xref: /linux/kernel/signal.c (revision 44a2db43eb715b54618bf01520cc5d46376cdbe2)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29 
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h"	/* audit_signal_info() */
35 
36 /*
37  * SLAB caches for signal bits.
38  */
39 
40 static struct kmem_cache *sigqueue_cachep;
41 
42 
43 static int sig_ignored(struct task_struct *t, int sig)
44 {
45 	void __user * handler;
46 
47 	/*
48 	 * Tracers always want to know about signals..
49 	 */
50 	if (t->ptrace & PT_PTRACED)
51 		return 0;
52 
53 	/*
54 	 * Blocked signals are never ignored, since the
55 	 * signal handler may change by the time it is
56 	 * unblocked.
57 	 */
58 	if (sigismember(&t->blocked, sig))
59 		return 0;
60 
61 	/* Is it explicitly or implicitly ignored? */
62 	handler = t->sighand->action[sig-1].sa.sa_handler;
63 	return   handler == SIG_IGN ||
64 		(handler == SIG_DFL && sig_kernel_ignore(sig));
65 }
66 
67 /*
68  * Re-calculate pending state from the set of locally pending
69  * signals, globally pending signals, and blocked signals.
70  */
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
72 {
73 	unsigned long ready;
74 	long i;
75 
76 	switch (_NSIG_WORDS) {
77 	default:
78 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 			ready |= signal->sig[i] &~ blocked->sig[i];
80 		break;
81 
82 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
83 		ready |= signal->sig[2] &~ blocked->sig[2];
84 		ready |= signal->sig[1] &~ blocked->sig[1];
85 		ready |= signal->sig[0] &~ blocked->sig[0];
86 		break;
87 
88 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
89 		ready |= signal->sig[0] &~ blocked->sig[0];
90 		break;
91 
92 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
93 	}
94 	return ready !=	0;
95 }
96 
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
98 
99 static int recalc_sigpending_tsk(struct task_struct *t)
100 {
101 	if (t->signal->group_stop_count > 0 ||
102 	    (freezing(t)) ||
103 	    PENDING(&t->pending, &t->blocked) ||
104 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
105 		set_tsk_thread_flag(t, TIF_SIGPENDING);
106 		return 1;
107 	}
108 	/*
109 	 * We must never clear the flag in another thread, or in current
110 	 * when it's possible the current syscall is returning -ERESTART*.
111 	 * So we don't clear it here, and only callers who know they should do.
112 	 */
113 	return 0;
114 }
115 
116 /*
117  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
118  * This is superfluous when called on current, the wakeup is a harmless no-op.
119  */
120 void recalc_sigpending_and_wake(struct task_struct *t)
121 {
122 	if (recalc_sigpending_tsk(t))
123 		signal_wake_up(t, 0);
124 }
125 
126 void recalc_sigpending(void)
127 {
128 	if (!recalc_sigpending_tsk(current))
129 		clear_thread_flag(TIF_SIGPENDING);
130 
131 }
132 
133 /* Given the mask, find the first available signal that should be serviced. */
134 
135 int next_signal(struct sigpending *pending, sigset_t *mask)
136 {
137 	unsigned long i, *s, *m, x;
138 	int sig = 0;
139 
140 	s = pending->signal.sig;
141 	m = mask->sig;
142 	switch (_NSIG_WORDS) {
143 	default:
144 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
145 			if ((x = *s &~ *m) != 0) {
146 				sig = ffz(~x) + i*_NSIG_BPW + 1;
147 				break;
148 			}
149 		break;
150 
151 	case 2: if ((x = s[0] &~ m[0]) != 0)
152 			sig = 1;
153 		else if ((x = s[1] &~ m[1]) != 0)
154 			sig = _NSIG_BPW + 1;
155 		else
156 			break;
157 		sig += ffz(~x);
158 		break;
159 
160 	case 1: if ((x = *s &~ *m) != 0)
161 			sig = ffz(~x) + 1;
162 		break;
163 	}
164 
165 	return sig;
166 }
167 
168 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
169 					 int override_rlimit)
170 {
171 	struct sigqueue *q = NULL;
172 	struct user_struct *user;
173 
174 	/*
175 	 * In order to avoid problems with "switch_user()", we want to make
176 	 * sure that the compiler doesn't re-load "t->user"
177 	 */
178 	user = t->user;
179 	barrier();
180 	atomic_inc(&user->sigpending);
181 	if (override_rlimit ||
182 	    atomic_read(&user->sigpending) <=
183 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
184 		q = kmem_cache_alloc(sigqueue_cachep, flags);
185 	if (unlikely(q == NULL)) {
186 		atomic_dec(&user->sigpending);
187 	} else {
188 		INIT_LIST_HEAD(&q->list);
189 		q->flags = 0;
190 		q->user = get_uid(user);
191 	}
192 	return(q);
193 }
194 
195 static void __sigqueue_free(struct sigqueue *q)
196 {
197 	if (q->flags & SIGQUEUE_PREALLOC)
198 		return;
199 	atomic_dec(&q->user->sigpending);
200 	free_uid(q->user);
201 	kmem_cache_free(sigqueue_cachep, q);
202 }
203 
204 void flush_sigqueue(struct sigpending *queue)
205 {
206 	struct sigqueue *q;
207 
208 	sigemptyset(&queue->signal);
209 	while (!list_empty(&queue->list)) {
210 		q = list_entry(queue->list.next, struct sigqueue , list);
211 		list_del_init(&q->list);
212 		__sigqueue_free(q);
213 	}
214 }
215 
216 /*
217  * Flush all pending signals for a task.
218  */
219 void flush_signals(struct task_struct *t)
220 {
221 	unsigned long flags;
222 
223 	spin_lock_irqsave(&t->sighand->siglock, flags);
224 	clear_tsk_thread_flag(t,TIF_SIGPENDING);
225 	flush_sigqueue(&t->pending);
226 	flush_sigqueue(&t->signal->shared_pending);
227 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
228 }
229 
230 void ignore_signals(struct task_struct *t)
231 {
232 	int i;
233 
234 	for (i = 0; i < _NSIG; ++i)
235 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
236 
237 	flush_signals(t);
238 }
239 
240 /*
241  * Flush all handlers for a task.
242  */
243 
244 void
245 flush_signal_handlers(struct task_struct *t, int force_default)
246 {
247 	int i;
248 	struct k_sigaction *ka = &t->sighand->action[0];
249 	for (i = _NSIG ; i != 0 ; i--) {
250 		if (force_default || ka->sa.sa_handler != SIG_IGN)
251 			ka->sa.sa_handler = SIG_DFL;
252 		ka->sa.sa_flags = 0;
253 		sigemptyset(&ka->sa.sa_mask);
254 		ka++;
255 	}
256 }
257 
258 int unhandled_signal(struct task_struct *tsk, int sig)
259 {
260 	if (is_init(tsk))
261 		return 1;
262 	if (tsk->ptrace & PT_PTRACED)
263 		return 0;
264 	return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
265 		(tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
266 }
267 
268 
269 /* Notify the system that a driver wants to block all signals for this
270  * process, and wants to be notified if any signals at all were to be
271  * sent/acted upon.  If the notifier routine returns non-zero, then the
272  * signal will be acted upon after all.  If the notifier routine returns 0,
273  * then then signal will be blocked.  Only one block per process is
274  * allowed.  priv is a pointer to private data that the notifier routine
275  * can use to determine if the signal should be blocked or not.  */
276 
277 void
278 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
279 {
280 	unsigned long flags;
281 
282 	spin_lock_irqsave(&current->sighand->siglock, flags);
283 	current->notifier_mask = mask;
284 	current->notifier_data = priv;
285 	current->notifier = notifier;
286 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
287 }
288 
289 /* Notify the system that blocking has ended. */
290 
291 void
292 unblock_all_signals(void)
293 {
294 	unsigned long flags;
295 
296 	spin_lock_irqsave(&current->sighand->siglock, flags);
297 	current->notifier = NULL;
298 	current->notifier_data = NULL;
299 	recalc_sigpending();
300 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
301 }
302 
303 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
304 {
305 	struct sigqueue *q, *first = NULL;
306 	int still_pending = 0;
307 
308 	if (unlikely(!sigismember(&list->signal, sig)))
309 		return 0;
310 
311 	/*
312 	 * Collect the siginfo appropriate to this signal.  Check if
313 	 * there is another siginfo for the same signal.
314 	*/
315 	list_for_each_entry(q, &list->list, list) {
316 		if (q->info.si_signo == sig) {
317 			if (first) {
318 				still_pending = 1;
319 				break;
320 			}
321 			first = q;
322 		}
323 	}
324 	if (first) {
325 		list_del_init(&first->list);
326 		copy_siginfo(info, &first->info);
327 		__sigqueue_free(first);
328 		if (!still_pending)
329 			sigdelset(&list->signal, sig);
330 	} else {
331 
332 		/* Ok, it wasn't in the queue.  This must be
333 		   a fast-pathed signal or we must have been
334 		   out of queue space.  So zero out the info.
335 		 */
336 		sigdelset(&list->signal, sig);
337 		info->si_signo = sig;
338 		info->si_errno = 0;
339 		info->si_code = 0;
340 		info->si_pid = 0;
341 		info->si_uid = 0;
342 	}
343 	return 1;
344 }
345 
346 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
347 			siginfo_t *info)
348 {
349 	int sig = next_signal(pending, mask);
350 
351 	if (sig) {
352 		if (current->notifier) {
353 			if (sigismember(current->notifier_mask, sig)) {
354 				if (!(current->notifier)(current->notifier_data)) {
355 					clear_thread_flag(TIF_SIGPENDING);
356 					return 0;
357 				}
358 			}
359 		}
360 
361 		if (!collect_signal(sig, pending, info))
362 			sig = 0;
363 	}
364 
365 	return sig;
366 }
367 
368 /*
369  * Dequeue a signal and return the element to the caller, which is
370  * expected to free it.
371  *
372  * All callers have to hold the siglock.
373  */
374 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
375 {
376 	int signr = 0;
377 
378 	/* We only dequeue private signals from ourselves, we don't let
379 	 * signalfd steal them
380 	 */
381 	signr = __dequeue_signal(&tsk->pending, mask, info);
382 	if (!signr) {
383 		signr = __dequeue_signal(&tsk->signal->shared_pending,
384 					 mask, info);
385 		/*
386 		 * itimer signal ?
387 		 *
388 		 * itimers are process shared and we restart periodic
389 		 * itimers in the signal delivery path to prevent DoS
390 		 * attacks in the high resolution timer case. This is
391 		 * compliant with the old way of self restarting
392 		 * itimers, as the SIGALRM is a legacy signal and only
393 		 * queued once. Changing the restart behaviour to
394 		 * restart the timer in the signal dequeue path is
395 		 * reducing the timer noise on heavy loaded !highres
396 		 * systems too.
397 		 */
398 		if (unlikely(signr == SIGALRM)) {
399 			struct hrtimer *tmr = &tsk->signal->real_timer;
400 
401 			if (!hrtimer_is_queued(tmr) &&
402 			    tsk->signal->it_real_incr.tv64 != 0) {
403 				hrtimer_forward(tmr, tmr->base->get_time(),
404 						tsk->signal->it_real_incr);
405 				hrtimer_restart(tmr);
406 			}
407 		}
408 	}
409 	recalc_sigpending();
410 	if (signr && unlikely(sig_kernel_stop(signr))) {
411 		/*
412 		 * Set a marker that we have dequeued a stop signal.  Our
413 		 * caller might release the siglock and then the pending
414 		 * stop signal it is about to process is no longer in the
415 		 * pending bitmasks, but must still be cleared by a SIGCONT
416 		 * (and overruled by a SIGKILL).  So those cases clear this
417 		 * shared flag after we've set it.  Note that this flag may
418 		 * remain set after the signal we return is ignored or
419 		 * handled.  That doesn't matter because its only purpose
420 		 * is to alert stop-signal processing code when another
421 		 * processor has come along and cleared the flag.
422 		 */
423 		if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
424 			tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
425 	}
426 	if (signr &&
427 	     ((info->si_code & __SI_MASK) == __SI_TIMER) &&
428 	     info->si_sys_private){
429 		/*
430 		 * Release the siglock to ensure proper locking order
431 		 * of timer locks outside of siglocks.  Note, we leave
432 		 * irqs disabled here, since the posix-timers code is
433 		 * about to disable them again anyway.
434 		 */
435 		spin_unlock(&tsk->sighand->siglock);
436 		do_schedule_next_timer(info);
437 		spin_lock(&tsk->sighand->siglock);
438 	}
439 	return signr;
440 }
441 
442 /*
443  * Tell a process that it has a new active signal..
444  *
445  * NOTE! we rely on the previous spin_lock to
446  * lock interrupts for us! We can only be called with
447  * "siglock" held, and the local interrupt must
448  * have been disabled when that got acquired!
449  *
450  * No need to set need_resched since signal event passing
451  * goes through ->blocked
452  */
453 void signal_wake_up(struct task_struct *t, int resume)
454 {
455 	unsigned int mask;
456 
457 	set_tsk_thread_flag(t, TIF_SIGPENDING);
458 
459 	/*
460 	 * For SIGKILL, we want to wake it up in the stopped/traced case.
461 	 * We don't check t->state here because there is a race with it
462 	 * executing another processor and just now entering stopped state.
463 	 * By using wake_up_state, we ensure the process will wake up and
464 	 * handle its death signal.
465 	 */
466 	mask = TASK_INTERRUPTIBLE;
467 	if (resume)
468 		mask |= TASK_STOPPED | TASK_TRACED;
469 	if (!wake_up_state(t, mask))
470 		kick_process(t);
471 }
472 
473 /*
474  * Remove signals in mask from the pending set and queue.
475  * Returns 1 if any signals were found.
476  *
477  * All callers must be holding the siglock.
478  *
479  * This version takes a sigset mask and looks at all signals,
480  * not just those in the first mask word.
481  */
482 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
483 {
484 	struct sigqueue *q, *n;
485 	sigset_t m;
486 
487 	sigandsets(&m, mask, &s->signal);
488 	if (sigisemptyset(&m))
489 		return 0;
490 
491 	signandsets(&s->signal, &s->signal, mask);
492 	list_for_each_entry_safe(q, n, &s->list, list) {
493 		if (sigismember(mask, q->info.si_signo)) {
494 			list_del_init(&q->list);
495 			__sigqueue_free(q);
496 		}
497 	}
498 	return 1;
499 }
500 /*
501  * Remove signals in mask from the pending set and queue.
502  * Returns 1 if any signals were found.
503  *
504  * All callers must be holding the siglock.
505  */
506 static int rm_from_queue(unsigned long mask, struct sigpending *s)
507 {
508 	struct sigqueue *q, *n;
509 
510 	if (!sigtestsetmask(&s->signal, mask))
511 		return 0;
512 
513 	sigdelsetmask(&s->signal, mask);
514 	list_for_each_entry_safe(q, n, &s->list, list) {
515 		if (q->info.si_signo < SIGRTMIN &&
516 		    (mask & sigmask(q->info.si_signo))) {
517 			list_del_init(&q->list);
518 			__sigqueue_free(q);
519 		}
520 	}
521 	return 1;
522 }
523 
524 /*
525  * Bad permissions for sending the signal
526  */
527 static int check_kill_permission(int sig, struct siginfo *info,
528 				 struct task_struct *t)
529 {
530 	int error = -EINVAL;
531 	if (!valid_signal(sig))
532 		return error;
533 
534 	if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) {
535 		error = audit_signal_info(sig, t); /* Let audit system see the signal */
536 		if (error)
537 			return error;
538 		error = -EPERM;
539 		if (((sig != SIGCONT) ||
540 			(process_session(current) != process_session(t)))
541 		    && (current->euid ^ t->suid) && (current->euid ^ t->uid)
542 		    && (current->uid ^ t->suid) && (current->uid ^ t->uid)
543 		    && !capable(CAP_KILL))
544 		return error;
545 	}
546 
547 	return security_task_kill(t, info, sig, 0);
548 }
549 
550 /* forward decl */
551 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
552 
553 /*
554  * Handle magic process-wide effects of stop/continue signals.
555  * Unlike the signal actions, these happen immediately at signal-generation
556  * time regardless of blocking, ignoring, or handling.  This does the
557  * actual continuing for SIGCONT, but not the actual stopping for stop
558  * signals.  The process stop is done as a signal action for SIG_DFL.
559  */
560 static void handle_stop_signal(int sig, struct task_struct *p)
561 {
562 	struct task_struct *t;
563 
564 	if (p->signal->flags & SIGNAL_GROUP_EXIT)
565 		/*
566 		 * The process is in the middle of dying already.
567 		 */
568 		return;
569 
570 	if (sig_kernel_stop(sig)) {
571 		/*
572 		 * This is a stop signal.  Remove SIGCONT from all queues.
573 		 */
574 		rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
575 		t = p;
576 		do {
577 			rm_from_queue(sigmask(SIGCONT), &t->pending);
578 			t = next_thread(t);
579 		} while (t != p);
580 	} else if (sig == SIGCONT) {
581 		/*
582 		 * Remove all stop signals from all queues,
583 		 * and wake all threads.
584 		 */
585 		if (unlikely(p->signal->group_stop_count > 0)) {
586 			/*
587 			 * There was a group stop in progress.  We'll
588 			 * pretend it finished before we got here.  We are
589 			 * obliged to report it to the parent: if the
590 			 * SIGSTOP happened "after" this SIGCONT, then it
591 			 * would have cleared this pending SIGCONT.  If it
592 			 * happened "before" this SIGCONT, then the parent
593 			 * got the SIGCHLD about the stop finishing before
594 			 * the continue happened.  We do the notification
595 			 * now, and it's as if the stop had finished and
596 			 * the SIGCHLD was pending on entry to this kill.
597 			 */
598 			p->signal->group_stop_count = 0;
599 			p->signal->flags = SIGNAL_STOP_CONTINUED;
600 			spin_unlock(&p->sighand->siglock);
601 			do_notify_parent_cldstop(p, CLD_STOPPED);
602 			spin_lock(&p->sighand->siglock);
603 		}
604 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
605 		t = p;
606 		do {
607 			unsigned int state;
608 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
609 
610 			/*
611 			 * If there is a handler for SIGCONT, we must make
612 			 * sure that no thread returns to user mode before
613 			 * we post the signal, in case it was the only
614 			 * thread eligible to run the signal handler--then
615 			 * it must not do anything between resuming and
616 			 * running the handler.  With the TIF_SIGPENDING
617 			 * flag set, the thread will pause and acquire the
618 			 * siglock that we hold now and until we've queued
619 			 * the pending signal.
620 			 *
621 			 * Wake up the stopped thread _after_ setting
622 			 * TIF_SIGPENDING
623 			 */
624 			state = TASK_STOPPED;
625 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
626 				set_tsk_thread_flag(t, TIF_SIGPENDING);
627 				state |= TASK_INTERRUPTIBLE;
628 			}
629 			wake_up_state(t, state);
630 
631 			t = next_thread(t);
632 		} while (t != p);
633 
634 		if (p->signal->flags & SIGNAL_STOP_STOPPED) {
635 			/*
636 			 * We were in fact stopped, and are now continued.
637 			 * Notify the parent with CLD_CONTINUED.
638 			 */
639 			p->signal->flags = SIGNAL_STOP_CONTINUED;
640 			p->signal->group_exit_code = 0;
641 			spin_unlock(&p->sighand->siglock);
642 			do_notify_parent_cldstop(p, CLD_CONTINUED);
643 			spin_lock(&p->sighand->siglock);
644 		} else {
645 			/*
646 			 * We are not stopped, but there could be a stop
647 			 * signal in the middle of being processed after
648 			 * being removed from the queue.  Clear that too.
649 			 */
650 			p->signal->flags = 0;
651 		}
652 	} else if (sig == SIGKILL) {
653 		/*
654 		 * Make sure that any pending stop signal already dequeued
655 		 * is undone by the wakeup for SIGKILL.
656 		 */
657 		p->signal->flags = 0;
658 	}
659 }
660 
661 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
662 			struct sigpending *signals)
663 {
664 	struct sigqueue * q = NULL;
665 	int ret = 0;
666 
667 	/*
668 	 * Deliver the signal to listening signalfds. This must be called
669 	 * with the sighand lock held.
670 	 */
671 	signalfd_notify(t, sig);
672 
673 	/*
674 	 * fast-pathed signals for kernel-internal things like SIGSTOP
675 	 * or SIGKILL.
676 	 */
677 	if (info == SEND_SIG_FORCED)
678 		goto out_set;
679 
680 	/* Real-time signals must be queued if sent by sigqueue, or
681 	   some other real-time mechanism.  It is implementation
682 	   defined whether kill() does so.  We attempt to do so, on
683 	   the principle of least surprise, but since kill is not
684 	   allowed to fail with EAGAIN when low on memory we just
685 	   make sure at least one signal gets delivered and don't
686 	   pass on the info struct.  */
687 
688 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
689 					     (is_si_special(info) ||
690 					      info->si_code >= 0)));
691 	if (q) {
692 		list_add_tail(&q->list, &signals->list);
693 		switch ((unsigned long) info) {
694 		case (unsigned long) SEND_SIG_NOINFO:
695 			q->info.si_signo = sig;
696 			q->info.si_errno = 0;
697 			q->info.si_code = SI_USER;
698 			q->info.si_pid = current->pid;
699 			q->info.si_uid = current->uid;
700 			break;
701 		case (unsigned long) SEND_SIG_PRIV:
702 			q->info.si_signo = sig;
703 			q->info.si_errno = 0;
704 			q->info.si_code = SI_KERNEL;
705 			q->info.si_pid = 0;
706 			q->info.si_uid = 0;
707 			break;
708 		default:
709 			copy_siginfo(&q->info, info);
710 			break;
711 		}
712 	} else if (!is_si_special(info)) {
713 		if (sig >= SIGRTMIN && info->si_code != SI_USER)
714 		/*
715 		 * Queue overflow, abort.  We may abort if the signal was rt
716 		 * and sent by user using something other than kill().
717 		 */
718 			return -EAGAIN;
719 	}
720 
721 out_set:
722 	sigaddset(&signals->signal, sig);
723 	return ret;
724 }
725 
726 #define LEGACY_QUEUE(sigptr, sig) \
727 	(((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
728 
729 int print_fatal_signals;
730 
731 static void print_fatal_signal(struct pt_regs *regs, int signr)
732 {
733 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
734 		current->comm, current->pid, signr);
735 
736 #ifdef __i386__
737 	printk("code at %08lx: ", regs->eip);
738 	{
739 		int i;
740 		for (i = 0; i < 16; i++) {
741 			unsigned char insn;
742 
743 			__get_user(insn, (unsigned char *)(regs->eip + i));
744 			printk("%02x ", insn);
745 		}
746 	}
747 #endif
748 	printk("\n");
749 	show_regs(regs);
750 }
751 
752 static int __init setup_print_fatal_signals(char *str)
753 {
754 	get_option (&str, &print_fatal_signals);
755 
756 	return 1;
757 }
758 
759 __setup("print-fatal-signals=", setup_print_fatal_signals);
760 
761 static int
762 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
763 {
764 	int ret = 0;
765 
766 	BUG_ON(!irqs_disabled());
767 	assert_spin_locked(&t->sighand->siglock);
768 
769 	/* Short-circuit ignored signals.  */
770 	if (sig_ignored(t, sig))
771 		goto out;
772 
773 	/* Support queueing exactly one non-rt signal, so that we
774 	   can get more detailed information about the cause of
775 	   the signal. */
776 	if (LEGACY_QUEUE(&t->pending, sig))
777 		goto out;
778 
779 	ret = send_signal(sig, info, t, &t->pending);
780 	if (!ret && !sigismember(&t->blocked, sig))
781 		signal_wake_up(t, sig == SIGKILL);
782 out:
783 	return ret;
784 }
785 
786 /*
787  * Force a signal that the process can't ignore: if necessary
788  * we unblock the signal and change any SIG_IGN to SIG_DFL.
789  *
790  * Note: If we unblock the signal, we always reset it to SIG_DFL,
791  * since we do not want to have a signal handler that was blocked
792  * be invoked when user space had explicitly blocked it.
793  *
794  * We don't want to have recursive SIGSEGV's etc, for example.
795  */
796 int
797 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
798 {
799 	unsigned long int flags;
800 	int ret, blocked, ignored;
801 	struct k_sigaction *action;
802 
803 	spin_lock_irqsave(&t->sighand->siglock, flags);
804 	action = &t->sighand->action[sig-1];
805 	ignored = action->sa.sa_handler == SIG_IGN;
806 	blocked = sigismember(&t->blocked, sig);
807 	if (blocked || ignored) {
808 		action->sa.sa_handler = SIG_DFL;
809 		if (blocked) {
810 			sigdelset(&t->blocked, sig);
811 			recalc_sigpending_and_wake(t);
812 		}
813 	}
814 	ret = specific_send_sig_info(sig, info, t);
815 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
816 
817 	return ret;
818 }
819 
820 void
821 force_sig_specific(int sig, struct task_struct *t)
822 {
823 	force_sig_info(sig, SEND_SIG_FORCED, t);
824 }
825 
826 /*
827  * Test if P wants to take SIG.  After we've checked all threads with this,
828  * it's equivalent to finding no threads not blocking SIG.  Any threads not
829  * blocking SIG were ruled out because they are not running and already
830  * have pending signals.  Such threads will dequeue from the shared queue
831  * as soon as they're available, so putting the signal on the shared queue
832  * will be equivalent to sending it to one such thread.
833  */
834 static inline int wants_signal(int sig, struct task_struct *p)
835 {
836 	if (sigismember(&p->blocked, sig))
837 		return 0;
838 	if (p->flags & PF_EXITING)
839 		return 0;
840 	if (sig == SIGKILL)
841 		return 1;
842 	if (p->state & (TASK_STOPPED | TASK_TRACED))
843 		return 0;
844 	return task_curr(p) || !signal_pending(p);
845 }
846 
847 static void
848 __group_complete_signal(int sig, struct task_struct *p)
849 {
850 	struct task_struct *t;
851 
852 	/*
853 	 * Now find a thread we can wake up to take the signal off the queue.
854 	 *
855 	 * If the main thread wants the signal, it gets first crack.
856 	 * Probably the least surprising to the average bear.
857 	 */
858 	if (wants_signal(sig, p))
859 		t = p;
860 	else if (thread_group_empty(p))
861 		/*
862 		 * There is just one thread and it does not need to be woken.
863 		 * It will dequeue unblocked signals before it runs again.
864 		 */
865 		return;
866 	else {
867 		/*
868 		 * Otherwise try to find a suitable thread.
869 		 */
870 		t = p->signal->curr_target;
871 		if (t == NULL)
872 			/* restart balancing at this thread */
873 			t = p->signal->curr_target = p;
874 
875 		while (!wants_signal(sig, t)) {
876 			t = next_thread(t);
877 			if (t == p->signal->curr_target)
878 				/*
879 				 * No thread needs to be woken.
880 				 * Any eligible threads will see
881 				 * the signal in the queue soon.
882 				 */
883 				return;
884 		}
885 		p->signal->curr_target = t;
886 	}
887 
888 	/*
889 	 * Found a killable thread.  If the signal will be fatal,
890 	 * then start taking the whole group down immediately.
891 	 */
892 	if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
893 	    !sigismember(&t->real_blocked, sig) &&
894 	    (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
895 		/*
896 		 * This signal will be fatal to the whole group.
897 		 */
898 		if (!sig_kernel_coredump(sig)) {
899 			/*
900 			 * Start a group exit and wake everybody up.
901 			 * This way we don't have other threads
902 			 * running and doing things after a slower
903 			 * thread has the fatal signal pending.
904 			 */
905 			p->signal->flags = SIGNAL_GROUP_EXIT;
906 			p->signal->group_exit_code = sig;
907 			p->signal->group_stop_count = 0;
908 			t = p;
909 			do {
910 				sigaddset(&t->pending.signal, SIGKILL);
911 				signal_wake_up(t, 1);
912 			} while_each_thread(p, t);
913 			return;
914 		}
915 
916 		/*
917 		 * There will be a core dump.  We make all threads other
918 		 * than the chosen one go into a group stop so that nothing
919 		 * happens until it gets scheduled, takes the signal off
920 		 * the shared queue, and does the core dump.  This is a
921 		 * little more complicated than strictly necessary, but it
922 		 * keeps the signal state that winds up in the core dump
923 		 * unchanged from the death state, e.g. which thread had
924 		 * the core-dump signal unblocked.
925 		 */
926 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
927 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
928 		p->signal->group_stop_count = 0;
929 		p->signal->group_exit_task = t;
930 		p = t;
931 		do {
932 			p->signal->group_stop_count++;
933 			signal_wake_up(t, t == p);
934 		} while_each_thread(p, t);
935 		return;
936 	}
937 
938 	/*
939 	 * The signal is already in the shared-pending queue.
940 	 * Tell the chosen thread to wake up and dequeue it.
941 	 */
942 	signal_wake_up(t, sig == SIGKILL);
943 	return;
944 }
945 
946 int
947 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
948 {
949 	int ret = 0;
950 
951 	assert_spin_locked(&p->sighand->siglock);
952 	handle_stop_signal(sig, p);
953 
954 	/* Short-circuit ignored signals.  */
955 	if (sig_ignored(p, sig))
956 		return ret;
957 
958 	if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
959 		/* This is a non-RT signal and we already have one queued.  */
960 		return ret;
961 
962 	/*
963 	 * Put this signal on the shared-pending queue, or fail with EAGAIN.
964 	 * We always use the shared queue for process-wide signals,
965 	 * to avoid several races.
966 	 */
967 	ret = send_signal(sig, info, p, &p->signal->shared_pending);
968 	if (unlikely(ret))
969 		return ret;
970 
971 	__group_complete_signal(sig, p);
972 	return 0;
973 }
974 
975 /*
976  * Nuke all other threads in the group.
977  */
978 void zap_other_threads(struct task_struct *p)
979 {
980 	struct task_struct *t;
981 
982 	p->signal->flags = SIGNAL_GROUP_EXIT;
983 	p->signal->group_stop_count = 0;
984 
985 	for (t = next_thread(p); t != p; t = next_thread(t)) {
986 		/*
987 		 * Don't bother with already dead threads
988 		 */
989 		if (t->exit_state)
990 			continue;
991 
992 		/* SIGKILL will be handled before any pending SIGSTOP */
993 		sigaddset(&t->pending.signal, SIGKILL);
994 		signal_wake_up(t, 1);
995 	}
996 }
997 
998 /*
999  * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1000  */
1001 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1002 {
1003 	struct sighand_struct *sighand;
1004 
1005 	for (;;) {
1006 		sighand = rcu_dereference(tsk->sighand);
1007 		if (unlikely(sighand == NULL))
1008 			break;
1009 
1010 		spin_lock_irqsave(&sighand->siglock, *flags);
1011 		if (likely(sighand == tsk->sighand))
1012 			break;
1013 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1014 	}
1015 
1016 	return sighand;
1017 }
1018 
1019 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1020 {
1021 	unsigned long flags;
1022 	int ret;
1023 
1024 	ret = check_kill_permission(sig, info, p);
1025 
1026 	if (!ret && sig) {
1027 		ret = -ESRCH;
1028 		if (lock_task_sighand(p, &flags)) {
1029 			ret = __group_send_sig_info(sig, info, p);
1030 			unlock_task_sighand(p, &flags);
1031 		}
1032 	}
1033 
1034 	return ret;
1035 }
1036 
1037 /*
1038  * kill_pgrp_info() sends a signal to a process group: this is what the tty
1039  * control characters do (^C, ^Z etc)
1040  */
1041 
1042 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1043 {
1044 	struct task_struct *p = NULL;
1045 	int retval, success;
1046 
1047 	success = 0;
1048 	retval = -ESRCH;
1049 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1050 		int err = group_send_sig_info(sig, info, p);
1051 		success |= !err;
1052 		retval = err;
1053 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1054 	return success ? 0 : retval;
1055 }
1056 
1057 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1058 {
1059 	int retval;
1060 
1061 	read_lock(&tasklist_lock);
1062 	retval = __kill_pgrp_info(sig, info, pgrp);
1063 	read_unlock(&tasklist_lock);
1064 
1065 	return retval;
1066 }
1067 
1068 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1069 {
1070 	int error;
1071 	struct task_struct *p;
1072 
1073 	rcu_read_lock();
1074 	if (unlikely(sig_needs_tasklist(sig)))
1075 		read_lock(&tasklist_lock);
1076 
1077 	p = pid_task(pid, PIDTYPE_PID);
1078 	error = -ESRCH;
1079 	if (p)
1080 		error = group_send_sig_info(sig, info, p);
1081 
1082 	if (unlikely(sig_needs_tasklist(sig)))
1083 		read_unlock(&tasklist_lock);
1084 	rcu_read_unlock();
1085 	return error;
1086 }
1087 
1088 int
1089 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1090 {
1091 	int error;
1092 	rcu_read_lock();
1093 	error = kill_pid_info(sig, info, find_pid(pid));
1094 	rcu_read_unlock();
1095 	return error;
1096 }
1097 
1098 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1099 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1100 		      uid_t uid, uid_t euid, u32 secid)
1101 {
1102 	int ret = -EINVAL;
1103 	struct task_struct *p;
1104 
1105 	if (!valid_signal(sig))
1106 		return ret;
1107 
1108 	read_lock(&tasklist_lock);
1109 	p = pid_task(pid, PIDTYPE_PID);
1110 	if (!p) {
1111 		ret = -ESRCH;
1112 		goto out_unlock;
1113 	}
1114 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1115 	    && (euid != p->suid) && (euid != p->uid)
1116 	    && (uid != p->suid) && (uid != p->uid)) {
1117 		ret = -EPERM;
1118 		goto out_unlock;
1119 	}
1120 	ret = security_task_kill(p, info, sig, secid);
1121 	if (ret)
1122 		goto out_unlock;
1123 	if (sig && p->sighand) {
1124 		unsigned long flags;
1125 		spin_lock_irqsave(&p->sighand->siglock, flags);
1126 		ret = __group_send_sig_info(sig, info, p);
1127 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1128 	}
1129 out_unlock:
1130 	read_unlock(&tasklist_lock);
1131 	return ret;
1132 }
1133 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1134 
1135 /*
1136  * kill_something_info() interprets pid in interesting ways just like kill(2).
1137  *
1138  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1139  * is probably wrong.  Should make it like BSD or SYSV.
1140  */
1141 
1142 static int kill_something_info(int sig, struct siginfo *info, int pid)
1143 {
1144 	int ret;
1145 	rcu_read_lock();
1146 	if (!pid) {
1147 		ret = kill_pgrp_info(sig, info, task_pgrp(current));
1148 	} else if (pid == -1) {
1149 		int retval = 0, count = 0;
1150 		struct task_struct * p;
1151 
1152 		read_lock(&tasklist_lock);
1153 		for_each_process(p) {
1154 			if (p->pid > 1 && p->tgid != current->tgid) {
1155 				int err = group_send_sig_info(sig, info, p);
1156 				++count;
1157 				if (err != -EPERM)
1158 					retval = err;
1159 			}
1160 		}
1161 		read_unlock(&tasklist_lock);
1162 		ret = count ? retval : -ESRCH;
1163 	} else if (pid < 0) {
1164 		ret = kill_pgrp_info(sig, info, find_pid(-pid));
1165 	} else {
1166 		ret = kill_pid_info(sig, info, find_pid(pid));
1167 	}
1168 	rcu_read_unlock();
1169 	return ret;
1170 }
1171 
1172 /*
1173  * These are for backward compatibility with the rest of the kernel source.
1174  */
1175 
1176 /*
1177  * These two are the most common entry points.  They send a signal
1178  * just to the specific thread.
1179  */
1180 int
1181 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1182 {
1183 	int ret;
1184 	unsigned long flags;
1185 
1186 	/*
1187 	 * Make sure legacy kernel users don't send in bad values
1188 	 * (normal paths check this in check_kill_permission).
1189 	 */
1190 	if (!valid_signal(sig))
1191 		return -EINVAL;
1192 
1193 	/*
1194 	 * We need the tasklist lock even for the specific
1195 	 * thread case (when we don't need to follow the group
1196 	 * lists) in order to avoid races with "p->sighand"
1197 	 * going away or changing from under us.
1198 	 */
1199 	read_lock(&tasklist_lock);
1200 	spin_lock_irqsave(&p->sighand->siglock, flags);
1201 	ret = specific_send_sig_info(sig, info, p);
1202 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1203 	read_unlock(&tasklist_lock);
1204 	return ret;
1205 }
1206 
1207 #define __si_special(priv) \
1208 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1209 
1210 int
1211 send_sig(int sig, struct task_struct *p, int priv)
1212 {
1213 	return send_sig_info(sig, __si_special(priv), p);
1214 }
1215 
1216 /*
1217  * This is the entry point for "process-wide" signals.
1218  * They will go to an appropriate thread in the thread group.
1219  */
1220 int
1221 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1222 {
1223 	int ret;
1224 	read_lock(&tasklist_lock);
1225 	ret = group_send_sig_info(sig, info, p);
1226 	read_unlock(&tasklist_lock);
1227 	return ret;
1228 }
1229 
1230 void
1231 force_sig(int sig, struct task_struct *p)
1232 {
1233 	force_sig_info(sig, SEND_SIG_PRIV, p);
1234 }
1235 
1236 /*
1237  * When things go south during signal handling, we
1238  * will force a SIGSEGV. And if the signal that caused
1239  * the problem was already a SIGSEGV, we'll want to
1240  * make sure we don't even try to deliver the signal..
1241  */
1242 int
1243 force_sigsegv(int sig, struct task_struct *p)
1244 {
1245 	if (sig == SIGSEGV) {
1246 		unsigned long flags;
1247 		spin_lock_irqsave(&p->sighand->siglock, flags);
1248 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1249 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1250 	}
1251 	force_sig(SIGSEGV, p);
1252 	return 0;
1253 }
1254 
1255 int kill_pgrp(struct pid *pid, int sig, int priv)
1256 {
1257 	return kill_pgrp_info(sig, __si_special(priv), pid);
1258 }
1259 EXPORT_SYMBOL(kill_pgrp);
1260 
1261 int kill_pid(struct pid *pid, int sig, int priv)
1262 {
1263 	return kill_pid_info(sig, __si_special(priv), pid);
1264 }
1265 EXPORT_SYMBOL(kill_pid);
1266 
1267 int
1268 kill_proc(pid_t pid, int sig, int priv)
1269 {
1270 	return kill_proc_info(sig, __si_special(priv), pid);
1271 }
1272 
1273 /*
1274  * These functions support sending signals using preallocated sigqueue
1275  * structures.  This is needed "because realtime applications cannot
1276  * afford to lose notifications of asynchronous events, like timer
1277  * expirations or I/O completions".  In the case of Posix Timers
1278  * we allocate the sigqueue structure from the timer_create.  If this
1279  * allocation fails we are able to report the failure to the application
1280  * with an EAGAIN error.
1281  */
1282 
1283 struct sigqueue *sigqueue_alloc(void)
1284 {
1285 	struct sigqueue *q;
1286 
1287 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1288 		q->flags |= SIGQUEUE_PREALLOC;
1289 	return(q);
1290 }
1291 
1292 void sigqueue_free(struct sigqueue *q)
1293 {
1294 	unsigned long flags;
1295 	spinlock_t *lock = &current->sighand->siglock;
1296 
1297 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1298 	/*
1299 	 * If the signal is still pending remove it from the
1300 	 * pending queue. We must hold ->siglock while testing
1301 	 * q->list to serialize with collect_signal().
1302 	 */
1303 	spin_lock_irqsave(lock, flags);
1304 	if (!list_empty(&q->list))
1305 		list_del_init(&q->list);
1306 	spin_unlock_irqrestore(lock, flags);
1307 
1308 	q->flags &= ~SIGQUEUE_PREALLOC;
1309 	__sigqueue_free(q);
1310 }
1311 
1312 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1313 {
1314 	unsigned long flags;
1315 	int ret = 0;
1316 
1317 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1318 
1319 	/*
1320 	 * The rcu based delayed sighand destroy makes it possible to
1321 	 * run this without tasklist lock held. The task struct itself
1322 	 * cannot go away as create_timer did get_task_struct().
1323 	 *
1324 	 * We return -1, when the task is marked exiting, so
1325 	 * posix_timer_event can redirect it to the group leader
1326 	 */
1327 	rcu_read_lock();
1328 
1329 	if (!likely(lock_task_sighand(p, &flags))) {
1330 		ret = -1;
1331 		goto out_err;
1332 	}
1333 
1334 	if (unlikely(!list_empty(&q->list))) {
1335 		/*
1336 		 * If an SI_TIMER entry is already queue just increment
1337 		 * the overrun count.
1338 		 */
1339 		BUG_ON(q->info.si_code != SI_TIMER);
1340 		q->info.si_overrun++;
1341 		goto out;
1342 	}
1343 	/* Short-circuit ignored signals.  */
1344 	if (sig_ignored(p, sig)) {
1345 		ret = 1;
1346 		goto out;
1347 	}
1348 	/*
1349 	 * Deliver the signal to listening signalfds. This must be called
1350 	 * with the sighand lock held.
1351 	 */
1352 	signalfd_notify(p, sig);
1353 
1354 	list_add_tail(&q->list, &p->pending.list);
1355 	sigaddset(&p->pending.signal, sig);
1356 	if (!sigismember(&p->blocked, sig))
1357 		signal_wake_up(p, sig == SIGKILL);
1358 
1359 out:
1360 	unlock_task_sighand(p, &flags);
1361 out_err:
1362 	rcu_read_unlock();
1363 
1364 	return ret;
1365 }
1366 
1367 int
1368 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1369 {
1370 	unsigned long flags;
1371 	int ret = 0;
1372 
1373 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1374 
1375 	read_lock(&tasklist_lock);
1376 	/* Since it_lock is held, p->sighand cannot be NULL. */
1377 	spin_lock_irqsave(&p->sighand->siglock, flags);
1378 	handle_stop_signal(sig, p);
1379 
1380 	/* Short-circuit ignored signals.  */
1381 	if (sig_ignored(p, sig)) {
1382 		ret = 1;
1383 		goto out;
1384 	}
1385 
1386 	if (unlikely(!list_empty(&q->list))) {
1387 		/*
1388 		 * If an SI_TIMER entry is already queue just increment
1389 		 * the overrun count.  Other uses should not try to
1390 		 * send the signal multiple times.
1391 		 */
1392 		BUG_ON(q->info.si_code != SI_TIMER);
1393 		q->info.si_overrun++;
1394 		goto out;
1395 	}
1396 	/*
1397 	 * Deliver the signal to listening signalfds. This must be called
1398 	 * with the sighand lock held.
1399 	 */
1400 	signalfd_notify(p, sig);
1401 
1402 	/*
1403 	 * Put this signal on the shared-pending queue.
1404 	 * We always use the shared queue for process-wide signals,
1405 	 * to avoid several races.
1406 	 */
1407 	list_add_tail(&q->list, &p->signal->shared_pending.list);
1408 	sigaddset(&p->signal->shared_pending.signal, sig);
1409 
1410 	__group_complete_signal(sig, p);
1411 out:
1412 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1413 	read_unlock(&tasklist_lock);
1414 	return ret;
1415 }
1416 
1417 /*
1418  * Wake up any threads in the parent blocked in wait* syscalls.
1419  */
1420 static inline void __wake_up_parent(struct task_struct *p,
1421 				    struct task_struct *parent)
1422 {
1423 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1424 }
1425 
1426 /*
1427  * Let a parent know about the death of a child.
1428  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1429  */
1430 
1431 void do_notify_parent(struct task_struct *tsk, int sig)
1432 {
1433 	struct siginfo info;
1434 	unsigned long flags;
1435 	struct sighand_struct *psig;
1436 
1437 	BUG_ON(sig == -1);
1438 
1439  	/* do_notify_parent_cldstop should have been called instead.  */
1440  	BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1441 
1442 	BUG_ON(!tsk->ptrace &&
1443 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1444 
1445 	info.si_signo = sig;
1446 	info.si_errno = 0;
1447 	info.si_pid = tsk->pid;
1448 	info.si_uid = tsk->uid;
1449 
1450 	/* FIXME: find out whether or not this is supposed to be c*time. */
1451 	info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1452 						       tsk->signal->utime));
1453 	info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1454 						       tsk->signal->stime));
1455 
1456 	info.si_status = tsk->exit_code & 0x7f;
1457 	if (tsk->exit_code & 0x80)
1458 		info.si_code = CLD_DUMPED;
1459 	else if (tsk->exit_code & 0x7f)
1460 		info.si_code = CLD_KILLED;
1461 	else {
1462 		info.si_code = CLD_EXITED;
1463 		info.si_status = tsk->exit_code >> 8;
1464 	}
1465 
1466 	psig = tsk->parent->sighand;
1467 	spin_lock_irqsave(&psig->siglock, flags);
1468 	if (!tsk->ptrace && sig == SIGCHLD &&
1469 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1470 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1471 		/*
1472 		 * We are exiting and our parent doesn't care.  POSIX.1
1473 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1474 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1475 		 * automatically and not left for our parent's wait4 call.
1476 		 * Rather than having the parent do it as a magic kind of
1477 		 * signal handler, we just set this to tell do_exit that we
1478 		 * can be cleaned up without becoming a zombie.  Note that
1479 		 * we still call __wake_up_parent in this case, because a
1480 		 * blocked sys_wait4 might now return -ECHILD.
1481 		 *
1482 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1483 		 * is implementation-defined: we do (if you don't want
1484 		 * it, just use SIG_IGN instead).
1485 		 */
1486 		tsk->exit_signal = -1;
1487 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1488 			sig = 0;
1489 	}
1490 	if (valid_signal(sig) && sig > 0)
1491 		__group_send_sig_info(sig, &info, tsk->parent);
1492 	__wake_up_parent(tsk, tsk->parent);
1493 	spin_unlock_irqrestore(&psig->siglock, flags);
1494 }
1495 
1496 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1497 {
1498 	struct siginfo info;
1499 	unsigned long flags;
1500 	struct task_struct *parent;
1501 	struct sighand_struct *sighand;
1502 
1503 	if (tsk->ptrace & PT_PTRACED)
1504 		parent = tsk->parent;
1505 	else {
1506 		tsk = tsk->group_leader;
1507 		parent = tsk->real_parent;
1508 	}
1509 
1510 	info.si_signo = SIGCHLD;
1511 	info.si_errno = 0;
1512 	info.si_pid = tsk->pid;
1513 	info.si_uid = tsk->uid;
1514 
1515 	/* FIXME: find out whether or not this is supposed to be c*time. */
1516 	info.si_utime = cputime_to_jiffies(tsk->utime);
1517 	info.si_stime = cputime_to_jiffies(tsk->stime);
1518 
1519  	info.si_code = why;
1520  	switch (why) {
1521  	case CLD_CONTINUED:
1522  		info.si_status = SIGCONT;
1523  		break;
1524  	case CLD_STOPPED:
1525  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1526  		break;
1527  	case CLD_TRAPPED:
1528  		info.si_status = tsk->exit_code & 0x7f;
1529  		break;
1530  	default:
1531  		BUG();
1532  	}
1533 
1534 	sighand = parent->sighand;
1535 	spin_lock_irqsave(&sighand->siglock, flags);
1536 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1537 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1538 		__group_send_sig_info(SIGCHLD, &info, parent);
1539 	/*
1540 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1541 	 */
1542 	__wake_up_parent(tsk, parent);
1543 	spin_unlock_irqrestore(&sighand->siglock, flags);
1544 }
1545 
1546 static inline int may_ptrace_stop(void)
1547 {
1548 	if (!likely(current->ptrace & PT_PTRACED))
1549 		return 0;
1550 
1551 	if (unlikely(current->parent == current->real_parent &&
1552 		    (current->ptrace & PT_ATTACHED)))
1553 		return 0;
1554 
1555 	/*
1556 	 * Are we in the middle of do_coredump?
1557 	 * If so and our tracer is also part of the coredump stopping
1558 	 * is a deadlock situation, and pointless because our tracer
1559 	 * is dead so don't allow us to stop.
1560 	 * If SIGKILL was already sent before the caller unlocked
1561 	 * ->siglock we must see ->core_waiters != 0. Otherwise it
1562 	 * is safe to enter schedule().
1563 	 */
1564 	if (unlikely(current->mm->core_waiters) &&
1565 	    unlikely(current->mm == current->parent->mm))
1566 		return 0;
1567 
1568 	return 1;
1569 }
1570 
1571 /*
1572  * This must be called with current->sighand->siglock held.
1573  *
1574  * This should be the path for all ptrace stops.
1575  * We always set current->last_siginfo while stopped here.
1576  * That makes it a way to test a stopped process for
1577  * being ptrace-stopped vs being job-control-stopped.
1578  *
1579  * If we actually decide not to stop at all because the tracer is gone,
1580  * we leave nostop_code in current->exit_code.
1581  */
1582 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1583 {
1584 	/*
1585 	 * If there is a group stop in progress,
1586 	 * we must participate in the bookkeeping.
1587 	 */
1588 	if (current->signal->group_stop_count > 0)
1589 		--current->signal->group_stop_count;
1590 
1591 	current->last_siginfo = info;
1592 	current->exit_code = exit_code;
1593 
1594 	/* Let the debugger run.  */
1595 	set_current_state(TASK_TRACED);
1596 	spin_unlock_irq(&current->sighand->siglock);
1597 	try_to_freeze();
1598 	read_lock(&tasklist_lock);
1599 	if (may_ptrace_stop()) {
1600 		do_notify_parent_cldstop(current, CLD_TRAPPED);
1601 		read_unlock(&tasklist_lock);
1602 		schedule();
1603 	} else {
1604 		/*
1605 		 * By the time we got the lock, our tracer went away.
1606 		 * Don't stop here.
1607 		 */
1608 		read_unlock(&tasklist_lock);
1609 		set_current_state(TASK_RUNNING);
1610 		current->exit_code = nostop_code;
1611 	}
1612 
1613 	/*
1614 	 * We are back.  Now reacquire the siglock before touching
1615 	 * last_siginfo, so that we are sure to have synchronized with
1616 	 * any signal-sending on another CPU that wants to examine it.
1617 	 */
1618 	spin_lock_irq(&current->sighand->siglock);
1619 	current->last_siginfo = NULL;
1620 
1621 	/*
1622 	 * Queued signals ignored us while we were stopped for tracing.
1623 	 * So check for any that we should take before resuming user mode.
1624 	 * This sets TIF_SIGPENDING, but never clears it.
1625 	 */
1626 	recalc_sigpending_tsk(current);
1627 }
1628 
1629 void ptrace_notify(int exit_code)
1630 {
1631 	siginfo_t info;
1632 
1633 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1634 
1635 	memset(&info, 0, sizeof info);
1636 	info.si_signo = SIGTRAP;
1637 	info.si_code = exit_code;
1638 	info.si_pid = current->pid;
1639 	info.si_uid = current->uid;
1640 
1641 	/* Let the debugger run.  */
1642 	spin_lock_irq(&current->sighand->siglock);
1643 	ptrace_stop(exit_code, 0, &info);
1644 	spin_unlock_irq(&current->sighand->siglock);
1645 }
1646 
1647 static void
1648 finish_stop(int stop_count)
1649 {
1650 	/*
1651 	 * If there are no other threads in the group, or if there is
1652 	 * a group stop in progress and we are the last to stop,
1653 	 * report to the parent.  When ptraced, every thread reports itself.
1654 	 */
1655 	if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1656 		read_lock(&tasklist_lock);
1657 		do_notify_parent_cldstop(current, CLD_STOPPED);
1658 		read_unlock(&tasklist_lock);
1659 	}
1660 
1661 	do {
1662 		schedule();
1663 	} while (try_to_freeze());
1664 	/*
1665 	 * Now we don't run again until continued.
1666 	 */
1667 	current->exit_code = 0;
1668 }
1669 
1670 /*
1671  * This performs the stopping for SIGSTOP and other stop signals.
1672  * We have to stop all threads in the thread group.
1673  * Returns nonzero if we've actually stopped and released the siglock.
1674  * Returns zero if we didn't stop and still hold the siglock.
1675  */
1676 static int do_signal_stop(int signr)
1677 {
1678 	struct signal_struct *sig = current->signal;
1679 	int stop_count;
1680 
1681 	if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1682 		return 0;
1683 
1684 	if (sig->group_stop_count > 0) {
1685 		/*
1686 		 * There is a group stop in progress.  We don't need to
1687 		 * start another one.
1688 		 */
1689 		stop_count = --sig->group_stop_count;
1690 	} else {
1691 		/*
1692 		 * There is no group stop already in progress.
1693 		 * We must initiate one now.
1694 		 */
1695 		struct task_struct *t;
1696 
1697 		sig->group_exit_code = signr;
1698 
1699 		stop_count = 0;
1700 		for (t = next_thread(current); t != current; t = next_thread(t))
1701 			/*
1702 			 * Setting state to TASK_STOPPED for a group
1703 			 * stop is always done with the siglock held,
1704 			 * so this check has no races.
1705 			 */
1706 			if (!t->exit_state &&
1707 			    !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1708 				stop_count++;
1709 				signal_wake_up(t, 0);
1710 			}
1711 		sig->group_stop_count = stop_count;
1712 	}
1713 
1714 	if (stop_count == 0)
1715 		sig->flags = SIGNAL_STOP_STOPPED;
1716 	current->exit_code = sig->group_exit_code;
1717 	__set_current_state(TASK_STOPPED);
1718 
1719 	spin_unlock_irq(&current->sighand->siglock);
1720 	finish_stop(stop_count);
1721 	return 1;
1722 }
1723 
1724 /*
1725  * Do appropriate magic when group_stop_count > 0.
1726  * We return nonzero if we stopped, after releasing the siglock.
1727  * We return zero if we still hold the siglock and should look
1728  * for another signal without checking group_stop_count again.
1729  */
1730 static int handle_group_stop(void)
1731 {
1732 	int stop_count;
1733 
1734 	if (current->signal->group_exit_task == current) {
1735 		/*
1736 		 * Group stop is so we can do a core dump,
1737 		 * We are the initiating thread, so get on with it.
1738 		 */
1739 		current->signal->group_exit_task = NULL;
1740 		return 0;
1741 	}
1742 
1743 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1744 		/*
1745 		 * Group stop is so another thread can do a core dump,
1746 		 * or else we are racing against a death signal.
1747 		 * Just punt the stop so we can get the next signal.
1748 		 */
1749 		return 0;
1750 
1751 	/*
1752 	 * There is a group stop in progress.  We stop
1753 	 * without any associated signal being in our queue.
1754 	 */
1755 	stop_count = --current->signal->group_stop_count;
1756 	if (stop_count == 0)
1757 		current->signal->flags = SIGNAL_STOP_STOPPED;
1758 	current->exit_code = current->signal->group_exit_code;
1759 	set_current_state(TASK_STOPPED);
1760 	spin_unlock_irq(&current->sighand->siglock);
1761 	finish_stop(stop_count);
1762 	return 1;
1763 }
1764 
1765 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1766 			  struct pt_regs *regs, void *cookie)
1767 {
1768 	sigset_t *mask = &current->blocked;
1769 	int signr = 0;
1770 
1771 	try_to_freeze();
1772 
1773 relock:
1774 	spin_lock_irq(&current->sighand->siglock);
1775 	for (;;) {
1776 		struct k_sigaction *ka;
1777 
1778 		if (unlikely(current->signal->group_stop_count > 0) &&
1779 		    handle_group_stop())
1780 			goto relock;
1781 
1782 		signr = dequeue_signal(current, mask, info);
1783 
1784 		if (!signr)
1785 			break; /* will return 0 */
1786 
1787 		if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1788 			ptrace_signal_deliver(regs, cookie);
1789 
1790 			/* Let the debugger run.  */
1791 			ptrace_stop(signr, signr, info);
1792 
1793 			/* We're back.  Did the debugger cancel the sig?  */
1794 			signr = current->exit_code;
1795 			if (signr == 0)
1796 				continue;
1797 
1798 			current->exit_code = 0;
1799 
1800 			/* Update the siginfo structure if the signal has
1801 			   changed.  If the debugger wanted something
1802 			   specific in the siginfo structure then it should
1803 			   have updated *info via PTRACE_SETSIGINFO.  */
1804 			if (signr != info->si_signo) {
1805 				info->si_signo = signr;
1806 				info->si_errno = 0;
1807 				info->si_code = SI_USER;
1808 				info->si_pid = current->parent->pid;
1809 				info->si_uid = current->parent->uid;
1810 			}
1811 
1812 			/* If the (new) signal is now blocked, requeue it.  */
1813 			if (sigismember(&current->blocked, signr)) {
1814 				specific_send_sig_info(signr, info, current);
1815 				continue;
1816 			}
1817 		}
1818 
1819 		ka = &current->sighand->action[signr-1];
1820 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1821 			continue;
1822 		if (ka->sa.sa_handler != SIG_DFL) {
1823 			/* Run the handler.  */
1824 			*return_ka = *ka;
1825 
1826 			if (ka->sa.sa_flags & SA_ONESHOT)
1827 				ka->sa.sa_handler = SIG_DFL;
1828 
1829 			break; /* will return non-zero "signr" value */
1830 		}
1831 
1832 		/*
1833 		 * Now we are doing the default action for this signal.
1834 		 */
1835 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1836 			continue;
1837 
1838 		/*
1839 		 * Init of a pid space gets no signals it doesn't want from
1840 		 * within that pid space. It can of course get signals from
1841 		 * its parent pid space.
1842 		 */
1843 		if (current == child_reaper(current))
1844 			continue;
1845 
1846 		if (sig_kernel_stop(signr)) {
1847 			/*
1848 			 * The default action is to stop all threads in
1849 			 * the thread group.  The job control signals
1850 			 * do nothing in an orphaned pgrp, but SIGSTOP
1851 			 * always works.  Note that siglock needs to be
1852 			 * dropped during the call to is_orphaned_pgrp()
1853 			 * because of lock ordering with tasklist_lock.
1854 			 * This allows an intervening SIGCONT to be posted.
1855 			 * We need to check for that and bail out if necessary.
1856 			 */
1857 			if (signr != SIGSTOP) {
1858 				spin_unlock_irq(&current->sighand->siglock);
1859 
1860 				/* signals can be posted during this window */
1861 
1862 				if (is_current_pgrp_orphaned())
1863 					goto relock;
1864 
1865 				spin_lock_irq(&current->sighand->siglock);
1866 			}
1867 
1868 			if (likely(do_signal_stop(signr))) {
1869 				/* It released the siglock.  */
1870 				goto relock;
1871 			}
1872 
1873 			/*
1874 			 * We didn't actually stop, due to a race
1875 			 * with SIGCONT or something like that.
1876 			 */
1877 			continue;
1878 		}
1879 
1880 		spin_unlock_irq(&current->sighand->siglock);
1881 
1882 		/*
1883 		 * Anything else is fatal, maybe with a core dump.
1884 		 */
1885 		current->flags |= PF_SIGNALED;
1886 		if ((signr != SIGKILL) && print_fatal_signals)
1887 			print_fatal_signal(regs, signr);
1888 		if (sig_kernel_coredump(signr)) {
1889 			/*
1890 			 * If it was able to dump core, this kills all
1891 			 * other threads in the group and synchronizes with
1892 			 * their demise.  If we lost the race with another
1893 			 * thread getting here, it set group_exit_code
1894 			 * first and our do_group_exit call below will use
1895 			 * that value and ignore the one we pass it.
1896 			 */
1897 			do_coredump((long)signr, signr, regs);
1898 		}
1899 
1900 		/*
1901 		 * Death signals, no core dump.
1902 		 */
1903 		do_group_exit(signr);
1904 		/* NOTREACHED */
1905 	}
1906 	spin_unlock_irq(&current->sighand->siglock);
1907 	return signr;
1908 }
1909 
1910 EXPORT_SYMBOL(recalc_sigpending);
1911 EXPORT_SYMBOL_GPL(dequeue_signal);
1912 EXPORT_SYMBOL(flush_signals);
1913 EXPORT_SYMBOL(force_sig);
1914 EXPORT_SYMBOL(kill_proc);
1915 EXPORT_SYMBOL(ptrace_notify);
1916 EXPORT_SYMBOL(send_sig);
1917 EXPORT_SYMBOL(send_sig_info);
1918 EXPORT_SYMBOL(sigprocmask);
1919 EXPORT_SYMBOL(block_all_signals);
1920 EXPORT_SYMBOL(unblock_all_signals);
1921 
1922 
1923 /*
1924  * System call entry points.
1925  */
1926 
1927 asmlinkage long sys_restart_syscall(void)
1928 {
1929 	struct restart_block *restart = &current_thread_info()->restart_block;
1930 	return restart->fn(restart);
1931 }
1932 
1933 long do_no_restart_syscall(struct restart_block *param)
1934 {
1935 	return -EINTR;
1936 }
1937 
1938 /*
1939  * We don't need to get the kernel lock - this is all local to this
1940  * particular thread.. (and that's good, because this is _heavily_
1941  * used by various programs)
1942  */
1943 
1944 /*
1945  * This is also useful for kernel threads that want to temporarily
1946  * (or permanently) block certain signals.
1947  *
1948  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1949  * interface happily blocks "unblockable" signals like SIGKILL
1950  * and friends.
1951  */
1952 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1953 {
1954 	int error;
1955 
1956 	spin_lock_irq(&current->sighand->siglock);
1957 	if (oldset)
1958 		*oldset = current->blocked;
1959 
1960 	error = 0;
1961 	switch (how) {
1962 	case SIG_BLOCK:
1963 		sigorsets(&current->blocked, &current->blocked, set);
1964 		break;
1965 	case SIG_UNBLOCK:
1966 		signandsets(&current->blocked, &current->blocked, set);
1967 		break;
1968 	case SIG_SETMASK:
1969 		current->blocked = *set;
1970 		break;
1971 	default:
1972 		error = -EINVAL;
1973 	}
1974 	recalc_sigpending();
1975 	spin_unlock_irq(&current->sighand->siglock);
1976 
1977 	return error;
1978 }
1979 
1980 asmlinkage long
1981 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1982 {
1983 	int error = -EINVAL;
1984 	sigset_t old_set, new_set;
1985 
1986 	/* XXX: Don't preclude handling different sized sigset_t's.  */
1987 	if (sigsetsize != sizeof(sigset_t))
1988 		goto out;
1989 
1990 	if (set) {
1991 		error = -EFAULT;
1992 		if (copy_from_user(&new_set, set, sizeof(*set)))
1993 			goto out;
1994 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1995 
1996 		error = sigprocmask(how, &new_set, &old_set);
1997 		if (error)
1998 			goto out;
1999 		if (oset)
2000 			goto set_old;
2001 	} else if (oset) {
2002 		spin_lock_irq(&current->sighand->siglock);
2003 		old_set = current->blocked;
2004 		spin_unlock_irq(&current->sighand->siglock);
2005 
2006 	set_old:
2007 		error = -EFAULT;
2008 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2009 			goto out;
2010 	}
2011 	error = 0;
2012 out:
2013 	return error;
2014 }
2015 
2016 long do_sigpending(void __user *set, unsigned long sigsetsize)
2017 {
2018 	long error = -EINVAL;
2019 	sigset_t pending;
2020 
2021 	if (sigsetsize > sizeof(sigset_t))
2022 		goto out;
2023 
2024 	spin_lock_irq(&current->sighand->siglock);
2025 	sigorsets(&pending, &current->pending.signal,
2026 		  &current->signal->shared_pending.signal);
2027 	spin_unlock_irq(&current->sighand->siglock);
2028 
2029 	/* Outside the lock because only this thread touches it.  */
2030 	sigandsets(&pending, &current->blocked, &pending);
2031 
2032 	error = -EFAULT;
2033 	if (!copy_to_user(set, &pending, sigsetsize))
2034 		error = 0;
2035 
2036 out:
2037 	return error;
2038 }
2039 
2040 asmlinkage long
2041 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2042 {
2043 	return do_sigpending(set, sigsetsize);
2044 }
2045 
2046 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2047 
2048 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2049 {
2050 	int err;
2051 
2052 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2053 		return -EFAULT;
2054 	if (from->si_code < 0)
2055 		return __copy_to_user(to, from, sizeof(siginfo_t))
2056 			? -EFAULT : 0;
2057 	/*
2058 	 * If you change siginfo_t structure, please be sure
2059 	 * this code is fixed accordingly.
2060 	 * Please remember to update the signalfd_copyinfo() function
2061 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2062 	 * It should never copy any pad contained in the structure
2063 	 * to avoid security leaks, but must copy the generic
2064 	 * 3 ints plus the relevant union member.
2065 	 */
2066 	err = __put_user(from->si_signo, &to->si_signo);
2067 	err |= __put_user(from->si_errno, &to->si_errno);
2068 	err |= __put_user((short)from->si_code, &to->si_code);
2069 	switch (from->si_code & __SI_MASK) {
2070 	case __SI_KILL:
2071 		err |= __put_user(from->si_pid, &to->si_pid);
2072 		err |= __put_user(from->si_uid, &to->si_uid);
2073 		break;
2074 	case __SI_TIMER:
2075 		 err |= __put_user(from->si_tid, &to->si_tid);
2076 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2077 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2078 		break;
2079 	case __SI_POLL:
2080 		err |= __put_user(from->si_band, &to->si_band);
2081 		err |= __put_user(from->si_fd, &to->si_fd);
2082 		break;
2083 	case __SI_FAULT:
2084 		err |= __put_user(from->si_addr, &to->si_addr);
2085 #ifdef __ARCH_SI_TRAPNO
2086 		err |= __put_user(from->si_trapno, &to->si_trapno);
2087 #endif
2088 		break;
2089 	case __SI_CHLD:
2090 		err |= __put_user(from->si_pid, &to->si_pid);
2091 		err |= __put_user(from->si_uid, &to->si_uid);
2092 		err |= __put_user(from->si_status, &to->si_status);
2093 		err |= __put_user(from->si_utime, &to->si_utime);
2094 		err |= __put_user(from->si_stime, &to->si_stime);
2095 		break;
2096 	case __SI_RT: /* This is not generated by the kernel as of now. */
2097 	case __SI_MESGQ: /* But this is */
2098 		err |= __put_user(from->si_pid, &to->si_pid);
2099 		err |= __put_user(from->si_uid, &to->si_uid);
2100 		err |= __put_user(from->si_ptr, &to->si_ptr);
2101 		break;
2102 	default: /* this is just in case for now ... */
2103 		err |= __put_user(from->si_pid, &to->si_pid);
2104 		err |= __put_user(from->si_uid, &to->si_uid);
2105 		break;
2106 	}
2107 	return err;
2108 }
2109 
2110 #endif
2111 
2112 asmlinkage long
2113 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2114 		    siginfo_t __user *uinfo,
2115 		    const struct timespec __user *uts,
2116 		    size_t sigsetsize)
2117 {
2118 	int ret, sig;
2119 	sigset_t these;
2120 	struct timespec ts;
2121 	siginfo_t info;
2122 	long timeout = 0;
2123 
2124 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2125 	if (sigsetsize != sizeof(sigset_t))
2126 		return -EINVAL;
2127 
2128 	if (copy_from_user(&these, uthese, sizeof(these)))
2129 		return -EFAULT;
2130 
2131 	/*
2132 	 * Invert the set of allowed signals to get those we
2133 	 * want to block.
2134 	 */
2135 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2136 	signotset(&these);
2137 
2138 	if (uts) {
2139 		if (copy_from_user(&ts, uts, sizeof(ts)))
2140 			return -EFAULT;
2141 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2142 		    || ts.tv_sec < 0)
2143 			return -EINVAL;
2144 	}
2145 
2146 	spin_lock_irq(&current->sighand->siglock);
2147 	sig = dequeue_signal(current, &these, &info);
2148 	if (!sig) {
2149 		timeout = MAX_SCHEDULE_TIMEOUT;
2150 		if (uts)
2151 			timeout = (timespec_to_jiffies(&ts)
2152 				   + (ts.tv_sec || ts.tv_nsec));
2153 
2154 		if (timeout) {
2155 			/* None ready -- temporarily unblock those we're
2156 			 * interested while we are sleeping in so that we'll
2157 			 * be awakened when they arrive.  */
2158 			current->real_blocked = current->blocked;
2159 			sigandsets(&current->blocked, &current->blocked, &these);
2160 			recalc_sigpending();
2161 			spin_unlock_irq(&current->sighand->siglock);
2162 
2163 			timeout = schedule_timeout_interruptible(timeout);
2164 
2165 			spin_lock_irq(&current->sighand->siglock);
2166 			sig = dequeue_signal(current, &these, &info);
2167 			current->blocked = current->real_blocked;
2168 			siginitset(&current->real_blocked, 0);
2169 			recalc_sigpending();
2170 		}
2171 	}
2172 	spin_unlock_irq(&current->sighand->siglock);
2173 
2174 	if (sig) {
2175 		ret = sig;
2176 		if (uinfo) {
2177 			if (copy_siginfo_to_user(uinfo, &info))
2178 				ret = -EFAULT;
2179 		}
2180 	} else {
2181 		ret = -EAGAIN;
2182 		if (timeout)
2183 			ret = -EINTR;
2184 	}
2185 
2186 	return ret;
2187 }
2188 
2189 asmlinkage long
2190 sys_kill(int pid, int sig)
2191 {
2192 	struct siginfo info;
2193 
2194 	info.si_signo = sig;
2195 	info.si_errno = 0;
2196 	info.si_code = SI_USER;
2197 	info.si_pid = current->tgid;
2198 	info.si_uid = current->uid;
2199 
2200 	return kill_something_info(sig, &info, pid);
2201 }
2202 
2203 static int do_tkill(int tgid, int pid, int sig)
2204 {
2205 	int error;
2206 	struct siginfo info;
2207 	struct task_struct *p;
2208 
2209 	error = -ESRCH;
2210 	info.si_signo = sig;
2211 	info.si_errno = 0;
2212 	info.si_code = SI_TKILL;
2213 	info.si_pid = current->tgid;
2214 	info.si_uid = current->uid;
2215 
2216 	read_lock(&tasklist_lock);
2217 	p = find_task_by_pid(pid);
2218 	if (p && (tgid <= 0 || p->tgid == tgid)) {
2219 		error = check_kill_permission(sig, &info, p);
2220 		/*
2221 		 * The null signal is a permissions and process existence
2222 		 * probe.  No signal is actually delivered.
2223 		 */
2224 		if (!error && sig && p->sighand) {
2225 			spin_lock_irq(&p->sighand->siglock);
2226 			handle_stop_signal(sig, p);
2227 			error = specific_send_sig_info(sig, &info, p);
2228 			spin_unlock_irq(&p->sighand->siglock);
2229 		}
2230 	}
2231 	read_unlock(&tasklist_lock);
2232 
2233 	return error;
2234 }
2235 
2236 /**
2237  *  sys_tgkill - send signal to one specific thread
2238  *  @tgid: the thread group ID of the thread
2239  *  @pid: the PID of the thread
2240  *  @sig: signal to be sent
2241  *
2242  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2243  *  exists but it's not belonging to the target process anymore. This
2244  *  method solves the problem of threads exiting and PIDs getting reused.
2245  */
2246 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2247 {
2248 	/* This is only valid for single tasks */
2249 	if (pid <= 0 || tgid <= 0)
2250 		return -EINVAL;
2251 
2252 	return do_tkill(tgid, pid, sig);
2253 }
2254 
2255 /*
2256  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2257  */
2258 asmlinkage long
2259 sys_tkill(int pid, int sig)
2260 {
2261 	/* This is only valid for single tasks */
2262 	if (pid <= 0)
2263 		return -EINVAL;
2264 
2265 	return do_tkill(0, pid, sig);
2266 }
2267 
2268 asmlinkage long
2269 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2270 {
2271 	siginfo_t info;
2272 
2273 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2274 		return -EFAULT;
2275 
2276 	/* Not even root can pretend to send signals from the kernel.
2277 	   Nor can they impersonate a kill(), which adds source info.  */
2278 	if (info.si_code >= 0)
2279 		return -EPERM;
2280 	info.si_signo = sig;
2281 
2282 	/* POSIX.1b doesn't mention process groups.  */
2283 	return kill_proc_info(sig, &info, pid);
2284 }
2285 
2286 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2287 {
2288 	struct k_sigaction *k;
2289 	sigset_t mask;
2290 
2291 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2292 		return -EINVAL;
2293 
2294 	k = &current->sighand->action[sig-1];
2295 
2296 	spin_lock_irq(&current->sighand->siglock);
2297 	if (oact)
2298 		*oact = *k;
2299 
2300 	if (act) {
2301 		sigdelsetmask(&act->sa.sa_mask,
2302 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2303 		*k = *act;
2304 		/*
2305 		 * POSIX 3.3.1.3:
2306 		 *  "Setting a signal action to SIG_IGN for a signal that is
2307 		 *   pending shall cause the pending signal to be discarded,
2308 		 *   whether or not it is blocked."
2309 		 *
2310 		 *  "Setting a signal action to SIG_DFL for a signal that is
2311 		 *   pending and whose default action is to ignore the signal
2312 		 *   (for example, SIGCHLD), shall cause the pending signal to
2313 		 *   be discarded, whether or not it is blocked"
2314 		 */
2315 		if (act->sa.sa_handler == SIG_IGN ||
2316 		   (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2317 			struct task_struct *t = current;
2318 			sigemptyset(&mask);
2319 			sigaddset(&mask, sig);
2320 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2321 			do {
2322 				rm_from_queue_full(&mask, &t->pending);
2323 				t = next_thread(t);
2324 			} while (t != current);
2325 		}
2326 	}
2327 
2328 	spin_unlock_irq(&current->sighand->siglock);
2329 	return 0;
2330 }
2331 
2332 int
2333 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2334 {
2335 	stack_t oss;
2336 	int error;
2337 
2338 	if (uoss) {
2339 		oss.ss_sp = (void __user *) current->sas_ss_sp;
2340 		oss.ss_size = current->sas_ss_size;
2341 		oss.ss_flags = sas_ss_flags(sp);
2342 	}
2343 
2344 	if (uss) {
2345 		void __user *ss_sp;
2346 		size_t ss_size;
2347 		int ss_flags;
2348 
2349 		error = -EFAULT;
2350 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2351 		    || __get_user(ss_sp, &uss->ss_sp)
2352 		    || __get_user(ss_flags, &uss->ss_flags)
2353 		    || __get_user(ss_size, &uss->ss_size))
2354 			goto out;
2355 
2356 		error = -EPERM;
2357 		if (on_sig_stack(sp))
2358 			goto out;
2359 
2360 		error = -EINVAL;
2361 		/*
2362 		 *
2363 		 * Note - this code used to test ss_flags incorrectly
2364 		 *  	  old code may have been written using ss_flags==0
2365 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2366 		 *	  way that worked) - this fix preserves that older
2367 		 *	  mechanism
2368 		 */
2369 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2370 			goto out;
2371 
2372 		if (ss_flags == SS_DISABLE) {
2373 			ss_size = 0;
2374 			ss_sp = NULL;
2375 		} else {
2376 			error = -ENOMEM;
2377 			if (ss_size < MINSIGSTKSZ)
2378 				goto out;
2379 		}
2380 
2381 		current->sas_ss_sp = (unsigned long) ss_sp;
2382 		current->sas_ss_size = ss_size;
2383 	}
2384 
2385 	if (uoss) {
2386 		error = -EFAULT;
2387 		if (copy_to_user(uoss, &oss, sizeof(oss)))
2388 			goto out;
2389 	}
2390 
2391 	error = 0;
2392 out:
2393 	return error;
2394 }
2395 
2396 #ifdef __ARCH_WANT_SYS_SIGPENDING
2397 
2398 asmlinkage long
2399 sys_sigpending(old_sigset_t __user *set)
2400 {
2401 	return do_sigpending(set, sizeof(*set));
2402 }
2403 
2404 #endif
2405 
2406 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2407 /* Some platforms have their own version with special arguments others
2408    support only sys_rt_sigprocmask.  */
2409 
2410 asmlinkage long
2411 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2412 {
2413 	int error;
2414 	old_sigset_t old_set, new_set;
2415 
2416 	if (set) {
2417 		error = -EFAULT;
2418 		if (copy_from_user(&new_set, set, sizeof(*set)))
2419 			goto out;
2420 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2421 
2422 		spin_lock_irq(&current->sighand->siglock);
2423 		old_set = current->blocked.sig[0];
2424 
2425 		error = 0;
2426 		switch (how) {
2427 		default:
2428 			error = -EINVAL;
2429 			break;
2430 		case SIG_BLOCK:
2431 			sigaddsetmask(&current->blocked, new_set);
2432 			break;
2433 		case SIG_UNBLOCK:
2434 			sigdelsetmask(&current->blocked, new_set);
2435 			break;
2436 		case SIG_SETMASK:
2437 			current->blocked.sig[0] = new_set;
2438 			break;
2439 		}
2440 
2441 		recalc_sigpending();
2442 		spin_unlock_irq(&current->sighand->siglock);
2443 		if (error)
2444 			goto out;
2445 		if (oset)
2446 			goto set_old;
2447 	} else if (oset) {
2448 		old_set = current->blocked.sig[0];
2449 	set_old:
2450 		error = -EFAULT;
2451 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2452 			goto out;
2453 	}
2454 	error = 0;
2455 out:
2456 	return error;
2457 }
2458 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2459 
2460 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2461 asmlinkage long
2462 sys_rt_sigaction(int sig,
2463 		 const struct sigaction __user *act,
2464 		 struct sigaction __user *oact,
2465 		 size_t sigsetsize)
2466 {
2467 	struct k_sigaction new_sa, old_sa;
2468 	int ret = -EINVAL;
2469 
2470 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2471 	if (sigsetsize != sizeof(sigset_t))
2472 		goto out;
2473 
2474 	if (act) {
2475 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2476 			return -EFAULT;
2477 	}
2478 
2479 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2480 
2481 	if (!ret && oact) {
2482 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2483 			return -EFAULT;
2484 	}
2485 out:
2486 	return ret;
2487 }
2488 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2489 
2490 #ifdef __ARCH_WANT_SYS_SGETMASK
2491 
2492 /*
2493  * For backwards compatibility.  Functionality superseded by sigprocmask.
2494  */
2495 asmlinkage long
2496 sys_sgetmask(void)
2497 {
2498 	/* SMP safe */
2499 	return current->blocked.sig[0];
2500 }
2501 
2502 asmlinkage long
2503 sys_ssetmask(int newmask)
2504 {
2505 	int old;
2506 
2507 	spin_lock_irq(&current->sighand->siglock);
2508 	old = current->blocked.sig[0];
2509 
2510 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2511 						  sigmask(SIGSTOP)));
2512 	recalc_sigpending();
2513 	spin_unlock_irq(&current->sighand->siglock);
2514 
2515 	return old;
2516 }
2517 #endif /* __ARCH_WANT_SGETMASK */
2518 
2519 #ifdef __ARCH_WANT_SYS_SIGNAL
2520 /*
2521  * For backwards compatibility.  Functionality superseded by sigaction.
2522  */
2523 asmlinkage unsigned long
2524 sys_signal(int sig, __sighandler_t handler)
2525 {
2526 	struct k_sigaction new_sa, old_sa;
2527 	int ret;
2528 
2529 	new_sa.sa.sa_handler = handler;
2530 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2531 	sigemptyset(&new_sa.sa.sa_mask);
2532 
2533 	ret = do_sigaction(sig, &new_sa, &old_sa);
2534 
2535 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2536 }
2537 #endif /* __ARCH_WANT_SYS_SIGNAL */
2538 
2539 #ifdef __ARCH_WANT_SYS_PAUSE
2540 
2541 asmlinkage long
2542 sys_pause(void)
2543 {
2544 	current->state = TASK_INTERRUPTIBLE;
2545 	schedule();
2546 	return -ERESTARTNOHAND;
2547 }
2548 
2549 #endif
2550 
2551 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2552 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2553 {
2554 	sigset_t newset;
2555 
2556 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2557 	if (sigsetsize != sizeof(sigset_t))
2558 		return -EINVAL;
2559 
2560 	if (copy_from_user(&newset, unewset, sizeof(newset)))
2561 		return -EFAULT;
2562 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2563 
2564 	spin_lock_irq(&current->sighand->siglock);
2565 	current->saved_sigmask = current->blocked;
2566 	current->blocked = newset;
2567 	recalc_sigpending();
2568 	spin_unlock_irq(&current->sighand->siglock);
2569 
2570 	current->state = TASK_INTERRUPTIBLE;
2571 	schedule();
2572 	set_thread_flag(TIF_RESTORE_SIGMASK);
2573 	return -ERESTARTNOHAND;
2574 }
2575 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2576 
2577 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2578 {
2579 	return NULL;
2580 }
2581 
2582 void __init signals_init(void)
2583 {
2584 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2585 }
2586