)) 3278 return -EINVAL; 3279 3280 do_sigpending(&set); 3281 3282 if (copy_to_user(uset, &set, sigsetsize)) 3283 return -EFAULT; 3284 3285 return 0; 3286 } 3287 3288 #ifdef CONFIG_COMPAT 3289 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3290 compat_size_t, sigsetsize) 3291 { 3292 sigset_t set; 3293 3294 if (sigsetsize > sizeof(*uset)) 3295 return -EINVAL; 3296 3297 do_sigpending(&set); 3298 3299 return put_compat_sigset(uset, &set, sigsetsize); 3300 } 3301 #endif 3302 3303 static const struct { 3304 unsigned char limit, layout; 3305 } sig_sicodes[] = { 3306 [SIGILL] = { NSIGILL, SIL_FAULT }, 3307 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3308 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3309 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3310 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3311 #if defined(SIGEMT) 3312 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3313 #endif 3314 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3315 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3316 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3317 }; 3318 3319 static bool known_siginfo_layout(unsigned sig, int si_code) 3320 { 3321 if (si_code == SI_KERNEL) 3322 return true; 3323 else if ((si_code > SI_USER)) { 3324 if (sig_specific_sicodes(sig)) { 3325 if (si_code <= sig_sicodes[sig].limit) 3326 return true; 3327 } 3328 else if (si_code <= NSIGPOLL) 3329 return true; 3330 } 3331 else if (si_code >= SI_DETHREAD) 3332 return true; 3333 else if (si_code == SI_ASYNCNL) 3334 return true; 3335 return false; 3336 } 3337 3338 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3339 { 3340 enum siginfo_layout layout = SIL_KILL; 3341 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3342 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3343 (si_code <= sig_sicodes[sig].limit)) { 3344 layout = sig_sicodes[sig].layout; 3345 /* Handle the exceptions */ 3346 if ((sig == SIGBUS) && 3347 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3348 layout = SIL_FAULT_MCEERR; 3349 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3350 layout = SIL_FAULT_BNDERR; 3351 #ifdef SEGV_PKUERR 3352 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3353 layout = SIL_FAULT_PKUERR; 3354 #endif 3355 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3356 layout = SIL_FAULT_PERF_EVENT; 3357 else if (IS_ENABLED(CONFIG_SPARC) && 3358 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3359 layout = SIL_FAULT_TRAPNO; 3360 else if (IS_ENABLED(CONFIG_ALPHA) && 3361 ((sig == SIGFPE) || 3362 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3363 layout = SIL_FAULT_TRAPNO; 3364 } 3365 else if (si_code <= NSIGPOLL) 3366 layout = SIL_POLL; 3367 } else { 3368 if (si_code == SI_TIMER) 3369 layout = SIL_TIMER; 3370 else if (si_code == SI_SIGIO) 3371 layout = SIL_POLL; 3372 else if (si_code < 0) 3373 layout = SIL_RT; 3374 } 3375 return layout; 3376 } 3377 3378 static inline char __user *si_expansion(const siginfo_t __user *info) 3379 { 3380 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3381 } 3382 3383 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3384 { 3385 char __user *expansion = si_expansion(to); 3386 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3387 return -EFAULT; 3388 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3389 return -EFAULT; 3390 return 0; 3391 } 3392 3393 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3394 const siginfo_t __user *from) 3395 { 3396 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3397 char __user *expansion = si_expansion(from); 3398 char buf[SI_EXPANSION_SIZE]; 3399 int i; 3400 /* 3401 * An unknown si_code might need more than 3402 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3403 * extra bytes are 0. This guarantees copy_siginfo_to_user 3404 * will return this data to userspace exactly. 3405 */ 3406 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3407 return -EFAULT; 3408 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3409 if (buf[i] != 0) 3410 return -E2BIG; 3411 } 3412 } 3413 return 0; 3414 } 3415 3416 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3417 const siginfo_t __user *from) 3418 { 3419 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3420 return -EFAULT; 3421 to->si_signo = signo; 3422 return post_copy_siginfo_from_user(to, from); 3423 } 3424 3425 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3426 { 3427 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3428 return -EFAULT; 3429 return post_copy_siginfo_from_user(to, from); 3430 } 3431 3432 #ifdef CONFIG_COMPAT 3433 /** 3434 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3435 * @to: compat siginfo destination 3436 * @from: kernel siginfo source 3437 * 3438 * Note: This function does not work properly for the SIGCHLD on x32, but 3439 * fortunately it doesn't have to. The only valid callers for this function are 3440 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3441 * The latter does not care because SIGCHLD will never cause a coredump. 3442 */ 3443 void copy_siginfo_to_external32(struct compat_siginfo *to, 3444 const struct kernel_siginfo *from) 3445 { 3446 memset(to, 0, sizeof(*to)); 3447 3448 to->si_signo = from->si_signo; 3449 to->si_errno = from->si_errno; 3450 to->si_code = from->si_code; 3451 switch(siginfo_layout(from->si_signo, from->si_code)) { 3452 case SIL_KILL: 3453 to->si_pid = from->si_pid; 3454 to->si_uid = from->si_uid; 3455 break; 3456 case SIL_TIMER: 3457 to->si_tid = from->si_tid; 3458 to->si_overrun = from->si_overrun; 3459 to->si_int = from->si_int; 3460 break; 3461 case SIL_POLL: 3462 to->si_band = from->si_band; 3463 to->si_fd = from->si_fd; 3464 break; 3465 case SIL_FAULT: 3466 to->si_addr = ptr_to_compat(from->si_addr); 3467 break; 3468 case SIL_FAULT_TRAPNO: 3469 to->si_addr = ptr_to_compat(from->si_addr); 3470 to->si_trapno = from->si_trapno; 3471 break; 3472 case SIL_FAULT_MCEERR: 3473 to->si_addr = ptr_to_compat(from->si_addr); 3474 to->si_addr_lsb = from->si_addr_lsb; 3475 break; 3476 case SIL_FAULT_BNDERR: 3477 to->si_addr = ptr_to_compat(from->si_addr); 3478 to->si_lower = ptr_to_compat(from->si_lower); 3479 to->si_upper = ptr_to_compat(from->si_upper); 3480 break; 3481 case SIL_FAULT_PKUERR: 3482 to->si_addr = ptr_to_compat(from->si_addr); 3483 to->si_pkey = from->si_pkey; 3484 break; 3485 case SIL_FAULT_PERF_EVENT: 3486 to->si_addr = ptr_to_compat(from->si_addr); 3487 to->si_perf_data = from->si_perf_data; 3488 to->si_perf_type = from->si_perf_type; 3489 to->si_perf_flags = from->si_perf_flags; 3490 break; 3491 case SIL_CHLD: 3492 to->si_pid = from->si_pid; 3493 to->si_uid = from->si_uid; 3494 to->si_status = from->si_status; 3495 to->si_utime = from->si_utime; 3496 to->si_stime = from->si_stime; 3497 break; 3498 case SIL_RT: 3499 to->si_pid = from->si_pid; 3500 to->si_uid = from->si_uid; 3501 to->si_int = from->si_int; 3502 break; 3503 case SIL_SYS: 3504 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3505 to->si_syscall = from->si_syscall; 3506 to->si_arch = from->si_arch; 3507 break; 3508 } 3509 } 3510 3511 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3512 const struct kernel_siginfo *from) 3513 { 3514 struct compat_siginfo new; 3515 3516 copy_siginfo_to_external32(&new, from); 3517 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3518 return -EFAULT; 3519 return 0; 3520 } 3521 3522 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3523 const struct compat_siginfo *from) 3524 { 3525 clear_siginfo(to); 3526 to->si_signo = from->si_signo; 3527 to->si_errno = from->si_errno; 3528 to->si_code = from->si_code; 3529 switch(siginfo_layout(from->si_signo, from->si_code)) { 3530 case SIL_KILL: 3531 to->si_pid = from->si_pid; 3532 to->si_uid = from->si_uid; 3533 break; 3534 case SIL_TIMER: 3535 to->si_tid = from->si_tid; 3536 to->si_overrun = from->si_overrun; 3537 to->si_int = from->si_int; 3538 break; 3539 case SIL_POLL: 3540 to->si_band = from->si_band; 3541 to->si_fd = from->si_fd; 3542 break; 3543 case SIL_FAULT: 3544 to->si_addr = compat_ptr(from->si_addr); 3545 break; 3546 case SIL_FAULT_TRAPNO: 3547 to->si_addr = compat_ptr(from->si_addr); 3548 to->si_trapno = from->si_trapno; 3549 break; 3550 case SIL_FAULT_MCEERR: 3551 to->si_addr = compat_ptr(from->si_addr); 3552 to->si_addr_lsb = from->si_addr_lsb; 3553 break; 3554 case SIL_FAULT_BNDERR: 3555 to->si_addr = compat_ptr(from->si_addr); 3556 to->si_lower = compat_ptr(from->si_lower); 3557 to->si_upper = compat_ptr(from->si_upper); 3558 break; 3559 case SIL_FAULT_PKUERR: 3560 to->si_addr = compat_ptr(from->si_addr); 3561 to->si_pkey = from->si_pkey; 3562 break; 3563 case SIL_FAULT_PERF_EVENT: 3564 to->si_addr = compat_ptr(from->si_addr); 3565 to->si_perf_data = from->si_perf_data; 3566 to->si_perf_type = from->si_perf_type; 3567 to->si_perf_flags = from->si_perf_flags; 3568 break; 3569 case SIL_CHLD: 3570 to->si_pid = from->si_pid; 3571 to->si_uid = from->si_uid; 3572 to->si_status = from->si_status; 3573 #ifdef CONFIG_X86_X32_ABI 3574 if (in_x32_syscall()) { 3575 to->si_utime = from->_sifields._sigchld_x32._utime; 3576 to->si_stime = from->_sifields._sigchld_x32._stime; 3577 } else 3578 #endif 3579 { 3580 to->si_utime = from->si_utime; 3581 to->si_stime = from->si_stime; 3582 } 3583 break; 3584 case SIL_RT: 3585 to->si_pid = from->si_pid; 3586 to->si_uid = from->si_uid; 3587 to->si_int = from->si_int; 3588 break; 3589 case SIL_SYS: 3590 to->si_call_addr = compat_ptr(from->si_call_addr); 3591 to->si_syscall = from->si_syscall; 3592 to->si_arch = from->si_arch; 3593 break; 3594 } 3595 return 0; 3596 } 3597 3598 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3599 const struct compat_siginfo __user *ufrom) 3600 { 3601 struct compat_siginfo from; 3602 3603 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3604 return -EFAULT; 3605 3606 from.si_signo = signo; 3607 return post_copy_siginfo_from_user32(to, &from); 3608 } 3609 3610 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3611 const struct compat_siginfo __user *ufrom) 3612 { 3613 struct compat_siginfo from; 3614 3615 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3616 return -EFAULT; 3617 3618 return post_copy_siginfo_from_user32(to, &from); 3619 } 3620 #endif /* CONFIG_COMPAT */ 3621 3622 /** 3623 * do_sigtimedwait - wait for queued signals specified in @which 3624 * @which: queued signals to wait for 3625 * @info: if non-null, the signal's siginfo is returned here 3626 * @ts: upper bound on process time suspension 3627 */ 3628 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3629 const struct timespec64 *ts) 3630 { 3631 ktime_t *to = NULL, timeout = KTIME_MAX; 3632 struct task_struct *tsk = current; 3633 sigset_t mask = *which; 3634 enum pid_type type; 3635 int sig, ret = 0; 3636 3637 if (ts) { 3638 if (!timespec64_valid(ts)) 3639 return -EINVAL; 3640 timeout = timespec64_to_ktime(*ts); 3641 to = &timeout; 3642 } 3643 3644 /* 3645 * Invert the set of allowed signals to get those we want to block. 3646 */ 3647 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3648 signotset(&mask); 3649 3650 spin_lock_irq(&tsk->sighand->siglock); 3651 sig = dequeue_signal(&mask, info, &type); 3652 if (!sig && timeout) { 3653 /* 3654 * None ready, temporarily unblock those we're interested 3655 * while we are sleeping in so that we'll be awakened when 3656 * they arrive. Unblocking is always fine, we can avoid 3657 * set_current_blocked(). 3658 */ 3659 tsk->real_blocked = tsk->blocked; 3660 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3661 recalc_sigpending(); 3662 spin_unlock_irq(&tsk->sighand->siglock); 3663 3664 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3665 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3666 HRTIMER_MODE_REL); 3667 spin_lock_irq(&tsk->sighand->siglock); 3668 __set_task_blocked(tsk, &tsk->real_blocked); 3669 sigemptyset(&tsk->real_blocked); 3670 sig = dequeue_signal(&mask, info, &type); 3671 } 3672 spin_unlock_irq(&tsk->sighand->siglock); 3673 3674 if (sig) 3675 return sig; 3676 return ret ? -EINTR : -EAGAIN; 3677 } 3678 3679 /** 3680 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3681 * in @uthese 3682 * @uthese: queued signals to wait for 3683 * @uinfo: if non-null, the signal's siginfo is returned here 3684 * @uts: upper bound on process time suspension 3685 * @sigsetsize: size of sigset_t type 3686 */ 3687 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3688 siginfo_t __user *, uinfo, 3689 const struct __kernel_timespec __user *, uts, 3690 size_t, sigsetsize) 3691 { 3692 sigset_t these; 3693 struct timespec64 ts; 3694 kernel_siginfo_t info; 3695 int ret; 3696 3697 /* XXX: Don't preclude handling different sized sigset_t's. */ 3698 if (sigsetsize != sizeof(sigset_t)) 3699 return -EINVAL; 3700 3701 if (copy_from_user(&these, uthese, sizeof(these))) 3702 return -EFAULT; 3703 3704 if (uts) { 3705 if (get_timespec64(&ts, uts)) 3706 return -EFAULT; 3707 } 3708 3709 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3710 3711 if (ret > 0 && uinfo) { 3712 if (copy_siginfo_to_user(uinfo, &info)) 3713 ret = -EFAULT; 3714 } 3715 3716 return ret; 3717 } 3718 3719 #ifdef CONFIG_COMPAT_32BIT_TIME 3720 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3721 siginfo_t __user *, uinfo, 3722 const struct old_timespec32 __user *, uts, 3723 size_t, sigsetsize) 3724 { 3725 sigset_t these; 3726 struct timespec64 ts; 3727 kernel_siginfo_t info; 3728 int ret; 3729 3730 if (sigsetsize != sizeof(sigset_t)) 3731 return -EINVAL; 3732 3733 if (copy_from_user(&these, uthese, sizeof(these))) 3734 return -EFAULT; 3735 3736 if (uts) { 3737 if (get_old_timespec32(&ts, uts)) 3738 return -EFAULT; 3739 } 3740 3741 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3742 3743 if (ret > 0 && uinfo) { 3744 if (copy_siginfo_to_user(uinfo, &info)) 3745 ret = -EFAULT; 3746 } 3747 3748 return ret; 3749 } 3750 #endif 3751 3752 #ifdef CONFIG_COMPAT 3753 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3754 struct compat_siginfo __user *, uinfo, 3755 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3756 { 3757 sigset_t s; 3758 struct timespec64 t; 3759 kernel_siginfo_t info; 3760 long ret; 3761 3762 if (sigsetsize != sizeof(sigset_t)) 3763 return -EINVAL; 3764 3765 if (get_compat_sigset(&s, uthese)) 3766 return -EFAULT; 3767 3768 if (uts) { 3769 if (get_timespec64(&t, uts)) 3770 return -EFAULT; 3771 } 3772 3773 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3774 3775 if (ret > 0 && uinfo) { 3776 if (copy_siginfo_to_user32(uinfo, &info)) 3777 ret = -EFAULT; 3778 } 3779 3780 return ret; 3781 } 3782 3783 #ifdef CONFIG_COMPAT_32BIT_TIME 3784 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3785 struct compat_siginfo __user *, uinfo, 3786 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3787 { 3788 sigset_t s; 3789 struct timespec64 t; 3790 kernel_siginfo_t info; 3791 long ret; 3792 3793 if (sigsetsize != sizeof(sigset_t)) 3794 return -EINVAL; 3795 3796 if (get_compat_sigset(&s, uthese)) 3797 return -EFAULT; 3798 3799 if (uts) { 3800 if (get_old_timespec32(&t, uts)) 3801 return -EFAULT; 3802 } 3803 3804 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3805 3806 if (ret > 0 && uinfo) { 3807 if (copy_siginfo_to_user32(uinfo, &info)) 3808 ret = -EFAULT; 3809 } 3810 3811 return ret; 3812 } 3813 #endif 3814 #endif 3815 3816 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info, 3817 enum pid_type type) 3818 { 3819 clear_siginfo(info); 3820 info->si_signo = sig; 3821 info->si_errno = 0; 3822 info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER; 3823 info->si_pid = task_tgid_vnr(current); 3824 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3825 } 3826 3827 /** 3828 * sys_kill - send a signal to a process 3829 * @pid: the PID of the process 3830 * @sig: signal to be sent 3831 */ 3832 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3833 { 3834 struct kernel_siginfo info; 3835 3836 prepare_kill_siginfo(sig, &info, PIDTYPE_TGID); 3837 3838 return kill_something_info(sig, &info, pid); 3839 } 3840 3841 /* 3842 * Verify that the signaler and signalee either are in the same pid namespace 3843 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3844 * namespace. 3845 */ 3846 static bool access_pidfd_pidns(struct pid *pid) 3847 { 3848 struct pid_namespace *active = task_active_pid_ns(current); 3849 struct pid_namespace *p = ns_of_pid(pid); 3850 3851 for (;;) { 3852 if (!p) 3853 return false; 3854 if (p == active) 3855 break; 3856 p = p->parent; 3857 } 3858 3859 return true; 3860 } 3861 3862 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3863 siginfo_t __user *info) 3864 { 3865 #ifdef CONFIG_COMPAT 3866 /* 3867 * Avoid hooking up compat syscalls and instead handle necessary 3868 * conversions here. Note, this is a stop-gap measure and should not be 3869 * considered a generic solution. 3870 */ 3871 if (in_compat_syscall()) 3872 return copy_siginfo_from_user32( 3873 kinfo, (struct compat_siginfo __user *)info); 3874 #endif 3875 return copy_siginfo_from_user(kinfo, info); 3876 } 3877 3878 static struct pid *pidfd_to_pid(const struct file *file) 3879 { 3880 struct pid *pid; 3881 3882 pid = pidfd_pid(file); 3883 if (!IS_ERR(pid)) 3884 return pid; 3885 3886 return tgid_pidfd_to_pid(file); 3887 } 3888 3889 #define PIDFD_SEND_SIGNAL_FLAGS \ 3890 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \ 3891 PIDFD_SIGNAL_PROCESS_GROUP) 3892 3893 /** 3894 * sys_pidfd_send_signal - Signal a process through a pidfd 3895 * @pidfd: file descriptor of the process 3896 * @sig: signal to send 3897 * @info: signal info 3898 * @flags: future flags 3899 * 3900 * Send the signal to the thread group or to the individual thread depending 3901 * on PIDFD_THREAD. 3902 * In the future extension to @flags may be used to override the default scope 3903 * of @pidfd. 3904 * 3905 * Return: 0 on success, negative errno on failure 3906 */ 3907 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3908 siginfo_t __user *, info, unsigned int, flags) 3909 { 3910 int ret; 3911 struct fd f; 3912 struct pid *pid; 3913 kernel_siginfo_t kinfo; 3914 enum pid_type type; 3915 3916 /* Enforce flags be set to 0 until we add an extension. */ 3917 if (flags & ~PIDFD_SEND_SIGNAL_FLAGS) 3918 return -EINVAL; 3919 3920 /* Ensure that only a single signal scope determining flag is set. */ 3921 if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1) 3922 return -EINVAL; 3923 3924 f = fdget(pidfd); 3925 if (!fd_file(f)) 3926 return -EBADF; 3927 3928 /* Is this a pidfd? */ 3929 pid = pidfd_to_pid(fd_file(f)); 3930 if (IS_ERR(pid)) { 3931 ret = PTR_ERR(pid); 3932 goto err; 3933 } 3934 3935 ret = -EINVAL; 3936 if (!access_pidfd_pidns(pid)) 3937 goto err; 3938 3939 switch (flags) { 3940 case 0: 3941 /* Infer scope from the type of pidfd. */ 3942 if (fd_file(f)->f_flags & PIDFD_THREAD) 3943 type = PIDTYPE_PID; 3944 else 3945 type = PIDTYPE_TGID; 3946 break; 3947 case PIDFD_SIGNAL_THREAD: 3948 type = PIDTYPE_PID; 3949 break; 3950 case PIDFD_SIGNAL_THREAD_GROUP: 3951 type = PIDTYPE_TGID; 3952 break; 3953 case PIDFD_SIGNAL_PROCESS_GROUP: 3954 type = PIDTYPE_PGID; 3955 break; 3956 } 3957 3958 if (info) { 3959 ret = copy_siginfo_from_user_any(&kinfo, info); 3960 if (unlikely(ret)) 3961 goto err; 3962 3963 ret = -EINVAL; 3964 if (unlikely(sig != kinfo.si_signo)) 3965 goto err; 3966 3967 /* Only allow sending arbitrary signals to yourself. */ 3968 ret = -EPERM; 3969 if ((task_pid(current) != pid || type > PIDTYPE_TGID) && 3970 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3971 goto err; 3972 } else { 3973 prepare_kill_siginfo(sig, &kinfo, type); 3974 } 3975 3976 if (type == PIDTYPE_PGID) 3977 ret = kill_pgrp_info(sig, &kinfo, pid); 3978 else 3979 ret = kill_pid_info_type(sig, &kinfo, pid, type); 3980 err: 3981 fdput(f); 3982 return ret; 3983 } 3984 3985 static int 3986 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3987 { 3988 struct task_struct *p; 3989 int error = -ESRCH; 3990 3991 rcu_read_lock(); 3992 p = find_task_by_vpid(pid); 3993 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3994 error = check_kill_permission(sig, info, p); 3995 /* 3996 * The null signal is a permissions and process existence 3997 * probe. No signal is actually delivered. 3998 */ 3999 if (!error && sig) { 4000 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 4001 /* 4002 * If lock_task_sighand() failed we pretend the task 4003 * dies after receiving the signal. The window is tiny, 4004 * and the signal is private anyway. 4005 */ 4006 if (unlikely(error == -ESRCH)) 4007 error = 0; 4008 } 4009 } 4010 rcu_read_unlock(); 4011 4012 return error; 4013 } 4014 4015 static int do_tkill(pid_t tgid, pid_t pid, int sig) 4016 { 4017 struct kernel_siginfo info; 4018 4019 prepare_kill_siginfo(sig, &info, PIDTYPE_PID); 4020 4021 return do_send_specific(tgid, pid, sig, &info); 4022 } 4023 4024 /** 4025 * sys_tgkill - send signal to one specific thread 4026 * @tgid: the thread group ID of the thread 4027 * @pid: the PID of the thread 4028 * @sig: signal to be sent 4029 * 4030 * This syscall also checks the @tgid and returns -ESRCH even if the PID 4031 * exists but it's not belonging to the target process anymore. This 4032 * method solves the problem of threads exiting and PIDs getting reused. 4033 */ 4034 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 4035 { 4036 /* This is only valid for single tasks */ 4037 if (pid <= 0 || tgid <= 0) 4038 return -EINVAL; 4039 4040 return do_tkill(tgid, pid, sig); 4041 } 4042 4043 /** 4044 * sys_tkill - send signal to one specific task 4045 * @pid: the PID of the task 4046 * @sig: signal to be sent 4047 * 4048 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4049 */ 4050 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4051 { 4052 /* This is only valid for single tasks */ 4053 if (pid <= 0) 4054 return -EINVAL; 4055 4056 return do_tkill(0, pid, sig); 4057 } 4058 4059 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4060 { 4061 /* Not even root can pretend to send signals from the kernel. 4062 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4063 */ 4064 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4065 (task_pid_vnr(current) != pid)) 4066 return -EPERM; 4067 4068 /* POSIX.1b doesn't mention process groups. */ 4069 return kill_proc_info(sig, info, pid); 4070 } 4071 4072 /** 4073 * sys_rt_sigqueueinfo - send signal information to a signal 4074 * @pid: the PID of the thread 4075 * @sig: signal to be sent 4076 * @uinfo: signal info to be sent 4077 */ 4078 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4079 siginfo_t __user *, uinfo) 4080 { 4081 kernel_siginfo_t info; 4082 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4083 if (unlikely(ret)) 4084 return ret; 4085 return do_rt_sigqueueinfo(pid, sig, &info); 4086 } 4087 4088 #ifdef CONFIG_COMPAT 4089 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4090 compat_pid_t, pid, 4091 int, sig, 4092 struct compat_siginfo __user *, uinfo) 4093 { 4094 kernel_siginfo_t info; 4095 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4096 if (unlikely(ret)) 4097 return ret; 4098 return do_rt_sigqueueinfo(pid, sig, &info); 4099 } 4100 #endif 4101 4102 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4103 { 4104 /* This is only valid for single tasks */ 4105 if (pid <= 0 || tgid <= 0) 4106 return -EINVAL; 4107 4108 /* Not even root can pretend to send signals from the kernel. 4109 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4110 */ 4111 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4112 (task_pid_vnr(current) != pid)) 4113 return -EPERM; 4114 4115 return do_send_specific(tgid, pid, sig, info); 4116 } 4117 4118 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4119 siginfo_t __user *, uinfo) 4120 { 4121 kernel_siginfo_t info; 4122 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4123 if (unlikely(ret)) 4124 return ret; 4125 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4126 } 4127 4128 #ifdef CONFIG_COMPAT 4129 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4130 compat_pid_t, tgid, 4131 compat_pid_t, pid, 4132 int, sig, 4133 struct compat_siginfo __user *, uinfo) 4134 { 4135 kernel_siginfo_t info; 4136 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4137 if (unlikely(ret)) 4138 return ret; 4139 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4140 } 4141 #endif 4142 4143 /* 4144 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4145 */ 4146 void kernel_sigaction(int sig, __sighandler_t action) 4147 { 4148 spin_lock_irq(¤t->sighand->siglock); 4149 current->sighand->action[sig - 1].sa.sa_handler = action; 4150 if (action == SIG_IGN) { 4151 sigset_t mask; 4152 4153 sigemptyset(&mask); 4154 sigaddset(&mask, sig); 4155 4156 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4157 flush_sigqueue_mask(&mask, ¤t->pending); 4158 recalc_sigpending(); 4159 } 4160 spin_unlock_irq(¤t->sighand->siglock); 4161 } 4162 EXPORT_SYMBOL(kernel_sigaction); 4163 4164 void __weak sigaction_compat_abi(struct k_sigaction *act, 4165 struct k_sigaction *oact) 4166 { 4167 } 4168 4169 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4170 { 4171 struct task_struct *p = current, *t; 4172 struct k_sigaction *k; 4173 sigset_t mask; 4174 4175 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4176 return -EINVAL; 4177 4178 k = &p->sighand->action[sig-1]; 4179 4180 spin_lock_irq(&p->sighand->siglock); 4181 if (k->sa.sa_flags & SA_IMMUTABLE) { 4182 spin_unlock_irq(&p->sighand->siglock); 4183 return -EINVAL; 4184 } 4185 if (oact) 4186 *oact = *k; 4187 4188 /* 4189 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4190 * e.g. by having an architecture use the bit in their uapi. 4191 */ 4192 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4193 4194 /* 4195 * Clear unknown flag bits in order to allow userspace to detect missing 4196 * support for flag bits and to allow the kernel to use non-uapi bits 4197 * internally. 4198 */ 4199 if (act) 4200 act->sa.sa_flags &= UAPI_SA_FLAGS; 4201 if (oact) 4202 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4203 4204 sigaction_compat_abi(act, oact); 4205 4206 if (act) { 4207 sigdelsetmask(&act->sa.sa_mask, 4208 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4209 *k = *act; 4210 /* 4211 * POSIX 3.3.1.3: 4212 * "Setting a signal action to SIG_IGN for a signal that is 4213 * pending shall cause the pending signal to be discarded, 4214 * whether or not it is blocked." 4215 * 4216 * "Setting a signal action to SIG_DFL for a signal that is 4217 * pending and whose default action is to ignore the signal 4218 * (for example, SIGCHLD), shall cause the pending signal to 4219 * be discarded, whether or not it is blocked" 4220 */ 4221 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4222 sigemptyset(&mask); 4223 sigaddset(&mask, sig); 4224 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4225 for_each_thread(p, t) 4226 flush_sigqueue_mask(&mask, &t->pending); 4227 } 4228 } 4229 4230 spin_unlock_irq(&p->sighand->siglock); 4231 return 0; 4232 } 4233 4234 #ifdef CONFIG_DYNAMIC_SIGFRAME 4235 static inline void sigaltstack_lock(void) 4236 __acquires(¤t->sighand->siglock) 4237 { 4238 spin_lock_irq(¤t->sighand->siglock); 4239 } 4240 4241 static inline void sigaltstack_unlock(void) 4242 __releases(¤t->sighand->siglock) 4243 { 4244 spin_unlock_irq(¤t->sighand->siglock); 4245 } 4246 #else 4247 static inline void sigaltstack_lock(void) { } 4248 static inline void sigaltstack_unlock(void) { } 4249 #endif 4250 4251 static int 4252 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4253 size_t min_ss_size) 4254 { 4255 struct task_struct *t = current; 4256 int ret = 0; 4257 4258 if (oss) { 4259 memset(oss, 0, sizeof(stack_t)); 4260 oss->ss_sp = (void __user *) t->sas_ss_sp; 4261 oss->ss_size = t->sas_ss_size; 4262 oss->ss_flags = sas_ss_flags(sp) | 4263 (current->sas_ss_flags & SS_FLAG_BITS); 4264 } 4265 4266 if (ss) { 4267 void __user *ss_sp = ss->ss_sp; 4268 size_t ss_size = ss->ss_size; 4269 unsigned ss_flags = ss->ss_flags; 4270 int ss_mode; 4271 4272 if (unlikely(on_sig_stack(sp))) 4273 return -EPERM; 4274 4275 ss_mode = ss_flags & ~SS_FLAG_BITS; 4276 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4277 ss_mode != 0)) 4278 return -EINVAL; 4279 4280 /* 4281 * Return before taking any locks if no actual 4282 * sigaltstack changes were requested. 4283 */ 4284 if (t->sas_ss_sp == (unsigned long)ss_sp && 4285 t->sas_ss_size == ss_size && 4286 t->sas_ss_flags == ss_flags) 4287 return 0; 4288 4289 sigaltstack_lock(); 4290 if (ss_mode == SS_DISABLE) { 4291 ss_size = 0; 4292 ss_sp = NULL; 4293 } else { 4294 if (unlikely(ss_size < min_ss_size)) 4295 ret = -ENOMEM; 4296 if (!sigaltstack_size_valid(ss_size)) 4297 ret = -ENOMEM; 4298 } 4299 if (!ret) { 4300 t->sas_ss_sp = (unsigned long) ss_sp; 4301 t->sas_ss_size = ss_size; 4302 t->sas_ss_flags = ss_flags; 4303 } 4304 sigaltstack_unlock(); 4305 } 4306 return ret; 4307 } 4308 4309 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4310 { 4311 stack_t new, old; 4312 int err; 4313 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4314 return -EFAULT; 4315 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4316 current_user_stack_pointer(), 4317 MINSIGSTKSZ); 4318 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4319 err = -EFAULT; 4320 return err; 4321 } 4322 4323 int restore_altstack(const stack_t __user *uss) 4324 { 4325 stack_t new; 4326 if (copy_from_user(&new, uss, sizeof(stack_t))) 4327 return -EFAULT; 4328 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4329 MINSIGSTKSZ); 4330 /* squash all but EFAULT for now */ 4331 return 0; 4332 } 4333 4334 int __save_altstack(stack_t __user *uss, unsigned long sp) 4335 { 4336 struct task_struct *t = current; 4337 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4338 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4339 __put_user(t->sas_ss_size, &uss->ss_size); 4340 return err; 4341 } 4342 4343 #ifdef CONFIG_COMPAT 4344 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4345 compat_stack_t __user *uoss_ptr) 4346 { 4347 stack_t uss, uoss; 4348 int ret; 4349 4350 if (uss_ptr) { 4351 compat_stack_t uss32; 4352 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4353 return -EFAULT; 4354 uss.ss_sp = compat_ptr(uss32.ss_sp); 4355 uss.ss_flags = uss32.ss_flags; 4356 uss.ss_size = uss32.ss_size; 4357 } 4358 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4359 compat_user_stack_pointer(), 4360 COMPAT_MINSIGSTKSZ); 4361 if (ret >= 0 && uoss_ptr) { 4362 compat_stack_t old; 4363 memset(&old, 0, sizeof(old)); 4364 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4365 old.ss_flags = uoss.ss_flags; 4366 old.ss_size = uoss.ss_size; 4367 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4368 ret = -EFAULT; 4369 } 4370 return ret; 4371 } 4372 4373 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4374 const compat_stack_t __user *, uss_ptr, 4375 compat_stack_t __user *, uoss_ptr) 4376 { 4377 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4378 } 4379 4380 int compat_restore_altstack(const compat_stack_t __user *uss) 4381 { 4382 int err = do_compat_sigaltstack(uss, NULL); 4383 /* squash all but -EFAULT for now */ 4384 return err == -EFAULT ? err : 0; 4385 } 4386 4387 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4388 { 4389 int err; 4390 struct task_struct *t = current; 4391 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4392 &uss->ss_sp) | 4393 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4394 __put_user(t->sas_ss_size, &uss->ss_size); 4395 return err; 4396 } 4397 #endif 4398 4399 #ifdef __ARCH_WANT_SYS_SIGPENDING 4400 4401 /** 4402 * sys_sigpending - examine pending signals 4403 * @uset: where mask of pending signal is returned 4404 */ 4405 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4406 { 4407 sigset_t set; 4408 4409 if (sizeof(old_sigset_t) > sizeof(*uset)) 4410 return -EINVAL; 4411 4412 do_sigpending(&set); 4413 4414 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4415 return -EFAULT; 4416 4417 return 0; 4418 } 4419 4420 #ifdef CONFIG_COMPAT 4421 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4422 { 4423 sigset_t set; 4424 4425 do_sigpending(&set); 4426 4427 return put_user(set.sig[0], set32); 4428 } 4429 #endif 4430 4431 #endif 4432 4433 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4434 /** 4435 * sys_sigprocmask - examine and change blocked signals 4436 * @how: whether to add, remove, or set signals 4437 * @nset: signals to add or remove (if non-null) 4438 * @oset: previous value of signal mask if non-null 4439 * 4440 * Some platforms have their own version with special arguments; 4441 * others support only sys_rt_sigprocmask. 4442 */ 4443 4444 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4445 old_sigset_t __user *, oset) 4446 { 4447 old_sigset_t old_set, new_set; 4448 sigset_t new_blocked; 4449 4450 old_set = current->blocked.sig[0]; 4451 4452 if (nset) { 4453 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4454 return -EFAULT; 4455 4456 new_blocked = current->blocked; 4457 4458 switch (how) { 4459 case SIG_BLOCK: 4460 sigaddsetmask(&new_blocked, new_set); 4461 break; 4462 case SIG_UNBLOCK: 4463 sigdelsetmask(&new_blocked, new_set); 4464 break; 4465 case SIG_SETMASK: 4466 new_blocked.sig[0] = new_set; 4467 break; 4468 default: 4469 return -EINVAL; 4470 } 4471 4472 set_current_blocked(&new_blocked); 4473 } 4474 4475 if (oset) { 4476 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4477 return -EFAULT; 4478 } 4479 4480 return 0; 4481 } 4482 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4483 4484 #ifndef CONFIG_ODD_RT_SIGACTION 4485 /** 4486 * sys_rt_sigaction - alter an action taken by a process 4487 * @sig: signal to be sent 4488 * @act: new sigaction 4489 * @oact: used to save the previous sigaction 4490 * @sigsetsize: size of sigset_t type 4491 */ 4492 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4493 const struct sigaction __user *, act, 4494 struct sigaction __user *, oact, 4495 size_t, sigsetsize) 4496 { 4497 struct k_sigaction new_sa, old_sa; 4498 int ret; 4499 4500 /* XXX: Don't preclude handling different sized sigset_t's. */ 4501 if (sigsetsize != sizeof(sigset_t)) 4502 return -EINVAL; 4503 4504 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4505 return -EFAULT; 4506 4507 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4508 if (ret) 4509 return ret; 4510 4511 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4512 return -EFAULT; 4513 4514 return 0; 4515 } 4516 #ifdef CONFIG_COMPAT 4517 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4518 const struct compat_sigaction __user *, act, 4519 struct compat_sigaction __user *, oact, 4520 compat_size_t, sigsetsize) 4521 { 4522 struct k_sigaction new_ka, old_ka; 4523 #ifdef __ARCH_HAS_SA_RESTORER 4524 compat_uptr_t restorer; 4525 #endif 4526 int ret; 4527 4528 /* XXX: Don't preclude handling different sized sigset_t's. */ 4529 if (sigsetsize != sizeof(compat_sigset_t)) 4530 return -EINVAL; 4531 4532 if (act) { 4533 compat_uptr_t handler; 4534 ret = get_user(handler, &act->sa_handler); 4535 new_ka.sa.sa_handler = compat_ptr(handler); 4536 #ifdef __ARCH_HAS_SA_RESTORER 4537 ret |= get_user(restorer, &act->sa_restorer); 4538 new_ka.sa.sa_restorer = compat_ptr(restorer); 4539 #endif 4540 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4541 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4542 if (ret) 4543 return -EFAULT; 4544 } 4545 4546 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4547 if (!ret && oact) { 4548 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4549 &oact->sa_handler); 4550 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4551 sizeof(oact->sa_mask)); 4552 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4553 #ifdef __ARCH_HAS_SA_RESTORER 4554 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4555 &oact->sa_restorer); 4556 #endif 4557 } 4558 return ret; 4559 } 4560 #endif 4561 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4562 4563 #ifdef CONFIG_OLD_SIGACTION 4564 SYSCALL_DEFINE3(sigaction, int, sig, 4565 const struct old_sigaction __user *, act, 4566 struct old_sigaction __user *, oact) 4567 { 4568 struct k_sigaction new_ka, old_ka; 4569 int ret; 4570 4571 if (act) { 4572 old_sigset_t mask; 4573 if (!access_ok(act, sizeof(*act)) || 4574 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4575 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4576 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4577 __get_user(mask, &act->sa_mask)) 4578 return -EFAULT; 4579 #ifdef __ARCH_HAS_KA_RESTORER 4580 new_ka.ka_restorer = NULL; 4581 #endif 4582 siginitset(&new_ka.sa.sa_mask, mask); 4583 } 4584 4585 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4586 4587 if (!ret && oact) { 4588 if (!access_ok(oact, sizeof(*oact)) || 4589 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4590 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4591 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4592 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4593 return -EFAULT; 4594 } 4595 4596 return ret; 4597 } 4598 #endif 4599 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4600 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4601 const struct compat_old_sigaction __user *, act, 4602 struct compat_old_sigaction __user *, oact) 4603 { 4604 struct k_sigaction new_ka, old_ka; 4605 int ret; 4606 compat_old_sigset_t mask; 4607 compat_uptr_t handler, restorer; 4608 4609 if (act) { 4610 if (!access_ok(act, sizeof(*act)) || 4611 __get_user(handler, &act->sa_handler) || 4612 __get_user(restorer, &act->sa_restorer) || 4613 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4614 __get_user(mask, &act->sa_mask)) 4615 return -EFAULT; 4616 4617 #ifdef __ARCH_HAS_KA_RESTORER 4618 new_ka.ka_restorer = NULL; 4619 #endif 4620 new_ka.sa.sa_handler = compat_ptr(handler); 4621 new_ka.sa.sa_restorer = compat_ptr(restorer); 4622 siginitset(&new_ka.sa.sa_mask, mask); 4623 } 4624 4625 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4626 4627 if (!ret && oact) { 4628 if (!access_ok(oact, sizeof(*oact)) || 4629 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4630 &oact->sa_handler) || 4631 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4632 &oact->sa_restorer) || 4633 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4634 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4635 return -EFAULT; 4636 } 4637 return ret; 4638 } 4639 #endif 4640 4641 #ifdef CONFIG_SGETMASK_SYSCALL 4642 4643 /* 4644 * For backwards compatibility. Functionality superseded by sigprocmask. 4645 */ 4646 SYSCALL_DEFINE0(sgetmask) 4647 { 4648 /* SMP safe */ 4649 return current->blocked.sig[0]; 4650 } 4651 4652 SYSCALL_DEFINE1(ssetmask, int, newmask) 4653 { 4654 int old = current->blocked.sig[0]; 4655 sigset_t newset; 4656 4657 siginitset(&newset, newmask); 4658 set_current_blocked(&newset); 4659 4660 return old; 4661 } 4662 #endif /* CONFIG_SGETMASK_SYSCALL */ 4663 4664 #ifdef __ARCH_WANT_SYS_SIGNAL 4665 /* 4666 * For backwards compatibility. Functionality superseded by sigaction. 4667 */ 4668 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4669 { 4670 struct k_sigaction new_sa, old_sa; 4671 int ret; 4672 4673 new_sa.sa.sa_handler = handler; 4674 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4675 sigemptyset(&new_sa.sa.sa_mask); 4676 4677 ret = do_sigaction(sig, &new_sa, &old_sa); 4678 4679 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4680 } 4681 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4682 4683 #ifdef __ARCH_WANT_SYS_PAUSE 4684 4685 SYSCALL_DEFINE0(pause) 4686 { 4687 while (!signal_pending(current)) { 4688 __set_current_state(TASK_INTERRUPTIBLE); 4689 schedule(); 4690 } 4691 return -ERESTARTNOHAND; 4692 } 4693 4694 #endif 4695 4696 static int sigsuspend(sigset_t *set) 4697 { 4698 current->saved_sigmask = current->blocked; 4699 set_current_blocked(set); 4700 4701 while (!signal_pending(current)) { 4702 __set_current_state(TASK_INTERRUPTIBLE); 4703 schedule(); 4704 } 4705 set_restore_sigmask(); 4706 return -ERESTARTNOHAND; 4707 } 4708 4709 /** 4710 * sys_rt_sigsuspend - replace the signal mask for a value with the 4711 * @unewset value until a signal is received 4712 * @unewset: new signal mask value 4713 * @sigsetsize: size of sigset_t type 4714 */ 4715 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4716 { 4717 sigset_t newset; 4718 4719 /* XXX: Don't preclude handling different sized sigset_t's. */ 4720 if (sigsetsize != sizeof(sigset_t)) 4721 return -EINVAL; 4722 4723 if (copy_from_user(&newset, unewset, sizeof(newset))) 4724 return -EFAULT; 4725 return sigsuspend(&newset); 4726 } 4727 4728 #ifdef CONFIG_COMPAT 4729 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4730 { 4731 sigset_t newset; 4732 4733 /* XXX: Don't preclude handling different sized sigset_t's. */ 4734 if (sigsetsize != sizeof(sigset_t)) 4735 return -EINVAL; 4736 4737 if (get_compat_sigset(&newset, unewset)) 4738 return -EFAULT; 4739 return sigsuspend(&newset); 4740 } 4741 #endif 4742 4743 #ifdef CONFIG_OLD_SIGSUSPEND 4744 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4745 { 4746 sigset_t blocked; 4747 siginitset(&blocked, mask); 4748 return sigsuspend(&blocked); 4749 } 4750 #endif 4751 #ifdef CONFIG_OLD_SIGSUSPEND3 4752 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4753 { 4754 sigset_t blocked; 4755 siginitset(&blocked, mask); 4756 return sigsuspend(&blocked); 4757 } 4758 #endif 4759 4760 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4761 { 4762 return NULL; 4763 } 4764 4765 static inline void siginfo_buildtime_checks(void) 4766 { 4767 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4768 4769 /* Verify the offsets in the two siginfos match */ 4770 #define CHECK_OFFSET(field) \ 4771 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4772 4773 /* kill */ 4774 CHECK_OFFSET(si_pid); 4775 CHECK_OFFSET(si_uid); 4776 4777 /* timer */ 4778 CHECK_OFFSET(si_tid); 4779 CHECK_OFFSET(si_overrun); 4780 CHECK_OFFSET(si_value); 4781 4782 /* rt */ 4783 CHECK_OFFSET(si_pid); 4784 CHECK_OFFSET(si_uid); 4785 CHECK_OFFSET(si_value); 4786 4787 /* sigchld */ 4788 CHECK_OFFSET(si_pid); 4789 CHECK_OFFSET(si_uid); 4790 CHECK_OFFSET(si_status); 4791 CHECK_OFFSET(si_utime); 4792 CHECK_OFFSET(si_stime); 4793 4794 /* sigfault */ 4795 CHECK_OFFSET(si_addr); 4796 CHECK_OFFSET(si_trapno); 4797 CHECK_OFFSET(si_addr_lsb); 4798 CHECK_OFFSET(si_lower); 4799 CHECK_OFFSET(si_upper); 4800 CHECK_OFFSET(si_pkey); 4801 CHECK_OFFSET(si_perf_data); 4802 CHECK_OFFSET(si_perf_type); 4803 CHECK_OFFSET(si_perf_flags); 4804 4805 /* sigpoll */ 4806 CHECK_OFFSET(si_band); 4807 CHECK_OFFSET(si_fd); 4808 4809 /* sigsys */ 4810 CHECK_OFFSET(si_call_addr); 4811 CHECK_OFFSET(si_syscall); 4812 CHECK_OFFSET(si_arch); 4813 #undef CHECK_OFFSET 4814 4815 /* usb asyncio */ 4816 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4817 offsetof(struct siginfo, si_addr)); 4818 if (sizeof(int) == sizeof(void __user *)) { 4819 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4820 sizeof(void __user *)); 4821 } else { 4822 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4823 sizeof_field(struct siginfo, si_uid)) != 4824 sizeof(void __user *)); 4825 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4826 offsetof(struct siginfo, si_uid)); 4827 } 4828 #ifdef CONFIG_COMPAT 4829 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4830 offsetof(struct compat_siginfo, si_addr)); 4831 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4832 sizeof(compat_uptr_t)); 4833 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4834 sizeof_field(struct siginfo, si_pid)); 4835 #endif 4836 } 4837 4838 #if defined(CONFIG_SYSCTL) 4839 static struct ctl_table signal_debug_table[] = { 4840 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE 4841 { 4842 .procname = "exception-trace", 4843 .data = &show_unhandled_signals, 4844 .maxlen = sizeof(int), 4845 .mode = 0644, 4846 .proc_handler = proc_dointvec 4847 }, 4848 #endif 4849 }; 4850 4851 static int __init init_signal_sysctls(void) 4852 { 4853 register_sysctl_init("debug", signal_debug_table); 4854 return 0; 4855 } 4856 early_initcall(init_signal_sysctls); 4857 #endif /* CONFIG_SYSCTL */ 4858 4859 void __init signals_init(void) 4860 { 4861 siginfo_buildtime_checks(); 4862 4863 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4864 } 4865 4866 #ifdef CONFIG_KGDB_KDB 4867 #include <linux/kdb.h> 4868 /* 4869 * kdb_send_sig - Allows kdb to send signals without exposing 4870 * signal internals. This function checks if the required locks are 4871 * available before calling the main signal code, to avoid kdb 4872 * deadlocks. 4873 */ 4874 void kdb_send_sig(struct task_struct *t, int sig) 4875 { 4876 static struct task_struct *kdb_prev_t; 4877 int new_t, ret; 4878 if (!spin_trylock(&t->sighand->siglock)) { 4879 kdb_printf("Can't do kill command now.\n" 4880 "The sigmask lock is held somewhere else in " 4881 "kernel, try again later\n"); 4882 return; 4883 } 4884 new_t = kdb_prev_t != t; 4885 kdb_prev_t = t; 4886 if (!task_is_running(t) && new_t) { 4887 spin_unlock(&t->sighand->siglock); 4888 kdb_printf("Process is not RUNNING, sending a signal from " 4889 "kdb risks deadlock\n" 4890 "on the run queue locks. " 4891 "The signal has _not_ been sent.\n" 4892 "Reissue the kill command if you want to risk " 4893 "the deadlock.\n"); 4894 return; 4895 } 4896 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4897 spin_unlock(&t->sighand->siglock); 4898 if (ret) 4899 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4900 sig, t->pid); 4901 else 4902 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4903 } 4904 #endif /* CONFIG_KGDB_KDB */ 4905