1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/capability.h> 26 #include <linux/freezer.h> 27 #include <linux/pid_namespace.h> 28 #include <linux/nsproxy.h> 29 30 #include <asm/param.h> 31 #include <asm/uaccess.h> 32 #include <asm/unistd.h> 33 #include <asm/siginfo.h> 34 #include "audit.h" /* audit_signal_info() */ 35 36 /* 37 * SLAB caches for signal bits. 38 */ 39 40 static struct kmem_cache *sigqueue_cachep; 41 42 43 static int sig_ignored(struct task_struct *t, int sig) 44 { 45 void __user * handler; 46 47 /* 48 * Tracers always want to know about signals.. 49 */ 50 if (t->ptrace & PT_PTRACED) 51 return 0; 52 53 /* 54 * Blocked signals are never ignored, since the 55 * signal handler may change by the time it is 56 * unblocked. 57 */ 58 if (sigismember(&t->blocked, sig)) 59 return 0; 60 61 /* Is it explicitly or implicitly ignored? */ 62 handler = t->sighand->action[sig-1].sa.sa_handler; 63 return handler == SIG_IGN || 64 (handler == SIG_DFL && sig_kernel_ignore(sig)); 65 } 66 67 /* 68 * Re-calculate pending state from the set of locally pending 69 * signals, globally pending signals, and blocked signals. 70 */ 71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 72 { 73 unsigned long ready; 74 long i; 75 76 switch (_NSIG_WORDS) { 77 default: 78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 79 ready |= signal->sig[i] &~ blocked->sig[i]; 80 break; 81 82 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 83 ready |= signal->sig[2] &~ blocked->sig[2]; 84 ready |= signal->sig[1] &~ blocked->sig[1]; 85 ready |= signal->sig[0] &~ blocked->sig[0]; 86 break; 87 88 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 89 ready |= signal->sig[0] &~ blocked->sig[0]; 90 break; 91 92 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 93 } 94 return ready != 0; 95 } 96 97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 98 99 static int recalc_sigpending_tsk(struct task_struct *t) 100 { 101 if (t->signal->group_stop_count > 0 || 102 (freezing(t)) || 103 PENDING(&t->pending, &t->blocked) || 104 PENDING(&t->signal->shared_pending, &t->blocked)) { 105 set_tsk_thread_flag(t, TIF_SIGPENDING); 106 return 1; 107 } 108 /* 109 * We must never clear the flag in another thread, or in current 110 * when it's possible the current syscall is returning -ERESTART*. 111 * So we don't clear it here, and only callers who know they should do. 112 */ 113 return 0; 114 } 115 116 /* 117 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 118 * This is superfluous when called on current, the wakeup is a harmless no-op. 119 */ 120 void recalc_sigpending_and_wake(struct task_struct *t) 121 { 122 if (recalc_sigpending_tsk(t)) 123 signal_wake_up(t, 0); 124 } 125 126 void recalc_sigpending(void) 127 { 128 if (!recalc_sigpending_tsk(current)) 129 clear_thread_flag(TIF_SIGPENDING); 130 131 } 132 133 /* Given the mask, find the first available signal that should be serviced. */ 134 135 int next_signal(struct sigpending *pending, sigset_t *mask) 136 { 137 unsigned long i, *s, *m, x; 138 int sig = 0; 139 140 s = pending->signal.sig; 141 m = mask->sig; 142 switch (_NSIG_WORDS) { 143 default: 144 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 145 if ((x = *s &~ *m) != 0) { 146 sig = ffz(~x) + i*_NSIG_BPW + 1; 147 break; 148 } 149 break; 150 151 case 2: if ((x = s[0] &~ m[0]) != 0) 152 sig = 1; 153 else if ((x = s[1] &~ m[1]) != 0) 154 sig = _NSIG_BPW + 1; 155 else 156 break; 157 sig += ffz(~x); 158 break; 159 160 case 1: if ((x = *s &~ *m) != 0) 161 sig = ffz(~x) + 1; 162 break; 163 } 164 165 return sig; 166 } 167 168 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 169 int override_rlimit) 170 { 171 struct sigqueue *q = NULL; 172 struct user_struct *user; 173 174 /* 175 * In order to avoid problems with "switch_user()", we want to make 176 * sure that the compiler doesn't re-load "t->user" 177 */ 178 user = t->user; 179 barrier(); 180 atomic_inc(&user->sigpending); 181 if (override_rlimit || 182 atomic_read(&user->sigpending) <= 183 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 184 q = kmem_cache_alloc(sigqueue_cachep, flags); 185 if (unlikely(q == NULL)) { 186 atomic_dec(&user->sigpending); 187 } else { 188 INIT_LIST_HEAD(&q->list); 189 q->flags = 0; 190 q->user = get_uid(user); 191 } 192 return(q); 193 } 194 195 static void __sigqueue_free(struct sigqueue *q) 196 { 197 if (q->flags & SIGQUEUE_PREALLOC) 198 return; 199 atomic_dec(&q->user->sigpending); 200 free_uid(q->user); 201 kmem_cache_free(sigqueue_cachep, q); 202 } 203 204 void flush_sigqueue(struct sigpending *queue) 205 { 206 struct sigqueue *q; 207 208 sigemptyset(&queue->signal); 209 while (!list_empty(&queue->list)) { 210 q = list_entry(queue->list.next, struct sigqueue , list); 211 list_del_init(&q->list); 212 __sigqueue_free(q); 213 } 214 } 215 216 /* 217 * Flush all pending signals for a task. 218 */ 219 void flush_signals(struct task_struct *t) 220 { 221 unsigned long flags; 222 223 spin_lock_irqsave(&t->sighand->siglock, flags); 224 clear_tsk_thread_flag(t,TIF_SIGPENDING); 225 flush_sigqueue(&t->pending); 226 flush_sigqueue(&t->signal->shared_pending); 227 spin_unlock_irqrestore(&t->sighand->siglock, flags); 228 } 229 230 void ignore_signals(struct task_struct *t) 231 { 232 int i; 233 234 for (i = 0; i < _NSIG; ++i) 235 t->sighand->action[i].sa.sa_handler = SIG_IGN; 236 237 flush_signals(t); 238 } 239 240 /* 241 * Flush all handlers for a task. 242 */ 243 244 void 245 flush_signal_handlers(struct task_struct *t, int force_default) 246 { 247 int i; 248 struct k_sigaction *ka = &t->sighand->action[0]; 249 for (i = _NSIG ; i != 0 ; i--) { 250 if (force_default || ka->sa.sa_handler != SIG_IGN) 251 ka->sa.sa_handler = SIG_DFL; 252 ka->sa.sa_flags = 0; 253 sigemptyset(&ka->sa.sa_mask); 254 ka++; 255 } 256 } 257 258 int unhandled_signal(struct task_struct *tsk, int sig) 259 { 260 if (is_init(tsk)) 261 return 1; 262 if (tsk->ptrace & PT_PTRACED) 263 return 0; 264 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) || 265 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL); 266 } 267 268 269 /* Notify the system that a driver wants to block all signals for this 270 * process, and wants to be notified if any signals at all were to be 271 * sent/acted upon. If the notifier routine returns non-zero, then the 272 * signal will be acted upon after all. If the notifier routine returns 0, 273 * then then signal will be blocked. Only one block per process is 274 * allowed. priv is a pointer to private data that the notifier routine 275 * can use to determine if the signal should be blocked or not. */ 276 277 void 278 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 279 { 280 unsigned long flags; 281 282 spin_lock_irqsave(¤t->sighand->siglock, flags); 283 current->notifier_mask = mask; 284 current->notifier_data = priv; 285 current->notifier = notifier; 286 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 287 } 288 289 /* Notify the system that blocking has ended. */ 290 291 void 292 unblock_all_signals(void) 293 { 294 unsigned long flags; 295 296 spin_lock_irqsave(¤t->sighand->siglock, flags); 297 current->notifier = NULL; 298 current->notifier_data = NULL; 299 recalc_sigpending(); 300 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 301 } 302 303 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info) 304 { 305 struct sigqueue *q, *first = NULL; 306 int still_pending = 0; 307 308 if (unlikely(!sigismember(&list->signal, sig))) 309 return 0; 310 311 /* 312 * Collect the siginfo appropriate to this signal. Check if 313 * there is another siginfo for the same signal. 314 */ 315 list_for_each_entry(q, &list->list, list) { 316 if (q->info.si_signo == sig) { 317 if (first) { 318 still_pending = 1; 319 break; 320 } 321 first = q; 322 } 323 } 324 if (first) { 325 list_del_init(&first->list); 326 copy_siginfo(info, &first->info); 327 __sigqueue_free(first); 328 if (!still_pending) 329 sigdelset(&list->signal, sig); 330 } else { 331 332 /* Ok, it wasn't in the queue. This must be 333 a fast-pathed signal or we must have been 334 out of queue space. So zero out the info. 335 */ 336 sigdelset(&list->signal, sig); 337 info->si_signo = sig; 338 info->si_errno = 0; 339 info->si_code = 0; 340 info->si_pid = 0; 341 info->si_uid = 0; 342 } 343 return 1; 344 } 345 346 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 347 siginfo_t *info) 348 { 349 int sig = next_signal(pending, mask); 350 351 if (sig) { 352 if (current->notifier) { 353 if (sigismember(current->notifier_mask, sig)) { 354 if (!(current->notifier)(current->notifier_data)) { 355 clear_thread_flag(TIF_SIGPENDING); 356 return 0; 357 } 358 } 359 } 360 361 if (!collect_signal(sig, pending, info)) 362 sig = 0; 363 } 364 365 return sig; 366 } 367 368 /* 369 * Dequeue a signal and return the element to the caller, which is 370 * expected to free it. 371 * 372 * All callers have to hold the siglock. 373 */ 374 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 375 { 376 int signr = 0; 377 378 /* We only dequeue private signals from ourselves, we don't let 379 * signalfd steal them 380 */ 381 signr = __dequeue_signal(&tsk->pending, mask, info); 382 if (!signr) { 383 signr = __dequeue_signal(&tsk->signal->shared_pending, 384 mask, info); 385 /* 386 * itimer signal ? 387 * 388 * itimers are process shared and we restart periodic 389 * itimers in the signal delivery path to prevent DoS 390 * attacks in the high resolution timer case. This is 391 * compliant with the old way of self restarting 392 * itimers, as the SIGALRM is a legacy signal and only 393 * queued once. Changing the restart behaviour to 394 * restart the timer in the signal dequeue path is 395 * reducing the timer noise on heavy loaded !highres 396 * systems too. 397 */ 398 if (unlikely(signr == SIGALRM)) { 399 struct hrtimer *tmr = &tsk->signal->real_timer; 400 401 if (!hrtimer_is_queued(tmr) && 402 tsk->signal->it_real_incr.tv64 != 0) { 403 hrtimer_forward(tmr, tmr->base->get_time(), 404 tsk->signal->it_real_incr); 405 hrtimer_restart(tmr); 406 } 407 } 408 } 409 recalc_sigpending(); 410 if (signr && unlikely(sig_kernel_stop(signr))) { 411 /* 412 * Set a marker that we have dequeued a stop signal. Our 413 * caller might release the siglock and then the pending 414 * stop signal it is about to process is no longer in the 415 * pending bitmasks, but must still be cleared by a SIGCONT 416 * (and overruled by a SIGKILL). So those cases clear this 417 * shared flag after we've set it. Note that this flag may 418 * remain set after the signal we return is ignored or 419 * handled. That doesn't matter because its only purpose 420 * is to alert stop-signal processing code when another 421 * processor has come along and cleared the flag. 422 */ 423 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) 424 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 425 } 426 if (signr && 427 ((info->si_code & __SI_MASK) == __SI_TIMER) && 428 info->si_sys_private){ 429 /* 430 * Release the siglock to ensure proper locking order 431 * of timer locks outside of siglocks. Note, we leave 432 * irqs disabled here, since the posix-timers code is 433 * about to disable them again anyway. 434 */ 435 spin_unlock(&tsk->sighand->siglock); 436 do_schedule_next_timer(info); 437 spin_lock(&tsk->sighand->siglock); 438 } 439 return signr; 440 } 441 442 /* 443 * Tell a process that it has a new active signal.. 444 * 445 * NOTE! we rely on the previous spin_lock to 446 * lock interrupts for us! We can only be called with 447 * "siglock" held, and the local interrupt must 448 * have been disabled when that got acquired! 449 * 450 * No need to set need_resched since signal event passing 451 * goes through ->blocked 452 */ 453 void signal_wake_up(struct task_struct *t, int resume) 454 { 455 unsigned int mask; 456 457 set_tsk_thread_flag(t, TIF_SIGPENDING); 458 459 /* 460 * For SIGKILL, we want to wake it up in the stopped/traced case. 461 * We don't check t->state here because there is a race with it 462 * executing another processor and just now entering stopped state. 463 * By using wake_up_state, we ensure the process will wake up and 464 * handle its death signal. 465 */ 466 mask = TASK_INTERRUPTIBLE; 467 if (resume) 468 mask |= TASK_STOPPED | TASK_TRACED; 469 if (!wake_up_state(t, mask)) 470 kick_process(t); 471 } 472 473 /* 474 * Remove signals in mask from the pending set and queue. 475 * Returns 1 if any signals were found. 476 * 477 * All callers must be holding the siglock. 478 * 479 * This version takes a sigset mask and looks at all signals, 480 * not just those in the first mask word. 481 */ 482 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 483 { 484 struct sigqueue *q, *n; 485 sigset_t m; 486 487 sigandsets(&m, mask, &s->signal); 488 if (sigisemptyset(&m)) 489 return 0; 490 491 signandsets(&s->signal, &s->signal, mask); 492 list_for_each_entry_safe(q, n, &s->list, list) { 493 if (sigismember(mask, q->info.si_signo)) { 494 list_del_init(&q->list); 495 __sigqueue_free(q); 496 } 497 } 498 return 1; 499 } 500 /* 501 * Remove signals in mask from the pending set and queue. 502 * Returns 1 if any signals were found. 503 * 504 * All callers must be holding the siglock. 505 */ 506 static int rm_from_queue(unsigned long mask, struct sigpending *s) 507 { 508 struct sigqueue *q, *n; 509 510 if (!sigtestsetmask(&s->signal, mask)) 511 return 0; 512 513 sigdelsetmask(&s->signal, mask); 514 list_for_each_entry_safe(q, n, &s->list, list) { 515 if (q->info.si_signo < SIGRTMIN && 516 (mask & sigmask(q->info.si_signo))) { 517 list_del_init(&q->list); 518 __sigqueue_free(q); 519 } 520 } 521 return 1; 522 } 523 524 /* 525 * Bad permissions for sending the signal 526 */ 527 static int check_kill_permission(int sig, struct siginfo *info, 528 struct task_struct *t) 529 { 530 int error = -EINVAL; 531 if (!valid_signal(sig)) 532 return error; 533 534 if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) { 535 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 536 if (error) 537 return error; 538 error = -EPERM; 539 if (((sig != SIGCONT) || 540 (process_session(current) != process_session(t))) 541 && (current->euid ^ t->suid) && (current->euid ^ t->uid) 542 && (current->uid ^ t->suid) && (current->uid ^ t->uid) 543 && !capable(CAP_KILL)) 544 return error; 545 } 546 547 return security_task_kill(t, info, sig, 0); 548 } 549 550 /* forward decl */ 551 static void do_notify_parent_cldstop(struct task_struct *tsk, int why); 552 553 /* 554 * Handle magic process-wide effects of stop/continue signals. 555 * Unlike the signal actions, these happen immediately at signal-generation 556 * time regardless of blocking, ignoring, or handling. This does the 557 * actual continuing for SIGCONT, but not the actual stopping for stop 558 * signals. The process stop is done as a signal action for SIG_DFL. 559 */ 560 static void handle_stop_signal(int sig, struct task_struct *p) 561 { 562 struct task_struct *t; 563 564 if (p->signal->flags & SIGNAL_GROUP_EXIT) 565 /* 566 * The process is in the middle of dying already. 567 */ 568 return; 569 570 if (sig_kernel_stop(sig)) { 571 /* 572 * This is a stop signal. Remove SIGCONT from all queues. 573 */ 574 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); 575 t = p; 576 do { 577 rm_from_queue(sigmask(SIGCONT), &t->pending); 578 t = next_thread(t); 579 } while (t != p); 580 } else if (sig == SIGCONT) { 581 /* 582 * Remove all stop signals from all queues, 583 * and wake all threads. 584 */ 585 if (unlikely(p->signal->group_stop_count > 0)) { 586 /* 587 * There was a group stop in progress. We'll 588 * pretend it finished before we got here. We are 589 * obliged to report it to the parent: if the 590 * SIGSTOP happened "after" this SIGCONT, then it 591 * would have cleared this pending SIGCONT. If it 592 * happened "before" this SIGCONT, then the parent 593 * got the SIGCHLD about the stop finishing before 594 * the continue happened. We do the notification 595 * now, and it's as if the stop had finished and 596 * the SIGCHLD was pending on entry to this kill. 597 */ 598 p->signal->group_stop_count = 0; 599 p->signal->flags = SIGNAL_STOP_CONTINUED; 600 spin_unlock(&p->sighand->siglock); 601 do_notify_parent_cldstop(p, CLD_STOPPED); 602 spin_lock(&p->sighand->siglock); 603 } 604 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 605 t = p; 606 do { 607 unsigned int state; 608 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 609 610 /* 611 * If there is a handler for SIGCONT, we must make 612 * sure that no thread returns to user mode before 613 * we post the signal, in case it was the only 614 * thread eligible to run the signal handler--then 615 * it must not do anything between resuming and 616 * running the handler. With the TIF_SIGPENDING 617 * flag set, the thread will pause and acquire the 618 * siglock that we hold now and until we've queued 619 * the pending signal. 620 * 621 * Wake up the stopped thread _after_ setting 622 * TIF_SIGPENDING 623 */ 624 state = TASK_STOPPED; 625 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 626 set_tsk_thread_flag(t, TIF_SIGPENDING); 627 state |= TASK_INTERRUPTIBLE; 628 } 629 wake_up_state(t, state); 630 631 t = next_thread(t); 632 } while (t != p); 633 634 if (p->signal->flags & SIGNAL_STOP_STOPPED) { 635 /* 636 * We were in fact stopped, and are now continued. 637 * Notify the parent with CLD_CONTINUED. 638 */ 639 p->signal->flags = SIGNAL_STOP_CONTINUED; 640 p->signal->group_exit_code = 0; 641 spin_unlock(&p->sighand->siglock); 642 do_notify_parent_cldstop(p, CLD_CONTINUED); 643 spin_lock(&p->sighand->siglock); 644 } else { 645 /* 646 * We are not stopped, but there could be a stop 647 * signal in the middle of being processed after 648 * being removed from the queue. Clear that too. 649 */ 650 p->signal->flags = 0; 651 } 652 } else if (sig == SIGKILL) { 653 /* 654 * Make sure that any pending stop signal already dequeued 655 * is undone by the wakeup for SIGKILL. 656 */ 657 p->signal->flags = 0; 658 } 659 } 660 661 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 662 struct sigpending *signals) 663 { 664 struct sigqueue * q = NULL; 665 int ret = 0; 666 667 /* 668 * Deliver the signal to listening signalfds. This must be called 669 * with the sighand lock held. 670 */ 671 signalfd_notify(t, sig); 672 673 /* 674 * fast-pathed signals for kernel-internal things like SIGSTOP 675 * or SIGKILL. 676 */ 677 if (info == SEND_SIG_FORCED) 678 goto out_set; 679 680 /* Real-time signals must be queued if sent by sigqueue, or 681 some other real-time mechanism. It is implementation 682 defined whether kill() does so. We attempt to do so, on 683 the principle of least surprise, but since kill is not 684 allowed to fail with EAGAIN when low on memory we just 685 make sure at least one signal gets delivered and don't 686 pass on the info struct. */ 687 688 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 689 (is_si_special(info) || 690 info->si_code >= 0))); 691 if (q) { 692 list_add_tail(&q->list, &signals->list); 693 switch ((unsigned long) info) { 694 case (unsigned long) SEND_SIG_NOINFO: 695 q->info.si_signo = sig; 696 q->info.si_errno = 0; 697 q->info.si_code = SI_USER; 698 q->info.si_pid = current->pid; 699 q->info.si_uid = current->uid; 700 break; 701 case (unsigned long) SEND_SIG_PRIV: 702 q->info.si_signo = sig; 703 q->info.si_errno = 0; 704 q->info.si_code = SI_KERNEL; 705 q->info.si_pid = 0; 706 q->info.si_uid = 0; 707 break; 708 default: 709 copy_siginfo(&q->info, info); 710 break; 711 } 712 } else if (!is_si_special(info)) { 713 if (sig >= SIGRTMIN && info->si_code != SI_USER) 714 /* 715 * Queue overflow, abort. We may abort if the signal was rt 716 * and sent by user using something other than kill(). 717 */ 718 return -EAGAIN; 719 } 720 721 out_set: 722 sigaddset(&signals->signal, sig); 723 return ret; 724 } 725 726 #define LEGACY_QUEUE(sigptr, sig) \ 727 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) 728 729 int print_fatal_signals; 730 731 static void print_fatal_signal(struct pt_regs *regs, int signr) 732 { 733 printk("%s/%d: potentially unexpected fatal signal %d.\n", 734 current->comm, current->pid, signr); 735 736 #ifdef __i386__ 737 printk("code at %08lx: ", regs->eip); 738 { 739 int i; 740 for (i = 0; i < 16; i++) { 741 unsigned char insn; 742 743 __get_user(insn, (unsigned char *)(regs->eip + i)); 744 printk("%02x ", insn); 745 } 746 } 747 #endif 748 printk("\n"); 749 show_regs(regs); 750 } 751 752 static int __init setup_print_fatal_signals(char *str) 753 { 754 get_option (&str, &print_fatal_signals); 755 756 return 1; 757 } 758 759 __setup("print-fatal-signals=", setup_print_fatal_signals); 760 761 static int 762 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 763 { 764 int ret = 0; 765 766 BUG_ON(!irqs_disabled()); 767 assert_spin_locked(&t->sighand->siglock); 768 769 /* Short-circuit ignored signals. */ 770 if (sig_ignored(t, sig)) 771 goto out; 772 773 /* Support queueing exactly one non-rt signal, so that we 774 can get more detailed information about the cause of 775 the signal. */ 776 if (LEGACY_QUEUE(&t->pending, sig)) 777 goto out; 778 779 ret = send_signal(sig, info, t, &t->pending); 780 if (!ret && !sigismember(&t->blocked, sig)) 781 signal_wake_up(t, sig == SIGKILL); 782 out: 783 return ret; 784 } 785 786 /* 787 * Force a signal that the process can't ignore: if necessary 788 * we unblock the signal and change any SIG_IGN to SIG_DFL. 789 * 790 * Note: If we unblock the signal, we always reset it to SIG_DFL, 791 * since we do not want to have a signal handler that was blocked 792 * be invoked when user space had explicitly blocked it. 793 * 794 * We don't want to have recursive SIGSEGV's etc, for example. 795 */ 796 int 797 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 798 { 799 unsigned long int flags; 800 int ret, blocked, ignored; 801 struct k_sigaction *action; 802 803 spin_lock_irqsave(&t->sighand->siglock, flags); 804 action = &t->sighand->action[sig-1]; 805 ignored = action->sa.sa_handler == SIG_IGN; 806 blocked = sigismember(&t->blocked, sig); 807 if (blocked || ignored) { 808 action->sa.sa_handler = SIG_DFL; 809 if (blocked) { 810 sigdelset(&t->blocked, sig); 811 recalc_sigpending_and_wake(t); 812 } 813 } 814 ret = specific_send_sig_info(sig, info, t); 815 spin_unlock_irqrestore(&t->sighand->siglock, flags); 816 817 return ret; 818 } 819 820 void 821 force_sig_specific(int sig, struct task_struct *t) 822 { 823 force_sig_info(sig, SEND_SIG_FORCED, t); 824 } 825 826 /* 827 * Test if P wants to take SIG. After we've checked all threads with this, 828 * it's equivalent to finding no threads not blocking SIG. Any threads not 829 * blocking SIG were ruled out because they are not running and already 830 * have pending signals. Such threads will dequeue from the shared queue 831 * as soon as they're available, so putting the signal on the shared queue 832 * will be equivalent to sending it to one such thread. 833 */ 834 static inline int wants_signal(int sig, struct task_struct *p) 835 { 836 if (sigismember(&p->blocked, sig)) 837 return 0; 838 if (p->flags & PF_EXITING) 839 return 0; 840 if (sig == SIGKILL) 841 return 1; 842 if (p->state & (TASK_STOPPED | TASK_TRACED)) 843 return 0; 844 return task_curr(p) || !signal_pending(p); 845 } 846 847 static void 848 __group_complete_signal(int sig, struct task_struct *p) 849 { 850 struct task_struct *t; 851 852 /* 853 * Now find a thread we can wake up to take the signal off the queue. 854 * 855 * If the main thread wants the signal, it gets first crack. 856 * Probably the least surprising to the average bear. 857 */ 858 if (wants_signal(sig, p)) 859 t = p; 860 else if (thread_group_empty(p)) 861 /* 862 * There is just one thread and it does not need to be woken. 863 * It will dequeue unblocked signals before it runs again. 864 */ 865 return; 866 else { 867 /* 868 * Otherwise try to find a suitable thread. 869 */ 870 t = p->signal->curr_target; 871 if (t == NULL) 872 /* restart balancing at this thread */ 873 t = p->signal->curr_target = p; 874 875 while (!wants_signal(sig, t)) { 876 t = next_thread(t); 877 if (t == p->signal->curr_target) 878 /* 879 * No thread needs to be woken. 880 * Any eligible threads will see 881 * the signal in the queue soon. 882 */ 883 return; 884 } 885 p->signal->curr_target = t; 886 } 887 888 /* 889 * Found a killable thread. If the signal will be fatal, 890 * then start taking the whole group down immediately. 891 */ 892 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && 893 !sigismember(&t->real_blocked, sig) && 894 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { 895 /* 896 * This signal will be fatal to the whole group. 897 */ 898 if (!sig_kernel_coredump(sig)) { 899 /* 900 * Start a group exit and wake everybody up. 901 * This way we don't have other threads 902 * running and doing things after a slower 903 * thread has the fatal signal pending. 904 */ 905 p->signal->flags = SIGNAL_GROUP_EXIT; 906 p->signal->group_exit_code = sig; 907 p->signal->group_stop_count = 0; 908 t = p; 909 do { 910 sigaddset(&t->pending.signal, SIGKILL); 911 signal_wake_up(t, 1); 912 } while_each_thread(p, t); 913 return; 914 } 915 916 /* 917 * There will be a core dump. We make all threads other 918 * than the chosen one go into a group stop so that nothing 919 * happens until it gets scheduled, takes the signal off 920 * the shared queue, and does the core dump. This is a 921 * little more complicated than strictly necessary, but it 922 * keeps the signal state that winds up in the core dump 923 * unchanged from the death state, e.g. which thread had 924 * the core-dump signal unblocked. 925 */ 926 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 927 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 928 p->signal->group_stop_count = 0; 929 p->signal->group_exit_task = t; 930 p = t; 931 do { 932 p->signal->group_stop_count++; 933 signal_wake_up(t, t == p); 934 } while_each_thread(p, t); 935 return; 936 } 937 938 /* 939 * The signal is already in the shared-pending queue. 940 * Tell the chosen thread to wake up and dequeue it. 941 */ 942 signal_wake_up(t, sig == SIGKILL); 943 return; 944 } 945 946 int 947 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 948 { 949 int ret = 0; 950 951 assert_spin_locked(&p->sighand->siglock); 952 handle_stop_signal(sig, p); 953 954 /* Short-circuit ignored signals. */ 955 if (sig_ignored(p, sig)) 956 return ret; 957 958 if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) 959 /* This is a non-RT signal and we already have one queued. */ 960 return ret; 961 962 /* 963 * Put this signal on the shared-pending queue, or fail with EAGAIN. 964 * We always use the shared queue for process-wide signals, 965 * to avoid several races. 966 */ 967 ret = send_signal(sig, info, p, &p->signal->shared_pending); 968 if (unlikely(ret)) 969 return ret; 970 971 __group_complete_signal(sig, p); 972 return 0; 973 } 974 975 /* 976 * Nuke all other threads in the group. 977 */ 978 void zap_other_threads(struct task_struct *p) 979 { 980 struct task_struct *t; 981 982 p->signal->flags = SIGNAL_GROUP_EXIT; 983 p->signal->group_stop_count = 0; 984 985 for (t = next_thread(p); t != p; t = next_thread(t)) { 986 /* 987 * Don't bother with already dead threads 988 */ 989 if (t->exit_state) 990 continue; 991 992 /* SIGKILL will be handled before any pending SIGSTOP */ 993 sigaddset(&t->pending.signal, SIGKILL); 994 signal_wake_up(t, 1); 995 } 996 } 997 998 /* 999 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 1000 */ 1001 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 1002 { 1003 struct sighand_struct *sighand; 1004 1005 for (;;) { 1006 sighand = rcu_dereference(tsk->sighand); 1007 if (unlikely(sighand == NULL)) 1008 break; 1009 1010 spin_lock_irqsave(&sighand->siglock, *flags); 1011 if (likely(sighand == tsk->sighand)) 1012 break; 1013 spin_unlock_irqrestore(&sighand->siglock, *flags); 1014 } 1015 1016 return sighand; 1017 } 1018 1019 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1020 { 1021 unsigned long flags; 1022 int ret; 1023 1024 ret = check_kill_permission(sig, info, p); 1025 1026 if (!ret && sig) { 1027 ret = -ESRCH; 1028 if (lock_task_sighand(p, &flags)) { 1029 ret = __group_send_sig_info(sig, info, p); 1030 unlock_task_sighand(p, &flags); 1031 } 1032 } 1033 1034 return ret; 1035 } 1036 1037 /* 1038 * kill_pgrp_info() sends a signal to a process group: this is what the tty 1039 * control characters do (^C, ^Z etc) 1040 */ 1041 1042 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1043 { 1044 struct task_struct *p = NULL; 1045 int retval, success; 1046 1047 success = 0; 1048 retval = -ESRCH; 1049 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1050 int err = group_send_sig_info(sig, info, p); 1051 success |= !err; 1052 retval = err; 1053 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1054 return success ? 0 : retval; 1055 } 1056 1057 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1058 { 1059 int retval; 1060 1061 read_lock(&tasklist_lock); 1062 retval = __kill_pgrp_info(sig, info, pgrp); 1063 read_unlock(&tasklist_lock); 1064 1065 return retval; 1066 } 1067 1068 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1069 { 1070 int error; 1071 struct task_struct *p; 1072 1073 rcu_read_lock(); 1074 if (unlikely(sig_needs_tasklist(sig))) 1075 read_lock(&tasklist_lock); 1076 1077 p = pid_task(pid, PIDTYPE_PID); 1078 error = -ESRCH; 1079 if (p) 1080 error = group_send_sig_info(sig, info, p); 1081 1082 if (unlikely(sig_needs_tasklist(sig))) 1083 read_unlock(&tasklist_lock); 1084 rcu_read_unlock(); 1085 return error; 1086 } 1087 1088 int 1089 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1090 { 1091 int error; 1092 rcu_read_lock(); 1093 error = kill_pid_info(sig, info, find_pid(pid)); 1094 rcu_read_unlock(); 1095 return error; 1096 } 1097 1098 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1099 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, 1100 uid_t uid, uid_t euid, u32 secid) 1101 { 1102 int ret = -EINVAL; 1103 struct task_struct *p; 1104 1105 if (!valid_signal(sig)) 1106 return ret; 1107 1108 read_lock(&tasklist_lock); 1109 p = pid_task(pid, PIDTYPE_PID); 1110 if (!p) { 1111 ret = -ESRCH; 1112 goto out_unlock; 1113 } 1114 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 1115 && (euid != p->suid) && (euid != p->uid) 1116 && (uid != p->suid) && (uid != p->uid)) { 1117 ret = -EPERM; 1118 goto out_unlock; 1119 } 1120 ret = security_task_kill(p, info, sig, secid); 1121 if (ret) 1122 goto out_unlock; 1123 if (sig && p->sighand) { 1124 unsigned long flags; 1125 spin_lock_irqsave(&p->sighand->siglock, flags); 1126 ret = __group_send_sig_info(sig, info, p); 1127 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1128 } 1129 out_unlock: 1130 read_unlock(&tasklist_lock); 1131 return ret; 1132 } 1133 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); 1134 1135 /* 1136 * kill_something_info() interprets pid in interesting ways just like kill(2). 1137 * 1138 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1139 * is probably wrong. Should make it like BSD or SYSV. 1140 */ 1141 1142 static int kill_something_info(int sig, struct siginfo *info, int pid) 1143 { 1144 int ret; 1145 rcu_read_lock(); 1146 if (!pid) { 1147 ret = kill_pgrp_info(sig, info, task_pgrp(current)); 1148 } else if (pid == -1) { 1149 int retval = 0, count = 0; 1150 struct task_struct * p; 1151 1152 read_lock(&tasklist_lock); 1153 for_each_process(p) { 1154 if (p->pid > 1 && p->tgid != current->tgid) { 1155 int err = group_send_sig_info(sig, info, p); 1156 ++count; 1157 if (err != -EPERM) 1158 retval = err; 1159 } 1160 } 1161 read_unlock(&tasklist_lock); 1162 ret = count ? retval : -ESRCH; 1163 } else if (pid < 0) { 1164 ret = kill_pgrp_info(sig, info, find_pid(-pid)); 1165 } else { 1166 ret = kill_pid_info(sig, info, find_pid(pid)); 1167 } 1168 rcu_read_unlock(); 1169 return ret; 1170 } 1171 1172 /* 1173 * These are for backward compatibility with the rest of the kernel source. 1174 */ 1175 1176 /* 1177 * These two are the most common entry points. They send a signal 1178 * just to the specific thread. 1179 */ 1180 int 1181 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1182 { 1183 int ret; 1184 unsigned long flags; 1185 1186 /* 1187 * Make sure legacy kernel users don't send in bad values 1188 * (normal paths check this in check_kill_permission). 1189 */ 1190 if (!valid_signal(sig)) 1191 return -EINVAL; 1192 1193 /* 1194 * We need the tasklist lock even for the specific 1195 * thread case (when we don't need to follow the group 1196 * lists) in order to avoid races with "p->sighand" 1197 * going away or changing from under us. 1198 */ 1199 read_lock(&tasklist_lock); 1200 spin_lock_irqsave(&p->sighand->siglock, flags); 1201 ret = specific_send_sig_info(sig, info, p); 1202 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1203 read_unlock(&tasklist_lock); 1204 return ret; 1205 } 1206 1207 #define __si_special(priv) \ 1208 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1209 1210 int 1211 send_sig(int sig, struct task_struct *p, int priv) 1212 { 1213 return send_sig_info(sig, __si_special(priv), p); 1214 } 1215 1216 /* 1217 * This is the entry point for "process-wide" signals. 1218 * They will go to an appropriate thread in the thread group. 1219 */ 1220 int 1221 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1222 { 1223 int ret; 1224 read_lock(&tasklist_lock); 1225 ret = group_send_sig_info(sig, info, p); 1226 read_unlock(&tasklist_lock); 1227 return ret; 1228 } 1229 1230 void 1231 force_sig(int sig, struct task_struct *p) 1232 { 1233 force_sig_info(sig, SEND_SIG_PRIV, p); 1234 } 1235 1236 /* 1237 * When things go south during signal handling, we 1238 * will force a SIGSEGV. And if the signal that caused 1239 * the problem was already a SIGSEGV, we'll want to 1240 * make sure we don't even try to deliver the signal.. 1241 */ 1242 int 1243 force_sigsegv(int sig, struct task_struct *p) 1244 { 1245 if (sig == SIGSEGV) { 1246 unsigned long flags; 1247 spin_lock_irqsave(&p->sighand->siglock, flags); 1248 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1249 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1250 } 1251 force_sig(SIGSEGV, p); 1252 return 0; 1253 } 1254 1255 int kill_pgrp(struct pid *pid, int sig, int priv) 1256 { 1257 return kill_pgrp_info(sig, __si_special(priv), pid); 1258 } 1259 EXPORT_SYMBOL(kill_pgrp); 1260 1261 int kill_pid(struct pid *pid, int sig, int priv) 1262 { 1263 return kill_pid_info(sig, __si_special(priv), pid); 1264 } 1265 EXPORT_SYMBOL(kill_pid); 1266 1267 int 1268 kill_proc(pid_t pid, int sig, int priv) 1269 { 1270 return kill_proc_info(sig, __si_special(priv), pid); 1271 } 1272 1273 /* 1274 * These functions support sending signals using preallocated sigqueue 1275 * structures. This is needed "because realtime applications cannot 1276 * afford to lose notifications of asynchronous events, like timer 1277 * expirations or I/O completions". In the case of Posix Timers 1278 * we allocate the sigqueue structure from the timer_create. If this 1279 * allocation fails we are able to report the failure to the application 1280 * with an EAGAIN error. 1281 */ 1282 1283 struct sigqueue *sigqueue_alloc(void) 1284 { 1285 struct sigqueue *q; 1286 1287 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1288 q->flags |= SIGQUEUE_PREALLOC; 1289 return(q); 1290 } 1291 1292 void sigqueue_free(struct sigqueue *q) 1293 { 1294 unsigned long flags; 1295 spinlock_t *lock = ¤t->sighand->siglock; 1296 1297 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1298 /* 1299 * If the signal is still pending remove it from the 1300 * pending queue. We must hold ->siglock while testing 1301 * q->list to serialize with collect_signal(). 1302 */ 1303 spin_lock_irqsave(lock, flags); 1304 if (!list_empty(&q->list)) 1305 list_del_init(&q->list); 1306 spin_unlock_irqrestore(lock, flags); 1307 1308 q->flags &= ~SIGQUEUE_PREALLOC; 1309 __sigqueue_free(q); 1310 } 1311 1312 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1313 { 1314 unsigned long flags; 1315 int ret = 0; 1316 1317 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1318 1319 /* 1320 * The rcu based delayed sighand destroy makes it possible to 1321 * run this without tasklist lock held. The task struct itself 1322 * cannot go away as create_timer did get_task_struct(). 1323 * 1324 * We return -1, when the task is marked exiting, so 1325 * posix_timer_event can redirect it to the group leader 1326 */ 1327 rcu_read_lock(); 1328 1329 if (!likely(lock_task_sighand(p, &flags))) { 1330 ret = -1; 1331 goto out_err; 1332 } 1333 1334 if (unlikely(!list_empty(&q->list))) { 1335 /* 1336 * If an SI_TIMER entry is already queue just increment 1337 * the overrun count. 1338 */ 1339 BUG_ON(q->info.si_code != SI_TIMER); 1340 q->info.si_overrun++; 1341 goto out; 1342 } 1343 /* Short-circuit ignored signals. */ 1344 if (sig_ignored(p, sig)) { 1345 ret = 1; 1346 goto out; 1347 } 1348 /* 1349 * Deliver the signal to listening signalfds. This must be called 1350 * with the sighand lock held. 1351 */ 1352 signalfd_notify(p, sig); 1353 1354 list_add_tail(&q->list, &p->pending.list); 1355 sigaddset(&p->pending.signal, sig); 1356 if (!sigismember(&p->blocked, sig)) 1357 signal_wake_up(p, sig == SIGKILL); 1358 1359 out: 1360 unlock_task_sighand(p, &flags); 1361 out_err: 1362 rcu_read_unlock(); 1363 1364 return ret; 1365 } 1366 1367 int 1368 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1369 { 1370 unsigned long flags; 1371 int ret = 0; 1372 1373 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1374 1375 read_lock(&tasklist_lock); 1376 /* Since it_lock is held, p->sighand cannot be NULL. */ 1377 spin_lock_irqsave(&p->sighand->siglock, flags); 1378 handle_stop_signal(sig, p); 1379 1380 /* Short-circuit ignored signals. */ 1381 if (sig_ignored(p, sig)) { 1382 ret = 1; 1383 goto out; 1384 } 1385 1386 if (unlikely(!list_empty(&q->list))) { 1387 /* 1388 * If an SI_TIMER entry is already queue just increment 1389 * the overrun count. Other uses should not try to 1390 * send the signal multiple times. 1391 */ 1392 BUG_ON(q->info.si_code != SI_TIMER); 1393 q->info.si_overrun++; 1394 goto out; 1395 } 1396 /* 1397 * Deliver the signal to listening signalfds. This must be called 1398 * with the sighand lock held. 1399 */ 1400 signalfd_notify(p, sig); 1401 1402 /* 1403 * Put this signal on the shared-pending queue. 1404 * We always use the shared queue for process-wide signals, 1405 * to avoid several races. 1406 */ 1407 list_add_tail(&q->list, &p->signal->shared_pending.list); 1408 sigaddset(&p->signal->shared_pending.signal, sig); 1409 1410 __group_complete_signal(sig, p); 1411 out: 1412 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1413 read_unlock(&tasklist_lock); 1414 return ret; 1415 } 1416 1417 /* 1418 * Wake up any threads in the parent blocked in wait* syscalls. 1419 */ 1420 static inline void __wake_up_parent(struct task_struct *p, 1421 struct task_struct *parent) 1422 { 1423 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1424 } 1425 1426 /* 1427 * Let a parent know about the death of a child. 1428 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1429 */ 1430 1431 void do_notify_parent(struct task_struct *tsk, int sig) 1432 { 1433 struct siginfo info; 1434 unsigned long flags; 1435 struct sighand_struct *psig; 1436 1437 BUG_ON(sig == -1); 1438 1439 /* do_notify_parent_cldstop should have been called instead. */ 1440 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); 1441 1442 BUG_ON(!tsk->ptrace && 1443 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1444 1445 info.si_signo = sig; 1446 info.si_errno = 0; 1447 info.si_pid = tsk->pid; 1448 info.si_uid = tsk->uid; 1449 1450 /* FIXME: find out whether or not this is supposed to be c*time. */ 1451 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, 1452 tsk->signal->utime)); 1453 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, 1454 tsk->signal->stime)); 1455 1456 info.si_status = tsk->exit_code & 0x7f; 1457 if (tsk->exit_code & 0x80) 1458 info.si_code = CLD_DUMPED; 1459 else if (tsk->exit_code & 0x7f) 1460 info.si_code = CLD_KILLED; 1461 else { 1462 info.si_code = CLD_EXITED; 1463 info.si_status = tsk->exit_code >> 8; 1464 } 1465 1466 psig = tsk->parent->sighand; 1467 spin_lock_irqsave(&psig->siglock, flags); 1468 if (!tsk->ptrace && sig == SIGCHLD && 1469 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1470 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1471 /* 1472 * We are exiting and our parent doesn't care. POSIX.1 1473 * defines special semantics for setting SIGCHLD to SIG_IGN 1474 * or setting the SA_NOCLDWAIT flag: we should be reaped 1475 * automatically and not left for our parent's wait4 call. 1476 * Rather than having the parent do it as a magic kind of 1477 * signal handler, we just set this to tell do_exit that we 1478 * can be cleaned up without becoming a zombie. Note that 1479 * we still call __wake_up_parent in this case, because a 1480 * blocked sys_wait4 might now return -ECHILD. 1481 * 1482 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1483 * is implementation-defined: we do (if you don't want 1484 * it, just use SIG_IGN instead). 1485 */ 1486 tsk->exit_signal = -1; 1487 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1488 sig = 0; 1489 } 1490 if (valid_signal(sig) && sig > 0) 1491 __group_send_sig_info(sig, &info, tsk->parent); 1492 __wake_up_parent(tsk, tsk->parent); 1493 spin_unlock_irqrestore(&psig->siglock, flags); 1494 } 1495 1496 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1497 { 1498 struct siginfo info; 1499 unsigned long flags; 1500 struct task_struct *parent; 1501 struct sighand_struct *sighand; 1502 1503 if (tsk->ptrace & PT_PTRACED) 1504 parent = tsk->parent; 1505 else { 1506 tsk = tsk->group_leader; 1507 parent = tsk->real_parent; 1508 } 1509 1510 info.si_signo = SIGCHLD; 1511 info.si_errno = 0; 1512 info.si_pid = tsk->pid; 1513 info.si_uid = tsk->uid; 1514 1515 /* FIXME: find out whether or not this is supposed to be c*time. */ 1516 info.si_utime = cputime_to_jiffies(tsk->utime); 1517 info.si_stime = cputime_to_jiffies(tsk->stime); 1518 1519 info.si_code = why; 1520 switch (why) { 1521 case CLD_CONTINUED: 1522 info.si_status = SIGCONT; 1523 break; 1524 case CLD_STOPPED: 1525 info.si_status = tsk->signal->group_exit_code & 0x7f; 1526 break; 1527 case CLD_TRAPPED: 1528 info.si_status = tsk->exit_code & 0x7f; 1529 break; 1530 default: 1531 BUG(); 1532 } 1533 1534 sighand = parent->sighand; 1535 spin_lock_irqsave(&sighand->siglock, flags); 1536 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1537 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1538 __group_send_sig_info(SIGCHLD, &info, parent); 1539 /* 1540 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1541 */ 1542 __wake_up_parent(tsk, parent); 1543 spin_unlock_irqrestore(&sighand->siglock, flags); 1544 } 1545 1546 static inline int may_ptrace_stop(void) 1547 { 1548 if (!likely(current->ptrace & PT_PTRACED)) 1549 return 0; 1550 1551 if (unlikely(current->parent == current->real_parent && 1552 (current->ptrace & PT_ATTACHED))) 1553 return 0; 1554 1555 /* 1556 * Are we in the middle of do_coredump? 1557 * If so and our tracer is also part of the coredump stopping 1558 * is a deadlock situation, and pointless because our tracer 1559 * is dead so don't allow us to stop. 1560 * If SIGKILL was already sent before the caller unlocked 1561 * ->siglock we must see ->core_waiters != 0. Otherwise it 1562 * is safe to enter schedule(). 1563 */ 1564 if (unlikely(current->mm->core_waiters) && 1565 unlikely(current->mm == current->parent->mm)) 1566 return 0; 1567 1568 return 1; 1569 } 1570 1571 /* 1572 * This must be called with current->sighand->siglock held. 1573 * 1574 * This should be the path for all ptrace stops. 1575 * We always set current->last_siginfo while stopped here. 1576 * That makes it a way to test a stopped process for 1577 * being ptrace-stopped vs being job-control-stopped. 1578 * 1579 * If we actually decide not to stop at all because the tracer is gone, 1580 * we leave nostop_code in current->exit_code. 1581 */ 1582 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) 1583 { 1584 /* 1585 * If there is a group stop in progress, 1586 * we must participate in the bookkeeping. 1587 */ 1588 if (current->signal->group_stop_count > 0) 1589 --current->signal->group_stop_count; 1590 1591 current->last_siginfo = info; 1592 current->exit_code = exit_code; 1593 1594 /* Let the debugger run. */ 1595 set_current_state(TASK_TRACED); 1596 spin_unlock_irq(¤t->sighand->siglock); 1597 try_to_freeze(); 1598 read_lock(&tasklist_lock); 1599 if (may_ptrace_stop()) { 1600 do_notify_parent_cldstop(current, CLD_TRAPPED); 1601 read_unlock(&tasklist_lock); 1602 schedule(); 1603 } else { 1604 /* 1605 * By the time we got the lock, our tracer went away. 1606 * Don't stop here. 1607 */ 1608 read_unlock(&tasklist_lock); 1609 set_current_state(TASK_RUNNING); 1610 current->exit_code = nostop_code; 1611 } 1612 1613 /* 1614 * We are back. Now reacquire the siglock before touching 1615 * last_siginfo, so that we are sure to have synchronized with 1616 * any signal-sending on another CPU that wants to examine it. 1617 */ 1618 spin_lock_irq(¤t->sighand->siglock); 1619 current->last_siginfo = NULL; 1620 1621 /* 1622 * Queued signals ignored us while we were stopped for tracing. 1623 * So check for any that we should take before resuming user mode. 1624 * This sets TIF_SIGPENDING, but never clears it. 1625 */ 1626 recalc_sigpending_tsk(current); 1627 } 1628 1629 void ptrace_notify(int exit_code) 1630 { 1631 siginfo_t info; 1632 1633 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1634 1635 memset(&info, 0, sizeof info); 1636 info.si_signo = SIGTRAP; 1637 info.si_code = exit_code; 1638 info.si_pid = current->pid; 1639 info.si_uid = current->uid; 1640 1641 /* Let the debugger run. */ 1642 spin_lock_irq(¤t->sighand->siglock); 1643 ptrace_stop(exit_code, 0, &info); 1644 spin_unlock_irq(¤t->sighand->siglock); 1645 } 1646 1647 static void 1648 finish_stop(int stop_count) 1649 { 1650 /* 1651 * If there are no other threads in the group, or if there is 1652 * a group stop in progress and we are the last to stop, 1653 * report to the parent. When ptraced, every thread reports itself. 1654 */ 1655 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) { 1656 read_lock(&tasklist_lock); 1657 do_notify_parent_cldstop(current, CLD_STOPPED); 1658 read_unlock(&tasklist_lock); 1659 } 1660 1661 do { 1662 schedule(); 1663 } while (try_to_freeze()); 1664 /* 1665 * Now we don't run again until continued. 1666 */ 1667 current->exit_code = 0; 1668 } 1669 1670 /* 1671 * This performs the stopping for SIGSTOP and other stop signals. 1672 * We have to stop all threads in the thread group. 1673 * Returns nonzero if we've actually stopped and released the siglock. 1674 * Returns zero if we didn't stop and still hold the siglock. 1675 */ 1676 static int do_signal_stop(int signr) 1677 { 1678 struct signal_struct *sig = current->signal; 1679 int stop_count; 1680 1681 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) 1682 return 0; 1683 1684 if (sig->group_stop_count > 0) { 1685 /* 1686 * There is a group stop in progress. We don't need to 1687 * start another one. 1688 */ 1689 stop_count = --sig->group_stop_count; 1690 } else { 1691 /* 1692 * There is no group stop already in progress. 1693 * We must initiate one now. 1694 */ 1695 struct task_struct *t; 1696 1697 sig->group_exit_code = signr; 1698 1699 stop_count = 0; 1700 for (t = next_thread(current); t != current; t = next_thread(t)) 1701 /* 1702 * Setting state to TASK_STOPPED for a group 1703 * stop is always done with the siglock held, 1704 * so this check has no races. 1705 */ 1706 if (!t->exit_state && 1707 !(t->state & (TASK_STOPPED|TASK_TRACED))) { 1708 stop_count++; 1709 signal_wake_up(t, 0); 1710 } 1711 sig->group_stop_count = stop_count; 1712 } 1713 1714 if (stop_count == 0) 1715 sig->flags = SIGNAL_STOP_STOPPED; 1716 current->exit_code = sig->group_exit_code; 1717 __set_current_state(TASK_STOPPED); 1718 1719 spin_unlock_irq(¤t->sighand->siglock); 1720 finish_stop(stop_count); 1721 return 1; 1722 } 1723 1724 /* 1725 * Do appropriate magic when group_stop_count > 0. 1726 * We return nonzero if we stopped, after releasing the siglock. 1727 * We return zero if we still hold the siglock and should look 1728 * for another signal without checking group_stop_count again. 1729 */ 1730 static int handle_group_stop(void) 1731 { 1732 int stop_count; 1733 1734 if (current->signal->group_exit_task == current) { 1735 /* 1736 * Group stop is so we can do a core dump, 1737 * We are the initiating thread, so get on with it. 1738 */ 1739 current->signal->group_exit_task = NULL; 1740 return 0; 1741 } 1742 1743 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1744 /* 1745 * Group stop is so another thread can do a core dump, 1746 * or else we are racing against a death signal. 1747 * Just punt the stop so we can get the next signal. 1748 */ 1749 return 0; 1750 1751 /* 1752 * There is a group stop in progress. We stop 1753 * without any associated signal being in our queue. 1754 */ 1755 stop_count = --current->signal->group_stop_count; 1756 if (stop_count == 0) 1757 current->signal->flags = SIGNAL_STOP_STOPPED; 1758 current->exit_code = current->signal->group_exit_code; 1759 set_current_state(TASK_STOPPED); 1760 spin_unlock_irq(¤t->sighand->siglock); 1761 finish_stop(stop_count); 1762 return 1; 1763 } 1764 1765 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1766 struct pt_regs *regs, void *cookie) 1767 { 1768 sigset_t *mask = ¤t->blocked; 1769 int signr = 0; 1770 1771 try_to_freeze(); 1772 1773 relock: 1774 spin_lock_irq(¤t->sighand->siglock); 1775 for (;;) { 1776 struct k_sigaction *ka; 1777 1778 if (unlikely(current->signal->group_stop_count > 0) && 1779 handle_group_stop()) 1780 goto relock; 1781 1782 signr = dequeue_signal(current, mask, info); 1783 1784 if (!signr) 1785 break; /* will return 0 */ 1786 1787 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { 1788 ptrace_signal_deliver(regs, cookie); 1789 1790 /* Let the debugger run. */ 1791 ptrace_stop(signr, signr, info); 1792 1793 /* We're back. Did the debugger cancel the sig? */ 1794 signr = current->exit_code; 1795 if (signr == 0) 1796 continue; 1797 1798 current->exit_code = 0; 1799 1800 /* Update the siginfo structure if the signal has 1801 changed. If the debugger wanted something 1802 specific in the siginfo structure then it should 1803 have updated *info via PTRACE_SETSIGINFO. */ 1804 if (signr != info->si_signo) { 1805 info->si_signo = signr; 1806 info->si_errno = 0; 1807 info->si_code = SI_USER; 1808 info->si_pid = current->parent->pid; 1809 info->si_uid = current->parent->uid; 1810 } 1811 1812 /* If the (new) signal is now blocked, requeue it. */ 1813 if (sigismember(¤t->blocked, signr)) { 1814 specific_send_sig_info(signr, info, current); 1815 continue; 1816 } 1817 } 1818 1819 ka = ¤t->sighand->action[signr-1]; 1820 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1821 continue; 1822 if (ka->sa.sa_handler != SIG_DFL) { 1823 /* Run the handler. */ 1824 *return_ka = *ka; 1825 1826 if (ka->sa.sa_flags & SA_ONESHOT) 1827 ka->sa.sa_handler = SIG_DFL; 1828 1829 break; /* will return non-zero "signr" value */ 1830 } 1831 1832 /* 1833 * Now we are doing the default action for this signal. 1834 */ 1835 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1836 continue; 1837 1838 /* 1839 * Init of a pid space gets no signals it doesn't want from 1840 * within that pid space. It can of course get signals from 1841 * its parent pid space. 1842 */ 1843 if (current == child_reaper(current)) 1844 continue; 1845 1846 if (sig_kernel_stop(signr)) { 1847 /* 1848 * The default action is to stop all threads in 1849 * the thread group. The job control signals 1850 * do nothing in an orphaned pgrp, but SIGSTOP 1851 * always works. Note that siglock needs to be 1852 * dropped during the call to is_orphaned_pgrp() 1853 * because of lock ordering with tasklist_lock. 1854 * This allows an intervening SIGCONT to be posted. 1855 * We need to check for that and bail out if necessary. 1856 */ 1857 if (signr != SIGSTOP) { 1858 spin_unlock_irq(¤t->sighand->siglock); 1859 1860 /* signals can be posted during this window */ 1861 1862 if (is_current_pgrp_orphaned()) 1863 goto relock; 1864 1865 spin_lock_irq(¤t->sighand->siglock); 1866 } 1867 1868 if (likely(do_signal_stop(signr))) { 1869 /* It released the siglock. */ 1870 goto relock; 1871 } 1872 1873 /* 1874 * We didn't actually stop, due to a race 1875 * with SIGCONT or something like that. 1876 */ 1877 continue; 1878 } 1879 1880 spin_unlock_irq(¤t->sighand->siglock); 1881 1882 /* 1883 * Anything else is fatal, maybe with a core dump. 1884 */ 1885 current->flags |= PF_SIGNALED; 1886 if ((signr != SIGKILL) && print_fatal_signals) 1887 print_fatal_signal(regs, signr); 1888 if (sig_kernel_coredump(signr)) { 1889 /* 1890 * If it was able to dump core, this kills all 1891 * other threads in the group and synchronizes with 1892 * their demise. If we lost the race with another 1893 * thread getting here, it set group_exit_code 1894 * first and our do_group_exit call below will use 1895 * that value and ignore the one we pass it. 1896 */ 1897 do_coredump((long)signr, signr, regs); 1898 } 1899 1900 /* 1901 * Death signals, no core dump. 1902 */ 1903 do_group_exit(signr); 1904 /* NOTREACHED */ 1905 } 1906 spin_unlock_irq(¤t->sighand->siglock); 1907 return signr; 1908 } 1909 1910 EXPORT_SYMBOL(recalc_sigpending); 1911 EXPORT_SYMBOL_GPL(dequeue_signal); 1912 EXPORT_SYMBOL(flush_signals); 1913 EXPORT_SYMBOL(force_sig); 1914 EXPORT_SYMBOL(kill_proc); 1915 EXPORT_SYMBOL(ptrace_notify); 1916 EXPORT_SYMBOL(send_sig); 1917 EXPORT_SYMBOL(send_sig_info); 1918 EXPORT_SYMBOL(sigprocmask); 1919 EXPORT_SYMBOL(block_all_signals); 1920 EXPORT_SYMBOL(unblock_all_signals); 1921 1922 1923 /* 1924 * System call entry points. 1925 */ 1926 1927 asmlinkage long sys_restart_syscall(void) 1928 { 1929 struct restart_block *restart = ¤t_thread_info()->restart_block; 1930 return restart->fn(restart); 1931 } 1932 1933 long do_no_restart_syscall(struct restart_block *param) 1934 { 1935 return -EINTR; 1936 } 1937 1938 /* 1939 * We don't need to get the kernel lock - this is all local to this 1940 * particular thread.. (and that's good, because this is _heavily_ 1941 * used by various programs) 1942 */ 1943 1944 /* 1945 * This is also useful for kernel threads that want to temporarily 1946 * (or permanently) block certain signals. 1947 * 1948 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 1949 * interface happily blocks "unblockable" signals like SIGKILL 1950 * and friends. 1951 */ 1952 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 1953 { 1954 int error; 1955 1956 spin_lock_irq(¤t->sighand->siglock); 1957 if (oldset) 1958 *oldset = current->blocked; 1959 1960 error = 0; 1961 switch (how) { 1962 case SIG_BLOCK: 1963 sigorsets(¤t->blocked, ¤t->blocked, set); 1964 break; 1965 case SIG_UNBLOCK: 1966 signandsets(¤t->blocked, ¤t->blocked, set); 1967 break; 1968 case SIG_SETMASK: 1969 current->blocked = *set; 1970 break; 1971 default: 1972 error = -EINVAL; 1973 } 1974 recalc_sigpending(); 1975 spin_unlock_irq(¤t->sighand->siglock); 1976 1977 return error; 1978 } 1979 1980 asmlinkage long 1981 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 1982 { 1983 int error = -EINVAL; 1984 sigset_t old_set, new_set; 1985 1986 /* XXX: Don't preclude handling different sized sigset_t's. */ 1987 if (sigsetsize != sizeof(sigset_t)) 1988 goto out; 1989 1990 if (set) { 1991 error = -EFAULT; 1992 if (copy_from_user(&new_set, set, sizeof(*set))) 1993 goto out; 1994 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1995 1996 error = sigprocmask(how, &new_set, &old_set); 1997 if (error) 1998 goto out; 1999 if (oset) 2000 goto set_old; 2001 } else if (oset) { 2002 spin_lock_irq(¤t->sighand->siglock); 2003 old_set = current->blocked; 2004 spin_unlock_irq(¤t->sighand->siglock); 2005 2006 set_old: 2007 error = -EFAULT; 2008 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2009 goto out; 2010 } 2011 error = 0; 2012 out: 2013 return error; 2014 } 2015 2016 long do_sigpending(void __user *set, unsigned long sigsetsize) 2017 { 2018 long error = -EINVAL; 2019 sigset_t pending; 2020 2021 if (sigsetsize > sizeof(sigset_t)) 2022 goto out; 2023 2024 spin_lock_irq(¤t->sighand->siglock); 2025 sigorsets(&pending, ¤t->pending.signal, 2026 ¤t->signal->shared_pending.signal); 2027 spin_unlock_irq(¤t->sighand->siglock); 2028 2029 /* Outside the lock because only this thread touches it. */ 2030 sigandsets(&pending, ¤t->blocked, &pending); 2031 2032 error = -EFAULT; 2033 if (!copy_to_user(set, &pending, sigsetsize)) 2034 error = 0; 2035 2036 out: 2037 return error; 2038 } 2039 2040 asmlinkage long 2041 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2042 { 2043 return do_sigpending(set, sigsetsize); 2044 } 2045 2046 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2047 2048 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2049 { 2050 int err; 2051 2052 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2053 return -EFAULT; 2054 if (from->si_code < 0) 2055 return __copy_to_user(to, from, sizeof(siginfo_t)) 2056 ? -EFAULT : 0; 2057 /* 2058 * If you change siginfo_t structure, please be sure 2059 * this code is fixed accordingly. 2060 * Please remember to update the signalfd_copyinfo() function 2061 * inside fs/signalfd.c too, in case siginfo_t changes. 2062 * It should never copy any pad contained in the structure 2063 * to avoid security leaks, but must copy the generic 2064 * 3 ints plus the relevant union member. 2065 */ 2066 err = __put_user(from->si_signo, &to->si_signo); 2067 err |= __put_user(from->si_errno, &to->si_errno); 2068 err |= __put_user((short)from->si_code, &to->si_code); 2069 switch (from->si_code & __SI_MASK) { 2070 case __SI_KILL: 2071 err |= __put_user(from->si_pid, &to->si_pid); 2072 err |= __put_user(from->si_uid, &to->si_uid); 2073 break; 2074 case __SI_TIMER: 2075 err |= __put_user(from->si_tid, &to->si_tid); 2076 err |= __put_user(from->si_overrun, &to->si_overrun); 2077 err |= __put_user(from->si_ptr, &to->si_ptr); 2078 break; 2079 case __SI_POLL: 2080 err |= __put_user(from->si_band, &to->si_band); 2081 err |= __put_user(from->si_fd, &to->si_fd); 2082 break; 2083 case __SI_FAULT: 2084 err |= __put_user(from->si_addr, &to->si_addr); 2085 #ifdef __ARCH_SI_TRAPNO 2086 err |= __put_user(from->si_trapno, &to->si_trapno); 2087 #endif 2088 break; 2089 case __SI_CHLD: 2090 err |= __put_user(from->si_pid, &to->si_pid); 2091 err |= __put_user(from->si_uid, &to->si_uid); 2092 err |= __put_user(from->si_status, &to->si_status); 2093 err |= __put_user(from->si_utime, &to->si_utime); 2094 err |= __put_user(from->si_stime, &to->si_stime); 2095 break; 2096 case __SI_RT: /* This is not generated by the kernel as of now. */ 2097 case __SI_MESGQ: /* But this is */ 2098 err |= __put_user(from->si_pid, &to->si_pid); 2099 err |= __put_user(from->si_uid, &to->si_uid); 2100 err |= __put_user(from->si_ptr, &to->si_ptr); 2101 break; 2102 default: /* this is just in case for now ... */ 2103 err |= __put_user(from->si_pid, &to->si_pid); 2104 err |= __put_user(from->si_uid, &to->si_uid); 2105 break; 2106 } 2107 return err; 2108 } 2109 2110 #endif 2111 2112 asmlinkage long 2113 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2114 siginfo_t __user *uinfo, 2115 const struct timespec __user *uts, 2116 size_t sigsetsize) 2117 { 2118 int ret, sig; 2119 sigset_t these; 2120 struct timespec ts; 2121 siginfo_t info; 2122 long timeout = 0; 2123 2124 /* XXX: Don't preclude handling different sized sigset_t's. */ 2125 if (sigsetsize != sizeof(sigset_t)) 2126 return -EINVAL; 2127 2128 if (copy_from_user(&these, uthese, sizeof(these))) 2129 return -EFAULT; 2130 2131 /* 2132 * Invert the set of allowed signals to get those we 2133 * want to block. 2134 */ 2135 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2136 signotset(&these); 2137 2138 if (uts) { 2139 if (copy_from_user(&ts, uts, sizeof(ts))) 2140 return -EFAULT; 2141 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2142 || ts.tv_sec < 0) 2143 return -EINVAL; 2144 } 2145 2146 spin_lock_irq(¤t->sighand->siglock); 2147 sig = dequeue_signal(current, &these, &info); 2148 if (!sig) { 2149 timeout = MAX_SCHEDULE_TIMEOUT; 2150 if (uts) 2151 timeout = (timespec_to_jiffies(&ts) 2152 + (ts.tv_sec || ts.tv_nsec)); 2153 2154 if (timeout) { 2155 /* None ready -- temporarily unblock those we're 2156 * interested while we are sleeping in so that we'll 2157 * be awakened when they arrive. */ 2158 current->real_blocked = current->blocked; 2159 sigandsets(¤t->blocked, ¤t->blocked, &these); 2160 recalc_sigpending(); 2161 spin_unlock_irq(¤t->sighand->siglock); 2162 2163 timeout = schedule_timeout_interruptible(timeout); 2164 2165 spin_lock_irq(¤t->sighand->siglock); 2166 sig = dequeue_signal(current, &these, &info); 2167 current->blocked = current->real_blocked; 2168 siginitset(¤t->real_blocked, 0); 2169 recalc_sigpending(); 2170 } 2171 } 2172 spin_unlock_irq(¤t->sighand->siglock); 2173 2174 if (sig) { 2175 ret = sig; 2176 if (uinfo) { 2177 if (copy_siginfo_to_user(uinfo, &info)) 2178 ret = -EFAULT; 2179 } 2180 } else { 2181 ret = -EAGAIN; 2182 if (timeout) 2183 ret = -EINTR; 2184 } 2185 2186 return ret; 2187 } 2188 2189 asmlinkage long 2190 sys_kill(int pid, int sig) 2191 { 2192 struct siginfo info; 2193 2194 info.si_signo = sig; 2195 info.si_errno = 0; 2196 info.si_code = SI_USER; 2197 info.si_pid = current->tgid; 2198 info.si_uid = current->uid; 2199 2200 return kill_something_info(sig, &info, pid); 2201 } 2202 2203 static int do_tkill(int tgid, int pid, int sig) 2204 { 2205 int error; 2206 struct siginfo info; 2207 struct task_struct *p; 2208 2209 error = -ESRCH; 2210 info.si_signo = sig; 2211 info.si_errno = 0; 2212 info.si_code = SI_TKILL; 2213 info.si_pid = current->tgid; 2214 info.si_uid = current->uid; 2215 2216 read_lock(&tasklist_lock); 2217 p = find_task_by_pid(pid); 2218 if (p && (tgid <= 0 || p->tgid == tgid)) { 2219 error = check_kill_permission(sig, &info, p); 2220 /* 2221 * The null signal is a permissions and process existence 2222 * probe. No signal is actually delivered. 2223 */ 2224 if (!error && sig && p->sighand) { 2225 spin_lock_irq(&p->sighand->siglock); 2226 handle_stop_signal(sig, p); 2227 error = specific_send_sig_info(sig, &info, p); 2228 spin_unlock_irq(&p->sighand->siglock); 2229 } 2230 } 2231 read_unlock(&tasklist_lock); 2232 2233 return error; 2234 } 2235 2236 /** 2237 * sys_tgkill - send signal to one specific thread 2238 * @tgid: the thread group ID of the thread 2239 * @pid: the PID of the thread 2240 * @sig: signal to be sent 2241 * 2242 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2243 * exists but it's not belonging to the target process anymore. This 2244 * method solves the problem of threads exiting and PIDs getting reused. 2245 */ 2246 asmlinkage long sys_tgkill(int tgid, int pid, int sig) 2247 { 2248 /* This is only valid for single tasks */ 2249 if (pid <= 0 || tgid <= 0) 2250 return -EINVAL; 2251 2252 return do_tkill(tgid, pid, sig); 2253 } 2254 2255 /* 2256 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2257 */ 2258 asmlinkage long 2259 sys_tkill(int pid, int sig) 2260 { 2261 /* This is only valid for single tasks */ 2262 if (pid <= 0) 2263 return -EINVAL; 2264 2265 return do_tkill(0, pid, sig); 2266 } 2267 2268 asmlinkage long 2269 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) 2270 { 2271 siginfo_t info; 2272 2273 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2274 return -EFAULT; 2275 2276 /* Not even root can pretend to send signals from the kernel. 2277 Nor can they impersonate a kill(), which adds source info. */ 2278 if (info.si_code >= 0) 2279 return -EPERM; 2280 info.si_signo = sig; 2281 2282 /* POSIX.1b doesn't mention process groups. */ 2283 return kill_proc_info(sig, &info, pid); 2284 } 2285 2286 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2287 { 2288 struct k_sigaction *k; 2289 sigset_t mask; 2290 2291 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2292 return -EINVAL; 2293 2294 k = ¤t->sighand->action[sig-1]; 2295 2296 spin_lock_irq(¤t->sighand->siglock); 2297 if (oact) 2298 *oact = *k; 2299 2300 if (act) { 2301 sigdelsetmask(&act->sa.sa_mask, 2302 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2303 *k = *act; 2304 /* 2305 * POSIX 3.3.1.3: 2306 * "Setting a signal action to SIG_IGN for a signal that is 2307 * pending shall cause the pending signal to be discarded, 2308 * whether or not it is blocked." 2309 * 2310 * "Setting a signal action to SIG_DFL for a signal that is 2311 * pending and whose default action is to ignore the signal 2312 * (for example, SIGCHLD), shall cause the pending signal to 2313 * be discarded, whether or not it is blocked" 2314 */ 2315 if (act->sa.sa_handler == SIG_IGN || 2316 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) { 2317 struct task_struct *t = current; 2318 sigemptyset(&mask); 2319 sigaddset(&mask, sig); 2320 rm_from_queue_full(&mask, &t->signal->shared_pending); 2321 do { 2322 rm_from_queue_full(&mask, &t->pending); 2323 t = next_thread(t); 2324 } while (t != current); 2325 } 2326 } 2327 2328 spin_unlock_irq(¤t->sighand->siglock); 2329 return 0; 2330 } 2331 2332 int 2333 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2334 { 2335 stack_t oss; 2336 int error; 2337 2338 if (uoss) { 2339 oss.ss_sp = (void __user *) current->sas_ss_sp; 2340 oss.ss_size = current->sas_ss_size; 2341 oss.ss_flags = sas_ss_flags(sp); 2342 } 2343 2344 if (uss) { 2345 void __user *ss_sp; 2346 size_t ss_size; 2347 int ss_flags; 2348 2349 error = -EFAULT; 2350 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2351 || __get_user(ss_sp, &uss->ss_sp) 2352 || __get_user(ss_flags, &uss->ss_flags) 2353 || __get_user(ss_size, &uss->ss_size)) 2354 goto out; 2355 2356 error = -EPERM; 2357 if (on_sig_stack(sp)) 2358 goto out; 2359 2360 error = -EINVAL; 2361 /* 2362 * 2363 * Note - this code used to test ss_flags incorrectly 2364 * old code may have been written using ss_flags==0 2365 * to mean ss_flags==SS_ONSTACK (as this was the only 2366 * way that worked) - this fix preserves that older 2367 * mechanism 2368 */ 2369 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2370 goto out; 2371 2372 if (ss_flags == SS_DISABLE) { 2373 ss_size = 0; 2374 ss_sp = NULL; 2375 } else { 2376 error = -ENOMEM; 2377 if (ss_size < MINSIGSTKSZ) 2378 goto out; 2379 } 2380 2381 current->sas_ss_sp = (unsigned long) ss_sp; 2382 current->sas_ss_size = ss_size; 2383 } 2384 2385 if (uoss) { 2386 error = -EFAULT; 2387 if (copy_to_user(uoss, &oss, sizeof(oss))) 2388 goto out; 2389 } 2390 2391 error = 0; 2392 out: 2393 return error; 2394 } 2395 2396 #ifdef __ARCH_WANT_SYS_SIGPENDING 2397 2398 asmlinkage long 2399 sys_sigpending(old_sigset_t __user *set) 2400 { 2401 return do_sigpending(set, sizeof(*set)); 2402 } 2403 2404 #endif 2405 2406 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2407 /* Some platforms have their own version with special arguments others 2408 support only sys_rt_sigprocmask. */ 2409 2410 asmlinkage long 2411 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2412 { 2413 int error; 2414 old_sigset_t old_set, new_set; 2415 2416 if (set) { 2417 error = -EFAULT; 2418 if (copy_from_user(&new_set, set, sizeof(*set))) 2419 goto out; 2420 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2421 2422 spin_lock_irq(¤t->sighand->siglock); 2423 old_set = current->blocked.sig[0]; 2424 2425 error = 0; 2426 switch (how) { 2427 default: 2428 error = -EINVAL; 2429 break; 2430 case SIG_BLOCK: 2431 sigaddsetmask(¤t->blocked, new_set); 2432 break; 2433 case SIG_UNBLOCK: 2434 sigdelsetmask(¤t->blocked, new_set); 2435 break; 2436 case SIG_SETMASK: 2437 current->blocked.sig[0] = new_set; 2438 break; 2439 } 2440 2441 recalc_sigpending(); 2442 spin_unlock_irq(¤t->sighand->siglock); 2443 if (error) 2444 goto out; 2445 if (oset) 2446 goto set_old; 2447 } else if (oset) { 2448 old_set = current->blocked.sig[0]; 2449 set_old: 2450 error = -EFAULT; 2451 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2452 goto out; 2453 } 2454 error = 0; 2455 out: 2456 return error; 2457 } 2458 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2459 2460 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2461 asmlinkage long 2462 sys_rt_sigaction(int sig, 2463 const struct sigaction __user *act, 2464 struct sigaction __user *oact, 2465 size_t sigsetsize) 2466 { 2467 struct k_sigaction new_sa, old_sa; 2468 int ret = -EINVAL; 2469 2470 /* XXX: Don't preclude handling different sized sigset_t's. */ 2471 if (sigsetsize != sizeof(sigset_t)) 2472 goto out; 2473 2474 if (act) { 2475 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2476 return -EFAULT; 2477 } 2478 2479 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2480 2481 if (!ret && oact) { 2482 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2483 return -EFAULT; 2484 } 2485 out: 2486 return ret; 2487 } 2488 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2489 2490 #ifdef __ARCH_WANT_SYS_SGETMASK 2491 2492 /* 2493 * For backwards compatibility. Functionality superseded by sigprocmask. 2494 */ 2495 asmlinkage long 2496 sys_sgetmask(void) 2497 { 2498 /* SMP safe */ 2499 return current->blocked.sig[0]; 2500 } 2501 2502 asmlinkage long 2503 sys_ssetmask(int newmask) 2504 { 2505 int old; 2506 2507 spin_lock_irq(¤t->sighand->siglock); 2508 old = current->blocked.sig[0]; 2509 2510 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2511 sigmask(SIGSTOP))); 2512 recalc_sigpending(); 2513 spin_unlock_irq(¤t->sighand->siglock); 2514 2515 return old; 2516 } 2517 #endif /* __ARCH_WANT_SGETMASK */ 2518 2519 #ifdef __ARCH_WANT_SYS_SIGNAL 2520 /* 2521 * For backwards compatibility. Functionality superseded by sigaction. 2522 */ 2523 asmlinkage unsigned long 2524 sys_signal(int sig, __sighandler_t handler) 2525 { 2526 struct k_sigaction new_sa, old_sa; 2527 int ret; 2528 2529 new_sa.sa.sa_handler = handler; 2530 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2531 sigemptyset(&new_sa.sa.sa_mask); 2532 2533 ret = do_sigaction(sig, &new_sa, &old_sa); 2534 2535 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2536 } 2537 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2538 2539 #ifdef __ARCH_WANT_SYS_PAUSE 2540 2541 asmlinkage long 2542 sys_pause(void) 2543 { 2544 current->state = TASK_INTERRUPTIBLE; 2545 schedule(); 2546 return -ERESTARTNOHAND; 2547 } 2548 2549 #endif 2550 2551 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2552 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) 2553 { 2554 sigset_t newset; 2555 2556 /* XXX: Don't preclude handling different sized sigset_t's. */ 2557 if (sigsetsize != sizeof(sigset_t)) 2558 return -EINVAL; 2559 2560 if (copy_from_user(&newset, unewset, sizeof(newset))) 2561 return -EFAULT; 2562 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2563 2564 spin_lock_irq(¤t->sighand->siglock); 2565 current->saved_sigmask = current->blocked; 2566 current->blocked = newset; 2567 recalc_sigpending(); 2568 spin_unlock_irq(¤t->sighand->siglock); 2569 2570 current->state = TASK_INTERRUPTIBLE; 2571 schedule(); 2572 set_thread_flag(TIF_RESTORE_SIGMASK); 2573 return -ERESTARTNOHAND; 2574 } 2575 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2576 2577 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 2578 { 2579 return NULL; 2580 } 2581 2582 void __init signals_init(void) 2583 { 2584 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 2585 } 2586