xref: /linux/kernel/signal.c (revision 54a8a2220c936a47840c9a3d74910c5a56fae2ed)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
32 
33 /*
34  * SLAB caches for signal bits.
35  */
36 
37 static kmem_cache_t *sigqueue_cachep;
38 
39 /*
40  * In POSIX a signal is sent either to a specific thread (Linux task)
41  * or to the process as a whole (Linux thread group).  How the signal
42  * is sent determines whether it's to one thread or the whole group,
43  * which determines which signal mask(s) are involved in blocking it
44  * from being delivered until later.  When the signal is delivered,
45  * either it's caught or ignored by a user handler or it has a default
46  * effect that applies to the whole thread group (POSIX process).
47  *
48  * The possible effects an unblocked signal set to SIG_DFL can have are:
49  *   ignore	- Nothing Happens
50  *   terminate	- kill the process, i.e. all threads in the group,
51  * 		  similar to exit_group.  The group leader (only) reports
52  *		  WIFSIGNALED status to its parent.
53  *   coredump	- write a core dump file describing all threads using
54  *		  the same mm and then kill all those threads
55  *   stop 	- stop all the threads in the group, i.e. TASK_STOPPED state
56  *
57  * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58  * Other signals when not blocked and set to SIG_DFL behaves as follows.
59  * The job control signals also have other special effects.
60  *
61  *	+--------------------+------------------+
62  *	|  POSIX signal      |  default action  |
63  *	+--------------------+------------------+
64  *	|  SIGHUP            |  terminate	|
65  *	|  SIGINT            |	terminate	|
66  *	|  SIGQUIT           |	coredump 	|
67  *	|  SIGILL            |	coredump 	|
68  *	|  SIGTRAP           |	coredump 	|
69  *	|  SIGABRT/SIGIOT    |	coredump 	|
70  *	|  SIGBUS            |	coredump 	|
71  *	|  SIGFPE            |	coredump 	|
72  *	|  SIGKILL           |	terminate(+)	|
73  *	|  SIGUSR1           |	terminate	|
74  *	|  SIGSEGV           |	coredump 	|
75  *	|  SIGUSR2           |	terminate	|
76  *	|  SIGPIPE           |	terminate	|
77  *	|  SIGALRM           |	terminate	|
78  *	|  SIGTERM           |	terminate	|
79  *	|  SIGCHLD           |	ignore   	|
80  *	|  SIGCONT           |	ignore(*)	|
81  *	|  SIGSTOP           |	stop(*)(+)  	|
82  *	|  SIGTSTP           |	stop(*)  	|
83  *	|  SIGTTIN           |	stop(*)  	|
84  *	|  SIGTTOU           |	stop(*)  	|
85  *	|  SIGURG            |	ignore   	|
86  *	|  SIGXCPU           |	coredump 	|
87  *	|  SIGXFSZ           |	coredump 	|
88  *	|  SIGVTALRM         |	terminate	|
89  *	|  SIGPROF           |	terminate	|
90  *	|  SIGPOLL/SIGIO     |	terminate	|
91  *	|  SIGSYS/SIGUNUSED  |	coredump 	|
92  *	|  SIGSTKFLT         |	terminate	|
93  *	|  SIGWINCH          |	ignore   	|
94  *	|  SIGPWR            |	terminate	|
95  *	|  SIGRTMIN-SIGRTMAX |	terminate       |
96  *	+--------------------+------------------+
97  *	|  non-POSIX signal  |  default action  |
98  *	+--------------------+------------------+
99  *	|  SIGEMT            |  coredump	|
100  *	+--------------------+------------------+
101  *
102  * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103  * (*) Special job control effects:
104  * When SIGCONT is sent, it resumes the process (all threads in the group)
105  * from TASK_STOPPED state and also clears any pending/queued stop signals
106  * (any of those marked with "stop(*)").  This happens regardless of blocking,
107  * catching, or ignoring SIGCONT.  When any stop signal is sent, it clears
108  * any pending/queued SIGCONT signals; this happens regardless of blocking,
109  * catching, or ignored the stop signal, though (except for SIGSTOP) the
110  * default action of stopping the process may happen later or never.
111  */
112 
113 #ifdef SIGEMT
114 #define M_SIGEMT	M(SIGEMT)
115 #else
116 #define M_SIGEMT	0
117 #endif
118 
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
125 
126 #define SIG_KERNEL_ONLY_MASK (\
127 	M(SIGKILL)   |  M(SIGSTOP)                                   )
128 
129 #define SIG_KERNEL_STOP_MASK (\
130 	M(SIGSTOP)   |  M(SIGTSTP)   |  M(SIGTTIN)   |  M(SIGTTOU)   )
131 
132 #define SIG_KERNEL_COREDUMP_MASK (\
133         M(SIGQUIT)   |  M(SIGILL)    |  M(SIGTRAP)   |  M(SIGABRT)   | \
134         M(SIGFPE)    |  M(SIGSEGV)   |  M(SIGBUS)    |  M(SIGSYS)    | \
135         M(SIGXCPU)   |  M(SIGXFSZ)   |  M_SIGEMT                     )
136 
137 #define SIG_KERNEL_IGNORE_MASK (\
138         M(SIGCONT)   |  M(SIGCHLD)   |  M(SIGWINCH)  |  M(SIGURG)    )
139 
140 #define sig_kernel_only(sig) \
141 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_STOP_MASK))
148 
149 #define sig_user_defined(t, signr) \
150 	(((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) &&	\
151 	 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152 
153 #define sig_fatal(t, signr) \
154 	(!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 	 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156 
157 static int sig_ignored(struct task_struct *t, int sig)
158 {
159 	void __user * handler;
160 
161 	/*
162 	 * Tracers always want to know about signals..
163 	 */
164 	if (t->ptrace & PT_PTRACED)
165 		return 0;
166 
167 	/*
168 	 * Blocked signals are never ignored, since the
169 	 * signal handler may change by the time it is
170 	 * unblocked.
171 	 */
172 	if (sigismember(&t->blocked, sig))
173 		return 0;
174 
175 	/* Is it explicitly or implicitly ignored? */
176 	handler = t->sighand->action[sig-1].sa.sa_handler;
177 	return   handler == SIG_IGN ||
178 		(handler == SIG_DFL && sig_kernel_ignore(sig));
179 }
180 
181 /*
182  * Re-calculate pending state from the set of locally pending
183  * signals, globally pending signals, and blocked signals.
184  */
185 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186 {
187 	unsigned long ready;
188 	long i;
189 
190 	switch (_NSIG_WORDS) {
191 	default:
192 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 			ready |= signal->sig[i] &~ blocked->sig[i];
194 		break;
195 
196 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
197 		ready |= signal->sig[2] &~ blocked->sig[2];
198 		ready |= signal->sig[1] &~ blocked->sig[1];
199 		ready |= signal->sig[0] &~ blocked->sig[0];
200 		break;
201 
202 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
203 		ready |= signal->sig[0] &~ blocked->sig[0];
204 		break;
205 
206 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
207 	}
208 	return ready !=	0;
209 }
210 
211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212 
213 fastcall void recalc_sigpending_tsk(struct task_struct *t)
214 {
215 	if (t->signal->group_stop_count > 0 ||
216 	    (freezing(t)) ||
217 	    PENDING(&t->pending, &t->blocked) ||
218 	    PENDING(&t->signal->shared_pending, &t->blocked))
219 		set_tsk_thread_flag(t, TIF_SIGPENDING);
220 	else
221 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
222 }
223 
224 void recalc_sigpending(void)
225 {
226 	recalc_sigpending_tsk(current);
227 }
228 
229 /* Given the mask, find the first available signal that should be serviced. */
230 
231 static int
232 next_signal(struct sigpending *pending, sigset_t *mask)
233 {
234 	unsigned long i, *s, *m, x;
235 	int sig = 0;
236 
237 	s = pending->signal.sig;
238 	m = mask->sig;
239 	switch (_NSIG_WORDS) {
240 	default:
241 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 			if ((x = *s &~ *m) != 0) {
243 				sig = ffz(~x) + i*_NSIG_BPW + 1;
244 				break;
245 			}
246 		break;
247 
248 	case 2: if ((x = s[0] &~ m[0]) != 0)
249 			sig = 1;
250 		else if ((x = s[1] &~ m[1]) != 0)
251 			sig = _NSIG_BPW + 1;
252 		else
253 			break;
254 		sig += ffz(~x);
255 		break;
256 
257 	case 1: if ((x = *s &~ *m) != 0)
258 			sig = ffz(~x) + 1;
259 		break;
260 	}
261 
262 	return sig;
263 }
264 
265 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
266 					 int override_rlimit)
267 {
268 	struct sigqueue *q = NULL;
269 
270 	atomic_inc(&t->user->sigpending);
271 	if (override_rlimit ||
272 	    atomic_read(&t->user->sigpending) <=
273 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 		q = kmem_cache_alloc(sigqueue_cachep, flags);
275 	if (unlikely(q == NULL)) {
276 		atomic_dec(&t->user->sigpending);
277 	} else {
278 		INIT_LIST_HEAD(&q->list);
279 		q->flags = 0;
280 		q->lock = NULL;
281 		q->user = get_uid(t->user);
282 	}
283 	return(q);
284 }
285 
286 static inline void __sigqueue_free(struct sigqueue *q)
287 {
288 	if (q->flags & SIGQUEUE_PREALLOC)
289 		return;
290 	atomic_dec(&q->user->sigpending);
291 	free_uid(q->user);
292 	kmem_cache_free(sigqueue_cachep, q);
293 }
294 
295 static void flush_sigqueue(struct sigpending *queue)
296 {
297 	struct sigqueue *q;
298 
299 	sigemptyset(&queue->signal);
300 	while (!list_empty(&queue->list)) {
301 		q = list_entry(queue->list.next, struct sigqueue , list);
302 		list_del_init(&q->list);
303 		__sigqueue_free(q);
304 	}
305 }
306 
307 /*
308  * Flush all pending signals for a task.
309  */
310 
311 void
312 flush_signals(struct task_struct *t)
313 {
314 	unsigned long flags;
315 
316 	spin_lock_irqsave(&t->sighand->siglock, flags);
317 	clear_tsk_thread_flag(t,TIF_SIGPENDING);
318 	flush_sigqueue(&t->pending);
319 	flush_sigqueue(&t->signal->shared_pending);
320 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
321 }
322 
323 /*
324  * This function expects the tasklist_lock write-locked.
325  */
326 void __exit_sighand(struct task_struct *tsk)
327 {
328 	struct sighand_struct * sighand = tsk->sighand;
329 
330 	/* Ok, we're done with the signal handlers */
331 	tsk->sighand = NULL;
332 	if (atomic_dec_and_test(&sighand->count))
333 		kmem_cache_free(sighand_cachep, sighand);
334 }
335 
336 void exit_sighand(struct task_struct *tsk)
337 {
338 	write_lock_irq(&tasklist_lock);
339 	__exit_sighand(tsk);
340 	write_unlock_irq(&tasklist_lock);
341 }
342 
343 /*
344  * This function expects the tasklist_lock write-locked.
345  */
346 void __exit_signal(struct task_struct *tsk)
347 {
348 	struct signal_struct * sig = tsk->signal;
349 	struct sighand_struct * sighand = tsk->sighand;
350 
351 	if (!sig)
352 		BUG();
353 	if (!atomic_read(&sig->count))
354 		BUG();
355 	spin_lock(&sighand->siglock);
356 	posix_cpu_timers_exit(tsk);
357 	if (atomic_dec_and_test(&sig->count)) {
358 		posix_cpu_timers_exit_group(tsk);
359 		if (tsk == sig->curr_target)
360 			sig->curr_target = next_thread(tsk);
361 		tsk->signal = NULL;
362 		spin_unlock(&sighand->siglock);
363 		flush_sigqueue(&sig->shared_pending);
364 	} else {
365 		/*
366 		 * If there is any task waiting for the group exit
367 		 * then notify it:
368 		 */
369 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
370 			wake_up_process(sig->group_exit_task);
371 			sig->group_exit_task = NULL;
372 		}
373 		if (tsk == sig->curr_target)
374 			sig->curr_target = next_thread(tsk);
375 		tsk->signal = NULL;
376 		/*
377 		 * Accumulate here the counters for all threads but the
378 		 * group leader as they die, so they can be added into
379 		 * the process-wide totals when those are taken.
380 		 * The group leader stays around as a zombie as long
381 		 * as there are other threads.  When it gets reaped,
382 		 * the exit.c code will add its counts into these totals.
383 		 * We won't ever get here for the group leader, since it
384 		 * will have been the last reference on the signal_struct.
385 		 */
386 		sig->utime = cputime_add(sig->utime, tsk->utime);
387 		sig->stime = cputime_add(sig->stime, tsk->stime);
388 		sig->min_flt += tsk->min_flt;
389 		sig->maj_flt += tsk->maj_flt;
390 		sig->nvcsw += tsk->nvcsw;
391 		sig->nivcsw += tsk->nivcsw;
392 		sig->sched_time += tsk->sched_time;
393 		spin_unlock(&sighand->siglock);
394 		sig = NULL;	/* Marker for below.  */
395 	}
396 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
397 	flush_sigqueue(&tsk->pending);
398 	if (sig) {
399 		/*
400 		 * We are cleaning up the signal_struct here.  We delayed
401 		 * calling exit_itimers until after flush_sigqueue, just in
402 		 * case our thread-local pending queue contained a queued
403 		 * timer signal that would have been cleared in
404 		 * exit_itimers.  When that called sigqueue_free, it would
405 		 * attempt to re-take the tasklist_lock and deadlock.  This
406 		 * can never happen if we ensure that all queues the
407 		 * timer's signal might be queued on have been flushed
408 		 * first.  The shared_pending queue, and our own pending
409 		 * queue are the only queues the timer could be on, since
410 		 * there are no other threads left in the group and timer
411 		 * signals are constrained to threads inside the group.
412 		 */
413 		exit_itimers(sig);
414 		exit_thread_group_keys(sig);
415 		kmem_cache_free(signal_cachep, sig);
416 	}
417 }
418 
419 void exit_signal(struct task_struct *tsk)
420 {
421 	write_lock_irq(&tasklist_lock);
422 	__exit_signal(tsk);
423 	write_unlock_irq(&tasklist_lock);
424 }
425 
426 /*
427  * Flush all handlers for a task.
428  */
429 
430 void
431 flush_signal_handlers(struct task_struct *t, int force_default)
432 {
433 	int i;
434 	struct k_sigaction *ka = &t->sighand->action[0];
435 	for (i = _NSIG ; i != 0 ; i--) {
436 		if (force_default || ka->sa.sa_handler != SIG_IGN)
437 			ka->sa.sa_handler = SIG_DFL;
438 		ka->sa.sa_flags = 0;
439 		sigemptyset(&ka->sa.sa_mask);
440 		ka++;
441 	}
442 }
443 
444 
445 /* Notify the system that a driver wants to block all signals for this
446  * process, and wants to be notified if any signals at all were to be
447  * sent/acted upon.  If the notifier routine returns non-zero, then the
448  * signal will be acted upon after all.  If the notifier routine returns 0,
449  * then then signal will be blocked.  Only one block per process is
450  * allowed.  priv is a pointer to private data that the notifier routine
451  * can use to determine if the signal should be blocked or not.  */
452 
453 void
454 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
455 {
456 	unsigned long flags;
457 
458 	spin_lock_irqsave(&current->sighand->siglock, flags);
459 	current->notifier_mask = mask;
460 	current->notifier_data = priv;
461 	current->notifier = notifier;
462 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
463 }
464 
465 /* Notify the system that blocking has ended. */
466 
467 void
468 unblock_all_signals(void)
469 {
470 	unsigned long flags;
471 
472 	spin_lock_irqsave(&current->sighand->siglock, flags);
473 	current->notifier = NULL;
474 	current->notifier_data = NULL;
475 	recalc_sigpending();
476 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
477 }
478 
479 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
480 {
481 	struct sigqueue *q, *first = NULL;
482 	int still_pending = 0;
483 
484 	if (unlikely(!sigismember(&list->signal, sig)))
485 		return 0;
486 
487 	/*
488 	 * Collect the siginfo appropriate to this signal.  Check if
489 	 * there is another siginfo for the same signal.
490 	*/
491 	list_for_each_entry(q, &list->list, list) {
492 		if (q->info.si_signo == sig) {
493 			if (first) {
494 				still_pending = 1;
495 				break;
496 			}
497 			first = q;
498 		}
499 	}
500 	if (first) {
501 		list_del_init(&first->list);
502 		copy_siginfo(info, &first->info);
503 		__sigqueue_free(first);
504 		if (!still_pending)
505 			sigdelset(&list->signal, sig);
506 	} else {
507 
508 		/* Ok, it wasn't in the queue.  This must be
509 		   a fast-pathed signal or we must have been
510 		   out of queue space.  So zero out the info.
511 		 */
512 		sigdelset(&list->signal, sig);
513 		info->si_signo = sig;
514 		info->si_errno = 0;
515 		info->si_code = 0;
516 		info->si_pid = 0;
517 		info->si_uid = 0;
518 	}
519 	return 1;
520 }
521 
522 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
523 			siginfo_t *info)
524 {
525 	int sig = 0;
526 
527 	/* SIGKILL must have priority, otherwise it is quite easy
528 	 * to create an unkillable process, sending sig < SIGKILL
529 	 * to self */
530 	if (unlikely(sigismember(&pending->signal, SIGKILL))) {
531 		if (!sigismember(mask, SIGKILL))
532 			sig = SIGKILL;
533 	}
534 
535 	if (likely(!sig))
536 		sig = next_signal(pending, mask);
537 	if (sig) {
538 		if (current->notifier) {
539 			if (sigismember(current->notifier_mask, sig)) {
540 				if (!(current->notifier)(current->notifier_data)) {
541 					clear_thread_flag(TIF_SIGPENDING);
542 					return 0;
543 				}
544 			}
545 		}
546 
547 		if (!collect_signal(sig, pending, info))
548 			sig = 0;
549 
550 	}
551 	recalc_sigpending();
552 
553 	return sig;
554 }
555 
556 /*
557  * Dequeue a signal and return the element to the caller, which is
558  * expected to free it.
559  *
560  * All callers have to hold the siglock.
561  */
562 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
563 {
564 	int signr = __dequeue_signal(&tsk->pending, mask, info);
565 	if (!signr)
566 		signr = __dequeue_signal(&tsk->signal->shared_pending,
567 					 mask, info);
568  	if (signr && unlikely(sig_kernel_stop(signr))) {
569  		/*
570  		 * Set a marker that we have dequeued a stop signal.  Our
571  		 * caller might release the siglock and then the pending
572  		 * stop signal it is about to process is no longer in the
573  		 * pending bitmasks, but must still be cleared by a SIGCONT
574  		 * (and overruled by a SIGKILL).  So those cases clear this
575  		 * shared flag after we've set it.  Note that this flag may
576  		 * remain set after the signal we return is ignored or
577  		 * handled.  That doesn't matter because its only purpose
578  		 * is to alert stop-signal processing code when another
579  		 * processor has come along and cleared the flag.
580  		 */
581  		if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
582  			tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
583  	}
584 	if ( signr &&
585 	     ((info->si_code & __SI_MASK) == __SI_TIMER) &&
586 	     info->si_sys_private){
587 		/*
588 		 * Release the siglock to ensure proper locking order
589 		 * of timer locks outside of siglocks.  Note, we leave
590 		 * irqs disabled here, since the posix-timers code is
591 		 * about to disable them again anyway.
592 		 */
593 		spin_unlock(&tsk->sighand->siglock);
594 		do_schedule_next_timer(info);
595 		spin_lock(&tsk->sighand->siglock);
596 	}
597 	return signr;
598 }
599 
600 /*
601  * Tell a process that it has a new active signal..
602  *
603  * NOTE! we rely on the previous spin_lock to
604  * lock interrupts for us! We can only be called with
605  * "siglock" held, and the local interrupt must
606  * have been disabled when that got acquired!
607  *
608  * No need to set need_resched since signal event passing
609  * goes through ->blocked
610  */
611 void signal_wake_up(struct task_struct *t, int resume)
612 {
613 	unsigned int mask;
614 
615 	set_tsk_thread_flag(t, TIF_SIGPENDING);
616 
617 	/*
618 	 * For SIGKILL, we want to wake it up in the stopped/traced case.
619 	 * We don't check t->state here because there is a race with it
620 	 * executing another processor and just now entering stopped state.
621 	 * By using wake_up_state, we ensure the process will wake up and
622 	 * handle its death signal.
623 	 */
624 	mask = TASK_INTERRUPTIBLE;
625 	if (resume)
626 		mask |= TASK_STOPPED | TASK_TRACED;
627 	if (!wake_up_state(t, mask))
628 		kick_process(t);
629 }
630 
631 /*
632  * Remove signals in mask from the pending set and queue.
633  * Returns 1 if any signals were found.
634  *
635  * All callers must be holding the siglock.
636  */
637 static int rm_from_queue(unsigned long mask, struct sigpending *s)
638 {
639 	struct sigqueue *q, *n;
640 
641 	if (!sigtestsetmask(&s->signal, mask))
642 		return 0;
643 
644 	sigdelsetmask(&s->signal, mask);
645 	list_for_each_entry_safe(q, n, &s->list, list) {
646 		if (q->info.si_signo < SIGRTMIN &&
647 		    (mask & sigmask(q->info.si_signo))) {
648 			list_del_init(&q->list);
649 			__sigqueue_free(q);
650 		}
651 	}
652 	return 1;
653 }
654 
655 /*
656  * Bad permissions for sending the signal
657  */
658 static int check_kill_permission(int sig, struct siginfo *info,
659 				 struct task_struct *t)
660 {
661 	int error = -EINVAL;
662 	if (!valid_signal(sig))
663 		return error;
664 	error = -EPERM;
665 	if ((!info || ((unsigned long)info != 1 &&
666 			(unsigned long)info != 2 && SI_FROMUSER(info)))
667 	    && ((sig != SIGCONT) ||
668 		(current->signal->session != t->signal->session))
669 	    && (current->euid ^ t->suid) && (current->euid ^ t->uid)
670 	    && (current->uid ^ t->suid) && (current->uid ^ t->uid)
671 	    && !capable(CAP_KILL))
672 		return error;
673 
674 	error = security_task_kill(t, info, sig);
675 	if (!error)
676 		audit_signal_info(sig, t); /* Let audit system see the signal */
677 	return error;
678 }
679 
680 /* forward decl */
681 static void do_notify_parent_cldstop(struct task_struct *tsk,
682 				     int to_self,
683 				     int why);
684 
685 /*
686  * Handle magic process-wide effects of stop/continue signals.
687  * Unlike the signal actions, these happen immediately at signal-generation
688  * time regardless of blocking, ignoring, or handling.  This does the
689  * actual continuing for SIGCONT, but not the actual stopping for stop
690  * signals.  The process stop is done as a signal action for SIG_DFL.
691  */
692 static void handle_stop_signal(int sig, struct task_struct *p)
693 {
694 	struct task_struct *t;
695 
696 	if (p->signal->flags & SIGNAL_GROUP_EXIT)
697 		/*
698 		 * The process is in the middle of dying already.
699 		 */
700 		return;
701 
702 	if (sig_kernel_stop(sig)) {
703 		/*
704 		 * This is a stop signal.  Remove SIGCONT from all queues.
705 		 */
706 		rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
707 		t = p;
708 		do {
709 			rm_from_queue(sigmask(SIGCONT), &t->pending);
710 			t = next_thread(t);
711 		} while (t != p);
712 	} else if (sig == SIGCONT) {
713 		/*
714 		 * Remove all stop signals from all queues,
715 		 * and wake all threads.
716 		 */
717 		if (unlikely(p->signal->group_stop_count > 0)) {
718 			/*
719 			 * There was a group stop in progress.  We'll
720 			 * pretend it finished before we got here.  We are
721 			 * obliged to report it to the parent: if the
722 			 * SIGSTOP happened "after" this SIGCONT, then it
723 			 * would have cleared this pending SIGCONT.  If it
724 			 * happened "before" this SIGCONT, then the parent
725 			 * got the SIGCHLD about the stop finishing before
726 			 * the continue happened.  We do the notification
727 			 * now, and it's as if the stop had finished and
728 			 * the SIGCHLD was pending on entry to this kill.
729 			 */
730 			p->signal->group_stop_count = 0;
731 			p->signal->flags = SIGNAL_STOP_CONTINUED;
732 			spin_unlock(&p->sighand->siglock);
733 			do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
734 			spin_lock(&p->sighand->siglock);
735 		}
736 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
737 		t = p;
738 		do {
739 			unsigned int state;
740 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
741 
742 			/*
743 			 * If there is a handler for SIGCONT, we must make
744 			 * sure that no thread returns to user mode before
745 			 * we post the signal, in case it was the only
746 			 * thread eligible to run the signal handler--then
747 			 * it must not do anything between resuming and
748 			 * running the handler.  With the TIF_SIGPENDING
749 			 * flag set, the thread will pause and acquire the
750 			 * siglock that we hold now and until we've queued
751 			 * the pending signal.
752 			 *
753 			 * Wake up the stopped thread _after_ setting
754 			 * TIF_SIGPENDING
755 			 */
756 			state = TASK_STOPPED;
757 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
758 				set_tsk_thread_flag(t, TIF_SIGPENDING);
759 				state |= TASK_INTERRUPTIBLE;
760 			}
761 			wake_up_state(t, state);
762 
763 			t = next_thread(t);
764 		} while (t != p);
765 
766 		if (p->signal->flags & SIGNAL_STOP_STOPPED) {
767 			/*
768 			 * We were in fact stopped, and are now continued.
769 			 * Notify the parent with CLD_CONTINUED.
770 			 */
771 			p->signal->flags = SIGNAL_STOP_CONTINUED;
772 			p->signal->group_exit_code = 0;
773 			spin_unlock(&p->sighand->siglock);
774 			do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
775 			spin_lock(&p->sighand->siglock);
776 		} else {
777 			/*
778 			 * We are not stopped, but there could be a stop
779 			 * signal in the middle of being processed after
780 			 * being removed from the queue.  Clear that too.
781 			 */
782 			p->signal->flags = 0;
783 		}
784 	} else if (sig == SIGKILL) {
785 		/*
786 		 * Make sure that any pending stop signal already dequeued
787 		 * is undone by the wakeup for SIGKILL.
788 		 */
789 		p->signal->flags = 0;
790 	}
791 }
792 
793 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
794 			struct sigpending *signals)
795 {
796 	struct sigqueue * q = NULL;
797 	int ret = 0;
798 
799 	/*
800 	 * fast-pathed signals for kernel-internal things like SIGSTOP
801 	 * or SIGKILL.
802 	 */
803 	if ((unsigned long)info == 2)
804 		goto out_set;
805 
806 	/* Real-time signals must be queued if sent by sigqueue, or
807 	   some other real-time mechanism.  It is implementation
808 	   defined whether kill() does so.  We attempt to do so, on
809 	   the principle of least surprise, but since kill is not
810 	   allowed to fail with EAGAIN when low on memory we just
811 	   make sure at least one signal gets delivered and don't
812 	   pass on the info struct.  */
813 
814 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
815 					     ((unsigned long) info < 2 ||
816 					      info->si_code >= 0)));
817 	if (q) {
818 		list_add_tail(&q->list, &signals->list);
819 		switch ((unsigned long) info) {
820 		case 0:
821 			q->info.si_signo = sig;
822 			q->info.si_errno = 0;
823 			q->info.si_code = SI_USER;
824 			q->info.si_pid = current->pid;
825 			q->info.si_uid = current->uid;
826 			break;
827 		case 1:
828 			q->info.si_signo = sig;
829 			q->info.si_errno = 0;
830 			q->info.si_code = SI_KERNEL;
831 			q->info.si_pid = 0;
832 			q->info.si_uid = 0;
833 			break;
834 		default:
835 			copy_siginfo(&q->info, info);
836 			break;
837 		}
838 	} else {
839 		if (sig >= SIGRTMIN && info && (unsigned long)info != 1
840 		   && info->si_code != SI_USER)
841 		/*
842 		 * Queue overflow, abort.  We may abort if the signal was rt
843 		 * and sent by user using something other than kill().
844 		 */
845 			return -EAGAIN;
846 		if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
847 			/*
848 			 * Set up a return to indicate that we dropped
849 			 * the signal.
850 			 */
851 			ret = info->si_sys_private;
852 	}
853 
854 out_set:
855 	sigaddset(&signals->signal, sig);
856 	return ret;
857 }
858 
859 #define LEGACY_QUEUE(sigptr, sig) \
860 	(((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
861 
862 
863 static int
864 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
865 {
866 	int ret = 0;
867 
868 	if (!irqs_disabled())
869 		BUG();
870 	assert_spin_locked(&t->sighand->siglock);
871 
872 	if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
873 		/*
874 		 * Set up a return to indicate that we dropped the signal.
875 		 */
876 		ret = info->si_sys_private;
877 
878 	/* Short-circuit ignored signals.  */
879 	if (sig_ignored(t, sig))
880 		goto out;
881 
882 	/* Support queueing exactly one non-rt signal, so that we
883 	   can get more detailed information about the cause of
884 	   the signal. */
885 	if (LEGACY_QUEUE(&t->pending, sig))
886 		goto out;
887 
888 	ret = send_signal(sig, info, t, &t->pending);
889 	if (!ret && !sigismember(&t->blocked, sig))
890 		signal_wake_up(t, sig == SIGKILL);
891 out:
892 	return ret;
893 }
894 
895 /*
896  * Force a signal that the process can't ignore: if necessary
897  * we unblock the signal and change any SIG_IGN to SIG_DFL.
898  */
899 
900 int
901 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
902 {
903 	unsigned long int flags;
904 	int ret;
905 
906 	spin_lock_irqsave(&t->sighand->siglock, flags);
907 	if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
908 		t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
909 		sigdelset(&t->blocked, sig);
910 		recalc_sigpending_tsk(t);
911 	}
912 	ret = specific_send_sig_info(sig, info, t);
913 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
914 
915 	return ret;
916 }
917 
918 void
919 force_sig_specific(int sig, struct task_struct *t)
920 {
921 	unsigned long int flags;
922 
923 	spin_lock_irqsave(&t->sighand->siglock, flags);
924 	if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
925 		t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
926 	sigdelset(&t->blocked, sig);
927 	recalc_sigpending_tsk(t);
928 	specific_send_sig_info(sig, (void *)2, t);
929 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
930 }
931 
932 /*
933  * Test if P wants to take SIG.  After we've checked all threads with this,
934  * it's equivalent to finding no threads not blocking SIG.  Any threads not
935  * blocking SIG were ruled out because they are not running and already
936  * have pending signals.  Such threads will dequeue from the shared queue
937  * as soon as they're available, so putting the signal on the shared queue
938  * will be equivalent to sending it to one such thread.
939  */
940 static inline int wants_signal(int sig, struct task_struct *p)
941 {
942 	if (sigismember(&p->blocked, sig))
943 		return 0;
944 	if (p->flags & PF_EXITING)
945 		return 0;
946 	if (sig == SIGKILL)
947 		return 1;
948 	if (p->state & (TASK_STOPPED | TASK_TRACED))
949 		return 0;
950 	return task_curr(p) || !signal_pending(p);
951 }
952 
953 static void
954 __group_complete_signal(int sig, struct task_struct *p)
955 {
956 	struct task_struct *t;
957 
958 	/*
959 	 * Now find a thread we can wake up to take the signal off the queue.
960 	 *
961 	 * If the main thread wants the signal, it gets first crack.
962 	 * Probably the least surprising to the average bear.
963 	 */
964 	if (wants_signal(sig, p))
965 		t = p;
966 	else if (thread_group_empty(p))
967 		/*
968 		 * There is just one thread and it does not need to be woken.
969 		 * It will dequeue unblocked signals before it runs again.
970 		 */
971 		return;
972 	else {
973 		/*
974 		 * Otherwise try to find a suitable thread.
975 		 */
976 		t = p->signal->curr_target;
977 		if (t == NULL)
978 			/* restart balancing at this thread */
979 			t = p->signal->curr_target = p;
980 		BUG_ON(t->tgid != p->tgid);
981 
982 		while (!wants_signal(sig, t)) {
983 			t = next_thread(t);
984 			if (t == p->signal->curr_target)
985 				/*
986 				 * No thread needs to be woken.
987 				 * Any eligible threads will see
988 				 * the signal in the queue soon.
989 				 */
990 				return;
991 		}
992 		p->signal->curr_target = t;
993 	}
994 
995 	/*
996 	 * Found a killable thread.  If the signal will be fatal,
997 	 * then start taking the whole group down immediately.
998 	 */
999 	if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
1000 	    !sigismember(&t->real_blocked, sig) &&
1001 	    (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1002 		/*
1003 		 * This signal will be fatal to the whole group.
1004 		 */
1005 		if (!sig_kernel_coredump(sig)) {
1006 			/*
1007 			 * Start a group exit and wake everybody up.
1008 			 * This way we don't have other threads
1009 			 * running and doing things after a slower
1010 			 * thread has the fatal signal pending.
1011 			 */
1012 			p->signal->flags = SIGNAL_GROUP_EXIT;
1013 			p->signal->group_exit_code = sig;
1014 			p->signal->group_stop_count = 0;
1015 			t = p;
1016 			do {
1017 				sigaddset(&t->pending.signal, SIGKILL);
1018 				signal_wake_up(t, 1);
1019 				t = next_thread(t);
1020 			} while (t != p);
1021 			return;
1022 		}
1023 
1024 		/*
1025 		 * There will be a core dump.  We make all threads other
1026 		 * than the chosen one go into a group stop so that nothing
1027 		 * happens until it gets scheduled, takes the signal off
1028 		 * the shared queue, and does the core dump.  This is a
1029 		 * little more complicated than strictly necessary, but it
1030 		 * keeps the signal state that winds up in the core dump
1031 		 * unchanged from the death state, e.g. which thread had
1032 		 * the core-dump signal unblocked.
1033 		 */
1034 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1035 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1036 		p->signal->group_stop_count = 0;
1037 		p->signal->group_exit_task = t;
1038 		t = p;
1039 		do {
1040 			p->signal->group_stop_count++;
1041 			signal_wake_up(t, 0);
1042 			t = next_thread(t);
1043 		} while (t != p);
1044 		wake_up_process(p->signal->group_exit_task);
1045 		return;
1046 	}
1047 
1048 	/*
1049 	 * The signal is already in the shared-pending queue.
1050 	 * Tell the chosen thread to wake up and dequeue it.
1051 	 */
1052 	signal_wake_up(t, sig == SIGKILL);
1053 	return;
1054 }
1055 
1056 int
1057 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1058 {
1059 	int ret = 0;
1060 
1061 	assert_spin_locked(&p->sighand->siglock);
1062 	handle_stop_signal(sig, p);
1063 
1064 	if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
1065 		/*
1066 		 * Set up a return to indicate that we dropped the signal.
1067 		 */
1068 		ret = info->si_sys_private;
1069 
1070 	/* Short-circuit ignored signals.  */
1071 	if (sig_ignored(p, sig))
1072 		return ret;
1073 
1074 	if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1075 		/* This is a non-RT signal and we already have one queued.  */
1076 		return ret;
1077 
1078 	/*
1079 	 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1080 	 * We always use the shared queue for process-wide signals,
1081 	 * to avoid several races.
1082 	 */
1083 	ret = send_signal(sig, info, p, &p->signal->shared_pending);
1084 	if (unlikely(ret))
1085 		return ret;
1086 
1087 	__group_complete_signal(sig, p);
1088 	return 0;
1089 }
1090 
1091 /*
1092  * Nuke all other threads in the group.
1093  */
1094 void zap_other_threads(struct task_struct *p)
1095 {
1096 	struct task_struct *t;
1097 
1098 	p->signal->flags = SIGNAL_GROUP_EXIT;
1099 	p->signal->group_stop_count = 0;
1100 
1101 	if (thread_group_empty(p))
1102 		return;
1103 
1104 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1105 		/*
1106 		 * Don't bother with already dead threads
1107 		 */
1108 		if (t->exit_state)
1109 			continue;
1110 
1111 		/*
1112 		 * We don't want to notify the parent, since we are
1113 		 * killed as part of a thread group due to another
1114 		 * thread doing an execve() or similar. So set the
1115 		 * exit signal to -1 to allow immediate reaping of
1116 		 * the process.  But don't detach the thread group
1117 		 * leader.
1118 		 */
1119 		if (t != p->group_leader)
1120 			t->exit_signal = -1;
1121 
1122 		sigaddset(&t->pending.signal, SIGKILL);
1123 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1124 		signal_wake_up(t, 1);
1125 	}
1126 }
1127 
1128 /*
1129  * Must be called with the tasklist_lock held for reading!
1130  */
1131 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1132 {
1133 	unsigned long flags;
1134 	int ret;
1135 
1136 	ret = check_kill_permission(sig, info, p);
1137 	if (!ret && sig && p->sighand) {
1138 		spin_lock_irqsave(&p->sighand->siglock, flags);
1139 		ret = __group_send_sig_info(sig, info, p);
1140 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1141 	}
1142 
1143 	return ret;
1144 }
1145 
1146 /*
1147  * kill_pg_info() sends a signal to a process group: this is what the tty
1148  * control characters do (^C, ^Z etc)
1149  */
1150 
1151 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1152 {
1153 	struct task_struct *p = NULL;
1154 	int retval, success;
1155 
1156 	if (pgrp <= 0)
1157 		return -EINVAL;
1158 
1159 	success = 0;
1160 	retval = -ESRCH;
1161 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1162 		int err = group_send_sig_info(sig, info, p);
1163 		success |= !err;
1164 		retval = err;
1165 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1166 	return success ? 0 : retval;
1167 }
1168 
1169 int
1170 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1171 {
1172 	int retval;
1173 
1174 	read_lock(&tasklist_lock);
1175 	retval = __kill_pg_info(sig, info, pgrp);
1176 	read_unlock(&tasklist_lock);
1177 
1178 	return retval;
1179 }
1180 
1181 int
1182 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1183 {
1184 	int error;
1185 	struct task_struct *p;
1186 
1187 	read_lock(&tasklist_lock);
1188 	p = find_task_by_pid(pid);
1189 	error = -ESRCH;
1190 	if (p)
1191 		error = group_send_sig_info(sig, info, p);
1192 	read_unlock(&tasklist_lock);
1193 	return error;
1194 }
1195 
1196 
1197 /*
1198  * kill_something_info() interprets pid in interesting ways just like kill(2).
1199  *
1200  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1201  * is probably wrong.  Should make it like BSD or SYSV.
1202  */
1203 
1204 static int kill_something_info(int sig, struct siginfo *info, int pid)
1205 {
1206 	if (!pid) {
1207 		return kill_pg_info(sig, info, process_group(current));
1208 	} else if (pid == -1) {
1209 		int retval = 0, count = 0;
1210 		struct task_struct * p;
1211 
1212 		read_lock(&tasklist_lock);
1213 		for_each_process(p) {
1214 			if (p->pid > 1 && p->tgid != current->tgid) {
1215 				int err = group_send_sig_info(sig, info, p);
1216 				++count;
1217 				if (err != -EPERM)
1218 					retval = err;
1219 			}
1220 		}
1221 		read_unlock(&tasklist_lock);
1222 		return count ? retval : -ESRCH;
1223 	} else if (pid < 0) {
1224 		return kill_pg_info(sig, info, -pid);
1225 	} else {
1226 		return kill_proc_info(sig, info, pid);
1227 	}
1228 }
1229 
1230 /*
1231  * These are for backward compatibility with the rest of the kernel source.
1232  */
1233 
1234 /*
1235  * These two are the most common entry points.  They send a signal
1236  * just to the specific thread.
1237  */
1238 int
1239 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1240 {
1241 	int ret;
1242 	unsigned long flags;
1243 
1244 	/*
1245 	 * Make sure legacy kernel users don't send in bad values
1246 	 * (normal paths check this in check_kill_permission).
1247 	 */
1248 	if (!valid_signal(sig))
1249 		return -EINVAL;
1250 
1251 	/*
1252 	 * We need the tasklist lock even for the specific
1253 	 * thread case (when we don't need to follow the group
1254 	 * lists) in order to avoid races with "p->sighand"
1255 	 * going away or changing from under us.
1256 	 */
1257 	read_lock(&tasklist_lock);
1258 	spin_lock_irqsave(&p->sighand->siglock, flags);
1259 	ret = specific_send_sig_info(sig, info, p);
1260 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1261 	read_unlock(&tasklist_lock);
1262 	return ret;
1263 }
1264 
1265 int
1266 send_sig(int sig, struct task_struct *p, int priv)
1267 {
1268 	return send_sig_info(sig, (void*)(long)(priv != 0), p);
1269 }
1270 
1271 /*
1272  * This is the entry point for "process-wide" signals.
1273  * They will go to an appropriate thread in the thread group.
1274  */
1275 int
1276 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1277 {
1278 	int ret;
1279 	read_lock(&tasklist_lock);
1280 	ret = group_send_sig_info(sig, info, p);
1281 	read_unlock(&tasklist_lock);
1282 	return ret;
1283 }
1284 
1285 void
1286 force_sig(int sig, struct task_struct *p)
1287 {
1288 	force_sig_info(sig, (void*)1L, p);
1289 }
1290 
1291 /*
1292  * When things go south during signal handling, we
1293  * will force a SIGSEGV. And if the signal that caused
1294  * the problem was already a SIGSEGV, we'll want to
1295  * make sure we don't even try to deliver the signal..
1296  */
1297 int
1298 force_sigsegv(int sig, struct task_struct *p)
1299 {
1300 	if (sig == SIGSEGV) {
1301 		unsigned long flags;
1302 		spin_lock_irqsave(&p->sighand->siglock, flags);
1303 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1304 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1305 	}
1306 	force_sig(SIGSEGV, p);
1307 	return 0;
1308 }
1309 
1310 int
1311 kill_pg(pid_t pgrp, int sig, int priv)
1312 {
1313 	return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
1314 }
1315 
1316 int
1317 kill_proc(pid_t pid, int sig, int priv)
1318 {
1319 	return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
1320 }
1321 
1322 /*
1323  * These functions support sending signals using preallocated sigqueue
1324  * structures.  This is needed "because realtime applications cannot
1325  * afford to lose notifications of asynchronous events, like timer
1326  * expirations or I/O completions".  In the case of Posix Timers
1327  * we allocate the sigqueue structure from the timer_create.  If this
1328  * allocation fails we are able to report the failure to the application
1329  * with an EAGAIN error.
1330  */
1331 
1332 struct sigqueue *sigqueue_alloc(void)
1333 {
1334 	struct sigqueue *q;
1335 
1336 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1337 		q->flags |= SIGQUEUE_PREALLOC;
1338 	return(q);
1339 }
1340 
1341 void sigqueue_free(struct sigqueue *q)
1342 {
1343 	unsigned long flags;
1344 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1345 	/*
1346 	 * If the signal is still pending remove it from the
1347 	 * pending queue.
1348 	 */
1349 	if (unlikely(!list_empty(&q->list))) {
1350 		read_lock(&tasklist_lock);
1351 		spin_lock_irqsave(q->lock, flags);
1352 		if (!list_empty(&q->list))
1353 			list_del_init(&q->list);
1354 		spin_unlock_irqrestore(q->lock, flags);
1355 		read_unlock(&tasklist_lock);
1356 	}
1357 	q->flags &= ~SIGQUEUE_PREALLOC;
1358 	__sigqueue_free(q);
1359 }
1360 
1361 int
1362 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1363 {
1364 	unsigned long flags;
1365 	int ret = 0;
1366 
1367 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1368 	read_lock(&tasklist_lock);
1369 
1370 	if (unlikely(p->flags & PF_EXITING)) {
1371 		ret = -1;
1372 		goto out_err;
1373 	}
1374 
1375 	spin_lock_irqsave(&p->sighand->siglock, flags);
1376 
1377 	if (unlikely(!list_empty(&q->list))) {
1378 		/*
1379 		 * If an SI_TIMER entry is already queue just increment
1380 		 * the overrun count.
1381 		 */
1382 		if (q->info.si_code != SI_TIMER)
1383 			BUG();
1384 		q->info.si_overrun++;
1385 		goto out;
1386 	}
1387 	/* Short-circuit ignored signals.  */
1388 	if (sig_ignored(p, sig)) {
1389 		ret = 1;
1390 		goto out;
1391 	}
1392 
1393 	q->lock = &p->sighand->siglock;
1394 	list_add_tail(&q->list, &p->pending.list);
1395 	sigaddset(&p->pending.signal, sig);
1396 	if (!sigismember(&p->blocked, sig))
1397 		signal_wake_up(p, sig == SIGKILL);
1398 
1399 out:
1400 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1401 out_err:
1402 	read_unlock(&tasklist_lock);
1403 
1404 	return ret;
1405 }
1406 
1407 int
1408 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1409 {
1410 	unsigned long flags;
1411 	int ret = 0;
1412 
1413 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1414 	read_lock(&tasklist_lock);
1415 	spin_lock_irqsave(&p->sighand->siglock, flags);
1416 	handle_stop_signal(sig, p);
1417 
1418 	/* Short-circuit ignored signals.  */
1419 	if (sig_ignored(p, sig)) {
1420 		ret = 1;
1421 		goto out;
1422 	}
1423 
1424 	if (unlikely(!list_empty(&q->list))) {
1425 		/*
1426 		 * If an SI_TIMER entry is already queue just increment
1427 		 * the overrun count.  Other uses should not try to
1428 		 * send the signal multiple times.
1429 		 */
1430 		if (q->info.si_code != SI_TIMER)
1431 			BUG();
1432 		q->info.si_overrun++;
1433 		goto out;
1434 	}
1435 
1436 	/*
1437 	 * Put this signal on the shared-pending queue.
1438 	 * We always use the shared queue for process-wide signals,
1439 	 * to avoid several races.
1440 	 */
1441 	q->lock = &p->sighand->siglock;
1442 	list_add_tail(&q->list, &p->signal->shared_pending.list);
1443 	sigaddset(&p->signal->shared_pending.signal, sig);
1444 
1445 	__group_complete_signal(sig, p);
1446 out:
1447 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1448 	read_unlock(&tasklist_lock);
1449 	return(ret);
1450 }
1451 
1452 /*
1453  * Wake up any threads in the parent blocked in wait* syscalls.
1454  */
1455 static inline void __wake_up_parent(struct task_struct *p,
1456 				    struct task_struct *parent)
1457 {
1458 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1459 }
1460 
1461 /*
1462  * Let a parent know about the death of a child.
1463  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1464  */
1465 
1466 void do_notify_parent(struct task_struct *tsk, int sig)
1467 {
1468 	struct siginfo info;
1469 	unsigned long flags;
1470 	struct sighand_struct *psig;
1471 
1472 	BUG_ON(sig == -1);
1473 
1474  	/* do_notify_parent_cldstop should have been called instead.  */
1475  	BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1476 
1477 	BUG_ON(!tsk->ptrace &&
1478 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1479 
1480 	info.si_signo = sig;
1481 	info.si_errno = 0;
1482 	info.si_pid = tsk->pid;
1483 	info.si_uid = tsk->uid;
1484 
1485 	/* FIXME: find out whether or not this is supposed to be c*time. */
1486 	info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1487 						       tsk->signal->utime));
1488 	info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1489 						       tsk->signal->stime));
1490 
1491 	info.si_status = tsk->exit_code & 0x7f;
1492 	if (tsk->exit_code & 0x80)
1493 		info.si_code = CLD_DUMPED;
1494 	else if (tsk->exit_code & 0x7f)
1495 		info.si_code = CLD_KILLED;
1496 	else {
1497 		info.si_code = CLD_EXITED;
1498 		info.si_status = tsk->exit_code >> 8;
1499 	}
1500 
1501 	psig = tsk->parent->sighand;
1502 	spin_lock_irqsave(&psig->siglock, flags);
1503 	if (sig == SIGCHLD &&
1504 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1505 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1506 		/*
1507 		 * We are exiting and our parent doesn't care.  POSIX.1
1508 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1509 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1510 		 * automatically and not left for our parent's wait4 call.
1511 		 * Rather than having the parent do it as a magic kind of
1512 		 * signal handler, we just set this to tell do_exit that we
1513 		 * can be cleaned up without becoming a zombie.  Note that
1514 		 * we still call __wake_up_parent in this case, because a
1515 		 * blocked sys_wait4 might now return -ECHILD.
1516 		 *
1517 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1518 		 * is implementation-defined: we do (if you don't want
1519 		 * it, just use SIG_IGN instead).
1520 		 */
1521 		tsk->exit_signal = -1;
1522 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1523 			sig = 0;
1524 	}
1525 	if (valid_signal(sig) && sig > 0)
1526 		__group_send_sig_info(sig, &info, tsk->parent);
1527 	__wake_up_parent(tsk, tsk->parent);
1528 	spin_unlock_irqrestore(&psig->siglock, flags);
1529 }
1530 
1531 static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1532 {
1533 	struct siginfo info;
1534 	unsigned long flags;
1535 	struct task_struct *parent;
1536 	struct sighand_struct *sighand;
1537 
1538 	if (to_self)
1539 		parent = tsk->parent;
1540 	else {
1541 		tsk = tsk->group_leader;
1542 		parent = tsk->real_parent;
1543 	}
1544 
1545 	info.si_signo = SIGCHLD;
1546 	info.si_errno = 0;
1547 	info.si_pid = tsk->pid;
1548 	info.si_uid = tsk->uid;
1549 
1550 	/* FIXME: find out whether or not this is supposed to be c*time. */
1551 	info.si_utime = cputime_to_jiffies(tsk->utime);
1552 	info.si_stime = cputime_to_jiffies(tsk->stime);
1553 
1554  	info.si_code = why;
1555  	switch (why) {
1556  	case CLD_CONTINUED:
1557  		info.si_status = SIGCONT;
1558  		break;
1559  	case CLD_STOPPED:
1560  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1561  		break;
1562  	case CLD_TRAPPED:
1563  		info.si_status = tsk->exit_code & 0x7f;
1564  		break;
1565  	default:
1566  		BUG();
1567  	}
1568 
1569 	sighand = parent->sighand;
1570 	spin_lock_irqsave(&sighand->siglock, flags);
1571 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1572 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1573 		__group_send_sig_info(SIGCHLD, &info, parent);
1574 	/*
1575 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1576 	 */
1577 	__wake_up_parent(tsk, parent);
1578 	spin_unlock_irqrestore(&sighand->siglock, flags);
1579 }
1580 
1581 /*
1582  * This must be called with current->sighand->siglock held.
1583  *
1584  * This should be the path for all ptrace stops.
1585  * We always set current->last_siginfo while stopped here.
1586  * That makes it a way to test a stopped process for
1587  * being ptrace-stopped vs being job-control-stopped.
1588  *
1589  * If we actually decide not to stop at all because the tracer is gone,
1590  * we leave nostop_code in current->exit_code.
1591  */
1592 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1593 {
1594 	/*
1595 	 * If there is a group stop in progress,
1596 	 * we must participate in the bookkeeping.
1597 	 */
1598 	if (current->signal->group_stop_count > 0)
1599 		--current->signal->group_stop_count;
1600 
1601 	current->last_siginfo = info;
1602 	current->exit_code = exit_code;
1603 
1604 	/* Let the debugger run.  */
1605 	set_current_state(TASK_TRACED);
1606 	spin_unlock_irq(&current->sighand->siglock);
1607 	read_lock(&tasklist_lock);
1608 	if (likely(current->ptrace & PT_PTRACED) &&
1609 	    likely(current->parent != current->real_parent ||
1610 		   !(current->ptrace & PT_ATTACHED)) &&
1611 	    (likely(current->parent->signal != current->signal) ||
1612 	     !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1613 		do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1614 		read_unlock(&tasklist_lock);
1615 		schedule();
1616 	} else {
1617 		/*
1618 		 * By the time we got the lock, our tracer went away.
1619 		 * Don't stop here.
1620 		 */
1621 		read_unlock(&tasklist_lock);
1622 		set_current_state(TASK_RUNNING);
1623 		current->exit_code = nostop_code;
1624 	}
1625 
1626 	/*
1627 	 * We are back.  Now reacquire the siglock before touching
1628 	 * last_siginfo, so that we are sure to have synchronized with
1629 	 * any signal-sending on another CPU that wants to examine it.
1630 	 */
1631 	spin_lock_irq(&current->sighand->siglock);
1632 	current->last_siginfo = NULL;
1633 
1634 	/*
1635 	 * Queued signals ignored us while we were stopped for tracing.
1636 	 * So check for any that we should take before resuming user mode.
1637 	 */
1638 	recalc_sigpending();
1639 }
1640 
1641 void ptrace_notify(int exit_code)
1642 {
1643 	siginfo_t info;
1644 
1645 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1646 
1647 	memset(&info, 0, sizeof info);
1648 	info.si_signo = SIGTRAP;
1649 	info.si_code = exit_code;
1650 	info.si_pid = current->pid;
1651 	info.si_uid = current->uid;
1652 
1653 	/* Let the debugger run.  */
1654 	spin_lock_irq(&current->sighand->siglock);
1655 	ptrace_stop(exit_code, 0, &info);
1656 	spin_unlock_irq(&current->sighand->siglock);
1657 }
1658 
1659 static void
1660 finish_stop(int stop_count)
1661 {
1662 	int to_self;
1663 
1664 	/*
1665 	 * If there are no other threads in the group, or if there is
1666 	 * a group stop in progress and we are the last to stop,
1667 	 * report to the parent.  When ptraced, every thread reports itself.
1668 	 */
1669 	if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1670 		to_self = 1;
1671 	else if (stop_count == 0)
1672 		to_self = 0;
1673 	else
1674 		goto out;
1675 
1676 	read_lock(&tasklist_lock);
1677 	do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1678 	read_unlock(&tasklist_lock);
1679 
1680 out:
1681 	schedule();
1682 	/*
1683 	 * Now we don't run again until continued.
1684 	 */
1685 	current->exit_code = 0;
1686 }
1687 
1688 /*
1689  * This performs the stopping for SIGSTOP and other stop signals.
1690  * We have to stop all threads in the thread group.
1691  * Returns nonzero if we've actually stopped and released the siglock.
1692  * Returns zero if we didn't stop and still hold the siglock.
1693  */
1694 static int
1695 do_signal_stop(int signr)
1696 {
1697 	struct signal_struct *sig = current->signal;
1698 	struct sighand_struct *sighand = current->sighand;
1699 	int stop_count = -1;
1700 
1701 	if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1702 		return 0;
1703 
1704 	if (sig->group_stop_count > 0) {
1705 		/*
1706 		 * There is a group stop in progress.  We don't need to
1707 		 * start another one.
1708 		 */
1709 		signr = sig->group_exit_code;
1710 		stop_count = --sig->group_stop_count;
1711 		current->exit_code = signr;
1712 		set_current_state(TASK_STOPPED);
1713 		if (stop_count == 0)
1714 			sig->flags = SIGNAL_STOP_STOPPED;
1715 		spin_unlock_irq(&sighand->siglock);
1716 	}
1717 	else if (thread_group_empty(current)) {
1718 		/*
1719 		 * Lock must be held through transition to stopped state.
1720 		 */
1721 		current->exit_code = current->signal->group_exit_code = signr;
1722 		set_current_state(TASK_STOPPED);
1723 		sig->flags = SIGNAL_STOP_STOPPED;
1724 		spin_unlock_irq(&sighand->siglock);
1725 	}
1726 	else {
1727 		/*
1728 		 * There is no group stop already in progress.
1729 		 * We must initiate one now, but that requires
1730 		 * dropping siglock to get both the tasklist lock
1731 		 * and siglock again in the proper order.  Note that
1732 		 * this allows an intervening SIGCONT to be posted.
1733 		 * We need to check for that and bail out if necessary.
1734 		 */
1735 		struct task_struct *t;
1736 
1737 		spin_unlock_irq(&sighand->siglock);
1738 
1739 		/* signals can be posted during this window */
1740 
1741 		read_lock(&tasklist_lock);
1742 		spin_lock_irq(&sighand->siglock);
1743 
1744 		if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1745 			/*
1746 			 * Another stop or continue happened while we
1747 			 * didn't have the lock.  We can just swallow this
1748 			 * signal now.  If we raced with a SIGCONT, that
1749 			 * should have just cleared it now.  If we raced
1750 			 * with another processor delivering a stop signal,
1751 			 * then the SIGCONT that wakes us up should clear it.
1752 			 */
1753 			read_unlock(&tasklist_lock);
1754 			return 0;
1755 		}
1756 
1757 		if (sig->group_stop_count == 0) {
1758 			sig->group_exit_code = signr;
1759 			stop_count = 0;
1760 			for (t = next_thread(current); t != current;
1761 			     t = next_thread(t))
1762 				/*
1763 				 * Setting state to TASK_STOPPED for a group
1764 				 * stop is always done with the siglock held,
1765 				 * so this check has no races.
1766 				 */
1767 				if (!t->exit_state &&
1768 				    !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1769 					stop_count++;
1770 					signal_wake_up(t, 0);
1771 				}
1772 			sig->group_stop_count = stop_count;
1773 		}
1774 		else {
1775 			/* A race with another thread while unlocked.  */
1776 			signr = sig->group_exit_code;
1777 			stop_count = --sig->group_stop_count;
1778 		}
1779 
1780 		current->exit_code = signr;
1781 		set_current_state(TASK_STOPPED);
1782 		if (stop_count == 0)
1783 			sig->flags = SIGNAL_STOP_STOPPED;
1784 
1785 		spin_unlock_irq(&sighand->siglock);
1786 		read_unlock(&tasklist_lock);
1787 	}
1788 
1789 	finish_stop(stop_count);
1790 	return 1;
1791 }
1792 
1793 /*
1794  * Do appropriate magic when group_stop_count > 0.
1795  * We return nonzero if we stopped, after releasing the siglock.
1796  * We return zero if we still hold the siglock and should look
1797  * for another signal without checking group_stop_count again.
1798  */
1799 static inline int handle_group_stop(void)
1800 {
1801 	int stop_count;
1802 
1803 	if (current->signal->group_exit_task == current) {
1804 		/*
1805 		 * Group stop is so we can do a core dump,
1806 		 * We are the initiating thread, so get on with it.
1807 		 */
1808 		current->signal->group_exit_task = NULL;
1809 		return 0;
1810 	}
1811 
1812 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1813 		/*
1814 		 * Group stop is so another thread can do a core dump,
1815 		 * or else we are racing against a death signal.
1816 		 * Just punt the stop so we can get the next signal.
1817 		 */
1818 		return 0;
1819 
1820 	/*
1821 	 * There is a group stop in progress.  We stop
1822 	 * without any associated signal being in our queue.
1823 	 */
1824 	stop_count = --current->signal->group_stop_count;
1825 	if (stop_count == 0)
1826 		current->signal->flags = SIGNAL_STOP_STOPPED;
1827 	current->exit_code = current->signal->group_exit_code;
1828 	set_current_state(TASK_STOPPED);
1829 	spin_unlock_irq(&current->sighand->siglock);
1830 	finish_stop(stop_count);
1831 	return 1;
1832 }
1833 
1834 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1835 			  struct pt_regs *regs, void *cookie)
1836 {
1837 	sigset_t *mask = &current->blocked;
1838 	int signr = 0;
1839 
1840 relock:
1841 	spin_lock_irq(&current->sighand->siglock);
1842 	for (;;) {
1843 		struct k_sigaction *ka;
1844 
1845 		if (unlikely(current->signal->group_stop_count > 0) &&
1846 		    handle_group_stop())
1847 			goto relock;
1848 
1849 		signr = dequeue_signal(current, mask, info);
1850 
1851 		if (!signr)
1852 			break; /* will return 0 */
1853 
1854 		if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1855 			ptrace_signal_deliver(regs, cookie);
1856 
1857 			/* Let the debugger run.  */
1858 			ptrace_stop(signr, signr, info);
1859 
1860 			/* We're back.  Did the debugger cancel the sig?  */
1861 			signr = current->exit_code;
1862 			if (signr == 0)
1863 				continue;
1864 
1865 			current->exit_code = 0;
1866 
1867 			/* Update the siginfo structure if the signal has
1868 			   changed.  If the debugger wanted something
1869 			   specific in the siginfo structure then it should
1870 			   have updated *info via PTRACE_SETSIGINFO.  */
1871 			if (signr != info->si_signo) {
1872 				info->si_signo = signr;
1873 				info->si_errno = 0;
1874 				info->si_code = SI_USER;
1875 				info->si_pid = current->parent->pid;
1876 				info->si_uid = current->parent->uid;
1877 			}
1878 
1879 			/* If the (new) signal is now blocked, requeue it.  */
1880 			if (sigismember(&current->blocked, signr)) {
1881 				specific_send_sig_info(signr, info, current);
1882 				continue;
1883 			}
1884 		}
1885 
1886 		ka = &current->sighand->action[signr-1];
1887 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1888 			continue;
1889 		if (ka->sa.sa_handler != SIG_DFL) {
1890 			/* Run the handler.  */
1891 			*return_ka = *ka;
1892 
1893 			if (ka->sa.sa_flags & SA_ONESHOT)
1894 				ka->sa.sa_handler = SIG_DFL;
1895 
1896 			break; /* will return non-zero "signr" value */
1897 		}
1898 
1899 		/*
1900 		 * Now we are doing the default action for this signal.
1901 		 */
1902 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1903 			continue;
1904 
1905 		/* Init gets no signals it doesn't want.  */
1906 		if (current->pid == 1)
1907 			continue;
1908 
1909 		if (sig_kernel_stop(signr)) {
1910 			/*
1911 			 * The default action is to stop all threads in
1912 			 * the thread group.  The job control signals
1913 			 * do nothing in an orphaned pgrp, but SIGSTOP
1914 			 * always works.  Note that siglock needs to be
1915 			 * dropped during the call to is_orphaned_pgrp()
1916 			 * because of lock ordering with tasklist_lock.
1917 			 * This allows an intervening SIGCONT to be posted.
1918 			 * We need to check for that and bail out if necessary.
1919 			 */
1920 			if (signr != SIGSTOP) {
1921 				spin_unlock_irq(&current->sighand->siglock);
1922 
1923 				/* signals can be posted during this window */
1924 
1925 				if (is_orphaned_pgrp(process_group(current)))
1926 					goto relock;
1927 
1928 				spin_lock_irq(&current->sighand->siglock);
1929 			}
1930 
1931 			if (likely(do_signal_stop(signr))) {
1932 				/* It released the siglock.  */
1933 				goto relock;
1934 			}
1935 
1936 			/*
1937 			 * We didn't actually stop, due to a race
1938 			 * with SIGCONT or something like that.
1939 			 */
1940 			continue;
1941 		}
1942 
1943 		spin_unlock_irq(&current->sighand->siglock);
1944 
1945 		/*
1946 		 * Anything else is fatal, maybe with a core dump.
1947 		 */
1948 		current->flags |= PF_SIGNALED;
1949 		if (sig_kernel_coredump(signr)) {
1950 			/*
1951 			 * If it was able to dump core, this kills all
1952 			 * other threads in the group and synchronizes with
1953 			 * their demise.  If we lost the race with another
1954 			 * thread getting here, it set group_exit_code
1955 			 * first and our do_group_exit call below will use
1956 			 * that value and ignore the one we pass it.
1957 			 */
1958 			do_coredump((long)signr, signr, regs);
1959 		}
1960 
1961 		/*
1962 		 * Death signals, no core dump.
1963 		 */
1964 		do_group_exit(signr);
1965 		/* NOTREACHED */
1966 	}
1967 	spin_unlock_irq(&current->sighand->siglock);
1968 	return signr;
1969 }
1970 
1971 EXPORT_SYMBOL(recalc_sigpending);
1972 EXPORT_SYMBOL_GPL(dequeue_signal);
1973 EXPORT_SYMBOL(flush_signals);
1974 EXPORT_SYMBOL(force_sig);
1975 EXPORT_SYMBOL(kill_pg);
1976 EXPORT_SYMBOL(kill_proc);
1977 EXPORT_SYMBOL(ptrace_notify);
1978 EXPORT_SYMBOL(send_sig);
1979 EXPORT_SYMBOL(send_sig_info);
1980 EXPORT_SYMBOL(sigprocmask);
1981 EXPORT_SYMBOL(block_all_signals);
1982 EXPORT_SYMBOL(unblock_all_signals);
1983 
1984 
1985 /*
1986  * System call entry points.
1987  */
1988 
1989 asmlinkage long sys_restart_syscall(void)
1990 {
1991 	struct restart_block *restart = &current_thread_info()->restart_block;
1992 	return restart->fn(restart);
1993 }
1994 
1995 long do_no_restart_syscall(struct restart_block *param)
1996 {
1997 	return -EINTR;
1998 }
1999 
2000 /*
2001  * We don't need to get the kernel lock - this is all local to this
2002  * particular thread.. (and that's good, because this is _heavily_
2003  * used by various programs)
2004  */
2005 
2006 /*
2007  * This is also useful for kernel threads that want to temporarily
2008  * (or permanently) block certain signals.
2009  *
2010  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2011  * interface happily blocks "unblockable" signals like SIGKILL
2012  * and friends.
2013  */
2014 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2015 {
2016 	int error;
2017 	sigset_t old_block;
2018 
2019 	spin_lock_irq(&current->sighand->siglock);
2020 	old_block = current->blocked;
2021 	error = 0;
2022 	switch (how) {
2023 	case SIG_BLOCK:
2024 		sigorsets(&current->blocked, &current->blocked, set);
2025 		break;
2026 	case SIG_UNBLOCK:
2027 		signandsets(&current->blocked, &current->blocked, set);
2028 		break;
2029 	case SIG_SETMASK:
2030 		current->blocked = *set;
2031 		break;
2032 	default:
2033 		error = -EINVAL;
2034 	}
2035 	recalc_sigpending();
2036 	spin_unlock_irq(&current->sighand->siglock);
2037 	if (oldset)
2038 		*oldset = old_block;
2039 	return error;
2040 }
2041 
2042 asmlinkage long
2043 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2044 {
2045 	int error = -EINVAL;
2046 	sigset_t old_set, new_set;
2047 
2048 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2049 	if (sigsetsize != sizeof(sigset_t))
2050 		goto out;
2051 
2052 	if (set) {
2053 		error = -EFAULT;
2054 		if (copy_from_user(&new_set, set, sizeof(*set)))
2055 			goto out;
2056 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2057 
2058 		error = sigprocmask(how, &new_set, &old_set);
2059 		if (error)
2060 			goto out;
2061 		if (oset)
2062 			goto set_old;
2063 	} else if (oset) {
2064 		spin_lock_irq(&current->sighand->siglock);
2065 		old_set = current->blocked;
2066 		spin_unlock_irq(&current->sighand->siglock);
2067 
2068 	set_old:
2069 		error = -EFAULT;
2070 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2071 			goto out;
2072 	}
2073 	error = 0;
2074 out:
2075 	return error;
2076 }
2077 
2078 long do_sigpending(void __user *set, unsigned long sigsetsize)
2079 {
2080 	long error = -EINVAL;
2081 	sigset_t pending;
2082 
2083 	if (sigsetsize > sizeof(sigset_t))
2084 		goto out;
2085 
2086 	spin_lock_irq(&current->sighand->siglock);
2087 	sigorsets(&pending, &current->pending.signal,
2088 		  &current->signal->shared_pending.signal);
2089 	spin_unlock_irq(&current->sighand->siglock);
2090 
2091 	/* Outside the lock because only this thread touches it.  */
2092 	sigandsets(&pending, &current->blocked, &pending);
2093 
2094 	error = -EFAULT;
2095 	if (!copy_to_user(set, &pending, sigsetsize))
2096 		error = 0;
2097 
2098 out:
2099 	return error;
2100 }
2101 
2102 asmlinkage long
2103 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2104 {
2105 	return do_sigpending(set, sigsetsize);
2106 }
2107 
2108 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2109 
2110 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2111 {
2112 	int err;
2113 
2114 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2115 		return -EFAULT;
2116 	if (from->si_code < 0)
2117 		return __copy_to_user(to, from, sizeof(siginfo_t))
2118 			? -EFAULT : 0;
2119 	/*
2120 	 * If you change siginfo_t structure, please be sure
2121 	 * this code is fixed accordingly.
2122 	 * It should never copy any pad contained in the structure
2123 	 * to avoid security leaks, but must copy the generic
2124 	 * 3 ints plus the relevant union member.
2125 	 */
2126 	err = __put_user(from->si_signo, &to->si_signo);
2127 	err |= __put_user(from->si_errno, &to->si_errno);
2128 	err |= __put_user((short)from->si_code, &to->si_code);
2129 	switch (from->si_code & __SI_MASK) {
2130 	case __SI_KILL:
2131 		err |= __put_user(from->si_pid, &to->si_pid);
2132 		err |= __put_user(from->si_uid, &to->si_uid);
2133 		break;
2134 	case __SI_TIMER:
2135 		 err |= __put_user(from->si_tid, &to->si_tid);
2136 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2137 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2138 		break;
2139 	case __SI_POLL:
2140 		err |= __put_user(from->si_band, &to->si_band);
2141 		err |= __put_user(from->si_fd, &to->si_fd);
2142 		break;
2143 	case __SI_FAULT:
2144 		err |= __put_user(from->si_addr, &to->si_addr);
2145 #ifdef __ARCH_SI_TRAPNO
2146 		err |= __put_user(from->si_trapno, &to->si_trapno);
2147 #endif
2148 		break;
2149 	case __SI_CHLD:
2150 		err |= __put_user(from->si_pid, &to->si_pid);
2151 		err |= __put_user(from->si_uid, &to->si_uid);
2152 		err |= __put_user(from->si_status, &to->si_status);
2153 		err |= __put_user(from->si_utime, &to->si_utime);
2154 		err |= __put_user(from->si_stime, &to->si_stime);
2155 		break;
2156 	case __SI_RT: /* This is not generated by the kernel as of now. */
2157 	case __SI_MESGQ: /* But this is */
2158 		err |= __put_user(from->si_pid, &to->si_pid);
2159 		err |= __put_user(from->si_uid, &to->si_uid);
2160 		err |= __put_user(from->si_ptr, &to->si_ptr);
2161 		break;
2162 	default: /* this is just in case for now ... */
2163 		err |= __put_user(from->si_pid, &to->si_pid);
2164 		err |= __put_user(from->si_uid, &to->si_uid);
2165 		break;
2166 	}
2167 	return err;
2168 }
2169 
2170 #endif
2171 
2172 asmlinkage long
2173 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2174 		    siginfo_t __user *uinfo,
2175 		    const struct timespec __user *uts,
2176 		    size_t sigsetsize)
2177 {
2178 	int ret, sig;
2179 	sigset_t these;
2180 	struct timespec ts;
2181 	siginfo_t info;
2182 	long timeout = 0;
2183 
2184 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2185 	if (sigsetsize != sizeof(sigset_t))
2186 		return -EINVAL;
2187 
2188 	if (copy_from_user(&these, uthese, sizeof(these)))
2189 		return -EFAULT;
2190 
2191 	/*
2192 	 * Invert the set of allowed signals to get those we
2193 	 * want to block.
2194 	 */
2195 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2196 	signotset(&these);
2197 
2198 	if (uts) {
2199 		if (copy_from_user(&ts, uts, sizeof(ts)))
2200 			return -EFAULT;
2201 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2202 		    || ts.tv_sec < 0)
2203 			return -EINVAL;
2204 	}
2205 
2206 	spin_lock_irq(&current->sighand->siglock);
2207 	sig = dequeue_signal(current, &these, &info);
2208 	if (!sig) {
2209 		timeout = MAX_SCHEDULE_TIMEOUT;
2210 		if (uts)
2211 			timeout = (timespec_to_jiffies(&ts)
2212 				   + (ts.tv_sec || ts.tv_nsec));
2213 
2214 		if (timeout) {
2215 			/* None ready -- temporarily unblock those we're
2216 			 * interested while we are sleeping in so that we'll
2217 			 * be awakened when they arrive.  */
2218 			current->real_blocked = current->blocked;
2219 			sigandsets(&current->blocked, &current->blocked, &these);
2220 			recalc_sigpending();
2221 			spin_unlock_irq(&current->sighand->siglock);
2222 
2223 			timeout = schedule_timeout_interruptible(timeout);
2224 
2225 			try_to_freeze();
2226 			spin_lock_irq(&current->sighand->siglock);
2227 			sig = dequeue_signal(current, &these, &info);
2228 			current->blocked = current->real_blocked;
2229 			siginitset(&current->real_blocked, 0);
2230 			recalc_sigpending();
2231 		}
2232 	}
2233 	spin_unlock_irq(&current->sighand->siglock);
2234 
2235 	if (sig) {
2236 		ret = sig;
2237 		if (uinfo) {
2238 			if (copy_siginfo_to_user(uinfo, &info))
2239 				ret = -EFAULT;
2240 		}
2241 	} else {
2242 		ret = -EAGAIN;
2243 		if (timeout)
2244 			ret = -EINTR;
2245 	}
2246 
2247 	return ret;
2248 }
2249 
2250 asmlinkage long
2251 sys_kill(int pid, int sig)
2252 {
2253 	struct siginfo info;
2254 
2255 	info.si_signo = sig;
2256 	info.si_errno = 0;
2257 	info.si_code = SI_USER;
2258 	info.si_pid = current->tgid;
2259 	info.si_uid = current->uid;
2260 
2261 	return kill_something_info(sig, &info, pid);
2262 }
2263 
2264 /**
2265  *  sys_tgkill - send signal to one specific thread
2266  *  @tgid: the thread group ID of the thread
2267  *  @pid: the PID of the thread
2268  *  @sig: signal to be sent
2269  *
2270  *  This syscall also checks the tgid and returns -ESRCH even if the PID
2271  *  exists but it's not belonging to the target process anymore. This
2272  *  method solves the problem of threads exiting and PIDs getting reused.
2273  */
2274 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2275 {
2276 	struct siginfo info;
2277 	int error;
2278 	struct task_struct *p;
2279 
2280 	/* This is only valid for single tasks */
2281 	if (pid <= 0 || tgid <= 0)
2282 		return -EINVAL;
2283 
2284 	info.si_signo = sig;
2285 	info.si_errno = 0;
2286 	info.si_code = SI_TKILL;
2287 	info.si_pid = current->tgid;
2288 	info.si_uid = current->uid;
2289 
2290 	read_lock(&tasklist_lock);
2291 	p = find_task_by_pid(pid);
2292 	error = -ESRCH;
2293 	if (p && (p->tgid == tgid)) {
2294 		error = check_kill_permission(sig, &info, p);
2295 		/*
2296 		 * The null signal is a permissions and process existence
2297 		 * probe.  No signal is actually delivered.
2298 		 */
2299 		if (!error && sig && p->sighand) {
2300 			spin_lock_irq(&p->sighand->siglock);
2301 			handle_stop_signal(sig, p);
2302 			error = specific_send_sig_info(sig, &info, p);
2303 			spin_unlock_irq(&p->sighand->siglock);
2304 		}
2305 	}
2306 	read_unlock(&tasklist_lock);
2307 	return error;
2308 }
2309 
2310 /*
2311  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2312  */
2313 asmlinkage long
2314 sys_tkill(int pid, int sig)
2315 {
2316 	struct siginfo info;
2317 	int error;
2318 	struct task_struct *p;
2319 
2320 	/* This is only valid for single tasks */
2321 	if (pid <= 0)
2322 		return -EINVAL;
2323 
2324 	info.si_signo = sig;
2325 	info.si_errno = 0;
2326 	info.si_code = SI_TKILL;
2327 	info.si_pid = current->tgid;
2328 	info.si_uid = current->uid;
2329 
2330 	read_lock(&tasklist_lock);
2331 	p = find_task_by_pid(pid);
2332 	error = -ESRCH;
2333 	if (p) {
2334 		error = check_kill_permission(sig, &info, p);
2335 		/*
2336 		 * The null signal is a permissions and process existence
2337 		 * probe.  No signal is actually delivered.
2338 		 */
2339 		if (!error && sig && p->sighand) {
2340 			spin_lock_irq(&p->sighand->siglock);
2341 			handle_stop_signal(sig, p);
2342 			error = specific_send_sig_info(sig, &info, p);
2343 			spin_unlock_irq(&p->sighand->siglock);
2344 		}
2345 	}
2346 	read_unlock(&tasklist_lock);
2347 	return error;
2348 }
2349 
2350 asmlinkage long
2351 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2352 {
2353 	siginfo_t info;
2354 
2355 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2356 		return -EFAULT;
2357 
2358 	/* Not even root can pretend to send signals from the kernel.
2359 	   Nor can they impersonate a kill(), which adds source info.  */
2360 	if (info.si_code >= 0)
2361 		return -EPERM;
2362 	info.si_signo = sig;
2363 
2364 	/* POSIX.1b doesn't mention process groups.  */
2365 	return kill_proc_info(sig, &info, pid);
2366 }
2367 
2368 int
2369 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2370 {
2371 	struct k_sigaction *k;
2372 
2373 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2374 		return -EINVAL;
2375 
2376 	k = &current->sighand->action[sig-1];
2377 
2378 	spin_lock_irq(&current->sighand->siglock);
2379 	if (signal_pending(current)) {
2380 		/*
2381 		 * If there might be a fatal signal pending on multiple
2382 		 * threads, make sure we take it before changing the action.
2383 		 */
2384 		spin_unlock_irq(&current->sighand->siglock);
2385 		return -ERESTARTNOINTR;
2386 	}
2387 
2388 	if (oact)
2389 		*oact = *k;
2390 
2391 	if (act) {
2392 		/*
2393 		 * POSIX 3.3.1.3:
2394 		 *  "Setting a signal action to SIG_IGN for a signal that is
2395 		 *   pending shall cause the pending signal to be discarded,
2396 		 *   whether or not it is blocked."
2397 		 *
2398 		 *  "Setting a signal action to SIG_DFL for a signal that is
2399 		 *   pending and whose default action is to ignore the signal
2400 		 *   (for example, SIGCHLD), shall cause the pending signal to
2401 		 *   be discarded, whether or not it is blocked"
2402 		 */
2403 		if (act->sa.sa_handler == SIG_IGN ||
2404 		    (act->sa.sa_handler == SIG_DFL &&
2405 		     sig_kernel_ignore(sig))) {
2406 			/*
2407 			 * This is a fairly rare case, so we only take the
2408 			 * tasklist_lock once we're sure we'll need it.
2409 			 * Now we must do this little unlock and relock
2410 			 * dance to maintain the lock hierarchy.
2411 			 */
2412 			struct task_struct *t = current;
2413 			spin_unlock_irq(&t->sighand->siglock);
2414 			read_lock(&tasklist_lock);
2415 			spin_lock_irq(&t->sighand->siglock);
2416 			*k = *act;
2417 			sigdelsetmask(&k->sa.sa_mask,
2418 				      sigmask(SIGKILL) | sigmask(SIGSTOP));
2419 			rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2420 			do {
2421 				rm_from_queue(sigmask(sig), &t->pending);
2422 				recalc_sigpending_tsk(t);
2423 				t = next_thread(t);
2424 			} while (t != current);
2425 			spin_unlock_irq(&current->sighand->siglock);
2426 			read_unlock(&tasklist_lock);
2427 			return 0;
2428 		}
2429 
2430 		*k = *act;
2431 		sigdelsetmask(&k->sa.sa_mask,
2432 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2433 	}
2434 
2435 	spin_unlock_irq(&current->sighand->siglock);
2436 	return 0;
2437 }
2438 
2439 int
2440 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2441 {
2442 	stack_t oss;
2443 	int error;
2444 
2445 	if (uoss) {
2446 		oss.ss_sp = (void __user *) current->sas_ss_sp;
2447 		oss.ss_size = current->sas_ss_size;
2448 		oss.ss_flags = sas_ss_flags(sp);
2449 	}
2450 
2451 	if (uss) {
2452 		void __user *ss_sp;
2453 		size_t ss_size;
2454 		int ss_flags;
2455 
2456 		error = -EFAULT;
2457 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2458 		    || __get_user(ss_sp, &uss->ss_sp)
2459 		    || __get_user(ss_flags, &uss->ss_flags)
2460 		    || __get_user(ss_size, &uss->ss_size))
2461 			goto out;
2462 
2463 		error = -EPERM;
2464 		if (on_sig_stack(sp))
2465 			goto out;
2466 
2467 		error = -EINVAL;
2468 		/*
2469 		 *
2470 		 * Note - this code used to test ss_flags incorrectly
2471 		 *  	  old code may have been written using ss_flags==0
2472 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2473 		 *	  way that worked) - this fix preserves that older
2474 		 *	  mechanism
2475 		 */
2476 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2477 			goto out;
2478 
2479 		if (ss_flags == SS_DISABLE) {
2480 			ss_size = 0;
2481 			ss_sp = NULL;
2482 		} else {
2483 			error = -ENOMEM;
2484 			if (ss_size < MINSIGSTKSZ)
2485 				goto out;
2486 		}
2487 
2488 		current->sas_ss_sp = (unsigned long) ss_sp;
2489 		current->sas_ss_size = ss_size;
2490 	}
2491 
2492 	if (uoss) {
2493 		error = -EFAULT;
2494 		if (copy_to_user(uoss, &oss, sizeof(oss)))
2495 			goto out;
2496 	}
2497 
2498 	error = 0;
2499 out:
2500 	return error;
2501 }
2502 
2503 #ifdef __ARCH_WANT_SYS_SIGPENDING
2504 
2505 asmlinkage long
2506 sys_sigpending(old_sigset_t __user *set)
2507 {
2508 	return do_sigpending(set, sizeof(*set));
2509 }
2510 
2511 #endif
2512 
2513 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2514 /* Some platforms have their own version with special arguments others
2515    support only sys_rt_sigprocmask.  */
2516 
2517 asmlinkage long
2518 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2519 {
2520 	int error;
2521 	old_sigset_t old_set, new_set;
2522 
2523 	if (set) {
2524 		error = -EFAULT;
2525 		if (copy_from_user(&new_set, set, sizeof(*set)))
2526 			goto out;
2527 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2528 
2529 		spin_lock_irq(&current->sighand->siglock);
2530 		old_set = current->blocked.sig[0];
2531 
2532 		error = 0;
2533 		switch (how) {
2534 		default:
2535 			error = -EINVAL;
2536 			break;
2537 		case SIG_BLOCK:
2538 			sigaddsetmask(&current->blocked, new_set);
2539 			break;
2540 		case SIG_UNBLOCK:
2541 			sigdelsetmask(&current->blocked, new_set);
2542 			break;
2543 		case SIG_SETMASK:
2544 			current->blocked.sig[0] = new_set;
2545 			break;
2546 		}
2547 
2548 		recalc_sigpending();
2549 		spin_unlock_irq(&current->sighand->siglock);
2550 		if (error)
2551 			goto out;
2552 		if (oset)
2553 			goto set_old;
2554 	} else if (oset) {
2555 		old_set = current->blocked.sig[0];
2556 	set_old:
2557 		error = -EFAULT;
2558 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2559 			goto out;
2560 	}
2561 	error = 0;
2562 out:
2563 	return error;
2564 }
2565 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2566 
2567 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2568 asmlinkage long
2569 sys_rt_sigaction(int sig,
2570 		 const struct sigaction __user *act,
2571 		 struct sigaction __user *oact,
2572 		 size_t sigsetsize)
2573 {
2574 	struct k_sigaction new_sa, old_sa;
2575 	int ret = -EINVAL;
2576 
2577 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2578 	if (sigsetsize != sizeof(sigset_t))
2579 		goto out;
2580 
2581 	if (act) {
2582 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2583 			return -EFAULT;
2584 	}
2585 
2586 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2587 
2588 	if (!ret && oact) {
2589 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2590 			return -EFAULT;
2591 	}
2592 out:
2593 	return ret;
2594 }
2595 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2596 
2597 #ifdef __ARCH_WANT_SYS_SGETMASK
2598 
2599 /*
2600  * For backwards compatibility.  Functionality superseded by sigprocmask.
2601  */
2602 asmlinkage long
2603 sys_sgetmask(void)
2604 {
2605 	/* SMP safe */
2606 	return current->blocked.sig[0];
2607 }
2608 
2609 asmlinkage long
2610 sys_ssetmask(int newmask)
2611 {
2612 	int old;
2613 
2614 	spin_lock_irq(&current->sighand->siglock);
2615 	old = current->blocked.sig[0];
2616 
2617 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2618 						  sigmask(SIGSTOP)));
2619 	recalc_sigpending();
2620 	spin_unlock_irq(&current->sighand->siglock);
2621 
2622 	return old;
2623 }
2624 #endif /* __ARCH_WANT_SGETMASK */
2625 
2626 #ifdef __ARCH_WANT_SYS_SIGNAL
2627 /*
2628  * For backwards compatibility.  Functionality superseded by sigaction.
2629  */
2630 asmlinkage unsigned long
2631 sys_signal(int sig, __sighandler_t handler)
2632 {
2633 	struct k_sigaction new_sa, old_sa;
2634 	int ret;
2635 
2636 	new_sa.sa.sa_handler = handler;
2637 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2638 
2639 	ret = do_sigaction(sig, &new_sa, &old_sa);
2640 
2641 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2642 }
2643 #endif /* __ARCH_WANT_SYS_SIGNAL */
2644 
2645 #ifdef __ARCH_WANT_SYS_PAUSE
2646 
2647 asmlinkage long
2648 sys_pause(void)
2649 {
2650 	current->state = TASK_INTERRUPTIBLE;
2651 	schedule();
2652 	return -ERESTARTNOHAND;
2653 }
2654 
2655 #endif
2656 
2657 void __init signals_init(void)
2658 {
2659 	sigqueue_cachep =
2660 		kmem_cache_create("sigqueue",
2661 				  sizeof(struct sigqueue),
2662 				  __alignof__(struct sigqueue),
2663 				  SLAB_PANIC, NULL, NULL);
2664 }
2665