xref: /linux/kernel/signal.c (revision 4c62e9764ab403d42f9b8871b1241fe7812f19d4)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/signal.h>
37 
38 #include <asm/param.h>
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
41 #include <asm/siginfo.h>
42 #include <asm/cacheflush.h>
43 #include "audit.h"	/* audit_signal_info() */
44 
45 /*
46  * SLAB caches for signal bits.
47  */
48 
49 static struct kmem_cache *sigqueue_cachep;
50 
51 int print_fatal_signals __read_mostly;
52 
53 static void __user *sig_handler(struct task_struct *t, int sig)
54 {
55 	return t->sighand->action[sig - 1].sa.sa_handler;
56 }
57 
58 static int sig_handler_ignored(void __user *handler, int sig)
59 {
60 	/* Is it explicitly or implicitly ignored? */
61 	return handler == SIG_IGN ||
62 		(handler == SIG_DFL && sig_kernel_ignore(sig));
63 }
64 
65 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
66 {
67 	void __user *handler;
68 
69 	handler = sig_handler(t, sig);
70 
71 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
72 			handler == SIG_DFL && !force)
73 		return 1;
74 
75 	return sig_handler_ignored(handler, sig);
76 }
77 
78 static int sig_ignored(struct task_struct *t, int sig, bool force)
79 {
80 	/*
81 	 * Blocked signals are never ignored, since the
82 	 * signal handler may change by the time it is
83 	 * unblocked.
84 	 */
85 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
86 		return 0;
87 
88 	if (!sig_task_ignored(t, sig, force))
89 		return 0;
90 
91 	/*
92 	 * Tracers may want to know about even ignored signals.
93 	 */
94 	return !t->ptrace;
95 }
96 
97 /*
98  * Re-calculate pending state from the set of locally pending
99  * signals, globally pending signals, and blocked signals.
100  */
101 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
102 {
103 	unsigned long ready;
104 	long i;
105 
106 	switch (_NSIG_WORDS) {
107 	default:
108 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
109 			ready |= signal->sig[i] &~ blocked->sig[i];
110 		break;
111 
112 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
113 		ready |= signal->sig[2] &~ blocked->sig[2];
114 		ready |= signal->sig[1] &~ blocked->sig[1];
115 		ready |= signal->sig[0] &~ blocked->sig[0];
116 		break;
117 
118 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
119 		ready |= signal->sig[0] &~ blocked->sig[0];
120 		break;
121 
122 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
123 	}
124 	return ready !=	0;
125 }
126 
127 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
128 
129 static int recalc_sigpending_tsk(struct task_struct *t)
130 {
131 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
132 	    PENDING(&t->pending, &t->blocked) ||
133 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
134 		set_tsk_thread_flag(t, TIF_SIGPENDING);
135 		return 1;
136 	}
137 	/*
138 	 * We must never clear the flag in another thread, or in current
139 	 * when it's possible the current syscall is returning -ERESTART*.
140 	 * So we don't clear it here, and only callers who know they should do.
141 	 */
142 	return 0;
143 }
144 
145 /*
146  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
147  * This is superfluous when called on current, the wakeup is a harmless no-op.
148  */
149 void recalc_sigpending_and_wake(struct task_struct *t)
150 {
151 	if (recalc_sigpending_tsk(t))
152 		signal_wake_up(t, 0);
153 }
154 
155 void recalc_sigpending(void)
156 {
157 	if (!recalc_sigpending_tsk(current) && !freezing(current))
158 		clear_thread_flag(TIF_SIGPENDING);
159 
160 }
161 
162 /* Given the mask, find the first available signal that should be serviced. */
163 
164 #define SYNCHRONOUS_MASK \
165 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
166 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
167 
168 int next_signal(struct sigpending *pending, sigset_t *mask)
169 {
170 	unsigned long i, *s, *m, x;
171 	int sig = 0;
172 
173 	s = pending->signal.sig;
174 	m = mask->sig;
175 
176 	/*
177 	 * Handle the first word specially: it contains the
178 	 * synchronous signals that need to be dequeued first.
179 	 */
180 	x = *s &~ *m;
181 	if (x) {
182 		if (x & SYNCHRONOUS_MASK)
183 			x &= SYNCHRONOUS_MASK;
184 		sig = ffz(~x) + 1;
185 		return sig;
186 	}
187 
188 	switch (_NSIG_WORDS) {
189 	default:
190 		for (i = 1; i < _NSIG_WORDS; ++i) {
191 			x = *++s &~ *++m;
192 			if (!x)
193 				continue;
194 			sig = ffz(~x) + i*_NSIG_BPW + 1;
195 			break;
196 		}
197 		break;
198 
199 	case 2:
200 		x = s[1] &~ m[1];
201 		if (!x)
202 			break;
203 		sig = ffz(~x) + _NSIG_BPW + 1;
204 		break;
205 
206 	case 1:
207 		/* Nothing to do */
208 		break;
209 	}
210 
211 	return sig;
212 }
213 
214 static inline void print_dropped_signal(int sig)
215 {
216 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
217 
218 	if (!print_fatal_signals)
219 		return;
220 
221 	if (!__ratelimit(&ratelimit_state))
222 		return;
223 
224 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
225 				current->comm, current->pid, sig);
226 }
227 
228 /**
229  * task_set_jobctl_pending - set jobctl pending bits
230  * @task: target task
231  * @mask: pending bits to set
232  *
233  * Clear @mask from @task->jobctl.  @mask must be subset of
234  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
235  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
236  * cleared.  If @task is already being killed or exiting, this function
237  * becomes noop.
238  *
239  * CONTEXT:
240  * Must be called with @task->sighand->siglock held.
241  *
242  * RETURNS:
243  * %true if @mask is set, %false if made noop because @task was dying.
244  */
245 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
246 {
247 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
248 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
249 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
250 
251 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
252 		return false;
253 
254 	if (mask & JOBCTL_STOP_SIGMASK)
255 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
256 
257 	task->jobctl |= mask;
258 	return true;
259 }
260 
261 /**
262  * task_clear_jobctl_trapping - clear jobctl trapping bit
263  * @task: target task
264  *
265  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
266  * Clear it and wake up the ptracer.  Note that we don't need any further
267  * locking.  @task->siglock guarantees that @task->parent points to the
268  * ptracer.
269  *
270  * CONTEXT:
271  * Must be called with @task->sighand->siglock held.
272  */
273 void task_clear_jobctl_trapping(struct task_struct *task)
274 {
275 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
276 		task->jobctl &= ~JOBCTL_TRAPPING;
277 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
278 	}
279 }
280 
281 /**
282  * task_clear_jobctl_pending - clear jobctl pending bits
283  * @task: target task
284  * @mask: pending bits to clear
285  *
286  * Clear @mask from @task->jobctl.  @mask must be subset of
287  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
288  * STOP bits are cleared together.
289  *
290  * If clearing of @mask leaves no stop or trap pending, this function calls
291  * task_clear_jobctl_trapping().
292  *
293  * CONTEXT:
294  * Must be called with @task->sighand->siglock held.
295  */
296 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
297 {
298 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
299 
300 	if (mask & JOBCTL_STOP_PENDING)
301 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
302 
303 	task->jobctl &= ~mask;
304 
305 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
306 		task_clear_jobctl_trapping(task);
307 }
308 
309 /**
310  * task_participate_group_stop - participate in a group stop
311  * @task: task participating in a group stop
312  *
313  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
314  * Group stop states are cleared and the group stop count is consumed if
315  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
316  * stop, the appropriate %SIGNAL_* flags are set.
317  *
318  * CONTEXT:
319  * Must be called with @task->sighand->siglock held.
320  *
321  * RETURNS:
322  * %true if group stop completion should be notified to the parent, %false
323  * otherwise.
324  */
325 static bool task_participate_group_stop(struct task_struct *task)
326 {
327 	struct signal_struct *sig = task->signal;
328 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
329 
330 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
331 
332 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
333 
334 	if (!consume)
335 		return false;
336 
337 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
338 		sig->group_stop_count--;
339 
340 	/*
341 	 * Tell the caller to notify completion iff we are entering into a
342 	 * fresh group stop.  Read comment in do_signal_stop() for details.
343 	 */
344 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
345 		sig->flags = SIGNAL_STOP_STOPPED;
346 		return true;
347 	}
348 	return false;
349 }
350 
351 /*
352  * allocate a new signal queue record
353  * - this may be called without locks if and only if t == current, otherwise an
354  *   appropriate lock must be held to stop the target task from exiting
355  */
356 static struct sigqueue *
357 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
358 {
359 	struct sigqueue *q = NULL;
360 	struct user_struct *user;
361 
362 	/*
363 	 * Protect access to @t credentials. This can go away when all
364 	 * callers hold rcu read lock.
365 	 */
366 	rcu_read_lock();
367 	user = get_uid(__task_cred(t)->user);
368 	atomic_inc(&user->sigpending);
369 	rcu_read_unlock();
370 
371 	if (override_rlimit ||
372 	    atomic_read(&user->sigpending) <=
373 			task_rlimit(t, RLIMIT_SIGPENDING)) {
374 		q = kmem_cache_alloc(sigqueue_cachep, flags);
375 	} else {
376 		print_dropped_signal(sig);
377 	}
378 
379 	if (unlikely(q == NULL)) {
380 		atomic_dec(&user->sigpending);
381 		free_uid(user);
382 	} else {
383 		INIT_LIST_HEAD(&q->list);
384 		q->flags = 0;
385 		q->user = user;
386 	}
387 
388 	return q;
389 }
390 
391 static void __sigqueue_free(struct sigqueue *q)
392 {
393 	if (q->flags & SIGQUEUE_PREALLOC)
394 		return;
395 	atomic_dec(&q->user->sigpending);
396 	free_uid(q->user);
397 	kmem_cache_free(sigqueue_cachep, q);
398 }
399 
400 void flush_sigqueue(struct sigpending *queue)
401 {
402 	struct sigqueue *q;
403 
404 	sigemptyset(&queue->signal);
405 	while (!list_empty(&queue->list)) {
406 		q = list_entry(queue->list.next, struct sigqueue , list);
407 		list_del_init(&q->list);
408 		__sigqueue_free(q);
409 	}
410 }
411 
412 /*
413  * Flush all pending signals for a task.
414  */
415 void __flush_signals(struct task_struct *t)
416 {
417 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
418 	flush_sigqueue(&t->pending);
419 	flush_sigqueue(&t->signal->shared_pending);
420 }
421 
422 void flush_signals(struct task_struct *t)
423 {
424 	unsigned long flags;
425 
426 	spin_lock_irqsave(&t->sighand->siglock, flags);
427 	__flush_signals(t);
428 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
429 }
430 
431 static void __flush_itimer_signals(struct sigpending *pending)
432 {
433 	sigset_t signal, retain;
434 	struct sigqueue *q, *n;
435 
436 	signal = pending->signal;
437 	sigemptyset(&retain);
438 
439 	list_for_each_entry_safe(q, n, &pending->list, list) {
440 		int sig = q->info.si_signo;
441 
442 		if (likely(q->info.si_code != SI_TIMER)) {
443 			sigaddset(&retain, sig);
444 		} else {
445 			sigdelset(&signal, sig);
446 			list_del_init(&q->list);
447 			__sigqueue_free(q);
448 		}
449 	}
450 
451 	sigorsets(&pending->signal, &signal, &retain);
452 }
453 
454 void flush_itimer_signals(void)
455 {
456 	struct task_struct *tsk = current;
457 	unsigned long flags;
458 
459 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
460 	__flush_itimer_signals(&tsk->pending);
461 	__flush_itimer_signals(&tsk->signal->shared_pending);
462 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
463 }
464 
465 void ignore_signals(struct task_struct *t)
466 {
467 	int i;
468 
469 	for (i = 0; i < _NSIG; ++i)
470 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
471 
472 	flush_signals(t);
473 }
474 
475 /*
476  * Flush all handlers for a task.
477  */
478 
479 void
480 flush_signal_handlers(struct task_struct *t, int force_default)
481 {
482 	int i;
483 	struct k_sigaction *ka = &t->sighand->action[0];
484 	for (i = _NSIG ; i != 0 ; i--) {
485 		if (force_default || ka->sa.sa_handler != SIG_IGN)
486 			ka->sa.sa_handler = SIG_DFL;
487 		ka->sa.sa_flags = 0;
488 		sigemptyset(&ka->sa.sa_mask);
489 		ka++;
490 	}
491 }
492 
493 int unhandled_signal(struct task_struct *tsk, int sig)
494 {
495 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
496 	if (is_global_init(tsk))
497 		return 1;
498 	if (handler != SIG_IGN && handler != SIG_DFL)
499 		return 0;
500 	/* if ptraced, let the tracer determine */
501 	return !tsk->ptrace;
502 }
503 
504 /*
505  * Notify the system that a driver wants to block all signals for this
506  * process, and wants to be notified if any signals at all were to be
507  * sent/acted upon.  If the notifier routine returns non-zero, then the
508  * signal will be acted upon after all.  If the notifier routine returns 0,
509  * then then signal will be blocked.  Only one block per process is
510  * allowed.  priv is a pointer to private data that the notifier routine
511  * can use to determine if the signal should be blocked or not.
512  */
513 void
514 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
515 {
516 	unsigned long flags;
517 
518 	spin_lock_irqsave(&current->sighand->siglock, flags);
519 	current->notifier_mask = mask;
520 	current->notifier_data = priv;
521 	current->notifier = notifier;
522 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
523 }
524 
525 /* Notify the system that blocking has ended. */
526 
527 void
528 unblock_all_signals(void)
529 {
530 	unsigned long flags;
531 
532 	spin_lock_irqsave(&current->sighand->siglock, flags);
533 	current->notifier = NULL;
534 	current->notifier_data = NULL;
535 	recalc_sigpending();
536 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
537 }
538 
539 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
540 {
541 	struct sigqueue *q, *first = NULL;
542 
543 	/*
544 	 * Collect the siginfo appropriate to this signal.  Check if
545 	 * there is another siginfo for the same signal.
546 	*/
547 	list_for_each_entry(q, &list->list, list) {
548 		if (q->info.si_signo == sig) {
549 			if (first)
550 				goto still_pending;
551 			first = q;
552 		}
553 	}
554 
555 	sigdelset(&list->signal, sig);
556 
557 	if (first) {
558 still_pending:
559 		list_del_init(&first->list);
560 		copy_siginfo(info, &first->info);
561 		__sigqueue_free(first);
562 	} else {
563 		/*
564 		 * Ok, it wasn't in the queue.  This must be
565 		 * a fast-pathed signal or we must have been
566 		 * out of queue space.  So zero out the info.
567 		 */
568 		info->si_signo = sig;
569 		info->si_errno = 0;
570 		info->si_code = SI_USER;
571 		info->si_pid = 0;
572 		info->si_uid = 0;
573 	}
574 }
575 
576 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
577 			siginfo_t *info)
578 {
579 	int sig = next_signal(pending, mask);
580 
581 	if (sig) {
582 		if (current->notifier) {
583 			if (sigismember(current->notifier_mask, sig)) {
584 				if (!(current->notifier)(current->notifier_data)) {
585 					clear_thread_flag(TIF_SIGPENDING);
586 					return 0;
587 				}
588 			}
589 		}
590 
591 		collect_signal(sig, pending, info);
592 	}
593 
594 	return sig;
595 }
596 
597 /*
598  * Dequeue a signal and return the element to the caller, which is
599  * expected to free it.
600  *
601  * All callers have to hold the siglock.
602  */
603 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
604 {
605 	int signr;
606 
607 	/* We only dequeue private signals from ourselves, we don't let
608 	 * signalfd steal them
609 	 */
610 	signr = __dequeue_signal(&tsk->pending, mask, info);
611 	if (!signr) {
612 		signr = __dequeue_signal(&tsk->signal->shared_pending,
613 					 mask, info);
614 		/*
615 		 * itimer signal ?
616 		 *
617 		 * itimers are process shared and we restart periodic
618 		 * itimers in the signal delivery path to prevent DoS
619 		 * attacks in the high resolution timer case. This is
620 		 * compliant with the old way of self-restarting
621 		 * itimers, as the SIGALRM is a legacy signal and only
622 		 * queued once. Changing the restart behaviour to
623 		 * restart the timer in the signal dequeue path is
624 		 * reducing the timer noise on heavy loaded !highres
625 		 * systems too.
626 		 */
627 		if (unlikely(signr == SIGALRM)) {
628 			struct hrtimer *tmr = &tsk->signal->real_timer;
629 
630 			if (!hrtimer_is_queued(tmr) &&
631 			    tsk->signal->it_real_incr.tv64 != 0) {
632 				hrtimer_forward(tmr, tmr->base->get_time(),
633 						tsk->signal->it_real_incr);
634 				hrtimer_restart(tmr);
635 			}
636 		}
637 	}
638 
639 	recalc_sigpending();
640 	if (!signr)
641 		return 0;
642 
643 	if (unlikely(sig_kernel_stop(signr))) {
644 		/*
645 		 * Set a marker that we have dequeued a stop signal.  Our
646 		 * caller might release the siglock and then the pending
647 		 * stop signal it is about to process is no longer in the
648 		 * pending bitmasks, but must still be cleared by a SIGCONT
649 		 * (and overruled by a SIGKILL).  So those cases clear this
650 		 * shared flag after we've set it.  Note that this flag may
651 		 * remain set after the signal we return is ignored or
652 		 * handled.  That doesn't matter because its only purpose
653 		 * is to alert stop-signal processing code when another
654 		 * processor has come along and cleared the flag.
655 		 */
656 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
657 	}
658 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
659 		/*
660 		 * Release the siglock to ensure proper locking order
661 		 * of timer locks outside of siglocks.  Note, we leave
662 		 * irqs disabled here, since the posix-timers code is
663 		 * about to disable them again anyway.
664 		 */
665 		spin_unlock(&tsk->sighand->siglock);
666 		do_schedule_next_timer(info);
667 		spin_lock(&tsk->sighand->siglock);
668 	}
669 	return signr;
670 }
671 
672 /*
673  * Tell a process that it has a new active signal..
674  *
675  * NOTE! we rely on the previous spin_lock to
676  * lock interrupts for us! We can only be called with
677  * "siglock" held, and the local interrupt must
678  * have been disabled when that got acquired!
679  *
680  * No need to set need_resched since signal event passing
681  * goes through ->blocked
682  */
683 void signal_wake_up(struct task_struct *t, int resume)
684 {
685 	unsigned int mask;
686 
687 	set_tsk_thread_flag(t, TIF_SIGPENDING);
688 
689 	/*
690 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
691 	 * case. We don't check t->state here because there is a race with it
692 	 * executing another processor and just now entering stopped state.
693 	 * By using wake_up_state, we ensure the process will wake up and
694 	 * handle its death signal.
695 	 */
696 	mask = TASK_INTERRUPTIBLE;
697 	if (resume)
698 		mask |= TASK_WAKEKILL;
699 	if (!wake_up_state(t, mask))
700 		kick_process(t);
701 }
702 
703 /*
704  * Remove signals in mask from the pending set and queue.
705  * Returns 1 if any signals were found.
706  *
707  * All callers must be holding the siglock.
708  *
709  * This version takes a sigset mask and looks at all signals,
710  * not just those in the first mask word.
711  */
712 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
713 {
714 	struct sigqueue *q, *n;
715 	sigset_t m;
716 
717 	sigandsets(&m, mask, &s->signal);
718 	if (sigisemptyset(&m))
719 		return 0;
720 
721 	sigandnsets(&s->signal, &s->signal, mask);
722 	list_for_each_entry_safe(q, n, &s->list, list) {
723 		if (sigismember(mask, q->info.si_signo)) {
724 			list_del_init(&q->list);
725 			__sigqueue_free(q);
726 		}
727 	}
728 	return 1;
729 }
730 /*
731  * Remove signals in mask from the pending set and queue.
732  * Returns 1 if any signals were found.
733  *
734  * All callers must be holding the siglock.
735  */
736 static int rm_from_queue(unsigned long mask, struct sigpending *s)
737 {
738 	struct sigqueue *q, *n;
739 
740 	if (!sigtestsetmask(&s->signal, mask))
741 		return 0;
742 
743 	sigdelsetmask(&s->signal, mask);
744 	list_for_each_entry_safe(q, n, &s->list, list) {
745 		if (q->info.si_signo < SIGRTMIN &&
746 		    (mask & sigmask(q->info.si_signo))) {
747 			list_del_init(&q->list);
748 			__sigqueue_free(q);
749 		}
750 	}
751 	return 1;
752 }
753 
754 static inline int is_si_special(const struct siginfo *info)
755 {
756 	return info <= SEND_SIG_FORCED;
757 }
758 
759 static inline bool si_fromuser(const struct siginfo *info)
760 {
761 	return info == SEND_SIG_NOINFO ||
762 		(!is_si_special(info) && SI_FROMUSER(info));
763 }
764 
765 /*
766  * called with RCU read lock from check_kill_permission()
767  */
768 static int kill_ok_by_cred(struct task_struct *t)
769 {
770 	const struct cred *cred = current_cred();
771 	const struct cred *tcred = __task_cred(t);
772 
773 	if (uid_eq(cred->euid, tcred->suid) ||
774 	    uid_eq(cred->euid, tcred->uid)  ||
775 	    uid_eq(cred->uid,  tcred->suid) ||
776 	    uid_eq(cred->uid,  tcred->uid))
777 		return 1;
778 
779 	if (ns_capable(tcred->user_ns, CAP_KILL))
780 		return 1;
781 
782 	return 0;
783 }
784 
785 /*
786  * Bad permissions for sending the signal
787  * - the caller must hold the RCU read lock
788  */
789 static int check_kill_permission(int sig, struct siginfo *info,
790 				 struct task_struct *t)
791 {
792 	struct pid *sid;
793 	int error;
794 
795 	if (!valid_signal(sig))
796 		return -EINVAL;
797 
798 	if (!si_fromuser(info))
799 		return 0;
800 
801 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
802 	if (error)
803 		return error;
804 
805 	if (!same_thread_group(current, t) &&
806 	    !kill_ok_by_cred(t)) {
807 		switch (sig) {
808 		case SIGCONT:
809 			sid = task_session(t);
810 			/*
811 			 * We don't return the error if sid == NULL. The
812 			 * task was unhashed, the caller must notice this.
813 			 */
814 			if (!sid || sid == task_session(current))
815 				break;
816 		default:
817 			return -EPERM;
818 		}
819 	}
820 
821 	return security_task_kill(t, info, sig, 0);
822 }
823 
824 /**
825  * ptrace_trap_notify - schedule trap to notify ptracer
826  * @t: tracee wanting to notify tracer
827  *
828  * This function schedules sticky ptrace trap which is cleared on the next
829  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
830  * ptracer.
831  *
832  * If @t is running, STOP trap will be taken.  If trapped for STOP and
833  * ptracer is listening for events, tracee is woken up so that it can
834  * re-trap for the new event.  If trapped otherwise, STOP trap will be
835  * eventually taken without returning to userland after the existing traps
836  * are finished by PTRACE_CONT.
837  *
838  * CONTEXT:
839  * Must be called with @task->sighand->siglock held.
840  */
841 static void ptrace_trap_notify(struct task_struct *t)
842 {
843 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
844 	assert_spin_locked(&t->sighand->siglock);
845 
846 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
847 	signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
848 }
849 
850 /*
851  * Handle magic process-wide effects of stop/continue signals. Unlike
852  * the signal actions, these happen immediately at signal-generation
853  * time regardless of blocking, ignoring, or handling.  This does the
854  * actual continuing for SIGCONT, but not the actual stopping for stop
855  * signals. The process stop is done as a signal action for SIG_DFL.
856  *
857  * Returns true if the signal should be actually delivered, otherwise
858  * it should be dropped.
859  */
860 static int prepare_signal(int sig, struct task_struct *p, bool force)
861 {
862 	struct signal_struct *signal = p->signal;
863 	struct task_struct *t;
864 
865 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
866 		/*
867 		 * The process is in the middle of dying, nothing to do.
868 		 */
869 	} else if (sig_kernel_stop(sig)) {
870 		/*
871 		 * This is a stop signal.  Remove SIGCONT from all queues.
872 		 */
873 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
874 		t = p;
875 		do {
876 			rm_from_queue(sigmask(SIGCONT), &t->pending);
877 		} while_each_thread(p, t);
878 	} else if (sig == SIGCONT) {
879 		unsigned int why;
880 		/*
881 		 * Remove all stop signals from all queues, wake all threads.
882 		 */
883 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
884 		t = p;
885 		do {
886 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
887 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
888 			if (likely(!(t->ptrace & PT_SEIZED)))
889 				wake_up_state(t, __TASK_STOPPED);
890 			else
891 				ptrace_trap_notify(t);
892 		} while_each_thread(p, t);
893 
894 		/*
895 		 * Notify the parent with CLD_CONTINUED if we were stopped.
896 		 *
897 		 * If we were in the middle of a group stop, we pretend it
898 		 * was already finished, and then continued. Since SIGCHLD
899 		 * doesn't queue we report only CLD_STOPPED, as if the next
900 		 * CLD_CONTINUED was dropped.
901 		 */
902 		why = 0;
903 		if (signal->flags & SIGNAL_STOP_STOPPED)
904 			why |= SIGNAL_CLD_CONTINUED;
905 		else if (signal->group_stop_count)
906 			why |= SIGNAL_CLD_STOPPED;
907 
908 		if (why) {
909 			/*
910 			 * The first thread which returns from do_signal_stop()
911 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
912 			 * notify its parent. See get_signal_to_deliver().
913 			 */
914 			signal->flags = why | SIGNAL_STOP_CONTINUED;
915 			signal->group_stop_count = 0;
916 			signal->group_exit_code = 0;
917 		}
918 	}
919 
920 	return !sig_ignored(p, sig, force);
921 }
922 
923 /*
924  * Test if P wants to take SIG.  After we've checked all threads with this,
925  * it's equivalent to finding no threads not blocking SIG.  Any threads not
926  * blocking SIG were ruled out because they are not running and already
927  * have pending signals.  Such threads will dequeue from the shared queue
928  * as soon as they're available, so putting the signal on the shared queue
929  * will be equivalent to sending it to one such thread.
930  */
931 static inline int wants_signal(int sig, struct task_struct *p)
932 {
933 	if (sigismember(&p->blocked, sig))
934 		return 0;
935 	if (p->flags & PF_EXITING)
936 		return 0;
937 	if (sig == SIGKILL)
938 		return 1;
939 	if (task_is_stopped_or_traced(p))
940 		return 0;
941 	return task_curr(p) || !signal_pending(p);
942 }
943 
944 static void complete_signal(int sig, struct task_struct *p, int group)
945 {
946 	struct signal_struct *signal = p->signal;
947 	struct task_struct *t;
948 
949 	/*
950 	 * Now find a thread we can wake up to take the signal off the queue.
951 	 *
952 	 * If the main thread wants the signal, it gets first crack.
953 	 * Probably the least surprising to the average bear.
954 	 */
955 	if (wants_signal(sig, p))
956 		t = p;
957 	else if (!group || thread_group_empty(p))
958 		/*
959 		 * There is just one thread and it does not need to be woken.
960 		 * It will dequeue unblocked signals before it runs again.
961 		 */
962 		return;
963 	else {
964 		/*
965 		 * Otherwise try to find a suitable thread.
966 		 */
967 		t = signal->curr_target;
968 		while (!wants_signal(sig, t)) {
969 			t = next_thread(t);
970 			if (t == signal->curr_target)
971 				/*
972 				 * No thread needs to be woken.
973 				 * Any eligible threads will see
974 				 * the signal in the queue soon.
975 				 */
976 				return;
977 		}
978 		signal->curr_target = t;
979 	}
980 
981 	/*
982 	 * Found a killable thread.  If the signal will be fatal,
983 	 * then start taking the whole group down immediately.
984 	 */
985 	if (sig_fatal(p, sig) &&
986 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
987 	    !sigismember(&t->real_blocked, sig) &&
988 	    (sig == SIGKILL || !t->ptrace)) {
989 		/*
990 		 * This signal will be fatal to the whole group.
991 		 */
992 		if (!sig_kernel_coredump(sig)) {
993 			/*
994 			 * Start a group exit and wake everybody up.
995 			 * This way we don't have other threads
996 			 * running and doing things after a slower
997 			 * thread has the fatal signal pending.
998 			 */
999 			signal->flags = SIGNAL_GROUP_EXIT;
1000 			signal->group_exit_code = sig;
1001 			signal->group_stop_count = 0;
1002 			t = p;
1003 			do {
1004 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1005 				sigaddset(&t->pending.signal, SIGKILL);
1006 				signal_wake_up(t, 1);
1007 			} while_each_thread(p, t);
1008 			return;
1009 		}
1010 	}
1011 
1012 	/*
1013 	 * The signal is already in the shared-pending queue.
1014 	 * Tell the chosen thread to wake up and dequeue it.
1015 	 */
1016 	signal_wake_up(t, sig == SIGKILL);
1017 	return;
1018 }
1019 
1020 static inline int legacy_queue(struct sigpending *signals, int sig)
1021 {
1022 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1023 }
1024 
1025 #ifdef CONFIG_USER_NS
1026 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1027 {
1028 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1029 		return;
1030 
1031 	if (SI_FROMKERNEL(info))
1032 		return;
1033 
1034 	rcu_read_lock();
1035 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1036 					make_kuid(current_user_ns(), info->si_uid));
1037 	rcu_read_unlock();
1038 }
1039 #else
1040 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1041 {
1042 	return;
1043 }
1044 #endif
1045 
1046 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1047 			int group, int from_ancestor_ns)
1048 {
1049 	struct sigpending *pending;
1050 	struct sigqueue *q;
1051 	int override_rlimit;
1052 	int ret = 0, result;
1053 
1054 	assert_spin_locked(&t->sighand->siglock);
1055 
1056 	result = TRACE_SIGNAL_IGNORED;
1057 	if (!prepare_signal(sig, t,
1058 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1059 		goto ret;
1060 
1061 	pending = group ? &t->signal->shared_pending : &t->pending;
1062 	/*
1063 	 * Short-circuit ignored signals and support queuing
1064 	 * exactly one non-rt signal, so that we can get more
1065 	 * detailed information about the cause of the signal.
1066 	 */
1067 	result = TRACE_SIGNAL_ALREADY_PENDING;
1068 	if (legacy_queue(pending, sig))
1069 		goto ret;
1070 
1071 	result = TRACE_SIGNAL_DELIVERED;
1072 	/*
1073 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1074 	 * or SIGKILL.
1075 	 */
1076 	if (info == SEND_SIG_FORCED)
1077 		goto out_set;
1078 
1079 	/*
1080 	 * Real-time signals must be queued if sent by sigqueue, or
1081 	 * some other real-time mechanism.  It is implementation
1082 	 * defined whether kill() does so.  We attempt to do so, on
1083 	 * the principle of least surprise, but since kill is not
1084 	 * allowed to fail with EAGAIN when low on memory we just
1085 	 * make sure at least one signal gets delivered and don't
1086 	 * pass on the info struct.
1087 	 */
1088 	if (sig < SIGRTMIN)
1089 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1090 	else
1091 		override_rlimit = 0;
1092 
1093 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1094 		override_rlimit);
1095 	if (q) {
1096 		list_add_tail(&q->list, &pending->list);
1097 		switch ((unsigned long) info) {
1098 		case (unsigned long) SEND_SIG_NOINFO:
1099 			q->info.si_signo = sig;
1100 			q->info.si_errno = 0;
1101 			q->info.si_code = SI_USER;
1102 			q->info.si_pid = task_tgid_nr_ns(current,
1103 							task_active_pid_ns(t));
1104 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1105 			break;
1106 		case (unsigned long) SEND_SIG_PRIV:
1107 			q->info.si_signo = sig;
1108 			q->info.si_errno = 0;
1109 			q->info.si_code = SI_KERNEL;
1110 			q->info.si_pid = 0;
1111 			q->info.si_uid = 0;
1112 			break;
1113 		default:
1114 			copy_siginfo(&q->info, info);
1115 			if (from_ancestor_ns)
1116 				q->info.si_pid = 0;
1117 			break;
1118 		}
1119 
1120 		userns_fixup_signal_uid(&q->info, t);
1121 
1122 	} else if (!is_si_special(info)) {
1123 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1124 			/*
1125 			 * Queue overflow, abort.  We may abort if the
1126 			 * signal was rt and sent by user using something
1127 			 * other than kill().
1128 			 */
1129 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1130 			ret = -EAGAIN;
1131 			goto ret;
1132 		} else {
1133 			/*
1134 			 * This is a silent loss of information.  We still
1135 			 * send the signal, but the *info bits are lost.
1136 			 */
1137 			result = TRACE_SIGNAL_LOSE_INFO;
1138 		}
1139 	}
1140 
1141 out_set:
1142 	signalfd_notify(t, sig);
1143 	sigaddset(&pending->signal, sig);
1144 	complete_signal(sig, t, group);
1145 ret:
1146 	trace_signal_generate(sig, info, t, group, result);
1147 	return ret;
1148 }
1149 
1150 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1151 			int group)
1152 {
1153 	int from_ancestor_ns = 0;
1154 
1155 #ifdef CONFIG_PID_NS
1156 	from_ancestor_ns = si_fromuser(info) &&
1157 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1158 #endif
1159 
1160 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1161 }
1162 
1163 static void print_fatal_signal(int signr)
1164 {
1165 	struct pt_regs *regs = signal_pt_regs();
1166 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1167 		current->comm, task_pid_nr(current), signr);
1168 
1169 #if defined(__i386__) && !defined(__arch_um__)
1170 	printk("code at %08lx: ", regs->ip);
1171 	{
1172 		int i;
1173 		for (i = 0; i < 16; i++) {
1174 			unsigned char insn;
1175 
1176 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1177 				break;
1178 			printk("%02x ", insn);
1179 		}
1180 	}
1181 #endif
1182 	printk("\n");
1183 	preempt_disable();
1184 	show_regs(regs);
1185 	preempt_enable();
1186 }
1187 
1188 static int __init setup_print_fatal_signals(char *str)
1189 {
1190 	get_option (&str, &print_fatal_signals);
1191 
1192 	return 1;
1193 }
1194 
1195 __setup("print-fatal-signals=", setup_print_fatal_signals);
1196 
1197 int
1198 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1199 {
1200 	return send_signal(sig, info, p, 1);
1201 }
1202 
1203 static int
1204 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1205 {
1206 	return send_signal(sig, info, t, 0);
1207 }
1208 
1209 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1210 			bool group)
1211 {
1212 	unsigned long flags;
1213 	int ret = -ESRCH;
1214 
1215 	if (lock_task_sighand(p, &flags)) {
1216 		ret = send_signal(sig, info, p, group);
1217 		unlock_task_sighand(p, &flags);
1218 	}
1219 
1220 	return ret;
1221 }
1222 
1223 /*
1224  * Force a signal that the process can't ignore: if necessary
1225  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1226  *
1227  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1228  * since we do not want to have a signal handler that was blocked
1229  * be invoked when user space had explicitly blocked it.
1230  *
1231  * We don't want to have recursive SIGSEGV's etc, for example,
1232  * that is why we also clear SIGNAL_UNKILLABLE.
1233  */
1234 int
1235 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1236 {
1237 	unsigned long int flags;
1238 	int ret, blocked, ignored;
1239 	struct k_sigaction *action;
1240 
1241 	spin_lock_irqsave(&t->sighand->siglock, flags);
1242 	action = &t->sighand->action[sig-1];
1243 	ignored = action->sa.sa_handler == SIG_IGN;
1244 	blocked = sigismember(&t->blocked, sig);
1245 	if (blocked || ignored) {
1246 		action->sa.sa_handler = SIG_DFL;
1247 		if (blocked) {
1248 			sigdelset(&t->blocked, sig);
1249 			recalc_sigpending_and_wake(t);
1250 		}
1251 	}
1252 	if (action->sa.sa_handler == SIG_DFL)
1253 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1254 	ret = specific_send_sig_info(sig, info, t);
1255 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1256 
1257 	return ret;
1258 }
1259 
1260 /*
1261  * Nuke all other threads in the group.
1262  */
1263 int zap_other_threads(struct task_struct *p)
1264 {
1265 	struct task_struct *t = p;
1266 	int count = 0;
1267 
1268 	p->signal->group_stop_count = 0;
1269 
1270 	while_each_thread(p, t) {
1271 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1272 		count++;
1273 
1274 		/* Don't bother with already dead threads */
1275 		if (t->exit_state)
1276 			continue;
1277 		sigaddset(&t->pending.signal, SIGKILL);
1278 		signal_wake_up(t, 1);
1279 	}
1280 
1281 	return count;
1282 }
1283 
1284 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1285 					   unsigned long *flags)
1286 {
1287 	struct sighand_struct *sighand;
1288 
1289 	for (;;) {
1290 		local_irq_save(*flags);
1291 		rcu_read_lock();
1292 		sighand = rcu_dereference(tsk->sighand);
1293 		if (unlikely(sighand == NULL)) {
1294 			rcu_read_unlock();
1295 			local_irq_restore(*flags);
1296 			break;
1297 		}
1298 
1299 		spin_lock(&sighand->siglock);
1300 		if (likely(sighand == tsk->sighand)) {
1301 			rcu_read_unlock();
1302 			break;
1303 		}
1304 		spin_unlock(&sighand->siglock);
1305 		rcu_read_unlock();
1306 		local_irq_restore(*flags);
1307 	}
1308 
1309 	return sighand;
1310 }
1311 
1312 /*
1313  * send signal info to all the members of a group
1314  */
1315 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1316 {
1317 	int ret;
1318 
1319 	rcu_read_lock();
1320 	ret = check_kill_permission(sig, info, p);
1321 	rcu_read_unlock();
1322 
1323 	if (!ret && sig)
1324 		ret = do_send_sig_info(sig, info, p, true);
1325 
1326 	return ret;
1327 }
1328 
1329 /*
1330  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1331  * control characters do (^C, ^Z etc)
1332  * - the caller must hold at least a readlock on tasklist_lock
1333  */
1334 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1335 {
1336 	struct task_struct *p = NULL;
1337 	int retval, success;
1338 
1339 	success = 0;
1340 	retval = -ESRCH;
1341 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1342 		int err = group_send_sig_info(sig, info, p);
1343 		success |= !err;
1344 		retval = err;
1345 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1346 	return success ? 0 : retval;
1347 }
1348 
1349 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1350 {
1351 	int error = -ESRCH;
1352 	struct task_struct *p;
1353 
1354 	rcu_read_lock();
1355 retry:
1356 	p = pid_task(pid, PIDTYPE_PID);
1357 	if (p) {
1358 		error = group_send_sig_info(sig, info, p);
1359 		if (unlikely(error == -ESRCH))
1360 			/*
1361 			 * The task was unhashed in between, try again.
1362 			 * If it is dead, pid_task() will return NULL,
1363 			 * if we race with de_thread() it will find the
1364 			 * new leader.
1365 			 */
1366 			goto retry;
1367 	}
1368 	rcu_read_unlock();
1369 
1370 	return error;
1371 }
1372 
1373 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1374 {
1375 	int error;
1376 	rcu_read_lock();
1377 	error = kill_pid_info(sig, info, find_vpid(pid));
1378 	rcu_read_unlock();
1379 	return error;
1380 }
1381 
1382 static int kill_as_cred_perm(const struct cred *cred,
1383 			     struct task_struct *target)
1384 {
1385 	const struct cred *pcred = __task_cred(target);
1386 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1387 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1388 		return 0;
1389 	return 1;
1390 }
1391 
1392 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1393 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1394 			 const struct cred *cred, u32 secid)
1395 {
1396 	int ret = -EINVAL;
1397 	struct task_struct *p;
1398 	unsigned long flags;
1399 
1400 	if (!valid_signal(sig))
1401 		return ret;
1402 
1403 	rcu_read_lock();
1404 	p = pid_task(pid, PIDTYPE_PID);
1405 	if (!p) {
1406 		ret = -ESRCH;
1407 		goto out_unlock;
1408 	}
1409 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1410 		ret = -EPERM;
1411 		goto out_unlock;
1412 	}
1413 	ret = security_task_kill(p, info, sig, secid);
1414 	if (ret)
1415 		goto out_unlock;
1416 
1417 	if (sig) {
1418 		if (lock_task_sighand(p, &flags)) {
1419 			ret = __send_signal(sig, info, p, 1, 0);
1420 			unlock_task_sighand(p, &flags);
1421 		} else
1422 			ret = -ESRCH;
1423 	}
1424 out_unlock:
1425 	rcu_read_unlock();
1426 	return ret;
1427 }
1428 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1429 
1430 /*
1431  * kill_something_info() interprets pid in interesting ways just like kill(2).
1432  *
1433  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1434  * is probably wrong.  Should make it like BSD or SYSV.
1435  */
1436 
1437 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1438 {
1439 	int ret;
1440 
1441 	if (pid > 0) {
1442 		rcu_read_lock();
1443 		ret = kill_pid_info(sig, info, find_vpid(pid));
1444 		rcu_read_unlock();
1445 		return ret;
1446 	}
1447 
1448 	read_lock(&tasklist_lock);
1449 	if (pid != -1) {
1450 		ret = __kill_pgrp_info(sig, info,
1451 				pid ? find_vpid(-pid) : task_pgrp(current));
1452 	} else {
1453 		int retval = 0, count = 0;
1454 		struct task_struct * p;
1455 
1456 		for_each_process(p) {
1457 			if (task_pid_vnr(p) > 1 &&
1458 					!same_thread_group(p, current)) {
1459 				int err = group_send_sig_info(sig, info, p);
1460 				++count;
1461 				if (err != -EPERM)
1462 					retval = err;
1463 			}
1464 		}
1465 		ret = count ? retval : -ESRCH;
1466 	}
1467 	read_unlock(&tasklist_lock);
1468 
1469 	return ret;
1470 }
1471 
1472 /*
1473  * These are for backward compatibility with the rest of the kernel source.
1474  */
1475 
1476 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1477 {
1478 	/*
1479 	 * Make sure legacy kernel users don't send in bad values
1480 	 * (normal paths check this in check_kill_permission).
1481 	 */
1482 	if (!valid_signal(sig))
1483 		return -EINVAL;
1484 
1485 	return do_send_sig_info(sig, info, p, false);
1486 }
1487 
1488 #define __si_special(priv) \
1489 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1490 
1491 int
1492 send_sig(int sig, struct task_struct *p, int priv)
1493 {
1494 	return send_sig_info(sig, __si_special(priv), p);
1495 }
1496 
1497 void
1498 force_sig(int sig, struct task_struct *p)
1499 {
1500 	force_sig_info(sig, SEND_SIG_PRIV, p);
1501 }
1502 
1503 /*
1504  * When things go south during signal handling, we
1505  * will force a SIGSEGV. And if the signal that caused
1506  * the problem was already a SIGSEGV, we'll want to
1507  * make sure we don't even try to deliver the signal..
1508  */
1509 int
1510 force_sigsegv(int sig, struct task_struct *p)
1511 {
1512 	if (sig == SIGSEGV) {
1513 		unsigned long flags;
1514 		spin_lock_irqsave(&p->sighand->siglock, flags);
1515 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1516 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1517 	}
1518 	force_sig(SIGSEGV, p);
1519 	return 0;
1520 }
1521 
1522 int kill_pgrp(struct pid *pid, int sig, int priv)
1523 {
1524 	int ret;
1525 
1526 	read_lock(&tasklist_lock);
1527 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1528 	read_unlock(&tasklist_lock);
1529 
1530 	return ret;
1531 }
1532 EXPORT_SYMBOL(kill_pgrp);
1533 
1534 int kill_pid(struct pid *pid, int sig, int priv)
1535 {
1536 	return kill_pid_info(sig, __si_special(priv), pid);
1537 }
1538 EXPORT_SYMBOL(kill_pid);
1539 
1540 /*
1541  * These functions support sending signals using preallocated sigqueue
1542  * structures.  This is needed "because realtime applications cannot
1543  * afford to lose notifications of asynchronous events, like timer
1544  * expirations or I/O completions".  In the case of POSIX Timers
1545  * we allocate the sigqueue structure from the timer_create.  If this
1546  * allocation fails we are able to report the failure to the application
1547  * with an EAGAIN error.
1548  */
1549 struct sigqueue *sigqueue_alloc(void)
1550 {
1551 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1552 
1553 	if (q)
1554 		q->flags |= SIGQUEUE_PREALLOC;
1555 
1556 	return q;
1557 }
1558 
1559 void sigqueue_free(struct sigqueue *q)
1560 {
1561 	unsigned long flags;
1562 	spinlock_t *lock = &current->sighand->siglock;
1563 
1564 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1565 	/*
1566 	 * We must hold ->siglock while testing q->list
1567 	 * to serialize with collect_signal() or with
1568 	 * __exit_signal()->flush_sigqueue().
1569 	 */
1570 	spin_lock_irqsave(lock, flags);
1571 	q->flags &= ~SIGQUEUE_PREALLOC;
1572 	/*
1573 	 * If it is queued it will be freed when dequeued,
1574 	 * like the "regular" sigqueue.
1575 	 */
1576 	if (!list_empty(&q->list))
1577 		q = NULL;
1578 	spin_unlock_irqrestore(lock, flags);
1579 
1580 	if (q)
1581 		__sigqueue_free(q);
1582 }
1583 
1584 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1585 {
1586 	int sig = q->info.si_signo;
1587 	struct sigpending *pending;
1588 	unsigned long flags;
1589 	int ret, result;
1590 
1591 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1592 
1593 	ret = -1;
1594 	if (!likely(lock_task_sighand(t, &flags)))
1595 		goto ret;
1596 
1597 	ret = 1; /* the signal is ignored */
1598 	result = TRACE_SIGNAL_IGNORED;
1599 	if (!prepare_signal(sig, t, false))
1600 		goto out;
1601 
1602 	ret = 0;
1603 	if (unlikely(!list_empty(&q->list))) {
1604 		/*
1605 		 * If an SI_TIMER entry is already queue just increment
1606 		 * the overrun count.
1607 		 */
1608 		BUG_ON(q->info.si_code != SI_TIMER);
1609 		q->info.si_overrun++;
1610 		result = TRACE_SIGNAL_ALREADY_PENDING;
1611 		goto out;
1612 	}
1613 	q->info.si_overrun = 0;
1614 
1615 	signalfd_notify(t, sig);
1616 	pending = group ? &t->signal->shared_pending : &t->pending;
1617 	list_add_tail(&q->list, &pending->list);
1618 	sigaddset(&pending->signal, sig);
1619 	complete_signal(sig, t, group);
1620 	result = TRACE_SIGNAL_DELIVERED;
1621 out:
1622 	trace_signal_generate(sig, &q->info, t, group, result);
1623 	unlock_task_sighand(t, &flags);
1624 ret:
1625 	return ret;
1626 }
1627 
1628 /*
1629  * Let a parent know about the death of a child.
1630  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1631  *
1632  * Returns true if our parent ignored us and so we've switched to
1633  * self-reaping.
1634  */
1635 bool do_notify_parent(struct task_struct *tsk, int sig)
1636 {
1637 	struct siginfo info;
1638 	unsigned long flags;
1639 	struct sighand_struct *psig;
1640 	bool autoreap = false;
1641 
1642 	BUG_ON(sig == -1);
1643 
1644  	/* do_notify_parent_cldstop should have been called instead.  */
1645  	BUG_ON(task_is_stopped_or_traced(tsk));
1646 
1647 	BUG_ON(!tsk->ptrace &&
1648 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1649 
1650 	if (sig != SIGCHLD) {
1651 		/*
1652 		 * This is only possible if parent == real_parent.
1653 		 * Check if it has changed security domain.
1654 		 */
1655 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1656 			sig = SIGCHLD;
1657 	}
1658 
1659 	info.si_signo = sig;
1660 	info.si_errno = 0;
1661 	/*
1662 	 * We are under tasklist_lock here so our parent is tied to
1663 	 * us and cannot change.
1664 	 *
1665 	 * task_active_pid_ns will always return the same pid namespace
1666 	 * until a task passes through release_task.
1667 	 *
1668 	 * write_lock() currently calls preempt_disable() which is the
1669 	 * same as rcu_read_lock(), but according to Oleg, this is not
1670 	 * correct to rely on this
1671 	 */
1672 	rcu_read_lock();
1673 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1674 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1675 				       task_uid(tsk));
1676 	rcu_read_unlock();
1677 
1678 	info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1679 	info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1680 
1681 	info.si_status = tsk->exit_code & 0x7f;
1682 	if (tsk->exit_code & 0x80)
1683 		info.si_code = CLD_DUMPED;
1684 	else if (tsk->exit_code & 0x7f)
1685 		info.si_code = CLD_KILLED;
1686 	else {
1687 		info.si_code = CLD_EXITED;
1688 		info.si_status = tsk->exit_code >> 8;
1689 	}
1690 
1691 	psig = tsk->parent->sighand;
1692 	spin_lock_irqsave(&psig->siglock, flags);
1693 	if (!tsk->ptrace && sig == SIGCHLD &&
1694 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1695 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1696 		/*
1697 		 * We are exiting and our parent doesn't care.  POSIX.1
1698 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1699 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1700 		 * automatically and not left for our parent's wait4 call.
1701 		 * Rather than having the parent do it as a magic kind of
1702 		 * signal handler, we just set this to tell do_exit that we
1703 		 * can be cleaned up without becoming a zombie.  Note that
1704 		 * we still call __wake_up_parent in this case, because a
1705 		 * blocked sys_wait4 might now return -ECHILD.
1706 		 *
1707 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1708 		 * is implementation-defined: we do (if you don't want
1709 		 * it, just use SIG_IGN instead).
1710 		 */
1711 		autoreap = true;
1712 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1713 			sig = 0;
1714 	}
1715 	if (valid_signal(sig) && sig)
1716 		__group_send_sig_info(sig, &info, tsk->parent);
1717 	__wake_up_parent(tsk, tsk->parent);
1718 	spin_unlock_irqrestore(&psig->siglock, flags);
1719 
1720 	return autoreap;
1721 }
1722 
1723 /**
1724  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1725  * @tsk: task reporting the state change
1726  * @for_ptracer: the notification is for ptracer
1727  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1728  *
1729  * Notify @tsk's parent that the stopped/continued state has changed.  If
1730  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1731  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1732  *
1733  * CONTEXT:
1734  * Must be called with tasklist_lock at least read locked.
1735  */
1736 static void do_notify_parent_cldstop(struct task_struct *tsk,
1737 				     bool for_ptracer, int why)
1738 {
1739 	struct siginfo info;
1740 	unsigned long flags;
1741 	struct task_struct *parent;
1742 	struct sighand_struct *sighand;
1743 
1744 	if (for_ptracer) {
1745 		parent = tsk->parent;
1746 	} else {
1747 		tsk = tsk->group_leader;
1748 		parent = tsk->real_parent;
1749 	}
1750 
1751 	info.si_signo = SIGCHLD;
1752 	info.si_errno = 0;
1753 	/*
1754 	 * see comment in do_notify_parent() about the following 4 lines
1755 	 */
1756 	rcu_read_lock();
1757 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1758 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1759 	rcu_read_unlock();
1760 
1761 	info.si_utime = cputime_to_clock_t(tsk->utime);
1762 	info.si_stime = cputime_to_clock_t(tsk->stime);
1763 
1764  	info.si_code = why;
1765  	switch (why) {
1766  	case CLD_CONTINUED:
1767  		info.si_status = SIGCONT;
1768  		break;
1769  	case CLD_STOPPED:
1770  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1771  		break;
1772  	case CLD_TRAPPED:
1773  		info.si_status = tsk->exit_code & 0x7f;
1774  		break;
1775  	default:
1776  		BUG();
1777  	}
1778 
1779 	sighand = parent->sighand;
1780 	spin_lock_irqsave(&sighand->siglock, flags);
1781 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1782 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1783 		__group_send_sig_info(SIGCHLD, &info, parent);
1784 	/*
1785 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1786 	 */
1787 	__wake_up_parent(tsk, parent);
1788 	spin_unlock_irqrestore(&sighand->siglock, flags);
1789 }
1790 
1791 static inline int may_ptrace_stop(void)
1792 {
1793 	if (!likely(current->ptrace))
1794 		return 0;
1795 	/*
1796 	 * Are we in the middle of do_coredump?
1797 	 * If so and our tracer is also part of the coredump stopping
1798 	 * is a deadlock situation, and pointless because our tracer
1799 	 * is dead so don't allow us to stop.
1800 	 * If SIGKILL was already sent before the caller unlocked
1801 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1802 	 * is safe to enter schedule().
1803 	 */
1804 	if (unlikely(current->mm->core_state) &&
1805 	    unlikely(current->mm == current->parent->mm))
1806 		return 0;
1807 
1808 	return 1;
1809 }
1810 
1811 /*
1812  * Return non-zero if there is a SIGKILL that should be waking us up.
1813  * Called with the siglock held.
1814  */
1815 static int sigkill_pending(struct task_struct *tsk)
1816 {
1817 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1818 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1819 }
1820 
1821 /*
1822  * This must be called with current->sighand->siglock held.
1823  *
1824  * This should be the path for all ptrace stops.
1825  * We always set current->last_siginfo while stopped here.
1826  * That makes it a way to test a stopped process for
1827  * being ptrace-stopped vs being job-control-stopped.
1828  *
1829  * If we actually decide not to stop at all because the tracer
1830  * is gone, we keep current->exit_code unless clear_code.
1831  */
1832 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1833 	__releases(&current->sighand->siglock)
1834 	__acquires(&current->sighand->siglock)
1835 {
1836 	bool gstop_done = false;
1837 
1838 	if (arch_ptrace_stop_needed(exit_code, info)) {
1839 		/*
1840 		 * The arch code has something special to do before a
1841 		 * ptrace stop.  This is allowed to block, e.g. for faults
1842 		 * on user stack pages.  We can't keep the siglock while
1843 		 * calling arch_ptrace_stop, so we must release it now.
1844 		 * To preserve proper semantics, we must do this before
1845 		 * any signal bookkeeping like checking group_stop_count.
1846 		 * Meanwhile, a SIGKILL could come in before we retake the
1847 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1848 		 * So after regaining the lock, we must check for SIGKILL.
1849 		 */
1850 		spin_unlock_irq(&current->sighand->siglock);
1851 		arch_ptrace_stop(exit_code, info);
1852 		spin_lock_irq(&current->sighand->siglock);
1853 		if (sigkill_pending(current))
1854 			return;
1855 	}
1856 
1857 	/*
1858 	 * We're committing to trapping.  TRACED should be visible before
1859 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1860 	 * Also, transition to TRACED and updates to ->jobctl should be
1861 	 * atomic with respect to siglock and should be done after the arch
1862 	 * hook as siglock is released and regrabbed across it.
1863 	 */
1864 	set_current_state(TASK_TRACED);
1865 
1866 	current->last_siginfo = info;
1867 	current->exit_code = exit_code;
1868 
1869 	/*
1870 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1871 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1872 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1873 	 * could be clear now.  We act as if SIGCONT is received after
1874 	 * TASK_TRACED is entered - ignore it.
1875 	 */
1876 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1877 		gstop_done = task_participate_group_stop(current);
1878 
1879 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1880 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1881 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1882 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1883 
1884 	/* entering a trap, clear TRAPPING */
1885 	task_clear_jobctl_trapping(current);
1886 
1887 	spin_unlock_irq(&current->sighand->siglock);
1888 	read_lock(&tasklist_lock);
1889 	if (may_ptrace_stop()) {
1890 		/*
1891 		 * Notify parents of the stop.
1892 		 *
1893 		 * While ptraced, there are two parents - the ptracer and
1894 		 * the real_parent of the group_leader.  The ptracer should
1895 		 * know about every stop while the real parent is only
1896 		 * interested in the completion of group stop.  The states
1897 		 * for the two don't interact with each other.  Notify
1898 		 * separately unless they're gonna be duplicates.
1899 		 */
1900 		do_notify_parent_cldstop(current, true, why);
1901 		if (gstop_done && ptrace_reparented(current))
1902 			do_notify_parent_cldstop(current, false, why);
1903 
1904 		/*
1905 		 * Don't want to allow preemption here, because
1906 		 * sys_ptrace() needs this task to be inactive.
1907 		 *
1908 		 * XXX: implement read_unlock_no_resched().
1909 		 */
1910 		preempt_disable();
1911 		read_unlock(&tasklist_lock);
1912 		preempt_enable_no_resched();
1913 		freezable_schedule();
1914 	} else {
1915 		/*
1916 		 * By the time we got the lock, our tracer went away.
1917 		 * Don't drop the lock yet, another tracer may come.
1918 		 *
1919 		 * If @gstop_done, the ptracer went away between group stop
1920 		 * completion and here.  During detach, it would have set
1921 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1922 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1923 		 * the real parent of the group stop completion is enough.
1924 		 */
1925 		if (gstop_done)
1926 			do_notify_parent_cldstop(current, false, why);
1927 
1928 		__set_current_state(TASK_RUNNING);
1929 		if (clear_code)
1930 			current->exit_code = 0;
1931 		read_unlock(&tasklist_lock);
1932 	}
1933 
1934 	/*
1935 	 * We are back.  Now reacquire the siglock before touching
1936 	 * last_siginfo, so that we are sure to have synchronized with
1937 	 * any signal-sending on another CPU that wants to examine it.
1938 	 */
1939 	spin_lock_irq(&current->sighand->siglock);
1940 	current->last_siginfo = NULL;
1941 
1942 	/* LISTENING can be set only during STOP traps, clear it */
1943 	current->jobctl &= ~JOBCTL_LISTENING;
1944 
1945 	/*
1946 	 * Queued signals ignored us while we were stopped for tracing.
1947 	 * So check for any that we should take before resuming user mode.
1948 	 * This sets TIF_SIGPENDING, but never clears it.
1949 	 */
1950 	recalc_sigpending_tsk(current);
1951 }
1952 
1953 static void ptrace_do_notify(int signr, int exit_code, int why)
1954 {
1955 	siginfo_t info;
1956 
1957 	memset(&info, 0, sizeof info);
1958 	info.si_signo = signr;
1959 	info.si_code = exit_code;
1960 	info.si_pid = task_pid_vnr(current);
1961 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1962 
1963 	/* Let the debugger run.  */
1964 	ptrace_stop(exit_code, why, 1, &info);
1965 }
1966 
1967 void ptrace_notify(int exit_code)
1968 {
1969 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1970 	if (unlikely(current->task_works))
1971 		task_work_run();
1972 
1973 	spin_lock_irq(&current->sighand->siglock);
1974 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1975 	spin_unlock_irq(&current->sighand->siglock);
1976 }
1977 
1978 /**
1979  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1980  * @signr: signr causing group stop if initiating
1981  *
1982  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1983  * and participate in it.  If already set, participate in the existing
1984  * group stop.  If participated in a group stop (and thus slept), %true is
1985  * returned with siglock released.
1986  *
1987  * If ptraced, this function doesn't handle stop itself.  Instead,
1988  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1989  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1990  * places afterwards.
1991  *
1992  * CONTEXT:
1993  * Must be called with @current->sighand->siglock held, which is released
1994  * on %true return.
1995  *
1996  * RETURNS:
1997  * %false if group stop is already cancelled or ptrace trap is scheduled.
1998  * %true if participated in group stop.
1999  */
2000 static bool do_signal_stop(int signr)
2001 	__releases(&current->sighand->siglock)
2002 {
2003 	struct signal_struct *sig = current->signal;
2004 
2005 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2006 		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2007 		struct task_struct *t;
2008 
2009 		/* signr will be recorded in task->jobctl for retries */
2010 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2011 
2012 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2013 		    unlikely(signal_group_exit(sig)))
2014 			return false;
2015 		/*
2016 		 * There is no group stop already in progress.  We must
2017 		 * initiate one now.
2018 		 *
2019 		 * While ptraced, a task may be resumed while group stop is
2020 		 * still in effect and then receive a stop signal and
2021 		 * initiate another group stop.  This deviates from the
2022 		 * usual behavior as two consecutive stop signals can't
2023 		 * cause two group stops when !ptraced.  That is why we
2024 		 * also check !task_is_stopped(t) below.
2025 		 *
2026 		 * The condition can be distinguished by testing whether
2027 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2028 		 * group_exit_code in such case.
2029 		 *
2030 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2031 		 * an intervening stop signal is required to cause two
2032 		 * continued events regardless of ptrace.
2033 		 */
2034 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2035 			sig->group_exit_code = signr;
2036 
2037 		sig->group_stop_count = 0;
2038 
2039 		if (task_set_jobctl_pending(current, signr | gstop))
2040 			sig->group_stop_count++;
2041 
2042 		for (t = next_thread(current); t != current;
2043 		     t = next_thread(t)) {
2044 			/*
2045 			 * Setting state to TASK_STOPPED for a group
2046 			 * stop is always done with the siglock held,
2047 			 * so this check has no races.
2048 			 */
2049 			if (!task_is_stopped(t) &&
2050 			    task_set_jobctl_pending(t, signr | gstop)) {
2051 				sig->group_stop_count++;
2052 				if (likely(!(t->ptrace & PT_SEIZED)))
2053 					signal_wake_up(t, 0);
2054 				else
2055 					ptrace_trap_notify(t);
2056 			}
2057 		}
2058 	}
2059 
2060 	if (likely(!current->ptrace)) {
2061 		int notify = 0;
2062 
2063 		/*
2064 		 * If there are no other threads in the group, or if there
2065 		 * is a group stop in progress and we are the last to stop,
2066 		 * report to the parent.
2067 		 */
2068 		if (task_participate_group_stop(current))
2069 			notify = CLD_STOPPED;
2070 
2071 		__set_current_state(TASK_STOPPED);
2072 		spin_unlock_irq(&current->sighand->siglock);
2073 
2074 		/*
2075 		 * Notify the parent of the group stop completion.  Because
2076 		 * we're not holding either the siglock or tasklist_lock
2077 		 * here, ptracer may attach inbetween; however, this is for
2078 		 * group stop and should always be delivered to the real
2079 		 * parent of the group leader.  The new ptracer will get
2080 		 * its notification when this task transitions into
2081 		 * TASK_TRACED.
2082 		 */
2083 		if (notify) {
2084 			read_lock(&tasklist_lock);
2085 			do_notify_parent_cldstop(current, false, notify);
2086 			read_unlock(&tasklist_lock);
2087 		}
2088 
2089 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2090 		freezable_schedule();
2091 		return true;
2092 	} else {
2093 		/*
2094 		 * While ptraced, group stop is handled by STOP trap.
2095 		 * Schedule it and let the caller deal with it.
2096 		 */
2097 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2098 		return false;
2099 	}
2100 }
2101 
2102 /**
2103  * do_jobctl_trap - take care of ptrace jobctl traps
2104  *
2105  * When PT_SEIZED, it's used for both group stop and explicit
2106  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2107  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2108  * the stop signal; otherwise, %SIGTRAP.
2109  *
2110  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2111  * number as exit_code and no siginfo.
2112  *
2113  * CONTEXT:
2114  * Must be called with @current->sighand->siglock held, which may be
2115  * released and re-acquired before returning with intervening sleep.
2116  */
2117 static void do_jobctl_trap(void)
2118 {
2119 	struct signal_struct *signal = current->signal;
2120 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2121 
2122 	if (current->ptrace & PT_SEIZED) {
2123 		if (!signal->group_stop_count &&
2124 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2125 			signr = SIGTRAP;
2126 		WARN_ON_ONCE(!signr);
2127 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2128 				 CLD_STOPPED);
2129 	} else {
2130 		WARN_ON_ONCE(!signr);
2131 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2132 		current->exit_code = 0;
2133 	}
2134 }
2135 
2136 static int ptrace_signal(int signr, siginfo_t *info)
2137 {
2138 	ptrace_signal_deliver();
2139 	/*
2140 	 * We do not check sig_kernel_stop(signr) but set this marker
2141 	 * unconditionally because we do not know whether debugger will
2142 	 * change signr. This flag has no meaning unless we are going
2143 	 * to stop after return from ptrace_stop(). In this case it will
2144 	 * be checked in do_signal_stop(), we should only stop if it was
2145 	 * not cleared by SIGCONT while we were sleeping. See also the
2146 	 * comment in dequeue_signal().
2147 	 */
2148 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2149 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2150 
2151 	/* We're back.  Did the debugger cancel the sig?  */
2152 	signr = current->exit_code;
2153 	if (signr == 0)
2154 		return signr;
2155 
2156 	current->exit_code = 0;
2157 
2158 	/*
2159 	 * Update the siginfo structure if the signal has
2160 	 * changed.  If the debugger wanted something
2161 	 * specific in the siginfo structure then it should
2162 	 * have updated *info via PTRACE_SETSIGINFO.
2163 	 */
2164 	if (signr != info->si_signo) {
2165 		info->si_signo = signr;
2166 		info->si_errno = 0;
2167 		info->si_code = SI_USER;
2168 		rcu_read_lock();
2169 		info->si_pid = task_pid_vnr(current->parent);
2170 		info->si_uid = from_kuid_munged(current_user_ns(),
2171 						task_uid(current->parent));
2172 		rcu_read_unlock();
2173 	}
2174 
2175 	/* If the (new) signal is now blocked, requeue it.  */
2176 	if (sigismember(&current->blocked, signr)) {
2177 		specific_send_sig_info(signr, info, current);
2178 		signr = 0;
2179 	}
2180 
2181 	return signr;
2182 }
2183 
2184 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2185 			  struct pt_regs *regs, void *cookie)
2186 {
2187 	struct sighand_struct *sighand = current->sighand;
2188 	struct signal_struct *signal = current->signal;
2189 	int signr;
2190 
2191 	if (unlikely(current->task_works))
2192 		task_work_run();
2193 
2194 	if (unlikely(uprobe_deny_signal()))
2195 		return 0;
2196 
2197 	/*
2198 	 * Do this once, we can't return to user-mode if freezing() == T.
2199 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2200 	 * thus do not need another check after return.
2201 	 */
2202 	try_to_freeze();
2203 
2204 relock:
2205 	spin_lock_irq(&sighand->siglock);
2206 	/*
2207 	 * Every stopped thread goes here after wakeup. Check to see if
2208 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2209 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2210 	 */
2211 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2212 		int why;
2213 
2214 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2215 			why = CLD_CONTINUED;
2216 		else
2217 			why = CLD_STOPPED;
2218 
2219 		signal->flags &= ~SIGNAL_CLD_MASK;
2220 
2221 		spin_unlock_irq(&sighand->siglock);
2222 
2223 		/*
2224 		 * Notify the parent that we're continuing.  This event is
2225 		 * always per-process and doesn't make whole lot of sense
2226 		 * for ptracers, who shouldn't consume the state via
2227 		 * wait(2) either, but, for backward compatibility, notify
2228 		 * the ptracer of the group leader too unless it's gonna be
2229 		 * a duplicate.
2230 		 */
2231 		read_lock(&tasklist_lock);
2232 		do_notify_parent_cldstop(current, false, why);
2233 
2234 		if (ptrace_reparented(current->group_leader))
2235 			do_notify_parent_cldstop(current->group_leader,
2236 						true, why);
2237 		read_unlock(&tasklist_lock);
2238 
2239 		goto relock;
2240 	}
2241 
2242 	for (;;) {
2243 		struct k_sigaction *ka;
2244 
2245 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2246 		    do_signal_stop(0))
2247 			goto relock;
2248 
2249 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2250 			do_jobctl_trap();
2251 			spin_unlock_irq(&sighand->siglock);
2252 			goto relock;
2253 		}
2254 
2255 		signr = dequeue_signal(current, &current->blocked, info);
2256 
2257 		if (!signr)
2258 			break; /* will return 0 */
2259 
2260 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2261 			signr = ptrace_signal(signr, info);
2262 			if (!signr)
2263 				continue;
2264 		}
2265 
2266 		ka = &sighand->action[signr-1];
2267 
2268 		/* Trace actually delivered signals. */
2269 		trace_signal_deliver(signr, info, ka);
2270 
2271 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2272 			continue;
2273 		if (ka->sa.sa_handler != SIG_DFL) {
2274 			/* Run the handler.  */
2275 			*return_ka = *ka;
2276 
2277 			if (ka->sa.sa_flags & SA_ONESHOT)
2278 				ka->sa.sa_handler = SIG_DFL;
2279 
2280 			break; /* will return non-zero "signr" value */
2281 		}
2282 
2283 		/*
2284 		 * Now we are doing the default action for this signal.
2285 		 */
2286 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2287 			continue;
2288 
2289 		/*
2290 		 * Global init gets no signals it doesn't want.
2291 		 * Container-init gets no signals it doesn't want from same
2292 		 * container.
2293 		 *
2294 		 * Note that if global/container-init sees a sig_kernel_only()
2295 		 * signal here, the signal must have been generated internally
2296 		 * or must have come from an ancestor namespace. In either
2297 		 * case, the signal cannot be dropped.
2298 		 */
2299 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2300 				!sig_kernel_only(signr))
2301 			continue;
2302 
2303 		if (sig_kernel_stop(signr)) {
2304 			/*
2305 			 * The default action is to stop all threads in
2306 			 * the thread group.  The job control signals
2307 			 * do nothing in an orphaned pgrp, but SIGSTOP
2308 			 * always works.  Note that siglock needs to be
2309 			 * dropped during the call to is_orphaned_pgrp()
2310 			 * because of lock ordering with tasklist_lock.
2311 			 * This allows an intervening SIGCONT to be posted.
2312 			 * We need to check for that and bail out if necessary.
2313 			 */
2314 			if (signr != SIGSTOP) {
2315 				spin_unlock_irq(&sighand->siglock);
2316 
2317 				/* signals can be posted during this window */
2318 
2319 				if (is_current_pgrp_orphaned())
2320 					goto relock;
2321 
2322 				spin_lock_irq(&sighand->siglock);
2323 			}
2324 
2325 			if (likely(do_signal_stop(info->si_signo))) {
2326 				/* It released the siglock.  */
2327 				goto relock;
2328 			}
2329 
2330 			/*
2331 			 * We didn't actually stop, due to a race
2332 			 * with SIGCONT or something like that.
2333 			 */
2334 			continue;
2335 		}
2336 
2337 		spin_unlock_irq(&sighand->siglock);
2338 
2339 		/*
2340 		 * Anything else is fatal, maybe with a core dump.
2341 		 */
2342 		current->flags |= PF_SIGNALED;
2343 
2344 		if (sig_kernel_coredump(signr)) {
2345 			if (print_fatal_signals)
2346 				print_fatal_signal(info->si_signo);
2347 			/*
2348 			 * If it was able to dump core, this kills all
2349 			 * other threads in the group and synchronizes with
2350 			 * their demise.  If we lost the race with another
2351 			 * thread getting here, it set group_exit_code
2352 			 * first and our do_group_exit call below will use
2353 			 * that value and ignore the one we pass it.
2354 			 */
2355 			do_coredump(info);
2356 		}
2357 
2358 		/*
2359 		 * Death signals, no core dump.
2360 		 */
2361 		do_group_exit(info->si_signo);
2362 		/* NOTREACHED */
2363 	}
2364 	spin_unlock_irq(&sighand->siglock);
2365 	return signr;
2366 }
2367 
2368 /**
2369  * signal_delivered -
2370  * @sig:		number of signal being delivered
2371  * @info:		siginfo_t of signal being delivered
2372  * @ka:			sigaction setting that chose the handler
2373  * @regs:		user register state
2374  * @stepping:		nonzero if debugger single-step or block-step in use
2375  *
2376  * This function should be called when a signal has succesfully been
2377  * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2378  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2379  * is set in @ka->sa.sa_flags.  Tracing is notified.
2380  */
2381 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2382 			struct pt_regs *regs, int stepping)
2383 {
2384 	sigset_t blocked;
2385 
2386 	/* A signal was successfully delivered, and the
2387 	   saved sigmask was stored on the signal frame,
2388 	   and will be restored by sigreturn.  So we can
2389 	   simply clear the restore sigmask flag.  */
2390 	clear_restore_sigmask();
2391 
2392 	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2393 	if (!(ka->sa.sa_flags & SA_NODEFER))
2394 		sigaddset(&blocked, sig);
2395 	set_current_blocked(&blocked);
2396 	tracehook_signal_handler(sig, info, ka, regs, stepping);
2397 }
2398 
2399 /*
2400  * It could be that complete_signal() picked us to notify about the
2401  * group-wide signal. Other threads should be notified now to take
2402  * the shared signals in @which since we will not.
2403  */
2404 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2405 {
2406 	sigset_t retarget;
2407 	struct task_struct *t;
2408 
2409 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2410 	if (sigisemptyset(&retarget))
2411 		return;
2412 
2413 	t = tsk;
2414 	while_each_thread(tsk, t) {
2415 		if (t->flags & PF_EXITING)
2416 			continue;
2417 
2418 		if (!has_pending_signals(&retarget, &t->blocked))
2419 			continue;
2420 		/* Remove the signals this thread can handle. */
2421 		sigandsets(&retarget, &retarget, &t->blocked);
2422 
2423 		if (!signal_pending(t))
2424 			signal_wake_up(t, 0);
2425 
2426 		if (sigisemptyset(&retarget))
2427 			break;
2428 	}
2429 }
2430 
2431 void exit_signals(struct task_struct *tsk)
2432 {
2433 	int group_stop = 0;
2434 	sigset_t unblocked;
2435 
2436 	/*
2437 	 * @tsk is about to have PF_EXITING set - lock out users which
2438 	 * expect stable threadgroup.
2439 	 */
2440 	threadgroup_change_begin(tsk);
2441 
2442 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2443 		tsk->flags |= PF_EXITING;
2444 		threadgroup_change_end(tsk);
2445 		return;
2446 	}
2447 
2448 	spin_lock_irq(&tsk->sighand->siglock);
2449 	/*
2450 	 * From now this task is not visible for group-wide signals,
2451 	 * see wants_signal(), do_signal_stop().
2452 	 */
2453 	tsk->flags |= PF_EXITING;
2454 
2455 	threadgroup_change_end(tsk);
2456 
2457 	if (!signal_pending(tsk))
2458 		goto out;
2459 
2460 	unblocked = tsk->blocked;
2461 	signotset(&unblocked);
2462 	retarget_shared_pending(tsk, &unblocked);
2463 
2464 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2465 	    task_participate_group_stop(tsk))
2466 		group_stop = CLD_STOPPED;
2467 out:
2468 	spin_unlock_irq(&tsk->sighand->siglock);
2469 
2470 	/*
2471 	 * If group stop has completed, deliver the notification.  This
2472 	 * should always go to the real parent of the group leader.
2473 	 */
2474 	if (unlikely(group_stop)) {
2475 		read_lock(&tasklist_lock);
2476 		do_notify_parent_cldstop(tsk, false, group_stop);
2477 		read_unlock(&tasklist_lock);
2478 	}
2479 }
2480 
2481 EXPORT_SYMBOL(recalc_sigpending);
2482 EXPORT_SYMBOL_GPL(dequeue_signal);
2483 EXPORT_SYMBOL(flush_signals);
2484 EXPORT_SYMBOL(force_sig);
2485 EXPORT_SYMBOL(send_sig);
2486 EXPORT_SYMBOL(send_sig_info);
2487 EXPORT_SYMBOL(sigprocmask);
2488 EXPORT_SYMBOL(block_all_signals);
2489 EXPORT_SYMBOL(unblock_all_signals);
2490 
2491 
2492 /*
2493  * System call entry points.
2494  */
2495 
2496 /**
2497  *  sys_restart_syscall - restart a system call
2498  */
2499 SYSCALL_DEFINE0(restart_syscall)
2500 {
2501 	struct restart_block *restart = &current_thread_info()->restart_block;
2502 	return restart->fn(restart);
2503 }
2504 
2505 long do_no_restart_syscall(struct restart_block *param)
2506 {
2507 	return -EINTR;
2508 }
2509 
2510 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2511 {
2512 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2513 		sigset_t newblocked;
2514 		/* A set of now blocked but previously unblocked signals. */
2515 		sigandnsets(&newblocked, newset, &current->blocked);
2516 		retarget_shared_pending(tsk, &newblocked);
2517 	}
2518 	tsk->blocked = *newset;
2519 	recalc_sigpending();
2520 }
2521 
2522 /**
2523  * set_current_blocked - change current->blocked mask
2524  * @newset: new mask
2525  *
2526  * It is wrong to change ->blocked directly, this helper should be used
2527  * to ensure the process can't miss a shared signal we are going to block.
2528  */
2529 void set_current_blocked(sigset_t *newset)
2530 {
2531 	struct task_struct *tsk = current;
2532 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2533 	spin_lock_irq(&tsk->sighand->siglock);
2534 	__set_task_blocked(tsk, newset);
2535 	spin_unlock_irq(&tsk->sighand->siglock);
2536 }
2537 
2538 void __set_current_blocked(const sigset_t *newset)
2539 {
2540 	struct task_struct *tsk = current;
2541 
2542 	spin_lock_irq(&tsk->sighand->siglock);
2543 	__set_task_blocked(tsk, newset);
2544 	spin_unlock_irq(&tsk->sighand->siglock);
2545 }
2546 
2547 /*
2548  * This is also useful for kernel threads that want to temporarily
2549  * (or permanently) block certain signals.
2550  *
2551  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2552  * interface happily blocks "unblockable" signals like SIGKILL
2553  * and friends.
2554  */
2555 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2556 {
2557 	struct task_struct *tsk = current;
2558 	sigset_t newset;
2559 
2560 	/* Lockless, only current can change ->blocked, never from irq */
2561 	if (oldset)
2562 		*oldset = tsk->blocked;
2563 
2564 	switch (how) {
2565 	case SIG_BLOCK:
2566 		sigorsets(&newset, &tsk->blocked, set);
2567 		break;
2568 	case SIG_UNBLOCK:
2569 		sigandnsets(&newset, &tsk->blocked, set);
2570 		break;
2571 	case SIG_SETMASK:
2572 		newset = *set;
2573 		break;
2574 	default:
2575 		return -EINVAL;
2576 	}
2577 
2578 	__set_current_blocked(&newset);
2579 	return 0;
2580 }
2581 
2582 /**
2583  *  sys_rt_sigprocmask - change the list of currently blocked signals
2584  *  @how: whether to add, remove, or set signals
2585  *  @nset: stores pending signals
2586  *  @oset: previous value of signal mask if non-null
2587  *  @sigsetsize: size of sigset_t type
2588  */
2589 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2590 		sigset_t __user *, oset, size_t, sigsetsize)
2591 {
2592 	sigset_t old_set, new_set;
2593 	int error;
2594 
2595 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2596 	if (sigsetsize != sizeof(sigset_t))
2597 		return -EINVAL;
2598 
2599 	old_set = current->blocked;
2600 
2601 	if (nset) {
2602 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2603 			return -EFAULT;
2604 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2605 
2606 		error = sigprocmask(how, &new_set, NULL);
2607 		if (error)
2608 			return error;
2609 	}
2610 
2611 	if (oset) {
2612 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2613 			return -EFAULT;
2614 	}
2615 
2616 	return 0;
2617 }
2618 
2619 long do_sigpending(void __user *set, unsigned long sigsetsize)
2620 {
2621 	long error = -EINVAL;
2622 	sigset_t pending;
2623 
2624 	if (sigsetsize > sizeof(sigset_t))
2625 		goto out;
2626 
2627 	spin_lock_irq(&current->sighand->siglock);
2628 	sigorsets(&pending, &current->pending.signal,
2629 		  &current->signal->shared_pending.signal);
2630 	spin_unlock_irq(&current->sighand->siglock);
2631 
2632 	/* Outside the lock because only this thread touches it.  */
2633 	sigandsets(&pending, &current->blocked, &pending);
2634 
2635 	error = -EFAULT;
2636 	if (!copy_to_user(set, &pending, sigsetsize))
2637 		error = 0;
2638 
2639 out:
2640 	return error;
2641 }
2642 
2643 /**
2644  *  sys_rt_sigpending - examine a pending signal that has been raised
2645  *			while blocked
2646  *  @set: stores pending signals
2647  *  @sigsetsize: size of sigset_t type or larger
2648  */
2649 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2650 {
2651 	return do_sigpending(set, sigsetsize);
2652 }
2653 
2654 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2655 
2656 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2657 {
2658 	int err;
2659 
2660 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2661 		return -EFAULT;
2662 	if (from->si_code < 0)
2663 		return __copy_to_user(to, from, sizeof(siginfo_t))
2664 			? -EFAULT : 0;
2665 	/*
2666 	 * If you change siginfo_t structure, please be sure
2667 	 * this code is fixed accordingly.
2668 	 * Please remember to update the signalfd_copyinfo() function
2669 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2670 	 * It should never copy any pad contained in the structure
2671 	 * to avoid security leaks, but must copy the generic
2672 	 * 3 ints plus the relevant union member.
2673 	 */
2674 	err = __put_user(from->si_signo, &to->si_signo);
2675 	err |= __put_user(from->si_errno, &to->si_errno);
2676 	err |= __put_user((short)from->si_code, &to->si_code);
2677 	switch (from->si_code & __SI_MASK) {
2678 	case __SI_KILL:
2679 		err |= __put_user(from->si_pid, &to->si_pid);
2680 		err |= __put_user(from->si_uid, &to->si_uid);
2681 		break;
2682 	case __SI_TIMER:
2683 		 err |= __put_user(from->si_tid, &to->si_tid);
2684 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2685 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2686 		break;
2687 	case __SI_POLL:
2688 		err |= __put_user(from->si_band, &to->si_band);
2689 		err |= __put_user(from->si_fd, &to->si_fd);
2690 		break;
2691 	case __SI_FAULT:
2692 		err |= __put_user(from->si_addr, &to->si_addr);
2693 #ifdef __ARCH_SI_TRAPNO
2694 		err |= __put_user(from->si_trapno, &to->si_trapno);
2695 #endif
2696 #ifdef BUS_MCEERR_AO
2697 		/*
2698 		 * Other callers might not initialize the si_lsb field,
2699 		 * so check explicitly for the right codes here.
2700 		 */
2701 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2702 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2703 #endif
2704 		break;
2705 	case __SI_CHLD:
2706 		err |= __put_user(from->si_pid, &to->si_pid);
2707 		err |= __put_user(from->si_uid, &to->si_uid);
2708 		err |= __put_user(from->si_status, &to->si_status);
2709 		err |= __put_user(from->si_utime, &to->si_utime);
2710 		err |= __put_user(from->si_stime, &to->si_stime);
2711 		break;
2712 	case __SI_RT: /* This is not generated by the kernel as of now. */
2713 	case __SI_MESGQ: /* But this is */
2714 		err |= __put_user(from->si_pid, &to->si_pid);
2715 		err |= __put_user(from->si_uid, &to->si_uid);
2716 		err |= __put_user(from->si_ptr, &to->si_ptr);
2717 		break;
2718 #ifdef __ARCH_SIGSYS
2719 	case __SI_SYS:
2720 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2721 		err |= __put_user(from->si_syscall, &to->si_syscall);
2722 		err |= __put_user(from->si_arch, &to->si_arch);
2723 		break;
2724 #endif
2725 	default: /* this is just in case for now ... */
2726 		err |= __put_user(from->si_pid, &to->si_pid);
2727 		err |= __put_user(from->si_uid, &to->si_uid);
2728 		break;
2729 	}
2730 	return err;
2731 }
2732 
2733 #endif
2734 
2735 /**
2736  *  do_sigtimedwait - wait for queued signals specified in @which
2737  *  @which: queued signals to wait for
2738  *  @info: if non-null, the signal's siginfo is returned here
2739  *  @ts: upper bound on process time suspension
2740  */
2741 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2742 			const struct timespec *ts)
2743 {
2744 	struct task_struct *tsk = current;
2745 	long timeout = MAX_SCHEDULE_TIMEOUT;
2746 	sigset_t mask = *which;
2747 	int sig;
2748 
2749 	if (ts) {
2750 		if (!timespec_valid(ts))
2751 			return -EINVAL;
2752 		timeout = timespec_to_jiffies(ts);
2753 		/*
2754 		 * We can be close to the next tick, add another one
2755 		 * to ensure we will wait at least the time asked for.
2756 		 */
2757 		if (ts->tv_sec || ts->tv_nsec)
2758 			timeout++;
2759 	}
2760 
2761 	/*
2762 	 * Invert the set of allowed signals to get those we want to block.
2763 	 */
2764 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2765 	signotset(&mask);
2766 
2767 	spin_lock_irq(&tsk->sighand->siglock);
2768 	sig = dequeue_signal(tsk, &mask, info);
2769 	if (!sig && timeout) {
2770 		/*
2771 		 * None ready, temporarily unblock those we're interested
2772 		 * while we are sleeping in so that we'll be awakened when
2773 		 * they arrive. Unblocking is always fine, we can avoid
2774 		 * set_current_blocked().
2775 		 */
2776 		tsk->real_blocked = tsk->blocked;
2777 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2778 		recalc_sigpending();
2779 		spin_unlock_irq(&tsk->sighand->siglock);
2780 
2781 		timeout = schedule_timeout_interruptible(timeout);
2782 
2783 		spin_lock_irq(&tsk->sighand->siglock);
2784 		__set_task_blocked(tsk, &tsk->real_blocked);
2785 		siginitset(&tsk->real_blocked, 0);
2786 		sig = dequeue_signal(tsk, &mask, info);
2787 	}
2788 	spin_unlock_irq(&tsk->sighand->siglock);
2789 
2790 	if (sig)
2791 		return sig;
2792 	return timeout ? -EINTR : -EAGAIN;
2793 }
2794 
2795 /**
2796  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2797  *			in @uthese
2798  *  @uthese: queued signals to wait for
2799  *  @uinfo: if non-null, the signal's siginfo is returned here
2800  *  @uts: upper bound on process time suspension
2801  *  @sigsetsize: size of sigset_t type
2802  */
2803 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2804 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2805 		size_t, sigsetsize)
2806 {
2807 	sigset_t these;
2808 	struct timespec ts;
2809 	siginfo_t info;
2810 	int ret;
2811 
2812 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2813 	if (sigsetsize != sizeof(sigset_t))
2814 		return -EINVAL;
2815 
2816 	if (copy_from_user(&these, uthese, sizeof(these)))
2817 		return -EFAULT;
2818 
2819 	if (uts) {
2820 		if (copy_from_user(&ts, uts, sizeof(ts)))
2821 			return -EFAULT;
2822 	}
2823 
2824 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2825 
2826 	if (ret > 0 && uinfo) {
2827 		if (copy_siginfo_to_user(uinfo, &info))
2828 			ret = -EFAULT;
2829 	}
2830 
2831 	return ret;
2832 }
2833 
2834 /**
2835  *  sys_kill - send a signal to a process
2836  *  @pid: the PID of the process
2837  *  @sig: signal to be sent
2838  */
2839 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2840 {
2841 	struct siginfo info;
2842 
2843 	info.si_signo = sig;
2844 	info.si_errno = 0;
2845 	info.si_code = SI_USER;
2846 	info.si_pid = task_tgid_vnr(current);
2847 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2848 
2849 	return kill_something_info(sig, &info, pid);
2850 }
2851 
2852 static int
2853 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2854 {
2855 	struct task_struct *p;
2856 	int error = -ESRCH;
2857 
2858 	rcu_read_lock();
2859 	p = find_task_by_vpid(pid);
2860 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2861 		error = check_kill_permission(sig, info, p);
2862 		/*
2863 		 * The null signal is a permissions and process existence
2864 		 * probe.  No signal is actually delivered.
2865 		 */
2866 		if (!error && sig) {
2867 			error = do_send_sig_info(sig, info, p, false);
2868 			/*
2869 			 * If lock_task_sighand() failed we pretend the task
2870 			 * dies after receiving the signal. The window is tiny,
2871 			 * and the signal is private anyway.
2872 			 */
2873 			if (unlikely(error == -ESRCH))
2874 				error = 0;
2875 		}
2876 	}
2877 	rcu_read_unlock();
2878 
2879 	return error;
2880 }
2881 
2882 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2883 {
2884 	struct siginfo info;
2885 
2886 	info.si_signo = sig;
2887 	info.si_errno = 0;
2888 	info.si_code = SI_TKILL;
2889 	info.si_pid = task_tgid_vnr(current);
2890 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2891 
2892 	return do_send_specific(tgid, pid, sig, &info);
2893 }
2894 
2895 /**
2896  *  sys_tgkill - send signal to one specific thread
2897  *  @tgid: the thread group ID of the thread
2898  *  @pid: the PID of the thread
2899  *  @sig: signal to be sent
2900  *
2901  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2902  *  exists but it's not belonging to the target process anymore. This
2903  *  method solves the problem of threads exiting and PIDs getting reused.
2904  */
2905 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2906 {
2907 	/* This is only valid for single tasks */
2908 	if (pid <= 0 || tgid <= 0)
2909 		return -EINVAL;
2910 
2911 	return do_tkill(tgid, pid, sig);
2912 }
2913 
2914 /**
2915  *  sys_tkill - send signal to one specific task
2916  *  @pid: the PID of the task
2917  *  @sig: signal to be sent
2918  *
2919  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2920  */
2921 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2922 {
2923 	/* This is only valid for single tasks */
2924 	if (pid <= 0)
2925 		return -EINVAL;
2926 
2927 	return do_tkill(0, pid, sig);
2928 }
2929 
2930 /**
2931  *  sys_rt_sigqueueinfo - send signal information to a signal
2932  *  @pid: the PID of the thread
2933  *  @sig: signal to be sent
2934  *  @uinfo: signal info to be sent
2935  */
2936 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2937 		siginfo_t __user *, uinfo)
2938 {
2939 	siginfo_t info;
2940 
2941 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2942 		return -EFAULT;
2943 
2944 	/* Not even root can pretend to send signals from the kernel.
2945 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2946 	 */
2947 	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2948 		/* We used to allow any < 0 si_code */
2949 		WARN_ON_ONCE(info.si_code < 0);
2950 		return -EPERM;
2951 	}
2952 	info.si_signo = sig;
2953 
2954 	/* POSIX.1b doesn't mention process groups.  */
2955 	return kill_proc_info(sig, &info, pid);
2956 }
2957 
2958 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2959 {
2960 	/* This is only valid for single tasks */
2961 	if (pid <= 0 || tgid <= 0)
2962 		return -EINVAL;
2963 
2964 	/* Not even root can pretend to send signals from the kernel.
2965 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2966 	 */
2967 	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2968 		/* We used to allow any < 0 si_code */
2969 		WARN_ON_ONCE(info->si_code < 0);
2970 		return -EPERM;
2971 	}
2972 	info->si_signo = sig;
2973 
2974 	return do_send_specific(tgid, pid, sig, info);
2975 }
2976 
2977 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2978 		siginfo_t __user *, uinfo)
2979 {
2980 	siginfo_t info;
2981 
2982 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2983 		return -EFAULT;
2984 
2985 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2986 }
2987 
2988 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2989 {
2990 	struct task_struct *t = current;
2991 	struct k_sigaction *k;
2992 	sigset_t mask;
2993 
2994 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2995 		return -EINVAL;
2996 
2997 	k = &t->sighand->action[sig-1];
2998 
2999 	spin_lock_irq(&current->sighand->siglock);
3000 	if (oact)
3001 		*oact = *k;
3002 
3003 	if (act) {
3004 		sigdelsetmask(&act->sa.sa_mask,
3005 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3006 		*k = *act;
3007 		/*
3008 		 * POSIX 3.3.1.3:
3009 		 *  "Setting a signal action to SIG_IGN for a signal that is
3010 		 *   pending shall cause the pending signal to be discarded,
3011 		 *   whether or not it is blocked."
3012 		 *
3013 		 *  "Setting a signal action to SIG_DFL for a signal that is
3014 		 *   pending and whose default action is to ignore the signal
3015 		 *   (for example, SIGCHLD), shall cause the pending signal to
3016 		 *   be discarded, whether or not it is blocked"
3017 		 */
3018 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3019 			sigemptyset(&mask);
3020 			sigaddset(&mask, sig);
3021 			rm_from_queue_full(&mask, &t->signal->shared_pending);
3022 			do {
3023 				rm_from_queue_full(&mask, &t->pending);
3024 				t = next_thread(t);
3025 			} while (t != current);
3026 		}
3027 	}
3028 
3029 	spin_unlock_irq(&current->sighand->siglock);
3030 	return 0;
3031 }
3032 
3033 int
3034 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3035 {
3036 	stack_t oss;
3037 	int error;
3038 
3039 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3040 	oss.ss_size = current->sas_ss_size;
3041 	oss.ss_flags = sas_ss_flags(sp);
3042 
3043 	if (uss) {
3044 		void __user *ss_sp;
3045 		size_t ss_size;
3046 		int ss_flags;
3047 
3048 		error = -EFAULT;
3049 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3050 			goto out;
3051 		error = __get_user(ss_sp, &uss->ss_sp) |
3052 			__get_user(ss_flags, &uss->ss_flags) |
3053 			__get_user(ss_size, &uss->ss_size);
3054 		if (error)
3055 			goto out;
3056 
3057 		error = -EPERM;
3058 		if (on_sig_stack(sp))
3059 			goto out;
3060 
3061 		error = -EINVAL;
3062 		/*
3063 		 * Note - this code used to test ss_flags incorrectly:
3064 		 *  	  old code may have been written using ss_flags==0
3065 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3066 		 *	  way that worked) - this fix preserves that older
3067 		 *	  mechanism.
3068 		 */
3069 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3070 			goto out;
3071 
3072 		if (ss_flags == SS_DISABLE) {
3073 			ss_size = 0;
3074 			ss_sp = NULL;
3075 		} else {
3076 			error = -ENOMEM;
3077 			if (ss_size < MINSIGSTKSZ)
3078 				goto out;
3079 		}
3080 
3081 		current->sas_ss_sp = (unsigned long) ss_sp;
3082 		current->sas_ss_size = ss_size;
3083 	}
3084 
3085 	error = 0;
3086 	if (uoss) {
3087 		error = -EFAULT;
3088 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3089 			goto out;
3090 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3091 			__put_user(oss.ss_size, &uoss->ss_size) |
3092 			__put_user(oss.ss_flags, &uoss->ss_flags);
3093 	}
3094 
3095 out:
3096 	return error;
3097 }
3098 #ifdef CONFIG_GENERIC_SIGALTSTACK
3099 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3100 {
3101 	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3102 }
3103 #endif
3104 
3105 int restore_altstack(const stack_t __user *uss)
3106 {
3107 	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3108 	/* squash all but EFAULT for now */
3109 	return err == -EFAULT ? err : 0;
3110 }
3111 
3112 int __save_altstack(stack_t __user *uss, unsigned long sp)
3113 {
3114 	struct task_struct *t = current;
3115 	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3116 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3117 		__put_user(t->sas_ss_size, &uss->ss_size);
3118 }
3119 
3120 #ifdef CONFIG_COMPAT
3121 #ifdef CONFIG_GENERIC_SIGALTSTACK
3122 asmlinkage long compat_sys_sigaltstack(const compat_stack_t __user *uss_ptr,
3123 				       compat_stack_t __user *uoss_ptr)
3124 {
3125 	stack_t uss, uoss;
3126 	int ret;
3127 	mm_segment_t seg;
3128 
3129 	if (uss_ptr) {
3130 		compat_stack_t uss32;
3131 
3132 		memset(&uss, 0, sizeof(stack_t));
3133 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3134 			return -EFAULT;
3135 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3136 		uss.ss_flags = uss32.ss_flags;
3137 		uss.ss_size = uss32.ss_size;
3138 	}
3139 	seg = get_fs();
3140 	set_fs(KERNEL_DS);
3141 	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3142 			     (stack_t __force __user *) &uoss,
3143 			     compat_user_stack_pointer());
3144 	set_fs(seg);
3145 	if (ret >= 0 && uoss_ptr)  {
3146 		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3147 		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3148 		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3149 		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3150 			ret = -EFAULT;
3151 	}
3152 	return ret;
3153 }
3154 
3155 int compat_restore_altstack(const compat_stack_t __user *uss)
3156 {
3157 	int err = compat_sys_sigaltstack(uss, NULL);
3158 	/* squash all but -EFAULT for now */
3159 	return err == -EFAULT ? err : 0;
3160 }
3161 
3162 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3163 {
3164 	struct task_struct *t = current;
3165 	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3166 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3167 		__put_user(t->sas_ss_size, &uss->ss_size);
3168 }
3169 #endif
3170 #endif
3171 
3172 #ifdef __ARCH_WANT_SYS_SIGPENDING
3173 
3174 /**
3175  *  sys_sigpending - examine pending signals
3176  *  @set: where mask of pending signal is returned
3177  */
3178 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3179 {
3180 	return do_sigpending(set, sizeof(*set));
3181 }
3182 
3183 #endif
3184 
3185 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3186 /**
3187  *  sys_sigprocmask - examine and change blocked signals
3188  *  @how: whether to add, remove, or set signals
3189  *  @nset: signals to add or remove (if non-null)
3190  *  @oset: previous value of signal mask if non-null
3191  *
3192  * Some platforms have their own version with special arguments;
3193  * others support only sys_rt_sigprocmask.
3194  */
3195 
3196 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3197 		old_sigset_t __user *, oset)
3198 {
3199 	old_sigset_t old_set, new_set;
3200 	sigset_t new_blocked;
3201 
3202 	old_set = current->blocked.sig[0];
3203 
3204 	if (nset) {
3205 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3206 			return -EFAULT;
3207 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3208 
3209 		new_blocked = current->blocked;
3210 
3211 		switch (how) {
3212 		case SIG_BLOCK:
3213 			sigaddsetmask(&new_blocked, new_set);
3214 			break;
3215 		case SIG_UNBLOCK:
3216 			sigdelsetmask(&new_blocked, new_set);
3217 			break;
3218 		case SIG_SETMASK:
3219 			new_blocked.sig[0] = new_set;
3220 			break;
3221 		default:
3222 			return -EINVAL;
3223 		}
3224 
3225 		__set_current_blocked(&new_blocked);
3226 	}
3227 
3228 	if (oset) {
3229 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3230 			return -EFAULT;
3231 	}
3232 
3233 	return 0;
3234 }
3235 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3236 
3237 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3238 /**
3239  *  sys_rt_sigaction - alter an action taken by a process
3240  *  @sig: signal to be sent
3241  *  @act: new sigaction
3242  *  @oact: used to save the previous sigaction
3243  *  @sigsetsize: size of sigset_t type
3244  */
3245 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3246 		const struct sigaction __user *, act,
3247 		struct sigaction __user *, oact,
3248 		size_t, sigsetsize)
3249 {
3250 	struct k_sigaction new_sa, old_sa;
3251 	int ret = -EINVAL;
3252 
3253 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3254 	if (sigsetsize != sizeof(sigset_t))
3255 		goto out;
3256 
3257 	if (act) {
3258 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3259 			return -EFAULT;
3260 	}
3261 
3262 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3263 
3264 	if (!ret && oact) {
3265 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3266 			return -EFAULT;
3267 	}
3268 out:
3269 	return ret;
3270 }
3271 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3272 
3273 #ifdef __ARCH_WANT_SYS_SGETMASK
3274 
3275 /*
3276  * For backwards compatibility.  Functionality superseded by sigprocmask.
3277  */
3278 SYSCALL_DEFINE0(sgetmask)
3279 {
3280 	/* SMP safe */
3281 	return current->blocked.sig[0];
3282 }
3283 
3284 SYSCALL_DEFINE1(ssetmask, int, newmask)
3285 {
3286 	int old = current->blocked.sig[0];
3287 	sigset_t newset;
3288 
3289 	set_current_blocked(&newset);
3290 
3291 	return old;
3292 }
3293 #endif /* __ARCH_WANT_SGETMASK */
3294 
3295 #ifdef __ARCH_WANT_SYS_SIGNAL
3296 /*
3297  * For backwards compatibility.  Functionality superseded by sigaction.
3298  */
3299 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3300 {
3301 	struct k_sigaction new_sa, old_sa;
3302 	int ret;
3303 
3304 	new_sa.sa.sa_handler = handler;
3305 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3306 	sigemptyset(&new_sa.sa.sa_mask);
3307 
3308 	ret = do_sigaction(sig, &new_sa, &old_sa);
3309 
3310 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3311 }
3312 #endif /* __ARCH_WANT_SYS_SIGNAL */
3313 
3314 #ifdef __ARCH_WANT_SYS_PAUSE
3315 
3316 SYSCALL_DEFINE0(pause)
3317 {
3318 	while (!signal_pending(current)) {
3319 		current->state = TASK_INTERRUPTIBLE;
3320 		schedule();
3321 	}
3322 	return -ERESTARTNOHAND;
3323 }
3324 
3325 #endif
3326 
3327 int sigsuspend(sigset_t *set)
3328 {
3329 	current->saved_sigmask = current->blocked;
3330 	set_current_blocked(set);
3331 
3332 	current->state = TASK_INTERRUPTIBLE;
3333 	schedule();
3334 	set_restore_sigmask();
3335 	return -ERESTARTNOHAND;
3336 }
3337 
3338 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3339 /**
3340  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3341  *	@unewset value until a signal is received
3342  *  @unewset: new signal mask value
3343  *  @sigsetsize: size of sigset_t type
3344  */
3345 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3346 {
3347 	sigset_t newset;
3348 
3349 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3350 	if (sigsetsize != sizeof(sigset_t))
3351 		return -EINVAL;
3352 
3353 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3354 		return -EFAULT;
3355 	return sigsuspend(&newset);
3356 }
3357 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3358 
3359 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3360 {
3361 	return NULL;
3362 }
3363 
3364 void __init signals_init(void)
3365 {
3366 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3367 }
3368 
3369 #ifdef CONFIG_KGDB_KDB
3370 #include <linux/kdb.h>
3371 /*
3372  * kdb_send_sig_info - Allows kdb to send signals without exposing
3373  * signal internals.  This function checks if the required locks are
3374  * available before calling the main signal code, to avoid kdb
3375  * deadlocks.
3376  */
3377 void
3378 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3379 {
3380 	static struct task_struct *kdb_prev_t;
3381 	int sig, new_t;
3382 	if (!spin_trylock(&t->sighand->siglock)) {
3383 		kdb_printf("Can't do kill command now.\n"
3384 			   "The sigmask lock is held somewhere else in "
3385 			   "kernel, try again later\n");
3386 		return;
3387 	}
3388 	spin_unlock(&t->sighand->siglock);
3389 	new_t = kdb_prev_t != t;
3390 	kdb_prev_t = t;
3391 	if (t->state != TASK_RUNNING && new_t) {
3392 		kdb_printf("Process is not RUNNING, sending a signal from "
3393 			   "kdb risks deadlock\n"
3394 			   "on the run queue locks. "
3395 			   "The signal has _not_ been sent.\n"
3396 			   "Reissue the kill command if you want to risk "
3397 			   "the deadlock.\n");
3398 		return;
3399 	}
3400 	sig = info->si_signo;
3401 	if (send_sig_info(sig, info, t))
3402 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3403 			   sig, t->pid);
3404 	else
3405 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3406 }
3407 #endif	/* CONFIG_KGDB_KDB */
3408