1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/user.h> 18 #include <linux/sched/debug.h> 19 #include <linux/sched/task.h> 20 #include <linux/sched/task_stack.h> 21 #include <linux/sched/cputime.h> 22 #include <linux/fs.h> 23 #include <linux/tty.h> 24 #include <linux/binfmts.h> 25 #include <linux/coredump.h> 26 #include <linux/security.h> 27 #include <linux/syscalls.h> 28 #include <linux/ptrace.h> 29 #include <linux/signal.h> 30 #include <linux/signalfd.h> 31 #include <linux/ratelimit.h> 32 #include <linux/tracehook.h> 33 #include <linux/capability.h> 34 #include <linux/freezer.h> 35 #include <linux/pid_namespace.h> 36 #include <linux/nsproxy.h> 37 #include <linux/user_namespace.h> 38 #include <linux/uprobes.h> 39 #include <linux/compat.h> 40 #include <linux/cn_proc.h> 41 #include <linux/compiler.h> 42 #include <linux/posix-timers.h> 43 44 #define CREATE_TRACE_POINTS 45 #include <trace/events/signal.h> 46 47 #include <asm/param.h> 48 #include <linux/uaccess.h> 49 #include <asm/unistd.h> 50 #include <asm/siginfo.h> 51 #include <asm/cacheflush.h> 52 #include "audit.h" /* audit_signal_info() */ 53 54 /* 55 * SLAB caches for signal bits. 56 */ 57 58 static struct kmem_cache *sigqueue_cachep; 59 60 int print_fatal_signals __read_mostly; 61 62 static void __user *sig_handler(struct task_struct *t, int sig) 63 { 64 return t->sighand->action[sig - 1].sa.sa_handler; 65 } 66 67 static int sig_handler_ignored(void __user *handler, int sig) 68 { 69 /* Is it explicitly or implicitly ignored? */ 70 return handler == SIG_IGN || 71 (handler == SIG_DFL && sig_kernel_ignore(sig)); 72 } 73 74 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 75 { 76 void __user *handler; 77 78 handler = sig_handler(t, sig); 79 80 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 81 handler == SIG_DFL && !force) 82 return 1; 83 84 return sig_handler_ignored(handler, sig); 85 } 86 87 static int sig_ignored(struct task_struct *t, int sig, bool force) 88 { 89 /* 90 * Blocked signals are never ignored, since the 91 * signal handler may change by the time it is 92 * unblocked. 93 */ 94 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 95 return 0; 96 97 if (!sig_task_ignored(t, sig, force)) 98 return 0; 99 100 /* 101 * Tracers may want to know about even ignored signals. 102 */ 103 return !t->ptrace; 104 } 105 106 /* 107 * Re-calculate pending state from the set of locally pending 108 * signals, globally pending signals, and blocked signals. 109 */ 110 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 111 { 112 unsigned long ready; 113 long i; 114 115 switch (_NSIG_WORDS) { 116 default: 117 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 118 ready |= signal->sig[i] &~ blocked->sig[i]; 119 break; 120 121 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 122 ready |= signal->sig[2] &~ blocked->sig[2]; 123 ready |= signal->sig[1] &~ blocked->sig[1]; 124 ready |= signal->sig[0] &~ blocked->sig[0]; 125 break; 126 127 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 128 ready |= signal->sig[0] &~ blocked->sig[0]; 129 break; 130 131 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 132 } 133 return ready != 0; 134 } 135 136 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 137 138 static int recalc_sigpending_tsk(struct task_struct *t) 139 { 140 if ((t->jobctl & JOBCTL_PENDING_MASK) || 141 PENDING(&t->pending, &t->blocked) || 142 PENDING(&t->signal->shared_pending, &t->blocked)) { 143 set_tsk_thread_flag(t, TIF_SIGPENDING); 144 return 1; 145 } 146 /* 147 * We must never clear the flag in another thread, or in current 148 * when it's possible the current syscall is returning -ERESTART*. 149 * So we don't clear it here, and only callers who know they should do. 150 */ 151 return 0; 152 } 153 154 /* 155 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 156 * This is superfluous when called on current, the wakeup is a harmless no-op. 157 */ 158 void recalc_sigpending_and_wake(struct task_struct *t) 159 { 160 if (recalc_sigpending_tsk(t)) 161 signal_wake_up(t, 0); 162 } 163 164 void recalc_sigpending(void) 165 { 166 if (!recalc_sigpending_tsk(current) && !freezing(current)) 167 clear_thread_flag(TIF_SIGPENDING); 168 169 } 170 171 /* Given the mask, find the first available signal that should be serviced. */ 172 173 #define SYNCHRONOUS_MASK \ 174 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 175 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 176 177 int next_signal(struct sigpending *pending, sigset_t *mask) 178 { 179 unsigned long i, *s, *m, x; 180 int sig = 0; 181 182 s = pending->signal.sig; 183 m = mask->sig; 184 185 /* 186 * Handle the first word specially: it contains the 187 * synchronous signals that need to be dequeued first. 188 */ 189 x = *s &~ *m; 190 if (x) { 191 if (x & SYNCHRONOUS_MASK) 192 x &= SYNCHRONOUS_MASK; 193 sig = ffz(~x) + 1; 194 return sig; 195 } 196 197 switch (_NSIG_WORDS) { 198 default: 199 for (i = 1; i < _NSIG_WORDS; ++i) { 200 x = *++s &~ *++m; 201 if (!x) 202 continue; 203 sig = ffz(~x) + i*_NSIG_BPW + 1; 204 break; 205 } 206 break; 207 208 case 2: 209 x = s[1] &~ m[1]; 210 if (!x) 211 break; 212 sig = ffz(~x) + _NSIG_BPW + 1; 213 break; 214 215 case 1: 216 /* Nothing to do */ 217 break; 218 } 219 220 return sig; 221 } 222 223 static inline void print_dropped_signal(int sig) 224 { 225 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 226 227 if (!print_fatal_signals) 228 return; 229 230 if (!__ratelimit(&ratelimit_state)) 231 return; 232 233 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 234 current->comm, current->pid, sig); 235 } 236 237 /** 238 * task_set_jobctl_pending - set jobctl pending bits 239 * @task: target task 240 * @mask: pending bits to set 241 * 242 * Clear @mask from @task->jobctl. @mask must be subset of 243 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 244 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 245 * cleared. If @task is already being killed or exiting, this function 246 * becomes noop. 247 * 248 * CONTEXT: 249 * Must be called with @task->sighand->siglock held. 250 * 251 * RETURNS: 252 * %true if @mask is set, %false if made noop because @task was dying. 253 */ 254 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 255 { 256 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 257 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 258 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 259 260 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 261 return false; 262 263 if (mask & JOBCTL_STOP_SIGMASK) 264 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 265 266 task->jobctl |= mask; 267 return true; 268 } 269 270 /** 271 * task_clear_jobctl_trapping - clear jobctl trapping bit 272 * @task: target task 273 * 274 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 275 * Clear it and wake up the ptracer. Note that we don't need any further 276 * locking. @task->siglock guarantees that @task->parent points to the 277 * ptracer. 278 * 279 * CONTEXT: 280 * Must be called with @task->sighand->siglock held. 281 */ 282 void task_clear_jobctl_trapping(struct task_struct *task) 283 { 284 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 285 task->jobctl &= ~JOBCTL_TRAPPING; 286 smp_mb(); /* advised by wake_up_bit() */ 287 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 288 } 289 } 290 291 /** 292 * task_clear_jobctl_pending - clear jobctl pending bits 293 * @task: target task 294 * @mask: pending bits to clear 295 * 296 * Clear @mask from @task->jobctl. @mask must be subset of 297 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 298 * STOP bits are cleared together. 299 * 300 * If clearing of @mask leaves no stop or trap pending, this function calls 301 * task_clear_jobctl_trapping(). 302 * 303 * CONTEXT: 304 * Must be called with @task->sighand->siglock held. 305 */ 306 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 307 { 308 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 309 310 if (mask & JOBCTL_STOP_PENDING) 311 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 312 313 task->jobctl &= ~mask; 314 315 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 316 task_clear_jobctl_trapping(task); 317 } 318 319 /** 320 * task_participate_group_stop - participate in a group stop 321 * @task: task participating in a group stop 322 * 323 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 324 * Group stop states are cleared and the group stop count is consumed if 325 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 326 * stop, the appropriate %SIGNAL_* flags are set. 327 * 328 * CONTEXT: 329 * Must be called with @task->sighand->siglock held. 330 * 331 * RETURNS: 332 * %true if group stop completion should be notified to the parent, %false 333 * otherwise. 334 */ 335 static bool task_participate_group_stop(struct task_struct *task) 336 { 337 struct signal_struct *sig = task->signal; 338 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 339 340 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 341 342 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 343 344 if (!consume) 345 return false; 346 347 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 348 sig->group_stop_count--; 349 350 /* 351 * Tell the caller to notify completion iff we are entering into a 352 * fresh group stop. Read comment in do_signal_stop() for details. 353 */ 354 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 355 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 356 return true; 357 } 358 return false; 359 } 360 361 /* 362 * allocate a new signal queue record 363 * - this may be called without locks if and only if t == current, otherwise an 364 * appropriate lock must be held to stop the target task from exiting 365 */ 366 static struct sigqueue * 367 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 368 { 369 struct sigqueue *q = NULL; 370 struct user_struct *user; 371 372 /* 373 * Protect access to @t credentials. This can go away when all 374 * callers hold rcu read lock. 375 */ 376 rcu_read_lock(); 377 user = get_uid(__task_cred(t)->user); 378 atomic_inc(&user->sigpending); 379 rcu_read_unlock(); 380 381 if (override_rlimit || 382 atomic_read(&user->sigpending) <= 383 task_rlimit(t, RLIMIT_SIGPENDING)) { 384 q = kmem_cache_alloc(sigqueue_cachep, flags); 385 } else { 386 print_dropped_signal(sig); 387 } 388 389 if (unlikely(q == NULL)) { 390 atomic_dec(&user->sigpending); 391 free_uid(user); 392 } else { 393 INIT_LIST_HEAD(&q->list); 394 q->flags = 0; 395 q->user = user; 396 } 397 398 return q; 399 } 400 401 static void __sigqueue_free(struct sigqueue *q) 402 { 403 if (q->flags & SIGQUEUE_PREALLOC) 404 return; 405 atomic_dec(&q->user->sigpending); 406 free_uid(q->user); 407 kmem_cache_free(sigqueue_cachep, q); 408 } 409 410 void flush_sigqueue(struct sigpending *queue) 411 { 412 struct sigqueue *q; 413 414 sigemptyset(&queue->signal); 415 while (!list_empty(&queue->list)) { 416 q = list_entry(queue->list.next, struct sigqueue , list); 417 list_del_init(&q->list); 418 __sigqueue_free(q); 419 } 420 } 421 422 /* 423 * Flush all pending signals for this kthread. 424 */ 425 void flush_signals(struct task_struct *t) 426 { 427 unsigned long flags; 428 429 spin_lock_irqsave(&t->sighand->siglock, flags); 430 clear_tsk_thread_flag(t, TIF_SIGPENDING); 431 flush_sigqueue(&t->pending); 432 flush_sigqueue(&t->signal->shared_pending); 433 spin_unlock_irqrestore(&t->sighand->siglock, flags); 434 } 435 436 #ifdef CONFIG_POSIX_TIMERS 437 static void __flush_itimer_signals(struct sigpending *pending) 438 { 439 sigset_t signal, retain; 440 struct sigqueue *q, *n; 441 442 signal = pending->signal; 443 sigemptyset(&retain); 444 445 list_for_each_entry_safe(q, n, &pending->list, list) { 446 int sig = q->info.si_signo; 447 448 if (likely(q->info.si_code != SI_TIMER)) { 449 sigaddset(&retain, sig); 450 } else { 451 sigdelset(&signal, sig); 452 list_del_init(&q->list); 453 __sigqueue_free(q); 454 } 455 } 456 457 sigorsets(&pending->signal, &signal, &retain); 458 } 459 460 void flush_itimer_signals(void) 461 { 462 struct task_struct *tsk = current; 463 unsigned long flags; 464 465 spin_lock_irqsave(&tsk->sighand->siglock, flags); 466 __flush_itimer_signals(&tsk->pending); 467 __flush_itimer_signals(&tsk->signal->shared_pending); 468 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 469 } 470 #endif 471 472 void ignore_signals(struct task_struct *t) 473 { 474 int i; 475 476 for (i = 0; i < _NSIG; ++i) 477 t->sighand->action[i].sa.sa_handler = SIG_IGN; 478 479 flush_signals(t); 480 } 481 482 /* 483 * Flush all handlers for a task. 484 */ 485 486 void 487 flush_signal_handlers(struct task_struct *t, int force_default) 488 { 489 int i; 490 struct k_sigaction *ka = &t->sighand->action[0]; 491 for (i = _NSIG ; i != 0 ; i--) { 492 if (force_default || ka->sa.sa_handler != SIG_IGN) 493 ka->sa.sa_handler = SIG_DFL; 494 ka->sa.sa_flags = 0; 495 #ifdef __ARCH_HAS_SA_RESTORER 496 ka->sa.sa_restorer = NULL; 497 #endif 498 sigemptyset(&ka->sa.sa_mask); 499 ka++; 500 } 501 } 502 503 int unhandled_signal(struct task_struct *tsk, int sig) 504 { 505 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 506 if (is_global_init(tsk)) 507 return 1; 508 if (handler != SIG_IGN && handler != SIG_DFL) 509 return 0; 510 /* if ptraced, let the tracer determine */ 511 return !tsk->ptrace; 512 } 513 514 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info, 515 bool *resched_timer) 516 { 517 struct sigqueue *q, *first = NULL; 518 519 /* 520 * Collect the siginfo appropriate to this signal. Check if 521 * there is another siginfo for the same signal. 522 */ 523 list_for_each_entry(q, &list->list, list) { 524 if (q->info.si_signo == sig) { 525 if (first) 526 goto still_pending; 527 first = q; 528 } 529 } 530 531 sigdelset(&list->signal, sig); 532 533 if (first) { 534 still_pending: 535 list_del_init(&first->list); 536 copy_siginfo(info, &first->info); 537 538 *resched_timer = 539 (first->flags & SIGQUEUE_PREALLOC) && 540 (info->si_code == SI_TIMER) && 541 (info->si_sys_private); 542 543 __sigqueue_free(first); 544 } else { 545 /* 546 * Ok, it wasn't in the queue. This must be 547 * a fast-pathed signal or we must have been 548 * out of queue space. So zero out the info. 549 */ 550 info->si_signo = sig; 551 info->si_errno = 0; 552 info->si_code = SI_USER; 553 info->si_pid = 0; 554 info->si_uid = 0; 555 } 556 } 557 558 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 559 siginfo_t *info, bool *resched_timer) 560 { 561 int sig = next_signal(pending, mask); 562 563 if (sig) 564 collect_signal(sig, pending, info, resched_timer); 565 return sig; 566 } 567 568 /* 569 * Dequeue a signal and return the element to the caller, which is 570 * expected to free it. 571 * 572 * All callers have to hold the siglock. 573 */ 574 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 575 { 576 bool resched_timer = false; 577 int signr; 578 579 /* We only dequeue private signals from ourselves, we don't let 580 * signalfd steal them 581 */ 582 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 583 if (!signr) { 584 signr = __dequeue_signal(&tsk->signal->shared_pending, 585 mask, info, &resched_timer); 586 #ifdef CONFIG_POSIX_TIMERS 587 /* 588 * itimer signal ? 589 * 590 * itimers are process shared and we restart periodic 591 * itimers in the signal delivery path to prevent DoS 592 * attacks in the high resolution timer case. This is 593 * compliant with the old way of self-restarting 594 * itimers, as the SIGALRM is a legacy signal and only 595 * queued once. Changing the restart behaviour to 596 * restart the timer in the signal dequeue path is 597 * reducing the timer noise on heavy loaded !highres 598 * systems too. 599 */ 600 if (unlikely(signr == SIGALRM)) { 601 struct hrtimer *tmr = &tsk->signal->real_timer; 602 603 if (!hrtimer_is_queued(tmr) && 604 tsk->signal->it_real_incr != 0) { 605 hrtimer_forward(tmr, tmr->base->get_time(), 606 tsk->signal->it_real_incr); 607 hrtimer_restart(tmr); 608 } 609 } 610 #endif 611 } 612 613 recalc_sigpending(); 614 if (!signr) 615 return 0; 616 617 if (unlikely(sig_kernel_stop(signr))) { 618 /* 619 * Set a marker that we have dequeued a stop signal. Our 620 * caller might release the siglock and then the pending 621 * stop signal it is about to process is no longer in the 622 * pending bitmasks, but must still be cleared by a SIGCONT 623 * (and overruled by a SIGKILL). So those cases clear this 624 * shared flag after we've set it. Note that this flag may 625 * remain set after the signal we return is ignored or 626 * handled. That doesn't matter because its only purpose 627 * is to alert stop-signal processing code when another 628 * processor has come along and cleared the flag. 629 */ 630 current->jobctl |= JOBCTL_STOP_DEQUEUED; 631 } 632 #ifdef CONFIG_POSIX_TIMERS 633 if (resched_timer) { 634 /* 635 * Release the siglock to ensure proper locking order 636 * of timer locks outside of siglocks. Note, we leave 637 * irqs disabled here, since the posix-timers code is 638 * about to disable them again anyway. 639 */ 640 spin_unlock(&tsk->sighand->siglock); 641 posixtimer_rearm(info); 642 spin_lock(&tsk->sighand->siglock); 643 } 644 #endif 645 return signr; 646 } 647 648 /* 649 * Tell a process that it has a new active signal.. 650 * 651 * NOTE! we rely on the previous spin_lock to 652 * lock interrupts for us! We can only be called with 653 * "siglock" held, and the local interrupt must 654 * have been disabled when that got acquired! 655 * 656 * No need to set need_resched since signal event passing 657 * goes through ->blocked 658 */ 659 void signal_wake_up_state(struct task_struct *t, unsigned int state) 660 { 661 set_tsk_thread_flag(t, TIF_SIGPENDING); 662 /* 663 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 664 * case. We don't check t->state here because there is a race with it 665 * executing another processor and just now entering stopped state. 666 * By using wake_up_state, we ensure the process will wake up and 667 * handle its death signal. 668 */ 669 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 670 kick_process(t); 671 } 672 673 /* 674 * Remove signals in mask from the pending set and queue. 675 * Returns 1 if any signals were found. 676 * 677 * All callers must be holding the siglock. 678 */ 679 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 680 { 681 struct sigqueue *q, *n; 682 sigset_t m; 683 684 sigandsets(&m, mask, &s->signal); 685 if (sigisemptyset(&m)) 686 return 0; 687 688 sigandnsets(&s->signal, &s->signal, mask); 689 list_for_each_entry_safe(q, n, &s->list, list) { 690 if (sigismember(mask, q->info.si_signo)) { 691 list_del_init(&q->list); 692 __sigqueue_free(q); 693 } 694 } 695 return 1; 696 } 697 698 static inline int is_si_special(const struct siginfo *info) 699 { 700 return info <= SEND_SIG_FORCED; 701 } 702 703 static inline bool si_fromuser(const struct siginfo *info) 704 { 705 return info == SEND_SIG_NOINFO || 706 (!is_si_special(info) && SI_FROMUSER(info)); 707 } 708 709 /* 710 * called with RCU read lock from check_kill_permission() 711 */ 712 static int kill_ok_by_cred(struct task_struct *t) 713 { 714 const struct cred *cred = current_cred(); 715 const struct cred *tcred = __task_cred(t); 716 717 if (uid_eq(cred->euid, tcred->suid) || 718 uid_eq(cred->euid, tcred->uid) || 719 uid_eq(cred->uid, tcred->suid) || 720 uid_eq(cred->uid, tcred->uid)) 721 return 1; 722 723 if (ns_capable(tcred->user_ns, CAP_KILL)) 724 return 1; 725 726 return 0; 727 } 728 729 /* 730 * Bad permissions for sending the signal 731 * - the caller must hold the RCU read lock 732 */ 733 static int check_kill_permission(int sig, struct siginfo *info, 734 struct task_struct *t) 735 { 736 struct pid *sid; 737 int error; 738 739 if (!valid_signal(sig)) 740 return -EINVAL; 741 742 if (!si_fromuser(info)) 743 return 0; 744 745 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 746 if (error) 747 return error; 748 749 if (!same_thread_group(current, t) && 750 !kill_ok_by_cred(t)) { 751 switch (sig) { 752 case SIGCONT: 753 sid = task_session(t); 754 /* 755 * We don't return the error if sid == NULL. The 756 * task was unhashed, the caller must notice this. 757 */ 758 if (!sid || sid == task_session(current)) 759 break; 760 default: 761 return -EPERM; 762 } 763 } 764 765 return security_task_kill(t, info, sig, 0); 766 } 767 768 /** 769 * ptrace_trap_notify - schedule trap to notify ptracer 770 * @t: tracee wanting to notify tracer 771 * 772 * This function schedules sticky ptrace trap which is cleared on the next 773 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 774 * ptracer. 775 * 776 * If @t is running, STOP trap will be taken. If trapped for STOP and 777 * ptracer is listening for events, tracee is woken up so that it can 778 * re-trap for the new event. If trapped otherwise, STOP trap will be 779 * eventually taken without returning to userland after the existing traps 780 * are finished by PTRACE_CONT. 781 * 782 * CONTEXT: 783 * Must be called with @task->sighand->siglock held. 784 */ 785 static void ptrace_trap_notify(struct task_struct *t) 786 { 787 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 788 assert_spin_locked(&t->sighand->siglock); 789 790 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 791 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 792 } 793 794 /* 795 * Handle magic process-wide effects of stop/continue signals. Unlike 796 * the signal actions, these happen immediately at signal-generation 797 * time regardless of blocking, ignoring, or handling. This does the 798 * actual continuing for SIGCONT, but not the actual stopping for stop 799 * signals. The process stop is done as a signal action for SIG_DFL. 800 * 801 * Returns true if the signal should be actually delivered, otherwise 802 * it should be dropped. 803 */ 804 static bool prepare_signal(int sig, struct task_struct *p, bool force) 805 { 806 struct signal_struct *signal = p->signal; 807 struct task_struct *t; 808 sigset_t flush; 809 810 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 811 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 812 return sig == SIGKILL; 813 /* 814 * The process is in the middle of dying, nothing to do. 815 */ 816 } else if (sig_kernel_stop(sig)) { 817 /* 818 * This is a stop signal. Remove SIGCONT from all queues. 819 */ 820 siginitset(&flush, sigmask(SIGCONT)); 821 flush_sigqueue_mask(&flush, &signal->shared_pending); 822 for_each_thread(p, t) 823 flush_sigqueue_mask(&flush, &t->pending); 824 } else if (sig == SIGCONT) { 825 unsigned int why; 826 /* 827 * Remove all stop signals from all queues, wake all threads. 828 */ 829 siginitset(&flush, SIG_KERNEL_STOP_MASK); 830 flush_sigqueue_mask(&flush, &signal->shared_pending); 831 for_each_thread(p, t) { 832 flush_sigqueue_mask(&flush, &t->pending); 833 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 834 if (likely(!(t->ptrace & PT_SEIZED))) 835 wake_up_state(t, __TASK_STOPPED); 836 else 837 ptrace_trap_notify(t); 838 } 839 840 /* 841 * Notify the parent with CLD_CONTINUED if we were stopped. 842 * 843 * If we were in the middle of a group stop, we pretend it 844 * was already finished, and then continued. Since SIGCHLD 845 * doesn't queue we report only CLD_STOPPED, as if the next 846 * CLD_CONTINUED was dropped. 847 */ 848 why = 0; 849 if (signal->flags & SIGNAL_STOP_STOPPED) 850 why |= SIGNAL_CLD_CONTINUED; 851 else if (signal->group_stop_count) 852 why |= SIGNAL_CLD_STOPPED; 853 854 if (why) { 855 /* 856 * The first thread which returns from do_signal_stop() 857 * will take ->siglock, notice SIGNAL_CLD_MASK, and 858 * notify its parent. See get_signal_to_deliver(). 859 */ 860 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 861 signal->group_stop_count = 0; 862 signal->group_exit_code = 0; 863 } 864 } 865 866 return !sig_ignored(p, sig, force); 867 } 868 869 /* 870 * Test if P wants to take SIG. After we've checked all threads with this, 871 * it's equivalent to finding no threads not blocking SIG. Any threads not 872 * blocking SIG were ruled out because they are not running and already 873 * have pending signals. Such threads will dequeue from the shared queue 874 * as soon as they're available, so putting the signal on the shared queue 875 * will be equivalent to sending it to one such thread. 876 */ 877 static inline int wants_signal(int sig, struct task_struct *p) 878 { 879 if (sigismember(&p->blocked, sig)) 880 return 0; 881 if (p->flags & PF_EXITING) 882 return 0; 883 if (sig == SIGKILL) 884 return 1; 885 if (task_is_stopped_or_traced(p)) 886 return 0; 887 return task_curr(p) || !signal_pending(p); 888 } 889 890 static void complete_signal(int sig, struct task_struct *p, int group) 891 { 892 struct signal_struct *signal = p->signal; 893 struct task_struct *t; 894 895 /* 896 * Now find a thread we can wake up to take the signal off the queue. 897 * 898 * If the main thread wants the signal, it gets first crack. 899 * Probably the least surprising to the average bear. 900 */ 901 if (wants_signal(sig, p)) 902 t = p; 903 else if (!group || thread_group_empty(p)) 904 /* 905 * There is just one thread and it does not need to be woken. 906 * It will dequeue unblocked signals before it runs again. 907 */ 908 return; 909 else { 910 /* 911 * Otherwise try to find a suitable thread. 912 */ 913 t = signal->curr_target; 914 while (!wants_signal(sig, t)) { 915 t = next_thread(t); 916 if (t == signal->curr_target) 917 /* 918 * No thread needs to be woken. 919 * Any eligible threads will see 920 * the signal in the queue soon. 921 */ 922 return; 923 } 924 signal->curr_target = t; 925 } 926 927 /* 928 * Found a killable thread. If the signal will be fatal, 929 * then start taking the whole group down immediately. 930 */ 931 if (sig_fatal(p, sig) && 932 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 933 !sigismember(&t->real_blocked, sig) && 934 (sig == SIGKILL || !t->ptrace)) { 935 /* 936 * This signal will be fatal to the whole group. 937 */ 938 if (!sig_kernel_coredump(sig)) { 939 /* 940 * Start a group exit and wake everybody up. 941 * This way we don't have other threads 942 * running and doing things after a slower 943 * thread has the fatal signal pending. 944 */ 945 signal->flags = SIGNAL_GROUP_EXIT; 946 signal->group_exit_code = sig; 947 signal->group_stop_count = 0; 948 t = p; 949 do { 950 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 951 sigaddset(&t->pending.signal, SIGKILL); 952 signal_wake_up(t, 1); 953 } while_each_thread(p, t); 954 return; 955 } 956 } 957 958 /* 959 * The signal is already in the shared-pending queue. 960 * Tell the chosen thread to wake up and dequeue it. 961 */ 962 signal_wake_up(t, sig == SIGKILL); 963 return; 964 } 965 966 static inline int legacy_queue(struct sigpending *signals, int sig) 967 { 968 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 969 } 970 971 #ifdef CONFIG_USER_NS 972 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 973 { 974 if (current_user_ns() == task_cred_xxx(t, user_ns)) 975 return; 976 977 if (SI_FROMKERNEL(info)) 978 return; 979 980 rcu_read_lock(); 981 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 982 make_kuid(current_user_ns(), info->si_uid)); 983 rcu_read_unlock(); 984 } 985 #else 986 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 987 { 988 return; 989 } 990 #endif 991 992 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 993 int group, int from_ancestor_ns) 994 { 995 struct sigpending *pending; 996 struct sigqueue *q; 997 int override_rlimit; 998 int ret = 0, result; 999 1000 assert_spin_locked(&t->sighand->siglock); 1001 1002 result = TRACE_SIGNAL_IGNORED; 1003 if (!prepare_signal(sig, t, 1004 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1005 goto ret; 1006 1007 pending = group ? &t->signal->shared_pending : &t->pending; 1008 /* 1009 * Short-circuit ignored signals and support queuing 1010 * exactly one non-rt signal, so that we can get more 1011 * detailed information about the cause of the signal. 1012 */ 1013 result = TRACE_SIGNAL_ALREADY_PENDING; 1014 if (legacy_queue(pending, sig)) 1015 goto ret; 1016 1017 result = TRACE_SIGNAL_DELIVERED; 1018 /* 1019 * fast-pathed signals for kernel-internal things like SIGSTOP 1020 * or SIGKILL. 1021 */ 1022 if (info == SEND_SIG_FORCED) 1023 goto out_set; 1024 1025 /* 1026 * Real-time signals must be queued if sent by sigqueue, or 1027 * some other real-time mechanism. It is implementation 1028 * defined whether kill() does so. We attempt to do so, on 1029 * the principle of least surprise, but since kill is not 1030 * allowed to fail with EAGAIN when low on memory we just 1031 * make sure at least one signal gets delivered and don't 1032 * pass on the info struct. 1033 */ 1034 if (sig < SIGRTMIN) 1035 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1036 else 1037 override_rlimit = 0; 1038 1039 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1040 if (q) { 1041 list_add_tail(&q->list, &pending->list); 1042 switch ((unsigned long) info) { 1043 case (unsigned long) SEND_SIG_NOINFO: 1044 q->info.si_signo = sig; 1045 q->info.si_errno = 0; 1046 q->info.si_code = SI_USER; 1047 q->info.si_pid = task_tgid_nr_ns(current, 1048 task_active_pid_ns(t)); 1049 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1050 break; 1051 case (unsigned long) SEND_SIG_PRIV: 1052 q->info.si_signo = sig; 1053 q->info.si_errno = 0; 1054 q->info.si_code = SI_KERNEL; 1055 q->info.si_pid = 0; 1056 q->info.si_uid = 0; 1057 break; 1058 default: 1059 copy_siginfo(&q->info, info); 1060 if (from_ancestor_ns) 1061 q->info.si_pid = 0; 1062 break; 1063 } 1064 1065 userns_fixup_signal_uid(&q->info, t); 1066 1067 } else if (!is_si_special(info)) { 1068 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1069 /* 1070 * Queue overflow, abort. We may abort if the 1071 * signal was rt and sent by user using something 1072 * other than kill(). 1073 */ 1074 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1075 ret = -EAGAIN; 1076 goto ret; 1077 } else { 1078 /* 1079 * This is a silent loss of information. We still 1080 * send the signal, but the *info bits are lost. 1081 */ 1082 result = TRACE_SIGNAL_LOSE_INFO; 1083 } 1084 } 1085 1086 out_set: 1087 signalfd_notify(t, sig); 1088 sigaddset(&pending->signal, sig); 1089 complete_signal(sig, t, group); 1090 ret: 1091 trace_signal_generate(sig, info, t, group, result); 1092 return ret; 1093 } 1094 1095 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1096 int group) 1097 { 1098 int from_ancestor_ns = 0; 1099 1100 #ifdef CONFIG_PID_NS 1101 from_ancestor_ns = si_fromuser(info) && 1102 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1103 #endif 1104 1105 return __send_signal(sig, info, t, group, from_ancestor_ns); 1106 } 1107 1108 static void print_fatal_signal(int signr) 1109 { 1110 struct pt_regs *regs = signal_pt_regs(); 1111 pr_info("potentially unexpected fatal signal %d.\n", signr); 1112 1113 #if defined(__i386__) && !defined(__arch_um__) 1114 pr_info("code at %08lx: ", regs->ip); 1115 { 1116 int i; 1117 for (i = 0; i < 16; i++) { 1118 unsigned char insn; 1119 1120 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1121 break; 1122 pr_cont("%02x ", insn); 1123 } 1124 } 1125 pr_cont("\n"); 1126 #endif 1127 preempt_disable(); 1128 show_regs(regs); 1129 preempt_enable(); 1130 } 1131 1132 static int __init setup_print_fatal_signals(char *str) 1133 { 1134 get_option (&str, &print_fatal_signals); 1135 1136 return 1; 1137 } 1138 1139 __setup("print-fatal-signals=", setup_print_fatal_signals); 1140 1141 int 1142 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1143 { 1144 return send_signal(sig, info, p, 1); 1145 } 1146 1147 static int 1148 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1149 { 1150 return send_signal(sig, info, t, 0); 1151 } 1152 1153 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1154 bool group) 1155 { 1156 unsigned long flags; 1157 int ret = -ESRCH; 1158 1159 if (lock_task_sighand(p, &flags)) { 1160 ret = send_signal(sig, info, p, group); 1161 unlock_task_sighand(p, &flags); 1162 } 1163 1164 return ret; 1165 } 1166 1167 /* 1168 * Force a signal that the process can't ignore: if necessary 1169 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1170 * 1171 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1172 * since we do not want to have a signal handler that was blocked 1173 * be invoked when user space had explicitly blocked it. 1174 * 1175 * We don't want to have recursive SIGSEGV's etc, for example, 1176 * that is why we also clear SIGNAL_UNKILLABLE. 1177 */ 1178 int 1179 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1180 { 1181 unsigned long int flags; 1182 int ret, blocked, ignored; 1183 struct k_sigaction *action; 1184 1185 spin_lock_irqsave(&t->sighand->siglock, flags); 1186 action = &t->sighand->action[sig-1]; 1187 ignored = action->sa.sa_handler == SIG_IGN; 1188 blocked = sigismember(&t->blocked, sig); 1189 if (blocked || ignored) { 1190 action->sa.sa_handler = SIG_DFL; 1191 if (blocked) { 1192 sigdelset(&t->blocked, sig); 1193 recalc_sigpending_and_wake(t); 1194 } 1195 } 1196 /* 1197 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1198 * debugging to leave init killable. 1199 */ 1200 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1201 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1202 ret = specific_send_sig_info(sig, info, t); 1203 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1204 1205 return ret; 1206 } 1207 1208 /* 1209 * Nuke all other threads in the group. 1210 */ 1211 int zap_other_threads(struct task_struct *p) 1212 { 1213 struct task_struct *t = p; 1214 int count = 0; 1215 1216 p->signal->group_stop_count = 0; 1217 1218 while_each_thread(p, t) { 1219 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1220 count++; 1221 1222 /* Don't bother with already dead threads */ 1223 if (t->exit_state) 1224 continue; 1225 sigaddset(&t->pending.signal, SIGKILL); 1226 signal_wake_up(t, 1); 1227 } 1228 1229 return count; 1230 } 1231 1232 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1233 unsigned long *flags) 1234 { 1235 struct sighand_struct *sighand; 1236 1237 for (;;) { 1238 /* 1239 * Disable interrupts early to avoid deadlocks. 1240 * See rcu_read_unlock() comment header for details. 1241 */ 1242 local_irq_save(*flags); 1243 rcu_read_lock(); 1244 sighand = rcu_dereference(tsk->sighand); 1245 if (unlikely(sighand == NULL)) { 1246 rcu_read_unlock(); 1247 local_irq_restore(*flags); 1248 break; 1249 } 1250 /* 1251 * This sighand can be already freed and even reused, but 1252 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1253 * initializes ->siglock: this slab can't go away, it has 1254 * the same object type, ->siglock can't be reinitialized. 1255 * 1256 * We need to ensure that tsk->sighand is still the same 1257 * after we take the lock, we can race with de_thread() or 1258 * __exit_signal(). In the latter case the next iteration 1259 * must see ->sighand == NULL. 1260 */ 1261 spin_lock(&sighand->siglock); 1262 if (likely(sighand == tsk->sighand)) { 1263 rcu_read_unlock(); 1264 break; 1265 } 1266 spin_unlock(&sighand->siglock); 1267 rcu_read_unlock(); 1268 local_irq_restore(*flags); 1269 } 1270 1271 return sighand; 1272 } 1273 1274 /* 1275 * send signal info to all the members of a group 1276 */ 1277 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1278 { 1279 int ret; 1280 1281 rcu_read_lock(); 1282 ret = check_kill_permission(sig, info, p); 1283 rcu_read_unlock(); 1284 1285 if (!ret && sig) 1286 ret = do_send_sig_info(sig, info, p, true); 1287 1288 return ret; 1289 } 1290 1291 /* 1292 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1293 * control characters do (^C, ^Z etc) 1294 * - the caller must hold at least a readlock on tasklist_lock 1295 */ 1296 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1297 { 1298 struct task_struct *p = NULL; 1299 int retval, success; 1300 1301 success = 0; 1302 retval = -ESRCH; 1303 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1304 int err = group_send_sig_info(sig, info, p); 1305 success |= !err; 1306 retval = err; 1307 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1308 return success ? 0 : retval; 1309 } 1310 1311 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1312 { 1313 int error = -ESRCH; 1314 struct task_struct *p; 1315 1316 for (;;) { 1317 rcu_read_lock(); 1318 p = pid_task(pid, PIDTYPE_PID); 1319 if (p) 1320 error = group_send_sig_info(sig, info, p); 1321 rcu_read_unlock(); 1322 if (likely(!p || error != -ESRCH)) 1323 return error; 1324 1325 /* 1326 * The task was unhashed in between, try again. If it 1327 * is dead, pid_task() will return NULL, if we race with 1328 * de_thread() it will find the new leader. 1329 */ 1330 } 1331 } 1332 1333 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1334 { 1335 int error; 1336 rcu_read_lock(); 1337 error = kill_pid_info(sig, info, find_vpid(pid)); 1338 rcu_read_unlock(); 1339 return error; 1340 } 1341 1342 static int kill_as_cred_perm(const struct cred *cred, 1343 struct task_struct *target) 1344 { 1345 const struct cred *pcred = __task_cred(target); 1346 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1347 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1348 return 0; 1349 return 1; 1350 } 1351 1352 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1353 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1354 const struct cred *cred, u32 secid) 1355 { 1356 int ret = -EINVAL; 1357 struct task_struct *p; 1358 unsigned long flags; 1359 1360 if (!valid_signal(sig)) 1361 return ret; 1362 1363 rcu_read_lock(); 1364 p = pid_task(pid, PIDTYPE_PID); 1365 if (!p) { 1366 ret = -ESRCH; 1367 goto out_unlock; 1368 } 1369 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1370 ret = -EPERM; 1371 goto out_unlock; 1372 } 1373 ret = security_task_kill(p, info, sig, secid); 1374 if (ret) 1375 goto out_unlock; 1376 1377 if (sig) { 1378 if (lock_task_sighand(p, &flags)) { 1379 ret = __send_signal(sig, info, p, 1, 0); 1380 unlock_task_sighand(p, &flags); 1381 } else 1382 ret = -ESRCH; 1383 } 1384 out_unlock: 1385 rcu_read_unlock(); 1386 return ret; 1387 } 1388 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1389 1390 /* 1391 * kill_something_info() interprets pid in interesting ways just like kill(2). 1392 * 1393 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1394 * is probably wrong. Should make it like BSD or SYSV. 1395 */ 1396 1397 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1398 { 1399 int ret; 1400 1401 if (pid > 0) { 1402 rcu_read_lock(); 1403 ret = kill_pid_info(sig, info, find_vpid(pid)); 1404 rcu_read_unlock(); 1405 return ret; 1406 } 1407 1408 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1409 if (pid == INT_MIN) 1410 return -ESRCH; 1411 1412 read_lock(&tasklist_lock); 1413 if (pid != -1) { 1414 ret = __kill_pgrp_info(sig, info, 1415 pid ? find_vpid(-pid) : task_pgrp(current)); 1416 } else { 1417 int retval = 0, count = 0; 1418 struct task_struct * p; 1419 1420 for_each_process(p) { 1421 if (task_pid_vnr(p) > 1 && 1422 !same_thread_group(p, current)) { 1423 int err = group_send_sig_info(sig, info, p); 1424 ++count; 1425 if (err != -EPERM) 1426 retval = err; 1427 } 1428 } 1429 ret = count ? retval : -ESRCH; 1430 } 1431 read_unlock(&tasklist_lock); 1432 1433 return ret; 1434 } 1435 1436 /* 1437 * These are for backward compatibility with the rest of the kernel source. 1438 */ 1439 1440 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1441 { 1442 /* 1443 * Make sure legacy kernel users don't send in bad values 1444 * (normal paths check this in check_kill_permission). 1445 */ 1446 if (!valid_signal(sig)) 1447 return -EINVAL; 1448 1449 return do_send_sig_info(sig, info, p, false); 1450 } 1451 1452 #define __si_special(priv) \ 1453 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1454 1455 int 1456 send_sig(int sig, struct task_struct *p, int priv) 1457 { 1458 return send_sig_info(sig, __si_special(priv), p); 1459 } 1460 1461 void 1462 force_sig(int sig, struct task_struct *p) 1463 { 1464 force_sig_info(sig, SEND_SIG_PRIV, p); 1465 } 1466 1467 /* 1468 * When things go south during signal handling, we 1469 * will force a SIGSEGV. And if the signal that caused 1470 * the problem was already a SIGSEGV, we'll want to 1471 * make sure we don't even try to deliver the signal.. 1472 */ 1473 int 1474 force_sigsegv(int sig, struct task_struct *p) 1475 { 1476 if (sig == SIGSEGV) { 1477 unsigned long flags; 1478 spin_lock_irqsave(&p->sighand->siglock, flags); 1479 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1480 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1481 } 1482 force_sig(SIGSEGV, p); 1483 return 0; 1484 } 1485 1486 int kill_pgrp(struct pid *pid, int sig, int priv) 1487 { 1488 int ret; 1489 1490 read_lock(&tasklist_lock); 1491 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1492 read_unlock(&tasklist_lock); 1493 1494 return ret; 1495 } 1496 EXPORT_SYMBOL(kill_pgrp); 1497 1498 int kill_pid(struct pid *pid, int sig, int priv) 1499 { 1500 return kill_pid_info(sig, __si_special(priv), pid); 1501 } 1502 EXPORT_SYMBOL(kill_pid); 1503 1504 /* 1505 * These functions support sending signals using preallocated sigqueue 1506 * structures. This is needed "because realtime applications cannot 1507 * afford to lose notifications of asynchronous events, like timer 1508 * expirations or I/O completions". In the case of POSIX Timers 1509 * we allocate the sigqueue structure from the timer_create. If this 1510 * allocation fails we are able to report the failure to the application 1511 * with an EAGAIN error. 1512 */ 1513 struct sigqueue *sigqueue_alloc(void) 1514 { 1515 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1516 1517 if (q) 1518 q->flags |= SIGQUEUE_PREALLOC; 1519 1520 return q; 1521 } 1522 1523 void sigqueue_free(struct sigqueue *q) 1524 { 1525 unsigned long flags; 1526 spinlock_t *lock = ¤t->sighand->siglock; 1527 1528 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1529 /* 1530 * We must hold ->siglock while testing q->list 1531 * to serialize with collect_signal() or with 1532 * __exit_signal()->flush_sigqueue(). 1533 */ 1534 spin_lock_irqsave(lock, flags); 1535 q->flags &= ~SIGQUEUE_PREALLOC; 1536 /* 1537 * If it is queued it will be freed when dequeued, 1538 * like the "regular" sigqueue. 1539 */ 1540 if (!list_empty(&q->list)) 1541 q = NULL; 1542 spin_unlock_irqrestore(lock, flags); 1543 1544 if (q) 1545 __sigqueue_free(q); 1546 } 1547 1548 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1549 { 1550 int sig = q->info.si_signo; 1551 struct sigpending *pending; 1552 unsigned long flags; 1553 int ret, result; 1554 1555 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1556 1557 ret = -1; 1558 if (!likely(lock_task_sighand(t, &flags))) 1559 goto ret; 1560 1561 ret = 1; /* the signal is ignored */ 1562 result = TRACE_SIGNAL_IGNORED; 1563 if (!prepare_signal(sig, t, false)) 1564 goto out; 1565 1566 ret = 0; 1567 if (unlikely(!list_empty(&q->list))) { 1568 /* 1569 * If an SI_TIMER entry is already queue just increment 1570 * the overrun count. 1571 */ 1572 BUG_ON(q->info.si_code != SI_TIMER); 1573 q->info.si_overrun++; 1574 result = TRACE_SIGNAL_ALREADY_PENDING; 1575 goto out; 1576 } 1577 q->info.si_overrun = 0; 1578 1579 signalfd_notify(t, sig); 1580 pending = group ? &t->signal->shared_pending : &t->pending; 1581 list_add_tail(&q->list, &pending->list); 1582 sigaddset(&pending->signal, sig); 1583 complete_signal(sig, t, group); 1584 result = TRACE_SIGNAL_DELIVERED; 1585 out: 1586 trace_signal_generate(sig, &q->info, t, group, result); 1587 unlock_task_sighand(t, &flags); 1588 ret: 1589 return ret; 1590 } 1591 1592 /* 1593 * Let a parent know about the death of a child. 1594 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1595 * 1596 * Returns true if our parent ignored us and so we've switched to 1597 * self-reaping. 1598 */ 1599 bool do_notify_parent(struct task_struct *tsk, int sig) 1600 { 1601 struct siginfo info; 1602 unsigned long flags; 1603 struct sighand_struct *psig; 1604 bool autoreap = false; 1605 u64 utime, stime; 1606 1607 BUG_ON(sig == -1); 1608 1609 /* do_notify_parent_cldstop should have been called instead. */ 1610 BUG_ON(task_is_stopped_or_traced(tsk)); 1611 1612 BUG_ON(!tsk->ptrace && 1613 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1614 1615 if (sig != SIGCHLD) { 1616 /* 1617 * This is only possible if parent == real_parent. 1618 * Check if it has changed security domain. 1619 */ 1620 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1621 sig = SIGCHLD; 1622 } 1623 1624 info.si_signo = sig; 1625 info.si_errno = 0; 1626 /* 1627 * We are under tasklist_lock here so our parent is tied to 1628 * us and cannot change. 1629 * 1630 * task_active_pid_ns will always return the same pid namespace 1631 * until a task passes through release_task. 1632 * 1633 * write_lock() currently calls preempt_disable() which is the 1634 * same as rcu_read_lock(), but according to Oleg, this is not 1635 * correct to rely on this 1636 */ 1637 rcu_read_lock(); 1638 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1639 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1640 task_uid(tsk)); 1641 rcu_read_unlock(); 1642 1643 task_cputime(tsk, &utime, &stime); 1644 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1645 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1646 1647 info.si_status = tsk->exit_code & 0x7f; 1648 if (tsk->exit_code & 0x80) 1649 info.si_code = CLD_DUMPED; 1650 else if (tsk->exit_code & 0x7f) 1651 info.si_code = CLD_KILLED; 1652 else { 1653 info.si_code = CLD_EXITED; 1654 info.si_status = tsk->exit_code >> 8; 1655 } 1656 1657 psig = tsk->parent->sighand; 1658 spin_lock_irqsave(&psig->siglock, flags); 1659 if (!tsk->ptrace && sig == SIGCHLD && 1660 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1661 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1662 /* 1663 * We are exiting and our parent doesn't care. POSIX.1 1664 * defines special semantics for setting SIGCHLD to SIG_IGN 1665 * or setting the SA_NOCLDWAIT flag: we should be reaped 1666 * automatically and not left for our parent's wait4 call. 1667 * Rather than having the parent do it as a magic kind of 1668 * signal handler, we just set this to tell do_exit that we 1669 * can be cleaned up without becoming a zombie. Note that 1670 * we still call __wake_up_parent in this case, because a 1671 * blocked sys_wait4 might now return -ECHILD. 1672 * 1673 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1674 * is implementation-defined: we do (if you don't want 1675 * it, just use SIG_IGN instead). 1676 */ 1677 autoreap = true; 1678 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1679 sig = 0; 1680 } 1681 if (valid_signal(sig) && sig) 1682 __group_send_sig_info(sig, &info, tsk->parent); 1683 __wake_up_parent(tsk, tsk->parent); 1684 spin_unlock_irqrestore(&psig->siglock, flags); 1685 1686 return autoreap; 1687 } 1688 1689 /** 1690 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1691 * @tsk: task reporting the state change 1692 * @for_ptracer: the notification is for ptracer 1693 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1694 * 1695 * Notify @tsk's parent that the stopped/continued state has changed. If 1696 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1697 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1698 * 1699 * CONTEXT: 1700 * Must be called with tasklist_lock at least read locked. 1701 */ 1702 static void do_notify_parent_cldstop(struct task_struct *tsk, 1703 bool for_ptracer, int why) 1704 { 1705 struct siginfo info; 1706 unsigned long flags; 1707 struct task_struct *parent; 1708 struct sighand_struct *sighand; 1709 u64 utime, stime; 1710 1711 if (for_ptracer) { 1712 parent = tsk->parent; 1713 } else { 1714 tsk = tsk->group_leader; 1715 parent = tsk->real_parent; 1716 } 1717 1718 info.si_signo = SIGCHLD; 1719 info.si_errno = 0; 1720 /* 1721 * see comment in do_notify_parent() about the following 4 lines 1722 */ 1723 rcu_read_lock(); 1724 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1725 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1726 rcu_read_unlock(); 1727 1728 task_cputime(tsk, &utime, &stime); 1729 info.si_utime = nsec_to_clock_t(utime); 1730 info.si_stime = nsec_to_clock_t(stime); 1731 1732 info.si_code = why; 1733 switch (why) { 1734 case CLD_CONTINUED: 1735 info.si_status = SIGCONT; 1736 break; 1737 case CLD_STOPPED: 1738 info.si_status = tsk->signal->group_exit_code & 0x7f; 1739 break; 1740 case CLD_TRAPPED: 1741 info.si_status = tsk->exit_code & 0x7f; 1742 break; 1743 default: 1744 BUG(); 1745 } 1746 1747 sighand = parent->sighand; 1748 spin_lock_irqsave(&sighand->siglock, flags); 1749 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1750 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1751 __group_send_sig_info(SIGCHLD, &info, parent); 1752 /* 1753 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1754 */ 1755 __wake_up_parent(tsk, parent); 1756 spin_unlock_irqrestore(&sighand->siglock, flags); 1757 } 1758 1759 static inline int may_ptrace_stop(void) 1760 { 1761 if (!likely(current->ptrace)) 1762 return 0; 1763 /* 1764 * Are we in the middle of do_coredump? 1765 * If so and our tracer is also part of the coredump stopping 1766 * is a deadlock situation, and pointless because our tracer 1767 * is dead so don't allow us to stop. 1768 * If SIGKILL was already sent before the caller unlocked 1769 * ->siglock we must see ->core_state != NULL. Otherwise it 1770 * is safe to enter schedule(). 1771 * 1772 * This is almost outdated, a task with the pending SIGKILL can't 1773 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1774 * after SIGKILL was already dequeued. 1775 */ 1776 if (unlikely(current->mm->core_state) && 1777 unlikely(current->mm == current->parent->mm)) 1778 return 0; 1779 1780 return 1; 1781 } 1782 1783 /* 1784 * Return non-zero if there is a SIGKILL that should be waking us up. 1785 * Called with the siglock held. 1786 */ 1787 static int sigkill_pending(struct task_struct *tsk) 1788 { 1789 return sigismember(&tsk->pending.signal, SIGKILL) || 1790 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1791 } 1792 1793 /* 1794 * This must be called with current->sighand->siglock held. 1795 * 1796 * This should be the path for all ptrace stops. 1797 * We always set current->last_siginfo while stopped here. 1798 * That makes it a way to test a stopped process for 1799 * being ptrace-stopped vs being job-control-stopped. 1800 * 1801 * If we actually decide not to stop at all because the tracer 1802 * is gone, we keep current->exit_code unless clear_code. 1803 */ 1804 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1805 __releases(¤t->sighand->siglock) 1806 __acquires(¤t->sighand->siglock) 1807 { 1808 bool gstop_done = false; 1809 1810 if (arch_ptrace_stop_needed(exit_code, info)) { 1811 /* 1812 * The arch code has something special to do before a 1813 * ptrace stop. This is allowed to block, e.g. for faults 1814 * on user stack pages. We can't keep the siglock while 1815 * calling arch_ptrace_stop, so we must release it now. 1816 * To preserve proper semantics, we must do this before 1817 * any signal bookkeeping like checking group_stop_count. 1818 * Meanwhile, a SIGKILL could come in before we retake the 1819 * siglock. That must prevent us from sleeping in TASK_TRACED. 1820 * So after regaining the lock, we must check for SIGKILL. 1821 */ 1822 spin_unlock_irq(¤t->sighand->siglock); 1823 arch_ptrace_stop(exit_code, info); 1824 spin_lock_irq(¤t->sighand->siglock); 1825 if (sigkill_pending(current)) 1826 return; 1827 } 1828 1829 /* 1830 * We're committing to trapping. TRACED should be visible before 1831 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1832 * Also, transition to TRACED and updates to ->jobctl should be 1833 * atomic with respect to siglock and should be done after the arch 1834 * hook as siglock is released and regrabbed across it. 1835 */ 1836 set_current_state(TASK_TRACED); 1837 1838 current->last_siginfo = info; 1839 current->exit_code = exit_code; 1840 1841 /* 1842 * If @why is CLD_STOPPED, we're trapping to participate in a group 1843 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1844 * across siglock relocks since INTERRUPT was scheduled, PENDING 1845 * could be clear now. We act as if SIGCONT is received after 1846 * TASK_TRACED is entered - ignore it. 1847 */ 1848 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1849 gstop_done = task_participate_group_stop(current); 1850 1851 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1852 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1853 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1854 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1855 1856 /* entering a trap, clear TRAPPING */ 1857 task_clear_jobctl_trapping(current); 1858 1859 spin_unlock_irq(¤t->sighand->siglock); 1860 read_lock(&tasklist_lock); 1861 if (may_ptrace_stop()) { 1862 /* 1863 * Notify parents of the stop. 1864 * 1865 * While ptraced, there are two parents - the ptracer and 1866 * the real_parent of the group_leader. The ptracer should 1867 * know about every stop while the real parent is only 1868 * interested in the completion of group stop. The states 1869 * for the two don't interact with each other. Notify 1870 * separately unless they're gonna be duplicates. 1871 */ 1872 do_notify_parent_cldstop(current, true, why); 1873 if (gstop_done && ptrace_reparented(current)) 1874 do_notify_parent_cldstop(current, false, why); 1875 1876 /* 1877 * Don't want to allow preemption here, because 1878 * sys_ptrace() needs this task to be inactive. 1879 * 1880 * XXX: implement read_unlock_no_resched(). 1881 */ 1882 preempt_disable(); 1883 read_unlock(&tasklist_lock); 1884 preempt_enable_no_resched(); 1885 freezable_schedule(); 1886 } else { 1887 /* 1888 * By the time we got the lock, our tracer went away. 1889 * Don't drop the lock yet, another tracer may come. 1890 * 1891 * If @gstop_done, the ptracer went away between group stop 1892 * completion and here. During detach, it would have set 1893 * JOBCTL_STOP_PENDING on us and we'll re-enter 1894 * TASK_STOPPED in do_signal_stop() on return, so notifying 1895 * the real parent of the group stop completion is enough. 1896 */ 1897 if (gstop_done) 1898 do_notify_parent_cldstop(current, false, why); 1899 1900 /* tasklist protects us from ptrace_freeze_traced() */ 1901 __set_current_state(TASK_RUNNING); 1902 if (clear_code) 1903 current->exit_code = 0; 1904 read_unlock(&tasklist_lock); 1905 } 1906 1907 /* 1908 * We are back. Now reacquire the siglock before touching 1909 * last_siginfo, so that we are sure to have synchronized with 1910 * any signal-sending on another CPU that wants to examine it. 1911 */ 1912 spin_lock_irq(¤t->sighand->siglock); 1913 current->last_siginfo = NULL; 1914 1915 /* LISTENING can be set only during STOP traps, clear it */ 1916 current->jobctl &= ~JOBCTL_LISTENING; 1917 1918 /* 1919 * Queued signals ignored us while we were stopped for tracing. 1920 * So check for any that we should take before resuming user mode. 1921 * This sets TIF_SIGPENDING, but never clears it. 1922 */ 1923 recalc_sigpending_tsk(current); 1924 } 1925 1926 static void ptrace_do_notify(int signr, int exit_code, int why) 1927 { 1928 siginfo_t info; 1929 1930 memset(&info, 0, sizeof info); 1931 info.si_signo = signr; 1932 info.si_code = exit_code; 1933 info.si_pid = task_pid_vnr(current); 1934 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1935 1936 /* Let the debugger run. */ 1937 ptrace_stop(exit_code, why, 1, &info); 1938 } 1939 1940 void ptrace_notify(int exit_code) 1941 { 1942 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1943 if (unlikely(current->task_works)) 1944 task_work_run(); 1945 1946 spin_lock_irq(¤t->sighand->siglock); 1947 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1948 spin_unlock_irq(¤t->sighand->siglock); 1949 } 1950 1951 /** 1952 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1953 * @signr: signr causing group stop if initiating 1954 * 1955 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1956 * and participate in it. If already set, participate in the existing 1957 * group stop. If participated in a group stop (and thus slept), %true is 1958 * returned with siglock released. 1959 * 1960 * If ptraced, this function doesn't handle stop itself. Instead, 1961 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1962 * untouched. The caller must ensure that INTERRUPT trap handling takes 1963 * places afterwards. 1964 * 1965 * CONTEXT: 1966 * Must be called with @current->sighand->siglock held, which is released 1967 * on %true return. 1968 * 1969 * RETURNS: 1970 * %false if group stop is already cancelled or ptrace trap is scheduled. 1971 * %true if participated in group stop. 1972 */ 1973 static bool do_signal_stop(int signr) 1974 __releases(¤t->sighand->siglock) 1975 { 1976 struct signal_struct *sig = current->signal; 1977 1978 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 1979 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 1980 struct task_struct *t; 1981 1982 /* signr will be recorded in task->jobctl for retries */ 1983 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 1984 1985 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 1986 unlikely(signal_group_exit(sig))) 1987 return false; 1988 /* 1989 * There is no group stop already in progress. We must 1990 * initiate one now. 1991 * 1992 * While ptraced, a task may be resumed while group stop is 1993 * still in effect and then receive a stop signal and 1994 * initiate another group stop. This deviates from the 1995 * usual behavior as two consecutive stop signals can't 1996 * cause two group stops when !ptraced. That is why we 1997 * also check !task_is_stopped(t) below. 1998 * 1999 * The condition can be distinguished by testing whether 2000 * SIGNAL_STOP_STOPPED is already set. Don't generate 2001 * group_exit_code in such case. 2002 * 2003 * This is not necessary for SIGNAL_STOP_CONTINUED because 2004 * an intervening stop signal is required to cause two 2005 * continued events regardless of ptrace. 2006 */ 2007 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2008 sig->group_exit_code = signr; 2009 2010 sig->group_stop_count = 0; 2011 2012 if (task_set_jobctl_pending(current, signr | gstop)) 2013 sig->group_stop_count++; 2014 2015 t = current; 2016 while_each_thread(current, t) { 2017 /* 2018 * Setting state to TASK_STOPPED for a group 2019 * stop is always done with the siglock held, 2020 * so this check has no races. 2021 */ 2022 if (!task_is_stopped(t) && 2023 task_set_jobctl_pending(t, signr | gstop)) { 2024 sig->group_stop_count++; 2025 if (likely(!(t->ptrace & PT_SEIZED))) 2026 signal_wake_up(t, 0); 2027 else 2028 ptrace_trap_notify(t); 2029 } 2030 } 2031 } 2032 2033 if (likely(!current->ptrace)) { 2034 int notify = 0; 2035 2036 /* 2037 * If there are no other threads in the group, or if there 2038 * is a group stop in progress and we are the last to stop, 2039 * report to the parent. 2040 */ 2041 if (task_participate_group_stop(current)) 2042 notify = CLD_STOPPED; 2043 2044 __set_current_state(TASK_STOPPED); 2045 spin_unlock_irq(¤t->sighand->siglock); 2046 2047 /* 2048 * Notify the parent of the group stop completion. Because 2049 * we're not holding either the siglock or tasklist_lock 2050 * here, ptracer may attach inbetween; however, this is for 2051 * group stop and should always be delivered to the real 2052 * parent of the group leader. The new ptracer will get 2053 * its notification when this task transitions into 2054 * TASK_TRACED. 2055 */ 2056 if (notify) { 2057 read_lock(&tasklist_lock); 2058 do_notify_parent_cldstop(current, false, notify); 2059 read_unlock(&tasklist_lock); 2060 } 2061 2062 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2063 freezable_schedule(); 2064 return true; 2065 } else { 2066 /* 2067 * While ptraced, group stop is handled by STOP trap. 2068 * Schedule it and let the caller deal with it. 2069 */ 2070 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2071 return false; 2072 } 2073 } 2074 2075 /** 2076 * do_jobctl_trap - take care of ptrace jobctl traps 2077 * 2078 * When PT_SEIZED, it's used for both group stop and explicit 2079 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2080 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2081 * the stop signal; otherwise, %SIGTRAP. 2082 * 2083 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2084 * number as exit_code and no siginfo. 2085 * 2086 * CONTEXT: 2087 * Must be called with @current->sighand->siglock held, which may be 2088 * released and re-acquired before returning with intervening sleep. 2089 */ 2090 static void do_jobctl_trap(void) 2091 { 2092 struct signal_struct *signal = current->signal; 2093 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2094 2095 if (current->ptrace & PT_SEIZED) { 2096 if (!signal->group_stop_count && 2097 !(signal->flags & SIGNAL_STOP_STOPPED)) 2098 signr = SIGTRAP; 2099 WARN_ON_ONCE(!signr); 2100 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2101 CLD_STOPPED); 2102 } else { 2103 WARN_ON_ONCE(!signr); 2104 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2105 current->exit_code = 0; 2106 } 2107 } 2108 2109 static int ptrace_signal(int signr, siginfo_t *info) 2110 { 2111 /* 2112 * We do not check sig_kernel_stop(signr) but set this marker 2113 * unconditionally because we do not know whether debugger will 2114 * change signr. This flag has no meaning unless we are going 2115 * to stop after return from ptrace_stop(). In this case it will 2116 * be checked in do_signal_stop(), we should only stop if it was 2117 * not cleared by SIGCONT while we were sleeping. See also the 2118 * comment in dequeue_signal(). 2119 */ 2120 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2121 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2122 2123 /* We're back. Did the debugger cancel the sig? */ 2124 signr = current->exit_code; 2125 if (signr == 0) 2126 return signr; 2127 2128 current->exit_code = 0; 2129 2130 /* 2131 * Update the siginfo structure if the signal has 2132 * changed. If the debugger wanted something 2133 * specific in the siginfo structure then it should 2134 * have updated *info via PTRACE_SETSIGINFO. 2135 */ 2136 if (signr != info->si_signo) { 2137 info->si_signo = signr; 2138 info->si_errno = 0; 2139 info->si_code = SI_USER; 2140 rcu_read_lock(); 2141 info->si_pid = task_pid_vnr(current->parent); 2142 info->si_uid = from_kuid_munged(current_user_ns(), 2143 task_uid(current->parent)); 2144 rcu_read_unlock(); 2145 } 2146 2147 /* If the (new) signal is now blocked, requeue it. */ 2148 if (sigismember(¤t->blocked, signr)) { 2149 specific_send_sig_info(signr, info, current); 2150 signr = 0; 2151 } 2152 2153 return signr; 2154 } 2155 2156 int get_signal(struct ksignal *ksig) 2157 { 2158 struct sighand_struct *sighand = current->sighand; 2159 struct signal_struct *signal = current->signal; 2160 int signr; 2161 2162 if (unlikely(current->task_works)) 2163 task_work_run(); 2164 2165 if (unlikely(uprobe_deny_signal())) 2166 return 0; 2167 2168 /* 2169 * Do this once, we can't return to user-mode if freezing() == T. 2170 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2171 * thus do not need another check after return. 2172 */ 2173 try_to_freeze(); 2174 2175 relock: 2176 spin_lock_irq(&sighand->siglock); 2177 /* 2178 * Every stopped thread goes here after wakeup. Check to see if 2179 * we should notify the parent, prepare_signal(SIGCONT) encodes 2180 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2181 */ 2182 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2183 int why; 2184 2185 if (signal->flags & SIGNAL_CLD_CONTINUED) 2186 why = CLD_CONTINUED; 2187 else 2188 why = CLD_STOPPED; 2189 2190 signal->flags &= ~SIGNAL_CLD_MASK; 2191 2192 spin_unlock_irq(&sighand->siglock); 2193 2194 /* 2195 * Notify the parent that we're continuing. This event is 2196 * always per-process and doesn't make whole lot of sense 2197 * for ptracers, who shouldn't consume the state via 2198 * wait(2) either, but, for backward compatibility, notify 2199 * the ptracer of the group leader too unless it's gonna be 2200 * a duplicate. 2201 */ 2202 read_lock(&tasklist_lock); 2203 do_notify_parent_cldstop(current, false, why); 2204 2205 if (ptrace_reparented(current->group_leader)) 2206 do_notify_parent_cldstop(current->group_leader, 2207 true, why); 2208 read_unlock(&tasklist_lock); 2209 2210 goto relock; 2211 } 2212 2213 for (;;) { 2214 struct k_sigaction *ka; 2215 2216 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2217 do_signal_stop(0)) 2218 goto relock; 2219 2220 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2221 do_jobctl_trap(); 2222 spin_unlock_irq(&sighand->siglock); 2223 goto relock; 2224 } 2225 2226 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2227 2228 if (!signr) 2229 break; /* will return 0 */ 2230 2231 if (unlikely(current->ptrace) && signr != SIGKILL) { 2232 signr = ptrace_signal(signr, &ksig->info); 2233 if (!signr) 2234 continue; 2235 } 2236 2237 ka = &sighand->action[signr-1]; 2238 2239 /* Trace actually delivered signals. */ 2240 trace_signal_deliver(signr, &ksig->info, ka); 2241 2242 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2243 continue; 2244 if (ka->sa.sa_handler != SIG_DFL) { 2245 /* Run the handler. */ 2246 ksig->ka = *ka; 2247 2248 if (ka->sa.sa_flags & SA_ONESHOT) 2249 ka->sa.sa_handler = SIG_DFL; 2250 2251 break; /* will return non-zero "signr" value */ 2252 } 2253 2254 /* 2255 * Now we are doing the default action for this signal. 2256 */ 2257 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2258 continue; 2259 2260 /* 2261 * Global init gets no signals it doesn't want. 2262 * Container-init gets no signals it doesn't want from same 2263 * container. 2264 * 2265 * Note that if global/container-init sees a sig_kernel_only() 2266 * signal here, the signal must have been generated internally 2267 * or must have come from an ancestor namespace. In either 2268 * case, the signal cannot be dropped. 2269 */ 2270 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2271 !sig_kernel_only(signr)) 2272 continue; 2273 2274 if (sig_kernel_stop(signr)) { 2275 /* 2276 * The default action is to stop all threads in 2277 * the thread group. The job control signals 2278 * do nothing in an orphaned pgrp, but SIGSTOP 2279 * always works. Note that siglock needs to be 2280 * dropped during the call to is_orphaned_pgrp() 2281 * because of lock ordering with tasklist_lock. 2282 * This allows an intervening SIGCONT to be posted. 2283 * We need to check for that and bail out if necessary. 2284 */ 2285 if (signr != SIGSTOP) { 2286 spin_unlock_irq(&sighand->siglock); 2287 2288 /* signals can be posted during this window */ 2289 2290 if (is_current_pgrp_orphaned()) 2291 goto relock; 2292 2293 spin_lock_irq(&sighand->siglock); 2294 } 2295 2296 if (likely(do_signal_stop(ksig->info.si_signo))) { 2297 /* It released the siglock. */ 2298 goto relock; 2299 } 2300 2301 /* 2302 * We didn't actually stop, due to a race 2303 * with SIGCONT or something like that. 2304 */ 2305 continue; 2306 } 2307 2308 spin_unlock_irq(&sighand->siglock); 2309 2310 /* 2311 * Anything else is fatal, maybe with a core dump. 2312 */ 2313 current->flags |= PF_SIGNALED; 2314 2315 if (sig_kernel_coredump(signr)) { 2316 if (print_fatal_signals) 2317 print_fatal_signal(ksig->info.si_signo); 2318 proc_coredump_connector(current); 2319 /* 2320 * If it was able to dump core, this kills all 2321 * other threads in the group and synchronizes with 2322 * their demise. If we lost the race with another 2323 * thread getting here, it set group_exit_code 2324 * first and our do_group_exit call below will use 2325 * that value and ignore the one we pass it. 2326 */ 2327 do_coredump(&ksig->info); 2328 } 2329 2330 /* 2331 * Death signals, no core dump. 2332 */ 2333 do_group_exit(ksig->info.si_signo); 2334 /* NOTREACHED */ 2335 } 2336 spin_unlock_irq(&sighand->siglock); 2337 2338 ksig->sig = signr; 2339 return ksig->sig > 0; 2340 } 2341 2342 /** 2343 * signal_delivered - 2344 * @ksig: kernel signal struct 2345 * @stepping: nonzero if debugger single-step or block-step in use 2346 * 2347 * This function should be called when a signal has successfully been 2348 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2349 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2350 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2351 */ 2352 static void signal_delivered(struct ksignal *ksig, int stepping) 2353 { 2354 sigset_t blocked; 2355 2356 /* A signal was successfully delivered, and the 2357 saved sigmask was stored on the signal frame, 2358 and will be restored by sigreturn. So we can 2359 simply clear the restore sigmask flag. */ 2360 clear_restore_sigmask(); 2361 2362 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2363 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2364 sigaddset(&blocked, ksig->sig); 2365 set_current_blocked(&blocked); 2366 tracehook_signal_handler(stepping); 2367 } 2368 2369 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2370 { 2371 if (failed) 2372 force_sigsegv(ksig->sig, current); 2373 else 2374 signal_delivered(ksig, stepping); 2375 } 2376 2377 /* 2378 * It could be that complete_signal() picked us to notify about the 2379 * group-wide signal. Other threads should be notified now to take 2380 * the shared signals in @which since we will not. 2381 */ 2382 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2383 { 2384 sigset_t retarget; 2385 struct task_struct *t; 2386 2387 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2388 if (sigisemptyset(&retarget)) 2389 return; 2390 2391 t = tsk; 2392 while_each_thread(tsk, t) { 2393 if (t->flags & PF_EXITING) 2394 continue; 2395 2396 if (!has_pending_signals(&retarget, &t->blocked)) 2397 continue; 2398 /* Remove the signals this thread can handle. */ 2399 sigandsets(&retarget, &retarget, &t->blocked); 2400 2401 if (!signal_pending(t)) 2402 signal_wake_up(t, 0); 2403 2404 if (sigisemptyset(&retarget)) 2405 break; 2406 } 2407 } 2408 2409 void exit_signals(struct task_struct *tsk) 2410 { 2411 int group_stop = 0; 2412 sigset_t unblocked; 2413 2414 /* 2415 * @tsk is about to have PF_EXITING set - lock out users which 2416 * expect stable threadgroup. 2417 */ 2418 cgroup_threadgroup_change_begin(tsk); 2419 2420 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2421 tsk->flags |= PF_EXITING; 2422 cgroup_threadgroup_change_end(tsk); 2423 return; 2424 } 2425 2426 spin_lock_irq(&tsk->sighand->siglock); 2427 /* 2428 * From now this task is not visible for group-wide signals, 2429 * see wants_signal(), do_signal_stop(). 2430 */ 2431 tsk->flags |= PF_EXITING; 2432 2433 cgroup_threadgroup_change_end(tsk); 2434 2435 if (!signal_pending(tsk)) 2436 goto out; 2437 2438 unblocked = tsk->blocked; 2439 signotset(&unblocked); 2440 retarget_shared_pending(tsk, &unblocked); 2441 2442 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2443 task_participate_group_stop(tsk)) 2444 group_stop = CLD_STOPPED; 2445 out: 2446 spin_unlock_irq(&tsk->sighand->siglock); 2447 2448 /* 2449 * If group stop has completed, deliver the notification. This 2450 * should always go to the real parent of the group leader. 2451 */ 2452 if (unlikely(group_stop)) { 2453 read_lock(&tasklist_lock); 2454 do_notify_parent_cldstop(tsk, false, group_stop); 2455 read_unlock(&tasklist_lock); 2456 } 2457 } 2458 2459 EXPORT_SYMBOL(recalc_sigpending); 2460 EXPORT_SYMBOL_GPL(dequeue_signal); 2461 EXPORT_SYMBOL(flush_signals); 2462 EXPORT_SYMBOL(force_sig); 2463 EXPORT_SYMBOL(send_sig); 2464 EXPORT_SYMBOL(send_sig_info); 2465 EXPORT_SYMBOL(sigprocmask); 2466 2467 /* 2468 * System call entry points. 2469 */ 2470 2471 /** 2472 * sys_restart_syscall - restart a system call 2473 */ 2474 SYSCALL_DEFINE0(restart_syscall) 2475 { 2476 struct restart_block *restart = ¤t->restart_block; 2477 return restart->fn(restart); 2478 } 2479 2480 long do_no_restart_syscall(struct restart_block *param) 2481 { 2482 return -EINTR; 2483 } 2484 2485 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2486 { 2487 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2488 sigset_t newblocked; 2489 /* A set of now blocked but previously unblocked signals. */ 2490 sigandnsets(&newblocked, newset, ¤t->blocked); 2491 retarget_shared_pending(tsk, &newblocked); 2492 } 2493 tsk->blocked = *newset; 2494 recalc_sigpending(); 2495 } 2496 2497 /** 2498 * set_current_blocked - change current->blocked mask 2499 * @newset: new mask 2500 * 2501 * It is wrong to change ->blocked directly, this helper should be used 2502 * to ensure the process can't miss a shared signal we are going to block. 2503 */ 2504 void set_current_blocked(sigset_t *newset) 2505 { 2506 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2507 __set_current_blocked(newset); 2508 } 2509 2510 void __set_current_blocked(const sigset_t *newset) 2511 { 2512 struct task_struct *tsk = current; 2513 2514 /* 2515 * In case the signal mask hasn't changed, there is nothing we need 2516 * to do. The current->blocked shouldn't be modified by other task. 2517 */ 2518 if (sigequalsets(&tsk->blocked, newset)) 2519 return; 2520 2521 spin_lock_irq(&tsk->sighand->siglock); 2522 __set_task_blocked(tsk, newset); 2523 spin_unlock_irq(&tsk->sighand->siglock); 2524 } 2525 2526 /* 2527 * This is also useful for kernel threads that want to temporarily 2528 * (or permanently) block certain signals. 2529 * 2530 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2531 * interface happily blocks "unblockable" signals like SIGKILL 2532 * and friends. 2533 */ 2534 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2535 { 2536 struct task_struct *tsk = current; 2537 sigset_t newset; 2538 2539 /* Lockless, only current can change ->blocked, never from irq */ 2540 if (oldset) 2541 *oldset = tsk->blocked; 2542 2543 switch (how) { 2544 case SIG_BLOCK: 2545 sigorsets(&newset, &tsk->blocked, set); 2546 break; 2547 case SIG_UNBLOCK: 2548 sigandnsets(&newset, &tsk->blocked, set); 2549 break; 2550 case SIG_SETMASK: 2551 newset = *set; 2552 break; 2553 default: 2554 return -EINVAL; 2555 } 2556 2557 __set_current_blocked(&newset); 2558 return 0; 2559 } 2560 2561 /** 2562 * sys_rt_sigprocmask - change the list of currently blocked signals 2563 * @how: whether to add, remove, or set signals 2564 * @nset: stores pending signals 2565 * @oset: previous value of signal mask if non-null 2566 * @sigsetsize: size of sigset_t type 2567 */ 2568 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2569 sigset_t __user *, oset, size_t, sigsetsize) 2570 { 2571 sigset_t old_set, new_set; 2572 int error; 2573 2574 /* XXX: Don't preclude handling different sized sigset_t's. */ 2575 if (sigsetsize != sizeof(sigset_t)) 2576 return -EINVAL; 2577 2578 old_set = current->blocked; 2579 2580 if (nset) { 2581 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2582 return -EFAULT; 2583 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2584 2585 error = sigprocmask(how, &new_set, NULL); 2586 if (error) 2587 return error; 2588 } 2589 2590 if (oset) { 2591 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2592 return -EFAULT; 2593 } 2594 2595 return 0; 2596 } 2597 2598 #ifdef CONFIG_COMPAT 2599 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2600 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2601 { 2602 #ifdef __BIG_ENDIAN 2603 sigset_t old_set = current->blocked; 2604 2605 /* XXX: Don't preclude handling different sized sigset_t's. */ 2606 if (sigsetsize != sizeof(sigset_t)) 2607 return -EINVAL; 2608 2609 if (nset) { 2610 compat_sigset_t new32; 2611 sigset_t new_set; 2612 int error; 2613 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t))) 2614 return -EFAULT; 2615 2616 sigset_from_compat(&new_set, &new32); 2617 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2618 2619 error = sigprocmask(how, &new_set, NULL); 2620 if (error) 2621 return error; 2622 } 2623 if (oset) { 2624 compat_sigset_t old32; 2625 sigset_to_compat(&old32, &old_set); 2626 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t))) 2627 return -EFAULT; 2628 } 2629 return 0; 2630 #else 2631 return sys_rt_sigprocmask(how, (sigset_t __user *)nset, 2632 (sigset_t __user *)oset, sigsetsize); 2633 #endif 2634 } 2635 #endif 2636 2637 static int do_sigpending(void *set, unsigned long sigsetsize) 2638 { 2639 if (sigsetsize > sizeof(sigset_t)) 2640 return -EINVAL; 2641 2642 spin_lock_irq(¤t->sighand->siglock); 2643 sigorsets(set, ¤t->pending.signal, 2644 ¤t->signal->shared_pending.signal); 2645 spin_unlock_irq(¤t->sighand->siglock); 2646 2647 /* Outside the lock because only this thread touches it. */ 2648 sigandsets(set, ¤t->blocked, set); 2649 return 0; 2650 } 2651 2652 /** 2653 * sys_rt_sigpending - examine a pending signal that has been raised 2654 * while blocked 2655 * @uset: stores pending signals 2656 * @sigsetsize: size of sigset_t type or larger 2657 */ 2658 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2659 { 2660 sigset_t set; 2661 int err = do_sigpending(&set, sigsetsize); 2662 if (!err && copy_to_user(uset, &set, sigsetsize)) 2663 err = -EFAULT; 2664 return err; 2665 } 2666 2667 #ifdef CONFIG_COMPAT 2668 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2669 compat_size_t, sigsetsize) 2670 { 2671 #ifdef __BIG_ENDIAN 2672 sigset_t set; 2673 int err = do_sigpending(&set, sigsetsize); 2674 if (!err) { 2675 compat_sigset_t set32; 2676 sigset_to_compat(&set32, &set); 2677 /* we can get here only if sigsetsize <= sizeof(set) */ 2678 if (copy_to_user(uset, &set32, sigsetsize)) 2679 err = -EFAULT; 2680 } 2681 return err; 2682 #else 2683 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize); 2684 #endif 2685 } 2686 #endif 2687 2688 enum siginfo_layout siginfo_layout(int sig, int si_code) 2689 { 2690 enum siginfo_layout layout = SIL_KILL; 2691 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 2692 static const struct { 2693 unsigned char limit, layout; 2694 } filter[] = { 2695 [SIGILL] = { NSIGILL, SIL_FAULT }, 2696 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 2697 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 2698 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 2699 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 2700 #if defined(SIGEMT) && defined(NSIGEMT) 2701 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 2702 #endif 2703 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 2704 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 2705 #ifdef __ARCH_SIGSYS 2706 [SIGSYS] = { NSIGSYS, SIL_SYS }, 2707 #endif 2708 }; 2709 if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit)) 2710 layout = filter[sig].layout; 2711 else if (si_code <= NSIGPOLL) 2712 layout = SIL_POLL; 2713 } else { 2714 if (si_code == SI_TIMER) 2715 layout = SIL_TIMER; 2716 else if (si_code == SI_SIGIO) 2717 layout = SIL_POLL; 2718 else if (si_code < 0) 2719 layout = SIL_RT; 2720 /* Tests to support buggy kernel ABIs */ 2721 #ifdef TRAP_FIXME 2722 if ((sig == SIGTRAP) && (si_code == TRAP_FIXME)) 2723 layout = SIL_FAULT; 2724 #endif 2725 #ifdef FPE_FIXME 2726 if ((sig == SIGFPE) && (si_code == FPE_FIXME)) 2727 layout = SIL_FAULT; 2728 #endif 2729 } 2730 return layout; 2731 } 2732 2733 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2734 2735 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from) 2736 { 2737 int err; 2738 2739 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2740 return -EFAULT; 2741 if (from->si_code < 0) 2742 return __copy_to_user(to, from, sizeof(siginfo_t)) 2743 ? -EFAULT : 0; 2744 /* 2745 * If you change siginfo_t structure, please be sure 2746 * this code is fixed accordingly. 2747 * Please remember to update the signalfd_copyinfo() function 2748 * inside fs/signalfd.c too, in case siginfo_t changes. 2749 * It should never copy any pad contained in the structure 2750 * to avoid security leaks, but must copy the generic 2751 * 3 ints plus the relevant union member. 2752 */ 2753 err = __put_user(from->si_signo, &to->si_signo); 2754 err |= __put_user(from->si_errno, &to->si_errno); 2755 err |= __put_user(from->si_code, &to->si_code); 2756 switch (siginfo_layout(from->si_signo, from->si_code)) { 2757 case SIL_KILL: 2758 err |= __put_user(from->si_pid, &to->si_pid); 2759 err |= __put_user(from->si_uid, &to->si_uid); 2760 break; 2761 case SIL_TIMER: 2762 /* Unreached SI_TIMER is negative */ 2763 break; 2764 case SIL_POLL: 2765 err |= __put_user(from->si_band, &to->si_band); 2766 err |= __put_user(from->si_fd, &to->si_fd); 2767 break; 2768 case SIL_FAULT: 2769 err |= __put_user(from->si_addr, &to->si_addr); 2770 #ifdef __ARCH_SI_TRAPNO 2771 err |= __put_user(from->si_trapno, &to->si_trapno); 2772 #endif 2773 #ifdef BUS_MCEERR_AO 2774 /* 2775 * Other callers might not initialize the si_lsb field, 2776 * so check explicitly for the right codes here. 2777 */ 2778 if (from->si_signo == SIGBUS && 2779 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)) 2780 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2781 #endif 2782 #ifdef SEGV_BNDERR 2783 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) { 2784 err |= __put_user(from->si_lower, &to->si_lower); 2785 err |= __put_user(from->si_upper, &to->si_upper); 2786 } 2787 #endif 2788 #ifdef SEGV_PKUERR 2789 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR) 2790 err |= __put_user(from->si_pkey, &to->si_pkey); 2791 #endif 2792 break; 2793 case SIL_CHLD: 2794 err |= __put_user(from->si_pid, &to->si_pid); 2795 err |= __put_user(from->si_uid, &to->si_uid); 2796 err |= __put_user(from->si_status, &to->si_status); 2797 err |= __put_user(from->si_utime, &to->si_utime); 2798 err |= __put_user(from->si_stime, &to->si_stime); 2799 break; 2800 case SIL_RT: 2801 err |= __put_user(from->si_pid, &to->si_pid); 2802 err |= __put_user(from->si_uid, &to->si_uid); 2803 err |= __put_user(from->si_ptr, &to->si_ptr); 2804 break; 2805 #ifdef __ARCH_SIGSYS 2806 case SIL_SYS: 2807 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2808 err |= __put_user(from->si_syscall, &to->si_syscall); 2809 err |= __put_user(from->si_arch, &to->si_arch); 2810 break; 2811 #endif 2812 } 2813 return err; 2814 } 2815 2816 #endif 2817 2818 /** 2819 * do_sigtimedwait - wait for queued signals specified in @which 2820 * @which: queued signals to wait for 2821 * @info: if non-null, the signal's siginfo is returned here 2822 * @ts: upper bound on process time suspension 2823 */ 2824 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2825 const struct timespec *ts) 2826 { 2827 ktime_t *to = NULL, timeout = KTIME_MAX; 2828 struct task_struct *tsk = current; 2829 sigset_t mask = *which; 2830 int sig, ret = 0; 2831 2832 if (ts) { 2833 if (!timespec_valid(ts)) 2834 return -EINVAL; 2835 timeout = timespec_to_ktime(*ts); 2836 to = &timeout; 2837 } 2838 2839 /* 2840 * Invert the set of allowed signals to get those we want to block. 2841 */ 2842 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2843 signotset(&mask); 2844 2845 spin_lock_irq(&tsk->sighand->siglock); 2846 sig = dequeue_signal(tsk, &mask, info); 2847 if (!sig && timeout) { 2848 /* 2849 * None ready, temporarily unblock those we're interested 2850 * while we are sleeping in so that we'll be awakened when 2851 * they arrive. Unblocking is always fine, we can avoid 2852 * set_current_blocked(). 2853 */ 2854 tsk->real_blocked = tsk->blocked; 2855 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2856 recalc_sigpending(); 2857 spin_unlock_irq(&tsk->sighand->siglock); 2858 2859 __set_current_state(TASK_INTERRUPTIBLE); 2860 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 2861 HRTIMER_MODE_REL); 2862 spin_lock_irq(&tsk->sighand->siglock); 2863 __set_task_blocked(tsk, &tsk->real_blocked); 2864 sigemptyset(&tsk->real_blocked); 2865 sig = dequeue_signal(tsk, &mask, info); 2866 } 2867 spin_unlock_irq(&tsk->sighand->siglock); 2868 2869 if (sig) 2870 return sig; 2871 return ret ? -EINTR : -EAGAIN; 2872 } 2873 2874 /** 2875 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2876 * in @uthese 2877 * @uthese: queued signals to wait for 2878 * @uinfo: if non-null, the signal's siginfo is returned here 2879 * @uts: upper bound on process time suspension 2880 * @sigsetsize: size of sigset_t type 2881 */ 2882 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2883 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2884 size_t, sigsetsize) 2885 { 2886 sigset_t these; 2887 struct timespec ts; 2888 siginfo_t info; 2889 int ret; 2890 2891 /* XXX: Don't preclude handling different sized sigset_t's. */ 2892 if (sigsetsize != sizeof(sigset_t)) 2893 return -EINVAL; 2894 2895 if (copy_from_user(&these, uthese, sizeof(these))) 2896 return -EFAULT; 2897 2898 if (uts) { 2899 if (copy_from_user(&ts, uts, sizeof(ts))) 2900 return -EFAULT; 2901 } 2902 2903 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2904 2905 if (ret > 0 && uinfo) { 2906 if (copy_siginfo_to_user(uinfo, &info)) 2907 ret = -EFAULT; 2908 } 2909 2910 return ret; 2911 } 2912 2913 #ifdef CONFIG_COMPAT 2914 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese, 2915 struct compat_siginfo __user *, uinfo, 2916 struct compat_timespec __user *, uts, compat_size_t, sigsetsize) 2917 { 2918 compat_sigset_t s32; 2919 sigset_t s; 2920 struct timespec t; 2921 siginfo_t info; 2922 long ret; 2923 2924 if (sigsetsize != sizeof(sigset_t)) 2925 return -EINVAL; 2926 2927 if (copy_from_user(&s32, uthese, sizeof(compat_sigset_t))) 2928 return -EFAULT; 2929 sigset_from_compat(&s, &s32); 2930 2931 if (uts) { 2932 if (compat_get_timespec(&t, uts)) 2933 return -EFAULT; 2934 } 2935 2936 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 2937 2938 if (ret > 0 && uinfo) { 2939 if (copy_siginfo_to_user32(uinfo, &info)) 2940 ret = -EFAULT; 2941 } 2942 2943 return ret; 2944 } 2945 #endif 2946 2947 /** 2948 * sys_kill - send a signal to a process 2949 * @pid: the PID of the process 2950 * @sig: signal to be sent 2951 */ 2952 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2953 { 2954 struct siginfo info; 2955 2956 info.si_signo = sig; 2957 info.si_errno = 0; 2958 info.si_code = SI_USER; 2959 info.si_pid = task_tgid_vnr(current); 2960 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2961 2962 return kill_something_info(sig, &info, pid); 2963 } 2964 2965 static int 2966 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2967 { 2968 struct task_struct *p; 2969 int error = -ESRCH; 2970 2971 rcu_read_lock(); 2972 p = find_task_by_vpid(pid); 2973 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2974 error = check_kill_permission(sig, info, p); 2975 /* 2976 * The null signal is a permissions and process existence 2977 * probe. No signal is actually delivered. 2978 */ 2979 if (!error && sig) { 2980 error = do_send_sig_info(sig, info, p, false); 2981 /* 2982 * If lock_task_sighand() failed we pretend the task 2983 * dies after receiving the signal. The window is tiny, 2984 * and the signal is private anyway. 2985 */ 2986 if (unlikely(error == -ESRCH)) 2987 error = 0; 2988 } 2989 } 2990 rcu_read_unlock(); 2991 2992 return error; 2993 } 2994 2995 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2996 { 2997 struct siginfo info = {}; 2998 2999 info.si_signo = sig; 3000 info.si_errno = 0; 3001 info.si_code = SI_TKILL; 3002 info.si_pid = task_tgid_vnr(current); 3003 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3004 3005 return do_send_specific(tgid, pid, sig, &info); 3006 } 3007 3008 /** 3009 * sys_tgkill - send signal to one specific thread 3010 * @tgid: the thread group ID of the thread 3011 * @pid: the PID of the thread 3012 * @sig: signal to be sent 3013 * 3014 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3015 * exists but it's not belonging to the target process anymore. This 3016 * method solves the problem of threads exiting and PIDs getting reused. 3017 */ 3018 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3019 { 3020 /* This is only valid for single tasks */ 3021 if (pid <= 0 || tgid <= 0) 3022 return -EINVAL; 3023 3024 return do_tkill(tgid, pid, sig); 3025 } 3026 3027 /** 3028 * sys_tkill - send signal to one specific task 3029 * @pid: the PID of the task 3030 * @sig: signal to be sent 3031 * 3032 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3033 */ 3034 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3035 { 3036 /* This is only valid for single tasks */ 3037 if (pid <= 0) 3038 return -EINVAL; 3039 3040 return do_tkill(0, pid, sig); 3041 } 3042 3043 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info) 3044 { 3045 /* Not even root can pretend to send signals from the kernel. 3046 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3047 */ 3048 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3049 (task_pid_vnr(current) != pid)) 3050 return -EPERM; 3051 3052 info->si_signo = sig; 3053 3054 /* POSIX.1b doesn't mention process groups. */ 3055 return kill_proc_info(sig, info, pid); 3056 } 3057 3058 /** 3059 * sys_rt_sigqueueinfo - send signal information to a signal 3060 * @pid: the PID of the thread 3061 * @sig: signal to be sent 3062 * @uinfo: signal info to be sent 3063 */ 3064 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3065 siginfo_t __user *, uinfo) 3066 { 3067 siginfo_t info; 3068 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3069 return -EFAULT; 3070 return do_rt_sigqueueinfo(pid, sig, &info); 3071 } 3072 3073 #ifdef CONFIG_COMPAT 3074 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3075 compat_pid_t, pid, 3076 int, sig, 3077 struct compat_siginfo __user *, uinfo) 3078 { 3079 siginfo_t info = {}; 3080 int ret = copy_siginfo_from_user32(&info, uinfo); 3081 if (unlikely(ret)) 3082 return ret; 3083 return do_rt_sigqueueinfo(pid, sig, &info); 3084 } 3085 #endif 3086 3087 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 3088 { 3089 /* This is only valid for single tasks */ 3090 if (pid <= 0 || tgid <= 0) 3091 return -EINVAL; 3092 3093 /* Not even root can pretend to send signals from the kernel. 3094 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3095 */ 3096 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3097 (task_pid_vnr(current) != pid)) 3098 return -EPERM; 3099 3100 info->si_signo = sig; 3101 3102 return do_send_specific(tgid, pid, sig, info); 3103 } 3104 3105 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3106 siginfo_t __user *, uinfo) 3107 { 3108 siginfo_t info; 3109 3110 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3111 return -EFAULT; 3112 3113 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3114 } 3115 3116 #ifdef CONFIG_COMPAT 3117 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3118 compat_pid_t, tgid, 3119 compat_pid_t, pid, 3120 int, sig, 3121 struct compat_siginfo __user *, uinfo) 3122 { 3123 siginfo_t info = {}; 3124 3125 if (copy_siginfo_from_user32(&info, uinfo)) 3126 return -EFAULT; 3127 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3128 } 3129 #endif 3130 3131 /* 3132 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3133 */ 3134 void kernel_sigaction(int sig, __sighandler_t action) 3135 { 3136 spin_lock_irq(¤t->sighand->siglock); 3137 current->sighand->action[sig - 1].sa.sa_handler = action; 3138 if (action == SIG_IGN) { 3139 sigset_t mask; 3140 3141 sigemptyset(&mask); 3142 sigaddset(&mask, sig); 3143 3144 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3145 flush_sigqueue_mask(&mask, ¤t->pending); 3146 recalc_sigpending(); 3147 } 3148 spin_unlock_irq(¤t->sighand->siglock); 3149 } 3150 EXPORT_SYMBOL(kernel_sigaction); 3151 3152 void __weak sigaction_compat_abi(struct k_sigaction *act, 3153 struct k_sigaction *oact) 3154 { 3155 } 3156 3157 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3158 { 3159 struct task_struct *p = current, *t; 3160 struct k_sigaction *k; 3161 sigset_t mask; 3162 3163 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3164 return -EINVAL; 3165 3166 k = &p->sighand->action[sig-1]; 3167 3168 spin_lock_irq(&p->sighand->siglock); 3169 if (oact) 3170 *oact = *k; 3171 3172 sigaction_compat_abi(act, oact); 3173 3174 if (act) { 3175 sigdelsetmask(&act->sa.sa_mask, 3176 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3177 *k = *act; 3178 /* 3179 * POSIX 3.3.1.3: 3180 * "Setting a signal action to SIG_IGN for a signal that is 3181 * pending shall cause the pending signal to be discarded, 3182 * whether or not it is blocked." 3183 * 3184 * "Setting a signal action to SIG_DFL for a signal that is 3185 * pending and whose default action is to ignore the signal 3186 * (for example, SIGCHLD), shall cause the pending signal to 3187 * be discarded, whether or not it is blocked" 3188 */ 3189 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3190 sigemptyset(&mask); 3191 sigaddset(&mask, sig); 3192 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3193 for_each_thread(p, t) 3194 flush_sigqueue_mask(&mask, &t->pending); 3195 } 3196 } 3197 3198 spin_unlock_irq(&p->sighand->siglock); 3199 return 0; 3200 } 3201 3202 static int 3203 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp) 3204 { 3205 struct task_struct *t = current; 3206 3207 if (oss) { 3208 memset(oss, 0, sizeof(stack_t)); 3209 oss->ss_sp = (void __user *) t->sas_ss_sp; 3210 oss->ss_size = t->sas_ss_size; 3211 oss->ss_flags = sas_ss_flags(sp) | 3212 (current->sas_ss_flags & SS_FLAG_BITS); 3213 } 3214 3215 if (ss) { 3216 void __user *ss_sp = ss->ss_sp; 3217 size_t ss_size = ss->ss_size; 3218 unsigned ss_flags = ss->ss_flags; 3219 int ss_mode; 3220 3221 if (unlikely(on_sig_stack(sp))) 3222 return -EPERM; 3223 3224 ss_mode = ss_flags & ~SS_FLAG_BITS; 3225 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 3226 ss_mode != 0)) 3227 return -EINVAL; 3228 3229 if (ss_mode == SS_DISABLE) { 3230 ss_size = 0; 3231 ss_sp = NULL; 3232 } else { 3233 if (unlikely(ss_size < MINSIGSTKSZ)) 3234 return -ENOMEM; 3235 } 3236 3237 t->sas_ss_sp = (unsigned long) ss_sp; 3238 t->sas_ss_size = ss_size; 3239 t->sas_ss_flags = ss_flags; 3240 } 3241 return 0; 3242 } 3243 3244 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3245 { 3246 stack_t new, old; 3247 int err; 3248 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 3249 return -EFAULT; 3250 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 3251 current_user_stack_pointer()); 3252 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 3253 err = -EFAULT; 3254 return err; 3255 } 3256 3257 int restore_altstack(const stack_t __user *uss) 3258 { 3259 stack_t new; 3260 if (copy_from_user(&new, uss, sizeof(stack_t))) 3261 return -EFAULT; 3262 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer()); 3263 /* squash all but EFAULT for now */ 3264 return 0; 3265 } 3266 3267 int __save_altstack(stack_t __user *uss, unsigned long sp) 3268 { 3269 struct task_struct *t = current; 3270 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3271 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3272 __put_user(t->sas_ss_size, &uss->ss_size); 3273 if (err) 3274 return err; 3275 if (t->sas_ss_flags & SS_AUTODISARM) 3276 sas_ss_reset(t); 3277 return 0; 3278 } 3279 3280 #ifdef CONFIG_COMPAT 3281 COMPAT_SYSCALL_DEFINE2(sigaltstack, 3282 const compat_stack_t __user *, uss_ptr, 3283 compat_stack_t __user *, uoss_ptr) 3284 { 3285 stack_t uss, uoss; 3286 int ret; 3287 3288 if (uss_ptr) { 3289 compat_stack_t uss32; 3290 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3291 return -EFAULT; 3292 uss.ss_sp = compat_ptr(uss32.ss_sp); 3293 uss.ss_flags = uss32.ss_flags; 3294 uss.ss_size = uss32.ss_size; 3295 } 3296 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 3297 compat_user_stack_pointer()); 3298 if (ret >= 0 && uoss_ptr) { 3299 compat_stack_t old; 3300 memset(&old, 0, sizeof(old)); 3301 old.ss_sp = ptr_to_compat(uoss.ss_sp); 3302 old.ss_flags = uoss.ss_flags; 3303 old.ss_size = uoss.ss_size; 3304 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 3305 ret = -EFAULT; 3306 } 3307 return ret; 3308 } 3309 3310 int compat_restore_altstack(const compat_stack_t __user *uss) 3311 { 3312 int err = compat_sys_sigaltstack(uss, NULL); 3313 /* squash all but -EFAULT for now */ 3314 return err == -EFAULT ? err : 0; 3315 } 3316 3317 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3318 { 3319 int err; 3320 struct task_struct *t = current; 3321 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 3322 &uss->ss_sp) | 3323 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3324 __put_user(t->sas_ss_size, &uss->ss_size); 3325 if (err) 3326 return err; 3327 if (t->sas_ss_flags & SS_AUTODISARM) 3328 sas_ss_reset(t); 3329 return 0; 3330 } 3331 #endif 3332 3333 #ifdef __ARCH_WANT_SYS_SIGPENDING 3334 3335 /** 3336 * sys_sigpending - examine pending signals 3337 * @set: where mask of pending signal is returned 3338 */ 3339 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3340 { 3341 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 3342 } 3343 3344 #ifdef CONFIG_COMPAT 3345 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 3346 { 3347 #ifdef __BIG_ENDIAN 3348 sigset_t set; 3349 int err = do_sigpending(&set, sizeof(set.sig[0])); 3350 if (!err) 3351 err = put_user(set.sig[0], set32); 3352 return err; 3353 #else 3354 return sys_rt_sigpending((sigset_t __user *)set32, sizeof(*set32)); 3355 #endif 3356 } 3357 #endif 3358 3359 #endif 3360 3361 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3362 /** 3363 * sys_sigprocmask - examine and change blocked signals 3364 * @how: whether to add, remove, or set signals 3365 * @nset: signals to add or remove (if non-null) 3366 * @oset: previous value of signal mask if non-null 3367 * 3368 * Some platforms have their own version with special arguments; 3369 * others support only sys_rt_sigprocmask. 3370 */ 3371 3372 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3373 old_sigset_t __user *, oset) 3374 { 3375 old_sigset_t old_set, new_set; 3376 sigset_t new_blocked; 3377 3378 old_set = current->blocked.sig[0]; 3379 3380 if (nset) { 3381 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3382 return -EFAULT; 3383 3384 new_blocked = current->blocked; 3385 3386 switch (how) { 3387 case SIG_BLOCK: 3388 sigaddsetmask(&new_blocked, new_set); 3389 break; 3390 case SIG_UNBLOCK: 3391 sigdelsetmask(&new_blocked, new_set); 3392 break; 3393 case SIG_SETMASK: 3394 new_blocked.sig[0] = new_set; 3395 break; 3396 default: 3397 return -EINVAL; 3398 } 3399 3400 set_current_blocked(&new_blocked); 3401 } 3402 3403 if (oset) { 3404 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3405 return -EFAULT; 3406 } 3407 3408 return 0; 3409 } 3410 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3411 3412 #ifndef CONFIG_ODD_RT_SIGACTION 3413 /** 3414 * sys_rt_sigaction - alter an action taken by a process 3415 * @sig: signal to be sent 3416 * @act: new sigaction 3417 * @oact: used to save the previous sigaction 3418 * @sigsetsize: size of sigset_t type 3419 */ 3420 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3421 const struct sigaction __user *, act, 3422 struct sigaction __user *, oact, 3423 size_t, sigsetsize) 3424 { 3425 struct k_sigaction new_sa, old_sa; 3426 int ret = -EINVAL; 3427 3428 /* XXX: Don't preclude handling different sized sigset_t's. */ 3429 if (sigsetsize != sizeof(sigset_t)) 3430 goto out; 3431 3432 if (act) { 3433 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3434 return -EFAULT; 3435 } 3436 3437 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3438 3439 if (!ret && oact) { 3440 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3441 return -EFAULT; 3442 } 3443 out: 3444 return ret; 3445 } 3446 #ifdef CONFIG_COMPAT 3447 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 3448 const struct compat_sigaction __user *, act, 3449 struct compat_sigaction __user *, oact, 3450 compat_size_t, sigsetsize) 3451 { 3452 struct k_sigaction new_ka, old_ka; 3453 compat_sigset_t mask; 3454 #ifdef __ARCH_HAS_SA_RESTORER 3455 compat_uptr_t restorer; 3456 #endif 3457 int ret; 3458 3459 /* XXX: Don't preclude handling different sized sigset_t's. */ 3460 if (sigsetsize != sizeof(compat_sigset_t)) 3461 return -EINVAL; 3462 3463 if (act) { 3464 compat_uptr_t handler; 3465 ret = get_user(handler, &act->sa_handler); 3466 new_ka.sa.sa_handler = compat_ptr(handler); 3467 #ifdef __ARCH_HAS_SA_RESTORER 3468 ret |= get_user(restorer, &act->sa_restorer); 3469 new_ka.sa.sa_restorer = compat_ptr(restorer); 3470 #endif 3471 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask)); 3472 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 3473 if (ret) 3474 return -EFAULT; 3475 sigset_from_compat(&new_ka.sa.sa_mask, &mask); 3476 } 3477 3478 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3479 if (!ret && oact) { 3480 sigset_to_compat(&mask, &old_ka.sa.sa_mask); 3481 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 3482 &oact->sa_handler); 3483 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask)); 3484 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 3485 #ifdef __ARCH_HAS_SA_RESTORER 3486 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3487 &oact->sa_restorer); 3488 #endif 3489 } 3490 return ret; 3491 } 3492 #endif 3493 #endif /* !CONFIG_ODD_RT_SIGACTION */ 3494 3495 #ifdef CONFIG_OLD_SIGACTION 3496 SYSCALL_DEFINE3(sigaction, int, sig, 3497 const struct old_sigaction __user *, act, 3498 struct old_sigaction __user *, oact) 3499 { 3500 struct k_sigaction new_ka, old_ka; 3501 int ret; 3502 3503 if (act) { 3504 old_sigset_t mask; 3505 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3506 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 3507 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 3508 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3509 __get_user(mask, &act->sa_mask)) 3510 return -EFAULT; 3511 #ifdef __ARCH_HAS_KA_RESTORER 3512 new_ka.ka_restorer = NULL; 3513 #endif 3514 siginitset(&new_ka.sa.sa_mask, mask); 3515 } 3516 3517 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3518 3519 if (!ret && oact) { 3520 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3521 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 3522 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 3523 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3524 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3525 return -EFAULT; 3526 } 3527 3528 return ret; 3529 } 3530 #endif 3531 #ifdef CONFIG_COMPAT_OLD_SIGACTION 3532 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 3533 const struct compat_old_sigaction __user *, act, 3534 struct compat_old_sigaction __user *, oact) 3535 { 3536 struct k_sigaction new_ka, old_ka; 3537 int ret; 3538 compat_old_sigset_t mask; 3539 compat_uptr_t handler, restorer; 3540 3541 if (act) { 3542 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3543 __get_user(handler, &act->sa_handler) || 3544 __get_user(restorer, &act->sa_restorer) || 3545 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3546 __get_user(mask, &act->sa_mask)) 3547 return -EFAULT; 3548 3549 #ifdef __ARCH_HAS_KA_RESTORER 3550 new_ka.ka_restorer = NULL; 3551 #endif 3552 new_ka.sa.sa_handler = compat_ptr(handler); 3553 new_ka.sa.sa_restorer = compat_ptr(restorer); 3554 siginitset(&new_ka.sa.sa_mask, mask); 3555 } 3556 3557 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3558 3559 if (!ret && oact) { 3560 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3561 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 3562 &oact->sa_handler) || 3563 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3564 &oact->sa_restorer) || 3565 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3566 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3567 return -EFAULT; 3568 } 3569 return ret; 3570 } 3571 #endif 3572 3573 #ifdef CONFIG_SGETMASK_SYSCALL 3574 3575 /* 3576 * For backwards compatibility. Functionality superseded by sigprocmask. 3577 */ 3578 SYSCALL_DEFINE0(sgetmask) 3579 { 3580 /* SMP safe */ 3581 return current->blocked.sig[0]; 3582 } 3583 3584 SYSCALL_DEFINE1(ssetmask, int, newmask) 3585 { 3586 int old = current->blocked.sig[0]; 3587 sigset_t newset; 3588 3589 siginitset(&newset, newmask); 3590 set_current_blocked(&newset); 3591 3592 return old; 3593 } 3594 #endif /* CONFIG_SGETMASK_SYSCALL */ 3595 3596 #ifdef __ARCH_WANT_SYS_SIGNAL 3597 /* 3598 * For backwards compatibility. Functionality superseded by sigaction. 3599 */ 3600 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3601 { 3602 struct k_sigaction new_sa, old_sa; 3603 int ret; 3604 3605 new_sa.sa.sa_handler = handler; 3606 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3607 sigemptyset(&new_sa.sa.sa_mask); 3608 3609 ret = do_sigaction(sig, &new_sa, &old_sa); 3610 3611 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3612 } 3613 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3614 3615 #ifdef __ARCH_WANT_SYS_PAUSE 3616 3617 SYSCALL_DEFINE0(pause) 3618 { 3619 while (!signal_pending(current)) { 3620 __set_current_state(TASK_INTERRUPTIBLE); 3621 schedule(); 3622 } 3623 return -ERESTARTNOHAND; 3624 } 3625 3626 #endif 3627 3628 static int sigsuspend(sigset_t *set) 3629 { 3630 current->saved_sigmask = current->blocked; 3631 set_current_blocked(set); 3632 3633 while (!signal_pending(current)) { 3634 __set_current_state(TASK_INTERRUPTIBLE); 3635 schedule(); 3636 } 3637 set_restore_sigmask(); 3638 return -ERESTARTNOHAND; 3639 } 3640 3641 /** 3642 * sys_rt_sigsuspend - replace the signal mask for a value with the 3643 * @unewset value until a signal is received 3644 * @unewset: new signal mask value 3645 * @sigsetsize: size of sigset_t type 3646 */ 3647 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3648 { 3649 sigset_t newset; 3650 3651 /* XXX: Don't preclude handling different sized sigset_t's. */ 3652 if (sigsetsize != sizeof(sigset_t)) 3653 return -EINVAL; 3654 3655 if (copy_from_user(&newset, unewset, sizeof(newset))) 3656 return -EFAULT; 3657 return sigsuspend(&newset); 3658 } 3659 3660 #ifdef CONFIG_COMPAT 3661 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 3662 { 3663 #ifdef __BIG_ENDIAN 3664 sigset_t newset; 3665 compat_sigset_t newset32; 3666 3667 /* XXX: Don't preclude handling different sized sigset_t's. */ 3668 if (sigsetsize != sizeof(sigset_t)) 3669 return -EINVAL; 3670 3671 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t))) 3672 return -EFAULT; 3673 sigset_from_compat(&newset, &newset32); 3674 return sigsuspend(&newset); 3675 #else 3676 /* on little-endian bitmaps don't care about granularity */ 3677 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize); 3678 #endif 3679 } 3680 #endif 3681 3682 #ifdef CONFIG_OLD_SIGSUSPEND 3683 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 3684 { 3685 sigset_t blocked; 3686 siginitset(&blocked, mask); 3687 return sigsuspend(&blocked); 3688 } 3689 #endif 3690 #ifdef CONFIG_OLD_SIGSUSPEND3 3691 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 3692 { 3693 sigset_t blocked; 3694 siginitset(&blocked, mask); 3695 return sigsuspend(&blocked); 3696 } 3697 #endif 3698 3699 __weak const char *arch_vma_name(struct vm_area_struct *vma) 3700 { 3701 return NULL; 3702 } 3703 3704 void __init signals_init(void) 3705 { 3706 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */ 3707 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE 3708 != offsetof(struct siginfo, _sifields._pad)); 3709 3710 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3711 } 3712 3713 #ifdef CONFIG_KGDB_KDB 3714 #include <linux/kdb.h> 3715 /* 3716 * kdb_send_sig_info - Allows kdb to send signals without exposing 3717 * signal internals. This function checks if the required locks are 3718 * available before calling the main signal code, to avoid kdb 3719 * deadlocks. 3720 */ 3721 void 3722 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3723 { 3724 static struct task_struct *kdb_prev_t; 3725 int sig, new_t; 3726 if (!spin_trylock(&t->sighand->siglock)) { 3727 kdb_printf("Can't do kill command now.\n" 3728 "The sigmask lock is held somewhere else in " 3729 "kernel, try again later\n"); 3730 return; 3731 } 3732 spin_unlock(&t->sighand->siglock); 3733 new_t = kdb_prev_t != t; 3734 kdb_prev_t = t; 3735 if (t->state != TASK_RUNNING && new_t) { 3736 kdb_printf("Process is not RUNNING, sending a signal from " 3737 "kdb risks deadlock\n" 3738 "on the run queue locks. " 3739 "The signal has _not_ been sent.\n" 3740 "Reissue the kill command if you want to risk " 3741 "the deadlock.\n"); 3742 return; 3743 } 3744 sig = info->si_signo; 3745 if (send_sig_info(sig, info, t)) 3746 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3747 sig, t->pid); 3748 else 3749 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3750 } 3751 #endif /* CONFIG_KGDB_KDB */ 3752