1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/coredump.h> 21 #include <linux/security.h> 22 #include <linux/syscalls.h> 23 #include <linux/ptrace.h> 24 #include <linux/signal.h> 25 #include <linux/signalfd.h> 26 #include <linux/ratelimit.h> 27 #include <linux/tracehook.h> 28 #include <linux/capability.h> 29 #include <linux/freezer.h> 30 #include <linux/pid_namespace.h> 31 #include <linux/nsproxy.h> 32 #include <linux/user_namespace.h> 33 #include <linux/uprobes.h> 34 #include <linux/compat.h> 35 #include <linux/cn_proc.h> 36 #include <linux/compiler.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/signal.h> 40 41 #include <asm/param.h> 42 #include <asm/uaccess.h> 43 #include <asm/unistd.h> 44 #include <asm/siginfo.h> 45 #include <asm/cacheflush.h> 46 #include "audit.h" /* audit_signal_info() */ 47 48 /* 49 * SLAB caches for signal bits. 50 */ 51 52 static struct kmem_cache *sigqueue_cachep; 53 54 int print_fatal_signals __read_mostly; 55 56 static void __user *sig_handler(struct task_struct *t, int sig) 57 { 58 return t->sighand->action[sig - 1].sa.sa_handler; 59 } 60 61 static int sig_handler_ignored(void __user *handler, int sig) 62 { 63 /* Is it explicitly or implicitly ignored? */ 64 return handler == SIG_IGN || 65 (handler == SIG_DFL && sig_kernel_ignore(sig)); 66 } 67 68 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 69 { 70 void __user *handler; 71 72 handler = sig_handler(t, sig); 73 74 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 75 handler == SIG_DFL && !force) 76 return 1; 77 78 return sig_handler_ignored(handler, sig); 79 } 80 81 static int sig_ignored(struct task_struct *t, int sig, bool force) 82 { 83 /* 84 * Blocked signals are never ignored, since the 85 * signal handler may change by the time it is 86 * unblocked. 87 */ 88 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 89 return 0; 90 91 if (!sig_task_ignored(t, sig, force)) 92 return 0; 93 94 /* 95 * Tracers may want to know about even ignored signals. 96 */ 97 return !t->ptrace; 98 } 99 100 /* 101 * Re-calculate pending state from the set of locally pending 102 * signals, globally pending signals, and blocked signals. 103 */ 104 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 105 { 106 unsigned long ready; 107 long i; 108 109 switch (_NSIG_WORDS) { 110 default: 111 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 112 ready |= signal->sig[i] &~ blocked->sig[i]; 113 break; 114 115 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 116 ready |= signal->sig[2] &~ blocked->sig[2]; 117 ready |= signal->sig[1] &~ blocked->sig[1]; 118 ready |= signal->sig[0] &~ blocked->sig[0]; 119 break; 120 121 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 122 ready |= signal->sig[0] &~ blocked->sig[0]; 123 break; 124 125 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 126 } 127 return ready != 0; 128 } 129 130 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 131 132 static int recalc_sigpending_tsk(struct task_struct *t) 133 { 134 if ((t->jobctl & JOBCTL_PENDING_MASK) || 135 PENDING(&t->pending, &t->blocked) || 136 PENDING(&t->signal->shared_pending, &t->blocked)) { 137 set_tsk_thread_flag(t, TIF_SIGPENDING); 138 return 1; 139 } 140 /* 141 * We must never clear the flag in another thread, or in current 142 * when it's possible the current syscall is returning -ERESTART*. 143 * So we don't clear it here, and only callers who know they should do. 144 */ 145 return 0; 146 } 147 148 /* 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 150 * This is superfluous when called on current, the wakeup is a harmless no-op. 151 */ 152 void recalc_sigpending_and_wake(struct task_struct *t) 153 { 154 if (recalc_sigpending_tsk(t)) 155 signal_wake_up(t, 0); 156 } 157 158 void recalc_sigpending(void) 159 { 160 if (!recalc_sigpending_tsk(current) && !freezing(current)) 161 clear_thread_flag(TIF_SIGPENDING); 162 163 } 164 165 /* Given the mask, find the first available signal that should be serviced. */ 166 167 #define SYNCHRONOUS_MASK \ 168 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 169 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 170 171 int next_signal(struct sigpending *pending, sigset_t *mask) 172 { 173 unsigned long i, *s, *m, x; 174 int sig = 0; 175 176 s = pending->signal.sig; 177 m = mask->sig; 178 179 /* 180 * Handle the first word specially: it contains the 181 * synchronous signals that need to be dequeued first. 182 */ 183 x = *s &~ *m; 184 if (x) { 185 if (x & SYNCHRONOUS_MASK) 186 x &= SYNCHRONOUS_MASK; 187 sig = ffz(~x) + 1; 188 return sig; 189 } 190 191 switch (_NSIG_WORDS) { 192 default: 193 for (i = 1; i < _NSIG_WORDS; ++i) { 194 x = *++s &~ *++m; 195 if (!x) 196 continue; 197 sig = ffz(~x) + i*_NSIG_BPW + 1; 198 break; 199 } 200 break; 201 202 case 2: 203 x = s[1] &~ m[1]; 204 if (!x) 205 break; 206 sig = ffz(~x) + _NSIG_BPW + 1; 207 break; 208 209 case 1: 210 /* Nothing to do */ 211 break; 212 } 213 214 return sig; 215 } 216 217 static inline void print_dropped_signal(int sig) 218 { 219 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 220 221 if (!print_fatal_signals) 222 return; 223 224 if (!__ratelimit(&ratelimit_state)) 225 return; 226 227 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 228 current->comm, current->pid, sig); 229 } 230 231 /** 232 * task_set_jobctl_pending - set jobctl pending bits 233 * @task: target task 234 * @mask: pending bits to set 235 * 236 * Clear @mask from @task->jobctl. @mask must be subset of 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 238 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 239 * cleared. If @task is already being killed or exiting, this function 240 * becomes noop. 241 * 242 * CONTEXT: 243 * Must be called with @task->sighand->siglock held. 244 * 245 * RETURNS: 246 * %true if @mask is set, %false if made noop because @task was dying. 247 */ 248 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask) 249 { 250 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 251 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 252 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 253 254 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 255 return false; 256 257 if (mask & JOBCTL_STOP_SIGMASK) 258 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 259 260 task->jobctl |= mask; 261 return true; 262 } 263 264 /** 265 * task_clear_jobctl_trapping - clear jobctl trapping bit 266 * @task: target task 267 * 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 269 * Clear it and wake up the ptracer. Note that we don't need any further 270 * locking. @task->siglock guarantees that @task->parent points to the 271 * ptracer. 272 * 273 * CONTEXT: 274 * Must be called with @task->sighand->siglock held. 275 */ 276 void task_clear_jobctl_trapping(struct task_struct *task) 277 { 278 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 279 task->jobctl &= ~JOBCTL_TRAPPING; 280 smp_mb(); /* advised by wake_up_bit() */ 281 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 282 } 283 } 284 285 /** 286 * task_clear_jobctl_pending - clear jobctl pending bits 287 * @task: target task 288 * @mask: pending bits to clear 289 * 290 * Clear @mask from @task->jobctl. @mask must be subset of 291 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 292 * STOP bits are cleared together. 293 * 294 * If clearing of @mask leaves no stop or trap pending, this function calls 295 * task_clear_jobctl_trapping(). 296 * 297 * CONTEXT: 298 * Must be called with @task->sighand->siglock held. 299 */ 300 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask) 301 { 302 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 303 304 if (mask & JOBCTL_STOP_PENDING) 305 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 306 307 task->jobctl &= ~mask; 308 309 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 310 task_clear_jobctl_trapping(task); 311 } 312 313 /** 314 * task_participate_group_stop - participate in a group stop 315 * @task: task participating in a group stop 316 * 317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 318 * Group stop states are cleared and the group stop count is consumed if 319 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 320 * stop, the appropriate %SIGNAL_* flags are set. 321 * 322 * CONTEXT: 323 * Must be called with @task->sighand->siglock held. 324 * 325 * RETURNS: 326 * %true if group stop completion should be notified to the parent, %false 327 * otherwise. 328 */ 329 static bool task_participate_group_stop(struct task_struct *task) 330 { 331 struct signal_struct *sig = task->signal; 332 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 333 334 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 335 336 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 337 338 if (!consume) 339 return false; 340 341 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 342 sig->group_stop_count--; 343 344 /* 345 * Tell the caller to notify completion iff we are entering into a 346 * fresh group stop. Read comment in do_signal_stop() for details. 347 */ 348 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 349 sig->flags = SIGNAL_STOP_STOPPED; 350 return true; 351 } 352 return false; 353 } 354 355 /* 356 * allocate a new signal queue record 357 * - this may be called without locks if and only if t == current, otherwise an 358 * appropriate lock must be held to stop the target task from exiting 359 */ 360 static struct sigqueue * 361 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 362 { 363 struct sigqueue *q = NULL; 364 struct user_struct *user; 365 366 /* 367 * Protect access to @t credentials. This can go away when all 368 * callers hold rcu read lock. 369 */ 370 rcu_read_lock(); 371 user = get_uid(__task_cred(t)->user); 372 atomic_inc(&user->sigpending); 373 rcu_read_unlock(); 374 375 if (override_rlimit || 376 atomic_read(&user->sigpending) <= 377 task_rlimit(t, RLIMIT_SIGPENDING)) { 378 q = kmem_cache_alloc(sigqueue_cachep, flags); 379 } else { 380 print_dropped_signal(sig); 381 } 382 383 if (unlikely(q == NULL)) { 384 atomic_dec(&user->sigpending); 385 free_uid(user); 386 } else { 387 INIT_LIST_HEAD(&q->list); 388 q->flags = 0; 389 q->user = user; 390 } 391 392 return q; 393 } 394 395 static void __sigqueue_free(struct sigqueue *q) 396 { 397 if (q->flags & SIGQUEUE_PREALLOC) 398 return; 399 atomic_dec(&q->user->sigpending); 400 free_uid(q->user); 401 kmem_cache_free(sigqueue_cachep, q); 402 } 403 404 void flush_sigqueue(struct sigpending *queue) 405 { 406 struct sigqueue *q; 407 408 sigemptyset(&queue->signal); 409 while (!list_empty(&queue->list)) { 410 q = list_entry(queue->list.next, struct sigqueue , list); 411 list_del_init(&q->list); 412 __sigqueue_free(q); 413 } 414 } 415 416 /* 417 * Flush all pending signals for a task. 418 */ 419 void __flush_signals(struct task_struct *t) 420 { 421 clear_tsk_thread_flag(t, TIF_SIGPENDING); 422 flush_sigqueue(&t->pending); 423 flush_sigqueue(&t->signal->shared_pending); 424 } 425 426 void flush_signals(struct task_struct *t) 427 { 428 unsigned long flags; 429 430 spin_lock_irqsave(&t->sighand->siglock, flags); 431 __flush_signals(t); 432 spin_unlock_irqrestore(&t->sighand->siglock, flags); 433 } 434 435 static void __flush_itimer_signals(struct sigpending *pending) 436 { 437 sigset_t signal, retain; 438 struct sigqueue *q, *n; 439 440 signal = pending->signal; 441 sigemptyset(&retain); 442 443 list_for_each_entry_safe(q, n, &pending->list, list) { 444 int sig = q->info.si_signo; 445 446 if (likely(q->info.si_code != SI_TIMER)) { 447 sigaddset(&retain, sig); 448 } else { 449 sigdelset(&signal, sig); 450 list_del_init(&q->list); 451 __sigqueue_free(q); 452 } 453 } 454 455 sigorsets(&pending->signal, &signal, &retain); 456 } 457 458 void flush_itimer_signals(void) 459 { 460 struct task_struct *tsk = current; 461 unsigned long flags; 462 463 spin_lock_irqsave(&tsk->sighand->siglock, flags); 464 __flush_itimer_signals(&tsk->pending); 465 __flush_itimer_signals(&tsk->signal->shared_pending); 466 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 467 } 468 469 void ignore_signals(struct task_struct *t) 470 { 471 int i; 472 473 for (i = 0; i < _NSIG; ++i) 474 t->sighand->action[i].sa.sa_handler = SIG_IGN; 475 476 flush_signals(t); 477 } 478 479 /* 480 * Flush all handlers for a task. 481 */ 482 483 void 484 flush_signal_handlers(struct task_struct *t, int force_default) 485 { 486 int i; 487 struct k_sigaction *ka = &t->sighand->action[0]; 488 for (i = _NSIG ; i != 0 ; i--) { 489 if (force_default || ka->sa.sa_handler != SIG_IGN) 490 ka->sa.sa_handler = SIG_DFL; 491 ka->sa.sa_flags = 0; 492 #ifdef __ARCH_HAS_SA_RESTORER 493 ka->sa.sa_restorer = NULL; 494 #endif 495 sigemptyset(&ka->sa.sa_mask); 496 ka++; 497 } 498 } 499 500 int unhandled_signal(struct task_struct *tsk, int sig) 501 { 502 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 503 if (is_global_init(tsk)) 504 return 1; 505 if (handler != SIG_IGN && handler != SIG_DFL) 506 return 0; 507 /* if ptraced, let the tracer determine */ 508 return !tsk->ptrace; 509 } 510 511 /* 512 * Notify the system that a driver wants to block all signals for this 513 * process, and wants to be notified if any signals at all were to be 514 * sent/acted upon. If the notifier routine returns non-zero, then the 515 * signal will be acted upon after all. If the notifier routine returns 0, 516 * then then signal will be blocked. Only one block per process is 517 * allowed. priv is a pointer to private data that the notifier routine 518 * can use to determine if the signal should be blocked or not. 519 */ 520 void 521 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 522 { 523 unsigned long flags; 524 525 spin_lock_irqsave(¤t->sighand->siglock, flags); 526 current->notifier_mask = mask; 527 current->notifier_data = priv; 528 current->notifier = notifier; 529 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 530 } 531 532 /* Notify the system that blocking has ended. */ 533 534 void 535 unblock_all_signals(void) 536 { 537 unsigned long flags; 538 539 spin_lock_irqsave(¤t->sighand->siglock, flags); 540 current->notifier = NULL; 541 current->notifier_data = NULL; 542 recalc_sigpending(); 543 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 544 } 545 546 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 547 { 548 struct sigqueue *q, *first = NULL; 549 550 /* 551 * Collect the siginfo appropriate to this signal. Check if 552 * there is another siginfo for the same signal. 553 */ 554 list_for_each_entry(q, &list->list, list) { 555 if (q->info.si_signo == sig) { 556 if (first) 557 goto still_pending; 558 first = q; 559 } 560 } 561 562 sigdelset(&list->signal, sig); 563 564 if (first) { 565 still_pending: 566 list_del_init(&first->list); 567 copy_siginfo(info, &first->info); 568 __sigqueue_free(first); 569 } else { 570 /* 571 * Ok, it wasn't in the queue. This must be 572 * a fast-pathed signal or we must have been 573 * out of queue space. So zero out the info. 574 */ 575 info->si_signo = sig; 576 info->si_errno = 0; 577 info->si_code = SI_USER; 578 info->si_pid = 0; 579 info->si_uid = 0; 580 } 581 } 582 583 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 584 siginfo_t *info) 585 { 586 int sig = next_signal(pending, mask); 587 588 if (sig) { 589 if (current->notifier) { 590 if (sigismember(current->notifier_mask, sig)) { 591 if (!(current->notifier)(current->notifier_data)) { 592 clear_thread_flag(TIF_SIGPENDING); 593 return 0; 594 } 595 } 596 } 597 598 collect_signal(sig, pending, info); 599 } 600 601 return sig; 602 } 603 604 /* 605 * Dequeue a signal and return the element to the caller, which is 606 * expected to free it. 607 * 608 * All callers have to hold the siglock. 609 */ 610 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 611 { 612 int signr; 613 614 /* We only dequeue private signals from ourselves, we don't let 615 * signalfd steal them 616 */ 617 signr = __dequeue_signal(&tsk->pending, mask, info); 618 if (!signr) { 619 signr = __dequeue_signal(&tsk->signal->shared_pending, 620 mask, info); 621 /* 622 * itimer signal ? 623 * 624 * itimers are process shared and we restart periodic 625 * itimers in the signal delivery path to prevent DoS 626 * attacks in the high resolution timer case. This is 627 * compliant with the old way of self-restarting 628 * itimers, as the SIGALRM is a legacy signal and only 629 * queued once. Changing the restart behaviour to 630 * restart the timer in the signal dequeue path is 631 * reducing the timer noise on heavy loaded !highres 632 * systems too. 633 */ 634 if (unlikely(signr == SIGALRM)) { 635 struct hrtimer *tmr = &tsk->signal->real_timer; 636 637 if (!hrtimer_is_queued(tmr) && 638 tsk->signal->it_real_incr.tv64 != 0) { 639 hrtimer_forward(tmr, tmr->base->get_time(), 640 tsk->signal->it_real_incr); 641 hrtimer_restart(tmr); 642 } 643 } 644 } 645 646 recalc_sigpending(); 647 if (!signr) 648 return 0; 649 650 if (unlikely(sig_kernel_stop(signr))) { 651 /* 652 * Set a marker that we have dequeued a stop signal. Our 653 * caller might release the siglock and then the pending 654 * stop signal it is about to process is no longer in the 655 * pending bitmasks, but must still be cleared by a SIGCONT 656 * (and overruled by a SIGKILL). So those cases clear this 657 * shared flag after we've set it. Note that this flag may 658 * remain set after the signal we return is ignored or 659 * handled. That doesn't matter because its only purpose 660 * is to alert stop-signal processing code when another 661 * processor has come along and cleared the flag. 662 */ 663 current->jobctl |= JOBCTL_STOP_DEQUEUED; 664 } 665 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 666 /* 667 * Release the siglock to ensure proper locking order 668 * of timer locks outside of siglocks. Note, we leave 669 * irqs disabled here, since the posix-timers code is 670 * about to disable them again anyway. 671 */ 672 spin_unlock(&tsk->sighand->siglock); 673 do_schedule_next_timer(info); 674 spin_lock(&tsk->sighand->siglock); 675 } 676 return signr; 677 } 678 679 /* 680 * Tell a process that it has a new active signal.. 681 * 682 * NOTE! we rely on the previous spin_lock to 683 * lock interrupts for us! We can only be called with 684 * "siglock" held, and the local interrupt must 685 * have been disabled when that got acquired! 686 * 687 * No need to set need_resched since signal event passing 688 * goes through ->blocked 689 */ 690 void signal_wake_up_state(struct task_struct *t, unsigned int state) 691 { 692 set_tsk_thread_flag(t, TIF_SIGPENDING); 693 /* 694 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 695 * case. We don't check t->state here because there is a race with it 696 * executing another processor and just now entering stopped state. 697 * By using wake_up_state, we ensure the process will wake up and 698 * handle its death signal. 699 */ 700 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 701 kick_process(t); 702 } 703 704 /* 705 * Remove signals in mask from the pending set and queue. 706 * Returns 1 if any signals were found. 707 * 708 * All callers must be holding the siglock. 709 */ 710 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 711 { 712 struct sigqueue *q, *n; 713 sigset_t m; 714 715 sigandsets(&m, mask, &s->signal); 716 if (sigisemptyset(&m)) 717 return 0; 718 719 sigandnsets(&s->signal, &s->signal, mask); 720 list_for_each_entry_safe(q, n, &s->list, list) { 721 if (sigismember(mask, q->info.si_signo)) { 722 list_del_init(&q->list); 723 __sigqueue_free(q); 724 } 725 } 726 return 1; 727 } 728 729 static inline int is_si_special(const struct siginfo *info) 730 { 731 return info <= SEND_SIG_FORCED; 732 } 733 734 static inline bool si_fromuser(const struct siginfo *info) 735 { 736 return info == SEND_SIG_NOINFO || 737 (!is_si_special(info) && SI_FROMUSER(info)); 738 } 739 740 /* 741 * called with RCU read lock from check_kill_permission() 742 */ 743 static int kill_ok_by_cred(struct task_struct *t) 744 { 745 const struct cred *cred = current_cred(); 746 const struct cred *tcred = __task_cred(t); 747 748 if (uid_eq(cred->euid, tcred->suid) || 749 uid_eq(cred->euid, tcred->uid) || 750 uid_eq(cred->uid, tcred->suid) || 751 uid_eq(cred->uid, tcred->uid)) 752 return 1; 753 754 if (ns_capable(tcred->user_ns, CAP_KILL)) 755 return 1; 756 757 return 0; 758 } 759 760 /* 761 * Bad permissions for sending the signal 762 * - the caller must hold the RCU read lock 763 */ 764 static int check_kill_permission(int sig, struct siginfo *info, 765 struct task_struct *t) 766 { 767 struct pid *sid; 768 int error; 769 770 if (!valid_signal(sig)) 771 return -EINVAL; 772 773 if (!si_fromuser(info)) 774 return 0; 775 776 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 777 if (error) 778 return error; 779 780 if (!same_thread_group(current, t) && 781 !kill_ok_by_cred(t)) { 782 switch (sig) { 783 case SIGCONT: 784 sid = task_session(t); 785 /* 786 * We don't return the error if sid == NULL. The 787 * task was unhashed, the caller must notice this. 788 */ 789 if (!sid || sid == task_session(current)) 790 break; 791 default: 792 return -EPERM; 793 } 794 } 795 796 return security_task_kill(t, info, sig, 0); 797 } 798 799 /** 800 * ptrace_trap_notify - schedule trap to notify ptracer 801 * @t: tracee wanting to notify tracer 802 * 803 * This function schedules sticky ptrace trap which is cleared on the next 804 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 805 * ptracer. 806 * 807 * If @t is running, STOP trap will be taken. If trapped for STOP and 808 * ptracer is listening for events, tracee is woken up so that it can 809 * re-trap for the new event. If trapped otherwise, STOP trap will be 810 * eventually taken without returning to userland after the existing traps 811 * are finished by PTRACE_CONT. 812 * 813 * CONTEXT: 814 * Must be called with @task->sighand->siglock held. 815 */ 816 static void ptrace_trap_notify(struct task_struct *t) 817 { 818 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 819 assert_spin_locked(&t->sighand->siglock); 820 821 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 822 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 823 } 824 825 /* 826 * Handle magic process-wide effects of stop/continue signals. Unlike 827 * the signal actions, these happen immediately at signal-generation 828 * time regardless of blocking, ignoring, or handling. This does the 829 * actual continuing for SIGCONT, but not the actual stopping for stop 830 * signals. The process stop is done as a signal action for SIG_DFL. 831 * 832 * Returns true if the signal should be actually delivered, otherwise 833 * it should be dropped. 834 */ 835 static bool prepare_signal(int sig, struct task_struct *p, bool force) 836 { 837 struct signal_struct *signal = p->signal; 838 struct task_struct *t; 839 sigset_t flush; 840 841 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 842 if (signal->flags & SIGNAL_GROUP_COREDUMP) 843 return sig == SIGKILL; 844 /* 845 * The process is in the middle of dying, nothing to do. 846 */ 847 } else if (sig_kernel_stop(sig)) { 848 /* 849 * This is a stop signal. Remove SIGCONT from all queues. 850 */ 851 siginitset(&flush, sigmask(SIGCONT)); 852 flush_sigqueue_mask(&flush, &signal->shared_pending); 853 for_each_thread(p, t) 854 flush_sigqueue_mask(&flush, &t->pending); 855 } else if (sig == SIGCONT) { 856 unsigned int why; 857 /* 858 * Remove all stop signals from all queues, wake all threads. 859 */ 860 siginitset(&flush, SIG_KERNEL_STOP_MASK); 861 flush_sigqueue_mask(&flush, &signal->shared_pending); 862 for_each_thread(p, t) { 863 flush_sigqueue_mask(&flush, &t->pending); 864 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 865 if (likely(!(t->ptrace & PT_SEIZED))) 866 wake_up_state(t, __TASK_STOPPED); 867 else 868 ptrace_trap_notify(t); 869 } 870 871 /* 872 * Notify the parent with CLD_CONTINUED if we were stopped. 873 * 874 * If we were in the middle of a group stop, we pretend it 875 * was already finished, and then continued. Since SIGCHLD 876 * doesn't queue we report only CLD_STOPPED, as if the next 877 * CLD_CONTINUED was dropped. 878 */ 879 why = 0; 880 if (signal->flags & SIGNAL_STOP_STOPPED) 881 why |= SIGNAL_CLD_CONTINUED; 882 else if (signal->group_stop_count) 883 why |= SIGNAL_CLD_STOPPED; 884 885 if (why) { 886 /* 887 * The first thread which returns from do_signal_stop() 888 * will take ->siglock, notice SIGNAL_CLD_MASK, and 889 * notify its parent. See get_signal_to_deliver(). 890 */ 891 signal->flags = why | SIGNAL_STOP_CONTINUED; 892 signal->group_stop_count = 0; 893 signal->group_exit_code = 0; 894 } 895 } 896 897 return !sig_ignored(p, sig, force); 898 } 899 900 /* 901 * Test if P wants to take SIG. After we've checked all threads with this, 902 * it's equivalent to finding no threads not blocking SIG. Any threads not 903 * blocking SIG were ruled out because they are not running and already 904 * have pending signals. Such threads will dequeue from the shared queue 905 * as soon as they're available, so putting the signal on the shared queue 906 * will be equivalent to sending it to one such thread. 907 */ 908 static inline int wants_signal(int sig, struct task_struct *p) 909 { 910 if (sigismember(&p->blocked, sig)) 911 return 0; 912 if (p->flags & PF_EXITING) 913 return 0; 914 if (sig == SIGKILL) 915 return 1; 916 if (task_is_stopped_or_traced(p)) 917 return 0; 918 return task_curr(p) || !signal_pending(p); 919 } 920 921 static void complete_signal(int sig, struct task_struct *p, int group) 922 { 923 struct signal_struct *signal = p->signal; 924 struct task_struct *t; 925 926 /* 927 * Now find a thread we can wake up to take the signal off the queue. 928 * 929 * If the main thread wants the signal, it gets first crack. 930 * Probably the least surprising to the average bear. 931 */ 932 if (wants_signal(sig, p)) 933 t = p; 934 else if (!group || thread_group_empty(p)) 935 /* 936 * There is just one thread and it does not need to be woken. 937 * It will dequeue unblocked signals before it runs again. 938 */ 939 return; 940 else { 941 /* 942 * Otherwise try to find a suitable thread. 943 */ 944 t = signal->curr_target; 945 while (!wants_signal(sig, t)) { 946 t = next_thread(t); 947 if (t == signal->curr_target) 948 /* 949 * No thread needs to be woken. 950 * Any eligible threads will see 951 * the signal in the queue soon. 952 */ 953 return; 954 } 955 signal->curr_target = t; 956 } 957 958 /* 959 * Found a killable thread. If the signal will be fatal, 960 * then start taking the whole group down immediately. 961 */ 962 if (sig_fatal(p, sig) && 963 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 964 !sigismember(&t->real_blocked, sig) && 965 (sig == SIGKILL || !t->ptrace)) { 966 /* 967 * This signal will be fatal to the whole group. 968 */ 969 if (!sig_kernel_coredump(sig)) { 970 /* 971 * Start a group exit and wake everybody up. 972 * This way we don't have other threads 973 * running and doing things after a slower 974 * thread has the fatal signal pending. 975 */ 976 signal->flags = SIGNAL_GROUP_EXIT; 977 signal->group_exit_code = sig; 978 signal->group_stop_count = 0; 979 t = p; 980 do { 981 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 982 sigaddset(&t->pending.signal, SIGKILL); 983 signal_wake_up(t, 1); 984 } while_each_thread(p, t); 985 return; 986 } 987 } 988 989 /* 990 * The signal is already in the shared-pending queue. 991 * Tell the chosen thread to wake up and dequeue it. 992 */ 993 signal_wake_up(t, sig == SIGKILL); 994 return; 995 } 996 997 static inline int legacy_queue(struct sigpending *signals, int sig) 998 { 999 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1000 } 1001 1002 #ifdef CONFIG_USER_NS 1003 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1004 { 1005 if (current_user_ns() == task_cred_xxx(t, user_ns)) 1006 return; 1007 1008 if (SI_FROMKERNEL(info)) 1009 return; 1010 1011 rcu_read_lock(); 1012 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 1013 make_kuid(current_user_ns(), info->si_uid)); 1014 rcu_read_unlock(); 1015 } 1016 #else 1017 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1018 { 1019 return; 1020 } 1021 #endif 1022 1023 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 1024 int group, int from_ancestor_ns) 1025 { 1026 struct sigpending *pending; 1027 struct sigqueue *q; 1028 int override_rlimit; 1029 int ret = 0, result; 1030 1031 assert_spin_locked(&t->sighand->siglock); 1032 1033 result = TRACE_SIGNAL_IGNORED; 1034 if (!prepare_signal(sig, t, 1035 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1036 goto ret; 1037 1038 pending = group ? &t->signal->shared_pending : &t->pending; 1039 /* 1040 * Short-circuit ignored signals and support queuing 1041 * exactly one non-rt signal, so that we can get more 1042 * detailed information about the cause of the signal. 1043 */ 1044 result = TRACE_SIGNAL_ALREADY_PENDING; 1045 if (legacy_queue(pending, sig)) 1046 goto ret; 1047 1048 result = TRACE_SIGNAL_DELIVERED; 1049 /* 1050 * fast-pathed signals for kernel-internal things like SIGSTOP 1051 * or SIGKILL. 1052 */ 1053 if (info == SEND_SIG_FORCED) 1054 goto out_set; 1055 1056 /* 1057 * Real-time signals must be queued if sent by sigqueue, or 1058 * some other real-time mechanism. It is implementation 1059 * defined whether kill() does so. We attempt to do so, on 1060 * the principle of least surprise, but since kill is not 1061 * allowed to fail with EAGAIN when low on memory we just 1062 * make sure at least one signal gets delivered and don't 1063 * pass on the info struct. 1064 */ 1065 if (sig < SIGRTMIN) 1066 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1067 else 1068 override_rlimit = 0; 1069 1070 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1071 override_rlimit); 1072 if (q) { 1073 list_add_tail(&q->list, &pending->list); 1074 switch ((unsigned long) info) { 1075 case (unsigned long) SEND_SIG_NOINFO: 1076 q->info.si_signo = sig; 1077 q->info.si_errno = 0; 1078 q->info.si_code = SI_USER; 1079 q->info.si_pid = task_tgid_nr_ns(current, 1080 task_active_pid_ns(t)); 1081 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1082 break; 1083 case (unsigned long) SEND_SIG_PRIV: 1084 q->info.si_signo = sig; 1085 q->info.si_errno = 0; 1086 q->info.si_code = SI_KERNEL; 1087 q->info.si_pid = 0; 1088 q->info.si_uid = 0; 1089 break; 1090 default: 1091 copy_siginfo(&q->info, info); 1092 if (from_ancestor_ns) 1093 q->info.si_pid = 0; 1094 break; 1095 } 1096 1097 userns_fixup_signal_uid(&q->info, t); 1098 1099 } else if (!is_si_special(info)) { 1100 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1101 /* 1102 * Queue overflow, abort. We may abort if the 1103 * signal was rt and sent by user using something 1104 * other than kill(). 1105 */ 1106 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1107 ret = -EAGAIN; 1108 goto ret; 1109 } else { 1110 /* 1111 * This is a silent loss of information. We still 1112 * send the signal, but the *info bits are lost. 1113 */ 1114 result = TRACE_SIGNAL_LOSE_INFO; 1115 } 1116 } 1117 1118 out_set: 1119 signalfd_notify(t, sig); 1120 sigaddset(&pending->signal, sig); 1121 complete_signal(sig, t, group); 1122 ret: 1123 trace_signal_generate(sig, info, t, group, result); 1124 return ret; 1125 } 1126 1127 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1128 int group) 1129 { 1130 int from_ancestor_ns = 0; 1131 1132 #ifdef CONFIG_PID_NS 1133 from_ancestor_ns = si_fromuser(info) && 1134 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1135 #endif 1136 1137 return __send_signal(sig, info, t, group, from_ancestor_ns); 1138 } 1139 1140 static void print_fatal_signal(int signr) 1141 { 1142 struct pt_regs *regs = signal_pt_regs(); 1143 printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr); 1144 1145 #if defined(__i386__) && !defined(__arch_um__) 1146 printk(KERN_INFO "code at %08lx: ", regs->ip); 1147 { 1148 int i; 1149 for (i = 0; i < 16; i++) { 1150 unsigned char insn; 1151 1152 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1153 break; 1154 printk(KERN_CONT "%02x ", insn); 1155 } 1156 } 1157 printk(KERN_CONT "\n"); 1158 #endif 1159 preempt_disable(); 1160 show_regs(regs); 1161 preempt_enable(); 1162 } 1163 1164 static int __init setup_print_fatal_signals(char *str) 1165 { 1166 get_option (&str, &print_fatal_signals); 1167 1168 return 1; 1169 } 1170 1171 __setup("print-fatal-signals=", setup_print_fatal_signals); 1172 1173 int 1174 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1175 { 1176 return send_signal(sig, info, p, 1); 1177 } 1178 1179 static int 1180 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1181 { 1182 return send_signal(sig, info, t, 0); 1183 } 1184 1185 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1186 bool group) 1187 { 1188 unsigned long flags; 1189 int ret = -ESRCH; 1190 1191 if (lock_task_sighand(p, &flags)) { 1192 ret = send_signal(sig, info, p, group); 1193 unlock_task_sighand(p, &flags); 1194 } 1195 1196 return ret; 1197 } 1198 1199 /* 1200 * Force a signal that the process can't ignore: if necessary 1201 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1202 * 1203 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1204 * since we do not want to have a signal handler that was blocked 1205 * be invoked when user space had explicitly blocked it. 1206 * 1207 * We don't want to have recursive SIGSEGV's etc, for example, 1208 * that is why we also clear SIGNAL_UNKILLABLE. 1209 */ 1210 int 1211 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1212 { 1213 unsigned long int flags; 1214 int ret, blocked, ignored; 1215 struct k_sigaction *action; 1216 1217 spin_lock_irqsave(&t->sighand->siglock, flags); 1218 action = &t->sighand->action[sig-1]; 1219 ignored = action->sa.sa_handler == SIG_IGN; 1220 blocked = sigismember(&t->blocked, sig); 1221 if (blocked || ignored) { 1222 action->sa.sa_handler = SIG_DFL; 1223 if (blocked) { 1224 sigdelset(&t->blocked, sig); 1225 recalc_sigpending_and_wake(t); 1226 } 1227 } 1228 if (action->sa.sa_handler == SIG_DFL) 1229 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1230 ret = specific_send_sig_info(sig, info, t); 1231 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1232 1233 return ret; 1234 } 1235 1236 /* 1237 * Nuke all other threads in the group. 1238 */ 1239 int zap_other_threads(struct task_struct *p) 1240 { 1241 struct task_struct *t = p; 1242 int count = 0; 1243 1244 p->signal->group_stop_count = 0; 1245 1246 while_each_thread(p, t) { 1247 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1248 count++; 1249 1250 /* Don't bother with already dead threads */ 1251 if (t->exit_state) 1252 continue; 1253 sigaddset(&t->pending.signal, SIGKILL); 1254 signal_wake_up(t, 1); 1255 } 1256 1257 return count; 1258 } 1259 1260 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1261 unsigned long *flags) 1262 { 1263 struct sighand_struct *sighand; 1264 1265 for (;;) { 1266 /* 1267 * Disable interrupts early to avoid deadlocks. 1268 * See rcu_read_unlock() comment header for details. 1269 */ 1270 local_irq_save(*flags); 1271 rcu_read_lock(); 1272 sighand = rcu_dereference(tsk->sighand); 1273 if (unlikely(sighand == NULL)) { 1274 rcu_read_unlock(); 1275 local_irq_restore(*flags); 1276 break; 1277 } 1278 1279 spin_lock(&sighand->siglock); 1280 if (likely(sighand == tsk->sighand)) { 1281 rcu_read_unlock(); 1282 break; 1283 } 1284 spin_unlock(&sighand->siglock); 1285 rcu_read_unlock(); 1286 local_irq_restore(*flags); 1287 } 1288 1289 return sighand; 1290 } 1291 1292 /* 1293 * send signal info to all the members of a group 1294 */ 1295 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1296 { 1297 int ret; 1298 1299 rcu_read_lock(); 1300 ret = check_kill_permission(sig, info, p); 1301 rcu_read_unlock(); 1302 1303 if (!ret && sig) 1304 ret = do_send_sig_info(sig, info, p, true); 1305 1306 return ret; 1307 } 1308 1309 /* 1310 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1311 * control characters do (^C, ^Z etc) 1312 * - the caller must hold at least a readlock on tasklist_lock 1313 */ 1314 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1315 { 1316 struct task_struct *p = NULL; 1317 int retval, success; 1318 1319 success = 0; 1320 retval = -ESRCH; 1321 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1322 int err = group_send_sig_info(sig, info, p); 1323 success |= !err; 1324 retval = err; 1325 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1326 return success ? 0 : retval; 1327 } 1328 1329 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1330 { 1331 int error = -ESRCH; 1332 struct task_struct *p; 1333 1334 rcu_read_lock(); 1335 retry: 1336 p = pid_task(pid, PIDTYPE_PID); 1337 if (p) { 1338 error = group_send_sig_info(sig, info, p); 1339 if (unlikely(error == -ESRCH)) 1340 /* 1341 * The task was unhashed in between, try again. 1342 * If it is dead, pid_task() will return NULL, 1343 * if we race with de_thread() it will find the 1344 * new leader. 1345 */ 1346 goto retry; 1347 } 1348 rcu_read_unlock(); 1349 1350 return error; 1351 } 1352 1353 int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1354 { 1355 int error; 1356 rcu_read_lock(); 1357 error = kill_pid_info(sig, info, find_vpid(pid)); 1358 rcu_read_unlock(); 1359 return error; 1360 } 1361 1362 static int kill_as_cred_perm(const struct cred *cred, 1363 struct task_struct *target) 1364 { 1365 const struct cred *pcred = __task_cred(target); 1366 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1367 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1368 return 0; 1369 return 1; 1370 } 1371 1372 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1373 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1374 const struct cred *cred, u32 secid) 1375 { 1376 int ret = -EINVAL; 1377 struct task_struct *p; 1378 unsigned long flags; 1379 1380 if (!valid_signal(sig)) 1381 return ret; 1382 1383 rcu_read_lock(); 1384 p = pid_task(pid, PIDTYPE_PID); 1385 if (!p) { 1386 ret = -ESRCH; 1387 goto out_unlock; 1388 } 1389 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1390 ret = -EPERM; 1391 goto out_unlock; 1392 } 1393 ret = security_task_kill(p, info, sig, secid); 1394 if (ret) 1395 goto out_unlock; 1396 1397 if (sig) { 1398 if (lock_task_sighand(p, &flags)) { 1399 ret = __send_signal(sig, info, p, 1, 0); 1400 unlock_task_sighand(p, &flags); 1401 } else 1402 ret = -ESRCH; 1403 } 1404 out_unlock: 1405 rcu_read_unlock(); 1406 return ret; 1407 } 1408 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1409 1410 /* 1411 * kill_something_info() interprets pid in interesting ways just like kill(2). 1412 * 1413 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1414 * is probably wrong. Should make it like BSD or SYSV. 1415 */ 1416 1417 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1418 { 1419 int ret; 1420 1421 if (pid > 0) { 1422 rcu_read_lock(); 1423 ret = kill_pid_info(sig, info, find_vpid(pid)); 1424 rcu_read_unlock(); 1425 return ret; 1426 } 1427 1428 read_lock(&tasklist_lock); 1429 if (pid != -1) { 1430 ret = __kill_pgrp_info(sig, info, 1431 pid ? find_vpid(-pid) : task_pgrp(current)); 1432 } else { 1433 int retval = 0, count = 0; 1434 struct task_struct * p; 1435 1436 for_each_process(p) { 1437 if (task_pid_vnr(p) > 1 && 1438 !same_thread_group(p, current)) { 1439 int err = group_send_sig_info(sig, info, p); 1440 ++count; 1441 if (err != -EPERM) 1442 retval = err; 1443 } 1444 } 1445 ret = count ? retval : -ESRCH; 1446 } 1447 read_unlock(&tasklist_lock); 1448 1449 return ret; 1450 } 1451 1452 /* 1453 * These are for backward compatibility with the rest of the kernel source. 1454 */ 1455 1456 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1457 { 1458 /* 1459 * Make sure legacy kernel users don't send in bad values 1460 * (normal paths check this in check_kill_permission). 1461 */ 1462 if (!valid_signal(sig)) 1463 return -EINVAL; 1464 1465 return do_send_sig_info(sig, info, p, false); 1466 } 1467 1468 #define __si_special(priv) \ 1469 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1470 1471 int 1472 send_sig(int sig, struct task_struct *p, int priv) 1473 { 1474 return send_sig_info(sig, __si_special(priv), p); 1475 } 1476 1477 void 1478 force_sig(int sig, struct task_struct *p) 1479 { 1480 force_sig_info(sig, SEND_SIG_PRIV, p); 1481 } 1482 1483 /* 1484 * When things go south during signal handling, we 1485 * will force a SIGSEGV. And if the signal that caused 1486 * the problem was already a SIGSEGV, we'll want to 1487 * make sure we don't even try to deliver the signal.. 1488 */ 1489 int 1490 force_sigsegv(int sig, struct task_struct *p) 1491 { 1492 if (sig == SIGSEGV) { 1493 unsigned long flags; 1494 spin_lock_irqsave(&p->sighand->siglock, flags); 1495 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1496 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1497 } 1498 force_sig(SIGSEGV, p); 1499 return 0; 1500 } 1501 1502 int kill_pgrp(struct pid *pid, int sig, int priv) 1503 { 1504 int ret; 1505 1506 read_lock(&tasklist_lock); 1507 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1508 read_unlock(&tasklist_lock); 1509 1510 return ret; 1511 } 1512 EXPORT_SYMBOL(kill_pgrp); 1513 1514 int kill_pid(struct pid *pid, int sig, int priv) 1515 { 1516 return kill_pid_info(sig, __si_special(priv), pid); 1517 } 1518 EXPORT_SYMBOL(kill_pid); 1519 1520 /* 1521 * These functions support sending signals using preallocated sigqueue 1522 * structures. This is needed "because realtime applications cannot 1523 * afford to lose notifications of asynchronous events, like timer 1524 * expirations or I/O completions". In the case of POSIX Timers 1525 * we allocate the sigqueue structure from the timer_create. If this 1526 * allocation fails we are able to report the failure to the application 1527 * with an EAGAIN error. 1528 */ 1529 struct sigqueue *sigqueue_alloc(void) 1530 { 1531 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1532 1533 if (q) 1534 q->flags |= SIGQUEUE_PREALLOC; 1535 1536 return q; 1537 } 1538 1539 void sigqueue_free(struct sigqueue *q) 1540 { 1541 unsigned long flags; 1542 spinlock_t *lock = ¤t->sighand->siglock; 1543 1544 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1545 /* 1546 * We must hold ->siglock while testing q->list 1547 * to serialize with collect_signal() or with 1548 * __exit_signal()->flush_sigqueue(). 1549 */ 1550 spin_lock_irqsave(lock, flags); 1551 q->flags &= ~SIGQUEUE_PREALLOC; 1552 /* 1553 * If it is queued it will be freed when dequeued, 1554 * like the "regular" sigqueue. 1555 */ 1556 if (!list_empty(&q->list)) 1557 q = NULL; 1558 spin_unlock_irqrestore(lock, flags); 1559 1560 if (q) 1561 __sigqueue_free(q); 1562 } 1563 1564 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1565 { 1566 int sig = q->info.si_signo; 1567 struct sigpending *pending; 1568 unsigned long flags; 1569 int ret, result; 1570 1571 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1572 1573 ret = -1; 1574 if (!likely(lock_task_sighand(t, &flags))) 1575 goto ret; 1576 1577 ret = 1; /* the signal is ignored */ 1578 result = TRACE_SIGNAL_IGNORED; 1579 if (!prepare_signal(sig, t, false)) 1580 goto out; 1581 1582 ret = 0; 1583 if (unlikely(!list_empty(&q->list))) { 1584 /* 1585 * If an SI_TIMER entry is already queue just increment 1586 * the overrun count. 1587 */ 1588 BUG_ON(q->info.si_code != SI_TIMER); 1589 q->info.si_overrun++; 1590 result = TRACE_SIGNAL_ALREADY_PENDING; 1591 goto out; 1592 } 1593 q->info.si_overrun = 0; 1594 1595 signalfd_notify(t, sig); 1596 pending = group ? &t->signal->shared_pending : &t->pending; 1597 list_add_tail(&q->list, &pending->list); 1598 sigaddset(&pending->signal, sig); 1599 complete_signal(sig, t, group); 1600 result = TRACE_SIGNAL_DELIVERED; 1601 out: 1602 trace_signal_generate(sig, &q->info, t, group, result); 1603 unlock_task_sighand(t, &flags); 1604 ret: 1605 return ret; 1606 } 1607 1608 /* 1609 * Let a parent know about the death of a child. 1610 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1611 * 1612 * Returns true if our parent ignored us and so we've switched to 1613 * self-reaping. 1614 */ 1615 bool do_notify_parent(struct task_struct *tsk, int sig) 1616 { 1617 struct siginfo info; 1618 unsigned long flags; 1619 struct sighand_struct *psig; 1620 bool autoreap = false; 1621 cputime_t utime, stime; 1622 1623 BUG_ON(sig == -1); 1624 1625 /* do_notify_parent_cldstop should have been called instead. */ 1626 BUG_ON(task_is_stopped_or_traced(tsk)); 1627 1628 BUG_ON(!tsk->ptrace && 1629 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1630 1631 if (sig != SIGCHLD) { 1632 /* 1633 * This is only possible if parent == real_parent. 1634 * Check if it has changed security domain. 1635 */ 1636 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1637 sig = SIGCHLD; 1638 } 1639 1640 info.si_signo = sig; 1641 info.si_errno = 0; 1642 /* 1643 * We are under tasklist_lock here so our parent is tied to 1644 * us and cannot change. 1645 * 1646 * task_active_pid_ns will always return the same pid namespace 1647 * until a task passes through release_task. 1648 * 1649 * write_lock() currently calls preempt_disable() which is the 1650 * same as rcu_read_lock(), but according to Oleg, this is not 1651 * correct to rely on this 1652 */ 1653 rcu_read_lock(); 1654 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1655 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1656 task_uid(tsk)); 1657 rcu_read_unlock(); 1658 1659 task_cputime(tsk, &utime, &stime); 1660 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime); 1661 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime); 1662 1663 info.si_status = tsk->exit_code & 0x7f; 1664 if (tsk->exit_code & 0x80) 1665 info.si_code = CLD_DUMPED; 1666 else if (tsk->exit_code & 0x7f) 1667 info.si_code = CLD_KILLED; 1668 else { 1669 info.si_code = CLD_EXITED; 1670 info.si_status = tsk->exit_code >> 8; 1671 } 1672 1673 psig = tsk->parent->sighand; 1674 spin_lock_irqsave(&psig->siglock, flags); 1675 if (!tsk->ptrace && sig == SIGCHLD && 1676 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1677 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1678 /* 1679 * We are exiting and our parent doesn't care. POSIX.1 1680 * defines special semantics for setting SIGCHLD to SIG_IGN 1681 * or setting the SA_NOCLDWAIT flag: we should be reaped 1682 * automatically and not left for our parent's wait4 call. 1683 * Rather than having the parent do it as a magic kind of 1684 * signal handler, we just set this to tell do_exit that we 1685 * can be cleaned up without becoming a zombie. Note that 1686 * we still call __wake_up_parent in this case, because a 1687 * blocked sys_wait4 might now return -ECHILD. 1688 * 1689 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1690 * is implementation-defined: we do (if you don't want 1691 * it, just use SIG_IGN instead). 1692 */ 1693 autoreap = true; 1694 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1695 sig = 0; 1696 } 1697 if (valid_signal(sig) && sig) 1698 __group_send_sig_info(sig, &info, tsk->parent); 1699 __wake_up_parent(tsk, tsk->parent); 1700 spin_unlock_irqrestore(&psig->siglock, flags); 1701 1702 return autoreap; 1703 } 1704 1705 /** 1706 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1707 * @tsk: task reporting the state change 1708 * @for_ptracer: the notification is for ptracer 1709 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1710 * 1711 * Notify @tsk's parent that the stopped/continued state has changed. If 1712 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1713 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1714 * 1715 * CONTEXT: 1716 * Must be called with tasklist_lock at least read locked. 1717 */ 1718 static void do_notify_parent_cldstop(struct task_struct *tsk, 1719 bool for_ptracer, int why) 1720 { 1721 struct siginfo info; 1722 unsigned long flags; 1723 struct task_struct *parent; 1724 struct sighand_struct *sighand; 1725 cputime_t utime, stime; 1726 1727 if (for_ptracer) { 1728 parent = tsk->parent; 1729 } else { 1730 tsk = tsk->group_leader; 1731 parent = tsk->real_parent; 1732 } 1733 1734 info.si_signo = SIGCHLD; 1735 info.si_errno = 0; 1736 /* 1737 * see comment in do_notify_parent() about the following 4 lines 1738 */ 1739 rcu_read_lock(); 1740 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1741 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1742 rcu_read_unlock(); 1743 1744 task_cputime(tsk, &utime, &stime); 1745 info.si_utime = cputime_to_clock_t(utime); 1746 info.si_stime = cputime_to_clock_t(stime); 1747 1748 info.si_code = why; 1749 switch (why) { 1750 case CLD_CONTINUED: 1751 info.si_status = SIGCONT; 1752 break; 1753 case CLD_STOPPED: 1754 info.si_status = tsk->signal->group_exit_code & 0x7f; 1755 break; 1756 case CLD_TRAPPED: 1757 info.si_status = tsk->exit_code & 0x7f; 1758 break; 1759 default: 1760 BUG(); 1761 } 1762 1763 sighand = parent->sighand; 1764 spin_lock_irqsave(&sighand->siglock, flags); 1765 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1766 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1767 __group_send_sig_info(SIGCHLD, &info, parent); 1768 /* 1769 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1770 */ 1771 __wake_up_parent(tsk, parent); 1772 spin_unlock_irqrestore(&sighand->siglock, flags); 1773 } 1774 1775 static inline int may_ptrace_stop(void) 1776 { 1777 if (!likely(current->ptrace)) 1778 return 0; 1779 /* 1780 * Are we in the middle of do_coredump? 1781 * If so and our tracer is also part of the coredump stopping 1782 * is a deadlock situation, and pointless because our tracer 1783 * is dead so don't allow us to stop. 1784 * If SIGKILL was already sent before the caller unlocked 1785 * ->siglock we must see ->core_state != NULL. Otherwise it 1786 * is safe to enter schedule(). 1787 * 1788 * This is almost outdated, a task with the pending SIGKILL can't 1789 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1790 * after SIGKILL was already dequeued. 1791 */ 1792 if (unlikely(current->mm->core_state) && 1793 unlikely(current->mm == current->parent->mm)) 1794 return 0; 1795 1796 return 1; 1797 } 1798 1799 /* 1800 * Return non-zero if there is a SIGKILL that should be waking us up. 1801 * Called with the siglock held. 1802 */ 1803 static int sigkill_pending(struct task_struct *tsk) 1804 { 1805 return sigismember(&tsk->pending.signal, SIGKILL) || 1806 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1807 } 1808 1809 /* 1810 * This must be called with current->sighand->siglock held. 1811 * 1812 * This should be the path for all ptrace stops. 1813 * We always set current->last_siginfo while stopped here. 1814 * That makes it a way to test a stopped process for 1815 * being ptrace-stopped vs being job-control-stopped. 1816 * 1817 * If we actually decide not to stop at all because the tracer 1818 * is gone, we keep current->exit_code unless clear_code. 1819 */ 1820 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1821 __releases(¤t->sighand->siglock) 1822 __acquires(¤t->sighand->siglock) 1823 { 1824 bool gstop_done = false; 1825 1826 if (arch_ptrace_stop_needed(exit_code, info)) { 1827 /* 1828 * The arch code has something special to do before a 1829 * ptrace stop. This is allowed to block, e.g. for faults 1830 * on user stack pages. We can't keep the siglock while 1831 * calling arch_ptrace_stop, so we must release it now. 1832 * To preserve proper semantics, we must do this before 1833 * any signal bookkeeping like checking group_stop_count. 1834 * Meanwhile, a SIGKILL could come in before we retake the 1835 * siglock. That must prevent us from sleeping in TASK_TRACED. 1836 * So after regaining the lock, we must check for SIGKILL. 1837 */ 1838 spin_unlock_irq(¤t->sighand->siglock); 1839 arch_ptrace_stop(exit_code, info); 1840 spin_lock_irq(¤t->sighand->siglock); 1841 if (sigkill_pending(current)) 1842 return; 1843 } 1844 1845 /* 1846 * We're committing to trapping. TRACED should be visible before 1847 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1848 * Also, transition to TRACED and updates to ->jobctl should be 1849 * atomic with respect to siglock and should be done after the arch 1850 * hook as siglock is released and regrabbed across it. 1851 */ 1852 set_current_state(TASK_TRACED); 1853 1854 current->last_siginfo = info; 1855 current->exit_code = exit_code; 1856 1857 /* 1858 * If @why is CLD_STOPPED, we're trapping to participate in a group 1859 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1860 * across siglock relocks since INTERRUPT was scheduled, PENDING 1861 * could be clear now. We act as if SIGCONT is received after 1862 * TASK_TRACED is entered - ignore it. 1863 */ 1864 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1865 gstop_done = task_participate_group_stop(current); 1866 1867 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1868 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1869 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1870 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1871 1872 /* entering a trap, clear TRAPPING */ 1873 task_clear_jobctl_trapping(current); 1874 1875 spin_unlock_irq(¤t->sighand->siglock); 1876 read_lock(&tasklist_lock); 1877 if (may_ptrace_stop()) { 1878 /* 1879 * Notify parents of the stop. 1880 * 1881 * While ptraced, there are two parents - the ptracer and 1882 * the real_parent of the group_leader. The ptracer should 1883 * know about every stop while the real parent is only 1884 * interested in the completion of group stop. The states 1885 * for the two don't interact with each other. Notify 1886 * separately unless they're gonna be duplicates. 1887 */ 1888 do_notify_parent_cldstop(current, true, why); 1889 if (gstop_done && ptrace_reparented(current)) 1890 do_notify_parent_cldstop(current, false, why); 1891 1892 /* 1893 * Don't want to allow preemption here, because 1894 * sys_ptrace() needs this task to be inactive. 1895 * 1896 * XXX: implement read_unlock_no_resched(). 1897 */ 1898 preempt_disable(); 1899 read_unlock(&tasklist_lock); 1900 preempt_enable_no_resched(); 1901 freezable_schedule(); 1902 } else { 1903 /* 1904 * By the time we got the lock, our tracer went away. 1905 * Don't drop the lock yet, another tracer may come. 1906 * 1907 * If @gstop_done, the ptracer went away between group stop 1908 * completion and here. During detach, it would have set 1909 * JOBCTL_STOP_PENDING on us and we'll re-enter 1910 * TASK_STOPPED in do_signal_stop() on return, so notifying 1911 * the real parent of the group stop completion is enough. 1912 */ 1913 if (gstop_done) 1914 do_notify_parent_cldstop(current, false, why); 1915 1916 /* tasklist protects us from ptrace_freeze_traced() */ 1917 __set_current_state(TASK_RUNNING); 1918 if (clear_code) 1919 current->exit_code = 0; 1920 read_unlock(&tasklist_lock); 1921 } 1922 1923 /* 1924 * We are back. Now reacquire the siglock before touching 1925 * last_siginfo, so that we are sure to have synchronized with 1926 * any signal-sending on another CPU that wants to examine it. 1927 */ 1928 spin_lock_irq(¤t->sighand->siglock); 1929 current->last_siginfo = NULL; 1930 1931 /* LISTENING can be set only during STOP traps, clear it */ 1932 current->jobctl &= ~JOBCTL_LISTENING; 1933 1934 /* 1935 * Queued signals ignored us while we were stopped for tracing. 1936 * So check for any that we should take before resuming user mode. 1937 * This sets TIF_SIGPENDING, but never clears it. 1938 */ 1939 recalc_sigpending_tsk(current); 1940 } 1941 1942 static void ptrace_do_notify(int signr, int exit_code, int why) 1943 { 1944 siginfo_t info; 1945 1946 memset(&info, 0, sizeof info); 1947 info.si_signo = signr; 1948 info.si_code = exit_code; 1949 info.si_pid = task_pid_vnr(current); 1950 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1951 1952 /* Let the debugger run. */ 1953 ptrace_stop(exit_code, why, 1, &info); 1954 } 1955 1956 void ptrace_notify(int exit_code) 1957 { 1958 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1959 if (unlikely(current->task_works)) 1960 task_work_run(); 1961 1962 spin_lock_irq(¤t->sighand->siglock); 1963 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1964 spin_unlock_irq(¤t->sighand->siglock); 1965 } 1966 1967 /** 1968 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1969 * @signr: signr causing group stop if initiating 1970 * 1971 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1972 * and participate in it. If already set, participate in the existing 1973 * group stop. If participated in a group stop (and thus slept), %true is 1974 * returned with siglock released. 1975 * 1976 * If ptraced, this function doesn't handle stop itself. Instead, 1977 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1978 * untouched. The caller must ensure that INTERRUPT trap handling takes 1979 * places afterwards. 1980 * 1981 * CONTEXT: 1982 * Must be called with @current->sighand->siglock held, which is released 1983 * on %true return. 1984 * 1985 * RETURNS: 1986 * %false if group stop is already cancelled or ptrace trap is scheduled. 1987 * %true if participated in group stop. 1988 */ 1989 static bool do_signal_stop(int signr) 1990 __releases(¤t->sighand->siglock) 1991 { 1992 struct signal_struct *sig = current->signal; 1993 1994 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 1995 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 1996 struct task_struct *t; 1997 1998 /* signr will be recorded in task->jobctl for retries */ 1999 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2000 2001 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2002 unlikely(signal_group_exit(sig))) 2003 return false; 2004 /* 2005 * There is no group stop already in progress. We must 2006 * initiate one now. 2007 * 2008 * While ptraced, a task may be resumed while group stop is 2009 * still in effect and then receive a stop signal and 2010 * initiate another group stop. This deviates from the 2011 * usual behavior as two consecutive stop signals can't 2012 * cause two group stops when !ptraced. That is why we 2013 * also check !task_is_stopped(t) below. 2014 * 2015 * The condition can be distinguished by testing whether 2016 * SIGNAL_STOP_STOPPED is already set. Don't generate 2017 * group_exit_code in such case. 2018 * 2019 * This is not necessary for SIGNAL_STOP_CONTINUED because 2020 * an intervening stop signal is required to cause two 2021 * continued events regardless of ptrace. 2022 */ 2023 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2024 sig->group_exit_code = signr; 2025 2026 sig->group_stop_count = 0; 2027 2028 if (task_set_jobctl_pending(current, signr | gstop)) 2029 sig->group_stop_count++; 2030 2031 t = current; 2032 while_each_thread(current, t) { 2033 /* 2034 * Setting state to TASK_STOPPED for a group 2035 * stop is always done with the siglock held, 2036 * so this check has no races. 2037 */ 2038 if (!task_is_stopped(t) && 2039 task_set_jobctl_pending(t, signr | gstop)) { 2040 sig->group_stop_count++; 2041 if (likely(!(t->ptrace & PT_SEIZED))) 2042 signal_wake_up(t, 0); 2043 else 2044 ptrace_trap_notify(t); 2045 } 2046 } 2047 } 2048 2049 if (likely(!current->ptrace)) { 2050 int notify = 0; 2051 2052 /* 2053 * If there are no other threads in the group, or if there 2054 * is a group stop in progress and we are the last to stop, 2055 * report to the parent. 2056 */ 2057 if (task_participate_group_stop(current)) 2058 notify = CLD_STOPPED; 2059 2060 __set_current_state(TASK_STOPPED); 2061 spin_unlock_irq(¤t->sighand->siglock); 2062 2063 /* 2064 * Notify the parent of the group stop completion. Because 2065 * we're not holding either the siglock or tasklist_lock 2066 * here, ptracer may attach inbetween; however, this is for 2067 * group stop and should always be delivered to the real 2068 * parent of the group leader. The new ptracer will get 2069 * its notification when this task transitions into 2070 * TASK_TRACED. 2071 */ 2072 if (notify) { 2073 read_lock(&tasklist_lock); 2074 do_notify_parent_cldstop(current, false, notify); 2075 read_unlock(&tasklist_lock); 2076 } 2077 2078 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2079 freezable_schedule(); 2080 return true; 2081 } else { 2082 /* 2083 * While ptraced, group stop is handled by STOP trap. 2084 * Schedule it and let the caller deal with it. 2085 */ 2086 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2087 return false; 2088 } 2089 } 2090 2091 /** 2092 * do_jobctl_trap - take care of ptrace jobctl traps 2093 * 2094 * When PT_SEIZED, it's used for both group stop and explicit 2095 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2096 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2097 * the stop signal; otherwise, %SIGTRAP. 2098 * 2099 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2100 * number as exit_code and no siginfo. 2101 * 2102 * CONTEXT: 2103 * Must be called with @current->sighand->siglock held, which may be 2104 * released and re-acquired before returning with intervening sleep. 2105 */ 2106 static void do_jobctl_trap(void) 2107 { 2108 struct signal_struct *signal = current->signal; 2109 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2110 2111 if (current->ptrace & PT_SEIZED) { 2112 if (!signal->group_stop_count && 2113 !(signal->flags & SIGNAL_STOP_STOPPED)) 2114 signr = SIGTRAP; 2115 WARN_ON_ONCE(!signr); 2116 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2117 CLD_STOPPED); 2118 } else { 2119 WARN_ON_ONCE(!signr); 2120 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2121 current->exit_code = 0; 2122 } 2123 } 2124 2125 static int ptrace_signal(int signr, siginfo_t *info) 2126 { 2127 ptrace_signal_deliver(); 2128 /* 2129 * We do not check sig_kernel_stop(signr) but set this marker 2130 * unconditionally because we do not know whether debugger will 2131 * change signr. This flag has no meaning unless we are going 2132 * to stop after return from ptrace_stop(). In this case it will 2133 * be checked in do_signal_stop(), we should only stop if it was 2134 * not cleared by SIGCONT while we were sleeping. See also the 2135 * comment in dequeue_signal(). 2136 */ 2137 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2138 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2139 2140 /* We're back. Did the debugger cancel the sig? */ 2141 signr = current->exit_code; 2142 if (signr == 0) 2143 return signr; 2144 2145 current->exit_code = 0; 2146 2147 /* 2148 * Update the siginfo structure if the signal has 2149 * changed. If the debugger wanted something 2150 * specific in the siginfo structure then it should 2151 * have updated *info via PTRACE_SETSIGINFO. 2152 */ 2153 if (signr != info->si_signo) { 2154 info->si_signo = signr; 2155 info->si_errno = 0; 2156 info->si_code = SI_USER; 2157 rcu_read_lock(); 2158 info->si_pid = task_pid_vnr(current->parent); 2159 info->si_uid = from_kuid_munged(current_user_ns(), 2160 task_uid(current->parent)); 2161 rcu_read_unlock(); 2162 } 2163 2164 /* If the (new) signal is now blocked, requeue it. */ 2165 if (sigismember(¤t->blocked, signr)) { 2166 specific_send_sig_info(signr, info, current); 2167 signr = 0; 2168 } 2169 2170 return signr; 2171 } 2172 2173 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 2174 struct pt_regs *regs, void *cookie) 2175 { 2176 struct sighand_struct *sighand = current->sighand; 2177 struct signal_struct *signal = current->signal; 2178 int signr; 2179 2180 if (unlikely(current->task_works)) 2181 task_work_run(); 2182 2183 if (unlikely(uprobe_deny_signal())) 2184 return 0; 2185 2186 /* 2187 * Do this once, we can't return to user-mode if freezing() == T. 2188 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2189 * thus do not need another check after return. 2190 */ 2191 try_to_freeze(); 2192 2193 relock: 2194 spin_lock_irq(&sighand->siglock); 2195 /* 2196 * Every stopped thread goes here after wakeup. Check to see if 2197 * we should notify the parent, prepare_signal(SIGCONT) encodes 2198 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2199 */ 2200 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2201 int why; 2202 2203 if (signal->flags & SIGNAL_CLD_CONTINUED) 2204 why = CLD_CONTINUED; 2205 else 2206 why = CLD_STOPPED; 2207 2208 signal->flags &= ~SIGNAL_CLD_MASK; 2209 2210 spin_unlock_irq(&sighand->siglock); 2211 2212 /* 2213 * Notify the parent that we're continuing. This event is 2214 * always per-process and doesn't make whole lot of sense 2215 * for ptracers, who shouldn't consume the state via 2216 * wait(2) either, but, for backward compatibility, notify 2217 * the ptracer of the group leader too unless it's gonna be 2218 * a duplicate. 2219 */ 2220 read_lock(&tasklist_lock); 2221 do_notify_parent_cldstop(current, false, why); 2222 2223 if (ptrace_reparented(current->group_leader)) 2224 do_notify_parent_cldstop(current->group_leader, 2225 true, why); 2226 read_unlock(&tasklist_lock); 2227 2228 goto relock; 2229 } 2230 2231 for (;;) { 2232 struct k_sigaction *ka; 2233 2234 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2235 do_signal_stop(0)) 2236 goto relock; 2237 2238 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2239 do_jobctl_trap(); 2240 spin_unlock_irq(&sighand->siglock); 2241 goto relock; 2242 } 2243 2244 signr = dequeue_signal(current, ¤t->blocked, info); 2245 2246 if (!signr) 2247 break; /* will return 0 */ 2248 2249 if (unlikely(current->ptrace) && signr != SIGKILL) { 2250 signr = ptrace_signal(signr, info); 2251 if (!signr) 2252 continue; 2253 } 2254 2255 ka = &sighand->action[signr-1]; 2256 2257 /* Trace actually delivered signals. */ 2258 trace_signal_deliver(signr, info, ka); 2259 2260 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2261 continue; 2262 if (ka->sa.sa_handler != SIG_DFL) { 2263 /* Run the handler. */ 2264 *return_ka = *ka; 2265 2266 if (ka->sa.sa_flags & SA_ONESHOT) 2267 ka->sa.sa_handler = SIG_DFL; 2268 2269 break; /* will return non-zero "signr" value */ 2270 } 2271 2272 /* 2273 * Now we are doing the default action for this signal. 2274 */ 2275 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2276 continue; 2277 2278 /* 2279 * Global init gets no signals it doesn't want. 2280 * Container-init gets no signals it doesn't want from same 2281 * container. 2282 * 2283 * Note that if global/container-init sees a sig_kernel_only() 2284 * signal here, the signal must have been generated internally 2285 * or must have come from an ancestor namespace. In either 2286 * case, the signal cannot be dropped. 2287 */ 2288 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2289 !sig_kernel_only(signr)) 2290 continue; 2291 2292 if (sig_kernel_stop(signr)) { 2293 /* 2294 * The default action is to stop all threads in 2295 * the thread group. The job control signals 2296 * do nothing in an orphaned pgrp, but SIGSTOP 2297 * always works. Note that siglock needs to be 2298 * dropped during the call to is_orphaned_pgrp() 2299 * because of lock ordering with tasklist_lock. 2300 * This allows an intervening SIGCONT to be posted. 2301 * We need to check for that and bail out if necessary. 2302 */ 2303 if (signr != SIGSTOP) { 2304 spin_unlock_irq(&sighand->siglock); 2305 2306 /* signals can be posted during this window */ 2307 2308 if (is_current_pgrp_orphaned()) 2309 goto relock; 2310 2311 spin_lock_irq(&sighand->siglock); 2312 } 2313 2314 if (likely(do_signal_stop(info->si_signo))) { 2315 /* It released the siglock. */ 2316 goto relock; 2317 } 2318 2319 /* 2320 * We didn't actually stop, due to a race 2321 * with SIGCONT or something like that. 2322 */ 2323 continue; 2324 } 2325 2326 spin_unlock_irq(&sighand->siglock); 2327 2328 /* 2329 * Anything else is fatal, maybe with a core dump. 2330 */ 2331 current->flags |= PF_SIGNALED; 2332 2333 if (sig_kernel_coredump(signr)) { 2334 if (print_fatal_signals) 2335 print_fatal_signal(info->si_signo); 2336 proc_coredump_connector(current); 2337 /* 2338 * If it was able to dump core, this kills all 2339 * other threads in the group and synchronizes with 2340 * their demise. If we lost the race with another 2341 * thread getting here, it set group_exit_code 2342 * first and our do_group_exit call below will use 2343 * that value and ignore the one we pass it. 2344 */ 2345 do_coredump(info); 2346 } 2347 2348 /* 2349 * Death signals, no core dump. 2350 */ 2351 do_group_exit(info->si_signo); 2352 /* NOTREACHED */ 2353 } 2354 spin_unlock_irq(&sighand->siglock); 2355 return signr; 2356 } 2357 2358 /** 2359 * signal_delivered - 2360 * @sig: number of signal being delivered 2361 * @info: siginfo_t of signal being delivered 2362 * @ka: sigaction setting that chose the handler 2363 * @regs: user register state 2364 * @stepping: nonzero if debugger single-step or block-step in use 2365 * 2366 * This function should be called when a signal has successfully been 2367 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask 2368 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2369 * is set in @ka->sa.sa_flags. Tracing is notified. 2370 */ 2371 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka, 2372 struct pt_regs *regs, int stepping) 2373 { 2374 sigset_t blocked; 2375 2376 /* A signal was successfully delivered, and the 2377 saved sigmask was stored on the signal frame, 2378 and will be restored by sigreturn. So we can 2379 simply clear the restore sigmask flag. */ 2380 clear_restore_sigmask(); 2381 2382 sigorsets(&blocked, ¤t->blocked, &ka->sa.sa_mask); 2383 if (!(ka->sa.sa_flags & SA_NODEFER)) 2384 sigaddset(&blocked, sig); 2385 set_current_blocked(&blocked); 2386 tracehook_signal_handler(sig, info, ka, regs, stepping); 2387 } 2388 2389 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2390 { 2391 if (failed) 2392 force_sigsegv(ksig->sig, current); 2393 else 2394 signal_delivered(ksig->sig, &ksig->info, &ksig->ka, 2395 signal_pt_regs(), stepping); 2396 } 2397 2398 /* 2399 * It could be that complete_signal() picked us to notify about the 2400 * group-wide signal. Other threads should be notified now to take 2401 * the shared signals in @which since we will not. 2402 */ 2403 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2404 { 2405 sigset_t retarget; 2406 struct task_struct *t; 2407 2408 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2409 if (sigisemptyset(&retarget)) 2410 return; 2411 2412 t = tsk; 2413 while_each_thread(tsk, t) { 2414 if (t->flags & PF_EXITING) 2415 continue; 2416 2417 if (!has_pending_signals(&retarget, &t->blocked)) 2418 continue; 2419 /* Remove the signals this thread can handle. */ 2420 sigandsets(&retarget, &retarget, &t->blocked); 2421 2422 if (!signal_pending(t)) 2423 signal_wake_up(t, 0); 2424 2425 if (sigisemptyset(&retarget)) 2426 break; 2427 } 2428 } 2429 2430 void exit_signals(struct task_struct *tsk) 2431 { 2432 int group_stop = 0; 2433 sigset_t unblocked; 2434 2435 /* 2436 * @tsk is about to have PF_EXITING set - lock out users which 2437 * expect stable threadgroup. 2438 */ 2439 threadgroup_change_begin(tsk); 2440 2441 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2442 tsk->flags |= PF_EXITING; 2443 threadgroup_change_end(tsk); 2444 return; 2445 } 2446 2447 spin_lock_irq(&tsk->sighand->siglock); 2448 /* 2449 * From now this task is not visible for group-wide signals, 2450 * see wants_signal(), do_signal_stop(). 2451 */ 2452 tsk->flags |= PF_EXITING; 2453 2454 threadgroup_change_end(tsk); 2455 2456 if (!signal_pending(tsk)) 2457 goto out; 2458 2459 unblocked = tsk->blocked; 2460 signotset(&unblocked); 2461 retarget_shared_pending(tsk, &unblocked); 2462 2463 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2464 task_participate_group_stop(tsk)) 2465 group_stop = CLD_STOPPED; 2466 out: 2467 spin_unlock_irq(&tsk->sighand->siglock); 2468 2469 /* 2470 * If group stop has completed, deliver the notification. This 2471 * should always go to the real parent of the group leader. 2472 */ 2473 if (unlikely(group_stop)) { 2474 read_lock(&tasklist_lock); 2475 do_notify_parent_cldstop(tsk, false, group_stop); 2476 read_unlock(&tasklist_lock); 2477 } 2478 } 2479 2480 EXPORT_SYMBOL(recalc_sigpending); 2481 EXPORT_SYMBOL_GPL(dequeue_signal); 2482 EXPORT_SYMBOL(flush_signals); 2483 EXPORT_SYMBOL(force_sig); 2484 EXPORT_SYMBOL(send_sig); 2485 EXPORT_SYMBOL(send_sig_info); 2486 EXPORT_SYMBOL(sigprocmask); 2487 EXPORT_SYMBOL(block_all_signals); 2488 EXPORT_SYMBOL(unblock_all_signals); 2489 2490 2491 /* 2492 * System call entry points. 2493 */ 2494 2495 /** 2496 * sys_restart_syscall - restart a system call 2497 */ 2498 SYSCALL_DEFINE0(restart_syscall) 2499 { 2500 struct restart_block *restart = ¤t_thread_info()->restart_block; 2501 return restart->fn(restart); 2502 } 2503 2504 long do_no_restart_syscall(struct restart_block *param) 2505 { 2506 return -EINTR; 2507 } 2508 2509 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2510 { 2511 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2512 sigset_t newblocked; 2513 /* A set of now blocked but previously unblocked signals. */ 2514 sigandnsets(&newblocked, newset, ¤t->blocked); 2515 retarget_shared_pending(tsk, &newblocked); 2516 } 2517 tsk->blocked = *newset; 2518 recalc_sigpending(); 2519 } 2520 2521 /** 2522 * set_current_blocked - change current->blocked mask 2523 * @newset: new mask 2524 * 2525 * It is wrong to change ->blocked directly, this helper should be used 2526 * to ensure the process can't miss a shared signal we are going to block. 2527 */ 2528 void set_current_blocked(sigset_t *newset) 2529 { 2530 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2531 __set_current_blocked(newset); 2532 } 2533 2534 void __set_current_blocked(const sigset_t *newset) 2535 { 2536 struct task_struct *tsk = current; 2537 2538 spin_lock_irq(&tsk->sighand->siglock); 2539 __set_task_blocked(tsk, newset); 2540 spin_unlock_irq(&tsk->sighand->siglock); 2541 } 2542 2543 /* 2544 * This is also useful for kernel threads that want to temporarily 2545 * (or permanently) block certain signals. 2546 * 2547 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2548 * interface happily blocks "unblockable" signals like SIGKILL 2549 * and friends. 2550 */ 2551 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2552 { 2553 struct task_struct *tsk = current; 2554 sigset_t newset; 2555 2556 /* Lockless, only current can change ->blocked, never from irq */ 2557 if (oldset) 2558 *oldset = tsk->blocked; 2559 2560 switch (how) { 2561 case SIG_BLOCK: 2562 sigorsets(&newset, &tsk->blocked, set); 2563 break; 2564 case SIG_UNBLOCK: 2565 sigandnsets(&newset, &tsk->blocked, set); 2566 break; 2567 case SIG_SETMASK: 2568 newset = *set; 2569 break; 2570 default: 2571 return -EINVAL; 2572 } 2573 2574 __set_current_blocked(&newset); 2575 return 0; 2576 } 2577 2578 /** 2579 * sys_rt_sigprocmask - change the list of currently blocked signals 2580 * @how: whether to add, remove, or set signals 2581 * @nset: stores pending signals 2582 * @oset: previous value of signal mask if non-null 2583 * @sigsetsize: size of sigset_t type 2584 */ 2585 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2586 sigset_t __user *, oset, size_t, sigsetsize) 2587 { 2588 sigset_t old_set, new_set; 2589 int error; 2590 2591 /* XXX: Don't preclude handling different sized sigset_t's. */ 2592 if (sigsetsize != sizeof(sigset_t)) 2593 return -EINVAL; 2594 2595 old_set = current->blocked; 2596 2597 if (nset) { 2598 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2599 return -EFAULT; 2600 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2601 2602 error = sigprocmask(how, &new_set, NULL); 2603 if (error) 2604 return error; 2605 } 2606 2607 if (oset) { 2608 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2609 return -EFAULT; 2610 } 2611 2612 return 0; 2613 } 2614 2615 #ifdef CONFIG_COMPAT 2616 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2617 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2618 { 2619 #ifdef __BIG_ENDIAN 2620 sigset_t old_set = current->blocked; 2621 2622 /* XXX: Don't preclude handling different sized sigset_t's. */ 2623 if (sigsetsize != sizeof(sigset_t)) 2624 return -EINVAL; 2625 2626 if (nset) { 2627 compat_sigset_t new32; 2628 sigset_t new_set; 2629 int error; 2630 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t))) 2631 return -EFAULT; 2632 2633 sigset_from_compat(&new_set, &new32); 2634 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2635 2636 error = sigprocmask(how, &new_set, NULL); 2637 if (error) 2638 return error; 2639 } 2640 if (oset) { 2641 compat_sigset_t old32; 2642 sigset_to_compat(&old32, &old_set); 2643 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t))) 2644 return -EFAULT; 2645 } 2646 return 0; 2647 #else 2648 return sys_rt_sigprocmask(how, (sigset_t __user *)nset, 2649 (sigset_t __user *)oset, sigsetsize); 2650 #endif 2651 } 2652 #endif 2653 2654 static int do_sigpending(void *set, unsigned long sigsetsize) 2655 { 2656 if (sigsetsize > sizeof(sigset_t)) 2657 return -EINVAL; 2658 2659 spin_lock_irq(¤t->sighand->siglock); 2660 sigorsets(set, ¤t->pending.signal, 2661 ¤t->signal->shared_pending.signal); 2662 spin_unlock_irq(¤t->sighand->siglock); 2663 2664 /* Outside the lock because only this thread touches it. */ 2665 sigandsets(set, ¤t->blocked, set); 2666 return 0; 2667 } 2668 2669 /** 2670 * sys_rt_sigpending - examine a pending signal that has been raised 2671 * while blocked 2672 * @uset: stores pending signals 2673 * @sigsetsize: size of sigset_t type or larger 2674 */ 2675 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2676 { 2677 sigset_t set; 2678 int err = do_sigpending(&set, sigsetsize); 2679 if (!err && copy_to_user(uset, &set, sigsetsize)) 2680 err = -EFAULT; 2681 return err; 2682 } 2683 2684 #ifdef CONFIG_COMPAT 2685 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2686 compat_size_t, sigsetsize) 2687 { 2688 #ifdef __BIG_ENDIAN 2689 sigset_t set; 2690 int err = do_sigpending(&set, sigsetsize); 2691 if (!err) { 2692 compat_sigset_t set32; 2693 sigset_to_compat(&set32, &set); 2694 /* we can get here only if sigsetsize <= sizeof(set) */ 2695 if (copy_to_user(uset, &set32, sigsetsize)) 2696 err = -EFAULT; 2697 } 2698 return err; 2699 #else 2700 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize); 2701 #endif 2702 } 2703 #endif 2704 2705 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2706 2707 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from) 2708 { 2709 int err; 2710 2711 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2712 return -EFAULT; 2713 if (from->si_code < 0) 2714 return __copy_to_user(to, from, sizeof(siginfo_t)) 2715 ? -EFAULT : 0; 2716 /* 2717 * If you change siginfo_t structure, please be sure 2718 * this code is fixed accordingly. 2719 * Please remember to update the signalfd_copyinfo() function 2720 * inside fs/signalfd.c too, in case siginfo_t changes. 2721 * It should never copy any pad contained in the structure 2722 * to avoid security leaks, but must copy the generic 2723 * 3 ints plus the relevant union member. 2724 */ 2725 err = __put_user(from->si_signo, &to->si_signo); 2726 err |= __put_user(from->si_errno, &to->si_errno); 2727 err |= __put_user((short)from->si_code, &to->si_code); 2728 switch (from->si_code & __SI_MASK) { 2729 case __SI_KILL: 2730 err |= __put_user(from->si_pid, &to->si_pid); 2731 err |= __put_user(from->si_uid, &to->si_uid); 2732 break; 2733 case __SI_TIMER: 2734 err |= __put_user(from->si_tid, &to->si_tid); 2735 err |= __put_user(from->si_overrun, &to->si_overrun); 2736 err |= __put_user(from->si_ptr, &to->si_ptr); 2737 break; 2738 case __SI_POLL: 2739 err |= __put_user(from->si_band, &to->si_band); 2740 err |= __put_user(from->si_fd, &to->si_fd); 2741 break; 2742 case __SI_FAULT: 2743 err |= __put_user(from->si_addr, &to->si_addr); 2744 #ifdef __ARCH_SI_TRAPNO 2745 err |= __put_user(from->si_trapno, &to->si_trapno); 2746 #endif 2747 #ifdef BUS_MCEERR_AO 2748 /* 2749 * Other callers might not initialize the si_lsb field, 2750 * so check explicitly for the right codes here. 2751 */ 2752 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO) 2753 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2754 #endif 2755 break; 2756 case __SI_CHLD: 2757 err |= __put_user(from->si_pid, &to->si_pid); 2758 err |= __put_user(from->si_uid, &to->si_uid); 2759 err |= __put_user(from->si_status, &to->si_status); 2760 err |= __put_user(from->si_utime, &to->si_utime); 2761 err |= __put_user(from->si_stime, &to->si_stime); 2762 break; 2763 case __SI_RT: /* This is not generated by the kernel as of now. */ 2764 case __SI_MESGQ: /* But this is */ 2765 err |= __put_user(from->si_pid, &to->si_pid); 2766 err |= __put_user(from->si_uid, &to->si_uid); 2767 err |= __put_user(from->si_ptr, &to->si_ptr); 2768 break; 2769 #ifdef __ARCH_SIGSYS 2770 case __SI_SYS: 2771 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2772 err |= __put_user(from->si_syscall, &to->si_syscall); 2773 err |= __put_user(from->si_arch, &to->si_arch); 2774 break; 2775 #endif 2776 default: /* this is just in case for now ... */ 2777 err |= __put_user(from->si_pid, &to->si_pid); 2778 err |= __put_user(from->si_uid, &to->si_uid); 2779 break; 2780 } 2781 return err; 2782 } 2783 2784 #endif 2785 2786 /** 2787 * do_sigtimedwait - wait for queued signals specified in @which 2788 * @which: queued signals to wait for 2789 * @info: if non-null, the signal's siginfo is returned here 2790 * @ts: upper bound on process time suspension 2791 */ 2792 int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2793 const struct timespec *ts) 2794 { 2795 struct task_struct *tsk = current; 2796 long timeout = MAX_SCHEDULE_TIMEOUT; 2797 sigset_t mask = *which; 2798 int sig; 2799 2800 if (ts) { 2801 if (!timespec_valid(ts)) 2802 return -EINVAL; 2803 timeout = timespec_to_jiffies(ts); 2804 /* 2805 * We can be close to the next tick, add another one 2806 * to ensure we will wait at least the time asked for. 2807 */ 2808 if (ts->tv_sec || ts->tv_nsec) 2809 timeout++; 2810 } 2811 2812 /* 2813 * Invert the set of allowed signals to get those we want to block. 2814 */ 2815 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2816 signotset(&mask); 2817 2818 spin_lock_irq(&tsk->sighand->siglock); 2819 sig = dequeue_signal(tsk, &mask, info); 2820 if (!sig && timeout) { 2821 /* 2822 * None ready, temporarily unblock those we're interested 2823 * while we are sleeping in so that we'll be awakened when 2824 * they arrive. Unblocking is always fine, we can avoid 2825 * set_current_blocked(). 2826 */ 2827 tsk->real_blocked = tsk->blocked; 2828 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2829 recalc_sigpending(); 2830 spin_unlock_irq(&tsk->sighand->siglock); 2831 2832 timeout = freezable_schedule_timeout_interruptible(timeout); 2833 2834 spin_lock_irq(&tsk->sighand->siglock); 2835 __set_task_blocked(tsk, &tsk->real_blocked); 2836 sigemptyset(&tsk->real_blocked); 2837 sig = dequeue_signal(tsk, &mask, info); 2838 } 2839 spin_unlock_irq(&tsk->sighand->siglock); 2840 2841 if (sig) 2842 return sig; 2843 return timeout ? -EINTR : -EAGAIN; 2844 } 2845 2846 /** 2847 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2848 * in @uthese 2849 * @uthese: queued signals to wait for 2850 * @uinfo: if non-null, the signal's siginfo is returned here 2851 * @uts: upper bound on process time suspension 2852 * @sigsetsize: size of sigset_t type 2853 */ 2854 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2855 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2856 size_t, sigsetsize) 2857 { 2858 sigset_t these; 2859 struct timespec ts; 2860 siginfo_t info; 2861 int ret; 2862 2863 /* XXX: Don't preclude handling different sized sigset_t's. */ 2864 if (sigsetsize != sizeof(sigset_t)) 2865 return -EINVAL; 2866 2867 if (copy_from_user(&these, uthese, sizeof(these))) 2868 return -EFAULT; 2869 2870 if (uts) { 2871 if (copy_from_user(&ts, uts, sizeof(ts))) 2872 return -EFAULT; 2873 } 2874 2875 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2876 2877 if (ret > 0 && uinfo) { 2878 if (copy_siginfo_to_user(uinfo, &info)) 2879 ret = -EFAULT; 2880 } 2881 2882 return ret; 2883 } 2884 2885 /** 2886 * sys_kill - send a signal to a process 2887 * @pid: the PID of the process 2888 * @sig: signal to be sent 2889 */ 2890 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2891 { 2892 struct siginfo info; 2893 2894 info.si_signo = sig; 2895 info.si_errno = 0; 2896 info.si_code = SI_USER; 2897 info.si_pid = task_tgid_vnr(current); 2898 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2899 2900 return kill_something_info(sig, &info, pid); 2901 } 2902 2903 static int 2904 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2905 { 2906 struct task_struct *p; 2907 int error = -ESRCH; 2908 2909 rcu_read_lock(); 2910 p = find_task_by_vpid(pid); 2911 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2912 error = check_kill_permission(sig, info, p); 2913 /* 2914 * The null signal is a permissions and process existence 2915 * probe. No signal is actually delivered. 2916 */ 2917 if (!error && sig) { 2918 error = do_send_sig_info(sig, info, p, false); 2919 /* 2920 * If lock_task_sighand() failed we pretend the task 2921 * dies after receiving the signal. The window is tiny, 2922 * and the signal is private anyway. 2923 */ 2924 if (unlikely(error == -ESRCH)) 2925 error = 0; 2926 } 2927 } 2928 rcu_read_unlock(); 2929 2930 return error; 2931 } 2932 2933 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2934 { 2935 struct siginfo info = {}; 2936 2937 info.si_signo = sig; 2938 info.si_errno = 0; 2939 info.si_code = SI_TKILL; 2940 info.si_pid = task_tgid_vnr(current); 2941 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2942 2943 return do_send_specific(tgid, pid, sig, &info); 2944 } 2945 2946 /** 2947 * sys_tgkill - send signal to one specific thread 2948 * @tgid: the thread group ID of the thread 2949 * @pid: the PID of the thread 2950 * @sig: signal to be sent 2951 * 2952 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2953 * exists but it's not belonging to the target process anymore. This 2954 * method solves the problem of threads exiting and PIDs getting reused. 2955 */ 2956 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2957 { 2958 /* This is only valid for single tasks */ 2959 if (pid <= 0 || tgid <= 0) 2960 return -EINVAL; 2961 2962 return do_tkill(tgid, pid, sig); 2963 } 2964 2965 /** 2966 * sys_tkill - send signal to one specific task 2967 * @pid: the PID of the task 2968 * @sig: signal to be sent 2969 * 2970 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2971 */ 2972 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2973 { 2974 /* This is only valid for single tasks */ 2975 if (pid <= 0) 2976 return -EINVAL; 2977 2978 return do_tkill(0, pid, sig); 2979 } 2980 2981 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info) 2982 { 2983 /* Not even root can pretend to send signals from the kernel. 2984 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2985 */ 2986 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 2987 (task_pid_vnr(current) != pid)) { 2988 /* We used to allow any < 0 si_code */ 2989 WARN_ON_ONCE(info->si_code < 0); 2990 return -EPERM; 2991 } 2992 info->si_signo = sig; 2993 2994 /* POSIX.1b doesn't mention process groups. */ 2995 return kill_proc_info(sig, info, pid); 2996 } 2997 2998 /** 2999 * sys_rt_sigqueueinfo - send signal information to a signal 3000 * @pid: the PID of the thread 3001 * @sig: signal to be sent 3002 * @uinfo: signal info to be sent 3003 */ 3004 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3005 siginfo_t __user *, uinfo) 3006 { 3007 siginfo_t info; 3008 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3009 return -EFAULT; 3010 return do_rt_sigqueueinfo(pid, sig, &info); 3011 } 3012 3013 #ifdef CONFIG_COMPAT 3014 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3015 compat_pid_t, pid, 3016 int, sig, 3017 struct compat_siginfo __user *, uinfo) 3018 { 3019 siginfo_t info; 3020 int ret = copy_siginfo_from_user32(&info, uinfo); 3021 if (unlikely(ret)) 3022 return ret; 3023 return do_rt_sigqueueinfo(pid, sig, &info); 3024 } 3025 #endif 3026 3027 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 3028 { 3029 /* This is only valid for single tasks */ 3030 if (pid <= 0 || tgid <= 0) 3031 return -EINVAL; 3032 3033 /* Not even root can pretend to send signals from the kernel. 3034 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3035 */ 3036 if (((info->si_code >= 0 || info->si_code == SI_TKILL)) && 3037 (task_pid_vnr(current) != pid)) { 3038 /* We used to allow any < 0 si_code */ 3039 WARN_ON_ONCE(info->si_code < 0); 3040 return -EPERM; 3041 } 3042 info->si_signo = sig; 3043 3044 return do_send_specific(tgid, pid, sig, info); 3045 } 3046 3047 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3048 siginfo_t __user *, uinfo) 3049 { 3050 siginfo_t info; 3051 3052 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3053 return -EFAULT; 3054 3055 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3056 } 3057 3058 #ifdef CONFIG_COMPAT 3059 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3060 compat_pid_t, tgid, 3061 compat_pid_t, pid, 3062 int, sig, 3063 struct compat_siginfo __user *, uinfo) 3064 { 3065 siginfo_t info; 3066 3067 if (copy_siginfo_from_user32(&info, uinfo)) 3068 return -EFAULT; 3069 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3070 } 3071 #endif 3072 3073 /* 3074 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3075 */ 3076 void kernel_sigaction(int sig, __sighandler_t action) 3077 { 3078 spin_lock_irq(¤t->sighand->siglock); 3079 current->sighand->action[sig - 1].sa.sa_handler = action; 3080 if (action == SIG_IGN) { 3081 sigset_t mask; 3082 3083 sigemptyset(&mask); 3084 sigaddset(&mask, sig); 3085 3086 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3087 flush_sigqueue_mask(&mask, ¤t->pending); 3088 recalc_sigpending(); 3089 } 3090 spin_unlock_irq(¤t->sighand->siglock); 3091 } 3092 EXPORT_SYMBOL(kernel_sigaction); 3093 3094 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3095 { 3096 struct task_struct *p = current, *t; 3097 struct k_sigaction *k; 3098 sigset_t mask; 3099 3100 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3101 return -EINVAL; 3102 3103 k = &p->sighand->action[sig-1]; 3104 3105 spin_lock_irq(&p->sighand->siglock); 3106 if (oact) 3107 *oact = *k; 3108 3109 if (act) { 3110 sigdelsetmask(&act->sa.sa_mask, 3111 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3112 *k = *act; 3113 /* 3114 * POSIX 3.3.1.3: 3115 * "Setting a signal action to SIG_IGN for a signal that is 3116 * pending shall cause the pending signal to be discarded, 3117 * whether or not it is blocked." 3118 * 3119 * "Setting a signal action to SIG_DFL for a signal that is 3120 * pending and whose default action is to ignore the signal 3121 * (for example, SIGCHLD), shall cause the pending signal to 3122 * be discarded, whether or not it is blocked" 3123 */ 3124 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3125 sigemptyset(&mask); 3126 sigaddset(&mask, sig); 3127 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3128 for_each_thread(p, t) 3129 flush_sigqueue_mask(&mask, &t->pending); 3130 } 3131 } 3132 3133 spin_unlock_irq(&p->sighand->siglock); 3134 return 0; 3135 } 3136 3137 static int 3138 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 3139 { 3140 stack_t oss; 3141 int error; 3142 3143 oss.ss_sp = (void __user *) current->sas_ss_sp; 3144 oss.ss_size = current->sas_ss_size; 3145 oss.ss_flags = sas_ss_flags(sp); 3146 3147 if (uss) { 3148 void __user *ss_sp; 3149 size_t ss_size; 3150 int ss_flags; 3151 3152 error = -EFAULT; 3153 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 3154 goto out; 3155 error = __get_user(ss_sp, &uss->ss_sp) | 3156 __get_user(ss_flags, &uss->ss_flags) | 3157 __get_user(ss_size, &uss->ss_size); 3158 if (error) 3159 goto out; 3160 3161 error = -EPERM; 3162 if (on_sig_stack(sp)) 3163 goto out; 3164 3165 error = -EINVAL; 3166 /* 3167 * Note - this code used to test ss_flags incorrectly: 3168 * old code may have been written using ss_flags==0 3169 * to mean ss_flags==SS_ONSTACK (as this was the only 3170 * way that worked) - this fix preserves that older 3171 * mechanism. 3172 */ 3173 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 3174 goto out; 3175 3176 if (ss_flags == SS_DISABLE) { 3177 ss_size = 0; 3178 ss_sp = NULL; 3179 } else { 3180 error = -ENOMEM; 3181 if (ss_size < MINSIGSTKSZ) 3182 goto out; 3183 } 3184 3185 current->sas_ss_sp = (unsigned long) ss_sp; 3186 current->sas_ss_size = ss_size; 3187 } 3188 3189 error = 0; 3190 if (uoss) { 3191 error = -EFAULT; 3192 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 3193 goto out; 3194 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 3195 __put_user(oss.ss_size, &uoss->ss_size) | 3196 __put_user(oss.ss_flags, &uoss->ss_flags); 3197 } 3198 3199 out: 3200 return error; 3201 } 3202 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3203 { 3204 return do_sigaltstack(uss, uoss, current_user_stack_pointer()); 3205 } 3206 3207 int restore_altstack(const stack_t __user *uss) 3208 { 3209 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer()); 3210 /* squash all but EFAULT for now */ 3211 return err == -EFAULT ? err : 0; 3212 } 3213 3214 int __save_altstack(stack_t __user *uss, unsigned long sp) 3215 { 3216 struct task_struct *t = current; 3217 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3218 __put_user(sas_ss_flags(sp), &uss->ss_flags) | 3219 __put_user(t->sas_ss_size, &uss->ss_size); 3220 } 3221 3222 #ifdef CONFIG_COMPAT 3223 COMPAT_SYSCALL_DEFINE2(sigaltstack, 3224 const compat_stack_t __user *, uss_ptr, 3225 compat_stack_t __user *, uoss_ptr) 3226 { 3227 stack_t uss, uoss; 3228 int ret; 3229 mm_segment_t seg; 3230 3231 if (uss_ptr) { 3232 compat_stack_t uss32; 3233 3234 memset(&uss, 0, sizeof(stack_t)); 3235 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3236 return -EFAULT; 3237 uss.ss_sp = compat_ptr(uss32.ss_sp); 3238 uss.ss_flags = uss32.ss_flags; 3239 uss.ss_size = uss32.ss_size; 3240 } 3241 seg = get_fs(); 3242 set_fs(KERNEL_DS); 3243 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL), 3244 (stack_t __force __user *) &uoss, 3245 compat_user_stack_pointer()); 3246 set_fs(seg); 3247 if (ret >= 0 && uoss_ptr) { 3248 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) || 3249 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) || 3250 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) || 3251 __put_user(uoss.ss_size, &uoss_ptr->ss_size)) 3252 ret = -EFAULT; 3253 } 3254 return ret; 3255 } 3256 3257 int compat_restore_altstack(const compat_stack_t __user *uss) 3258 { 3259 int err = compat_sys_sigaltstack(uss, NULL); 3260 /* squash all but -EFAULT for now */ 3261 return err == -EFAULT ? err : 0; 3262 } 3263 3264 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3265 { 3266 struct task_struct *t = current; 3267 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) | 3268 __put_user(sas_ss_flags(sp), &uss->ss_flags) | 3269 __put_user(t->sas_ss_size, &uss->ss_size); 3270 } 3271 #endif 3272 3273 #ifdef __ARCH_WANT_SYS_SIGPENDING 3274 3275 /** 3276 * sys_sigpending - examine pending signals 3277 * @set: where mask of pending signal is returned 3278 */ 3279 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3280 { 3281 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 3282 } 3283 3284 #endif 3285 3286 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3287 /** 3288 * sys_sigprocmask - examine and change blocked signals 3289 * @how: whether to add, remove, or set signals 3290 * @nset: signals to add or remove (if non-null) 3291 * @oset: previous value of signal mask if non-null 3292 * 3293 * Some platforms have their own version with special arguments; 3294 * others support only sys_rt_sigprocmask. 3295 */ 3296 3297 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3298 old_sigset_t __user *, oset) 3299 { 3300 old_sigset_t old_set, new_set; 3301 sigset_t new_blocked; 3302 3303 old_set = current->blocked.sig[0]; 3304 3305 if (nset) { 3306 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3307 return -EFAULT; 3308 3309 new_blocked = current->blocked; 3310 3311 switch (how) { 3312 case SIG_BLOCK: 3313 sigaddsetmask(&new_blocked, new_set); 3314 break; 3315 case SIG_UNBLOCK: 3316 sigdelsetmask(&new_blocked, new_set); 3317 break; 3318 case SIG_SETMASK: 3319 new_blocked.sig[0] = new_set; 3320 break; 3321 default: 3322 return -EINVAL; 3323 } 3324 3325 set_current_blocked(&new_blocked); 3326 } 3327 3328 if (oset) { 3329 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3330 return -EFAULT; 3331 } 3332 3333 return 0; 3334 } 3335 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3336 3337 #ifndef CONFIG_ODD_RT_SIGACTION 3338 /** 3339 * sys_rt_sigaction - alter an action taken by a process 3340 * @sig: signal to be sent 3341 * @act: new sigaction 3342 * @oact: used to save the previous sigaction 3343 * @sigsetsize: size of sigset_t type 3344 */ 3345 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3346 const struct sigaction __user *, act, 3347 struct sigaction __user *, oact, 3348 size_t, sigsetsize) 3349 { 3350 struct k_sigaction new_sa, old_sa; 3351 int ret = -EINVAL; 3352 3353 /* XXX: Don't preclude handling different sized sigset_t's. */ 3354 if (sigsetsize != sizeof(sigset_t)) 3355 goto out; 3356 3357 if (act) { 3358 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3359 return -EFAULT; 3360 } 3361 3362 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3363 3364 if (!ret && oact) { 3365 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3366 return -EFAULT; 3367 } 3368 out: 3369 return ret; 3370 } 3371 #ifdef CONFIG_COMPAT 3372 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 3373 const struct compat_sigaction __user *, act, 3374 struct compat_sigaction __user *, oact, 3375 compat_size_t, sigsetsize) 3376 { 3377 struct k_sigaction new_ka, old_ka; 3378 compat_sigset_t mask; 3379 #ifdef __ARCH_HAS_SA_RESTORER 3380 compat_uptr_t restorer; 3381 #endif 3382 int ret; 3383 3384 /* XXX: Don't preclude handling different sized sigset_t's. */ 3385 if (sigsetsize != sizeof(compat_sigset_t)) 3386 return -EINVAL; 3387 3388 if (act) { 3389 compat_uptr_t handler; 3390 ret = get_user(handler, &act->sa_handler); 3391 new_ka.sa.sa_handler = compat_ptr(handler); 3392 #ifdef __ARCH_HAS_SA_RESTORER 3393 ret |= get_user(restorer, &act->sa_restorer); 3394 new_ka.sa.sa_restorer = compat_ptr(restorer); 3395 #endif 3396 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask)); 3397 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 3398 if (ret) 3399 return -EFAULT; 3400 sigset_from_compat(&new_ka.sa.sa_mask, &mask); 3401 } 3402 3403 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3404 if (!ret && oact) { 3405 sigset_to_compat(&mask, &old_ka.sa.sa_mask); 3406 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 3407 &oact->sa_handler); 3408 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask)); 3409 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 3410 #ifdef __ARCH_HAS_SA_RESTORER 3411 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3412 &oact->sa_restorer); 3413 #endif 3414 } 3415 return ret; 3416 } 3417 #endif 3418 #endif /* !CONFIG_ODD_RT_SIGACTION */ 3419 3420 #ifdef CONFIG_OLD_SIGACTION 3421 SYSCALL_DEFINE3(sigaction, int, sig, 3422 const struct old_sigaction __user *, act, 3423 struct old_sigaction __user *, oact) 3424 { 3425 struct k_sigaction new_ka, old_ka; 3426 int ret; 3427 3428 if (act) { 3429 old_sigset_t mask; 3430 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3431 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 3432 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 3433 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3434 __get_user(mask, &act->sa_mask)) 3435 return -EFAULT; 3436 #ifdef __ARCH_HAS_KA_RESTORER 3437 new_ka.ka_restorer = NULL; 3438 #endif 3439 siginitset(&new_ka.sa.sa_mask, mask); 3440 } 3441 3442 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3443 3444 if (!ret && oact) { 3445 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3446 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 3447 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 3448 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3449 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3450 return -EFAULT; 3451 } 3452 3453 return ret; 3454 } 3455 #endif 3456 #ifdef CONFIG_COMPAT_OLD_SIGACTION 3457 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 3458 const struct compat_old_sigaction __user *, act, 3459 struct compat_old_sigaction __user *, oact) 3460 { 3461 struct k_sigaction new_ka, old_ka; 3462 int ret; 3463 compat_old_sigset_t mask; 3464 compat_uptr_t handler, restorer; 3465 3466 if (act) { 3467 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3468 __get_user(handler, &act->sa_handler) || 3469 __get_user(restorer, &act->sa_restorer) || 3470 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3471 __get_user(mask, &act->sa_mask)) 3472 return -EFAULT; 3473 3474 #ifdef __ARCH_HAS_KA_RESTORER 3475 new_ka.ka_restorer = NULL; 3476 #endif 3477 new_ka.sa.sa_handler = compat_ptr(handler); 3478 new_ka.sa.sa_restorer = compat_ptr(restorer); 3479 siginitset(&new_ka.sa.sa_mask, mask); 3480 } 3481 3482 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3483 3484 if (!ret && oact) { 3485 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3486 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 3487 &oact->sa_handler) || 3488 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3489 &oact->sa_restorer) || 3490 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3491 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3492 return -EFAULT; 3493 } 3494 return ret; 3495 } 3496 #endif 3497 3498 #ifdef CONFIG_SGETMASK_SYSCALL 3499 3500 /* 3501 * For backwards compatibility. Functionality superseded by sigprocmask. 3502 */ 3503 SYSCALL_DEFINE0(sgetmask) 3504 { 3505 /* SMP safe */ 3506 return current->blocked.sig[0]; 3507 } 3508 3509 SYSCALL_DEFINE1(ssetmask, int, newmask) 3510 { 3511 int old = current->blocked.sig[0]; 3512 sigset_t newset; 3513 3514 siginitset(&newset, newmask); 3515 set_current_blocked(&newset); 3516 3517 return old; 3518 } 3519 #endif /* CONFIG_SGETMASK_SYSCALL */ 3520 3521 #ifdef __ARCH_WANT_SYS_SIGNAL 3522 /* 3523 * For backwards compatibility. Functionality superseded by sigaction. 3524 */ 3525 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3526 { 3527 struct k_sigaction new_sa, old_sa; 3528 int ret; 3529 3530 new_sa.sa.sa_handler = handler; 3531 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3532 sigemptyset(&new_sa.sa.sa_mask); 3533 3534 ret = do_sigaction(sig, &new_sa, &old_sa); 3535 3536 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3537 } 3538 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3539 3540 #ifdef __ARCH_WANT_SYS_PAUSE 3541 3542 SYSCALL_DEFINE0(pause) 3543 { 3544 while (!signal_pending(current)) { 3545 current->state = TASK_INTERRUPTIBLE; 3546 schedule(); 3547 } 3548 return -ERESTARTNOHAND; 3549 } 3550 3551 #endif 3552 3553 int sigsuspend(sigset_t *set) 3554 { 3555 current->saved_sigmask = current->blocked; 3556 set_current_blocked(set); 3557 3558 current->state = TASK_INTERRUPTIBLE; 3559 schedule(); 3560 set_restore_sigmask(); 3561 return -ERESTARTNOHAND; 3562 } 3563 3564 /** 3565 * sys_rt_sigsuspend - replace the signal mask for a value with the 3566 * @unewset value until a signal is received 3567 * @unewset: new signal mask value 3568 * @sigsetsize: size of sigset_t type 3569 */ 3570 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3571 { 3572 sigset_t newset; 3573 3574 /* XXX: Don't preclude handling different sized sigset_t's. */ 3575 if (sigsetsize != sizeof(sigset_t)) 3576 return -EINVAL; 3577 3578 if (copy_from_user(&newset, unewset, sizeof(newset))) 3579 return -EFAULT; 3580 return sigsuspend(&newset); 3581 } 3582 3583 #ifdef CONFIG_COMPAT 3584 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 3585 { 3586 #ifdef __BIG_ENDIAN 3587 sigset_t newset; 3588 compat_sigset_t newset32; 3589 3590 /* XXX: Don't preclude handling different sized sigset_t's. */ 3591 if (sigsetsize != sizeof(sigset_t)) 3592 return -EINVAL; 3593 3594 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t))) 3595 return -EFAULT; 3596 sigset_from_compat(&newset, &newset32); 3597 return sigsuspend(&newset); 3598 #else 3599 /* on little-endian bitmaps don't care about granularity */ 3600 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize); 3601 #endif 3602 } 3603 #endif 3604 3605 #ifdef CONFIG_OLD_SIGSUSPEND 3606 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 3607 { 3608 sigset_t blocked; 3609 siginitset(&blocked, mask); 3610 return sigsuspend(&blocked); 3611 } 3612 #endif 3613 #ifdef CONFIG_OLD_SIGSUSPEND3 3614 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 3615 { 3616 sigset_t blocked; 3617 siginitset(&blocked, mask); 3618 return sigsuspend(&blocked); 3619 } 3620 #endif 3621 3622 __weak const char *arch_vma_name(struct vm_area_struct *vma) 3623 { 3624 return NULL; 3625 } 3626 3627 void __init signals_init(void) 3628 { 3629 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3630 } 3631 3632 #ifdef CONFIG_KGDB_KDB 3633 #include <linux/kdb.h> 3634 /* 3635 * kdb_send_sig_info - Allows kdb to send signals without exposing 3636 * signal internals. This function checks if the required locks are 3637 * available before calling the main signal code, to avoid kdb 3638 * deadlocks. 3639 */ 3640 void 3641 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3642 { 3643 static struct task_struct *kdb_prev_t; 3644 int sig, new_t; 3645 if (!spin_trylock(&t->sighand->siglock)) { 3646 kdb_printf("Can't do kill command now.\n" 3647 "The sigmask lock is held somewhere else in " 3648 "kernel, try again later\n"); 3649 return; 3650 } 3651 spin_unlock(&t->sighand->siglock); 3652 new_t = kdb_prev_t != t; 3653 kdb_prev_t = t; 3654 if (t->state != TASK_RUNNING && new_t) { 3655 kdb_printf("Process is not RUNNING, sending a signal from " 3656 "kdb risks deadlock\n" 3657 "on the run queue locks. " 3658 "The signal has _not_ been sent.\n" 3659 "Reissue the kill command if you want to risk " 3660 "the deadlock.\n"); 3661 return; 3662 } 3663 sig = info->si_signo; 3664 if (send_sig_info(sig, info, t)) 3665 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3666 sig, t->pid); 3667 else 3668 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3669 } 3670 #endif /* CONFIG_KGDB_KDB */ 3671