xref: /linux/kernel/signal.c (revision 460ea8980511c01c1551012b9a6ec6a06d02da59)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/task_work.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48 #include <linux/sysctl.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
52 
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58 #include <asm/syscall.h>	/* for syscall_get_* */
59 
60 /*
61  * SLAB caches for signal bits.
62  */
63 
64 static struct kmem_cache *sigqueue_cachep;
65 
66 int print_fatal_signals __read_mostly;
67 
68 static void __user *sig_handler(struct task_struct *t, int sig)
69 {
70 	return t->sighand->action[sig - 1].sa.sa_handler;
71 }
72 
73 static inline bool sig_handler_ignored(void __user *handler, int sig)
74 {
75 	/* Is it explicitly or implicitly ignored? */
76 	return handler == SIG_IGN ||
77 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
78 }
79 
80 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
81 {
82 	void __user *handler;
83 
84 	handler = sig_handler(t, sig);
85 
86 	/* SIGKILL and SIGSTOP may not be sent to the global init */
87 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
88 		return true;
89 
90 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
91 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
92 		return true;
93 
94 	/* Only allow kernel generated signals to this kthread */
95 	if (unlikely((t->flags & PF_KTHREAD) &&
96 		     (handler == SIG_KTHREAD_KERNEL) && !force))
97 		return true;
98 
99 	return sig_handler_ignored(handler, sig);
100 }
101 
102 static bool sig_ignored(struct task_struct *t, int sig, bool force)
103 {
104 	/*
105 	 * Blocked signals are never ignored, since the
106 	 * signal handler may change by the time it is
107 	 * unblocked.
108 	 */
109 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
110 		return false;
111 
112 	/*
113 	 * Tracers may want to know about even ignored signal unless it
114 	 * is SIGKILL which can't be reported anyway but can be ignored
115 	 * by SIGNAL_UNKILLABLE task.
116 	 */
117 	if (t->ptrace && sig != SIGKILL)
118 		return false;
119 
120 	return sig_task_ignored(t, sig, force);
121 }
122 
123 /*
124  * Re-calculate pending state from the set of locally pending
125  * signals, globally pending signals, and blocked signals.
126  */
127 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
128 {
129 	unsigned long ready;
130 	long i;
131 
132 	switch (_NSIG_WORDS) {
133 	default:
134 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
135 			ready |= signal->sig[i] &~ blocked->sig[i];
136 		break;
137 
138 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
139 		ready |= signal->sig[2] &~ blocked->sig[2];
140 		ready |= signal->sig[1] &~ blocked->sig[1];
141 		ready |= signal->sig[0] &~ blocked->sig[0];
142 		break;
143 
144 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
145 		ready |= signal->sig[0] &~ blocked->sig[0];
146 		break;
147 
148 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
149 	}
150 	return ready !=	0;
151 }
152 
153 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
154 
155 static bool recalc_sigpending_tsk(struct task_struct *t)
156 {
157 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
158 	    PENDING(&t->pending, &t->blocked) ||
159 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
160 	    cgroup_task_frozen(t)) {
161 		set_tsk_thread_flag(t, TIF_SIGPENDING);
162 		return true;
163 	}
164 
165 	/*
166 	 * We must never clear the flag in another thread, or in current
167 	 * when it's possible the current syscall is returning -ERESTART*.
168 	 * So we don't clear it here, and only callers who know they should do.
169 	 */
170 	return false;
171 }
172 
173 /*
174  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
175  * This is superfluous when called on current, the wakeup is a harmless no-op.
176  */
177 void recalc_sigpending_and_wake(struct task_struct *t)
178 {
179 	if (recalc_sigpending_tsk(t))
180 		signal_wake_up(t, 0);
181 }
182 
183 void recalc_sigpending(void)
184 {
185 	if (!recalc_sigpending_tsk(current) && !freezing(current))
186 		clear_thread_flag(TIF_SIGPENDING);
187 
188 }
189 EXPORT_SYMBOL(recalc_sigpending);
190 
191 void calculate_sigpending(void)
192 {
193 	/* Have any signals or users of TIF_SIGPENDING been delayed
194 	 * until after fork?
195 	 */
196 	spin_lock_irq(&current->sighand->siglock);
197 	set_tsk_thread_flag(current, TIF_SIGPENDING);
198 	recalc_sigpending();
199 	spin_unlock_irq(&current->sighand->siglock);
200 }
201 
202 /* Given the mask, find the first available signal that should be serviced. */
203 
204 #define SYNCHRONOUS_MASK \
205 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207 
208 int next_signal(struct sigpending *pending, sigset_t *mask)
209 {
210 	unsigned long i, *s, *m, x;
211 	int sig = 0;
212 
213 	s = pending->signal.sig;
214 	m = mask->sig;
215 
216 	/*
217 	 * Handle the first word specially: it contains the
218 	 * synchronous signals that need to be dequeued first.
219 	 */
220 	x = *s &~ *m;
221 	if (x) {
222 		if (x & SYNCHRONOUS_MASK)
223 			x &= SYNCHRONOUS_MASK;
224 		sig = ffz(~x) + 1;
225 		return sig;
226 	}
227 
228 	switch (_NSIG_WORDS) {
229 	default:
230 		for (i = 1; i < _NSIG_WORDS; ++i) {
231 			x = *++s &~ *++m;
232 			if (!x)
233 				continue;
234 			sig = ffz(~x) + i*_NSIG_BPW + 1;
235 			break;
236 		}
237 		break;
238 
239 	case 2:
240 		x = s[1] &~ m[1];
241 		if (!x)
242 			break;
243 		sig = ffz(~x) + _NSIG_BPW + 1;
244 		break;
245 
246 	case 1:
247 		/* Nothing to do */
248 		break;
249 	}
250 
251 	return sig;
252 }
253 
254 static inline void print_dropped_signal(int sig)
255 {
256 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257 
258 	if (!print_fatal_signals)
259 		return;
260 
261 	if (!__ratelimit(&ratelimit_state))
262 		return;
263 
264 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265 				current->comm, current->pid, sig);
266 }
267 
268 /**
269  * task_set_jobctl_pending - set jobctl pending bits
270  * @task: target task
271  * @mask: pending bits to set
272  *
273  * Clear @mask from @task->jobctl.  @mask must be subset of
274  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
276  * cleared.  If @task is already being killed or exiting, this function
277  * becomes noop.
278  *
279  * CONTEXT:
280  * Must be called with @task->sighand->siglock held.
281  *
282  * RETURNS:
283  * %true if @mask is set, %false if made noop because @task was dying.
284  */
285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 {
287 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290 
291 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292 		return false;
293 
294 	if (mask & JOBCTL_STOP_SIGMASK)
295 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296 
297 	task->jobctl |= mask;
298 	return true;
299 }
300 
301 /**
302  * task_clear_jobctl_trapping - clear jobctl trapping bit
303  * @task: target task
304  *
305  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
306  * Clear it and wake up the ptracer.  Note that we don't need any further
307  * locking.  @task->siglock guarantees that @task->parent points to the
308  * ptracer.
309  *
310  * CONTEXT:
311  * Must be called with @task->sighand->siglock held.
312  */
313 void task_clear_jobctl_trapping(struct task_struct *task)
314 {
315 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
316 		task->jobctl &= ~JOBCTL_TRAPPING;
317 		smp_mb();	/* advised by wake_up_bit() */
318 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
319 	}
320 }
321 
322 /**
323  * task_clear_jobctl_pending - clear jobctl pending bits
324  * @task: target task
325  * @mask: pending bits to clear
326  *
327  * Clear @mask from @task->jobctl.  @mask must be subset of
328  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
329  * STOP bits are cleared together.
330  *
331  * If clearing of @mask leaves no stop or trap pending, this function calls
332  * task_clear_jobctl_trapping().
333  *
334  * CONTEXT:
335  * Must be called with @task->sighand->siglock held.
336  */
337 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338 {
339 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340 
341 	if (mask & JOBCTL_STOP_PENDING)
342 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343 
344 	task->jobctl &= ~mask;
345 
346 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
347 		task_clear_jobctl_trapping(task);
348 }
349 
350 /**
351  * task_participate_group_stop - participate in a group stop
352  * @task: task participating in a group stop
353  *
354  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
355  * Group stop states are cleared and the group stop count is consumed if
356  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
357  * stop, the appropriate `SIGNAL_*` flags are set.
358  *
359  * CONTEXT:
360  * Must be called with @task->sighand->siglock held.
361  *
362  * RETURNS:
363  * %true if group stop completion should be notified to the parent, %false
364  * otherwise.
365  */
366 static bool task_participate_group_stop(struct task_struct *task)
367 {
368 	struct signal_struct *sig = task->signal;
369 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370 
371 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372 
373 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
374 
375 	if (!consume)
376 		return false;
377 
378 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
379 		sig->group_stop_count--;
380 
381 	/*
382 	 * Tell the caller to notify completion iff we are entering into a
383 	 * fresh group stop.  Read comment in do_signal_stop() for details.
384 	 */
385 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
386 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
387 		return true;
388 	}
389 	return false;
390 }
391 
392 void task_join_group_stop(struct task_struct *task)
393 {
394 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
395 	struct signal_struct *sig = current->signal;
396 
397 	if (sig->group_stop_count) {
398 		sig->group_stop_count++;
399 		mask |= JOBCTL_STOP_CONSUME;
400 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
401 		return;
402 
403 	/* Have the new thread join an on-going signal group stop */
404 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
405 }
406 
407 /*
408  * allocate a new signal queue record
409  * - this may be called without locks if and only if t == current, otherwise an
410  *   appropriate lock must be held to stop the target task from exiting
411  */
412 static struct sigqueue *
413 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
414 		 int override_rlimit, const unsigned int sigqueue_flags)
415 {
416 	struct sigqueue *q = NULL;
417 	struct ucounts *ucounts = NULL;
418 	long sigpending;
419 
420 	/*
421 	 * Protect access to @t credentials. This can go away when all
422 	 * callers hold rcu read lock.
423 	 *
424 	 * NOTE! A pending signal will hold on to the user refcount,
425 	 * and we get/put the refcount only when the sigpending count
426 	 * changes from/to zero.
427 	 */
428 	rcu_read_lock();
429 	ucounts = task_ucounts(t);
430 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
431 	rcu_read_unlock();
432 	if (!sigpending)
433 		return NULL;
434 
435 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
436 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
437 	} else {
438 		print_dropped_signal(sig);
439 	}
440 
441 	if (unlikely(q == NULL)) {
442 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
443 	} else {
444 		INIT_LIST_HEAD(&q->list);
445 		q->flags = sigqueue_flags;
446 		q->ucounts = ucounts;
447 	}
448 	return q;
449 }
450 
451 static void __sigqueue_free(struct sigqueue *q)
452 {
453 	if (q->flags & SIGQUEUE_PREALLOC)
454 		return;
455 	if (q->ucounts) {
456 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
457 		q->ucounts = NULL;
458 	}
459 	kmem_cache_free(sigqueue_cachep, q);
460 }
461 
462 void flush_sigqueue(struct sigpending *queue)
463 {
464 	struct sigqueue *q;
465 
466 	sigemptyset(&queue->signal);
467 	while (!list_empty(&queue->list)) {
468 		q = list_entry(queue->list.next, struct sigqueue , list);
469 		list_del_init(&q->list);
470 		__sigqueue_free(q);
471 	}
472 }
473 
474 /*
475  * Flush all pending signals for this kthread.
476  */
477 void flush_signals(struct task_struct *t)
478 {
479 	unsigned long flags;
480 
481 	spin_lock_irqsave(&t->sighand->siglock, flags);
482 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
483 	flush_sigqueue(&t->pending);
484 	flush_sigqueue(&t->signal->shared_pending);
485 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
486 }
487 EXPORT_SYMBOL(flush_signals);
488 
489 #ifdef CONFIG_POSIX_TIMERS
490 static void __flush_itimer_signals(struct sigpending *pending)
491 {
492 	sigset_t signal, retain;
493 	struct sigqueue *q, *n;
494 
495 	signal = pending->signal;
496 	sigemptyset(&retain);
497 
498 	list_for_each_entry_safe(q, n, &pending->list, list) {
499 		int sig = q->info.si_signo;
500 
501 		if (likely(q->info.si_code != SI_TIMER)) {
502 			sigaddset(&retain, sig);
503 		} else {
504 			sigdelset(&signal, sig);
505 			list_del_init(&q->list);
506 			__sigqueue_free(q);
507 		}
508 	}
509 
510 	sigorsets(&pending->signal, &signal, &retain);
511 }
512 
513 void flush_itimer_signals(void)
514 {
515 	struct task_struct *tsk = current;
516 	unsigned long flags;
517 
518 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
519 	__flush_itimer_signals(&tsk->pending);
520 	__flush_itimer_signals(&tsk->signal->shared_pending);
521 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
522 }
523 #endif
524 
525 void ignore_signals(struct task_struct *t)
526 {
527 	int i;
528 
529 	for (i = 0; i < _NSIG; ++i)
530 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
531 
532 	flush_signals(t);
533 }
534 
535 /*
536  * Flush all handlers for a task.
537  */
538 
539 void
540 flush_signal_handlers(struct task_struct *t, int force_default)
541 {
542 	int i;
543 	struct k_sigaction *ka = &t->sighand->action[0];
544 	for (i = _NSIG ; i != 0 ; i--) {
545 		if (force_default || ka->sa.sa_handler != SIG_IGN)
546 			ka->sa.sa_handler = SIG_DFL;
547 		ka->sa.sa_flags = 0;
548 #ifdef __ARCH_HAS_SA_RESTORER
549 		ka->sa.sa_restorer = NULL;
550 #endif
551 		sigemptyset(&ka->sa.sa_mask);
552 		ka++;
553 	}
554 }
555 
556 bool unhandled_signal(struct task_struct *tsk, int sig)
557 {
558 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
559 	if (is_global_init(tsk))
560 		return true;
561 
562 	if (handler != SIG_IGN && handler != SIG_DFL)
563 		return false;
564 
565 	/* if ptraced, let the tracer determine */
566 	return !tsk->ptrace;
567 }
568 
569 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
570 			   bool *resched_timer)
571 {
572 	struct sigqueue *q, *first = NULL;
573 
574 	/*
575 	 * Collect the siginfo appropriate to this signal.  Check if
576 	 * there is another siginfo for the same signal.
577 	*/
578 	list_for_each_entry(q, &list->list, list) {
579 		if (q->info.si_signo == sig) {
580 			if (first)
581 				goto still_pending;
582 			first = q;
583 		}
584 	}
585 
586 	sigdelset(&list->signal, sig);
587 
588 	if (first) {
589 still_pending:
590 		list_del_init(&first->list);
591 		copy_siginfo(info, &first->info);
592 
593 		*resched_timer =
594 			(first->flags & SIGQUEUE_PREALLOC) &&
595 			(info->si_code == SI_TIMER) &&
596 			(info->si_sys_private);
597 
598 		__sigqueue_free(first);
599 	} else {
600 		/*
601 		 * Ok, it wasn't in the queue.  This must be
602 		 * a fast-pathed signal or we must have been
603 		 * out of queue space.  So zero out the info.
604 		 */
605 		clear_siginfo(info);
606 		info->si_signo = sig;
607 		info->si_errno = 0;
608 		info->si_code = SI_USER;
609 		info->si_pid = 0;
610 		info->si_uid = 0;
611 	}
612 }
613 
614 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
615 			kernel_siginfo_t *info, bool *resched_timer)
616 {
617 	int sig = next_signal(pending, mask);
618 
619 	if (sig)
620 		collect_signal(sig, pending, info, resched_timer);
621 	return sig;
622 }
623 
624 /*
625  * Dequeue a signal and return the element to the caller, which is
626  * expected to free it.
627  *
628  * All callers have to hold the siglock.
629  */
630 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
631 		   kernel_siginfo_t *info, enum pid_type *type)
632 {
633 	bool resched_timer = false;
634 	int signr;
635 
636 	/* We only dequeue private signals from ourselves, we don't let
637 	 * signalfd steal them
638 	 */
639 	*type = PIDTYPE_PID;
640 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
641 	if (!signr) {
642 		*type = PIDTYPE_TGID;
643 		signr = __dequeue_signal(&tsk->signal->shared_pending,
644 					 mask, info, &resched_timer);
645 #ifdef CONFIG_POSIX_TIMERS
646 		/*
647 		 * itimer signal ?
648 		 *
649 		 * itimers are process shared and we restart periodic
650 		 * itimers in the signal delivery path to prevent DoS
651 		 * attacks in the high resolution timer case. This is
652 		 * compliant with the old way of self-restarting
653 		 * itimers, as the SIGALRM is a legacy signal and only
654 		 * queued once. Changing the restart behaviour to
655 		 * restart the timer in the signal dequeue path is
656 		 * reducing the timer noise on heavy loaded !highres
657 		 * systems too.
658 		 */
659 		if (unlikely(signr == SIGALRM)) {
660 			struct hrtimer *tmr = &tsk->signal->real_timer;
661 
662 			if (!hrtimer_is_queued(tmr) &&
663 			    tsk->signal->it_real_incr != 0) {
664 				hrtimer_forward(tmr, tmr->base->get_time(),
665 						tsk->signal->it_real_incr);
666 				hrtimer_restart(tmr);
667 			}
668 		}
669 #endif
670 	}
671 
672 	recalc_sigpending();
673 	if (!signr)
674 		return 0;
675 
676 	if (unlikely(sig_kernel_stop(signr))) {
677 		/*
678 		 * Set a marker that we have dequeued a stop signal.  Our
679 		 * caller might release the siglock and then the pending
680 		 * stop signal it is about to process is no longer in the
681 		 * pending bitmasks, but must still be cleared by a SIGCONT
682 		 * (and overruled by a SIGKILL).  So those cases clear this
683 		 * shared flag after we've set it.  Note that this flag may
684 		 * remain set after the signal we return is ignored or
685 		 * handled.  That doesn't matter because its only purpose
686 		 * is to alert stop-signal processing code when another
687 		 * processor has come along and cleared the flag.
688 		 */
689 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
690 	}
691 #ifdef CONFIG_POSIX_TIMERS
692 	if (resched_timer) {
693 		/*
694 		 * Release the siglock to ensure proper locking order
695 		 * of timer locks outside of siglocks.  Note, we leave
696 		 * irqs disabled here, since the posix-timers code is
697 		 * about to disable them again anyway.
698 		 */
699 		spin_unlock(&tsk->sighand->siglock);
700 		posixtimer_rearm(info);
701 		spin_lock(&tsk->sighand->siglock);
702 
703 		/* Don't expose the si_sys_private value to userspace */
704 		info->si_sys_private = 0;
705 	}
706 #endif
707 	return signr;
708 }
709 EXPORT_SYMBOL_GPL(dequeue_signal);
710 
711 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
712 {
713 	struct task_struct *tsk = current;
714 	struct sigpending *pending = &tsk->pending;
715 	struct sigqueue *q, *sync = NULL;
716 
717 	/*
718 	 * Might a synchronous signal be in the queue?
719 	 */
720 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
721 		return 0;
722 
723 	/*
724 	 * Return the first synchronous signal in the queue.
725 	 */
726 	list_for_each_entry(q, &pending->list, list) {
727 		/* Synchronous signals have a positive si_code */
728 		if ((q->info.si_code > SI_USER) &&
729 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
730 			sync = q;
731 			goto next;
732 		}
733 	}
734 	return 0;
735 next:
736 	/*
737 	 * Check if there is another siginfo for the same signal.
738 	 */
739 	list_for_each_entry_continue(q, &pending->list, list) {
740 		if (q->info.si_signo == sync->info.si_signo)
741 			goto still_pending;
742 	}
743 
744 	sigdelset(&pending->signal, sync->info.si_signo);
745 	recalc_sigpending();
746 still_pending:
747 	list_del_init(&sync->list);
748 	copy_siginfo(info, &sync->info);
749 	__sigqueue_free(sync);
750 	return info->si_signo;
751 }
752 
753 /*
754  * Tell a process that it has a new active signal..
755  *
756  * NOTE! we rely on the previous spin_lock to
757  * lock interrupts for us! We can only be called with
758  * "siglock" held, and the local interrupt must
759  * have been disabled when that got acquired!
760  *
761  * No need to set need_resched since signal event passing
762  * goes through ->blocked
763  */
764 void signal_wake_up_state(struct task_struct *t, unsigned int state)
765 {
766 	lockdep_assert_held(&t->sighand->siglock);
767 
768 	set_tsk_thread_flag(t, TIF_SIGPENDING);
769 
770 	/*
771 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
772 	 * case. We don't check t->state here because there is a race with it
773 	 * executing another processor and just now entering stopped state.
774 	 * By using wake_up_state, we ensure the process will wake up and
775 	 * handle its death signal.
776 	 */
777 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
778 		kick_process(t);
779 }
780 
781 /*
782  * Remove signals in mask from the pending set and queue.
783  * Returns 1 if any signals were found.
784  *
785  * All callers must be holding the siglock.
786  */
787 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
788 {
789 	struct sigqueue *q, *n;
790 	sigset_t m;
791 
792 	sigandsets(&m, mask, &s->signal);
793 	if (sigisemptyset(&m))
794 		return;
795 
796 	sigandnsets(&s->signal, &s->signal, mask);
797 	list_for_each_entry_safe(q, n, &s->list, list) {
798 		if (sigismember(mask, q->info.si_signo)) {
799 			list_del_init(&q->list);
800 			__sigqueue_free(q);
801 		}
802 	}
803 }
804 
805 static inline int is_si_special(const struct kernel_siginfo *info)
806 {
807 	return info <= SEND_SIG_PRIV;
808 }
809 
810 static inline bool si_fromuser(const struct kernel_siginfo *info)
811 {
812 	return info == SEND_SIG_NOINFO ||
813 		(!is_si_special(info) && SI_FROMUSER(info));
814 }
815 
816 /*
817  * called with RCU read lock from check_kill_permission()
818  */
819 static bool kill_ok_by_cred(struct task_struct *t)
820 {
821 	const struct cred *cred = current_cred();
822 	const struct cred *tcred = __task_cred(t);
823 
824 	return uid_eq(cred->euid, tcred->suid) ||
825 	       uid_eq(cred->euid, tcred->uid) ||
826 	       uid_eq(cred->uid, tcred->suid) ||
827 	       uid_eq(cred->uid, tcred->uid) ||
828 	       ns_capable(tcred->user_ns, CAP_KILL);
829 }
830 
831 /*
832  * Bad permissions for sending the signal
833  * - the caller must hold the RCU read lock
834  */
835 static int check_kill_permission(int sig, struct kernel_siginfo *info,
836 				 struct task_struct *t)
837 {
838 	struct pid *sid;
839 	int error;
840 
841 	if (!valid_signal(sig))
842 		return -EINVAL;
843 
844 	if (!si_fromuser(info))
845 		return 0;
846 
847 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
848 	if (error)
849 		return error;
850 
851 	if (!same_thread_group(current, t) &&
852 	    !kill_ok_by_cred(t)) {
853 		switch (sig) {
854 		case SIGCONT:
855 			sid = task_session(t);
856 			/*
857 			 * We don't return the error if sid == NULL. The
858 			 * task was unhashed, the caller must notice this.
859 			 */
860 			if (!sid || sid == task_session(current))
861 				break;
862 			fallthrough;
863 		default:
864 			return -EPERM;
865 		}
866 	}
867 
868 	return security_task_kill(t, info, sig, NULL);
869 }
870 
871 /**
872  * ptrace_trap_notify - schedule trap to notify ptracer
873  * @t: tracee wanting to notify tracer
874  *
875  * This function schedules sticky ptrace trap which is cleared on the next
876  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
877  * ptracer.
878  *
879  * If @t is running, STOP trap will be taken.  If trapped for STOP and
880  * ptracer is listening for events, tracee is woken up so that it can
881  * re-trap for the new event.  If trapped otherwise, STOP trap will be
882  * eventually taken without returning to userland after the existing traps
883  * are finished by PTRACE_CONT.
884  *
885  * CONTEXT:
886  * Must be called with @task->sighand->siglock held.
887  */
888 static void ptrace_trap_notify(struct task_struct *t)
889 {
890 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
891 	lockdep_assert_held(&t->sighand->siglock);
892 
893 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
894 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
895 }
896 
897 /*
898  * Handle magic process-wide effects of stop/continue signals. Unlike
899  * the signal actions, these happen immediately at signal-generation
900  * time regardless of blocking, ignoring, or handling.  This does the
901  * actual continuing for SIGCONT, but not the actual stopping for stop
902  * signals. The process stop is done as a signal action for SIG_DFL.
903  *
904  * Returns true if the signal should be actually delivered, otherwise
905  * it should be dropped.
906  */
907 static bool prepare_signal(int sig, struct task_struct *p, bool force)
908 {
909 	struct signal_struct *signal = p->signal;
910 	struct task_struct *t;
911 	sigset_t flush;
912 
913 	if (signal->flags & SIGNAL_GROUP_EXIT) {
914 		if (signal->core_state)
915 			return sig == SIGKILL;
916 		/*
917 		 * The process is in the middle of dying, drop the signal.
918 		 */
919 		return false;
920 	} else if (sig_kernel_stop(sig)) {
921 		/*
922 		 * This is a stop signal.  Remove SIGCONT from all queues.
923 		 */
924 		siginitset(&flush, sigmask(SIGCONT));
925 		flush_sigqueue_mask(&flush, &signal->shared_pending);
926 		for_each_thread(p, t)
927 			flush_sigqueue_mask(&flush, &t->pending);
928 	} else if (sig == SIGCONT) {
929 		unsigned int why;
930 		/*
931 		 * Remove all stop signals from all queues, wake all threads.
932 		 */
933 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
934 		flush_sigqueue_mask(&flush, &signal->shared_pending);
935 		for_each_thread(p, t) {
936 			flush_sigqueue_mask(&flush, &t->pending);
937 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
938 			if (likely(!(t->ptrace & PT_SEIZED))) {
939 				t->jobctl &= ~JOBCTL_STOPPED;
940 				wake_up_state(t, __TASK_STOPPED);
941 			} else
942 				ptrace_trap_notify(t);
943 		}
944 
945 		/*
946 		 * Notify the parent with CLD_CONTINUED if we were stopped.
947 		 *
948 		 * If we were in the middle of a group stop, we pretend it
949 		 * was already finished, and then continued. Since SIGCHLD
950 		 * doesn't queue we report only CLD_STOPPED, as if the next
951 		 * CLD_CONTINUED was dropped.
952 		 */
953 		why = 0;
954 		if (signal->flags & SIGNAL_STOP_STOPPED)
955 			why |= SIGNAL_CLD_CONTINUED;
956 		else if (signal->group_stop_count)
957 			why |= SIGNAL_CLD_STOPPED;
958 
959 		if (why) {
960 			/*
961 			 * The first thread which returns from do_signal_stop()
962 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
963 			 * notify its parent. See get_signal().
964 			 */
965 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
966 			signal->group_stop_count = 0;
967 			signal->group_exit_code = 0;
968 		}
969 	}
970 
971 	return !sig_ignored(p, sig, force);
972 }
973 
974 /*
975  * Test if P wants to take SIG.  After we've checked all threads with this,
976  * it's equivalent to finding no threads not blocking SIG.  Any threads not
977  * blocking SIG were ruled out because they are not running and already
978  * have pending signals.  Such threads will dequeue from the shared queue
979  * as soon as they're available, so putting the signal on the shared queue
980  * will be equivalent to sending it to one such thread.
981  */
982 static inline bool wants_signal(int sig, struct task_struct *p)
983 {
984 	if (sigismember(&p->blocked, sig))
985 		return false;
986 
987 	if (p->flags & PF_EXITING)
988 		return false;
989 
990 	if (sig == SIGKILL)
991 		return true;
992 
993 	if (task_is_stopped_or_traced(p))
994 		return false;
995 
996 	return task_curr(p) || !task_sigpending(p);
997 }
998 
999 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1000 {
1001 	struct signal_struct *signal = p->signal;
1002 	struct task_struct *t;
1003 
1004 	/*
1005 	 * Now find a thread we can wake up to take the signal off the queue.
1006 	 *
1007 	 * Try the suggested task first (may or may not be the main thread).
1008 	 */
1009 	if (wants_signal(sig, p))
1010 		t = p;
1011 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1012 		/*
1013 		 * There is just one thread and it does not need to be woken.
1014 		 * It will dequeue unblocked signals before it runs again.
1015 		 */
1016 		return;
1017 	else {
1018 		/*
1019 		 * Otherwise try to find a suitable thread.
1020 		 */
1021 		t = signal->curr_target;
1022 		while (!wants_signal(sig, t)) {
1023 			t = next_thread(t);
1024 			if (t == signal->curr_target)
1025 				/*
1026 				 * No thread needs to be woken.
1027 				 * Any eligible threads will see
1028 				 * the signal in the queue soon.
1029 				 */
1030 				return;
1031 		}
1032 		signal->curr_target = t;
1033 	}
1034 
1035 	/*
1036 	 * Found a killable thread.  If the signal will be fatal,
1037 	 * then start taking the whole group down immediately.
1038 	 */
1039 	if (sig_fatal(p, sig) &&
1040 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1041 	    !sigismember(&t->real_blocked, sig) &&
1042 	    (sig == SIGKILL || !p->ptrace)) {
1043 		/*
1044 		 * This signal will be fatal to the whole group.
1045 		 */
1046 		if (!sig_kernel_coredump(sig)) {
1047 			/*
1048 			 * Start a group exit and wake everybody up.
1049 			 * This way we don't have other threads
1050 			 * running and doing things after a slower
1051 			 * thread has the fatal signal pending.
1052 			 */
1053 			signal->flags = SIGNAL_GROUP_EXIT;
1054 			signal->group_exit_code = sig;
1055 			signal->group_stop_count = 0;
1056 			t = p;
1057 			do {
1058 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1059 				sigaddset(&t->pending.signal, SIGKILL);
1060 				signal_wake_up(t, 1);
1061 			} while_each_thread(p, t);
1062 			return;
1063 		}
1064 	}
1065 
1066 	/*
1067 	 * The signal is already in the shared-pending queue.
1068 	 * Tell the chosen thread to wake up and dequeue it.
1069 	 */
1070 	signal_wake_up(t, sig == SIGKILL);
1071 	return;
1072 }
1073 
1074 static inline bool legacy_queue(struct sigpending *signals, int sig)
1075 {
1076 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1077 }
1078 
1079 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1080 				struct task_struct *t, enum pid_type type, bool force)
1081 {
1082 	struct sigpending *pending;
1083 	struct sigqueue *q;
1084 	int override_rlimit;
1085 	int ret = 0, result;
1086 
1087 	lockdep_assert_held(&t->sighand->siglock);
1088 
1089 	result = TRACE_SIGNAL_IGNORED;
1090 	if (!prepare_signal(sig, t, force))
1091 		goto ret;
1092 
1093 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1094 	/*
1095 	 * Short-circuit ignored signals and support queuing
1096 	 * exactly one non-rt signal, so that we can get more
1097 	 * detailed information about the cause of the signal.
1098 	 */
1099 	result = TRACE_SIGNAL_ALREADY_PENDING;
1100 	if (legacy_queue(pending, sig))
1101 		goto ret;
1102 
1103 	result = TRACE_SIGNAL_DELIVERED;
1104 	/*
1105 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1106 	 */
1107 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1108 		goto out_set;
1109 
1110 	/*
1111 	 * Real-time signals must be queued if sent by sigqueue, or
1112 	 * some other real-time mechanism.  It is implementation
1113 	 * defined whether kill() does so.  We attempt to do so, on
1114 	 * the principle of least surprise, but since kill is not
1115 	 * allowed to fail with EAGAIN when low on memory we just
1116 	 * make sure at least one signal gets delivered and don't
1117 	 * pass on the info struct.
1118 	 */
1119 	if (sig < SIGRTMIN)
1120 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1121 	else
1122 		override_rlimit = 0;
1123 
1124 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1125 
1126 	if (q) {
1127 		list_add_tail(&q->list, &pending->list);
1128 		switch ((unsigned long) info) {
1129 		case (unsigned long) SEND_SIG_NOINFO:
1130 			clear_siginfo(&q->info);
1131 			q->info.si_signo = sig;
1132 			q->info.si_errno = 0;
1133 			q->info.si_code = SI_USER;
1134 			q->info.si_pid = task_tgid_nr_ns(current,
1135 							task_active_pid_ns(t));
1136 			rcu_read_lock();
1137 			q->info.si_uid =
1138 				from_kuid_munged(task_cred_xxx(t, user_ns),
1139 						 current_uid());
1140 			rcu_read_unlock();
1141 			break;
1142 		case (unsigned long) SEND_SIG_PRIV:
1143 			clear_siginfo(&q->info);
1144 			q->info.si_signo = sig;
1145 			q->info.si_errno = 0;
1146 			q->info.si_code = SI_KERNEL;
1147 			q->info.si_pid = 0;
1148 			q->info.si_uid = 0;
1149 			break;
1150 		default:
1151 			copy_siginfo(&q->info, info);
1152 			break;
1153 		}
1154 	} else if (!is_si_special(info) &&
1155 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1156 		/*
1157 		 * Queue overflow, abort.  We may abort if the
1158 		 * signal was rt and sent by user using something
1159 		 * other than kill().
1160 		 */
1161 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1162 		ret = -EAGAIN;
1163 		goto ret;
1164 	} else {
1165 		/*
1166 		 * This is a silent loss of information.  We still
1167 		 * send the signal, but the *info bits are lost.
1168 		 */
1169 		result = TRACE_SIGNAL_LOSE_INFO;
1170 	}
1171 
1172 out_set:
1173 	signalfd_notify(t, sig);
1174 	sigaddset(&pending->signal, sig);
1175 
1176 	/* Let multiprocess signals appear after on-going forks */
1177 	if (type > PIDTYPE_TGID) {
1178 		struct multiprocess_signals *delayed;
1179 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1180 			sigset_t *signal = &delayed->signal;
1181 			/* Can't queue both a stop and a continue signal */
1182 			if (sig == SIGCONT)
1183 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1184 			else if (sig_kernel_stop(sig))
1185 				sigdelset(signal, SIGCONT);
1186 			sigaddset(signal, sig);
1187 		}
1188 	}
1189 
1190 	complete_signal(sig, t, type);
1191 ret:
1192 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1193 	return ret;
1194 }
1195 
1196 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1197 {
1198 	bool ret = false;
1199 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1200 	case SIL_KILL:
1201 	case SIL_CHLD:
1202 	case SIL_RT:
1203 		ret = true;
1204 		break;
1205 	case SIL_TIMER:
1206 	case SIL_POLL:
1207 	case SIL_FAULT:
1208 	case SIL_FAULT_TRAPNO:
1209 	case SIL_FAULT_MCEERR:
1210 	case SIL_FAULT_BNDERR:
1211 	case SIL_FAULT_PKUERR:
1212 	case SIL_FAULT_PERF_EVENT:
1213 	case SIL_SYS:
1214 		ret = false;
1215 		break;
1216 	}
1217 	return ret;
1218 }
1219 
1220 int send_signal_locked(int sig, struct kernel_siginfo *info,
1221 		       struct task_struct *t, enum pid_type type)
1222 {
1223 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1224 	bool force = false;
1225 
1226 	if (info == SEND_SIG_NOINFO) {
1227 		/* Force if sent from an ancestor pid namespace */
1228 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1229 	} else if (info == SEND_SIG_PRIV) {
1230 		/* Don't ignore kernel generated signals */
1231 		force = true;
1232 	} else if (has_si_pid_and_uid(info)) {
1233 		/* SIGKILL and SIGSTOP is special or has ids */
1234 		struct user_namespace *t_user_ns;
1235 
1236 		rcu_read_lock();
1237 		t_user_ns = task_cred_xxx(t, user_ns);
1238 		if (current_user_ns() != t_user_ns) {
1239 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1240 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1241 		}
1242 		rcu_read_unlock();
1243 
1244 		/* A kernel generated signal? */
1245 		force = (info->si_code == SI_KERNEL);
1246 
1247 		/* From an ancestor pid namespace? */
1248 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1249 			info->si_pid = 0;
1250 			force = true;
1251 		}
1252 	}
1253 	return __send_signal_locked(sig, info, t, type, force);
1254 }
1255 
1256 static void print_fatal_signal(int signr)
1257 {
1258 	struct pt_regs *regs = task_pt_regs(current);
1259 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1260 
1261 #if defined(__i386__) && !defined(__arch_um__)
1262 	pr_info("code at %08lx: ", regs->ip);
1263 	{
1264 		int i;
1265 		for (i = 0; i < 16; i++) {
1266 			unsigned char insn;
1267 
1268 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1269 				break;
1270 			pr_cont("%02x ", insn);
1271 		}
1272 	}
1273 	pr_cont("\n");
1274 #endif
1275 	preempt_disable();
1276 	show_regs(regs);
1277 	preempt_enable();
1278 }
1279 
1280 static int __init setup_print_fatal_signals(char *str)
1281 {
1282 	get_option (&str, &print_fatal_signals);
1283 
1284 	return 1;
1285 }
1286 
1287 __setup("print-fatal-signals=", setup_print_fatal_signals);
1288 
1289 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1290 			enum pid_type type)
1291 {
1292 	unsigned long flags;
1293 	int ret = -ESRCH;
1294 
1295 	if (lock_task_sighand(p, &flags)) {
1296 		ret = send_signal_locked(sig, info, p, type);
1297 		unlock_task_sighand(p, &flags);
1298 	}
1299 
1300 	return ret;
1301 }
1302 
1303 enum sig_handler {
1304 	HANDLER_CURRENT, /* If reachable use the current handler */
1305 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1306 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1307 };
1308 
1309 /*
1310  * Force a signal that the process can't ignore: if necessary
1311  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1312  *
1313  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1314  * since we do not want to have a signal handler that was blocked
1315  * be invoked when user space had explicitly blocked it.
1316  *
1317  * We don't want to have recursive SIGSEGV's etc, for example,
1318  * that is why we also clear SIGNAL_UNKILLABLE.
1319  */
1320 static int
1321 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1322 	enum sig_handler handler)
1323 {
1324 	unsigned long int flags;
1325 	int ret, blocked, ignored;
1326 	struct k_sigaction *action;
1327 	int sig = info->si_signo;
1328 
1329 	spin_lock_irqsave(&t->sighand->siglock, flags);
1330 	action = &t->sighand->action[sig-1];
1331 	ignored = action->sa.sa_handler == SIG_IGN;
1332 	blocked = sigismember(&t->blocked, sig);
1333 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1334 		action->sa.sa_handler = SIG_DFL;
1335 		if (handler == HANDLER_EXIT)
1336 			action->sa.sa_flags |= SA_IMMUTABLE;
1337 		if (blocked) {
1338 			sigdelset(&t->blocked, sig);
1339 			recalc_sigpending_and_wake(t);
1340 		}
1341 	}
1342 	/*
1343 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1344 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1345 	 */
1346 	if (action->sa.sa_handler == SIG_DFL &&
1347 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1348 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1349 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1350 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1351 
1352 	return ret;
1353 }
1354 
1355 int force_sig_info(struct kernel_siginfo *info)
1356 {
1357 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1358 }
1359 
1360 /*
1361  * Nuke all other threads in the group.
1362  */
1363 int zap_other_threads(struct task_struct *p)
1364 {
1365 	struct task_struct *t = p;
1366 	int count = 0;
1367 
1368 	p->signal->group_stop_count = 0;
1369 
1370 	while_each_thread(p, t) {
1371 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1372 		/* Don't require de_thread to wait for the vhost_worker */
1373 		if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1374 			count++;
1375 
1376 		/* Don't bother with already dead threads */
1377 		if (t->exit_state)
1378 			continue;
1379 		sigaddset(&t->pending.signal, SIGKILL);
1380 		signal_wake_up(t, 1);
1381 	}
1382 
1383 	return count;
1384 }
1385 
1386 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1387 					   unsigned long *flags)
1388 {
1389 	struct sighand_struct *sighand;
1390 
1391 	rcu_read_lock();
1392 	for (;;) {
1393 		sighand = rcu_dereference(tsk->sighand);
1394 		if (unlikely(sighand == NULL))
1395 			break;
1396 
1397 		/*
1398 		 * This sighand can be already freed and even reused, but
1399 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1400 		 * initializes ->siglock: this slab can't go away, it has
1401 		 * the same object type, ->siglock can't be reinitialized.
1402 		 *
1403 		 * We need to ensure that tsk->sighand is still the same
1404 		 * after we take the lock, we can race with de_thread() or
1405 		 * __exit_signal(). In the latter case the next iteration
1406 		 * must see ->sighand == NULL.
1407 		 */
1408 		spin_lock_irqsave(&sighand->siglock, *flags);
1409 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1410 			break;
1411 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1412 	}
1413 	rcu_read_unlock();
1414 
1415 	return sighand;
1416 }
1417 
1418 #ifdef CONFIG_LOCKDEP
1419 void lockdep_assert_task_sighand_held(struct task_struct *task)
1420 {
1421 	struct sighand_struct *sighand;
1422 
1423 	rcu_read_lock();
1424 	sighand = rcu_dereference(task->sighand);
1425 	if (sighand)
1426 		lockdep_assert_held(&sighand->siglock);
1427 	else
1428 		WARN_ON_ONCE(1);
1429 	rcu_read_unlock();
1430 }
1431 #endif
1432 
1433 /*
1434  * send signal info to all the members of a group
1435  */
1436 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1437 			struct task_struct *p, enum pid_type type)
1438 {
1439 	int ret;
1440 
1441 	rcu_read_lock();
1442 	ret = check_kill_permission(sig, info, p);
1443 	rcu_read_unlock();
1444 
1445 	if (!ret && sig)
1446 		ret = do_send_sig_info(sig, info, p, type);
1447 
1448 	return ret;
1449 }
1450 
1451 /*
1452  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1453  * control characters do (^C, ^Z etc)
1454  * - the caller must hold at least a readlock on tasklist_lock
1455  */
1456 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1457 {
1458 	struct task_struct *p = NULL;
1459 	int retval, success;
1460 
1461 	success = 0;
1462 	retval = -ESRCH;
1463 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1464 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1465 		success |= !err;
1466 		retval = err;
1467 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1468 	return success ? 0 : retval;
1469 }
1470 
1471 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1472 {
1473 	int error = -ESRCH;
1474 	struct task_struct *p;
1475 
1476 	for (;;) {
1477 		rcu_read_lock();
1478 		p = pid_task(pid, PIDTYPE_PID);
1479 		if (p)
1480 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1481 		rcu_read_unlock();
1482 		if (likely(!p || error != -ESRCH))
1483 			return error;
1484 
1485 		/*
1486 		 * The task was unhashed in between, try again.  If it
1487 		 * is dead, pid_task() will return NULL, if we race with
1488 		 * de_thread() it will find the new leader.
1489 		 */
1490 	}
1491 }
1492 
1493 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1494 {
1495 	int error;
1496 	rcu_read_lock();
1497 	error = kill_pid_info(sig, info, find_vpid(pid));
1498 	rcu_read_unlock();
1499 	return error;
1500 }
1501 
1502 static inline bool kill_as_cred_perm(const struct cred *cred,
1503 				     struct task_struct *target)
1504 {
1505 	const struct cred *pcred = __task_cred(target);
1506 
1507 	return uid_eq(cred->euid, pcred->suid) ||
1508 	       uid_eq(cred->euid, pcred->uid) ||
1509 	       uid_eq(cred->uid, pcred->suid) ||
1510 	       uid_eq(cred->uid, pcred->uid);
1511 }
1512 
1513 /*
1514  * The usb asyncio usage of siginfo is wrong.  The glibc support
1515  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1516  * AKA after the generic fields:
1517  *	kernel_pid_t	si_pid;
1518  *	kernel_uid32_t	si_uid;
1519  *	sigval_t	si_value;
1520  *
1521  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1522  * after the generic fields is:
1523  *	void __user 	*si_addr;
1524  *
1525  * This is a practical problem when there is a 64bit big endian kernel
1526  * and a 32bit userspace.  As the 32bit address will encoded in the low
1527  * 32bits of the pointer.  Those low 32bits will be stored at higher
1528  * address than appear in a 32 bit pointer.  So userspace will not
1529  * see the address it was expecting for it's completions.
1530  *
1531  * There is nothing in the encoding that can allow
1532  * copy_siginfo_to_user32 to detect this confusion of formats, so
1533  * handle this by requiring the caller of kill_pid_usb_asyncio to
1534  * notice when this situration takes place and to store the 32bit
1535  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1536  * parameter.
1537  */
1538 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1539 			 struct pid *pid, const struct cred *cred)
1540 {
1541 	struct kernel_siginfo info;
1542 	struct task_struct *p;
1543 	unsigned long flags;
1544 	int ret = -EINVAL;
1545 
1546 	if (!valid_signal(sig))
1547 		return ret;
1548 
1549 	clear_siginfo(&info);
1550 	info.si_signo = sig;
1551 	info.si_errno = errno;
1552 	info.si_code = SI_ASYNCIO;
1553 	*((sigval_t *)&info.si_pid) = addr;
1554 
1555 	rcu_read_lock();
1556 	p = pid_task(pid, PIDTYPE_PID);
1557 	if (!p) {
1558 		ret = -ESRCH;
1559 		goto out_unlock;
1560 	}
1561 	if (!kill_as_cred_perm(cred, p)) {
1562 		ret = -EPERM;
1563 		goto out_unlock;
1564 	}
1565 	ret = security_task_kill(p, &info, sig, cred);
1566 	if (ret)
1567 		goto out_unlock;
1568 
1569 	if (sig) {
1570 		if (lock_task_sighand(p, &flags)) {
1571 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1572 			unlock_task_sighand(p, &flags);
1573 		} else
1574 			ret = -ESRCH;
1575 	}
1576 out_unlock:
1577 	rcu_read_unlock();
1578 	return ret;
1579 }
1580 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1581 
1582 /*
1583  * kill_something_info() interprets pid in interesting ways just like kill(2).
1584  *
1585  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1586  * is probably wrong.  Should make it like BSD or SYSV.
1587  */
1588 
1589 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1590 {
1591 	int ret;
1592 
1593 	if (pid > 0)
1594 		return kill_proc_info(sig, info, pid);
1595 
1596 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1597 	if (pid == INT_MIN)
1598 		return -ESRCH;
1599 
1600 	read_lock(&tasklist_lock);
1601 	if (pid != -1) {
1602 		ret = __kill_pgrp_info(sig, info,
1603 				pid ? find_vpid(-pid) : task_pgrp(current));
1604 	} else {
1605 		int retval = 0, count = 0;
1606 		struct task_struct * p;
1607 
1608 		for_each_process(p) {
1609 			if (task_pid_vnr(p) > 1 &&
1610 					!same_thread_group(p, current)) {
1611 				int err = group_send_sig_info(sig, info, p,
1612 							      PIDTYPE_MAX);
1613 				++count;
1614 				if (err != -EPERM)
1615 					retval = err;
1616 			}
1617 		}
1618 		ret = count ? retval : -ESRCH;
1619 	}
1620 	read_unlock(&tasklist_lock);
1621 
1622 	return ret;
1623 }
1624 
1625 /*
1626  * These are for backward compatibility with the rest of the kernel source.
1627  */
1628 
1629 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1630 {
1631 	/*
1632 	 * Make sure legacy kernel users don't send in bad values
1633 	 * (normal paths check this in check_kill_permission).
1634 	 */
1635 	if (!valid_signal(sig))
1636 		return -EINVAL;
1637 
1638 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1639 }
1640 EXPORT_SYMBOL(send_sig_info);
1641 
1642 #define __si_special(priv) \
1643 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1644 
1645 int
1646 send_sig(int sig, struct task_struct *p, int priv)
1647 {
1648 	return send_sig_info(sig, __si_special(priv), p);
1649 }
1650 EXPORT_SYMBOL(send_sig);
1651 
1652 void force_sig(int sig)
1653 {
1654 	struct kernel_siginfo info;
1655 
1656 	clear_siginfo(&info);
1657 	info.si_signo = sig;
1658 	info.si_errno = 0;
1659 	info.si_code = SI_KERNEL;
1660 	info.si_pid = 0;
1661 	info.si_uid = 0;
1662 	force_sig_info(&info);
1663 }
1664 EXPORT_SYMBOL(force_sig);
1665 
1666 void force_fatal_sig(int sig)
1667 {
1668 	struct kernel_siginfo info;
1669 
1670 	clear_siginfo(&info);
1671 	info.si_signo = sig;
1672 	info.si_errno = 0;
1673 	info.si_code = SI_KERNEL;
1674 	info.si_pid = 0;
1675 	info.si_uid = 0;
1676 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1677 }
1678 
1679 void force_exit_sig(int sig)
1680 {
1681 	struct kernel_siginfo info;
1682 
1683 	clear_siginfo(&info);
1684 	info.si_signo = sig;
1685 	info.si_errno = 0;
1686 	info.si_code = SI_KERNEL;
1687 	info.si_pid = 0;
1688 	info.si_uid = 0;
1689 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1690 }
1691 
1692 /*
1693  * When things go south during signal handling, we
1694  * will force a SIGSEGV. And if the signal that caused
1695  * the problem was already a SIGSEGV, we'll want to
1696  * make sure we don't even try to deliver the signal..
1697  */
1698 void force_sigsegv(int sig)
1699 {
1700 	if (sig == SIGSEGV)
1701 		force_fatal_sig(SIGSEGV);
1702 	else
1703 		force_sig(SIGSEGV);
1704 }
1705 
1706 int force_sig_fault_to_task(int sig, int code, void __user *addr
1707 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1708 	, struct task_struct *t)
1709 {
1710 	struct kernel_siginfo info;
1711 
1712 	clear_siginfo(&info);
1713 	info.si_signo = sig;
1714 	info.si_errno = 0;
1715 	info.si_code  = code;
1716 	info.si_addr  = addr;
1717 #ifdef __ia64__
1718 	info.si_imm = imm;
1719 	info.si_flags = flags;
1720 	info.si_isr = isr;
1721 #endif
1722 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1723 }
1724 
1725 int force_sig_fault(int sig, int code, void __user *addr
1726 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1727 {
1728 	return force_sig_fault_to_task(sig, code, addr
1729 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1730 }
1731 
1732 int send_sig_fault(int sig, int code, void __user *addr
1733 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1734 	, struct task_struct *t)
1735 {
1736 	struct kernel_siginfo info;
1737 
1738 	clear_siginfo(&info);
1739 	info.si_signo = sig;
1740 	info.si_errno = 0;
1741 	info.si_code  = code;
1742 	info.si_addr  = addr;
1743 #ifdef __ia64__
1744 	info.si_imm = imm;
1745 	info.si_flags = flags;
1746 	info.si_isr = isr;
1747 #endif
1748 	return send_sig_info(info.si_signo, &info, t);
1749 }
1750 
1751 int force_sig_mceerr(int code, void __user *addr, short lsb)
1752 {
1753 	struct kernel_siginfo info;
1754 
1755 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1756 	clear_siginfo(&info);
1757 	info.si_signo = SIGBUS;
1758 	info.si_errno = 0;
1759 	info.si_code = code;
1760 	info.si_addr = addr;
1761 	info.si_addr_lsb = lsb;
1762 	return force_sig_info(&info);
1763 }
1764 
1765 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1766 {
1767 	struct kernel_siginfo info;
1768 
1769 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1770 	clear_siginfo(&info);
1771 	info.si_signo = SIGBUS;
1772 	info.si_errno = 0;
1773 	info.si_code = code;
1774 	info.si_addr = addr;
1775 	info.si_addr_lsb = lsb;
1776 	return send_sig_info(info.si_signo, &info, t);
1777 }
1778 EXPORT_SYMBOL(send_sig_mceerr);
1779 
1780 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1781 {
1782 	struct kernel_siginfo info;
1783 
1784 	clear_siginfo(&info);
1785 	info.si_signo = SIGSEGV;
1786 	info.si_errno = 0;
1787 	info.si_code  = SEGV_BNDERR;
1788 	info.si_addr  = addr;
1789 	info.si_lower = lower;
1790 	info.si_upper = upper;
1791 	return force_sig_info(&info);
1792 }
1793 
1794 #ifdef SEGV_PKUERR
1795 int force_sig_pkuerr(void __user *addr, u32 pkey)
1796 {
1797 	struct kernel_siginfo info;
1798 
1799 	clear_siginfo(&info);
1800 	info.si_signo = SIGSEGV;
1801 	info.si_errno = 0;
1802 	info.si_code  = SEGV_PKUERR;
1803 	info.si_addr  = addr;
1804 	info.si_pkey  = pkey;
1805 	return force_sig_info(&info);
1806 }
1807 #endif
1808 
1809 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1810 {
1811 	struct kernel_siginfo info;
1812 
1813 	clear_siginfo(&info);
1814 	info.si_signo     = SIGTRAP;
1815 	info.si_errno     = 0;
1816 	info.si_code      = TRAP_PERF;
1817 	info.si_addr      = addr;
1818 	info.si_perf_data = sig_data;
1819 	info.si_perf_type = type;
1820 
1821 	/*
1822 	 * Signals generated by perf events should not terminate the whole
1823 	 * process if SIGTRAP is blocked, however, delivering the signal
1824 	 * asynchronously is better than not delivering at all. But tell user
1825 	 * space if the signal was asynchronous, so it can clearly be
1826 	 * distinguished from normal synchronous ones.
1827 	 */
1828 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1829 				     TRAP_PERF_FLAG_ASYNC :
1830 				     0;
1831 
1832 	return send_sig_info(info.si_signo, &info, current);
1833 }
1834 
1835 /**
1836  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1837  * @syscall: syscall number to send to userland
1838  * @reason: filter-supplied reason code to send to userland (via si_errno)
1839  * @force_coredump: true to trigger a coredump
1840  *
1841  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1842  */
1843 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1844 {
1845 	struct kernel_siginfo info;
1846 
1847 	clear_siginfo(&info);
1848 	info.si_signo = SIGSYS;
1849 	info.si_code = SYS_SECCOMP;
1850 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1851 	info.si_errno = reason;
1852 	info.si_arch = syscall_get_arch(current);
1853 	info.si_syscall = syscall;
1854 	return force_sig_info_to_task(&info, current,
1855 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1856 }
1857 
1858 /* For the crazy architectures that include trap information in
1859  * the errno field, instead of an actual errno value.
1860  */
1861 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1862 {
1863 	struct kernel_siginfo info;
1864 
1865 	clear_siginfo(&info);
1866 	info.si_signo = SIGTRAP;
1867 	info.si_errno = errno;
1868 	info.si_code  = TRAP_HWBKPT;
1869 	info.si_addr  = addr;
1870 	return force_sig_info(&info);
1871 }
1872 
1873 /* For the rare architectures that include trap information using
1874  * si_trapno.
1875  */
1876 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1877 {
1878 	struct kernel_siginfo info;
1879 
1880 	clear_siginfo(&info);
1881 	info.si_signo = sig;
1882 	info.si_errno = 0;
1883 	info.si_code  = code;
1884 	info.si_addr  = addr;
1885 	info.si_trapno = trapno;
1886 	return force_sig_info(&info);
1887 }
1888 
1889 /* For the rare architectures that include trap information using
1890  * si_trapno.
1891  */
1892 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1893 			  struct task_struct *t)
1894 {
1895 	struct kernel_siginfo info;
1896 
1897 	clear_siginfo(&info);
1898 	info.si_signo = sig;
1899 	info.si_errno = 0;
1900 	info.si_code  = code;
1901 	info.si_addr  = addr;
1902 	info.si_trapno = trapno;
1903 	return send_sig_info(info.si_signo, &info, t);
1904 }
1905 
1906 int kill_pgrp(struct pid *pid, int sig, int priv)
1907 {
1908 	int ret;
1909 
1910 	read_lock(&tasklist_lock);
1911 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1912 	read_unlock(&tasklist_lock);
1913 
1914 	return ret;
1915 }
1916 EXPORT_SYMBOL(kill_pgrp);
1917 
1918 int kill_pid(struct pid *pid, int sig, int priv)
1919 {
1920 	return kill_pid_info(sig, __si_special(priv), pid);
1921 }
1922 EXPORT_SYMBOL(kill_pid);
1923 
1924 /*
1925  * These functions support sending signals using preallocated sigqueue
1926  * structures.  This is needed "because realtime applications cannot
1927  * afford to lose notifications of asynchronous events, like timer
1928  * expirations or I/O completions".  In the case of POSIX Timers
1929  * we allocate the sigqueue structure from the timer_create.  If this
1930  * allocation fails we are able to report the failure to the application
1931  * with an EAGAIN error.
1932  */
1933 struct sigqueue *sigqueue_alloc(void)
1934 {
1935 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1936 }
1937 
1938 void sigqueue_free(struct sigqueue *q)
1939 {
1940 	unsigned long flags;
1941 	spinlock_t *lock = &current->sighand->siglock;
1942 
1943 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1944 	/*
1945 	 * We must hold ->siglock while testing q->list
1946 	 * to serialize with collect_signal() or with
1947 	 * __exit_signal()->flush_sigqueue().
1948 	 */
1949 	spin_lock_irqsave(lock, flags);
1950 	q->flags &= ~SIGQUEUE_PREALLOC;
1951 	/*
1952 	 * If it is queued it will be freed when dequeued,
1953 	 * like the "regular" sigqueue.
1954 	 */
1955 	if (!list_empty(&q->list))
1956 		q = NULL;
1957 	spin_unlock_irqrestore(lock, flags);
1958 
1959 	if (q)
1960 		__sigqueue_free(q);
1961 }
1962 
1963 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1964 {
1965 	int sig = q->info.si_signo;
1966 	struct sigpending *pending;
1967 	struct task_struct *t;
1968 	unsigned long flags;
1969 	int ret, result;
1970 
1971 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1972 
1973 	ret = -1;
1974 	rcu_read_lock();
1975 
1976 	/*
1977 	 * This function is used by POSIX timers to deliver a timer signal.
1978 	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1979 	 * set), the signal must be delivered to the specific thread (queues
1980 	 * into t->pending).
1981 	 *
1982 	 * Where type is not PIDTYPE_PID, signals must be delivered to the
1983 	 * process. In this case, prefer to deliver to current if it is in
1984 	 * the same thread group as the target process, which avoids
1985 	 * unnecessarily waking up a potentially idle task.
1986 	 */
1987 	t = pid_task(pid, type);
1988 	if (!t)
1989 		goto ret;
1990 	if (type != PIDTYPE_PID && same_thread_group(t, current))
1991 		t = current;
1992 	if (!likely(lock_task_sighand(t, &flags)))
1993 		goto ret;
1994 
1995 	ret = 1; /* the signal is ignored */
1996 	result = TRACE_SIGNAL_IGNORED;
1997 	if (!prepare_signal(sig, t, false))
1998 		goto out;
1999 
2000 	ret = 0;
2001 	if (unlikely(!list_empty(&q->list))) {
2002 		/*
2003 		 * If an SI_TIMER entry is already queue just increment
2004 		 * the overrun count.
2005 		 */
2006 		BUG_ON(q->info.si_code != SI_TIMER);
2007 		q->info.si_overrun++;
2008 		result = TRACE_SIGNAL_ALREADY_PENDING;
2009 		goto out;
2010 	}
2011 	q->info.si_overrun = 0;
2012 
2013 	signalfd_notify(t, sig);
2014 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2015 	list_add_tail(&q->list, &pending->list);
2016 	sigaddset(&pending->signal, sig);
2017 	complete_signal(sig, t, type);
2018 	result = TRACE_SIGNAL_DELIVERED;
2019 out:
2020 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2021 	unlock_task_sighand(t, &flags);
2022 ret:
2023 	rcu_read_unlock();
2024 	return ret;
2025 }
2026 
2027 static void do_notify_pidfd(struct task_struct *task)
2028 {
2029 	struct pid *pid;
2030 
2031 	WARN_ON(task->exit_state == 0);
2032 	pid = task_pid(task);
2033 	wake_up_all(&pid->wait_pidfd);
2034 }
2035 
2036 /*
2037  * Let a parent know about the death of a child.
2038  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2039  *
2040  * Returns true if our parent ignored us and so we've switched to
2041  * self-reaping.
2042  */
2043 bool do_notify_parent(struct task_struct *tsk, int sig)
2044 {
2045 	struct kernel_siginfo info;
2046 	unsigned long flags;
2047 	struct sighand_struct *psig;
2048 	bool autoreap = false;
2049 	u64 utime, stime;
2050 
2051 	WARN_ON_ONCE(sig == -1);
2052 
2053 	/* do_notify_parent_cldstop should have been called instead.  */
2054 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2055 
2056 	WARN_ON_ONCE(!tsk->ptrace &&
2057 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2058 
2059 	/* Wake up all pidfd waiters */
2060 	do_notify_pidfd(tsk);
2061 
2062 	if (sig != SIGCHLD) {
2063 		/*
2064 		 * This is only possible if parent == real_parent.
2065 		 * Check if it has changed security domain.
2066 		 */
2067 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2068 			sig = SIGCHLD;
2069 	}
2070 
2071 	clear_siginfo(&info);
2072 	info.si_signo = sig;
2073 	info.si_errno = 0;
2074 	/*
2075 	 * We are under tasklist_lock here so our parent is tied to
2076 	 * us and cannot change.
2077 	 *
2078 	 * task_active_pid_ns will always return the same pid namespace
2079 	 * until a task passes through release_task.
2080 	 *
2081 	 * write_lock() currently calls preempt_disable() which is the
2082 	 * same as rcu_read_lock(), but according to Oleg, this is not
2083 	 * correct to rely on this
2084 	 */
2085 	rcu_read_lock();
2086 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2087 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2088 				       task_uid(tsk));
2089 	rcu_read_unlock();
2090 
2091 	task_cputime(tsk, &utime, &stime);
2092 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2093 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2094 
2095 	info.si_status = tsk->exit_code & 0x7f;
2096 	if (tsk->exit_code & 0x80)
2097 		info.si_code = CLD_DUMPED;
2098 	else if (tsk->exit_code & 0x7f)
2099 		info.si_code = CLD_KILLED;
2100 	else {
2101 		info.si_code = CLD_EXITED;
2102 		info.si_status = tsk->exit_code >> 8;
2103 	}
2104 
2105 	psig = tsk->parent->sighand;
2106 	spin_lock_irqsave(&psig->siglock, flags);
2107 	if (!tsk->ptrace && sig == SIGCHLD &&
2108 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2109 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2110 		/*
2111 		 * We are exiting and our parent doesn't care.  POSIX.1
2112 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2113 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2114 		 * automatically and not left for our parent's wait4 call.
2115 		 * Rather than having the parent do it as a magic kind of
2116 		 * signal handler, we just set this to tell do_exit that we
2117 		 * can be cleaned up without becoming a zombie.  Note that
2118 		 * we still call __wake_up_parent in this case, because a
2119 		 * blocked sys_wait4 might now return -ECHILD.
2120 		 *
2121 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2122 		 * is implementation-defined: we do (if you don't want
2123 		 * it, just use SIG_IGN instead).
2124 		 */
2125 		autoreap = true;
2126 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2127 			sig = 0;
2128 	}
2129 	/*
2130 	 * Send with __send_signal as si_pid and si_uid are in the
2131 	 * parent's namespaces.
2132 	 */
2133 	if (valid_signal(sig) && sig)
2134 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2135 	__wake_up_parent(tsk, tsk->parent);
2136 	spin_unlock_irqrestore(&psig->siglock, flags);
2137 
2138 	return autoreap;
2139 }
2140 
2141 /**
2142  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2143  * @tsk: task reporting the state change
2144  * @for_ptracer: the notification is for ptracer
2145  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2146  *
2147  * Notify @tsk's parent that the stopped/continued state has changed.  If
2148  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2149  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2150  *
2151  * CONTEXT:
2152  * Must be called with tasklist_lock at least read locked.
2153  */
2154 static void do_notify_parent_cldstop(struct task_struct *tsk,
2155 				     bool for_ptracer, int why)
2156 {
2157 	struct kernel_siginfo info;
2158 	unsigned long flags;
2159 	struct task_struct *parent;
2160 	struct sighand_struct *sighand;
2161 	u64 utime, stime;
2162 
2163 	if (for_ptracer) {
2164 		parent = tsk->parent;
2165 	} else {
2166 		tsk = tsk->group_leader;
2167 		parent = tsk->real_parent;
2168 	}
2169 
2170 	clear_siginfo(&info);
2171 	info.si_signo = SIGCHLD;
2172 	info.si_errno = 0;
2173 	/*
2174 	 * see comment in do_notify_parent() about the following 4 lines
2175 	 */
2176 	rcu_read_lock();
2177 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2178 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2179 	rcu_read_unlock();
2180 
2181 	task_cputime(tsk, &utime, &stime);
2182 	info.si_utime = nsec_to_clock_t(utime);
2183 	info.si_stime = nsec_to_clock_t(stime);
2184 
2185  	info.si_code = why;
2186  	switch (why) {
2187  	case CLD_CONTINUED:
2188  		info.si_status = SIGCONT;
2189  		break;
2190  	case CLD_STOPPED:
2191  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2192  		break;
2193  	case CLD_TRAPPED:
2194  		info.si_status = tsk->exit_code & 0x7f;
2195  		break;
2196  	default:
2197  		BUG();
2198  	}
2199 
2200 	sighand = parent->sighand;
2201 	spin_lock_irqsave(&sighand->siglock, flags);
2202 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2203 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2204 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2205 	/*
2206 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2207 	 */
2208 	__wake_up_parent(tsk, parent);
2209 	spin_unlock_irqrestore(&sighand->siglock, flags);
2210 }
2211 
2212 /*
2213  * This must be called with current->sighand->siglock held.
2214  *
2215  * This should be the path for all ptrace stops.
2216  * We always set current->last_siginfo while stopped here.
2217  * That makes it a way to test a stopped process for
2218  * being ptrace-stopped vs being job-control-stopped.
2219  *
2220  * Returns the signal the ptracer requested the code resume
2221  * with.  If the code did not stop because the tracer is gone,
2222  * the stop signal remains unchanged unless clear_code.
2223  */
2224 static int ptrace_stop(int exit_code, int why, unsigned long message,
2225 		       kernel_siginfo_t *info)
2226 	__releases(&current->sighand->siglock)
2227 	__acquires(&current->sighand->siglock)
2228 {
2229 	bool gstop_done = false;
2230 
2231 	if (arch_ptrace_stop_needed()) {
2232 		/*
2233 		 * The arch code has something special to do before a
2234 		 * ptrace stop.  This is allowed to block, e.g. for faults
2235 		 * on user stack pages.  We can't keep the siglock while
2236 		 * calling arch_ptrace_stop, so we must release it now.
2237 		 * To preserve proper semantics, we must do this before
2238 		 * any signal bookkeeping like checking group_stop_count.
2239 		 */
2240 		spin_unlock_irq(&current->sighand->siglock);
2241 		arch_ptrace_stop();
2242 		spin_lock_irq(&current->sighand->siglock);
2243 	}
2244 
2245 	/*
2246 	 * After this point ptrace_signal_wake_up or signal_wake_up
2247 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2248 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2249 	 * signals here to prevent ptrace_stop sleeping in schedule.
2250 	 */
2251 	if (!current->ptrace || __fatal_signal_pending(current))
2252 		return exit_code;
2253 
2254 	set_special_state(TASK_TRACED);
2255 	current->jobctl |= JOBCTL_TRACED;
2256 
2257 	/*
2258 	 * We're committing to trapping.  TRACED should be visible before
2259 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2260 	 * Also, transition to TRACED and updates to ->jobctl should be
2261 	 * atomic with respect to siglock and should be done after the arch
2262 	 * hook as siglock is released and regrabbed across it.
2263 	 *
2264 	 *     TRACER				    TRACEE
2265 	 *
2266 	 *     ptrace_attach()
2267 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2268 	 *     do_wait()
2269 	 *       set_current_state()                smp_wmb();
2270 	 *       ptrace_do_wait()
2271 	 *         wait_task_stopped()
2272 	 *           task_stopped_code()
2273 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2274 	 */
2275 	smp_wmb();
2276 
2277 	current->ptrace_message = message;
2278 	current->last_siginfo = info;
2279 	current->exit_code = exit_code;
2280 
2281 	/*
2282 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2283 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2284 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2285 	 * could be clear now.  We act as if SIGCONT is received after
2286 	 * TASK_TRACED is entered - ignore it.
2287 	 */
2288 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2289 		gstop_done = task_participate_group_stop(current);
2290 
2291 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2292 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2293 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2294 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2295 
2296 	/* entering a trap, clear TRAPPING */
2297 	task_clear_jobctl_trapping(current);
2298 
2299 	spin_unlock_irq(&current->sighand->siglock);
2300 	read_lock(&tasklist_lock);
2301 	/*
2302 	 * Notify parents of the stop.
2303 	 *
2304 	 * While ptraced, there are two parents - the ptracer and
2305 	 * the real_parent of the group_leader.  The ptracer should
2306 	 * know about every stop while the real parent is only
2307 	 * interested in the completion of group stop.  The states
2308 	 * for the two don't interact with each other.  Notify
2309 	 * separately unless they're gonna be duplicates.
2310 	 */
2311 	if (current->ptrace)
2312 		do_notify_parent_cldstop(current, true, why);
2313 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2314 		do_notify_parent_cldstop(current, false, why);
2315 
2316 	/*
2317 	 * Don't want to allow preemption here, because
2318 	 * sys_ptrace() needs this task to be inactive.
2319 	 *
2320 	 * XXX: implement read_unlock_no_resched().
2321 	 */
2322 	preempt_disable();
2323 	read_unlock(&tasklist_lock);
2324 	cgroup_enter_frozen();
2325 	preempt_enable_no_resched();
2326 	schedule();
2327 	cgroup_leave_frozen(true);
2328 
2329 	/*
2330 	 * We are back.  Now reacquire the siglock before touching
2331 	 * last_siginfo, so that we are sure to have synchronized with
2332 	 * any signal-sending on another CPU that wants to examine it.
2333 	 */
2334 	spin_lock_irq(&current->sighand->siglock);
2335 	exit_code = current->exit_code;
2336 	current->last_siginfo = NULL;
2337 	current->ptrace_message = 0;
2338 	current->exit_code = 0;
2339 
2340 	/* LISTENING can be set only during STOP traps, clear it */
2341 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2342 
2343 	/*
2344 	 * Queued signals ignored us while we were stopped for tracing.
2345 	 * So check for any that we should take before resuming user mode.
2346 	 * This sets TIF_SIGPENDING, but never clears it.
2347 	 */
2348 	recalc_sigpending_tsk(current);
2349 	return exit_code;
2350 }
2351 
2352 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2353 {
2354 	kernel_siginfo_t info;
2355 
2356 	clear_siginfo(&info);
2357 	info.si_signo = signr;
2358 	info.si_code = exit_code;
2359 	info.si_pid = task_pid_vnr(current);
2360 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2361 
2362 	/* Let the debugger run.  */
2363 	return ptrace_stop(exit_code, why, message, &info);
2364 }
2365 
2366 int ptrace_notify(int exit_code, unsigned long message)
2367 {
2368 	int signr;
2369 
2370 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2371 	if (unlikely(task_work_pending(current)))
2372 		task_work_run();
2373 
2374 	spin_lock_irq(&current->sighand->siglock);
2375 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2376 	spin_unlock_irq(&current->sighand->siglock);
2377 	return signr;
2378 }
2379 
2380 /**
2381  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2382  * @signr: signr causing group stop if initiating
2383  *
2384  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2385  * and participate in it.  If already set, participate in the existing
2386  * group stop.  If participated in a group stop (and thus slept), %true is
2387  * returned with siglock released.
2388  *
2389  * If ptraced, this function doesn't handle stop itself.  Instead,
2390  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2391  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2392  * places afterwards.
2393  *
2394  * CONTEXT:
2395  * Must be called with @current->sighand->siglock held, which is released
2396  * on %true return.
2397  *
2398  * RETURNS:
2399  * %false if group stop is already cancelled or ptrace trap is scheduled.
2400  * %true if participated in group stop.
2401  */
2402 static bool do_signal_stop(int signr)
2403 	__releases(&current->sighand->siglock)
2404 {
2405 	struct signal_struct *sig = current->signal;
2406 
2407 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2408 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2409 		struct task_struct *t;
2410 
2411 		/* signr will be recorded in task->jobctl for retries */
2412 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2413 
2414 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2415 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2416 		    unlikely(sig->group_exec_task))
2417 			return false;
2418 		/*
2419 		 * There is no group stop already in progress.  We must
2420 		 * initiate one now.
2421 		 *
2422 		 * While ptraced, a task may be resumed while group stop is
2423 		 * still in effect and then receive a stop signal and
2424 		 * initiate another group stop.  This deviates from the
2425 		 * usual behavior as two consecutive stop signals can't
2426 		 * cause two group stops when !ptraced.  That is why we
2427 		 * also check !task_is_stopped(t) below.
2428 		 *
2429 		 * The condition can be distinguished by testing whether
2430 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2431 		 * group_exit_code in such case.
2432 		 *
2433 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2434 		 * an intervening stop signal is required to cause two
2435 		 * continued events regardless of ptrace.
2436 		 */
2437 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2438 			sig->group_exit_code = signr;
2439 
2440 		sig->group_stop_count = 0;
2441 
2442 		if (task_set_jobctl_pending(current, signr | gstop))
2443 			sig->group_stop_count++;
2444 
2445 		t = current;
2446 		while_each_thread(current, t) {
2447 			/*
2448 			 * Setting state to TASK_STOPPED for a group
2449 			 * stop is always done with the siglock held,
2450 			 * so this check has no races.
2451 			 */
2452 			if (!task_is_stopped(t) &&
2453 			    task_set_jobctl_pending(t, signr | gstop)) {
2454 				sig->group_stop_count++;
2455 				if (likely(!(t->ptrace & PT_SEIZED)))
2456 					signal_wake_up(t, 0);
2457 				else
2458 					ptrace_trap_notify(t);
2459 			}
2460 		}
2461 	}
2462 
2463 	if (likely(!current->ptrace)) {
2464 		int notify = 0;
2465 
2466 		/*
2467 		 * If there are no other threads in the group, or if there
2468 		 * is a group stop in progress and we are the last to stop,
2469 		 * report to the parent.
2470 		 */
2471 		if (task_participate_group_stop(current))
2472 			notify = CLD_STOPPED;
2473 
2474 		current->jobctl |= JOBCTL_STOPPED;
2475 		set_special_state(TASK_STOPPED);
2476 		spin_unlock_irq(&current->sighand->siglock);
2477 
2478 		/*
2479 		 * Notify the parent of the group stop completion.  Because
2480 		 * we're not holding either the siglock or tasklist_lock
2481 		 * here, ptracer may attach inbetween; however, this is for
2482 		 * group stop and should always be delivered to the real
2483 		 * parent of the group leader.  The new ptracer will get
2484 		 * its notification when this task transitions into
2485 		 * TASK_TRACED.
2486 		 */
2487 		if (notify) {
2488 			read_lock(&tasklist_lock);
2489 			do_notify_parent_cldstop(current, false, notify);
2490 			read_unlock(&tasklist_lock);
2491 		}
2492 
2493 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2494 		cgroup_enter_frozen();
2495 		schedule();
2496 		return true;
2497 	} else {
2498 		/*
2499 		 * While ptraced, group stop is handled by STOP trap.
2500 		 * Schedule it and let the caller deal with it.
2501 		 */
2502 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2503 		return false;
2504 	}
2505 }
2506 
2507 /**
2508  * do_jobctl_trap - take care of ptrace jobctl traps
2509  *
2510  * When PT_SEIZED, it's used for both group stop and explicit
2511  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2512  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2513  * the stop signal; otherwise, %SIGTRAP.
2514  *
2515  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2516  * number as exit_code and no siginfo.
2517  *
2518  * CONTEXT:
2519  * Must be called with @current->sighand->siglock held, which may be
2520  * released and re-acquired before returning with intervening sleep.
2521  */
2522 static void do_jobctl_trap(void)
2523 {
2524 	struct signal_struct *signal = current->signal;
2525 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2526 
2527 	if (current->ptrace & PT_SEIZED) {
2528 		if (!signal->group_stop_count &&
2529 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2530 			signr = SIGTRAP;
2531 		WARN_ON_ONCE(!signr);
2532 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2533 				 CLD_STOPPED, 0);
2534 	} else {
2535 		WARN_ON_ONCE(!signr);
2536 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2537 	}
2538 }
2539 
2540 /**
2541  * do_freezer_trap - handle the freezer jobctl trap
2542  *
2543  * Puts the task into frozen state, if only the task is not about to quit.
2544  * In this case it drops JOBCTL_TRAP_FREEZE.
2545  *
2546  * CONTEXT:
2547  * Must be called with @current->sighand->siglock held,
2548  * which is always released before returning.
2549  */
2550 static void do_freezer_trap(void)
2551 	__releases(&current->sighand->siglock)
2552 {
2553 	/*
2554 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2555 	 * let's make another loop to give it a chance to be handled.
2556 	 * In any case, we'll return back.
2557 	 */
2558 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2559 	     JOBCTL_TRAP_FREEZE) {
2560 		spin_unlock_irq(&current->sighand->siglock);
2561 		return;
2562 	}
2563 
2564 	/*
2565 	 * Now we're sure that there is no pending fatal signal and no
2566 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2567 	 * immediately (if there is a non-fatal signal pending), and
2568 	 * put the task into sleep.
2569 	 */
2570 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2571 	clear_thread_flag(TIF_SIGPENDING);
2572 	spin_unlock_irq(&current->sighand->siglock);
2573 	cgroup_enter_frozen();
2574 	schedule();
2575 }
2576 
2577 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2578 {
2579 	/*
2580 	 * We do not check sig_kernel_stop(signr) but set this marker
2581 	 * unconditionally because we do not know whether debugger will
2582 	 * change signr. This flag has no meaning unless we are going
2583 	 * to stop after return from ptrace_stop(). In this case it will
2584 	 * be checked in do_signal_stop(), we should only stop if it was
2585 	 * not cleared by SIGCONT while we were sleeping. See also the
2586 	 * comment in dequeue_signal().
2587 	 */
2588 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2589 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2590 
2591 	/* We're back.  Did the debugger cancel the sig?  */
2592 	if (signr == 0)
2593 		return signr;
2594 
2595 	/*
2596 	 * Update the siginfo structure if the signal has
2597 	 * changed.  If the debugger wanted something
2598 	 * specific in the siginfo structure then it should
2599 	 * have updated *info via PTRACE_SETSIGINFO.
2600 	 */
2601 	if (signr != info->si_signo) {
2602 		clear_siginfo(info);
2603 		info->si_signo = signr;
2604 		info->si_errno = 0;
2605 		info->si_code = SI_USER;
2606 		rcu_read_lock();
2607 		info->si_pid = task_pid_vnr(current->parent);
2608 		info->si_uid = from_kuid_munged(current_user_ns(),
2609 						task_uid(current->parent));
2610 		rcu_read_unlock();
2611 	}
2612 
2613 	/* If the (new) signal is now blocked, requeue it.  */
2614 	if (sigismember(&current->blocked, signr) ||
2615 	    fatal_signal_pending(current)) {
2616 		send_signal_locked(signr, info, current, type);
2617 		signr = 0;
2618 	}
2619 
2620 	return signr;
2621 }
2622 
2623 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2624 {
2625 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2626 	case SIL_FAULT:
2627 	case SIL_FAULT_TRAPNO:
2628 	case SIL_FAULT_MCEERR:
2629 	case SIL_FAULT_BNDERR:
2630 	case SIL_FAULT_PKUERR:
2631 	case SIL_FAULT_PERF_EVENT:
2632 		ksig->info.si_addr = arch_untagged_si_addr(
2633 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2634 		break;
2635 	case SIL_KILL:
2636 	case SIL_TIMER:
2637 	case SIL_POLL:
2638 	case SIL_CHLD:
2639 	case SIL_RT:
2640 	case SIL_SYS:
2641 		break;
2642 	}
2643 }
2644 
2645 bool get_signal(struct ksignal *ksig)
2646 {
2647 	struct sighand_struct *sighand = current->sighand;
2648 	struct signal_struct *signal = current->signal;
2649 	int signr;
2650 
2651 	clear_notify_signal();
2652 	if (unlikely(task_work_pending(current)))
2653 		task_work_run();
2654 
2655 	if (!task_sigpending(current))
2656 		return false;
2657 
2658 	if (unlikely(uprobe_deny_signal()))
2659 		return false;
2660 
2661 	/*
2662 	 * Do this once, we can't return to user-mode if freezing() == T.
2663 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2664 	 * thus do not need another check after return.
2665 	 */
2666 	try_to_freeze();
2667 
2668 relock:
2669 	spin_lock_irq(&sighand->siglock);
2670 
2671 	/*
2672 	 * Every stopped thread goes here after wakeup. Check to see if
2673 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2674 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2675 	 */
2676 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2677 		int why;
2678 
2679 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2680 			why = CLD_CONTINUED;
2681 		else
2682 			why = CLD_STOPPED;
2683 
2684 		signal->flags &= ~SIGNAL_CLD_MASK;
2685 
2686 		spin_unlock_irq(&sighand->siglock);
2687 
2688 		/*
2689 		 * Notify the parent that we're continuing.  This event is
2690 		 * always per-process and doesn't make whole lot of sense
2691 		 * for ptracers, who shouldn't consume the state via
2692 		 * wait(2) either, but, for backward compatibility, notify
2693 		 * the ptracer of the group leader too unless it's gonna be
2694 		 * a duplicate.
2695 		 */
2696 		read_lock(&tasklist_lock);
2697 		do_notify_parent_cldstop(current, false, why);
2698 
2699 		if (ptrace_reparented(current->group_leader))
2700 			do_notify_parent_cldstop(current->group_leader,
2701 						true, why);
2702 		read_unlock(&tasklist_lock);
2703 
2704 		goto relock;
2705 	}
2706 
2707 	for (;;) {
2708 		struct k_sigaction *ka;
2709 		enum pid_type type;
2710 
2711 		/* Has this task already been marked for death? */
2712 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2713 		     signal->group_exec_task) {
2714 			clear_siginfo(&ksig->info);
2715 			ksig->info.si_signo = signr = SIGKILL;
2716 			sigdelset(&current->pending.signal, SIGKILL);
2717 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2718 				&sighand->action[SIGKILL - 1]);
2719 			recalc_sigpending();
2720 			goto fatal;
2721 		}
2722 
2723 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2724 		    do_signal_stop(0))
2725 			goto relock;
2726 
2727 		if (unlikely(current->jobctl &
2728 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2729 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2730 				do_jobctl_trap();
2731 				spin_unlock_irq(&sighand->siglock);
2732 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2733 				do_freezer_trap();
2734 
2735 			goto relock;
2736 		}
2737 
2738 		/*
2739 		 * If the task is leaving the frozen state, let's update
2740 		 * cgroup counters and reset the frozen bit.
2741 		 */
2742 		if (unlikely(cgroup_task_frozen(current))) {
2743 			spin_unlock_irq(&sighand->siglock);
2744 			cgroup_leave_frozen(false);
2745 			goto relock;
2746 		}
2747 
2748 		/*
2749 		 * Signals generated by the execution of an instruction
2750 		 * need to be delivered before any other pending signals
2751 		 * so that the instruction pointer in the signal stack
2752 		 * frame points to the faulting instruction.
2753 		 */
2754 		type = PIDTYPE_PID;
2755 		signr = dequeue_synchronous_signal(&ksig->info);
2756 		if (!signr)
2757 			signr = dequeue_signal(current, &current->blocked,
2758 					       &ksig->info, &type);
2759 
2760 		if (!signr)
2761 			break; /* will return 0 */
2762 
2763 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2764 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2765 			signr = ptrace_signal(signr, &ksig->info, type);
2766 			if (!signr)
2767 				continue;
2768 		}
2769 
2770 		ka = &sighand->action[signr-1];
2771 
2772 		/* Trace actually delivered signals. */
2773 		trace_signal_deliver(signr, &ksig->info, ka);
2774 
2775 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2776 			continue;
2777 		if (ka->sa.sa_handler != SIG_DFL) {
2778 			/* Run the handler.  */
2779 			ksig->ka = *ka;
2780 
2781 			if (ka->sa.sa_flags & SA_ONESHOT)
2782 				ka->sa.sa_handler = SIG_DFL;
2783 
2784 			break; /* will return non-zero "signr" value */
2785 		}
2786 
2787 		/*
2788 		 * Now we are doing the default action for this signal.
2789 		 */
2790 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2791 			continue;
2792 
2793 		/*
2794 		 * Global init gets no signals it doesn't want.
2795 		 * Container-init gets no signals it doesn't want from same
2796 		 * container.
2797 		 *
2798 		 * Note that if global/container-init sees a sig_kernel_only()
2799 		 * signal here, the signal must have been generated internally
2800 		 * or must have come from an ancestor namespace. In either
2801 		 * case, the signal cannot be dropped.
2802 		 */
2803 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2804 				!sig_kernel_only(signr))
2805 			continue;
2806 
2807 		if (sig_kernel_stop(signr)) {
2808 			/*
2809 			 * The default action is to stop all threads in
2810 			 * the thread group.  The job control signals
2811 			 * do nothing in an orphaned pgrp, but SIGSTOP
2812 			 * always works.  Note that siglock needs to be
2813 			 * dropped during the call to is_orphaned_pgrp()
2814 			 * because of lock ordering with tasklist_lock.
2815 			 * This allows an intervening SIGCONT to be posted.
2816 			 * We need to check for that and bail out if necessary.
2817 			 */
2818 			if (signr != SIGSTOP) {
2819 				spin_unlock_irq(&sighand->siglock);
2820 
2821 				/* signals can be posted during this window */
2822 
2823 				if (is_current_pgrp_orphaned())
2824 					goto relock;
2825 
2826 				spin_lock_irq(&sighand->siglock);
2827 			}
2828 
2829 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2830 				/* It released the siglock.  */
2831 				goto relock;
2832 			}
2833 
2834 			/*
2835 			 * We didn't actually stop, due to a race
2836 			 * with SIGCONT or something like that.
2837 			 */
2838 			continue;
2839 		}
2840 
2841 	fatal:
2842 		spin_unlock_irq(&sighand->siglock);
2843 		if (unlikely(cgroup_task_frozen(current)))
2844 			cgroup_leave_frozen(true);
2845 
2846 		/*
2847 		 * Anything else is fatal, maybe with a core dump.
2848 		 */
2849 		current->flags |= PF_SIGNALED;
2850 
2851 		if (sig_kernel_coredump(signr)) {
2852 			if (print_fatal_signals)
2853 				print_fatal_signal(ksig->info.si_signo);
2854 			proc_coredump_connector(current);
2855 			/*
2856 			 * If it was able to dump core, this kills all
2857 			 * other threads in the group and synchronizes with
2858 			 * their demise.  If we lost the race with another
2859 			 * thread getting here, it set group_exit_code
2860 			 * first and our do_group_exit call below will use
2861 			 * that value and ignore the one we pass it.
2862 			 */
2863 			do_coredump(&ksig->info);
2864 		}
2865 
2866 		/*
2867 		 * PF_USER_WORKER threads will catch and exit on fatal signals
2868 		 * themselves. They have cleanup that must be performed, so
2869 		 * we cannot call do_exit() on their behalf.
2870 		 */
2871 		if (current->flags & PF_USER_WORKER)
2872 			goto out;
2873 
2874 		/*
2875 		 * Death signals, no core dump.
2876 		 */
2877 		do_group_exit(ksig->info.si_signo);
2878 		/* NOTREACHED */
2879 	}
2880 	spin_unlock_irq(&sighand->siglock);
2881 out:
2882 	ksig->sig = signr;
2883 
2884 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2885 		hide_si_addr_tag_bits(ksig);
2886 
2887 	return ksig->sig > 0;
2888 }
2889 
2890 /**
2891  * signal_delivered - called after signal delivery to update blocked signals
2892  * @ksig:		kernel signal struct
2893  * @stepping:		nonzero if debugger single-step or block-step in use
2894  *
2895  * This function should be called when a signal has successfully been
2896  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2897  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2898  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2899  */
2900 static void signal_delivered(struct ksignal *ksig, int stepping)
2901 {
2902 	sigset_t blocked;
2903 
2904 	/* A signal was successfully delivered, and the
2905 	   saved sigmask was stored on the signal frame,
2906 	   and will be restored by sigreturn.  So we can
2907 	   simply clear the restore sigmask flag.  */
2908 	clear_restore_sigmask();
2909 
2910 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2911 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2912 		sigaddset(&blocked, ksig->sig);
2913 	set_current_blocked(&blocked);
2914 	if (current->sas_ss_flags & SS_AUTODISARM)
2915 		sas_ss_reset(current);
2916 	if (stepping)
2917 		ptrace_notify(SIGTRAP, 0);
2918 }
2919 
2920 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2921 {
2922 	if (failed)
2923 		force_sigsegv(ksig->sig);
2924 	else
2925 		signal_delivered(ksig, stepping);
2926 }
2927 
2928 /*
2929  * It could be that complete_signal() picked us to notify about the
2930  * group-wide signal. Other threads should be notified now to take
2931  * the shared signals in @which since we will not.
2932  */
2933 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2934 {
2935 	sigset_t retarget;
2936 	struct task_struct *t;
2937 
2938 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2939 	if (sigisemptyset(&retarget))
2940 		return;
2941 
2942 	t = tsk;
2943 	while_each_thread(tsk, t) {
2944 		if (t->flags & PF_EXITING)
2945 			continue;
2946 
2947 		if (!has_pending_signals(&retarget, &t->blocked))
2948 			continue;
2949 		/* Remove the signals this thread can handle. */
2950 		sigandsets(&retarget, &retarget, &t->blocked);
2951 
2952 		if (!task_sigpending(t))
2953 			signal_wake_up(t, 0);
2954 
2955 		if (sigisemptyset(&retarget))
2956 			break;
2957 	}
2958 }
2959 
2960 void exit_signals(struct task_struct *tsk)
2961 {
2962 	int group_stop = 0;
2963 	sigset_t unblocked;
2964 
2965 	/*
2966 	 * @tsk is about to have PF_EXITING set - lock out users which
2967 	 * expect stable threadgroup.
2968 	 */
2969 	cgroup_threadgroup_change_begin(tsk);
2970 
2971 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2972 		sched_mm_cid_exit_signals(tsk);
2973 		tsk->flags |= PF_EXITING;
2974 		cgroup_threadgroup_change_end(tsk);
2975 		return;
2976 	}
2977 
2978 	spin_lock_irq(&tsk->sighand->siglock);
2979 	/*
2980 	 * From now this task is not visible for group-wide signals,
2981 	 * see wants_signal(), do_signal_stop().
2982 	 */
2983 	sched_mm_cid_exit_signals(tsk);
2984 	tsk->flags |= PF_EXITING;
2985 
2986 	cgroup_threadgroup_change_end(tsk);
2987 
2988 	if (!task_sigpending(tsk))
2989 		goto out;
2990 
2991 	unblocked = tsk->blocked;
2992 	signotset(&unblocked);
2993 	retarget_shared_pending(tsk, &unblocked);
2994 
2995 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2996 	    task_participate_group_stop(tsk))
2997 		group_stop = CLD_STOPPED;
2998 out:
2999 	spin_unlock_irq(&tsk->sighand->siglock);
3000 
3001 	/*
3002 	 * If group stop has completed, deliver the notification.  This
3003 	 * should always go to the real parent of the group leader.
3004 	 */
3005 	if (unlikely(group_stop)) {
3006 		read_lock(&tasklist_lock);
3007 		do_notify_parent_cldstop(tsk, false, group_stop);
3008 		read_unlock(&tasklist_lock);
3009 	}
3010 }
3011 
3012 /*
3013  * System call entry points.
3014  */
3015 
3016 /**
3017  *  sys_restart_syscall - restart a system call
3018  */
3019 SYSCALL_DEFINE0(restart_syscall)
3020 {
3021 	struct restart_block *restart = &current->restart_block;
3022 	return restart->fn(restart);
3023 }
3024 
3025 long do_no_restart_syscall(struct restart_block *param)
3026 {
3027 	return -EINTR;
3028 }
3029 
3030 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3031 {
3032 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3033 		sigset_t newblocked;
3034 		/* A set of now blocked but previously unblocked signals. */
3035 		sigandnsets(&newblocked, newset, &current->blocked);
3036 		retarget_shared_pending(tsk, &newblocked);
3037 	}
3038 	tsk->blocked = *newset;
3039 	recalc_sigpending();
3040 }
3041 
3042 /**
3043  * set_current_blocked - change current->blocked mask
3044  * @newset: new mask
3045  *
3046  * It is wrong to change ->blocked directly, this helper should be used
3047  * to ensure the process can't miss a shared signal we are going to block.
3048  */
3049 void set_current_blocked(sigset_t *newset)
3050 {
3051 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3052 	__set_current_blocked(newset);
3053 }
3054 
3055 void __set_current_blocked(const sigset_t *newset)
3056 {
3057 	struct task_struct *tsk = current;
3058 
3059 	/*
3060 	 * In case the signal mask hasn't changed, there is nothing we need
3061 	 * to do. The current->blocked shouldn't be modified by other task.
3062 	 */
3063 	if (sigequalsets(&tsk->blocked, newset))
3064 		return;
3065 
3066 	spin_lock_irq(&tsk->sighand->siglock);
3067 	__set_task_blocked(tsk, newset);
3068 	spin_unlock_irq(&tsk->sighand->siglock);
3069 }
3070 
3071 /*
3072  * This is also useful for kernel threads that want to temporarily
3073  * (or permanently) block certain signals.
3074  *
3075  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3076  * interface happily blocks "unblockable" signals like SIGKILL
3077  * and friends.
3078  */
3079 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3080 {
3081 	struct task_struct *tsk = current;
3082 	sigset_t newset;
3083 
3084 	/* Lockless, only current can change ->blocked, never from irq */
3085 	if (oldset)
3086 		*oldset = tsk->blocked;
3087 
3088 	switch (how) {
3089 	case SIG_BLOCK:
3090 		sigorsets(&newset, &tsk->blocked, set);
3091 		break;
3092 	case SIG_UNBLOCK:
3093 		sigandnsets(&newset, &tsk->blocked, set);
3094 		break;
3095 	case SIG_SETMASK:
3096 		newset = *set;
3097 		break;
3098 	default:
3099 		return -EINVAL;
3100 	}
3101 
3102 	__set_current_blocked(&newset);
3103 	return 0;
3104 }
3105 EXPORT_SYMBOL(sigprocmask);
3106 
3107 /*
3108  * The api helps set app-provided sigmasks.
3109  *
3110  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3111  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3112  *
3113  * Note that it does set_restore_sigmask() in advance, so it must be always
3114  * paired with restore_saved_sigmask_unless() before return from syscall.
3115  */
3116 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3117 {
3118 	sigset_t kmask;
3119 
3120 	if (!umask)
3121 		return 0;
3122 	if (sigsetsize != sizeof(sigset_t))
3123 		return -EINVAL;
3124 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3125 		return -EFAULT;
3126 
3127 	set_restore_sigmask();
3128 	current->saved_sigmask = current->blocked;
3129 	set_current_blocked(&kmask);
3130 
3131 	return 0;
3132 }
3133 
3134 #ifdef CONFIG_COMPAT
3135 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3136 			    size_t sigsetsize)
3137 {
3138 	sigset_t kmask;
3139 
3140 	if (!umask)
3141 		return 0;
3142 	if (sigsetsize != sizeof(compat_sigset_t))
3143 		return -EINVAL;
3144 	if (get_compat_sigset(&kmask, umask))
3145 		return -EFAULT;
3146 
3147 	set_restore_sigmask();
3148 	current->saved_sigmask = current->blocked;
3149 	set_current_blocked(&kmask);
3150 
3151 	return 0;
3152 }
3153 #endif
3154 
3155 /**
3156  *  sys_rt_sigprocmask - change the list of currently blocked signals
3157  *  @how: whether to add, remove, or set signals
3158  *  @nset: stores pending signals
3159  *  @oset: previous value of signal mask if non-null
3160  *  @sigsetsize: size of sigset_t type
3161  */
3162 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3163 		sigset_t __user *, oset, size_t, sigsetsize)
3164 {
3165 	sigset_t old_set, new_set;
3166 	int error;
3167 
3168 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3169 	if (sigsetsize != sizeof(sigset_t))
3170 		return -EINVAL;
3171 
3172 	old_set = current->blocked;
3173 
3174 	if (nset) {
3175 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3176 			return -EFAULT;
3177 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3178 
3179 		error = sigprocmask(how, &new_set, NULL);
3180 		if (error)
3181 			return error;
3182 	}
3183 
3184 	if (oset) {
3185 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3186 			return -EFAULT;
3187 	}
3188 
3189 	return 0;
3190 }
3191 
3192 #ifdef CONFIG_COMPAT
3193 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3194 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3195 {
3196 	sigset_t old_set = current->blocked;
3197 
3198 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3199 	if (sigsetsize != sizeof(sigset_t))
3200 		return -EINVAL;
3201 
3202 	if (nset) {
3203 		sigset_t new_set;
3204 		int error;
3205 		if (get_compat_sigset(&new_set, nset))
3206 			return -EFAULT;
3207 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3208 
3209 		error = sigprocmask(how, &new_set, NULL);
3210 		if (error)
3211 			return error;
3212 	}
3213 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3214 }
3215 #endif
3216 
3217 static void do_sigpending(sigset_t *set)
3218 {
3219 	spin_lock_irq(&current->sighand->siglock);
3220 	sigorsets(set, &current->pending.signal,
3221 		  &current->signal->shared_pending.signal);
3222 	spin_unlock_irq(&current->sighand->siglock);
3223 
3224 	/* Outside the lock because only this thread touches it.  */
3225 	sigandsets(set, &current->blocked, set);
3226 }
3227 
3228 /**
3229  *  sys_rt_sigpending - examine a pending signal that has been raised
3230  *			while blocked
3231  *  @uset: stores pending signals
3232  *  @sigsetsize: size of sigset_t type or larger
3233  */
3234 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3235 {
3236 	sigset_t set;
3237 
3238 	if (sigsetsize > sizeof(*uset))
3239 		return -EINVAL;
3240 
3241 	do_sigpending(&set);
3242 
3243 	if (copy_to_user(uset, &set, sigsetsize))
3244 		return -EFAULT;
3245 
3246 	return 0;
3247 }
3248 
3249 #ifdef CONFIG_COMPAT
3250 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3251 		compat_size_t, sigsetsize)
3252 {
3253 	sigset_t set;
3254 
3255 	if (sigsetsize > sizeof(*uset))
3256 		return -EINVAL;
3257 
3258 	do_sigpending(&set);
3259 
3260 	return put_compat_sigset(uset, &set, sigsetsize);
3261 }
3262 #endif
3263 
3264 static const struct {
3265 	unsigned char limit, layout;
3266 } sig_sicodes[] = {
3267 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3268 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3269 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3270 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3271 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3272 #if defined(SIGEMT)
3273 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3274 #endif
3275 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3276 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3277 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3278 };
3279 
3280 static bool known_siginfo_layout(unsigned sig, int si_code)
3281 {
3282 	if (si_code == SI_KERNEL)
3283 		return true;
3284 	else if ((si_code > SI_USER)) {
3285 		if (sig_specific_sicodes(sig)) {
3286 			if (si_code <= sig_sicodes[sig].limit)
3287 				return true;
3288 		}
3289 		else if (si_code <= NSIGPOLL)
3290 			return true;
3291 	}
3292 	else if (si_code >= SI_DETHREAD)
3293 		return true;
3294 	else if (si_code == SI_ASYNCNL)
3295 		return true;
3296 	return false;
3297 }
3298 
3299 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3300 {
3301 	enum siginfo_layout layout = SIL_KILL;
3302 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3303 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3304 		    (si_code <= sig_sicodes[sig].limit)) {
3305 			layout = sig_sicodes[sig].layout;
3306 			/* Handle the exceptions */
3307 			if ((sig == SIGBUS) &&
3308 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3309 				layout = SIL_FAULT_MCEERR;
3310 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3311 				layout = SIL_FAULT_BNDERR;
3312 #ifdef SEGV_PKUERR
3313 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3314 				layout = SIL_FAULT_PKUERR;
3315 #endif
3316 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3317 				layout = SIL_FAULT_PERF_EVENT;
3318 			else if (IS_ENABLED(CONFIG_SPARC) &&
3319 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3320 				layout = SIL_FAULT_TRAPNO;
3321 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3322 				 ((sig == SIGFPE) ||
3323 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3324 				layout = SIL_FAULT_TRAPNO;
3325 		}
3326 		else if (si_code <= NSIGPOLL)
3327 			layout = SIL_POLL;
3328 	} else {
3329 		if (si_code == SI_TIMER)
3330 			layout = SIL_TIMER;
3331 		else if (si_code == SI_SIGIO)
3332 			layout = SIL_POLL;
3333 		else if (si_code < 0)
3334 			layout = SIL_RT;
3335 	}
3336 	return layout;
3337 }
3338 
3339 static inline char __user *si_expansion(const siginfo_t __user *info)
3340 {
3341 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3342 }
3343 
3344 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3345 {
3346 	char __user *expansion = si_expansion(to);
3347 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3348 		return -EFAULT;
3349 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3350 		return -EFAULT;
3351 	return 0;
3352 }
3353 
3354 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3355 				       const siginfo_t __user *from)
3356 {
3357 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3358 		char __user *expansion = si_expansion(from);
3359 		char buf[SI_EXPANSION_SIZE];
3360 		int i;
3361 		/*
3362 		 * An unknown si_code might need more than
3363 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3364 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3365 		 * will return this data to userspace exactly.
3366 		 */
3367 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3368 			return -EFAULT;
3369 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3370 			if (buf[i] != 0)
3371 				return -E2BIG;
3372 		}
3373 	}
3374 	return 0;
3375 }
3376 
3377 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3378 				    const siginfo_t __user *from)
3379 {
3380 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3381 		return -EFAULT;
3382 	to->si_signo = signo;
3383 	return post_copy_siginfo_from_user(to, from);
3384 }
3385 
3386 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3387 {
3388 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3389 		return -EFAULT;
3390 	return post_copy_siginfo_from_user(to, from);
3391 }
3392 
3393 #ifdef CONFIG_COMPAT
3394 /**
3395  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3396  * @to: compat siginfo destination
3397  * @from: kernel siginfo source
3398  *
3399  * Note: This function does not work properly for the SIGCHLD on x32, but
3400  * fortunately it doesn't have to.  The only valid callers for this function are
3401  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3402  * The latter does not care because SIGCHLD will never cause a coredump.
3403  */
3404 void copy_siginfo_to_external32(struct compat_siginfo *to,
3405 		const struct kernel_siginfo *from)
3406 {
3407 	memset(to, 0, sizeof(*to));
3408 
3409 	to->si_signo = from->si_signo;
3410 	to->si_errno = from->si_errno;
3411 	to->si_code  = from->si_code;
3412 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3413 	case SIL_KILL:
3414 		to->si_pid = from->si_pid;
3415 		to->si_uid = from->si_uid;
3416 		break;
3417 	case SIL_TIMER:
3418 		to->si_tid     = from->si_tid;
3419 		to->si_overrun = from->si_overrun;
3420 		to->si_int     = from->si_int;
3421 		break;
3422 	case SIL_POLL:
3423 		to->si_band = from->si_band;
3424 		to->si_fd   = from->si_fd;
3425 		break;
3426 	case SIL_FAULT:
3427 		to->si_addr = ptr_to_compat(from->si_addr);
3428 		break;
3429 	case SIL_FAULT_TRAPNO:
3430 		to->si_addr = ptr_to_compat(from->si_addr);
3431 		to->si_trapno = from->si_trapno;
3432 		break;
3433 	case SIL_FAULT_MCEERR:
3434 		to->si_addr = ptr_to_compat(from->si_addr);
3435 		to->si_addr_lsb = from->si_addr_lsb;
3436 		break;
3437 	case SIL_FAULT_BNDERR:
3438 		to->si_addr = ptr_to_compat(from->si_addr);
3439 		to->si_lower = ptr_to_compat(from->si_lower);
3440 		to->si_upper = ptr_to_compat(from->si_upper);
3441 		break;
3442 	case SIL_FAULT_PKUERR:
3443 		to->si_addr = ptr_to_compat(from->si_addr);
3444 		to->si_pkey = from->si_pkey;
3445 		break;
3446 	case SIL_FAULT_PERF_EVENT:
3447 		to->si_addr = ptr_to_compat(from->si_addr);
3448 		to->si_perf_data = from->si_perf_data;
3449 		to->si_perf_type = from->si_perf_type;
3450 		to->si_perf_flags = from->si_perf_flags;
3451 		break;
3452 	case SIL_CHLD:
3453 		to->si_pid = from->si_pid;
3454 		to->si_uid = from->si_uid;
3455 		to->si_status = from->si_status;
3456 		to->si_utime = from->si_utime;
3457 		to->si_stime = from->si_stime;
3458 		break;
3459 	case SIL_RT:
3460 		to->si_pid = from->si_pid;
3461 		to->si_uid = from->si_uid;
3462 		to->si_int = from->si_int;
3463 		break;
3464 	case SIL_SYS:
3465 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3466 		to->si_syscall   = from->si_syscall;
3467 		to->si_arch      = from->si_arch;
3468 		break;
3469 	}
3470 }
3471 
3472 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3473 			   const struct kernel_siginfo *from)
3474 {
3475 	struct compat_siginfo new;
3476 
3477 	copy_siginfo_to_external32(&new, from);
3478 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3479 		return -EFAULT;
3480 	return 0;
3481 }
3482 
3483 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3484 					 const struct compat_siginfo *from)
3485 {
3486 	clear_siginfo(to);
3487 	to->si_signo = from->si_signo;
3488 	to->si_errno = from->si_errno;
3489 	to->si_code  = from->si_code;
3490 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3491 	case SIL_KILL:
3492 		to->si_pid = from->si_pid;
3493 		to->si_uid = from->si_uid;
3494 		break;
3495 	case SIL_TIMER:
3496 		to->si_tid     = from->si_tid;
3497 		to->si_overrun = from->si_overrun;
3498 		to->si_int     = from->si_int;
3499 		break;
3500 	case SIL_POLL:
3501 		to->si_band = from->si_band;
3502 		to->si_fd   = from->si_fd;
3503 		break;
3504 	case SIL_FAULT:
3505 		to->si_addr = compat_ptr(from->si_addr);
3506 		break;
3507 	case SIL_FAULT_TRAPNO:
3508 		to->si_addr = compat_ptr(from->si_addr);
3509 		to->si_trapno = from->si_trapno;
3510 		break;
3511 	case SIL_FAULT_MCEERR:
3512 		to->si_addr = compat_ptr(from->si_addr);
3513 		to->si_addr_lsb = from->si_addr_lsb;
3514 		break;
3515 	case SIL_FAULT_BNDERR:
3516 		to->si_addr = compat_ptr(from->si_addr);
3517 		to->si_lower = compat_ptr(from->si_lower);
3518 		to->si_upper = compat_ptr(from->si_upper);
3519 		break;
3520 	case SIL_FAULT_PKUERR:
3521 		to->si_addr = compat_ptr(from->si_addr);
3522 		to->si_pkey = from->si_pkey;
3523 		break;
3524 	case SIL_FAULT_PERF_EVENT:
3525 		to->si_addr = compat_ptr(from->si_addr);
3526 		to->si_perf_data = from->si_perf_data;
3527 		to->si_perf_type = from->si_perf_type;
3528 		to->si_perf_flags = from->si_perf_flags;
3529 		break;
3530 	case SIL_CHLD:
3531 		to->si_pid    = from->si_pid;
3532 		to->si_uid    = from->si_uid;
3533 		to->si_status = from->si_status;
3534 #ifdef CONFIG_X86_X32_ABI
3535 		if (in_x32_syscall()) {
3536 			to->si_utime = from->_sifields._sigchld_x32._utime;
3537 			to->si_stime = from->_sifields._sigchld_x32._stime;
3538 		} else
3539 #endif
3540 		{
3541 			to->si_utime = from->si_utime;
3542 			to->si_stime = from->si_stime;
3543 		}
3544 		break;
3545 	case SIL_RT:
3546 		to->si_pid = from->si_pid;
3547 		to->si_uid = from->si_uid;
3548 		to->si_int = from->si_int;
3549 		break;
3550 	case SIL_SYS:
3551 		to->si_call_addr = compat_ptr(from->si_call_addr);
3552 		to->si_syscall   = from->si_syscall;
3553 		to->si_arch      = from->si_arch;
3554 		break;
3555 	}
3556 	return 0;
3557 }
3558 
3559 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3560 				      const struct compat_siginfo __user *ufrom)
3561 {
3562 	struct compat_siginfo from;
3563 
3564 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3565 		return -EFAULT;
3566 
3567 	from.si_signo = signo;
3568 	return post_copy_siginfo_from_user32(to, &from);
3569 }
3570 
3571 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3572 			     const struct compat_siginfo __user *ufrom)
3573 {
3574 	struct compat_siginfo from;
3575 
3576 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3577 		return -EFAULT;
3578 
3579 	return post_copy_siginfo_from_user32(to, &from);
3580 }
3581 #endif /* CONFIG_COMPAT */
3582 
3583 /**
3584  *  do_sigtimedwait - wait for queued signals specified in @which
3585  *  @which: queued signals to wait for
3586  *  @info: if non-null, the signal's siginfo is returned here
3587  *  @ts: upper bound on process time suspension
3588  */
3589 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3590 		    const struct timespec64 *ts)
3591 {
3592 	ktime_t *to = NULL, timeout = KTIME_MAX;
3593 	struct task_struct *tsk = current;
3594 	sigset_t mask = *which;
3595 	enum pid_type type;
3596 	int sig, ret = 0;
3597 
3598 	if (ts) {
3599 		if (!timespec64_valid(ts))
3600 			return -EINVAL;
3601 		timeout = timespec64_to_ktime(*ts);
3602 		to = &timeout;
3603 	}
3604 
3605 	/*
3606 	 * Invert the set of allowed signals to get those we want to block.
3607 	 */
3608 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3609 	signotset(&mask);
3610 
3611 	spin_lock_irq(&tsk->sighand->siglock);
3612 	sig = dequeue_signal(tsk, &mask, info, &type);
3613 	if (!sig && timeout) {
3614 		/*
3615 		 * None ready, temporarily unblock those we're interested
3616 		 * while we are sleeping in so that we'll be awakened when
3617 		 * they arrive. Unblocking is always fine, we can avoid
3618 		 * set_current_blocked().
3619 		 */
3620 		tsk->real_blocked = tsk->blocked;
3621 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3622 		recalc_sigpending();
3623 		spin_unlock_irq(&tsk->sighand->siglock);
3624 
3625 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3626 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3627 					       HRTIMER_MODE_REL);
3628 		spin_lock_irq(&tsk->sighand->siglock);
3629 		__set_task_blocked(tsk, &tsk->real_blocked);
3630 		sigemptyset(&tsk->real_blocked);
3631 		sig = dequeue_signal(tsk, &mask, info, &type);
3632 	}
3633 	spin_unlock_irq(&tsk->sighand->siglock);
3634 
3635 	if (sig)
3636 		return sig;
3637 	return ret ? -EINTR : -EAGAIN;
3638 }
3639 
3640 /**
3641  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3642  *			in @uthese
3643  *  @uthese: queued signals to wait for
3644  *  @uinfo: if non-null, the signal's siginfo is returned here
3645  *  @uts: upper bound on process time suspension
3646  *  @sigsetsize: size of sigset_t type
3647  */
3648 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3649 		siginfo_t __user *, uinfo,
3650 		const struct __kernel_timespec __user *, uts,
3651 		size_t, sigsetsize)
3652 {
3653 	sigset_t these;
3654 	struct timespec64 ts;
3655 	kernel_siginfo_t info;
3656 	int ret;
3657 
3658 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3659 	if (sigsetsize != sizeof(sigset_t))
3660 		return -EINVAL;
3661 
3662 	if (copy_from_user(&these, uthese, sizeof(these)))
3663 		return -EFAULT;
3664 
3665 	if (uts) {
3666 		if (get_timespec64(&ts, uts))
3667 			return -EFAULT;
3668 	}
3669 
3670 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3671 
3672 	if (ret > 0 && uinfo) {
3673 		if (copy_siginfo_to_user(uinfo, &info))
3674 			ret = -EFAULT;
3675 	}
3676 
3677 	return ret;
3678 }
3679 
3680 #ifdef CONFIG_COMPAT_32BIT_TIME
3681 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3682 		siginfo_t __user *, uinfo,
3683 		const struct old_timespec32 __user *, uts,
3684 		size_t, sigsetsize)
3685 {
3686 	sigset_t these;
3687 	struct timespec64 ts;
3688 	kernel_siginfo_t info;
3689 	int ret;
3690 
3691 	if (sigsetsize != sizeof(sigset_t))
3692 		return -EINVAL;
3693 
3694 	if (copy_from_user(&these, uthese, sizeof(these)))
3695 		return -EFAULT;
3696 
3697 	if (uts) {
3698 		if (get_old_timespec32(&ts, uts))
3699 			return -EFAULT;
3700 	}
3701 
3702 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3703 
3704 	if (ret > 0 && uinfo) {
3705 		if (copy_siginfo_to_user(uinfo, &info))
3706 			ret = -EFAULT;
3707 	}
3708 
3709 	return ret;
3710 }
3711 #endif
3712 
3713 #ifdef CONFIG_COMPAT
3714 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3715 		struct compat_siginfo __user *, uinfo,
3716 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3717 {
3718 	sigset_t s;
3719 	struct timespec64 t;
3720 	kernel_siginfo_t info;
3721 	long ret;
3722 
3723 	if (sigsetsize != sizeof(sigset_t))
3724 		return -EINVAL;
3725 
3726 	if (get_compat_sigset(&s, uthese))
3727 		return -EFAULT;
3728 
3729 	if (uts) {
3730 		if (get_timespec64(&t, uts))
3731 			return -EFAULT;
3732 	}
3733 
3734 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3735 
3736 	if (ret > 0 && uinfo) {
3737 		if (copy_siginfo_to_user32(uinfo, &info))
3738 			ret = -EFAULT;
3739 	}
3740 
3741 	return ret;
3742 }
3743 
3744 #ifdef CONFIG_COMPAT_32BIT_TIME
3745 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3746 		struct compat_siginfo __user *, uinfo,
3747 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3748 {
3749 	sigset_t s;
3750 	struct timespec64 t;
3751 	kernel_siginfo_t info;
3752 	long ret;
3753 
3754 	if (sigsetsize != sizeof(sigset_t))
3755 		return -EINVAL;
3756 
3757 	if (get_compat_sigset(&s, uthese))
3758 		return -EFAULT;
3759 
3760 	if (uts) {
3761 		if (get_old_timespec32(&t, uts))
3762 			return -EFAULT;
3763 	}
3764 
3765 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3766 
3767 	if (ret > 0 && uinfo) {
3768 		if (copy_siginfo_to_user32(uinfo, &info))
3769 			ret = -EFAULT;
3770 	}
3771 
3772 	return ret;
3773 }
3774 #endif
3775 #endif
3776 
3777 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3778 {
3779 	clear_siginfo(info);
3780 	info->si_signo = sig;
3781 	info->si_errno = 0;
3782 	info->si_code = SI_USER;
3783 	info->si_pid = task_tgid_vnr(current);
3784 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3785 }
3786 
3787 /**
3788  *  sys_kill - send a signal to a process
3789  *  @pid: the PID of the process
3790  *  @sig: signal to be sent
3791  */
3792 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3793 {
3794 	struct kernel_siginfo info;
3795 
3796 	prepare_kill_siginfo(sig, &info);
3797 
3798 	return kill_something_info(sig, &info, pid);
3799 }
3800 
3801 /*
3802  * Verify that the signaler and signalee either are in the same pid namespace
3803  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3804  * namespace.
3805  */
3806 static bool access_pidfd_pidns(struct pid *pid)
3807 {
3808 	struct pid_namespace *active = task_active_pid_ns(current);
3809 	struct pid_namespace *p = ns_of_pid(pid);
3810 
3811 	for (;;) {
3812 		if (!p)
3813 			return false;
3814 		if (p == active)
3815 			break;
3816 		p = p->parent;
3817 	}
3818 
3819 	return true;
3820 }
3821 
3822 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3823 		siginfo_t __user *info)
3824 {
3825 #ifdef CONFIG_COMPAT
3826 	/*
3827 	 * Avoid hooking up compat syscalls and instead handle necessary
3828 	 * conversions here. Note, this is a stop-gap measure and should not be
3829 	 * considered a generic solution.
3830 	 */
3831 	if (in_compat_syscall())
3832 		return copy_siginfo_from_user32(
3833 			kinfo, (struct compat_siginfo __user *)info);
3834 #endif
3835 	return copy_siginfo_from_user(kinfo, info);
3836 }
3837 
3838 static struct pid *pidfd_to_pid(const struct file *file)
3839 {
3840 	struct pid *pid;
3841 
3842 	pid = pidfd_pid(file);
3843 	if (!IS_ERR(pid))
3844 		return pid;
3845 
3846 	return tgid_pidfd_to_pid(file);
3847 }
3848 
3849 /**
3850  * sys_pidfd_send_signal - Signal a process through a pidfd
3851  * @pidfd:  file descriptor of the process
3852  * @sig:    signal to send
3853  * @info:   signal info
3854  * @flags:  future flags
3855  *
3856  * The syscall currently only signals via PIDTYPE_PID which covers
3857  * kill(<positive-pid>, <signal>. It does not signal threads or process
3858  * groups.
3859  * In order to extend the syscall to threads and process groups the @flags
3860  * argument should be used. In essence, the @flags argument will determine
3861  * what is signaled and not the file descriptor itself. Put in other words,
3862  * grouping is a property of the flags argument not a property of the file
3863  * descriptor.
3864  *
3865  * Return: 0 on success, negative errno on failure
3866  */
3867 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3868 		siginfo_t __user *, info, unsigned int, flags)
3869 {
3870 	int ret;
3871 	struct fd f;
3872 	struct pid *pid;
3873 	kernel_siginfo_t kinfo;
3874 
3875 	/* Enforce flags be set to 0 until we add an extension. */
3876 	if (flags)
3877 		return -EINVAL;
3878 
3879 	f = fdget(pidfd);
3880 	if (!f.file)
3881 		return -EBADF;
3882 
3883 	/* Is this a pidfd? */
3884 	pid = pidfd_to_pid(f.file);
3885 	if (IS_ERR(pid)) {
3886 		ret = PTR_ERR(pid);
3887 		goto err;
3888 	}
3889 
3890 	ret = -EINVAL;
3891 	if (!access_pidfd_pidns(pid))
3892 		goto err;
3893 
3894 	if (info) {
3895 		ret = copy_siginfo_from_user_any(&kinfo, info);
3896 		if (unlikely(ret))
3897 			goto err;
3898 
3899 		ret = -EINVAL;
3900 		if (unlikely(sig != kinfo.si_signo))
3901 			goto err;
3902 
3903 		/* Only allow sending arbitrary signals to yourself. */
3904 		ret = -EPERM;
3905 		if ((task_pid(current) != pid) &&
3906 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3907 			goto err;
3908 	} else {
3909 		prepare_kill_siginfo(sig, &kinfo);
3910 	}
3911 
3912 	ret = kill_pid_info(sig, &kinfo, pid);
3913 
3914 err:
3915 	fdput(f);
3916 	return ret;
3917 }
3918 
3919 static int
3920 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3921 {
3922 	struct task_struct *p;
3923 	int error = -ESRCH;
3924 
3925 	rcu_read_lock();
3926 	p = find_task_by_vpid(pid);
3927 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3928 		error = check_kill_permission(sig, info, p);
3929 		/*
3930 		 * The null signal is a permissions and process existence
3931 		 * probe.  No signal is actually delivered.
3932 		 */
3933 		if (!error && sig) {
3934 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3935 			/*
3936 			 * If lock_task_sighand() failed we pretend the task
3937 			 * dies after receiving the signal. The window is tiny,
3938 			 * and the signal is private anyway.
3939 			 */
3940 			if (unlikely(error == -ESRCH))
3941 				error = 0;
3942 		}
3943 	}
3944 	rcu_read_unlock();
3945 
3946 	return error;
3947 }
3948 
3949 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3950 {
3951 	struct kernel_siginfo info;
3952 
3953 	clear_siginfo(&info);
3954 	info.si_signo = sig;
3955 	info.si_errno = 0;
3956 	info.si_code = SI_TKILL;
3957 	info.si_pid = task_tgid_vnr(current);
3958 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3959 
3960 	return do_send_specific(tgid, pid, sig, &info);
3961 }
3962 
3963 /**
3964  *  sys_tgkill - send signal to one specific thread
3965  *  @tgid: the thread group ID of the thread
3966  *  @pid: the PID of the thread
3967  *  @sig: signal to be sent
3968  *
3969  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3970  *  exists but it's not belonging to the target process anymore. This
3971  *  method solves the problem of threads exiting and PIDs getting reused.
3972  */
3973 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3974 {
3975 	/* This is only valid for single tasks */
3976 	if (pid <= 0 || tgid <= 0)
3977 		return -EINVAL;
3978 
3979 	return do_tkill(tgid, pid, sig);
3980 }
3981 
3982 /**
3983  *  sys_tkill - send signal to one specific task
3984  *  @pid: the PID of the task
3985  *  @sig: signal to be sent
3986  *
3987  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3988  */
3989 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3990 {
3991 	/* This is only valid for single tasks */
3992 	if (pid <= 0)
3993 		return -EINVAL;
3994 
3995 	return do_tkill(0, pid, sig);
3996 }
3997 
3998 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3999 {
4000 	/* Not even root can pretend to send signals from the kernel.
4001 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4002 	 */
4003 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4004 	    (task_pid_vnr(current) != pid))
4005 		return -EPERM;
4006 
4007 	/* POSIX.1b doesn't mention process groups.  */
4008 	return kill_proc_info(sig, info, pid);
4009 }
4010 
4011 /**
4012  *  sys_rt_sigqueueinfo - send signal information to a signal
4013  *  @pid: the PID of the thread
4014  *  @sig: signal to be sent
4015  *  @uinfo: signal info to be sent
4016  */
4017 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4018 		siginfo_t __user *, uinfo)
4019 {
4020 	kernel_siginfo_t info;
4021 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4022 	if (unlikely(ret))
4023 		return ret;
4024 	return do_rt_sigqueueinfo(pid, sig, &info);
4025 }
4026 
4027 #ifdef CONFIG_COMPAT
4028 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4029 			compat_pid_t, pid,
4030 			int, sig,
4031 			struct compat_siginfo __user *, uinfo)
4032 {
4033 	kernel_siginfo_t info;
4034 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4035 	if (unlikely(ret))
4036 		return ret;
4037 	return do_rt_sigqueueinfo(pid, sig, &info);
4038 }
4039 #endif
4040 
4041 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4042 {
4043 	/* This is only valid for single tasks */
4044 	if (pid <= 0 || tgid <= 0)
4045 		return -EINVAL;
4046 
4047 	/* Not even root can pretend to send signals from the kernel.
4048 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4049 	 */
4050 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4051 	    (task_pid_vnr(current) != pid))
4052 		return -EPERM;
4053 
4054 	return do_send_specific(tgid, pid, sig, info);
4055 }
4056 
4057 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4058 		siginfo_t __user *, uinfo)
4059 {
4060 	kernel_siginfo_t info;
4061 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4062 	if (unlikely(ret))
4063 		return ret;
4064 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4065 }
4066 
4067 #ifdef CONFIG_COMPAT
4068 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4069 			compat_pid_t, tgid,
4070 			compat_pid_t, pid,
4071 			int, sig,
4072 			struct compat_siginfo __user *, uinfo)
4073 {
4074 	kernel_siginfo_t info;
4075 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4076 	if (unlikely(ret))
4077 		return ret;
4078 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4079 }
4080 #endif
4081 
4082 /*
4083  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4084  */
4085 void kernel_sigaction(int sig, __sighandler_t action)
4086 {
4087 	spin_lock_irq(&current->sighand->siglock);
4088 	current->sighand->action[sig - 1].sa.sa_handler = action;
4089 	if (action == SIG_IGN) {
4090 		sigset_t mask;
4091 
4092 		sigemptyset(&mask);
4093 		sigaddset(&mask, sig);
4094 
4095 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4096 		flush_sigqueue_mask(&mask, &current->pending);
4097 		recalc_sigpending();
4098 	}
4099 	spin_unlock_irq(&current->sighand->siglock);
4100 }
4101 EXPORT_SYMBOL(kernel_sigaction);
4102 
4103 void __weak sigaction_compat_abi(struct k_sigaction *act,
4104 		struct k_sigaction *oact)
4105 {
4106 }
4107 
4108 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4109 {
4110 	struct task_struct *p = current, *t;
4111 	struct k_sigaction *k;
4112 	sigset_t mask;
4113 
4114 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4115 		return -EINVAL;
4116 
4117 	k = &p->sighand->action[sig-1];
4118 
4119 	spin_lock_irq(&p->sighand->siglock);
4120 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4121 		spin_unlock_irq(&p->sighand->siglock);
4122 		return -EINVAL;
4123 	}
4124 	if (oact)
4125 		*oact = *k;
4126 
4127 	/*
4128 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4129 	 * e.g. by having an architecture use the bit in their uapi.
4130 	 */
4131 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4132 
4133 	/*
4134 	 * Clear unknown flag bits in order to allow userspace to detect missing
4135 	 * support for flag bits and to allow the kernel to use non-uapi bits
4136 	 * internally.
4137 	 */
4138 	if (act)
4139 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4140 	if (oact)
4141 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4142 
4143 	sigaction_compat_abi(act, oact);
4144 
4145 	if (act) {
4146 		sigdelsetmask(&act->sa.sa_mask,
4147 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4148 		*k = *act;
4149 		/*
4150 		 * POSIX 3.3.1.3:
4151 		 *  "Setting a signal action to SIG_IGN for a signal that is
4152 		 *   pending shall cause the pending signal to be discarded,
4153 		 *   whether or not it is blocked."
4154 		 *
4155 		 *  "Setting a signal action to SIG_DFL for a signal that is
4156 		 *   pending and whose default action is to ignore the signal
4157 		 *   (for example, SIGCHLD), shall cause the pending signal to
4158 		 *   be discarded, whether or not it is blocked"
4159 		 */
4160 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4161 			sigemptyset(&mask);
4162 			sigaddset(&mask, sig);
4163 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4164 			for_each_thread(p, t)
4165 				flush_sigqueue_mask(&mask, &t->pending);
4166 		}
4167 	}
4168 
4169 	spin_unlock_irq(&p->sighand->siglock);
4170 	return 0;
4171 }
4172 
4173 #ifdef CONFIG_DYNAMIC_SIGFRAME
4174 static inline void sigaltstack_lock(void)
4175 	__acquires(&current->sighand->siglock)
4176 {
4177 	spin_lock_irq(&current->sighand->siglock);
4178 }
4179 
4180 static inline void sigaltstack_unlock(void)
4181 	__releases(&current->sighand->siglock)
4182 {
4183 	spin_unlock_irq(&current->sighand->siglock);
4184 }
4185 #else
4186 static inline void sigaltstack_lock(void) { }
4187 static inline void sigaltstack_unlock(void) { }
4188 #endif
4189 
4190 static int
4191 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4192 		size_t min_ss_size)
4193 {
4194 	struct task_struct *t = current;
4195 	int ret = 0;
4196 
4197 	if (oss) {
4198 		memset(oss, 0, sizeof(stack_t));
4199 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4200 		oss->ss_size = t->sas_ss_size;
4201 		oss->ss_flags = sas_ss_flags(sp) |
4202 			(current->sas_ss_flags & SS_FLAG_BITS);
4203 	}
4204 
4205 	if (ss) {
4206 		void __user *ss_sp = ss->ss_sp;
4207 		size_t ss_size = ss->ss_size;
4208 		unsigned ss_flags = ss->ss_flags;
4209 		int ss_mode;
4210 
4211 		if (unlikely(on_sig_stack(sp)))
4212 			return -EPERM;
4213 
4214 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4215 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4216 				ss_mode != 0))
4217 			return -EINVAL;
4218 
4219 		/*
4220 		 * Return before taking any locks if no actual
4221 		 * sigaltstack changes were requested.
4222 		 */
4223 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4224 		    t->sas_ss_size == ss_size &&
4225 		    t->sas_ss_flags == ss_flags)
4226 			return 0;
4227 
4228 		sigaltstack_lock();
4229 		if (ss_mode == SS_DISABLE) {
4230 			ss_size = 0;
4231 			ss_sp = NULL;
4232 		} else {
4233 			if (unlikely(ss_size < min_ss_size))
4234 				ret = -ENOMEM;
4235 			if (!sigaltstack_size_valid(ss_size))
4236 				ret = -ENOMEM;
4237 		}
4238 		if (!ret) {
4239 			t->sas_ss_sp = (unsigned long) ss_sp;
4240 			t->sas_ss_size = ss_size;
4241 			t->sas_ss_flags = ss_flags;
4242 		}
4243 		sigaltstack_unlock();
4244 	}
4245 	return ret;
4246 }
4247 
4248 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4249 {
4250 	stack_t new, old;
4251 	int err;
4252 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4253 		return -EFAULT;
4254 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4255 			      current_user_stack_pointer(),
4256 			      MINSIGSTKSZ);
4257 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4258 		err = -EFAULT;
4259 	return err;
4260 }
4261 
4262 int restore_altstack(const stack_t __user *uss)
4263 {
4264 	stack_t new;
4265 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4266 		return -EFAULT;
4267 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4268 			     MINSIGSTKSZ);
4269 	/* squash all but EFAULT for now */
4270 	return 0;
4271 }
4272 
4273 int __save_altstack(stack_t __user *uss, unsigned long sp)
4274 {
4275 	struct task_struct *t = current;
4276 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4277 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4278 		__put_user(t->sas_ss_size, &uss->ss_size);
4279 	return err;
4280 }
4281 
4282 #ifdef CONFIG_COMPAT
4283 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4284 				 compat_stack_t __user *uoss_ptr)
4285 {
4286 	stack_t uss, uoss;
4287 	int ret;
4288 
4289 	if (uss_ptr) {
4290 		compat_stack_t uss32;
4291 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4292 			return -EFAULT;
4293 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4294 		uss.ss_flags = uss32.ss_flags;
4295 		uss.ss_size = uss32.ss_size;
4296 	}
4297 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4298 			     compat_user_stack_pointer(),
4299 			     COMPAT_MINSIGSTKSZ);
4300 	if (ret >= 0 && uoss_ptr)  {
4301 		compat_stack_t old;
4302 		memset(&old, 0, sizeof(old));
4303 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4304 		old.ss_flags = uoss.ss_flags;
4305 		old.ss_size = uoss.ss_size;
4306 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4307 			ret = -EFAULT;
4308 	}
4309 	return ret;
4310 }
4311 
4312 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4313 			const compat_stack_t __user *, uss_ptr,
4314 			compat_stack_t __user *, uoss_ptr)
4315 {
4316 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4317 }
4318 
4319 int compat_restore_altstack(const compat_stack_t __user *uss)
4320 {
4321 	int err = do_compat_sigaltstack(uss, NULL);
4322 	/* squash all but -EFAULT for now */
4323 	return err == -EFAULT ? err : 0;
4324 }
4325 
4326 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4327 {
4328 	int err;
4329 	struct task_struct *t = current;
4330 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4331 			 &uss->ss_sp) |
4332 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4333 		__put_user(t->sas_ss_size, &uss->ss_size);
4334 	return err;
4335 }
4336 #endif
4337 
4338 #ifdef __ARCH_WANT_SYS_SIGPENDING
4339 
4340 /**
4341  *  sys_sigpending - examine pending signals
4342  *  @uset: where mask of pending signal is returned
4343  */
4344 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4345 {
4346 	sigset_t set;
4347 
4348 	if (sizeof(old_sigset_t) > sizeof(*uset))
4349 		return -EINVAL;
4350 
4351 	do_sigpending(&set);
4352 
4353 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4354 		return -EFAULT;
4355 
4356 	return 0;
4357 }
4358 
4359 #ifdef CONFIG_COMPAT
4360 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4361 {
4362 	sigset_t set;
4363 
4364 	do_sigpending(&set);
4365 
4366 	return put_user(set.sig[0], set32);
4367 }
4368 #endif
4369 
4370 #endif
4371 
4372 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4373 /**
4374  *  sys_sigprocmask - examine and change blocked signals
4375  *  @how: whether to add, remove, or set signals
4376  *  @nset: signals to add or remove (if non-null)
4377  *  @oset: previous value of signal mask if non-null
4378  *
4379  * Some platforms have their own version with special arguments;
4380  * others support only sys_rt_sigprocmask.
4381  */
4382 
4383 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4384 		old_sigset_t __user *, oset)
4385 {
4386 	old_sigset_t old_set, new_set;
4387 	sigset_t new_blocked;
4388 
4389 	old_set = current->blocked.sig[0];
4390 
4391 	if (nset) {
4392 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4393 			return -EFAULT;
4394 
4395 		new_blocked = current->blocked;
4396 
4397 		switch (how) {
4398 		case SIG_BLOCK:
4399 			sigaddsetmask(&new_blocked, new_set);
4400 			break;
4401 		case SIG_UNBLOCK:
4402 			sigdelsetmask(&new_blocked, new_set);
4403 			break;
4404 		case SIG_SETMASK:
4405 			new_blocked.sig[0] = new_set;
4406 			break;
4407 		default:
4408 			return -EINVAL;
4409 		}
4410 
4411 		set_current_blocked(&new_blocked);
4412 	}
4413 
4414 	if (oset) {
4415 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4416 			return -EFAULT;
4417 	}
4418 
4419 	return 0;
4420 }
4421 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4422 
4423 #ifndef CONFIG_ODD_RT_SIGACTION
4424 /**
4425  *  sys_rt_sigaction - alter an action taken by a process
4426  *  @sig: signal to be sent
4427  *  @act: new sigaction
4428  *  @oact: used to save the previous sigaction
4429  *  @sigsetsize: size of sigset_t type
4430  */
4431 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4432 		const struct sigaction __user *, act,
4433 		struct sigaction __user *, oact,
4434 		size_t, sigsetsize)
4435 {
4436 	struct k_sigaction new_sa, old_sa;
4437 	int ret;
4438 
4439 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4440 	if (sigsetsize != sizeof(sigset_t))
4441 		return -EINVAL;
4442 
4443 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4444 		return -EFAULT;
4445 
4446 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4447 	if (ret)
4448 		return ret;
4449 
4450 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4451 		return -EFAULT;
4452 
4453 	return 0;
4454 }
4455 #ifdef CONFIG_COMPAT
4456 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4457 		const struct compat_sigaction __user *, act,
4458 		struct compat_sigaction __user *, oact,
4459 		compat_size_t, sigsetsize)
4460 {
4461 	struct k_sigaction new_ka, old_ka;
4462 #ifdef __ARCH_HAS_SA_RESTORER
4463 	compat_uptr_t restorer;
4464 #endif
4465 	int ret;
4466 
4467 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4468 	if (sigsetsize != sizeof(compat_sigset_t))
4469 		return -EINVAL;
4470 
4471 	if (act) {
4472 		compat_uptr_t handler;
4473 		ret = get_user(handler, &act->sa_handler);
4474 		new_ka.sa.sa_handler = compat_ptr(handler);
4475 #ifdef __ARCH_HAS_SA_RESTORER
4476 		ret |= get_user(restorer, &act->sa_restorer);
4477 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4478 #endif
4479 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4480 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4481 		if (ret)
4482 			return -EFAULT;
4483 	}
4484 
4485 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4486 	if (!ret && oact) {
4487 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4488 			       &oact->sa_handler);
4489 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4490 					 sizeof(oact->sa_mask));
4491 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4492 #ifdef __ARCH_HAS_SA_RESTORER
4493 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4494 				&oact->sa_restorer);
4495 #endif
4496 	}
4497 	return ret;
4498 }
4499 #endif
4500 #endif /* !CONFIG_ODD_RT_SIGACTION */
4501 
4502 #ifdef CONFIG_OLD_SIGACTION
4503 SYSCALL_DEFINE3(sigaction, int, sig,
4504 		const struct old_sigaction __user *, act,
4505 	        struct old_sigaction __user *, oact)
4506 {
4507 	struct k_sigaction new_ka, old_ka;
4508 	int ret;
4509 
4510 	if (act) {
4511 		old_sigset_t mask;
4512 		if (!access_ok(act, sizeof(*act)) ||
4513 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4514 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4515 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4516 		    __get_user(mask, &act->sa_mask))
4517 			return -EFAULT;
4518 #ifdef __ARCH_HAS_KA_RESTORER
4519 		new_ka.ka_restorer = NULL;
4520 #endif
4521 		siginitset(&new_ka.sa.sa_mask, mask);
4522 	}
4523 
4524 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4525 
4526 	if (!ret && oact) {
4527 		if (!access_ok(oact, sizeof(*oact)) ||
4528 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4529 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4530 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4531 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4532 			return -EFAULT;
4533 	}
4534 
4535 	return ret;
4536 }
4537 #endif
4538 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4539 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4540 		const struct compat_old_sigaction __user *, act,
4541 	        struct compat_old_sigaction __user *, oact)
4542 {
4543 	struct k_sigaction new_ka, old_ka;
4544 	int ret;
4545 	compat_old_sigset_t mask;
4546 	compat_uptr_t handler, restorer;
4547 
4548 	if (act) {
4549 		if (!access_ok(act, sizeof(*act)) ||
4550 		    __get_user(handler, &act->sa_handler) ||
4551 		    __get_user(restorer, &act->sa_restorer) ||
4552 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4553 		    __get_user(mask, &act->sa_mask))
4554 			return -EFAULT;
4555 
4556 #ifdef __ARCH_HAS_KA_RESTORER
4557 		new_ka.ka_restorer = NULL;
4558 #endif
4559 		new_ka.sa.sa_handler = compat_ptr(handler);
4560 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4561 		siginitset(&new_ka.sa.sa_mask, mask);
4562 	}
4563 
4564 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4565 
4566 	if (!ret && oact) {
4567 		if (!access_ok(oact, sizeof(*oact)) ||
4568 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4569 			       &oact->sa_handler) ||
4570 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4571 			       &oact->sa_restorer) ||
4572 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4573 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4574 			return -EFAULT;
4575 	}
4576 	return ret;
4577 }
4578 #endif
4579 
4580 #ifdef CONFIG_SGETMASK_SYSCALL
4581 
4582 /*
4583  * For backwards compatibility.  Functionality superseded by sigprocmask.
4584  */
4585 SYSCALL_DEFINE0(sgetmask)
4586 {
4587 	/* SMP safe */
4588 	return current->blocked.sig[0];
4589 }
4590 
4591 SYSCALL_DEFINE1(ssetmask, int, newmask)
4592 {
4593 	int old = current->blocked.sig[0];
4594 	sigset_t newset;
4595 
4596 	siginitset(&newset, newmask);
4597 	set_current_blocked(&newset);
4598 
4599 	return old;
4600 }
4601 #endif /* CONFIG_SGETMASK_SYSCALL */
4602 
4603 #ifdef __ARCH_WANT_SYS_SIGNAL
4604 /*
4605  * For backwards compatibility.  Functionality superseded by sigaction.
4606  */
4607 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4608 {
4609 	struct k_sigaction new_sa, old_sa;
4610 	int ret;
4611 
4612 	new_sa.sa.sa_handler = handler;
4613 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4614 	sigemptyset(&new_sa.sa.sa_mask);
4615 
4616 	ret = do_sigaction(sig, &new_sa, &old_sa);
4617 
4618 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4619 }
4620 #endif /* __ARCH_WANT_SYS_SIGNAL */
4621 
4622 #ifdef __ARCH_WANT_SYS_PAUSE
4623 
4624 SYSCALL_DEFINE0(pause)
4625 {
4626 	while (!signal_pending(current)) {
4627 		__set_current_state(TASK_INTERRUPTIBLE);
4628 		schedule();
4629 	}
4630 	return -ERESTARTNOHAND;
4631 }
4632 
4633 #endif
4634 
4635 static int sigsuspend(sigset_t *set)
4636 {
4637 	current->saved_sigmask = current->blocked;
4638 	set_current_blocked(set);
4639 
4640 	while (!signal_pending(current)) {
4641 		__set_current_state(TASK_INTERRUPTIBLE);
4642 		schedule();
4643 	}
4644 	set_restore_sigmask();
4645 	return -ERESTARTNOHAND;
4646 }
4647 
4648 /**
4649  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4650  *	@unewset value until a signal is received
4651  *  @unewset: new signal mask value
4652  *  @sigsetsize: size of sigset_t type
4653  */
4654 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4655 {
4656 	sigset_t newset;
4657 
4658 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4659 	if (sigsetsize != sizeof(sigset_t))
4660 		return -EINVAL;
4661 
4662 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4663 		return -EFAULT;
4664 	return sigsuspend(&newset);
4665 }
4666 
4667 #ifdef CONFIG_COMPAT
4668 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4669 {
4670 	sigset_t newset;
4671 
4672 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4673 	if (sigsetsize != sizeof(sigset_t))
4674 		return -EINVAL;
4675 
4676 	if (get_compat_sigset(&newset, unewset))
4677 		return -EFAULT;
4678 	return sigsuspend(&newset);
4679 }
4680 #endif
4681 
4682 #ifdef CONFIG_OLD_SIGSUSPEND
4683 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4684 {
4685 	sigset_t blocked;
4686 	siginitset(&blocked, mask);
4687 	return sigsuspend(&blocked);
4688 }
4689 #endif
4690 #ifdef CONFIG_OLD_SIGSUSPEND3
4691 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4692 {
4693 	sigset_t blocked;
4694 	siginitset(&blocked, mask);
4695 	return sigsuspend(&blocked);
4696 }
4697 #endif
4698 
4699 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4700 {
4701 	return NULL;
4702 }
4703 
4704 static inline void siginfo_buildtime_checks(void)
4705 {
4706 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4707 
4708 	/* Verify the offsets in the two siginfos match */
4709 #define CHECK_OFFSET(field) \
4710 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4711 
4712 	/* kill */
4713 	CHECK_OFFSET(si_pid);
4714 	CHECK_OFFSET(si_uid);
4715 
4716 	/* timer */
4717 	CHECK_OFFSET(si_tid);
4718 	CHECK_OFFSET(si_overrun);
4719 	CHECK_OFFSET(si_value);
4720 
4721 	/* rt */
4722 	CHECK_OFFSET(si_pid);
4723 	CHECK_OFFSET(si_uid);
4724 	CHECK_OFFSET(si_value);
4725 
4726 	/* sigchld */
4727 	CHECK_OFFSET(si_pid);
4728 	CHECK_OFFSET(si_uid);
4729 	CHECK_OFFSET(si_status);
4730 	CHECK_OFFSET(si_utime);
4731 	CHECK_OFFSET(si_stime);
4732 
4733 	/* sigfault */
4734 	CHECK_OFFSET(si_addr);
4735 	CHECK_OFFSET(si_trapno);
4736 	CHECK_OFFSET(si_addr_lsb);
4737 	CHECK_OFFSET(si_lower);
4738 	CHECK_OFFSET(si_upper);
4739 	CHECK_OFFSET(si_pkey);
4740 	CHECK_OFFSET(si_perf_data);
4741 	CHECK_OFFSET(si_perf_type);
4742 	CHECK_OFFSET(si_perf_flags);
4743 
4744 	/* sigpoll */
4745 	CHECK_OFFSET(si_band);
4746 	CHECK_OFFSET(si_fd);
4747 
4748 	/* sigsys */
4749 	CHECK_OFFSET(si_call_addr);
4750 	CHECK_OFFSET(si_syscall);
4751 	CHECK_OFFSET(si_arch);
4752 #undef CHECK_OFFSET
4753 
4754 	/* usb asyncio */
4755 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4756 		     offsetof(struct siginfo, si_addr));
4757 	if (sizeof(int) == sizeof(void __user *)) {
4758 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4759 			     sizeof(void __user *));
4760 	} else {
4761 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4762 			      sizeof_field(struct siginfo, si_uid)) !=
4763 			     sizeof(void __user *));
4764 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4765 			     offsetof(struct siginfo, si_uid));
4766 	}
4767 #ifdef CONFIG_COMPAT
4768 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4769 		     offsetof(struct compat_siginfo, si_addr));
4770 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4771 		     sizeof(compat_uptr_t));
4772 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4773 		     sizeof_field(struct siginfo, si_pid));
4774 #endif
4775 }
4776 
4777 #if defined(CONFIG_SYSCTL)
4778 static struct ctl_table signal_debug_table[] = {
4779 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4780 	{
4781 		.procname	= "exception-trace",
4782 		.data		= &show_unhandled_signals,
4783 		.maxlen		= sizeof(int),
4784 		.mode		= 0644,
4785 		.proc_handler	= proc_dointvec
4786 	},
4787 #endif
4788 	{ }
4789 };
4790 
4791 static int __init init_signal_sysctls(void)
4792 {
4793 	register_sysctl_init("debug", signal_debug_table);
4794 	return 0;
4795 }
4796 early_initcall(init_signal_sysctls);
4797 #endif /* CONFIG_SYSCTL */
4798 
4799 void __init signals_init(void)
4800 {
4801 	siginfo_buildtime_checks();
4802 
4803 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4804 }
4805 
4806 #ifdef CONFIG_KGDB_KDB
4807 #include <linux/kdb.h>
4808 /*
4809  * kdb_send_sig - Allows kdb to send signals without exposing
4810  * signal internals.  This function checks if the required locks are
4811  * available before calling the main signal code, to avoid kdb
4812  * deadlocks.
4813  */
4814 void kdb_send_sig(struct task_struct *t, int sig)
4815 {
4816 	static struct task_struct *kdb_prev_t;
4817 	int new_t, ret;
4818 	if (!spin_trylock(&t->sighand->siglock)) {
4819 		kdb_printf("Can't do kill command now.\n"
4820 			   "The sigmask lock is held somewhere else in "
4821 			   "kernel, try again later\n");
4822 		return;
4823 	}
4824 	new_t = kdb_prev_t != t;
4825 	kdb_prev_t = t;
4826 	if (!task_is_running(t) && new_t) {
4827 		spin_unlock(&t->sighand->siglock);
4828 		kdb_printf("Process is not RUNNING, sending a signal from "
4829 			   "kdb risks deadlock\n"
4830 			   "on the run queue locks. "
4831 			   "The signal has _not_ been sent.\n"
4832 			   "Reissue the kill command if you want to risk "
4833 			   "the deadlock.\n");
4834 		return;
4835 	}
4836 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4837 	spin_unlock(&t->sighand->siglock);
4838 	if (ret)
4839 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4840 			   sig, t->pid);
4841 	else
4842 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4843 }
4844 #endif	/* CONFIG_KGDB_KDB */
4845