xref: /linux/kernel/signal.c (revision 492c826b9facefa84995f4dea917e301b5ee0884)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/signal.h>
33 
34 #include <asm/param.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/siginfo.h>
38 #include "audit.h"	/* audit_signal_info() */
39 
40 /*
41  * SLAB caches for signal bits.
42  */
43 
44 static struct kmem_cache *sigqueue_cachep;
45 
46 int print_fatal_signals __read_mostly;
47 
48 static void __user *sig_handler(struct task_struct *t, int sig)
49 {
50 	return t->sighand->action[sig - 1].sa.sa_handler;
51 }
52 
53 static int sig_handler_ignored(void __user *handler, int sig)
54 {
55 	/* Is it explicitly or implicitly ignored? */
56 	return handler == SIG_IGN ||
57 		(handler == SIG_DFL && sig_kernel_ignore(sig));
58 }
59 
60 static int sig_task_ignored(struct task_struct *t, int sig,
61 		int from_ancestor_ns)
62 {
63 	void __user *handler;
64 
65 	handler = sig_handler(t, sig);
66 
67 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 			handler == SIG_DFL && !from_ancestor_ns)
69 		return 1;
70 
71 	return sig_handler_ignored(handler, sig);
72 }
73 
74 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
75 {
76 	/*
77 	 * Blocked signals are never ignored, since the
78 	 * signal handler may change by the time it is
79 	 * unblocked.
80 	 */
81 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 		return 0;
83 
84 	if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 		return 0;
86 
87 	/*
88 	 * Tracers may want to know about even ignored signals.
89 	 */
90 	return !tracehook_consider_ignored_signal(t, sig);
91 }
92 
93 /*
94  * Re-calculate pending state from the set of locally pending
95  * signals, globally pending signals, and blocked signals.
96  */
97 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
98 {
99 	unsigned long ready;
100 	long i;
101 
102 	switch (_NSIG_WORDS) {
103 	default:
104 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 			ready |= signal->sig[i] &~ blocked->sig[i];
106 		break;
107 
108 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
109 		ready |= signal->sig[2] &~ blocked->sig[2];
110 		ready |= signal->sig[1] &~ blocked->sig[1];
111 		ready |= signal->sig[0] &~ blocked->sig[0];
112 		break;
113 
114 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
115 		ready |= signal->sig[0] &~ blocked->sig[0];
116 		break;
117 
118 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
119 	}
120 	return ready !=	0;
121 }
122 
123 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
124 
125 static int recalc_sigpending_tsk(struct task_struct *t)
126 {
127 	if ((t->group_stop & GROUP_STOP_PENDING) ||
128 	    PENDING(&t->pending, &t->blocked) ||
129 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
130 		set_tsk_thread_flag(t, TIF_SIGPENDING);
131 		return 1;
132 	}
133 	/*
134 	 * We must never clear the flag in another thread, or in current
135 	 * when it's possible the current syscall is returning -ERESTART*.
136 	 * So we don't clear it here, and only callers who know they should do.
137 	 */
138 	return 0;
139 }
140 
141 /*
142  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143  * This is superfluous when called on current, the wakeup is a harmless no-op.
144  */
145 void recalc_sigpending_and_wake(struct task_struct *t)
146 {
147 	if (recalc_sigpending_tsk(t))
148 		signal_wake_up(t, 0);
149 }
150 
151 void recalc_sigpending(void)
152 {
153 	if (unlikely(tracehook_force_sigpending()))
154 		set_thread_flag(TIF_SIGPENDING);
155 	else if (!recalc_sigpending_tsk(current) && !freezing(current))
156 		clear_thread_flag(TIF_SIGPENDING);
157 
158 }
159 
160 /* Given the mask, find the first available signal that should be serviced. */
161 
162 #define SYNCHRONOUS_MASK \
163 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
164 	 sigmask(SIGTRAP) | sigmask(SIGFPE))
165 
166 int next_signal(struct sigpending *pending, sigset_t *mask)
167 {
168 	unsigned long i, *s, *m, x;
169 	int sig = 0;
170 
171 	s = pending->signal.sig;
172 	m = mask->sig;
173 
174 	/*
175 	 * Handle the first word specially: it contains the
176 	 * synchronous signals that need to be dequeued first.
177 	 */
178 	x = *s &~ *m;
179 	if (x) {
180 		if (x & SYNCHRONOUS_MASK)
181 			x &= SYNCHRONOUS_MASK;
182 		sig = ffz(~x) + 1;
183 		return sig;
184 	}
185 
186 	switch (_NSIG_WORDS) {
187 	default:
188 		for (i = 1; i < _NSIG_WORDS; ++i) {
189 			x = *++s &~ *++m;
190 			if (!x)
191 				continue;
192 			sig = ffz(~x) + i*_NSIG_BPW + 1;
193 			break;
194 		}
195 		break;
196 
197 	case 2:
198 		x = s[1] &~ m[1];
199 		if (!x)
200 			break;
201 		sig = ffz(~x) + _NSIG_BPW + 1;
202 		break;
203 
204 	case 1:
205 		/* Nothing to do */
206 		break;
207 	}
208 
209 	return sig;
210 }
211 
212 static inline void print_dropped_signal(int sig)
213 {
214 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
215 
216 	if (!print_fatal_signals)
217 		return;
218 
219 	if (!__ratelimit(&ratelimit_state))
220 		return;
221 
222 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
223 				current->comm, current->pid, sig);
224 }
225 
226 /**
227  * task_clear_group_stop_trapping - clear group stop trapping bit
228  * @task: target task
229  *
230  * If GROUP_STOP_TRAPPING is set, a ptracer is waiting for us.  Clear it
231  * and wake up the ptracer.  Note that we don't need any further locking.
232  * @task->siglock guarantees that @task->parent points to the ptracer.
233  *
234  * CONTEXT:
235  * Must be called with @task->sighand->siglock held.
236  */
237 static void task_clear_group_stop_trapping(struct task_struct *task)
238 {
239 	if (unlikely(task->group_stop & GROUP_STOP_TRAPPING)) {
240 		task->group_stop &= ~GROUP_STOP_TRAPPING;
241 		__wake_up_sync_key(&task->parent->signal->wait_chldexit,
242 				   TASK_UNINTERRUPTIBLE, 1, task);
243 	}
244 }
245 
246 /**
247  * task_clear_group_stop_pending - clear pending group stop
248  * @task: target task
249  *
250  * Clear group stop states for @task.
251  *
252  * CONTEXT:
253  * Must be called with @task->sighand->siglock held.
254  */
255 void task_clear_group_stop_pending(struct task_struct *task)
256 {
257 	task->group_stop &= ~(GROUP_STOP_PENDING | GROUP_STOP_CONSUME |
258 			      GROUP_STOP_DEQUEUED);
259 }
260 
261 /**
262  * task_participate_group_stop - participate in a group stop
263  * @task: task participating in a group stop
264  *
265  * @task has GROUP_STOP_PENDING set and is participating in a group stop.
266  * Group stop states are cleared and the group stop count is consumed if
267  * %GROUP_STOP_CONSUME was set.  If the consumption completes the group
268  * stop, the appropriate %SIGNAL_* flags are set.
269  *
270  * CONTEXT:
271  * Must be called with @task->sighand->siglock held.
272  *
273  * RETURNS:
274  * %true if group stop completion should be notified to the parent, %false
275  * otherwise.
276  */
277 static bool task_participate_group_stop(struct task_struct *task)
278 {
279 	struct signal_struct *sig = task->signal;
280 	bool consume = task->group_stop & GROUP_STOP_CONSUME;
281 
282 	WARN_ON_ONCE(!(task->group_stop & GROUP_STOP_PENDING));
283 
284 	task_clear_group_stop_pending(task);
285 
286 	if (!consume)
287 		return false;
288 
289 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
290 		sig->group_stop_count--;
291 
292 	/*
293 	 * Tell the caller to notify completion iff we are entering into a
294 	 * fresh group stop.  Read comment in do_signal_stop() for details.
295 	 */
296 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
297 		sig->flags = SIGNAL_STOP_STOPPED;
298 		return true;
299 	}
300 	return false;
301 }
302 
303 /*
304  * allocate a new signal queue record
305  * - this may be called without locks if and only if t == current, otherwise an
306  *   appropriate lock must be held to stop the target task from exiting
307  */
308 static struct sigqueue *
309 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
310 {
311 	struct sigqueue *q = NULL;
312 	struct user_struct *user;
313 
314 	/*
315 	 * Protect access to @t credentials. This can go away when all
316 	 * callers hold rcu read lock.
317 	 */
318 	rcu_read_lock();
319 	user = get_uid(__task_cred(t)->user);
320 	atomic_inc(&user->sigpending);
321 	rcu_read_unlock();
322 
323 	if (override_rlimit ||
324 	    atomic_read(&user->sigpending) <=
325 			task_rlimit(t, RLIMIT_SIGPENDING)) {
326 		q = kmem_cache_alloc(sigqueue_cachep, flags);
327 	} else {
328 		print_dropped_signal(sig);
329 	}
330 
331 	if (unlikely(q == NULL)) {
332 		atomic_dec(&user->sigpending);
333 		free_uid(user);
334 	} else {
335 		INIT_LIST_HEAD(&q->list);
336 		q->flags = 0;
337 		q->user = user;
338 	}
339 
340 	return q;
341 }
342 
343 static void __sigqueue_free(struct sigqueue *q)
344 {
345 	if (q->flags & SIGQUEUE_PREALLOC)
346 		return;
347 	atomic_dec(&q->user->sigpending);
348 	free_uid(q->user);
349 	kmem_cache_free(sigqueue_cachep, q);
350 }
351 
352 void flush_sigqueue(struct sigpending *queue)
353 {
354 	struct sigqueue *q;
355 
356 	sigemptyset(&queue->signal);
357 	while (!list_empty(&queue->list)) {
358 		q = list_entry(queue->list.next, struct sigqueue , list);
359 		list_del_init(&q->list);
360 		__sigqueue_free(q);
361 	}
362 }
363 
364 /*
365  * Flush all pending signals for a task.
366  */
367 void __flush_signals(struct task_struct *t)
368 {
369 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
370 	flush_sigqueue(&t->pending);
371 	flush_sigqueue(&t->signal->shared_pending);
372 }
373 
374 void flush_signals(struct task_struct *t)
375 {
376 	unsigned long flags;
377 
378 	spin_lock_irqsave(&t->sighand->siglock, flags);
379 	__flush_signals(t);
380 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
381 }
382 
383 static void __flush_itimer_signals(struct sigpending *pending)
384 {
385 	sigset_t signal, retain;
386 	struct sigqueue *q, *n;
387 
388 	signal = pending->signal;
389 	sigemptyset(&retain);
390 
391 	list_for_each_entry_safe(q, n, &pending->list, list) {
392 		int sig = q->info.si_signo;
393 
394 		if (likely(q->info.si_code != SI_TIMER)) {
395 			sigaddset(&retain, sig);
396 		} else {
397 			sigdelset(&signal, sig);
398 			list_del_init(&q->list);
399 			__sigqueue_free(q);
400 		}
401 	}
402 
403 	sigorsets(&pending->signal, &signal, &retain);
404 }
405 
406 void flush_itimer_signals(void)
407 {
408 	struct task_struct *tsk = current;
409 	unsigned long flags;
410 
411 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
412 	__flush_itimer_signals(&tsk->pending);
413 	__flush_itimer_signals(&tsk->signal->shared_pending);
414 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
415 }
416 
417 void ignore_signals(struct task_struct *t)
418 {
419 	int i;
420 
421 	for (i = 0; i < _NSIG; ++i)
422 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
423 
424 	flush_signals(t);
425 }
426 
427 /*
428  * Flush all handlers for a task.
429  */
430 
431 void
432 flush_signal_handlers(struct task_struct *t, int force_default)
433 {
434 	int i;
435 	struct k_sigaction *ka = &t->sighand->action[0];
436 	for (i = _NSIG ; i != 0 ; i--) {
437 		if (force_default || ka->sa.sa_handler != SIG_IGN)
438 			ka->sa.sa_handler = SIG_DFL;
439 		ka->sa.sa_flags = 0;
440 		sigemptyset(&ka->sa.sa_mask);
441 		ka++;
442 	}
443 }
444 
445 int unhandled_signal(struct task_struct *tsk, int sig)
446 {
447 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
448 	if (is_global_init(tsk))
449 		return 1;
450 	if (handler != SIG_IGN && handler != SIG_DFL)
451 		return 0;
452 	return !tracehook_consider_fatal_signal(tsk, sig);
453 }
454 
455 /*
456  * Notify the system that a driver wants to block all signals for this
457  * process, and wants to be notified if any signals at all were to be
458  * sent/acted upon.  If the notifier routine returns non-zero, then the
459  * signal will be acted upon after all.  If the notifier routine returns 0,
460  * then then signal will be blocked.  Only one block per process is
461  * allowed.  priv is a pointer to private data that the notifier routine
462  * can use to determine if the signal should be blocked or not.
463  */
464 void
465 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
466 {
467 	unsigned long flags;
468 
469 	spin_lock_irqsave(&current->sighand->siglock, flags);
470 	current->notifier_mask = mask;
471 	current->notifier_data = priv;
472 	current->notifier = notifier;
473 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
474 }
475 
476 /* Notify the system that blocking has ended. */
477 
478 void
479 unblock_all_signals(void)
480 {
481 	unsigned long flags;
482 
483 	spin_lock_irqsave(&current->sighand->siglock, flags);
484 	current->notifier = NULL;
485 	current->notifier_data = NULL;
486 	recalc_sigpending();
487 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
488 }
489 
490 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
491 {
492 	struct sigqueue *q, *first = NULL;
493 
494 	/*
495 	 * Collect the siginfo appropriate to this signal.  Check if
496 	 * there is another siginfo for the same signal.
497 	*/
498 	list_for_each_entry(q, &list->list, list) {
499 		if (q->info.si_signo == sig) {
500 			if (first)
501 				goto still_pending;
502 			first = q;
503 		}
504 	}
505 
506 	sigdelset(&list->signal, sig);
507 
508 	if (first) {
509 still_pending:
510 		list_del_init(&first->list);
511 		copy_siginfo(info, &first->info);
512 		__sigqueue_free(first);
513 	} else {
514 		/*
515 		 * Ok, it wasn't in the queue.  This must be
516 		 * a fast-pathed signal or we must have been
517 		 * out of queue space.  So zero out the info.
518 		 */
519 		info->si_signo = sig;
520 		info->si_errno = 0;
521 		info->si_code = SI_USER;
522 		info->si_pid = 0;
523 		info->si_uid = 0;
524 	}
525 }
526 
527 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
528 			siginfo_t *info)
529 {
530 	int sig = next_signal(pending, mask);
531 
532 	if (sig) {
533 		if (current->notifier) {
534 			if (sigismember(current->notifier_mask, sig)) {
535 				if (!(current->notifier)(current->notifier_data)) {
536 					clear_thread_flag(TIF_SIGPENDING);
537 					return 0;
538 				}
539 			}
540 		}
541 
542 		collect_signal(sig, pending, info);
543 	}
544 
545 	return sig;
546 }
547 
548 /*
549  * Dequeue a signal and return the element to the caller, which is
550  * expected to free it.
551  *
552  * All callers have to hold the siglock.
553  */
554 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
555 {
556 	int signr;
557 
558 	/* We only dequeue private signals from ourselves, we don't let
559 	 * signalfd steal them
560 	 */
561 	signr = __dequeue_signal(&tsk->pending, mask, info);
562 	if (!signr) {
563 		signr = __dequeue_signal(&tsk->signal->shared_pending,
564 					 mask, info);
565 		/*
566 		 * itimer signal ?
567 		 *
568 		 * itimers are process shared and we restart periodic
569 		 * itimers in the signal delivery path to prevent DoS
570 		 * attacks in the high resolution timer case. This is
571 		 * compliant with the old way of self-restarting
572 		 * itimers, as the SIGALRM is a legacy signal and only
573 		 * queued once. Changing the restart behaviour to
574 		 * restart the timer in the signal dequeue path is
575 		 * reducing the timer noise on heavy loaded !highres
576 		 * systems too.
577 		 */
578 		if (unlikely(signr == SIGALRM)) {
579 			struct hrtimer *tmr = &tsk->signal->real_timer;
580 
581 			if (!hrtimer_is_queued(tmr) &&
582 			    tsk->signal->it_real_incr.tv64 != 0) {
583 				hrtimer_forward(tmr, tmr->base->get_time(),
584 						tsk->signal->it_real_incr);
585 				hrtimer_restart(tmr);
586 			}
587 		}
588 	}
589 
590 	recalc_sigpending();
591 	if (!signr)
592 		return 0;
593 
594 	if (unlikely(sig_kernel_stop(signr))) {
595 		/*
596 		 * Set a marker that we have dequeued a stop signal.  Our
597 		 * caller might release the siglock and then the pending
598 		 * stop signal it is about to process is no longer in the
599 		 * pending bitmasks, but must still be cleared by a SIGCONT
600 		 * (and overruled by a SIGKILL).  So those cases clear this
601 		 * shared flag after we've set it.  Note that this flag may
602 		 * remain set after the signal we return is ignored or
603 		 * handled.  That doesn't matter because its only purpose
604 		 * is to alert stop-signal processing code when another
605 		 * processor has come along and cleared the flag.
606 		 */
607 		current->group_stop |= GROUP_STOP_DEQUEUED;
608 	}
609 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
610 		/*
611 		 * Release the siglock to ensure proper locking order
612 		 * of timer locks outside of siglocks.  Note, we leave
613 		 * irqs disabled here, since the posix-timers code is
614 		 * about to disable them again anyway.
615 		 */
616 		spin_unlock(&tsk->sighand->siglock);
617 		do_schedule_next_timer(info);
618 		spin_lock(&tsk->sighand->siglock);
619 	}
620 	return signr;
621 }
622 
623 /*
624  * Tell a process that it has a new active signal..
625  *
626  * NOTE! we rely on the previous spin_lock to
627  * lock interrupts for us! We can only be called with
628  * "siglock" held, and the local interrupt must
629  * have been disabled when that got acquired!
630  *
631  * No need to set need_resched since signal event passing
632  * goes through ->blocked
633  */
634 void signal_wake_up(struct task_struct *t, int resume)
635 {
636 	unsigned int mask;
637 
638 	set_tsk_thread_flag(t, TIF_SIGPENDING);
639 
640 	/*
641 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
642 	 * case. We don't check t->state here because there is a race with it
643 	 * executing another processor and just now entering stopped state.
644 	 * By using wake_up_state, we ensure the process will wake up and
645 	 * handle its death signal.
646 	 */
647 	mask = TASK_INTERRUPTIBLE;
648 	if (resume)
649 		mask |= TASK_WAKEKILL;
650 	if (!wake_up_state(t, mask))
651 		kick_process(t);
652 }
653 
654 /*
655  * Remove signals in mask from the pending set and queue.
656  * Returns 1 if any signals were found.
657  *
658  * All callers must be holding the siglock.
659  *
660  * This version takes a sigset mask and looks at all signals,
661  * not just those in the first mask word.
662  */
663 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
664 {
665 	struct sigqueue *q, *n;
666 	sigset_t m;
667 
668 	sigandsets(&m, mask, &s->signal);
669 	if (sigisemptyset(&m))
670 		return 0;
671 
672 	sigandnsets(&s->signal, &s->signal, mask);
673 	list_for_each_entry_safe(q, n, &s->list, list) {
674 		if (sigismember(mask, q->info.si_signo)) {
675 			list_del_init(&q->list);
676 			__sigqueue_free(q);
677 		}
678 	}
679 	return 1;
680 }
681 /*
682  * Remove signals in mask from the pending set and queue.
683  * Returns 1 if any signals were found.
684  *
685  * All callers must be holding the siglock.
686  */
687 static int rm_from_queue(unsigned long mask, struct sigpending *s)
688 {
689 	struct sigqueue *q, *n;
690 
691 	if (!sigtestsetmask(&s->signal, mask))
692 		return 0;
693 
694 	sigdelsetmask(&s->signal, mask);
695 	list_for_each_entry_safe(q, n, &s->list, list) {
696 		if (q->info.si_signo < SIGRTMIN &&
697 		    (mask & sigmask(q->info.si_signo))) {
698 			list_del_init(&q->list);
699 			__sigqueue_free(q);
700 		}
701 	}
702 	return 1;
703 }
704 
705 static inline int is_si_special(const struct siginfo *info)
706 {
707 	return info <= SEND_SIG_FORCED;
708 }
709 
710 static inline bool si_fromuser(const struct siginfo *info)
711 {
712 	return info == SEND_SIG_NOINFO ||
713 		(!is_si_special(info) && SI_FROMUSER(info));
714 }
715 
716 /*
717  * called with RCU read lock from check_kill_permission()
718  */
719 static int kill_ok_by_cred(struct task_struct *t)
720 {
721 	const struct cred *cred = current_cred();
722 	const struct cred *tcred = __task_cred(t);
723 
724 	if (cred->user->user_ns == tcred->user->user_ns &&
725 	    (cred->euid == tcred->suid ||
726 	     cred->euid == tcred->uid ||
727 	     cred->uid  == tcred->suid ||
728 	     cred->uid  == tcred->uid))
729 		return 1;
730 
731 	if (ns_capable(tcred->user->user_ns, CAP_KILL))
732 		return 1;
733 
734 	return 0;
735 }
736 
737 /*
738  * Bad permissions for sending the signal
739  * - the caller must hold the RCU read lock
740  */
741 static int check_kill_permission(int sig, struct siginfo *info,
742 				 struct task_struct *t)
743 {
744 	struct pid *sid;
745 	int error;
746 
747 	if (!valid_signal(sig))
748 		return -EINVAL;
749 
750 	if (!si_fromuser(info))
751 		return 0;
752 
753 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
754 	if (error)
755 		return error;
756 
757 	if (!same_thread_group(current, t) &&
758 	    !kill_ok_by_cred(t)) {
759 		switch (sig) {
760 		case SIGCONT:
761 			sid = task_session(t);
762 			/*
763 			 * We don't return the error if sid == NULL. The
764 			 * task was unhashed, the caller must notice this.
765 			 */
766 			if (!sid || sid == task_session(current))
767 				break;
768 		default:
769 			return -EPERM;
770 		}
771 	}
772 
773 	return security_task_kill(t, info, sig, 0);
774 }
775 
776 /*
777  * Handle magic process-wide effects of stop/continue signals. Unlike
778  * the signal actions, these happen immediately at signal-generation
779  * time regardless of blocking, ignoring, or handling.  This does the
780  * actual continuing for SIGCONT, but not the actual stopping for stop
781  * signals. The process stop is done as a signal action for SIG_DFL.
782  *
783  * Returns true if the signal should be actually delivered, otherwise
784  * it should be dropped.
785  */
786 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
787 {
788 	struct signal_struct *signal = p->signal;
789 	struct task_struct *t;
790 
791 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
792 		/*
793 		 * The process is in the middle of dying, nothing to do.
794 		 */
795 	} else if (sig_kernel_stop(sig)) {
796 		/*
797 		 * This is a stop signal.  Remove SIGCONT from all queues.
798 		 */
799 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
800 		t = p;
801 		do {
802 			rm_from_queue(sigmask(SIGCONT), &t->pending);
803 		} while_each_thread(p, t);
804 	} else if (sig == SIGCONT) {
805 		unsigned int why;
806 		/*
807 		 * Remove all stop signals from all queues, wake all threads.
808 		 */
809 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
810 		t = p;
811 		do {
812 			task_clear_group_stop_pending(t);
813 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
814 			wake_up_state(t, __TASK_STOPPED);
815 		} while_each_thread(p, t);
816 
817 		/*
818 		 * Notify the parent with CLD_CONTINUED if we were stopped.
819 		 *
820 		 * If we were in the middle of a group stop, we pretend it
821 		 * was already finished, and then continued. Since SIGCHLD
822 		 * doesn't queue we report only CLD_STOPPED, as if the next
823 		 * CLD_CONTINUED was dropped.
824 		 */
825 		why = 0;
826 		if (signal->flags & SIGNAL_STOP_STOPPED)
827 			why |= SIGNAL_CLD_CONTINUED;
828 		else if (signal->group_stop_count)
829 			why |= SIGNAL_CLD_STOPPED;
830 
831 		if (why) {
832 			/*
833 			 * The first thread which returns from do_signal_stop()
834 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
835 			 * notify its parent. See get_signal_to_deliver().
836 			 */
837 			signal->flags = why | SIGNAL_STOP_CONTINUED;
838 			signal->group_stop_count = 0;
839 			signal->group_exit_code = 0;
840 		}
841 	}
842 
843 	return !sig_ignored(p, sig, from_ancestor_ns);
844 }
845 
846 /*
847  * Test if P wants to take SIG.  After we've checked all threads with this,
848  * it's equivalent to finding no threads not blocking SIG.  Any threads not
849  * blocking SIG were ruled out because they are not running and already
850  * have pending signals.  Such threads will dequeue from the shared queue
851  * as soon as they're available, so putting the signal on the shared queue
852  * will be equivalent to sending it to one such thread.
853  */
854 static inline int wants_signal(int sig, struct task_struct *p)
855 {
856 	if (sigismember(&p->blocked, sig))
857 		return 0;
858 	if (p->flags & PF_EXITING)
859 		return 0;
860 	if (sig == SIGKILL)
861 		return 1;
862 	if (task_is_stopped_or_traced(p))
863 		return 0;
864 	return task_curr(p) || !signal_pending(p);
865 }
866 
867 static void complete_signal(int sig, struct task_struct *p, int group)
868 {
869 	struct signal_struct *signal = p->signal;
870 	struct task_struct *t;
871 
872 	/*
873 	 * Now find a thread we can wake up to take the signal off the queue.
874 	 *
875 	 * If the main thread wants the signal, it gets first crack.
876 	 * Probably the least surprising to the average bear.
877 	 */
878 	if (wants_signal(sig, p))
879 		t = p;
880 	else if (!group || thread_group_empty(p))
881 		/*
882 		 * There is just one thread and it does not need to be woken.
883 		 * It will dequeue unblocked signals before it runs again.
884 		 */
885 		return;
886 	else {
887 		/*
888 		 * Otherwise try to find a suitable thread.
889 		 */
890 		t = signal->curr_target;
891 		while (!wants_signal(sig, t)) {
892 			t = next_thread(t);
893 			if (t == signal->curr_target)
894 				/*
895 				 * No thread needs to be woken.
896 				 * Any eligible threads will see
897 				 * the signal in the queue soon.
898 				 */
899 				return;
900 		}
901 		signal->curr_target = t;
902 	}
903 
904 	/*
905 	 * Found a killable thread.  If the signal will be fatal,
906 	 * then start taking the whole group down immediately.
907 	 */
908 	if (sig_fatal(p, sig) &&
909 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
910 	    !sigismember(&t->real_blocked, sig) &&
911 	    (sig == SIGKILL ||
912 	     !tracehook_consider_fatal_signal(t, sig))) {
913 		/*
914 		 * This signal will be fatal to the whole group.
915 		 */
916 		if (!sig_kernel_coredump(sig)) {
917 			/*
918 			 * Start a group exit and wake everybody up.
919 			 * This way we don't have other threads
920 			 * running and doing things after a slower
921 			 * thread has the fatal signal pending.
922 			 */
923 			signal->flags = SIGNAL_GROUP_EXIT;
924 			signal->group_exit_code = sig;
925 			signal->group_stop_count = 0;
926 			t = p;
927 			do {
928 				task_clear_group_stop_pending(t);
929 				sigaddset(&t->pending.signal, SIGKILL);
930 				signal_wake_up(t, 1);
931 			} while_each_thread(p, t);
932 			return;
933 		}
934 	}
935 
936 	/*
937 	 * The signal is already in the shared-pending queue.
938 	 * Tell the chosen thread to wake up and dequeue it.
939 	 */
940 	signal_wake_up(t, sig == SIGKILL);
941 	return;
942 }
943 
944 static inline int legacy_queue(struct sigpending *signals, int sig)
945 {
946 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
947 }
948 
949 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
950 			int group, int from_ancestor_ns)
951 {
952 	struct sigpending *pending;
953 	struct sigqueue *q;
954 	int override_rlimit;
955 
956 	trace_signal_generate(sig, info, t);
957 
958 	assert_spin_locked(&t->sighand->siglock);
959 
960 	if (!prepare_signal(sig, t, from_ancestor_ns))
961 		return 0;
962 
963 	pending = group ? &t->signal->shared_pending : &t->pending;
964 	/*
965 	 * Short-circuit ignored signals and support queuing
966 	 * exactly one non-rt signal, so that we can get more
967 	 * detailed information about the cause of the signal.
968 	 */
969 	if (legacy_queue(pending, sig))
970 		return 0;
971 	/*
972 	 * fast-pathed signals for kernel-internal things like SIGSTOP
973 	 * or SIGKILL.
974 	 */
975 	if (info == SEND_SIG_FORCED)
976 		goto out_set;
977 
978 	/*
979 	 * Real-time signals must be queued if sent by sigqueue, or
980 	 * some other real-time mechanism.  It is implementation
981 	 * defined whether kill() does so.  We attempt to do so, on
982 	 * the principle of least surprise, but since kill is not
983 	 * allowed to fail with EAGAIN when low on memory we just
984 	 * make sure at least one signal gets delivered and don't
985 	 * pass on the info struct.
986 	 */
987 	if (sig < SIGRTMIN)
988 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
989 	else
990 		override_rlimit = 0;
991 
992 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
993 		override_rlimit);
994 	if (q) {
995 		list_add_tail(&q->list, &pending->list);
996 		switch ((unsigned long) info) {
997 		case (unsigned long) SEND_SIG_NOINFO:
998 			q->info.si_signo = sig;
999 			q->info.si_errno = 0;
1000 			q->info.si_code = SI_USER;
1001 			q->info.si_pid = task_tgid_nr_ns(current,
1002 							task_active_pid_ns(t));
1003 			q->info.si_uid = current_uid();
1004 			break;
1005 		case (unsigned long) SEND_SIG_PRIV:
1006 			q->info.si_signo = sig;
1007 			q->info.si_errno = 0;
1008 			q->info.si_code = SI_KERNEL;
1009 			q->info.si_pid = 0;
1010 			q->info.si_uid = 0;
1011 			break;
1012 		default:
1013 			copy_siginfo(&q->info, info);
1014 			if (from_ancestor_ns)
1015 				q->info.si_pid = 0;
1016 			break;
1017 		}
1018 	} else if (!is_si_special(info)) {
1019 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1020 			/*
1021 			 * Queue overflow, abort.  We may abort if the
1022 			 * signal was rt and sent by user using something
1023 			 * other than kill().
1024 			 */
1025 			trace_signal_overflow_fail(sig, group, info);
1026 			return -EAGAIN;
1027 		} else {
1028 			/*
1029 			 * This is a silent loss of information.  We still
1030 			 * send the signal, but the *info bits are lost.
1031 			 */
1032 			trace_signal_lose_info(sig, group, info);
1033 		}
1034 	}
1035 
1036 out_set:
1037 	signalfd_notify(t, sig);
1038 	sigaddset(&pending->signal, sig);
1039 	complete_signal(sig, t, group);
1040 	return 0;
1041 }
1042 
1043 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1044 			int group)
1045 {
1046 	int from_ancestor_ns = 0;
1047 
1048 #ifdef CONFIG_PID_NS
1049 	from_ancestor_ns = si_fromuser(info) &&
1050 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1051 #endif
1052 
1053 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1054 }
1055 
1056 static void print_fatal_signal(struct pt_regs *regs, int signr)
1057 {
1058 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1059 		current->comm, task_pid_nr(current), signr);
1060 
1061 #if defined(__i386__) && !defined(__arch_um__)
1062 	printk("code at %08lx: ", regs->ip);
1063 	{
1064 		int i;
1065 		for (i = 0; i < 16; i++) {
1066 			unsigned char insn;
1067 
1068 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1069 				break;
1070 			printk("%02x ", insn);
1071 		}
1072 	}
1073 #endif
1074 	printk("\n");
1075 	preempt_disable();
1076 	show_regs(regs);
1077 	preempt_enable();
1078 }
1079 
1080 static int __init setup_print_fatal_signals(char *str)
1081 {
1082 	get_option (&str, &print_fatal_signals);
1083 
1084 	return 1;
1085 }
1086 
1087 __setup("print-fatal-signals=", setup_print_fatal_signals);
1088 
1089 int
1090 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1091 {
1092 	return send_signal(sig, info, p, 1);
1093 }
1094 
1095 static int
1096 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1097 {
1098 	return send_signal(sig, info, t, 0);
1099 }
1100 
1101 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1102 			bool group)
1103 {
1104 	unsigned long flags;
1105 	int ret = -ESRCH;
1106 
1107 	if (lock_task_sighand(p, &flags)) {
1108 		ret = send_signal(sig, info, p, group);
1109 		unlock_task_sighand(p, &flags);
1110 	}
1111 
1112 	return ret;
1113 }
1114 
1115 /*
1116  * Force a signal that the process can't ignore: if necessary
1117  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1118  *
1119  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1120  * since we do not want to have a signal handler that was blocked
1121  * be invoked when user space had explicitly blocked it.
1122  *
1123  * We don't want to have recursive SIGSEGV's etc, for example,
1124  * that is why we also clear SIGNAL_UNKILLABLE.
1125  */
1126 int
1127 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1128 {
1129 	unsigned long int flags;
1130 	int ret, blocked, ignored;
1131 	struct k_sigaction *action;
1132 
1133 	spin_lock_irqsave(&t->sighand->siglock, flags);
1134 	action = &t->sighand->action[sig-1];
1135 	ignored = action->sa.sa_handler == SIG_IGN;
1136 	blocked = sigismember(&t->blocked, sig);
1137 	if (blocked || ignored) {
1138 		action->sa.sa_handler = SIG_DFL;
1139 		if (blocked) {
1140 			sigdelset(&t->blocked, sig);
1141 			recalc_sigpending_and_wake(t);
1142 		}
1143 	}
1144 	if (action->sa.sa_handler == SIG_DFL)
1145 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1146 	ret = specific_send_sig_info(sig, info, t);
1147 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1148 
1149 	return ret;
1150 }
1151 
1152 /*
1153  * Nuke all other threads in the group.
1154  */
1155 int zap_other_threads(struct task_struct *p)
1156 {
1157 	struct task_struct *t = p;
1158 	int count = 0;
1159 
1160 	p->signal->group_stop_count = 0;
1161 
1162 	while_each_thread(p, t) {
1163 		task_clear_group_stop_pending(t);
1164 		count++;
1165 
1166 		/* Don't bother with already dead threads */
1167 		if (t->exit_state)
1168 			continue;
1169 		sigaddset(&t->pending.signal, SIGKILL);
1170 		signal_wake_up(t, 1);
1171 	}
1172 
1173 	return count;
1174 }
1175 
1176 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1177 					   unsigned long *flags)
1178 {
1179 	struct sighand_struct *sighand;
1180 
1181 	rcu_read_lock();
1182 	for (;;) {
1183 		sighand = rcu_dereference(tsk->sighand);
1184 		if (unlikely(sighand == NULL))
1185 			break;
1186 
1187 		spin_lock_irqsave(&sighand->siglock, *flags);
1188 		if (likely(sighand == tsk->sighand))
1189 			break;
1190 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1191 	}
1192 	rcu_read_unlock();
1193 
1194 	return sighand;
1195 }
1196 
1197 /*
1198  * send signal info to all the members of a group
1199  */
1200 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1201 {
1202 	int ret;
1203 
1204 	rcu_read_lock();
1205 	ret = check_kill_permission(sig, info, p);
1206 	rcu_read_unlock();
1207 
1208 	if (!ret && sig)
1209 		ret = do_send_sig_info(sig, info, p, true);
1210 
1211 	return ret;
1212 }
1213 
1214 /*
1215  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1216  * control characters do (^C, ^Z etc)
1217  * - the caller must hold at least a readlock on tasklist_lock
1218  */
1219 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1220 {
1221 	struct task_struct *p = NULL;
1222 	int retval, success;
1223 
1224 	success = 0;
1225 	retval = -ESRCH;
1226 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1227 		int err = group_send_sig_info(sig, info, p);
1228 		success |= !err;
1229 		retval = err;
1230 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1231 	return success ? 0 : retval;
1232 }
1233 
1234 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1235 {
1236 	int error = -ESRCH;
1237 	struct task_struct *p;
1238 
1239 	rcu_read_lock();
1240 retry:
1241 	p = pid_task(pid, PIDTYPE_PID);
1242 	if (p) {
1243 		error = group_send_sig_info(sig, info, p);
1244 		if (unlikely(error == -ESRCH))
1245 			/*
1246 			 * The task was unhashed in between, try again.
1247 			 * If it is dead, pid_task() will return NULL,
1248 			 * if we race with de_thread() it will find the
1249 			 * new leader.
1250 			 */
1251 			goto retry;
1252 	}
1253 	rcu_read_unlock();
1254 
1255 	return error;
1256 }
1257 
1258 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1259 {
1260 	int error;
1261 	rcu_read_lock();
1262 	error = kill_pid_info(sig, info, find_vpid(pid));
1263 	rcu_read_unlock();
1264 	return error;
1265 }
1266 
1267 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1268 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1269 		      uid_t uid, uid_t euid, u32 secid)
1270 {
1271 	int ret = -EINVAL;
1272 	struct task_struct *p;
1273 	const struct cred *pcred;
1274 	unsigned long flags;
1275 
1276 	if (!valid_signal(sig))
1277 		return ret;
1278 
1279 	rcu_read_lock();
1280 	p = pid_task(pid, PIDTYPE_PID);
1281 	if (!p) {
1282 		ret = -ESRCH;
1283 		goto out_unlock;
1284 	}
1285 	pcred = __task_cred(p);
1286 	if (si_fromuser(info) &&
1287 	    euid != pcred->suid && euid != pcred->uid &&
1288 	    uid  != pcred->suid && uid  != pcred->uid) {
1289 		ret = -EPERM;
1290 		goto out_unlock;
1291 	}
1292 	ret = security_task_kill(p, info, sig, secid);
1293 	if (ret)
1294 		goto out_unlock;
1295 
1296 	if (sig) {
1297 		if (lock_task_sighand(p, &flags)) {
1298 			ret = __send_signal(sig, info, p, 1, 0);
1299 			unlock_task_sighand(p, &flags);
1300 		} else
1301 			ret = -ESRCH;
1302 	}
1303 out_unlock:
1304 	rcu_read_unlock();
1305 	return ret;
1306 }
1307 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1308 
1309 /*
1310  * kill_something_info() interprets pid in interesting ways just like kill(2).
1311  *
1312  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1313  * is probably wrong.  Should make it like BSD or SYSV.
1314  */
1315 
1316 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1317 {
1318 	int ret;
1319 
1320 	if (pid > 0) {
1321 		rcu_read_lock();
1322 		ret = kill_pid_info(sig, info, find_vpid(pid));
1323 		rcu_read_unlock();
1324 		return ret;
1325 	}
1326 
1327 	read_lock(&tasklist_lock);
1328 	if (pid != -1) {
1329 		ret = __kill_pgrp_info(sig, info,
1330 				pid ? find_vpid(-pid) : task_pgrp(current));
1331 	} else {
1332 		int retval = 0, count = 0;
1333 		struct task_struct * p;
1334 
1335 		for_each_process(p) {
1336 			if (task_pid_vnr(p) > 1 &&
1337 					!same_thread_group(p, current)) {
1338 				int err = group_send_sig_info(sig, info, p);
1339 				++count;
1340 				if (err != -EPERM)
1341 					retval = err;
1342 			}
1343 		}
1344 		ret = count ? retval : -ESRCH;
1345 	}
1346 	read_unlock(&tasklist_lock);
1347 
1348 	return ret;
1349 }
1350 
1351 /*
1352  * These are for backward compatibility with the rest of the kernel source.
1353  */
1354 
1355 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1356 {
1357 	/*
1358 	 * Make sure legacy kernel users don't send in bad values
1359 	 * (normal paths check this in check_kill_permission).
1360 	 */
1361 	if (!valid_signal(sig))
1362 		return -EINVAL;
1363 
1364 	return do_send_sig_info(sig, info, p, false);
1365 }
1366 
1367 #define __si_special(priv) \
1368 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1369 
1370 int
1371 send_sig(int sig, struct task_struct *p, int priv)
1372 {
1373 	return send_sig_info(sig, __si_special(priv), p);
1374 }
1375 
1376 void
1377 force_sig(int sig, struct task_struct *p)
1378 {
1379 	force_sig_info(sig, SEND_SIG_PRIV, p);
1380 }
1381 
1382 /*
1383  * When things go south during signal handling, we
1384  * will force a SIGSEGV. And if the signal that caused
1385  * the problem was already a SIGSEGV, we'll want to
1386  * make sure we don't even try to deliver the signal..
1387  */
1388 int
1389 force_sigsegv(int sig, struct task_struct *p)
1390 {
1391 	if (sig == SIGSEGV) {
1392 		unsigned long flags;
1393 		spin_lock_irqsave(&p->sighand->siglock, flags);
1394 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1395 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1396 	}
1397 	force_sig(SIGSEGV, p);
1398 	return 0;
1399 }
1400 
1401 int kill_pgrp(struct pid *pid, int sig, int priv)
1402 {
1403 	int ret;
1404 
1405 	read_lock(&tasklist_lock);
1406 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1407 	read_unlock(&tasklist_lock);
1408 
1409 	return ret;
1410 }
1411 EXPORT_SYMBOL(kill_pgrp);
1412 
1413 int kill_pid(struct pid *pid, int sig, int priv)
1414 {
1415 	return kill_pid_info(sig, __si_special(priv), pid);
1416 }
1417 EXPORT_SYMBOL(kill_pid);
1418 
1419 /*
1420  * These functions support sending signals using preallocated sigqueue
1421  * structures.  This is needed "because realtime applications cannot
1422  * afford to lose notifications of asynchronous events, like timer
1423  * expirations or I/O completions".  In the case of POSIX Timers
1424  * we allocate the sigqueue structure from the timer_create.  If this
1425  * allocation fails we are able to report the failure to the application
1426  * with an EAGAIN error.
1427  */
1428 struct sigqueue *sigqueue_alloc(void)
1429 {
1430 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1431 
1432 	if (q)
1433 		q->flags |= SIGQUEUE_PREALLOC;
1434 
1435 	return q;
1436 }
1437 
1438 void sigqueue_free(struct sigqueue *q)
1439 {
1440 	unsigned long flags;
1441 	spinlock_t *lock = &current->sighand->siglock;
1442 
1443 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1444 	/*
1445 	 * We must hold ->siglock while testing q->list
1446 	 * to serialize with collect_signal() or with
1447 	 * __exit_signal()->flush_sigqueue().
1448 	 */
1449 	spin_lock_irqsave(lock, flags);
1450 	q->flags &= ~SIGQUEUE_PREALLOC;
1451 	/*
1452 	 * If it is queued it will be freed when dequeued,
1453 	 * like the "regular" sigqueue.
1454 	 */
1455 	if (!list_empty(&q->list))
1456 		q = NULL;
1457 	spin_unlock_irqrestore(lock, flags);
1458 
1459 	if (q)
1460 		__sigqueue_free(q);
1461 }
1462 
1463 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1464 {
1465 	int sig = q->info.si_signo;
1466 	struct sigpending *pending;
1467 	unsigned long flags;
1468 	int ret;
1469 
1470 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1471 
1472 	ret = -1;
1473 	if (!likely(lock_task_sighand(t, &flags)))
1474 		goto ret;
1475 
1476 	ret = 1; /* the signal is ignored */
1477 	if (!prepare_signal(sig, t, 0))
1478 		goto out;
1479 
1480 	ret = 0;
1481 	if (unlikely(!list_empty(&q->list))) {
1482 		/*
1483 		 * If an SI_TIMER entry is already queue just increment
1484 		 * the overrun count.
1485 		 */
1486 		BUG_ON(q->info.si_code != SI_TIMER);
1487 		q->info.si_overrun++;
1488 		goto out;
1489 	}
1490 	q->info.si_overrun = 0;
1491 
1492 	signalfd_notify(t, sig);
1493 	pending = group ? &t->signal->shared_pending : &t->pending;
1494 	list_add_tail(&q->list, &pending->list);
1495 	sigaddset(&pending->signal, sig);
1496 	complete_signal(sig, t, group);
1497 out:
1498 	unlock_task_sighand(t, &flags);
1499 ret:
1500 	return ret;
1501 }
1502 
1503 /*
1504  * Let a parent know about the death of a child.
1505  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1506  *
1507  * Returns -1 if our parent ignored us and so we've switched to
1508  * self-reaping, or else @sig.
1509  */
1510 int do_notify_parent(struct task_struct *tsk, int sig)
1511 {
1512 	struct siginfo info;
1513 	unsigned long flags;
1514 	struct sighand_struct *psig;
1515 	int ret = sig;
1516 
1517 	BUG_ON(sig == -1);
1518 
1519  	/* do_notify_parent_cldstop should have been called instead.  */
1520  	BUG_ON(task_is_stopped_or_traced(tsk));
1521 
1522 	BUG_ON(!task_ptrace(tsk) &&
1523 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1524 
1525 	info.si_signo = sig;
1526 	info.si_errno = 0;
1527 	/*
1528 	 * we are under tasklist_lock here so our parent is tied to
1529 	 * us and cannot exit and release its namespace.
1530 	 *
1531 	 * the only it can is to switch its nsproxy with sys_unshare,
1532 	 * bu uncharing pid namespaces is not allowed, so we'll always
1533 	 * see relevant namespace
1534 	 *
1535 	 * write_lock() currently calls preempt_disable() which is the
1536 	 * same as rcu_read_lock(), but according to Oleg, this is not
1537 	 * correct to rely on this
1538 	 */
1539 	rcu_read_lock();
1540 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1541 	info.si_uid = __task_cred(tsk)->uid;
1542 	rcu_read_unlock();
1543 
1544 	info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1545 				tsk->signal->utime));
1546 	info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1547 				tsk->signal->stime));
1548 
1549 	info.si_status = tsk->exit_code & 0x7f;
1550 	if (tsk->exit_code & 0x80)
1551 		info.si_code = CLD_DUMPED;
1552 	else if (tsk->exit_code & 0x7f)
1553 		info.si_code = CLD_KILLED;
1554 	else {
1555 		info.si_code = CLD_EXITED;
1556 		info.si_status = tsk->exit_code >> 8;
1557 	}
1558 
1559 	psig = tsk->parent->sighand;
1560 	spin_lock_irqsave(&psig->siglock, flags);
1561 	if (!task_ptrace(tsk) && sig == SIGCHLD &&
1562 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1563 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1564 		/*
1565 		 * We are exiting and our parent doesn't care.  POSIX.1
1566 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1567 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1568 		 * automatically and not left for our parent's wait4 call.
1569 		 * Rather than having the parent do it as a magic kind of
1570 		 * signal handler, we just set this to tell do_exit that we
1571 		 * can be cleaned up without becoming a zombie.  Note that
1572 		 * we still call __wake_up_parent in this case, because a
1573 		 * blocked sys_wait4 might now return -ECHILD.
1574 		 *
1575 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1576 		 * is implementation-defined: we do (if you don't want
1577 		 * it, just use SIG_IGN instead).
1578 		 */
1579 		ret = tsk->exit_signal = -1;
1580 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1581 			sig = -1;
1582 	}
1583 	if (valid_signal(sig) && sig > 0)
1584 		__group_send_sig_info(sig, &info, tsk->parent);
1585 	__wake_up_parent(tsk, tsk->parent);
1586 	spin_unlock_irqrestore(&psig->siglock, flags);
1587 
1588 	return ret;
1589 }
1590 
1591 /**
1592  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1593  * @tsk: task reporting the state change
1594  * @for_ptracer: the notification is for ptracer
1595  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1596  *
1597  * Notify @tsk's parent that the stopped/continued state has changed.  If
1598  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1599  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1600  *
1601  * CONTEXT:
1602  * Must be called with tasklist_lock at least read locked.
1603  */
1604 static void do_notify_parent_cldstop(struct task_struct *tsk,
1605 				     bool for_ptracer, int why)
1606 {
1607 	struct siginfo info;
1608 	unsigned long flags;
1609 	struct task_struct *parent;
1610 	struct sighand_struct *sighand;
1611 
1612 	if (for_ptracer) {
1613 		parent = tsk->parent;
1614 	} else {
1615 		tsk = tsk->group_leader;
1616 		parent = tsk->real_parent;
1617 	}
1618 
1619 	info.si_signo = SIGCHLD;
1620 	info.si_errno = 0;
1621 	/*
1622 	 * see comment in do_notify_parent() about the following 4 lines
1623 	 */
1624 	rcu_read_lock();
1625 	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1626 	info.si_uid = __task_cred(tsk)->uid;
1627 	rcu_read_unlock();
1628 
1629 	info.si_utime = cputime_to_clock_t(tsk->utime);
1630 	info.si_stime = cputime_to_clock_t(tsk->stime);
1631 
1632  	info.si_code = why;
1633  	switch (why) {
1634  	case CLD_CONTINUED:
1635  		info.si_status = SIGCONT;
1636  		break;
1637  	case CLD_STOPPED:
1638  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1639  		break;
1640  	case CLD_TRAPPED:
1641  		info.si_status = tsk->exit_code & 0x7f;
1642  		break;
1643  	default:
1644  		BUG();
1645  	}
1646 
1647 	sighand = parent->sighand;
1648 	spin_lock_irqsave(&sighand->siglock, flags);
1649 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1650 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1651 		__group_send_sig_info(SIGCHLD, &info, parent);
1652 	/*
1653 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1654 	 */
1655 	__wake_up_parent(tsk, parent);
1656 	spin_unlock_irqrestore(&sighand->siglock, flags);
1657 }
1658 
1659 static inline int may_ptrace_stop(void)
1660 {
1661 	if (!likely(task_ptrace(current)))
1662 		return 0;
1663 	/*
1664 	 * Are we in the middle of do_coredump?
1665 	 * If so and our tracer is also part of the coredump stopping
1666 	 * is a deadlock situation, and pointless because our tracer
1667 	 * is dead so don't allow us to stop.
1668 	 * If SIGKILL was already sent before the caller unlocked
1669 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1670 	 * is safe to enter schedule().
1671 	 */
1672 	if (unlikely(current->mm->core_state) &&
1673 	    unlikely(current->mm == current->parent->mm))
1674 		return 0;
1675 
1676 	return 1;
1677 }
1678 
1679 /*
1680  * Return non-zero if there is a SIGKILL that should be waking us up.
1681  * Called with the siglock held.
1682  */
1683 static int sigkill_pending(struct task_struct *tsk)
1684 {
1685 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1686 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1687 }
1688 
1689 /*
1690  * Test whether the target task of the usual cldstop notification - the
1691  * real_parent of @child - is in the same group as the ptracer.
1692  */
1693 static bool real_parent_is_ptracer(struct task_struct *child)
1694 {
1695 	return same_thread_group(child->parent, child->real_parent);
1696 }
1697 
1698 /*
1699  * This must be called with current->sighand->siglock held.
1700  *
1701  * This should be the path for all ptrace stops.
1702  * We always set current->last_siginfo while stopped here.
1703  * That makes it a way to test a stopped process for
1704  * being ptrace-stopped vs being job-control-stopped.
1705  *
1706  * If we actually decide not to stop at all because the tracer
1707  * is gone, we keep current->exit_code unless clear_code.
1708  */
1709 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1710 	__releases(&current->sighand->siglock)
1711 	__acquires(&current->sighand->siglock)
1712 {
1713 	bool gstop_done = false;
1714 
1715 	if (arch_ptrace_stop_needed(exit_code, info)) {
1716 		/*
1717 		 * The arch code has something special to do before a
1718 		 * ptrace stop.  This is allowed to block, e.g. for faults
1719 		 * on user stack pages.  We can't keep the siglock while
1720 		 * calling arch_ptrace_stop, so we must release it now.
1721 		 * To preserve proper semantics, we must do this before
1722 		 * any signal bookkeeping like checking group_stop_count.
1723 		 * Meanwhile, a SIGKILL could come in before we retake the
1724 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1725 		 * So after regaining the lock, we must check for SIGKILL.
1726 		 */
1727 		spin_unlock_irq(&current->sighand->siglock);
1728 		arch_ptrace_stop(exit_code, info);
1729 		spin_lock_irq(&current->sighand->siglock);
1730 		if (sigkill_pending(current))
1731 			return;
1732 	}
1733 
1734 	/*
1735 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1736 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1737 	 * while siglock was released for the arch hook, PENDING could be
1738 	 * clear now.  We act as if SIGCONT is received after TASK_TRACED
1739 	 * is entered - ignore it.
1740 	 */
1741 	if (why == CLD_STOPPED && (current->group_stop & GROUP_STOP_PENDING))
1742 		gstop_done = task_participate_group_stop(current);
1743 
1744 	current->last_siginfo = info;
1745 	current->exit_code = exit_code;
1746 
1747 	/*
1748 	 * TRACED should be visible before TRAPPING is cleared; otherwise,
1749 	 * the tracer might fail do_wait().
1750 	 */
1751 	set_current_state(TASK_TRACED);
1752 
1753 	/*
1754 	 * We're committing to trapping.  Clearing GROUP_STOP_TRAPPING and
1755 	 * transition to TASK_TRACED should be atomic with respect to
1756 	 * siglock.  This hsould be done after the arch hook as siglock is
1757 	 * released and regrabbed across it.
1758 	 */
1759 	task_clear_group_stop_trapping(current);
1760 
1761 	spin_unlock_irq(&current->sighand->siglock);
1762 	read_lock(&tasklist_lock);
1763 	if (may_ptrace_stop()) {
1764 		/*
1765 		 * Notify parents of the stop.
1766 		 *
1767 		 * While ptraced, there are two parents - the ptracer and
1768 		 * the real_parent of the group_leader.  The ptracer should
1769 		 * know about every stop while the real parent is only
1770 		 * interested in the completion of group stop.  The states
1771 		 * for the two don't interact with each other.  Notify
1772 		 * separately unless they're gonna be duplicates.
1773 		 */
1774 		do_notify_parent_cldstop(current, true, why);
1775 		if (gstop_done && !real_parent_is_ptracer(current))
1776 			do_notify_parent_cldstop(current, false, why);
1777 
1778 		/*
1779 		 * Don't want to allow preemption here, because
1780 		 * sys_ptrace() needs this task to be inactive.
1781 		 *
1782 		 * XXX: implement read_unlock_no_resched().
1783 		 */
1784 		preempt_disable();
1785 		read_unlock(&tasklist_lock);
1786 		preempt_enable_no_resched();
1787 		schedule();
1788 	} else {
1789 		/*
1790 		 * By the time we got the lock, our tracer went away.
1791 		 * Don't drop the lock yet, another tracer may come.
1792 		 *
1793 		 * If @gstop_done, the ptracer went away between group stop
1794 		 * completion and here.  During detach, it would have set
1795 		 * GROUP_STOP_PENDING on us and we'll re-enter TASK_STOPPED
1796 		 * in do_signal_stop() on return, so notifying the real
1797 		 * parent of the group stop completion is enough.
1798 		 */
1799 		if (gstop_done)
1800 			do_notify_parent_cldstop(current, false, why);
1801 
1802 		__set_current_state(TASK_RUNNING);
1803 		if (clear_code)
1804 			current->exit_code = 0;
1805 		read_unlock(&tasklist_lock);
1806 	}
1807 
1808 	/*
1809 	 * While in TASK_TRACED, we were considered "frozen enough".
1810 	 * Now that we woke up, it's crucial if we're supposed to be
1811 	 * frozen that we freeze now before running anything substantial.
1812 	 */
1813 	try_to_freeze();
1814 
1815 	/*
1816 	 * We are back.  Now reacquire the siglock before touching
1817 	 * last_siginfo, so that we are sure to have synchronized with
1818 	 * any signal-sending on another CPU that wants to examine it.
1819 	 */
1820 	spin_lock_irq(&current->sighand->siglock);
1821 	current->last_siginfo = NULL;
1822 
1823 	/*
1824 	 * Queued signals ignored us while we were stopped for tracing.
1825 	 * So check for any that we should take before resuming user mode.
1826 	 * This sets TIF_SIGPENDING, but never clears it.
1827 	 */
1828 	recalc_sigpending_tsk(current);
1829 }
1830 
1831 void ptrace_notify(int exit_code)
1832 {
1833 	siginfo_t info;
1834 
1835 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1836 
1837 	memset(&info, 0, sizeof info);
1838 	info.si_signo = SIGTRAP;
1839 	info.si_code = exit_code;
1840 	info.si_pid = task_pid_vnr(current);
1841 	info.si_uid = current_uid();
1842 
1843 	/* Let the debugger run.  */
1844 	spin_lock_irq(&current->sighand->siglock);
1845 	ptrace_stop(exit_code, CLD_TRAPPED, 1, &info);
1846 	spin_unlock_irq(&current->sighand->siglock);
1847 }
1848 
1849 /*
1850  * This performs the stopping for SIGSTOP and other stop signals.
1851  * We have to stop all threads in the thread group.
1852  * Returns non-zero if we've actually stopped and released the siglock.
1853  * Returns zero if we didn't stop and still hold the siglock.
1854  */
1855 static int do_signal_stop(int signr)
1856 {
1857 	struct signal_struct *sig = current->signal;
1858 
1859 	if (!(current->group_stop & GROUP_STOP_PENDING)) {
1860 		unsigned int gstop = GROUP_STOP_PENDING | GROUP_STOP_CONSUME;
1861 		struct task_struct *t;
1862 
1863 		/* signr will be recorded in task->group_stop for retries */
1864 		WARN_ON_ONCE(signr & ~GROUP_STOP_SIGMASK);
1865 
1866 		if (!likely(current->group_stop & GROUP_STOP_DEQUEUED) ||
1867 		    unlikely(signal_group_exit(sig)))
1868 			return 0;
1869 		/*
1870 		 * There is no group stop already in progress.  We must
1871 		 * initiate one now.
1872 		 *
1873 		 * While ptraced, a task may be resumed while group stop is
1874 		 * still in effect and then receive a stop signal and
1875 		 * initiate another group stop.  This deviates from the
1876 		 * usual behavior as two consecutive stop signals can't
1877 		 * cause two group stops when !ptraced.  That is why we
1878 		 * also check !task_is_stopped(t) below.
1879 		 *
1880 		 * The condition can be distinguished by testing whether
1881 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1882 		 * group_exit_code in such case.
1883 		 *
1884 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1885 		 * an intervening stop signal is required to cause two
1886 		 * continued events regardless of ptrace.
1887 		 */
1888 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1889 			sig->group_exit_code = signr;
1890 		else
1891 			WARN_ON_ONCE(!task_ptrace(current));
1892 
1893 		current->group_stop &= ~GROUP_STOP_SIGMASK;
1894 		current->group_stop |= signr | gstop;
1895 		sig->group_stop_count = 1;
1896 		for (t = next_thread(current); t != current;
1897 		     t = next_thread(t)) {
1898 			t->group_stop &= ~GROUP_STOP_SIGMASK;
1899 			/*
1900 			 * Setting state to TASK_STOPPED for a group
1901 			 * stop is always done with the siglock held,
1902 			 * so this check has no races.
1903 			 */
1904 			if (!(t->flags & PF_EXITING) && !task_is_stopped(t)) {
1905 				t->group_stop |= signr | gstop;
1906 				sig->group_stop_count++;
1907 				signal_wake_up(t, 0);
1908 			}
1909 		}
1910 	}
1911 retry:
1912 	if (likely(!task_ptrace(current))) {
1913 		int notify = 0;
1914 
1915 		/*
1916 		 * If there are no other threads in the group, or if there
1917 		 * is a group stop in progress and we are the last to stop,
1918 		 * report to the parent.
1919 		 */
1920 		if (task_participate_group_stop(current))
1921 			notify = CLD_STOPPED;
1922 
1923 		__set_current_state(TASK_STOPPED);
1924 		spin_unlock_irq(&current->sighand->siglock);
1925 
1926 		/*
1927 		 * Notify the parent of the group stop completion.  Because
1928 		 * we're not holding either the siglock or tasklist_lock
1929 		 * here, ptracer may attach inbetween; however, this is for
1930 		 * group stop and should always be delivered to the real
1931 		 * parent of the group leader.  The new ptracer will get
1932 		 * its notification when this task transitions into
1933 		 * TASK_TRACED.
1934 		 */
1935 		if (notify) {
1936 			read_lock(&tasklist_lock);
1937 			do_notify_parent_cldstop(current, false, notify);
1938 			read_unlock(&tasklist_lock);
1939 		}
1940 
1941 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
1942 		schedule();
1943 
1944 		spin_lock_irq(&current->sighand->siglock);
1945 	} else {
1946 		ptrace_stop(current->group_stop & GROUP_STOP_SIGMASK,
1947 			    CLD_STOPPED, 0, NULL);
1948 		current->exit_code = 0;
1949 	}
1950 
1951 	/*
1952 	 * GROUP_STOP_PENDING could be set if another group stop has
1953 	 * started since being woken up or ptrace wants us to transit
1954 	 * between TASK_STOPPED and TRACED.  Retry group stop.
1955 	 */
1956 	if (current->group_stop & GROUP_STOP_PENDING) {
1957 		WARN_ON_ONCE(!(current->group_stop & GROUP_STOP_SIGMASK));
1958 		goto retry;
1959 	}
1960 
1961 	/* PTRACE_ATTACH might have raced with task killing, clear trapping */
1962 	task_clear_group_stop_trapping(current);
1963 
1964 	spin_unlock_irq(&current->sighand->siglock);
1965 
1966 	tracehook_finish_jctl();
1967 
1968 	return 1;
1969 }
1970 
1971 static int ptrace_signal(int signr, siginfo_t *info,
1972 			 struct pt_regs *regs, void *cookie)
1973 {
1974 	if (!task_ptrace(current))
1975 		return signr;
1976 
1977 	ptrace_signal_deliver(regs, cookie);
1978 
1979 	/* Let the debugger run.  */
1980 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
1981 
1982 	/* We're back.  Did the debugger cancel the sig?  */
1983 	signr = current->exit_code;
1984 	if (signr == 0)
1985 		return signr;
1986 
1987 	current->exit_code = 0;
1988 
1989 	/*
1990 	 * Update the siginfo structure if the signal has
1991 	 * changed.  If the debugger wanted something
1992 	 * specific in the siginfo structure then it should
1993 	 * have updated *info via PTRACE_SETSIGINFO.
1994 	 */
1995 	if (signr != info->si_signo) {
1996 		info->si_signo = signr;
1997 		info->si_errno = 0;
1998 		info->si_code = SI_USER;
1999 		info->si_pid = task_pid_vnr(current->parent);
2000 		info->si_uid = task_uid(current->parent);
2001 	}
2002 
2003 	/* If the (new) signal is now blocked, requeue it.  */
2004 	if (sigismember(&current->blocked, signr)) {
2005 		specific_send_sig_info(signr, info, current);
2006 		signr = 0;
2007 	}
2008 
2009 	return signr;
2010 }
2011 
2012 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2013 			  struct pt_regs *regs, void *cookie)
2014 {
2015 	struct sighand_struct *sighand = current->sighand;
2016 	struct signal_struct *signal = current->signal;
2017 	int signr;
2018 
2019 relock:
2020 	/*
2021 	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2022 	 * While in TASK_STOPPED, we were considered "frozen enough".
2023 	 * Now that we woke up, it's crucial if we're supposed to be
2024 	 * frozen that we freeze now before running anything substantial.
2025 	 */
2026 	try_to_freeze();
2027 
2028 	spin_lock_irq(&sighand->siglock);
2029 	/*
2030 	 * Every stopped thread goes here after wakeup. Check to see if
2031 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2032 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2033 	 */
2034 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2035 		struct task_struct *leader;
2036 		int why;
2037 
2038 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2039 			why = CLD_CONTINUED;
2040 		else
2041 			why = CLD_STOPPED;
2042 
2043 		signal->flags &= ~SIGNAL_CLD_MASK;
2044 
2045 		spin_unlock_irq(&sighand->siglock);
2046 
2047 		/*
2048 		 * Notify the parent that we're continuing.  This event is
2049 		 * always per-process and doesn't make whole lot of sense
2050 		 * for ptracers, who shouldn't consume the state via
2051 		 * wait(2) either, but, for backward compatibility, notify
2052 		 * the ptracer of the group leader too unless it's gonna be
2053 		 * a duplicate.
2054 		 */
2055 		read_lock(&tasklist_lock);
2056 
2057 		do_notify_parent_cldstop(current, false, why);
2058 
2059 		leader = current->group_leader;
2060 		if (task_ptrace(leader) && !real_parent_is_ptracer(leader))
2061 			do_notify_parent_cldstop(leader, true, why);
2062 
2063 		read_unlock(&tasklist_lock);
2064 
2065 		goto relock;
2066 	}
2067 
2068 	for (;;) {
2069 		struct k_sigaction *ka;
2070 		/*
2071 		 * Tracing can induce an artificial signal and choose sigaction.
2072 		 * The return value in @signr determines the default action,
2073 		 * but @info->si_signo is the signal number we will report.
2074 		 */
2075 		signr = tracehook_get_signal(current, regs, info, return_ka);
2076 		if (unlikely(signr < 0))
2077 			goto relock;
2078 		if (unlikely(signr != 0))
2079 			ka = return_ka;
2080 		else {
2081 			if (unlikely(current->group_stop &
2082 				     GROUP_STOP_PENDING) && do_signal_stop(0))
2083 				goto relock;
2084 
2085 			signr = dequeue_signal(current, &current->blocked,
2086 					       info);
2087 
2088 			if (!signr)
2089 				break; /* will return 0 */
2090 
2091 			if (signr != SIGKILL) {
2092 				signr = ptrace_signal(signr, info,
2093 						      regs, cookie);
2094 				if (!signr)
2095 					continue;
2096 			}
2097 
2098 			ka = &sighand->action[signr-1];
2099 		}
2100 
2101 		/* Trace actually delivered signals. */
2102 		trace_signal_deliver(signr, info, ka);
2103 
2104 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2105 			continue;
2106 		if (ka->sa.sa_handler != SIG_DFL) {
2107 			/* Run the handler.  */
2108 			*return_ka = *ka;
2109 
2110 			if (ka->sa.sa_flags & SA_ONESHOT)
2111 				ka->sa.sa_handler = SIG_DFL;
2112 
2113 			break; /* will return non-zero "signr" value */
2114 		}
2115 
2116 		/*
2117 		 * Now we are doing the default action for this signal.
2118 		 */
2119 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2120 			continue;
2121 
2122 		/*
2123 		 * Global init gets no signals it doesn't want.
2124 		 * Container-init gets no signals it doesn't want from same
2125 		 * container.
2126 		 *
2127 		 * Note that if global/container-init sees a sig_kernel_only()
2128 		 * signal here, the signal must have been generated internally
2129 		 * or must have come from an ancestor namespace. In either
2130 		 * case, the signal cannot be dropped.
2131 		 */
2132 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2133 				!sig_kernel_only(signr))
2134 			continue;
2135 
2136 		if (sig_kernel_stop(signr)) {
2137 			/*
2138 			 * The default action is to stop all threads in
2139 			 * the thread group.  The job control signals
2140 			 * do nothing in an orphaned pgrp, but SIGSTOP
2141 			 * always works.  Note that siglock needs to be
2142 			 * dropped during the call to is_orphaned_pgrp()
2143 			 * because of lock ordering with tasklist_lock.
2144 			 * This allows an intervening SIGCONT to be posted.
2145 			 * We need to check for that and bail out if necessary.
2146 			 */
2147 			if (signr != SIGSTOP) {
2148 				spin_unlock_irq(&sighand->siglock);
2149 
2150 				/* signals can be posted during this window */
2151 
2152 				if (is_current_pgrp_orphaned())
2153 					goto relock;
2154 
2155 				spin_lock_irq(&sighand->siglock);
2156 			}
2157 
2158 			if (likely(do_signal_stop(info->si_signo))) {
2159 				/* It released the siglock.  */
2160 				goto relock;
2161 			}
2162 
2163 			/*
2164 			 * We didn't actually stop, due to a race
2165 			 * with SIGCONT or something like that.
2166 			 */
2167 			continue;
2168 		}
2169 
2170 		spin_unlock_irq(&sighand->siglock);
2171 
2172 		/*
2173 		 * Anything else is fatal, maybe with a core dump.
2174 		 */
2175 		current->flags |= PF_SIGNALED;
2176 
2177 		if (sig_kernel_coredump(signr)) {
2178 			if (print_fatal_signals)
2179 				print_fatal_signal(regs, info->si_signo);
2180 			/*
2181 			 * If it was able to dump core, this kills all
2182 			 * other threads in the group and synchronizes with
2183 			 * their demise.  If we lost the race with another
2184 			 * thread getting here, it set group_exit_code
2185 			 * first and our do_group_exit call below will use
2186 			 * that value and ignore the one we pass it.
2187 			 */
2188 			do_coredump(info->si_signo, info->si_signo, regs);
2189 		}
2190 
2191 		/*
2192 		 * Death signals, no core dump.
2193 		 */
2194 		do_group_exit(info->si_signo);
2195 		/* NOTREACHED */
2196 	}
2197 	spin_unlock_irq(&sighand->siglock);
2198 	return signr;
2199 }
2200 
2201 /*
2202  * It could be that complete_signal() picked us to notify about the
2203  * group-wide signal. Other threads should be notified now to take
2204  * the shared signals in @which since we will not.
2205  */
2206 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2207 {
2208 	sigset_t retarget;
2209 	struct task_struct *t;
2210 
2211 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2212 	if (sigisemptyset(&retarget))
2213 		return;
2214 
2215 	t = tsk;
2216 	while_each_thread(tsk, t) {
2217 		if (t->flags & PF_EXITING)
2218 			continue;
2219 
2220 		if (!has_pending_signals(&retarget, &t->blocked))
2221 			continue;
2222 		/* Remove the signals this thread can handle. */
2223 		sigandsets(&retarget, &retarget, &t->blocked);
2224 
2225 		if (!signal_pending(t))
2226 			signal_wake_up(t, 0);
2227 
2228 		if (sigisemptyset(&retarget))
2229 			break;
2230 	}
2231 }
2232 
2233 void exit_signals(struct task_struct *tsk)
2234 {
2235 	int group_stop = 0;
2236 	sigset_t unblocked;
2237 
2238 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2239 		tsk->flags |= PF_EXITING;
2240 		return;
2241 	}
2242 
2243 	spin_lock_irq(&tsk->sighand->siglock);
2244 	/*
2245 	 * From now this task is not visible for group-wide signals,
2246 	 * see wants_signal(), do_signal_stop().
2247 	 */
2248 	tsk->flags |= PF_EXITING;
2249 	if (!signal_pending(tsk))
2250 		goto out;
2251 
2252 	unblocked = tsk->blocked;
2253 	signotset(&unblocked);
2254 	retarget_shared_pending(tsk, &unblocked);
2255 
2256 	if (unlikely(tsk->group_stop & GROUP_STOP_PENDING) &&
2257 	    task_participate_group_stop(tsk))
2258 		group_stop = CLD_STOPPED;
2259 out:
2260 	spin_unlock_irq(&tsk->sighand->siglock);
2261 
2262 	/*
2263 	 * If group stop has completed, deliver the notification.  This
2264 	 * should always go to the real parent of the group leader.
2265 	 */
2266 	if (unlikely(group_stop)) {
2267 		read_lock(&tasklist_lock);
2268 		do_notify_parent_cldstop(tsk, false, group_stop);
2269 		read_unlock(&tasklist_lock);
2270 	}
2271 }
2272 
2273 EXPORT_SYMBOL(recalc_sigpending);
2274 EXPORT_SYMBOL_GPL(dequeue_signal);
2275 EXPORT_SYMBOL(flush_signals);
2276 EXPORT_SYMBOL(force_sig);
2277 EXPORT_SYMBOL(send_sig);
2278 EXPORT_SYMBOL(send_sig_info);
2279 EXPORT_SYMBOL(sigprocmask);
2280 EXPORT_SYMBOL(block_all_signals);
2281 EXPORT_SYMBOL(unblock_all_signals);
2282 
2283 
2284 /*
2285  * System call entry points.
2286  */
2287 
2288 /**
2289  *  sys_restart_syscall - restart a system call
2290  */
2291 SYSCALL_DEFINE0(restart_syscall)
2292 {
2293 	struct restart_block *restart = &current_thread_info()->restart_block;
2294 	return restart->fn(restart);
2295 }
2296 
2297 long do_no_restart_syscall(struct restart_block *param)
2298 {
2299 	return -EINTR;
2300 }
2301 
2302 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2303 {
2304 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2305 		sigset_t newblocked;
2306 		/* A set of now blocked but previously unblocked signals. */
2307 		sigandnsets(&newblocked, newset, &current->blocked);
2308 		retarget_shared_pending(tsk, &newblocked);
2309 	}
2310 	tsk->blocked = *newset;
2311 	recalc_sigpending();
2312 }
2313 
2314 /**
2315  * set_current_blocked - change current->blocked mask
2316  * @newset: new mask
2317  *
2318  * It is wrong to change ->blocked directly, this helper should be used
2319  * to ensure the process can't miss a shared signal we are going to block.
2320  */
2321 void set_current_blocked(const sigset_t *newset)
2322 {
2323 	struct task_struct *tsk = current;
2324 
2325 	spin_lock_irq(&tsk->sighand->siglock);
2326 	__set_task_blocked(tsk, newset);
2327 	spin_unlock_irq(&tsk->sighand->siglock);
2328 }
2329 
2330 /*
2331  * This is also useful for kernel threads that want to temporarily
2332  * (or permanently) block certain signals.
2333  *
2334  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2335  * interface happily blocks "unblockable" signals like SIGKILL
2336  * and friends.
2337  */
2338 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2339 {
2340 	struct task_struct *tsk = current;
2341 	sigset_t newset;
2342 
2343 	/* Lockless, only current can change ->blocked, never from irq */
2344 	if (oldset)
2345 		*oldset = tsk->blocked;
2346 
2347 	switch (how) {
2348 	case SIG_BLOCK:
2349 		sigorsets(&newset, &tsk->blocked, set);
2350 		break;
2351 	case SIG_UNBLOCK:
2352 		sigandnsets(&newset, &tsk->blocked, set);
2353 		break;
2354 	case SIG_SETMASK:
2355 		newset = *set;
2356 		break;
2357 	default:
2358 		return -EINVAL;
2359 	}
2360 
2361 	set_current_blocked(&newset);
2362 	return 0;
2363 }
2364 
2365 /**
2366  *  sys_rt_sigprocmask - change the list of currently blocked signals
2367  *  @how: whether to add, remove, or set signals
2368  *  @set: stores pending signals
2369  *  @oset: previous value of signal mask if non-null
2370  *  @sigsetsize: size of sigset_t type
2371  */
2372 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2373 		sigset_t __user *, oset, size_t, sigsetsize)
2374 {
2375 	sigset_t old_set, new_set;
2376 	int error;
2377 
2378 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2379 	if (sigsetsize != sizeof(sigset_t))
2380 		return -EINVAL;
2381 
2382 	old_set = current->blocked;
2383 
2384 	if (nset) {
2385 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2386 			return -EFAULT;
2387 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2388 
2389 		error = sigprocmask(how, &new_set, NULL);
2390 		if (error)
2391 			return error;
2392 	}
2393 
2394 	if (oset) {
2395 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2396 			return -EFAULT;
2397 	}
2398 
2399 	return 0;
2400 }
2401 
2402 long do_sigpending(void __user *set, unsigned long sigsetsize)
2403 {
2404 	long error = -EINVAL;
2405 	sigset_t pending;
2406 
2407 	if (sigsetsize > sizeof(sigset_t))
2408 		goto out;
2409 
2410 	spin_lock_irq(&current->sighand->siglock);
2411 	sigorsets(&pending, &current->pending.signal,
2412 		  &current->signal->shared_pending.signal);
2413 	spin_unlock_irq(&current->sighand->siglock);
2414 
2415 	/* Outside the lock because only this thread touches it.  */
2416 	sigandsets(&pending, &current->blocked, &pending);
2417 
2418 	error = -EFAULT;
2419 	if (!copy_to_user(set, &pending, sigsetsize))
2420 		error = 0;
2421 
2422 out:
2423 	return error;
2424 }
2425 
2426 /**
2427  *  sys_rt_sigpending - examine a pending signal that has been raised
2428  *			while blocked
2429  *  @set: stores pending signals
2430  *  @sigsetsize: size of sigset_t type or larger
2431  */
2432 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2433 {
2434 	return do_sigpending(set, sigsetsize);
2435 }
2436 
2437 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2438 
2439 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2440 {
2441 	int err;
2442 
2443 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2444 		return -EFAULT;
2445 	if (from->si_code < 0)
2446 		return __copy_to_user(to, from, sizeof(siginfo_t))
2447 			? -EFAULT : 0;
2448 	/*
2449 	 * If you change siginfo_t structure, please be sure
2450 	 * this code is fixed accordingly.
2451 	 * Please remember to update the signalfd_copyinfo() function
2452 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2453 	 * It should never copy any pad contained in the structure
2454 	 * to avoid security leaks, but must copy the generic
2455 	 * 3 ints plus the relevant union member.
2456 	 */
2457 	err = __put_user(from->si_signo, &to->si_signo);
2458 	err |= __put_user(from->si_errno, &to->si_errno);
2459 	err |= __put_user((short)from->si_code, &to->si_code);
2460 	switch (from->si_code & __SI_MASK) {
2461 	case __SI_KILL:
2462 		err |= __put_user(from->si_pid, &to->si_pid);
2463 		err |= __put_user(from->si_uid, &to->si_uid);
2464 		break;
2465 	case __SI_TIMER:
2466 		 err |= __put_user(from->si_tid, &to->si_tid);
2467 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2468 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2469 		break;
2470 	case __SI_POLL:
2471 		err |= __put_user(from->si_band, &to->si_band);
2472 		err |= __put_user(from->si_fd, &to->si_fd);
2473 		break;
2474 	case __SI_FAULT:
2475 		err |= __put_user(from->si_addr, &to->si_addr);
2476 #ifdef __ARCH_SI_TRAPNO
2477 		err |= __put_user(from->si_trapno, &to->si_trapno);
2478 #endif
2479 #ifdef BUS_MCEERR_AO
2480 		/*
2481 		 * Other callers might not initialize the si_lsb field,
2482 		 * so check explicitly for the right codes here.
2483 		 */
2484 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2485 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2486 #endif
2487 		break;
2488 	case __SI_CHLD:
2489 		err |= __put_user(from->si_pid, &to->si_pid);
2490 		err |= __put_user(from->si_uid, &to->si_uid);
2491 		err |= __put_user(from->si_status, &to->si_status);
2492 		err |= __put_user(from->si_utime, &to->si_utime);
2493 		err |= __put_user(from->si_stime, &to->si_stime);
2494 		break;
2495 	case __SI_RT: /* This is not generated by the kernel as of now. */
2496 	case __SI_MESGQ: /* But this is */
2497 		err |= __put_user(from->si_pid, &to->si_pid);
2498 		err |= __put_user(from->si_uid, &to->si_uid);
2499 		err |= __put_user(from->si_ptr, &to->si_ptr);
2500 		break;
2501 	default: /* this is just in case for now ... */
2502 		err |= __put_user(from->si_pid, &to->si_pid);
2503 		err |= __put_user(from->si_uid, &to->si_uid);
2504 		break;
2505 	}
2506 	return err;
2507 }
2508 
2509 #endif
2510 
2511 /**
2512  *  do_sigtimedwait - wait for queued signals specified in @which
2513  *  @which: queued signals to wait for
2514  *  @info: if non-null, the signal's siginfo is returned here
2515  *  @ts: upper bound on process time suspension
2516  */
2517 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2518 			const struct timespec *ts)
2519 {
2520 	struct task_struct *tsk = current;
2521 	long timeout = MAX_SCHEDULE_TIMEOUT;
2522 	sigset_t mask = *which;
2523 	int sig;
2524 
2525 	if (ts) {
2526 		if (!timespec_valid(ts))
2527 			return -EINVAL;
2528 		timeout = timespec_to_jiffies(ts);
2529 		/*
2530 		 * We can be close to the next tick, add another one
2531 		 * to ensure we will wait at least the time asked for.
2532 		 */
2533 		if (ts->tv_sec || ts->tv_nsec)
2534 			timeout++;
2535 	}
2536 
2537 	/*
2538 	 * Invert the set of allowed signals to get those we want to block.
2539 	 */
2540 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2541 	signotset(&mask);
2542 
2543 	spin_lock_irq(&tsk->sighand->siglock);
2544 	sig = dequeue_signal(tsk, &mask, info);
2545 	if (!sig && timeout) {
2546 		/*
2547 		 * None ready, temporarily unblock those we're interested
2548 		 * while we are sleeping in so that we'll be awakened when
2549 		 * they arrive. Unblocking is always fine, we can avoid
2550 		 * set_current_blocked().
2551 		 */
2552 		tsk->real_blocked = tsk->blocked;
2553 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2554 		recalc_sigpending();
2555 		spin_unlock_irq(&tsk->sighand->siglock);
2556 
2557 		timeout = schedule_timeout_interruptible(timeout);
2558 
2559 		spin_lock_irq(&tsk->sighand->siglock);
2560 		__set_task_blocked(tsk, &tsk->real_blocked);
2561 		siginitset(&tsk->real_blocked, 0);
2562 		sig = dequeue_signal(tsk, &mask, info);
2563 	}
2564 	spin_unlock_irq(&tsk->sighand->siglock);
2565 
2566 	if (sig)
2567 		return sig;
2568 	return timeout ? -EINTR : -EAGAIN;
2569 }
2570 
2571 /**
2572  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2573  *			in @uthese
2574  *  @uthese: queued signals to wait for
2575  *  @uinfo: if non-null, the signal's siginfo is returned here
2576  *  @uts: upper bound on process time suspension
2577  *  @sigsetsize: size of sigset_t type
2578  */
2579 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2580 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2581 		size_t, sigsetsize)
2582 {
2583 	sigset_t these;
2584 	struct timespec ts;
2585 	siginfo_t info;
2586 	int ret;
2587 
2588 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2589 	if (sigsetsize != sizeof(sigset_t))
2590 		return -EINVAL;
2591 
2592 	if (copy_from_user(&these, uthese, sizeof(these)))
2593 		return -EFAULT;
2594 
2595 	if (uts) {
2596 		if (copy_from_user(&ts, uts, sizeof(ts)))
2597 			return -EFAULT;
2598 	}
2599 
2600 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2601 
2602 	if (ret > 0 && uinfo) {
2603 		if (copy_siginfo_to_user(uinfo, &info))
2604 			ret = -EFAULT;
2605 	}
2606 
2607 	return ret;
2608 }
2609 
2610 /**
2611  *  sys_kill - send a signal to a process
2612  *  @pid: the PID of the process
2613  *  @sig: signal to be sent
2614  */
2615 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2616 {
2617 	struct siginfo info;
2618 
2619 	info.si_signo = sig;
2620 	info.si_errno = 0;
2621 	info.si_code = SI_USER;
2622 	info.si_pid = task_tgid_vnr(current);
2623 	info.si_uid = current_uid();
2624 
2625 	return kill_something_info(sig, &info, pid);
2626 }
2627 
2628 static int
2629 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2630 {
2631 	struct task_struct *p;
2632 	int error = -ESRCH;
2633 
2634 	rcu_read_lock();
2635 	p = find_task_by_vpid(pid);
2636 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2637 		error = check_kill_permission(sig, info, p);
2638 		/*
2639 		 * The null signal is a permissions and process existence
2640 		 * probe.  No signal is actually delivered.
2641 		 */
2642 		if (!error && sig) {
2643 			error = do_send_sig_info(sig, info, p, false);
2644 			/*
2645 			 * If lock_task_sighand() failed we pretend the task
2646 			 * dies after receiving the signal. The window is tiny,
2647 			 * and the signal is private anyway.
2648 			 */
2649 			if (unlikely(error == -ESRCH))
2650 				error = 0;
2651 		}
2652 	}
2653 	rcu_read_unlock();
2654 
2655 	return error;
2656 }
2657 
2658 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2659 {
2660 	struct siginfo info;
2661 
2662 	info.si_signo = sig;
2663 	info.si_errno = 0;
2664 	info.si_code = SI_TKILL;
2665 	info.si_pid = task_tgid_vnr(current);
2666 	info.si_uid = current_uid();
2667 
2668 	return do_send_specific(tgid, pid, sig, &info);
2669 }
2670 
2671 /**
2672  *  sys_tgkill - send signal to one specific thread
2673  *  @tgid: the thread group ID of the thread
2674  *  @pid: the PID of the thread
2675  *  @sig: signal to be sent
2676  *
2677  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2678  *  exists but it's not belonging to the target process anymore. This
2679  *  method solves the problem of threads exiting and PIDs getting reused.
2680  */
2681 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2682 {
2683 	/* This is only valid for single tasks */
2684 	if (pid <= 0 || tgid <= 0)
2685 		return -EINVAL;
2686 
2687 	return do_tkill(tgid, pid, sig);
2688 }
2689 
2690 /**
2691  *  sys_tkill - send signal to one specific task
2692  *  @pid: the PID of the task
2693  *  @sig: signal to be sent
2694  *
2695  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2696  */
2697 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2698 {
2699 	/* This is only valid for single tasks */
2700 	if (pid <= 0)
2701 		return -EINVAL;
2702 
2703 	return do_tkill(0, pid, sig);
2704 }
2705 
2706 /**
2707  *  sys_rt_sigqueueinfo - send signal information to a signal
2708  *  @pid: the PID of the thread
2709  *  @sig: signal to be sent
2710  *  @uinfo: signal info to be sent
2711  */
2712 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2713 		siginfo_t __user *, uinfo)
2714 {
2715 	siginfo_t info;
2716 
2717 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2718 		return -EFAULT;
2719 
2720 	/* Not even root can pretend to send signals from the kernel.
2721 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2722 	 */
2723 	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2724 		/* We used to allow any < 0 si_code */
2725 		WARN_ON_ONCE(info.si_code < 0);
2726 		return -EPERM;
2727 	}
2728 	info.si_signo = sig;
2729 
2730 	/* POSIX.1b doesn't mention process groups.  */
2731 	return kill_proc_info(sig, &info, pid);
2732 }
2733 
2734 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2735 {
2736 	/* This is only valid for single tasks */
2737 	if (pid <= 0 || tgid <= 0)
2738 		return -EINVAL;
2739 
2740 	/* Not even root can pretend to send signals from the kernel.
2741 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2742 	 */
2743 	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2744 		/* We used to allow any < 0 si_code */
2745 		WARN_ON_ONCE(info->si_code < 0);
2746 		return -EPERM;
2747 	}
2748 	info->si_signo = sig;
2749 
2750 	return do_send_specific(tgid, pid, sig, info);
2751 }
2752 
2753 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2754 		siginfo_t __user *, uinfo)
2755 {
2756 	siginfo_t info;
2757 
2758 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2759 		return -EFAULT;
2760 
2761 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2762 }
2763 
2764 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2765 {
2766 	struct task_struct *t = current;
2767 	struct k_sigaction *k;
2768 	sigset_t mask;
2769 
2770 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2771 		return -EINVAL;
2772 
2773 	k = &t->sighand->action[sig-1];
2774 
2775 	spin_lock_irq(&current->sighand->siglock);
2776 	if (oact)
2777 		*oact = *k;
2778 
2779 	if (act) {
2780 		sigdelsetmask(&act->sa.sa_mask,
2781 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2782 		*k = *act;
2783 		/*
2784 		 * POSIX 3.3.1.3:
2785 		 *  "Setting a signal action to SIG_IGN for a signal that is
2786 		 *   pending shall cause the pending signal to be discarded,
2787 		 *   whether or not it is blocked."
2788 		 *
2789 		 *  "Setting a signal action to SIG_DFL for a signal that is
2790 		 *   pending and whose default action is to ignore the signal
2791 		 *   (for example, SIGCHLD), shall cause the pending signal to
2792 		 *   be discarded, whether or not it is blocked"
2793 		 */
2794 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2795 			sigemptyset(&mask);
2796 			sigaddset(&mask, sig);
2797 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2798 			do {
2799 				rm_from_queue_full(&mask, &t->pending);
2800 				t = next_thread(t);
2801 			} while (t != current);
2802 		}
2803 	}
2804 
2805 	spin_unlock_irq(&current->sighand->siglock);
2806 	return 0;
2807 }
2808 
2809 int
2810 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2811 {
2812 	stack_t oss;
2813 	int error;
2814 
2815 	oss.ss_sp = (void __user *) current->sas_ss_sp;
2816 	oss.ss_size = current->sas_ss_size;
2817 	oss.ss_flags = sas_ss_flags(sp);
2818 
2819 	if (uss) {
2820 		void __user *ss_sp;
2821 		size_t ss_size;
2822 		int ss_flags;
2823 
2824 		error = -EFAULT;
2825 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2826 			goto out;
2827 		error = __get_user(ss_sp, &uss->ss_sp) |
2828 			__get_user(ss_flags, &uss->ss_flags) |
2829 			__get_user(ss_size, &uss->ss_size);
2830 		if (error)
2831 			goto out;
2832 
2833 		error = -EPERM;
2834 		if (on_sig_stack(sp))
2835 			goto out;
2836 
2837 		error = -EINVAL;
2838 		/*
2839 		 * Note - this code used to test ss_flags incorrectly:
2840 		 *  	  old code may have been written using ss_flags==0
2841 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2842 		 *	  way that worked) - this fix preserves that older
2843 		 *	  mechanism.
2844 		 */
2845 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2846 			goto out;
2847 
2848 		if (ss_flags == SS_DISABLE) {
2849 			ss_size = 0;
2850 			ss_sp = NULL;
2851 		} else {
2852 			error = -ENOMEM;
2853 			if (ss_size < MINSIGSTKSZ)
2854 				goto out;
2855 		}
2856 
2857 		current->sas_ss_sp = (unsigned long) ss_sp;
2858 		current->sas_ss_size = ss_size;
2859 	}
2860 
2861 	error = 0;
2862 	if (uoss) {
2863 		error = -EFAULT;
2864 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2865 			goto out;
2866 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2867 			__put_user(oss.ss_size, &uoss->ss_size) |
2868 			__put_user(oss.ss_flags, &uoss->ss_flags);
2869 	}
2870 
2871 out:
2872 	return error;
2873 }
2874 
2875 #ifdef __ARCH_WANT_SYS_SIGPENDING
2876 
2877 /**
2878  *  sys_sigpending - examine pending signals
2879  *  @set: where mask of pending signal is returned
2880  */
2881 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2882 {
2883 	return do_sigpending(set, sizeof(*set));
2884 }
2885 
2886 #endif
2887 
2888 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2889 /**
2890  *  sys_sigprocmask - examine and change blocked signals
2891  *  @how: whether to add, remove, or set signals
2892  *  @nset: signals to add or remove (if non-null)
2893  *  @oset: previous value of signal mask if non-null
2894  *
2895  * Some platforms have their own version with special arguments;
2896  * others support only sys_rt_sigprocmask.
2897  */
2898 
2899 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
2900 		old_sigset_t __user *, oset)
2901 {
2902 	old_sigset_t old_set, new_set;
2903 	sigset_t new_blocked;
2904 
2905 	old_set = current->blocked.sig[0];
2906 
2907 	if (nset) {
2908 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
2909 			return -EFAULT;
2910 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2911 
2912 		new_blocked = current->blocked;
2913 
2914 		switch (how) {
2915 		case SIG_BLOCK:
2916 			sigaddsetmask(&new_blocked, new_set);
2917 			break;
2918 		case SIG_UNBLOCK:
2919 			sigdelsetmask(&new_blocked, new_set);
2920 			break;
2921 		case SIG_SETMASK:
2922 			new_blocked.sig[0] = new_set;
2923 			break;
2924 		default:
2925 			return -EINVAL;
2926 		}
2927 
2928 		set_current_blocked(&new_blocked);
2929 	}
2930 
2931 	if (oset) {
2932 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2933 			return -EFAULT;
2934 	}
2935 
2936 	return 0;
2937 }
2938 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2939 
2940 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2941 /**
2942  *  sys_rt_sigaction - alter an action taken by a process
2943  *  @sig: signal to be sent
2944  *  @act: new sigaction
2945  *  @oact: used to save the previous sigaction
2946  *  @sigsetsize: size of sigset_t type
2947  */
2948 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2949 		const struct sigaction __user *, act,
2950 		struct sigaction __user *, oact,
2951 		size_t, sigsetsize)
2952 {
2953 	struct k_sigaction new_sa, old_sa;
2954 	int ret = -EINVAL;
2955 
2956 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2957 	if (sigsetsize != sizeof(sigset_t))
2958 		goto out;
2959 
2960 	if (act) {
2961 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2962 			return -EFAULT;
2963 	}
2964 
2965 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2966 
2967 	if (!ret && oact) {
2968 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2969 			return -EFAULT;
2970 	}
2971 out:
2972 	return ret;
2973 }
2974 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2975 
2976 #ifdef __ARCH_WANT_SYS_SGETMASK
2977 
2978 /*
2979  * For backwards compatibility.  Functionality superseded by sigprocmask.
2980  */
2981 SYSCALL_DEFINE0(sgetmask)
2982 {
2983 	/* SMP safe */
2984 	return current->blocked.sig[0];
2985 }
2986 
2987 SYSCALL_DEFINE1(ssetmask, int, newmask)
2988 {
2989 	int old;
2990 
2991 	spin_lock_irq(&current->sighand->siglock);
2992 	old = current->blocked.sig[0];
2993 
2994 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2995 						  sigmask(SIGSTOP)));
2996 	recalc_sigpending();
2997 	spin_unlock_irq(&current->sighand->siglock);
2998 
2999 	return old;
3000 }
3001 #endif /* __ARCH_WANT_SGETMASK */
3002 
3003 #ifdef __ARCH_WANT_SYS_SIGNAL
3004 /*
3005  * For backwards compatibility.  Functionality superseded by sigaction.
3006  */
3007 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3008 {
3009 	struct k_sigaction new_sa, old_sa;
3010 	int ret;
3011 
3012 	new_sa.sa.sa_handler = handler;
3013 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3014 	sigemptyset(&new_sa.sa.sa_mask);
3015 
3016 	ret = do_sigaction(sig, &new_sa, &old_sa);
3017 
3018 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3019 }
3020 #endif /* __ARCH_WANT_SYS_SIGNAL */
3021 
3022 #ifdef __ARCH_WANT_SYS_PAUSE
3023 
3024 SYSCALL_DEFINE0(pause)
3025 {
3026 	while (!signal_pending(current)) {
3027 		current->state = TASK_INTERRUPTIBLE;
3028 		schedule();
3029 	}
3030 	return -ERESTARTNOHAND;
3031 }
3032 
3033 #endif
3034 
3035 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3036 /**
3037  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3038  *	@unewset value until a signal is received
3039  *  @unewset: new signal mask value
3040  *  @sigsetsize: size of sigset_t type
3041  */
3042 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3043 {
3044 	sigset_t newset;
3045 
3046 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3047 	if (sigsetsize != sizeof(sigset_t))
3048 		return -EINVAL;
3049 
3050 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3051 		return -EFAULT;
3052 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3053 
3054 	spin_lock_irq(&current->sighand->siglock);
3055 	current->saved_sigmask = current->blocked;
3056 	current->blocked = newset;
3057 	recalc_sigpending();
3058 	spin_unlock_irq(&current->sighand->siglock);
3059 
3060 	current->state = TASK_INTERRUPTIBLE;
3061 	schedule();
3062 	set_restore_sigmask();
3063 	return -ERESTARTNOHAND;
3064 }
3065 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3066 
3067 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3068 {
3069 	return NULL;
3070 }
3071 
3072 void __init signals_init(void)
3073 {
3074 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3075 }
3076 
3077 #ifdef CONFIG_KGDB_KDB
3078 #include <linux/kdb.h>
3079 /*
3080  * kdb_send_sig_info - Allows kdb to send signals without exposing
3081  * signal internals.  This function checks if the required locks are
3082  * available before calling the main signal code, to avoid kdb
3083  * deadlocks.
3084  */
3085 void
3086 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3087 {
3088 	static struct task_struct *kdb_prev_t;
3089 	int sig, new_t;
3090 	if (!spin_trylock(&t->sighand->siglock)) {
3091 		kdb_printf("Can't do kill command now.\n"
3092 			   "The sigmask lock is held somewhere else in "
3093 			   "kernel, try again later\n");
3094 		return;
3095 	}
3096 	spin_unlock(&t->sighand->siglock);
3097 	new_t = kdb_prev_t != t;
3098 	kdb_prev_t = t;
3099 	if (t->state != TASK_RUNNING && new_t) {
3100 		kdb_printf("Process is not RUNNING, sending a signal from "
3101 			   "kdb risks deadlock\n"
3102 			   "on the run queue locks. "
3103 			   "The signal has _not_ been sent.\n"
3104 			   "Reissue the kill command if you want to risk "
3105 			   "the deadlock.\n");
3106 		return;
3107 	}
3108 	sig = info->si_signo;
3109 	if (send_sig_info(sig, info, t))
3110 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3111 			   sig, t->pid);
3112 	else
3113 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3114 }
3115 #endif	/* CONFIG_KGDB_KDB */
3116