xref: /linux/kernel/signal.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #include <linux/user_namespace.h>
32 #include <linux/uprobes.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/signal.h>
35 
36 #include <asm/param.h>
37 #include <asm/uaccess.h>
38 #include <asm/unistd.h>
39 #include <asm/siginfo.h>
40 #include <asm/cacheflush.h>
41 #include "audit.h"	/* audit_signal_info() */
42 
43 /*
44  * SLAB caches for signal bits.
45  */
46 
47 static struct kmem_cache *sigqueue_cachep;
48 
49 int print_fatal_signals __read_mostly;
50 
51 static void __user *sig_handler(struct task_struct *t, int sig)
52 {
53 	return t->sighand->action[sig - 1].sa.sa_handler;
54 }
55 
56 static int sig_handler_ignored(void __user *handler, int sig)
57 {
58 	/* Is it explicitly or implicitly ignored? */
59 	return handler == SIG_IGN ||
60 		(handler == SIG_DFL && sig_kernel_ignore(sig));
61 }
62 
63 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
64 {
65 	void __user *handler;
66 
67 	handler = sig_handler(t, sig);
68 
69 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
70 			handler == SIG_DFL && !force)
71 		return 1;
72 
73 	return sig_handler_ignored(handler, sig);
74 }
75 
76 static int sig_ignored(struct task_struct *t, int sig, bool force)
77 {
78 	/*
79 	 * Blocked signals are never ignored, since the
80 	 * signal handler may change by the time it is
81 	 * unblocked.
82 	 */
83 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
84 		return 0;
85 
86 	if (!sig_task_ignored(t, sig, force))
87 		return 0;
88 
89 	/*
90 	 * Tracers may want to know about even ignored signals.
91 	 */
92 	return !t->ptrace;
93 }
94 
95 /*
96  * Re-calculate pending state from the set of locally pending
97  * signals, globally pending signals, and blocked signals.
98  */
99 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
100 {
101 	unsigned long ready;
102 	long i;
103 
104 	switch (_NSIG_WORDS) {
105 	default:
106 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
107 			ready |= signal->sig[i] &~ blocked->sig[i];
108 		break;
109 
110 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
111 		ready |= signal->sig[2] &~ blocked->sig[2];
112 		ready |= signal->sig[1] &~ blocked->sig[1];
113 		ready |= signal->sig[0] &~ blocked->sig[0];
114 		break;
115 
116 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
117 		ready |= signal->sig[0] &~ blocked->sig[0];
118 		break;
119 
120 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
121 	}
122 	return ready !=	0;
123 }
124 
125 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
126 
127 static int recalc_sigpending_tsk(struct task_struct *t)
128 {
129 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
130 	    PENDING(&t->pending, &t->blocked) ||
131 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
132 		set_tsk_thread_flag(t, TIF_SIGPENDING);
133 		return 1;
134 	}
135 	/*
136 	 * We must never clear the flag in another thread, or in current
137 	 * when it's possible the current syscall is returning -ERESTART*.
138 	 * So we don't clear it here, and only callers who know they should do.
139 	 */
140 	return 0;
141 }
142 
143 /*
144  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
145  * This is superfluous when called on current, the wakeup is a harmless no-op.
146  */
147 void recalc_sigpending_and_wake(struct task_struct *t)
148 {
149 	if (recalc_sigpending_tsk(t))
150 		signal_wake_up(t, 0);
151 }
152 
153 void recalc_sigpending(void)
154 {
155 	if (!recalc_sigpending_tsk(current) && !freezing(current))
156 		clear_thread_flag(TIF_SIGPENDING);
157 
158 }
159 
160 /* Given the mask, find the first available signal that should be serviced. */
161 
162 #define SYNCHRONOUS_MASK \
163 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
164 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
165 
166 int next_signal(struct sigpending *pending, sigset_t *mask)
167 {
168 	unsigned long i, *s, *m, x;
169 	int sig = 0;
170 
171 	s = pending->signal.sig;
172 	m = mask->sig;
173 
174 	/*
175 	 * Handle the first word specially: it contains the
176 	 * synchronous signals that need to be dequeued first.
177 	 */
178 	x = *s &~ *m;
179 	if (x) {
180 		if (x & SYNCHRONOUS_MASK)
181 			x &= SYNCHRONOUS_MASK;
182 		sig = ffz(~x) + 1;
183 		return sig;
184 	}
185 
186 	switch (_NSIG_WORDS) {
187 	default:
188 		for (i = 1; i < _NSIG_WORDS; ++i) {
189 			x = *++s &~ *++m;
190 			if (!x)
191 				continue;
192 			sig = ffz(~x) + i*_NSIG_BPW + 1;
193 			break;
194 		}
195 		break;
196 
197 	case 2:
198 		x = s[1] &~ m[1];
199 		if (!x)
200 			break;
201 		sig = ffz(~x) + _NSIG_BPW + 1;
202 		break;
203 
204 	case 1:
205 		/* Nothing to do */
206 		break;
207 	}
208 
209 	return sig;
210 }
211 
212 static inline void print_dropped_signal(int sig)
213 {
214 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
215 
216 	if (!print_fatal_signals)
217 		return;
218 
219 	if (!__ratelimit(&ratelimit_state))
220 		return;
221 
222 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
223 				current->comm, current->pid, sig);
224 }
225 
226 /**
227  * task_set_jobctl_pending - set jobctl pending bits
228  * @task: target task
229  * @mask: pending bits to set
230  *
231  * Clear @mask from @task->jobctl.  @mask must be subset of
232  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
233  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
234  * cleared.  If @task is already being killed or exiting, this function
235  * becomes noop.
236  *
237  * CONTEXT:
238  * Must be called with @task->sighand->siglock held.
239  *
240  * RETURNS:
241  * %true if @mask is set, %false if made noop because @task was dying.
242  */
243 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
244 {
245 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
246 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
247 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
248 
249 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
250 		return false;
251 
252 	if (mask & JOBCTL_STOP_SIGMASK)
253 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
254 
255 	task->jobctl |= mask;
256 	return true;
257 }
258 
259 /**
260  * task_clear_jobctl_trapping - clear jobctl trapping bit
261  * @task: target task
262  *
263  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
264  * Clear it and wake up the ptracer.  Note that we don't need any further
265  * locking.  @task->siglock guarantees that @task->parent points to the
266  * ptracer.
267  *
268  * CONTEXT:
269  * Must be called with @task->sighand->siglock held.
270  */
271 void task_clear_jobctl_trapping(struct task_struct *task)
272 {
273 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
274 		task->jobctl &= ~JOBCTL_TRAPPING;
275 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
276 	}
277 }
278 
279 /**
280  * task_clear_jobctl_pending - clear jobctl pending bits
281  * @task: target task
282  * @mask: pending bits to clear
283  *
284  * Clear @mask from @task->jobctl.  @mask must be subset of
285  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
286  * STOP bits are cleared together.
287  *
288  * If clearing of @mask leaves no stop or trap pending, this function calls
289  * task_clear_jobctl_trapping().
290  *
291  * CONTEXT:
292  * Must be called with @task->sighand->siglock held.
293  */
294 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
295 {
296 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
297 
298 	if (mask & JOBCTL_STOP_PENDING)
299 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
300 
301 	task->jobctl &= ~mask;
302 
303 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
304 		task_clear_jobctl_trapping(task);
305 }
306 
307 /**
308  * task_participate_group_stop - participate in a group stop
309  * @task: task participating in a group stop
310  *
311  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
312  * Group stop states are cleared and the group stop count is consumed if
313  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
314  * stop, the appropriate %SIGNAL_* flags are set.
315  *
316  * CONTEXT:
317  * Must be called with @task->sighand->siglock held.
318  *
319  * RETURNS:
320  * %true if group stop completion should be notified to the parent, %false
321  * otherwise.
322  */
323 static bool task_participate_group_stop(struct task_struct *task)
324 {
325 	struct signal_struct *sig = task->signal;
326 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
327 
328 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
329 
330 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
331 
332 	if (!consume)
333 		return false;
334 
335 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
336 		sig->group_stop_count--;
337 
338 	/*
339 	 * Tell the caller to notify completion iff we are entering into a
340 	 * fresh group stop.  Read comment in do_signal_stop() for details.
341 	 */
342 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
343 		sig->flags = SIGNAL_STOP_STOPPED;
344 		return true;
345 	}
346 	return false;
347 }
348 
349 /*
350  * allocate a new signal queue record
351  * - this may be called without locks if and only if t == current, otherwise an
352  *   appropriate lock must be held to stop the target task from exiting
353  */
354 static struct sigqueue *
355 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
356 {
357 	struct sigqueue *q = NULL;
358 	struct user_struct *user;
359 
360 	/*
361 	 * Protect access to @t credentials. This can go away when all
362 	 * callers hold rcu read lock.
363 	 */
364 	rcu_read_lock();
365 	user = get_uid(__task_cred(t)->user);
366 	atomic_inc(&user->sigpending);
367 	rcu_read_unlock();
368 
369 	if (override_rlimit ||
370 	    atomic_read(&user->sigpending) <=
371 			task_rlimit(t, RLIMIT_SIGPENDING)) {
372 		q = kmem_cache_alloc(sigqueue_cachep, flags);
373 	} else {
374 		print_dropped_signal(sig);
375 	}
376 
377 	if (unlikely(q == NULL)) {
378 		atomic_dec(&user->sigpending);
379 		free_uid(user);
380 	} else {
381 		INIT_LIST_HEAD(&q->list);
382 		q->flags = 0;
383 		q->user = user;
384 	}
385 
386 	return q;
387 }
388 
389 static void __sigqueue_free(struct sigqueue *q)
390 {
391 	if (q->flags & SIGQUEUE_PREALLOC)
392 		return;
393 	atomic_dec(&q->user->sigpending);
394 	free_uid(q->user);
395 	kmem_cache_free(sigqueue_cachep, q);
396 }
397 
398 void flush_sigqueue(struct sigpending *queue)
399 {
400 	struct sigqueue *q;
401 
402 	sigemptyset(&queue->signal);
403 	while (!list_empty(&queue->list)) {
404 		q = list_entry(queue->list.next, struct sigqueue , list);
405 		list_del_init(&q->list);
406 		__sigqueue_free(q);
407 	}
408 }
409 
410 /*
411  * Flush all pending signals for a task.
412  */
413 void __flush_signals(struct task_struct *t)
414 {
415 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
416 	flush_sigqueue(&t->pending);
417 	flush_sigqueue(&t->signal->shared_pending);
418 }
419 
420 void flush_signals(struct task_struct *t)
421 {
422 	unsigned long flags;
423 
424 	spin_lock_irqsave(&t->sighand->siglock, flags);
425 	__flush_signals(t);
426 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
427 }
428 
429 static void __flush_itimer_signals(struct sigpending *pending)
430 {
431 	sigset_t signal, retain;
432 	struct sigqueue *q, *n;
433 
434 	signal = pending->signal;
435 	sigemptyset(&retain);
436 
437 	list_for_each_entry_safe(q, n, &pending->list, list) {
438 		int sig = q->info.si_signo;
439 
440 		if (likely(q->info.si_code != SI_TIMER)) {
441 			sigaddset(&retain, sig);
442 		} else {
443 			sigdelset(&signal, sig);
444 			list_del_init(&q->list);
445 			__sigqueue_free(q);
446 		}
447 	}
448 
449 	sigorsets(&pending->signal, &signal, &retain);
450 }
451 
452 void flush_itimer_signals(void)
453 {
454 	struct task_struct *tsk = current;
455 	unsigned long flags;
456 
457 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
458 	__flush_itimer_signals(&tsk->pending);
459 	__flush_itimer_signals(&tsk->signal->shared_pending);
460 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
461 }
462 
463 void ignore_signals(struct task_struct *t)
464 {
465 	int i;
466 
467 	for (i = 0; i < _NSIG; ++i)
468 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
469 
470 	flush_signals(t);
471 }
472 
473 /*
474  * Flush all handlers for a task.
475  */
476 
477 void
478 flush_signal_handlers(struct task_struct *t, int force_default)
479 {
480 	int i;
481 	struct k_sigaction *ka = &t->sighand->action[0];
482 	for (i = _NSIG ; i != 0 ; i--) {
483 		if (force_default || ka->sa.sa_handler != SIG_IGN)
484 			ka->sa.sa_handler = SIG_DFL;
485 		ka->sa.sa_flags = 0;
486 		sigemptyset(&ka->sa.sa_mask);
487 		ka++;
488 	}
489 }
490 
491 int unhandled_signal(struct task_struct *tsk, int sig)
492 {
493 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
494 	if (is_global_init(tsk))
495 		return 1;
496 	if (handler != SIG_IGN && handler != SIG_DFL)
497 		return 0;
498 	/* if ptraced, let the tracer determine */
499 	return !tsk->ptrace;
500 }
501 
502 /*
503  * Notify the system that a driver wants to block all signals for this
504  * process, and wants to be notified if any signals at all were to be
505  * sent/acted upon.  If the notifier routine returns non-zero, then the
506  * signal will be acted upon after all.  If the notifier routine returns 0,
507  * then then signal will be blocked.  Only one block per process is
508  * allowed.  priv is a pointer to private data that the notifier routine
509  * can use to determine if the signal should be blocked or not.
510  */
511 void
512 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
513 {
514 	unsigned long flags;
515 
516 	spin_lock_irqsave(&current->sighand->siglock, flags);
517 	current->notifier_mask = mask;
518 	current->notifier_data = priv;
519 	current->notifier = notifier;
520 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
521 }
522 
523 /* Notify the system that blocking has ended. */
524 
525 void
526 unblock_all_signals(void)
527 {
528 	unsigned long flags;
529 
530 	spin_lock_irqsave(&current->sighand->siglock, flags);
531 	current->notifier = NULL;
532 	current->notifier_data = NULL;
533 	recalc_sigpending();
534 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
535 }
536 
537 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
538 {
539 	struct sigqueue *q, *first = NULL;
540 
541 	/*
542 	 * Collect the siginfo appropriate to this signal.  Check if
543 	 * there is another siginfo for the same signal.
544 	*/
545 	list_for_each_entry(q, &list->list, list) {
546 		if (q->info.si_signo == sig) {
547 			if (first)
548 				goto still_pending;
549 			first = q;
550 		}
551 	}
552 
553 	sigdelset(&list->signal, sig);
554 
555 	if (first) {
556 still_pending:
557 		list_del_init(&first->list);
558 		copy_siginfo(info, &first->info);
559 		__sigqueue_free(first);
560 	} else {
561 		/*
562 		 * Ok, it wasn't in the queue.  This must be
563 		 * a fast-pathed signal or we must have been
564 		 * out of queue space.  So zero out the info.
565 		 */
566 		info->si_signo = sig;
567 		info->si_errno = 0;
568 		info->si_code = SI_USER;
569 		info->si_pid = 0;
570 		info->si_uid = 0;
571 	}
572 }
573 
574 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
575 			siginfo_t *info)
576 {
577 	int sig = next_signal(pending, mask);
578 
579 	if (sig) {
580 		if (current->notifier) {
581 			if (sigismember(current->notifier_mask, sig)) {
582 				if (!(current->notifier)(current->notifier_data)) {
583 					clear_thread_flag(TIF_SIGPENDING);
584 					return 0;
585 				}
586 			}
587 		}
588 
589 		collect_signal(sig, pending, info);
590 	}
591 
592 	return sig;
593 }
594 
595 /*
596  * Dequeue a signal and return the element to the caller, which is
597  * expected to free it.
598  *
599  * All callers have to hold the siglock.
600  */
601 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
602 {
603 	int signr;
604 
605 	/* We only dequeue private signals from ourselves, we don't let
606 	 * signalfd steal them
607 	 */
608 	signr = __dequeue_signal(&tsk->pending, mask, info);
609 	if (!signr) {
610 		signr = __dequeue_signal(&tsk->signal->shared_pending,
611 					 mask, info);
612 		/*
613 		 * itimer signal ?
614 		 *
615 		 * itimers are process shared and we restart periodic
616 		 * itimers in the signal delivery path to prevent DoS
617 		 * attacks in the high resolution timer case. This is
618 		 * compliant with the old way of self-restarting
619 		 * itimers, as the SIGALRM is a legacy signal and only
620 		 * queued once. Changing the restart behaviour to
621 		 * restart the timer in the signal dequeue path is
622 		 * reducing the timer noise on heavy loaded !highres
623 		 * systems too.
624 		 */
625 		if (unlikely(signr == SIGALRM)) {
626 			struct hrtimer *tmr = &tsk->signal->real_timer;
627 
628 			if (!hrtimer_is_queued(tmr) &&
629 			    tsk->signal->it_real_incr.tv64 != 0) {
630 				hrtimer_forward(tmr, tmr->base->get_time(),
631 						tsk->signal->it_real_incr);
632 				hrtimer_restart(tmr);
633 			}
634 		}
635 	}
636 
637 	recalc_sigpending();
638 	if (!signr)
639 		return 0;
640 
641 	if (unlikely(sig_kernel_stop(signr))) {
642 		/*
643 		 * Set a marker that we have dequeued a stop signal.  Our
644 		 * caller might release the siglock and then the pending
645 		 * stop signal it is about to process is no longer in the
646 		 * pending bitmasks, but must still be cleared by a SIGCONT
647 		 * (and overruled by a SIGKILL).  So those cases clear this
648 		 * shared flag after we've set it.  Note that this flag may
649 		 * remain set after the signal we return is ignored or
650 		 * handled.  That doesn't matter because its only purpose
651 		 * is to alert stop-signal processing code when another
652 		 * processor has come along and cleared the flag.
653 		 */
654 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
655 	}
656 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
657 		/*
658 		 * Release the siglock to ensure proper locking order
659 		 * of timer locks outside of siglocks.  Note, we leave
660 		 * irqs disabled here, since the posix-timers code is
661 		 * about to disable them again anyway.
662 		 */
663 		spin_unlock(&tsk->sighand->siglock);
664 		do_schedule_next_timer(info);
665 		spin_lock(&tsk->sighand->siglock);
666 	}
667 	return signr;
668 }
669 
670 /*
671  * Tell a process that it has a new active signal..
672  *
673  * NOTE! we rely on the previous spin_lock to
674  * lock interrupts for us! We can only be called with
675  * "siglock" held, and the local interrupt must
676  * have been disabled when that got acquired!
677  *
678  * No need to set need_resched since signal event passing
679  * goes through ->blocked
680  */
681 void signal_wake_up(struct task_struct *t, int resume)
682 {
683 	unsigned int mask;
684 
685 	set_tsk_thread_flag(t, TIF_SIGPENDING);
686 
687 	/*
688 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
689 	 * case. We don't check t->state here because there is a race with it
690 	 * executing another processor and just now entering stopped state.
691 	 * By using wake_up_state, we ensure the process will wake up and
692 	 * handle its death signal.
693 	 */
694 	mask = TASK_INTERRUPTIBLE;
695 	if (resume)
696 		mask |= TASK_WAKEKILL;
697 	if (!wake_up_state(t, mask))
698 		kick_process(t);
699 }
700 
701 /*
702  * Remove signals in mask from the pending set and queue.
703  * Returns 1 if any signals were found.
704  *
705  * All callers must be holding the siglock.
706  *
707  * This version takes a sigset mask and looks at all signals,
708  * not just those in the first mask word.
709  */
710 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
711 {
712 	struct sigqueue *q, *n;
713 	sigset_t m;
714 
715 	sigandsets(&m, mask, &s->signal);
716 	if (sigisemptyset(&m))
717 		return 0;
718 
719 	sigandnsets(&s->signal, &s->signal, mask);
720 	list_for_each_entry_safe(q, n, &s->list, list) {
721 		if (sigismember(mask, q->info.si_signo)) {
722 			list_del_init(&q->list);
723 			__sigqueue_free(q);
724 		}
725 	}
726 	return 1;
727 }
728 /*
729  * Remove signals in mask from the pending set and queue.
730  * Returns 1 if any signals were found.
731  *
732  * All callers must be holding the siglock.
733  */
734 static int rm_from_queue(unsigned long mask, struct sigpending *s)
735 {
736 	struct sigqueue *q, *n;
737 
738 	if (!sigtestsetmask(&s->signal, mask))
739 		return 0;
740 
741 	sigdelsetmask(&s->signal, mask);
742 	list_for_each_entry_safe(q, n, &s->list, list) {
743 		if (q->info.si_signo < SIGRTMIN &&
744 		    (mask & sigmask(q->info.si_signo))) {
745 			list_del_init(&q->list);
746 			__sigqueue_free(q);
747 		}
748 	}
749 	return 1;
750 }
751 
752 static inline int is_si_special(const struct siginfo *info)
753 {
754 	return info <= SEND_SIG_FORCED;
755 }
756 
757 static inline bool si_fromuser(const struct siginfo *info)
758 {
759 	return info == SEND_SIG_NOINFO ||
760 		(!is_si_special(info) && SI_FROMUSER(info));
761 }
762 
763 /*
764  * called with RCU read lock from check_kill_permission()
765  */
766 static int kill_ok_by_cred(struct task_struct *t)
767 {
768 	const struct cred *cred = current_cred();
769 	const struct cred *tcred = __task_cred(t);
770 
771 	if (uid_eq(cred->euid, tcred->suid) ||
772 	    uid_eq(cred->euid, tcred->uid)  ||
773 	    uid_eq(cred->uid,  tcred->suid) ||
774 	    uid_eq(cred->uid,  tcred->uid))
775 		return 1;
776 
777 	if (ns_capable(tcred->user_ns, CAP_KILL))
778 		return 1;
779 
780 	return 0;
781 }
782 
783 /*
784  * Bad permissions for sending the signal
785  * - the caller must hold the RCU read lock
786  */
787 static int check_kill_permission(int sig, struct siginfo *info,
788 				 struct task_struct *t)
789 {
790 	struct pid *sid;
791 	int error;
792 
793 	if (!valid_signal(sig))
794 		return -EINVAL;
795 
796 	if (!si_fromuser(info))
797 		return 0;
798 
799 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
800 	if (error)
801 		return error;
802 
803 	if (!same_thread_group(current, t) &&
804 	    !kill_ok_by_cred(t)) {
805 		switch (sig) {
806 		case SIGCONT:
807 			sid = task_session(t);
808 			/*
809 			 * We don't return the error if sid == NULL. The
810 			 * task was unhashed, the caller must notice this.
811 			 */
812 			if (!sid || sid == task_session(current))
813 				break;
814 		default:
815 			return -EPERM;
816 		}
817 	}
818 
819 	return security_task_kill(t, info, sig, 0);
820 }
821 
822 /**
823  * ptrace_trap_notify - schedule trap to notify ptracer
824  * @t: tracee wanting to notify tracer
825  *
826  * This function schedules sticky ptrace trap which is cleared on the next
827  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
828  * ptracer.
829  *
830  * If @t is running, STOP trap will be taken.  If trapped for STOP and
831  * ptracer is listening for events, tracee is woken up so that it can
832  * re-trap for the new event.  If trapped otherwise, STOP trap will be
833  * eventually taken without returning to userland after the existing traps
834  * are finished by PTRACE_CONT.
835  *
836  * CONTEXT:
837  * Must be called with @task->sighand->siglock held.
838  */
839 static void ptrace_trap_notify(struct task_struct *t)
840 {
841 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
842 	assert_spin_locked(&t->sighand->siglock);
843 
844 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
845 	signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
846 }
847 
848 /*
849  * Handle magic process-wide effects of stop/continue signals. Unlike
850  * the signal actions, these happen immediately at signal-generation
851  * time regardless of blocking, ignoring, or handling.  This does the
852  * actual continuing for SIGCONT, but not the actual stopping for stop
853  * signals. The process stop is done as a signal action for SIG_DFL.
854  *
855  * Returns true if the signal should be actually delivered, otherwise
856  * it should be dropped.
857  */
858 static int prepare_signal(int sig, struct task_struct *p, bool force)
859 {
860 	struct signal_struct *signal = p->signal;
861 	struct task_struct *t;
862 
863 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
864 		/*
865 		 * The process is in the middle of dying, nothing to do.
866 		 */
867 	} else if (sig_kernel_stop(sig)) {
868 		/*
869 		 * This is a stop signal.  Remove SIGCONT from all queues.
870 		 */
871 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
872 		t = p;
873 		do {
874 			rm_from_queue(sigmask(SIGCONT), &t->pending);
875 		} while_each_thread(p, t);
876 	} else if (sig == SIGCONT) {
877 		unsigned int why;
878 		/*
879 		 * Remove all stop signals from all queues, wake all threads.
880 		 */
881 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
882 		t = p;
883 		do {
884 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
885 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
886 			if (likely(!(t->ptrace & PT_SEIZED)))
887 				wake_up_state(t, __TASK_STOPPED);
888 			else
889 				ptrace_trap_notify(t);
890 		} while_each_thread(p, t);
891 
892 		/*
893 		 * Notify the parent with CLD_CONTINUED if we were stopped.
894 		 *
895 		 * If we were in the middle of a group stop, we pretend it
896 		 * was already finished, and then continued. Since SIGCHLD
897 		 * doesn't queue we report only CLD_STOPPED, as if the next
898 		 * CLD_CONTINUED was dropped.
899 		 */
900 		why = 0;
901 		if (signal->flags & SIGNAL_STOP_STOPPED)
902 			why |= SIGNAL_CLD_CONTINUED;
903 		else if (signal->group_stop_count)
904 			why |= SIGNAL_CLD_STOPPED;
905 
906 		if (why) {
907 			/*
908 			 * The first thread which returns from do_signal_stop()
909 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
910 			 * notify its parent. See get_signal_to_deliver().
911 			 */
912 			signal->flags = why | SIGNAL_STOP_CONTINUED;
913 			signal->group_stop_count = 0;
914 			signal->group_exit_code = 0;
915 		}
916 	}
917 
918 	return !sig_ignored(p, sig, force);
919 }
920 
921 /*
922  * Test if P wants to take SIG.  After we've checked all threads with this,
923  * it's equivalent to finding no threads not blocking SIG.  Any threads not
924  * blocking SIG were ruled out because they are not running and already
925  * have pending signals.  Such threads will dequeue from the shared queue
926  * as soon as they're available, so putting the signal on the shared queue
927  * will be equivalent to sending it to one such thread.
928  */
929 static inline int wants_signal(int sig, struct task_struct *p)
930 {
931 	if (sigismember(&p->blocked, sig))
932 		return 0;
933 	if (p->flags & PF_EXITING)
934 		return 0;
935 	if (sig == SIGKILL)
936 		return 1;
937 	if (task_is_stopped_or_traced(p))
938 		return 0;
939 	return task_curr(p) || !signal_pending(p);
940 }
941 
942 static void complete_signal(int sig, struct task_struct *p, int group)
943 {
944 	struct signal_struct *signal = p->signal;
945 	struct task_struct *t;
946 
947 	/*
948 	 * Now find a thread we can wake up to take the signal off the queue.
949 	 *
950 	 * If the main thread wants the signal, it gets first crack.
951 	 * Probably the least surprising to the average bear.
952 	 */
953 	if (wants_signal(sig, p))
954 		t = p;
955 	else if (!group || thread_group_empty(p))
956 		/*
957 		 * There is just one thread and it does not need to be woken.
958 		 * It will dequeue unblocked signals before it runs again.
959 		 */
960 		return;
961 	else {
962 		/*
963 		 * Otherwise try to find a suitable thread.
964 		 */
965 		t = signal->curr_target;
966 		while (!wants_signal(sig, t)) {
967 			t = next_thread(t);
968 			if (t == signal->curr_target)
969 				/*
970 				 * No thread needs to be woken.
971 				 * Any eligible threads will see
972 				 * the signal in the queue soon.
973 				 */
974 				return;
975 		}
976 		signal->curr_target = t;
977 	}
978 
979 	/*
980 	 * Found a killable thread.  If the signal will be fatal,
981 	 * then start taking the whole group down immediately.
982 	 */
983 	if (sig_fatal(p, sig) &&
984 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
985 	    !sigismember(&t->real_blocked, sig) &&
986 	    (sig == SIGKILL || !t->ptrace)) {
987 		/*
988 		 * This signal will be fatal to the whole group.
989 		 */
990 		if (!sig_kernel_coredump(sig)) {
991 			/*
992 			 * Start a group exit and wake everybody up.
993 			 * This way we don't have other threads
994 			 * running and doing things after a slower
995 			 * thread has the fatal signal pending.
996 			 */
997 			signal->flags = SIGNAL_GROUP_EXIT;
998 			signal->group_exit_code = sig;
999 			signal->group_stop_count = 0;
1000 			t = p;
1001 			do {
1002 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1003 				sigaddset(&t->pending.signal, SIGKILL);
1004 				signal_wake_up(t, 1);
1005 			} while_each_thread(p, t);
1006 			return;
1007 		}
1008 	}
1009 
1010 	/*
1011 	 * The signal is already in the shared-pending queue.
1012 	 * Tell the chosen thread to wake up and dequeue it.
1013 	 */
1014 	signal_wake_up(t, sig == SIGKILL);
1015 	return;
1016 }
1017 
1018 static inline int legacy_queue(struct sigpending *signals, int sig)
1019 {
1020 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1021 }
1022 
1023 #ifdef CONFIG_USER_NS
1024 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1025 {
1026 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1027 		return;
1028 
1029 	if (SI_FROMKERNEL(info))
1030 		return;
1031 
1032 	rcu_read_lock();
1033 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1034 					make_kuid(current_user_ns(), info->si_uid));
1035 	rcu_read_unlock();
1036 }
1037 #else
1038 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1039 {
1040 	return;
1041 }
1042 #endif
1043 
1044 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1045 			int group, int from_ancestor_ns)
1046 {
1047 	struct sigpending *pending;
1048 	struct sigqueue *q;
1049 	int override_rlimit;
1050 	int ret = 0, result;
1051 
1052 	assert_spin_locked(&t->sighand->siglock);
1053 
1054 	result = TRACE_SIGNAL_IGNORED;
1055 	if (!prepare_signal(sig, t,
1056 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1057 		goto ret;
1058 
1059 	pending = group ? &t->signal->shared_pending : &t->pending;
1060 	/*
1061 	 * Short-circuit ignored signals and support queuing
1062 	 * exactly one non-rt signal, so that we can get more
1063 	 * detailed information about the cause of the signal.
1064 	 */
1065 	result = TRACE_SIGNAL_ALREADY_PENDING;
1066 	if (legacy_queue(pending, sig))
1067 		goto ret;
1068 
1069 	result = TRACE_SIGNAL_DELIVERED;
1070 	/*
1071 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1072 	 * or SIGKILL.
1073 	 */
1074 	if (info == SEND_SIG_FORCED)
1075 		goto out_set;
1076 
1077 	/*
1078 	 * Real-time signals must be queued if sent by sigqueue, or
1079 	 * some other real-time mechanism.  It is implementation
1080 	 * defined whether kill() does so.  We attempt to do so, on
1081 	 * the principle of least surprise, but since kill is not
1082 	 * allowed to fail with EAGAIN when low on memory we just
1083 	 * make sure at least one signal gets delivered and don't
1084 	 * pass on the info struct.
1085 	 */
1086 	if (sig < SIGRTMIN)
1087 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1088 	else
1089 		override_rlimit = 0;
1090 
1091 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1092 		override_rlimit);
1093 	if (q) {
1094 		list_add_tail(&q->list, &pending->list);
1095 		switch ((unsigned long) info) {
1096 		case (unsigned long) SEND_SIG_NOINFO:
1097 			q->info.si_signo = sig;
1098 			q->info.si_errno = 0;
1099 			q->info.si_code = SI_USER;
1100 			q->info.si_pid = task_tgid_nr_ns(current,
1101 							task_active_pid_ns(t));
1102 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1103 			break;
1104 		case (unsigned long) SEND_SIG_PRIV:
1105 			q->info.si_signo = sig;
1106 			q->info.si_errno = 0;
1107 			q->info.si_code = SI_KERNEL;
1108 			q->info.si_pid = 0;
1109 			q->info.si_uid = 0;
1110 			break;
1111 		default:
1112 			copy_siginfo(&q->info, info);
1113 			if (from_ancestor_ns)
1114 				q->info.si_pid = 0;
1115 			break;
1116 		}
1117 
1118 		userns_fixup_signal_uid(&q->info, t);
1119 
1120 	} else if (!is_si_special(info)) {
1121 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1122 			/*
1123 			 * Queue overflow, abort.  We may abort if the
1124 			 * signal was rt and sent by user using something
1125 			 * other than kill().
1126 			 */
1127 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1128 			ret = -EAGAIN;
1129 			goto ret;
1130 		} else {
1131 			/*
1132 			 * This is a silent loss of information.  We still
1133 			 * send the signal, but the *info bits are lost.
1134 			 */
1135 			result = TRACE_SIGNAL_LOSE_INFO;
1136 		}
1137 	}
1138 
1139 out_set:
1140 	signalfd_notify(t, sig);
1141 	sigaddset(&pending->signal, sig);
1142 	complete_signal(sig, t, group);
1143 ret:
1144 	trace_signal_generate(sig, info, t, group, result);
1145 	return ret;
1146 }
1147 
1148 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1149 			int group)
1150 {
1151 	int from_ancestor_ns = 0;
1152 
1153 #ifdef CONFIG_PID_NS
1154 	from_ancestor_ns = si_fromuser(info) &&
1155 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1156 #endif
1157 
1158 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1159 }
1160 
1161 static void print_fatal_signal(struct pt_regs *regs, int signr)
1162 {
1163 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1164 		current->comm, task_pid_nr(current), signr);
1165 
1166 #if defined(__i386__) && !defined(__arch_um__)
1167 	printk("code at %08lx: ", regs->ip);
1168 	{
1169 		int i;
1170 		for (i = 0; i < 16; i++) {
1171 			unsigned char insn;
1172 
1173 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1174 				break;
1175 			printk("%02x ", insn);
1176 		}
1177 	}
1178 #endif
1179 	printk("\n");
1180 	preempt_disable();
1181 	show_regs(regs);
1182 	preempt_enable();
1183 }
1184 
1185 static int __init setup_print_fatal_signals(char *str)
1186 {
1187 	get_option (&str, &print_fatal_signals);
1188 
1189 	return 1;
1190 }
1191 
1192 __setup("print-fatal-signals=", setup_print_fatal_signals);
1193 
1194 int
1195 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1196 {
1197 	return send_signal(sig, info, p, 1);
1198 }
1199 
1200 static int
1201 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1202 {
1203 	return send_signal(sig, info, t, 0);
1204 }
1205 
1206 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1207 			bool group)
1208 {
1209 	unsigned long flags;
1210 	int ret = -ESRCH;
1211 
1212 	if (lock_task_sighand(p, &flags)) {
1213 		ret = send_signal(sig, info, p, group);
1214 		unlock_task_sighand(p, &flags);
1215 	}
1216 
1217 	return ret;
1218 }
1219 
1220 /*
1221  * Force a signal that the process can't ignore: if necessary
1222  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1223  *
1224  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1225  * since we do not want to have a signal handler that was blocked
1226  * be invoked when user space had explicitly blocked it.
1227  *
1228  * We don't want to have recursive SIGSEGV's etc, for example,
1229  * that is why we also clear SIGNAL_UNKILLABLE.
1230  */
1231 int
1232 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1233 {
1234 	unsigned long int flags;
1235 	int ret, blocked, ignored;
1236 	struct k_sigaction *action;
1237 
1238 	spin_lock_irqsave(&t->sighand->siglock, flags);
1239 	action = &t->sighand->action[sig-1];
1240 	ignored = action->sa.sa_handler == SIG_IGN;
1241 	blocked = sigismember(&t->blocked, sig);
1242 	if (blocked || ignored) {
1243 		action->sa.sa_handler = SIG_DFL;
1244 		if (blocked) {
1245 			sigdelset(&t->blocked, sig);
1246 			recalc_sigpending_and_wake(t);
1247 		}
1248 	}
1249 	if (action->sa.sa_handler == SIG_DFL)
1250 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1251 	ret = specific_send_sig_info(sig, info, t);
1252 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1253 
1254 	return ret;
1255 }
1256 
1257 /*
1258  * Nuke all other threads in the group.
1259  */
1260 int zap_other_threads(struct task_struct *p)
1261 {
1262 	struct task_struct *t = p;
1263 	int count = 0;
1264 
1265 	p->signal->group_stop_count = 0;
1266 
1267 	while_each_thread(p, t) {
1268 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1269 		count++;
1270 
1271 		/* Don't bother with already dead threads */
1272 		if (t->exit_state)
1273 			continue;
1274 		sigaddset(&t->pending.signal, SIGKILL);
1275 		signal_wake_up(t, 1);
1276 	}
1277 
1278 	return count;
1279 }
1280 
1281 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1282 					   unsigned long *flags)
1283 {
1284 	struct sighand_struct *sighand;
1285 
1286 	for (;;) {
1287 		local_irq_save(*flags);
1288 		rcu_read_lock();
1289 		sighand = rcu_dereference(tsk->sighand);
1290 		if (unlikely(sighand == NULL)) {
1291 			rcu_read_unlock();
1292 			local_irq_restore(*flags);
1293 			break;
1294 		}
1295 
1296 		spin_lock(&sighand->siglock);
1297 		if (likely(sighand == tsk->sighand)) {
1298 			rcu_read_unlock();
1299 			break;
1300 		}
1301 		spin_unlock(&sighand->siglock);
1302 		rcu_read_unlock();
1303 		local_irq_restore(*flags);
1304 	}
1305 
1306 	return sighand;
1307 }
1308 
1309 /*
1310  * send signal info to all the members of a group
1311  */
1312 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1313 {
1314 	int ret;
1315 
1316 	rcu_read_lock();
1317 	ret = check_kill_permission(sig, info, p);
1318 	rcu_read_unlock();
1319 
1320 	if (!ret && sig)
1321 		ret = do_send_sig_info(sig, info, p, true);
1322 
1323 	return ret;
1324 }
1325 
1326 /*
1327  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1328  * control characters do (^C, ^Z etc)
1329  * - the caller must hold at least a readlock on tasklist_lock
1330  */
1331 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1332 {
1333 	struct task_struct *p = NULL;
1334 	int retval, success;
1335 
1336 	success = 0;
1337 	retval = -ESRCH;
1338 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1339 		int err = group_send_sig_info(sig, info, p);
1340 		success |= !err;
1341 		retval = err;
1342 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1343 	return success ? 0 : retval;
1344 }
1345 
1346 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1347 {
1348 	int error = -ESRCH;
1349 	struct task_struct *p;
1350 
1351 	rcu_read_lock();
1352 retry:
1353 	p = pid_task(pid, PIDTYPE_PID);
1354 	if (p) {
1355 		error = group_send_sig_info(sig, info, p);
1356 		if (unlikely(error == -ESRCH))
1357 			/*
1358 			 * The task was unhashed in between, try again.
1359 			 * If it is dead, pid_task() will return NULL,
1360 			 * if we race with de_thread() it will find the
1361 			 * new leader.
1362 			 */
1363 			goto retry;
1364 	}
1365 	rcu_read_unlock();
1366 
1367 	return error;
1368 }
1369 
1370 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1371 {
1372 	int error;
1373 	rcu_read_lock();
1374 	error = kill_pid_info(sig, info, find_vpid(pid));
1375 	rcu_read_unlock();
1376 	return error;
1377 }
1378 
1379 static int kill_as_cred_perm(const struct cred *cred,
1380 			     struct task_struct *target)
1381 {
1382 	const struct cred *pcred = __task_cred(target);
1383 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1384 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1385 		return 0;
1386 	return 1;
1387 }
1388 
1389 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1390 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1391 			 const struct cred *cred, u32 secid)
1392 {
1393 	int ret = -EINVAL;
1394 	struct task_struct *p;
1395 	unsigned long flags;
1396 
1397 	if (!valid_signal(sig))
1398 		return ret;
1399 
1400 	rcu_read_lock();
1401 	p = pid_task(pid, PIDTYPE_PID);
1402 	if (!p) {
1403 		ret = -ESRCH;
1404 		goto out_unlock;
1405 	}
1406 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1407 		ret = -EPERM;
1408 		goto out_unlock;
1409 	}
1410 	ret = security_task_kill(p, info, sig, secid);
1411 	if (ret)
1412 		goto out_unlock;
1413 
1414 	if (sig) {
1415 		if (lock_task_sighand(p, &flags)) {
1416 			ret = __send_signal(sig, info, p, 1, 0);
1417 			unlock_task_sighand(p, &flags);
1418 		} else
1419 			ret = -ESRCH;
1420 	}
1421 out_unlock:
1422 	rcu_read_unlock();
1423 	return ret;
1424 }
1425 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1426 
1427 /*
1428  * kill_something_info() interprets pid in interesting ways just like kill(2).
1429  *
1430  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1431  * is probably wrong.  Should make it like BSD or SYSV.
1432  */
1433 
1434 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1435 {
1436 	int ret;
1437 
1438 	if (pid > 0) {
1439 		rcu_read_lock();
1440 		ret = kill_pid_info(sig, info, find_vpid(pid));
1441 		rcu_read_unlock();
1442 		return ret;
1443 	}
1444 
1445 	read_lock(&tasklist_lock);
1446 	if (pid != -1) {
1447 		ret = __kill_pgrp_info(sig, info,
1448 				pid ? find_vpid(-pid) : task_pgrp(current));
1449 	} else {
1450 		int retval = 0, count = 0;
1451 		struct task_struct * p;
1452 
1453 		for_each_process(p) {
1454 			if (task_pid_vnr(p) > 1 &&
1455 					!same_thread_group(p, current)) {
1456 				int err = group_send_sig_info(sig, info, p);
1457 				++count;
1458 				if (err != -EPERM)
1459 					retval = err;
1460 			}
1461 		}
1462 		ret = count ? retval : -ESRCH;
1463 	}
1464 	read_unlock(&tasklist_lock);
1465 
1466 	return ret;
1467 }
1468 
1469 /*
1470  * These are for backward compatibility with the rest of the kernel source.
1471  */
1472 
1473 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1474 {
1475 	/*
1476 	 * Make sure legacy kernel users don't send in bad values
1477 	 * (normal paths check this in check_kill_permission).
1478 	 */
1479 	if (!valid_signal(sig))
1480 		return -EINVAL;
1481 
1482 	return do_send_sig_info(sig, info, p, false);
1483 }
1484 
1485 #define __si_special(priv) \
1486 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1487 
1488 int
1489 send_sig(int sig, struct task_struct *p, int priv)
1490 {
1491 	return send_sig_info(sig, __si_special(priv), p);
1492 }
1493 
1494 void
1495 force_sig(int sig, struct task_struct *p)
1496 {
1497 	force_sig_info(sig, SEND_SIG_PRIV, p);
1498 }
1499 
1500 /*
1501  * When things go south during signal handling, we
1502  * will force a SIGSEGV. And if the signal that caused
1503  * the problem was already a SIGSEGV, we'll want to
1504  * make sure we don't even try to deliver the signal..
1505  */
1506 int
1507 force_sigsegv(int sig, struct task_struct *p)
1508 {
1509 	if (sig == SIGSEGV) {
1510 		unsigned long flags;
1511 		spin_lock_irqsave(&p->sighand->siglock, flags);
1512 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1513 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1514 	}
1515 	force_sig(SIGSEGV, p);
1516 	return 0;
1517 }
1518 
1519 int kill_pgrp(struct pid *pid, int sig, int priv)
1520 {
1521 	int ret;
1522 
1523 	read_lock(&tasklist_lock);
1524 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1525 	read_unlock(&tasklist_lock);
1526 
1527 	return ret;
1528 }
1529 EXPORT_SYMBOL(kill_pgrp);
1530 
1531 int kill_pid(struct pid *pid, int sig, int priv)
1532 {
1533 	return kill_pid_info(sig, __si_special(priv), pid);
1534 }
1535 EXPORT_SYMBOL(kill_pid);
1536 
1537 /*
1538  * These functions support sending signals using preallocated sigqueue
1539  * structures.  This is needed "because realtime applications cannot
1540  * afford to lose notifications of asynchronous events, like timer
1541  * expirations or I/O completions".  In the case of POSIX Timers
1542  * we allocate the sigqueue structure from the timer_create.  If this
1543  * allocation fails we are able to report the failure to the application
1544  * with an EAGAIN error.
1545  */
1546 struct sigqueue *sigqueue_alloc(void)
1547 {
1548 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1549 
1550 	if (q)
1551 		q->flags |= SIGQUEUE_PREALLOC;
1552 
1553 	return q;
1554 }
1555 
1556 void sigqueue_free(struct sigqueue *q)
1557 {
1558 	unsigned long flags;
1559 	spinlock_t *lock = &current->sighand->siglock;
1560 
1561 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1562 	/*
1563 	 * We must hold ->siglock while testing q->list
1564 	 * to serialize with collect_signal() or with
1565 	 * __exit_signal()->flush_sigqueue().
1566 	 */
1567 	spin_lock_irqsave(lock, flags);
1568 	q->flags &= ~SIGQUEUE_PREALLOC;
1569 	/*
1570 	 * If it is queued it will be freed when dequeued,
1571 	 * like the "regular" sigqueue.
1572 	 */
1573 	if (!list_empty(&q->list))
1574 		q = NULL;
1575 	spin_unlock_irqrestore(lock, flags);
1576 
1577 	if (q)
1578 		__sigqueue_free(q);
1579 }
1580 
1581 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1582 {
1583 	int sig = q->info.si_signo;
1584 	struct sigpending *pending;
1585 	unsigned long flags;
1586 	int ret, result;
1587 
1588 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1589 
1590 	ret = -1;
1591 	if (!likely(lock_task_sighand(t, &flags)))
1592 		goto ret;
1593 
1594 	ret = 1; /* the signal is ignored */
1595 	result = TRACE_SIGNAL_IGNORED;
1596 	if (!prepare_signal(sig, t, false))
1597 		goto out;
1598 
1599 	ret = 0;
1600 	if (unlikely(!list_empty(&q->list))) {
1601 		/*
1602 		 * If an SI_TIMER entry is already queue just increment
1603 		 * the overrun count.
1604 		 */
1605 		BUG_ON(q->info.si_code != SI_TIMER);
1606 		q->info.si_overrun++;
1607 		result = TRACE_SIGNAL_ALREADY_PENDING;
1608 		goto out;
1609 	}
1610 	q->info.si_overrun = 0;
1611 
1612 	signalfd_notify(t, sig);
1613 	pending = group ? &t->signal->shared_pending : &t->pending;
1614 	list_add_tail(&q->list, &pending->list);
1615 	sigaddset(&pending->signal, sig);
1616 	complete_signal(sig, t, group);
1617 	result = TRACE_SIGNAL_DELIVERED;
1618 out:
1619 	trace_signal_generate(sig, &q->info, t, group, result);
1620 	unlock_task_sighand(t, &flags);
1621 ret:
1622 	return ret;
1623 }
1624 
1625 /*
1626  * Let a parent know about the death of a child.
1627  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1628  *
1629  * Returns true if our parent ignored us and so we've switched to
1630  * self-reaping.
1631  */
1632 bool do_notify_parent(struct task_struct *tsk, int sig)
1633 {
1634 	struct siginfo info;
1635 	unsigned long flags;
1636 	struct sighand_struct *psig;
1637 	bool autoreap = false;
1638 
1639 	BUG_ON(sig == -1);
1640 
1641  	/* do_notify_parent_cldstop should have been called instead.  */
1642  	BUG_ON(task_is_stopped_or_traced(tsk));
1643 
1644 	BUG_ON(!tsk->ptrace &&
1645 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1646 
1647 	if (sig != SIGCHLD) {
1648 		/*
1649 		 * This is only possible if parent == real_parent.
1650 		 * Check if it has changed security domain.
1651 		 */
1652 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1653 			sig = SIGCHLD;
1654 	}
1655 
1656 	info.si_signo = sig;
1657 	info.si_errno = 0;
1658 	/*
1659 	 * We are under tasklist_lock here so our parent is tied to
1660 	 * us and cannot change.
1661 	 *
1662 	 * task_active_pid_ns will always return the same pid namespace
1663 	 * until a task passes through release_task.
1664 	 *
1665 	 * write_lock() currently calls preempt_disable() which is the
1666 	 * same as rcu_read_lock(), but according to Oleg, this is not
1667 	 * correct to rely on this
1668 	 */
1669 	rcu_read_lock();
1670 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1671 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1672 				       task_uid(tsk));
1673 	rcu_read_unlock();
1674 
1675 	info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1676 	info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1677 
1678 	info.si_status = tsk->exit_code & 0x7f;
1679 	if (tsk->exit_code & 0x80)
1680 		info.si_code = CLD_DUMPED;
1681 	else if (tsk->exit_code & 0x7f)
1682 		info.si_code = CLD_KILLED;
1683 	else {
1684 		info.si_code = CLD_EXITED;
1685 		info.si_status = tsk->exit_code >> 8;
1686 	}
1687 
1688 	psig = tsk->parent->sighand;
1689 	spin_lock_irqsave(&psig->siglock, flags);
1690 	if (!tsk->ptrace && sig == SIGCHLD &&
1691 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1692 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1693 		/*
1694 		 * We are exiting and our parent doesn't care.  POSIX.1
1695 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1696 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1697 		 * automatically and not left for our parent's wait4 call.
1698 		 * Rather than having the parent do it as a magic kind of
1699 		 * signal handler, we just set this to tell do_exit that we
1700 		 * can be cleaned up without becoming a zombie.  Note that
1701 		 * we still call __wake_up_parent in this case, because a
1702 		 * blocked sys_wait4 might now return -ECHILD.
1703 		 *
1704 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1705 		 * is implementation-defined: we do (if you don't want
1706 		 * it, just use SIG_IGN instead).
1707 		 */
1708 		autoreap = true;
1709 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1710 			sig = 0;
1711 	}
1712 	if (valid_signal(sig) && sig)
1713 		__group_send_sig_info(sig, &info, tsk->parent);
1714 	__wake_up_parent(tsk, tsk->parent);
1715 	spin_unlock_irqrestore(&psig->siglock, flags);
1716 
1717 	return autoreap;
1718 }
1719 
1720 /**
1721  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1722  * @tsk: task reporting the state change
1723  * @for_ptracer: the notification is for ptracer
1724  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1725  *
1726  * Notify @tsk's parent that the stopped/continued state has changed.  If
1727  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1728  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1729  *
1730  * CONTEXT:
1731  * Must be called with tasklist_lock at least read locked.
1732  */
1733 static void do_notify_parent_cldstop(struct task_struct *tsk,
1734 				     bool for_ptracer, int why)
1735 {
1736 	struct siginfo info;
1737 	unsigned long flags;
1738 	struct task_struct *parent;
1739 	struct sighand_struct *sighand;
1740 
1741 	if (for_ptracer) {
1742 		parent = tsk->parent;
1743 	} else {
1744 		tsk = tsk->group_leader;
1745 		parent = tsk->real_parent;
1746 	}
1747 
1748 	info.si_signo = SIGCHLD;
1749 	info.si_errno = 0;
1750 	/*
1751 	 * see comment in do_notify_parent() about the following 4 lines
1752 	 */
1753 	rcu_read_lock();
1754 	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1755 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1756 	rcu_read_unlock();
1757 
1758 	info.si_utime = cputime_to_clock_t(tsk->utime);
1759 	info.si_stime = cputime_to_clock_t(tsk->stime);
1760 
1761  	info.si_code = why;
1762  	switch (why) {
1763  	case CLD_CONTINUED:
1764  		info.si_status = SIGCONT;
1765  		break;
1766  	case CLD_STOPPED:
1767  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1768  		break;
1769  	case CLD_TRAPPED:
1770  		info.si_status = tsk->exit_code & 0x7f;
1771  		break;
1772  	default:
1773  		BUG();
1774  	}
1775 
1776 	sighand = parent->sighand;
1777 	spin_lock_irqsave(&sighand->siglock, flags);
1778 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1779 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1780 		__group_send_sig_info(SIGCHLD, &info, parent);
1781 	/*
1782 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1783 	 */
1784 	__wake_up_parent(tsk, parent);
1785 	spin_unlock_irqrestore(&sighand->siglock, flags);
1786 }
1787 
1788 static inline int may_ptrace_stop(void)
1789 {
1790 	if (!likely(current->ptrace))
1791 		return 0;
1792 	/*
1793 	 * Are we in the middle of do_coredump?
1794 	 * If so and our tracer is also part of the coredump stopping
1795 	 * is a deadlock situation, and pointless because our tracer
1796 	 * is dead so don't allow us to stop.
1797 	 * If SIGKILL was already sent before the caller unlocked
1798 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1799 	 * is safe to enter schedule().
1800 	 */
1801 	if (unlikely(current->mm->core_state) &&
1802 	    unlikely(current->mm == current->parent->mm))
1803 		return 0;
1804 
1805 	return 1;
1806 }
1807 
1808 /*
1809  * Return non-zero if there is a SIGKILL that should be waking us up.
1810  * Called with the siglock held.
1811  */
1812 static int sigkill_pending(struct task_struct *tsk)
1813 {
1814 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1815 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1816 }
1817 
1818 /*
1819  * This must be called with current->sighand->siglock held.
1820  *
1821  * This should be the path for all ptrace stops.
1822  * We always set current->last_siginfo while stopped here.
1823  * That makes it a way to test a stopped process for
1824  * being ptrace-stopped vs being job-control-stopped.
1825  *
1826  * If we actually decide not to stop at all because the tracer
1827  * is gone, we keep current->exit_code unless clear_code.
1828  */
1829 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1830 	__releases(&current->sighand->siglock)
1831 	__acquires(&current->sighand->siglock)
1832 {
1833 	bool gstop_done = false;
1834 
1835 	if (arch_ptrace_stop_needed(exit_code, info)) {
1836 		/*
1837 		 * The arch code has something special to do before a
1838 		 * ptrace stop.  This is allowed to block, e.g. for faults
1839 		 * on user stack pages.  We can't keep the siglock while
1840 		 * calling arch_ptrace_stop, so we must release it now.
1841 		 * To preserve proper semantics, we must do this before
1842 		 * any signal bookkeeping like checking group_stop_count.
1843 		 * Meanwhile, a SIGKILL could come in before we retake the
1844 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1845 		 * So after regaining the lock, we must check for SIGKILL.
1846 		 */
1847 		spin_unlock_irq(&current->sighand->siglock);
1848 		arch_ptrace_stop(exit_code, info);
1849 		spin_lock_irq(&current->sighand->siglock);
1850 		if (sigkill_pending(current))
1851 			return;
1852 	}
1853 
1854 	/*
1855 	 * We're committing to trapping.  TRACED should be visible before
1856 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1857 	 * Also, transition to TRACED and updates to ->jobctl should be
1858 	 * atomic with respect to siglock and should be done after the arch
1859 	 * hook as siglock is released and regrabbed across it.
1860 	 */
1861 	set_current_state(TASK_TRACED);
1862 
1863 	current->last_siginfo = info;
1864 	current->exit_code = exit_code;
1865 
1866 	/*
1867 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1868 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1869 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1870 	 * could be clear now.  We act as if SIGCONT is received after
1871 	 * TASK_TRACED is entered - ignore it.
1872 	 */
1873 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1874 		gstop_done = task_participate_group_stop(current);
1875 
1876 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1877 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1878 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1879 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1880 
1881 	/* entering a trap, clear TRAPPING */
1882 	task_clear_jobctl_trapping(current);
1883 
1884 	spin_unlock_irq(&current->sighand->siglock);
1885 	read_lock(&tasklist_lock);
1886 	if (may_ptrace_stop()) {
1887 		/*
1888 		 * Notify parents of the stop.
1889 		 *
1890 		 * While ptraced, there are two parents - the ptracer and
1891 		 * the real_parent of the group_leader.  The ptracer should
1892 		 * know about every stop while the real parent is only
1893 		 * interested in the completion of group stop.  The states
1894 		 * for the two don't interact with each other.  Notify
1895 		 * separately unless they're gonna be duplicates.
1896 		 */
1897 		do_notify_parent_cldstop(current, true, why);
1898 		if (gstop_done && ptrace_reparented(current))
1899 			do_notify_parent_cldstop(current, false, why);
1900 
1901 		/*
1902 		 * Don't want to allow preemption here, because
1903 		 * sys_ptrace() needs this task to be inactive.
1904 		 *
1905 		 * XXX: implement read_unlock_no_resched().
1906 		 */
1907 		preempt_disable();
1908 		read_unlock(&tasklist_lock);
1909 		preempt_enable_no_resched();
1910 		schedule();
1911 	} else {
1912 		/*
1913 		 * By the time we got the lock, our tracer went away.
1914 		 * Don't drop the lock yet, another tracer may come.
1915 		 *
1916 		 * If @gstop_done, the ptracer went away between group stop
1917 		 * completion and here.  During detach, it would have set
1918 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1919 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1920 		 * the real parent of the group stop completion is enough.
1921 		 */
1922 		if (gstop_done)
1923 			do_notify_parent_cldstop(current, false, why);
1924 
1925 		__set_current_state(TASK_RUNNING);
1926 		if (clear_code)
1927 			current->exit_code = 0;
1928 		read_unlock(&tasklist_lock);
1929 	}
1930 
1931 	/*
1932 	 * While in TASK_TRACED, we were considered "frozen enough".
1933 	 * Now that we woke up, it's crucial if we're supposed to be
1934 	 * frozen that we freeze now before running anything substantial.
1935 	 */
1936 	try_to_freeze();
1937 
1938 	/*
1939 	 * We are back.  Now reacquire the siglock before touching
1940 	 * last_siginfo, so that we are sure to have synchronized with
1941 	 * any signal-sending on another CPU that wants to examine it.
1942 	 */
1943 	spin_lock_irq(&current->sighand->siglock);
1944 	current->last_siginfo = NULL;
1945 
1946 	/* LISTENING can be set only during STOP traps, clear it */
1947 	current->jobctl &= ~JOBCTL_LISTENING;
1948 
1949 	/*
1950 	 * Queued signals ignored us while we were stopped for tracing.
1951 	 * So check for any that we should take before resuming user mode.
1952 	 * This sets TIF_SIGPENDING, but never clears it.
1953 	 */
1954 	recalc_sigpending_tsk(current);
1955 }
1956 
1957 static void ptrace_do_notify(int signr, int exit_code, int why)
1958 {
1959 	siginfo_t info;
1960 
1961 	memset(&info, 0, sizeof info);
1962 	info.si_signo = signr;
1963 	info.si_code = exit_code;
1964 	info.si_pid = task_pid_vnr(current);
1965 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1966 
1967 	/* Let the debugger run.  */
1968 	ptrace_stop(exit_code, why, 1, &info);
1969 }
1970 
1971 void ptrace_notify(int exit_code)
1972 {
1973 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1974 	if (unlikely(current->task_works))
1975 		task_work_run();
1976 
1977 	spin_lock_irq(&current->sighand->siglock);
1978 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1979 	spin_unlock_irq(&current->sighand->siglock);
1980 }
1981 
1982 /**
1983  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1984  * @signr: signr causing group stop if initiating
1985  *
1986  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1987  * and participate in it.  If already set, participate in the existing
1988  * group stop.  If participated in a group stop (and thus slept), %true is
1989  * returned with siglock released.
1990  *
1991  * If ptraced, this function doesn't handle stop itself.  Instead,
1992  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1993  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1994  * places afterwards.
1995  *
1996  * CONTEXT:
1997  * Must be called with @current->sighand->siglock held, which is released
1998  * on %true return.
1999  *
2000  * RETURNS:
2001  * %false if group stop is already cancelled or ptrace trap is scheduled.
2002  * %true if participated in group stop.
2003  */
2004 static bool do_signal_stop(int signr)
2005 	__releases(&current->sighand->siglock)
2006 {
2007 	struct signal_struct *sig = current->signal;
2008 
2009 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2010 		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2011 		struct task_struct *t;
2012 
2013 		/* signr will be recorded in task->jobctl for retries */
2014 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2015 
2016 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2017 		    unlikely(signal_group_exit(sig)))
2018 			return false;
2019 		/*
2020 		 * There is no group stop already in progress.  We must
2021 		 * initiate one now.
2022 		 *
2023 		 * While ptraced, a task may be resumed while group stop is
2024 		 * still in effect and then receive a stop signal and
2025 		 * initiate another group stop.  This deviates from the
2026 		 * usual behavior as two consecutive stop signals can't
2027 		 * cause two group stops when !ptraced.  That is why we
2028 		 * also check !task_is_stopped(t) below.
2029 		 *
2030 		 * The condition can be distinguished by testing whether
2031 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2032 		 * group_exit_code in such case.
2033 		 *
2034 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2035 		 * an intervening stop signal is required to cause two
2036 		 * continued events regardless of ptrace.
2037 		 */
2038 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2039 			sig->group_exit_code = signr;
2040 
2041 		sig->group_stop_count = 0;
2042 
2043 		if (task_set_jobctl_pending(current, signr | gstop))
2044 			sig->group_stop_count++;
2045 
2046 		for (t = next_thread(current); t != current;
2047 		     t = next_thread(t)) {
2048 			/*
2049 			 * Setting state to TASK_STOPPED for a group
2050 			 * stop is always done with the siglock held,
2051 			 * so this check has no races.
2052 			 */
2053 			if (!task_is_stopped(t) &&
2054 			    task_set_jobctl_pending(t, signr | gstop)) {
2055 				sig->group_stop_count++;
2056 				if (likely(!(t->ptrace & PT_SEIZED)))
2057 					signal_wake_up(t, 0);
2058 				else
2059 					ptrace_trap_notify(t);
2060 			}
2061 		}
2062 	}
2063 
2064 	if (likely(!current->ptrace)) {
2065 		int notify = 0;
2066 
2067 		/*
2068 		 * If there are no other threads in the group, or if there
2069 		 * is a group stop in progress and we are the last to stop,
2070 		 * report to the parent.
2071 		 */
2072 		if (task_participate_group_stop(current))
2073 			notify = CLD_STOPPED;
2074 
2075 		__set_current_state(TASK_STOPPED);
2076 		spin_unlock_irq(&current->sighand->siglock);
2077 
2078 		/*
2079 		 * Notify the parent of the group stop completion.  Because
2080 		 * we're not holding either the siglock or tasklist_lock
2081 		 * here, ptracer may attach inbetween; however, this is for
2082 		 * group stop and should always be delivered to the real
2083 		 * parent of the group leader.  The new ptracer will get
2084 		 * its notification when this task transitions into
2085 		 * TASK_TRACED.
2086 		 */
2087 		if (notify) {
2088 			read_lock(&tasklist_lock);
2089 			do_notify_parent_cldstop(current, false, notify);
2090 			read_unlock(&tasklist_lock);
2091 		}
2092 
2093 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2094 		schedule();
2095 		return true;
2096 	} else {
2097 		/*
2098 		 * While ptraced, group stop is handled by STOP trap.
2099 		 * Schedule it and let the caller deal with it.
2100 		 */
2101 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2102 		return false;
2103 	}
2104 }
2105 
2106 /**
2107  * do_jobctl_trap - take care of ptrace jobctl traps
2108  *
2109  * When PT_SEIZED, it's used for both group stop and explicit
2110  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2111  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2112  * the stop signal; otherwise, %SIGTRAP.
2113  *
2114  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2115  * number as exit_code and no siginfo.
2116  *
2117  * CONTEXT:
2118  * Must be called with @current->sighand->siglock held, which may be
2119  * released and re-acquired before returning with intervening sleep.
2120  */
2121 static void do_jobctl_trap(void)
2122 {
2123 	struct signal_struct *signal = current->signal;
2124 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2125 
2126 	if (current->ptrace & PT_SEIZED) {
2127 		if (!signal->group_stop_count &&
2128 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2129 			signr = SIGTRAP;
2130 		WARN_ON_ONCE(!signr);
2131 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2132 				 CLD_STOPPED);
2133 	} else {
2134 		WARN_ON_ONCE(!signr);
2135 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2136 		current->exit_code = 0;
2137 	}
2138 }
2139 
2140 static int ptrace_signal(int signr, siginfo_t *info,
2141 			 struct pt_regs *regs, void *cookie)
2142 {
2143 	ptrace_signal_deliver(regs, cookie);
2144 	/*
2145 	 * We do not check sig_kernel_stop(signr) but set this marker
2146 	 * unconditionally because we do not know whether debugger will
2147 	 * change signr. This flag has no meaning unless we are going
2148 	 * to stop after return from ptrace_stop(). In this case it will
2149 	 * be checked in do_signal_stop(), we should only stop if it was
2150 	 * not cleared by SIGCONT while we were sleeping. See also the
2151 	 * comment in dequeue_signal().
2152 	 */
2153 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2154 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2155 
2156 	/* We're back.  Did the debugger cancel the sig?  */
2157 	signr = current->exit_code;
2158 	if (signr == 0)
2159 		return signr;
2160 
2161 	current->exit_code = 0;
2162 
2163 	/*
2164 	 * Update the siginfo structure if the signal has
2165 	 * changed.  If the debugger wanted something
2166 	 * specific in the siginfo structure then it should
2167 	 * have updated *info via PTRACE_SETSIGINFO.
2168 	 */
2169 	if (signr != info->si_signo) {
2170 		info->si_signo = signr;
2171 		info->si_errno = 0;
2172 		info->si_code = SI_USER;
2173 		rcu_read_lock();
2174 		info->si_pid = task_pid_vnr(current->parent);
2175 		info->si_uid = from_kuid_munged(current_user_ns(),
2176 						task_uid(current->parent));
2177 		rcu_read_unlock();
2178 	}
2179 
2180 	/* If the (new) signal is now blocked, requeue it.  */
2181 	if (sigismember(&current->blocked, signr)) {
2182 		specific_send_sig_info(signr, info, current);
2183 		signr = 0;
2184 	}
2185 
2186 	return signr;
2187 }
2188 
2189 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2190 			  struct pt_regs *regs, void *cookie)
2191 {
2192 	struct sighand_struct *sighand = current->sighand;
2193 	struct signal_struct *signal = current->signal;
2194 	int signr;
2195 
2196 	if (unlikely(current->task_works))
2197 		task_work_run();
2198 
2199 	if (unlikely(uprobe_deny_signal()))
2200 		return 0;
2201 
2202 relock:
2203 	/*
2204 	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2205 	 * While in TASK_STOPPED, we were considered "frozen enough".
2206 	 * Now that we woke up, it's crucial if we're supposed to be
2207 	 * frozen that we freeze now before running anything substantial.
2208 	 */
2209 	try_to_freeze();
2210 
2211 	spin_lock_irq(&sighand->siglock);
2212 	/*
2213 	 * Every stopped thread goes here after wakeup. Check to see if
2214 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2215 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2216 	 */
2217 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2218 		int why;
2219 
2220 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2221 			why = CLD_CONTINUED;
2222 		else
2223 			why = CLD_STOPPED;
2224 
2225 		signal->flags &= ~SIGNAL_CLD_MASK;
2226 
2227 		spin_unlock_irq(&sighand->siglock);
2228 
2229 		/*
2230 		 * Notify the parent that we're continuing.  This event is
2231 		 * always per-process and doesn't make whole lot of sense
2232 		 * for ptracers, who shouldn't consume the state via
2233 		 * wait(2) either, but, for backward compatibility, notify
2234 		 * the ptracer of the group leader too unless it's gonna be
2235 		 * a duplicate.
2236 		 */
2237 		read_lock(&tasklist_lock);
2238 		do_notify_parent_cldstop(current, false, why);
2239 
2240 		if (ptrace_reparented(current->group_leader))
2241 			do_notify_parent_cldstop(current->group_leader,
2242 						true, why);
2243 		read_unlock(&tasklist_lock);
2244 
2245 		goto relock;
2246 	}
2247 
2248 	for (;;) {
2249 		struct k_sigaction *ka;
2250 
2251 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2252 		    do_signal_stop(0))
2253 			goto relock;
2254 
2255 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2256 			do_jobctl_trap();
2257 			spin_unlock_irq(&sighand->siglock);
2258 			goto relock;
2259 		}
2260 
2261 		signr = dequeue_signal(current, &current->blocked, info);
2262 
2263 		if (!signr)
2264 			break; /* will return 0 */
2265 
2266 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2267 			signr = ptrace_signal(signr, info,
2268 					      regs, cookie);
2269 			if (!signr)
2270 				continue;
2271 		}
2272 
2273 		ka = &sighand->action[signr-1];
2274 
2275 		/* Trace actually delivered signals. */
2276 		trace_signal_deliver(signr, info, ka);
2277 
2278 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2279 			continue;
2280 		if (ka->sa.sa_handler != SIG_DFL) {
2281 			/* Run the handler.  */
2282 			*return_ka = *ka;
2283 
2284 			if (ka->sa.sa_flags & SA_ONESHOT)
2285 				ka->sa.sa_handler = SIG_DFL;
2286 
2287 			break; /* will return non-zero "signr" value */
2288 		}
2289 
2290 		/*
2291 		 * Now we are doing the default action for this signal.
2292 		 */
2293 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2294 			continue;
2295 
2296 		/*
2297 		 * Global init gets no signals it doesn't want.
2298 		 * Container-init gets no signals it doesn't want from same
2299 		 * container.
2300 		 *
2301 		 * Note that if global/container-init sees a sig_kernel_only()
2302 		 * signal here, the signal must have been generated internally
2303 		 * or must have come from an ancestor namespace. In either
2304 		 * case, the signal cannot be dropped.
2305 		 */
2306 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2307 				!sig_kernel_only(signr))
2308 			continue;
2309 
2310 		if (sig_kernel_stop(signr)) {
2311 			/*
2312 			 * The default action is to stop all threads in
2313 			 * the thread group.  The job control signals
2314 			 * do nothing in an orphaned pgrp, but SIGSTOP
2315 			 * always works.  Note that siglock needs to be
2316 			 * dropped during the call to is_orphaned_pgrp()
2317 			 * because of lock ordering with tasklist_lock.
2318 			 * This allows an intervening SIGCONT to be posted.
2319 			 * We need to check for that and bail out if necessary.
2320 			 */
2321 			if (signr != SIGSTOP) {
2322 				spin_unlock_irq(&sighand->siglock);
2323 
2324 				/* signals can be posted during this window */
2325 
2326 				if (is_current_pgrp_orphaned())
2327 					goto relock;
2328 
2329 				spin_lock_irq(&sighand->siglock);
2330 			}
2331 
2332 			if (likely(do_signal_stop(info->si_signo))) {
2333 				/* It released the siglock.  */
2334 				goto relock;
2335 			}
2336 
2337 			/*
2338 			 * We didn't actually stop, due to a race
2339 			 * with SIGCONT or something like that.
2340 			 */
2341 			continue;
2342 		}
2343 
2344 		spin_unlock_irq(&sighand->siglock);
2345 
2346 		/*
2347 		 * Anything else is fatal, maybe with a core dump.
2348 		 */
2349 		current->flags |= PF_SIGNALED;
2350 
2351 		if (sig_kernel_coredump(signr)) {
2352 			if (print_fatal_signals)
2353 				print_fatal_signal(regs, info->si_signo);
2354 			/*
2355 			 * If it was able to dump core, this kills all
2356 			 * other threads in the group and synchronizes with
2357 			 * their demise.  If we lost the race with another
2358 			 * thread getting here, it set group_exit_code
2359 			 * first and our do_group_exit call below will use
2360 			 * that value and ignore the one we pass it.
2361 			 */
2362 			do_coredump(info->si_signo, info->si_signo, regs);
2363 		}
2364 
2365 		/*
2366 		 * Death signals, no core dump.
2367 		 */
2368 		do_group_exit(info->si_signo);
2369 		/* NOTREACHED */
2370 	}
2371 	spin_unlock_irq(&sighand->siglock);
2372 	return signr;
2373 }
2374 
2375 /**
2376  * signal_delivered -
2377  * @sig:		number of signal being delivered
2378  * @info:		siginfo_t of signal being delivered
2379  * @ka:			sigaction setting that chose the handler
2380  * @regs:		user register state
2381  * @stepping:		nonzero if debugger single-step or block-step in use
2382  *
2383  * This function should be called when a signal has succesfully been
2384  * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2385  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2386  * is set in @ka->sa.sa_flags.  Tracing is notified.
2387  */
2388 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2389 			struct pt_regs *regs, int stepping)
2390 {
2391 	sigset_t blocked;
2392 
2393 	/* A signal was successfully delivered, and the
2394 	   saved sigmask was stored on the signal frame,
2395 	   and will be restored by sigreturn.  So we can
2396 	   simply clear the restore sigmask flag.  */
2397 	clear_restore_sigmask();
2398 
2399 	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2400 	if (!(ka->sa.sa_flags & SA_NODEFER))
2401 		sigaddset(&blocked, sig);
2402 	set_current_blocked(&blocked);
2403 	tracehook_signal_handler(sig, info, ka, regs, stepping);
2404 }
2405 
2406 /*
2407  * It could be that complete_signal() picked us to notify about the
2408  * group-wide signal. Other threads should be notified now to take
2409  * the shared signals in @which since we will not.
2410  */
2411 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2412 {
2413 	sigset_t retarget;
2414 	struct task_struct *t;
2415 
2416 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2417 	if (sigisemptyset(&retarget))
2418 		return;
2419 
2420 	t = tsk;
2421 	while_each_thread(tsk, t) {
2422 		if (t->flags & PF_EXITING)
2423 			continue;
2424 
2425 		if (!has_pending_signals(&retarget, &t->blocked))
2426 			continue;
2427 		/* Remove the signals this thread can handle. */
2428 		sigandsets(&retarget, &retarget, &t->blocked);
2429 
2430 		if (!signal_pending(t))
2431 			signal_wake_up(t, 0);
2432 
2433 		if (sigisemptyset(&retarget))
2434 			break;
2435 	}
2436 }
2437 
2438 void exit_signals(struct task_struct *tsk)
2439 {
2440 	int group_stop = 0;
2441 	sigset_t unblocked;
2442 
2443 	/*
2444 	 * @tsk is about to have PF_EXITING set - lock out users which
2445 	 * expect stable threadgroup.
2446 	 */
2447 	threadgroup_change_begin(tsk);
2448 
2449 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2450 		tsk->flags |= PF_EXITING;
2451 		threadgroup_change_end(tsk);
2452 		return;
2453 	}
2454 
2455 	spin_lock_irq(&tsk->sighand->siglock);
2456 	/*
2457 	 * From now this task is not visible for group-wide signals,
2458 	 * see wants_signal(), do_signal_stop().
2459 	 */
2460 	tsk->flags |= PF_EXITING;
2461 
2462 	threadgroup_change_end(tsk);
2463 
2464 	if (!signal_pending(tsk))
2465 		goto out;
2466 
2467 	unblocked = tsk->blocked;
2468 	signotset(&unblocked);
2469 	retarget_shared_pending(tsk, &unblocked);
2470 
2471 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2472 	    task_participate_group_stop(tsk))
2473 		group_stop = CLD_STOPPED;
2474 out:
2475 	spin_unlock_irq(&tsk->sighand->siglock);
2476 
2477 	/*
2478 	 * If group stop has completed, deliver the notification.  This
2479 	 * should always go to the real parent of the group leader.
2480 	 */
2481 	if (unlikely(group_stop)) {
2482 		read_lock(&tasklist_lock);
2483 		do_notify_parent_cldstop(tsk, false, group_stop);
2484 		read_unlock(&tasklist_lock);
2485 	}
2486 }
2487 
2488 EXPORT_SYMBOL(recalc_sigpending);
2489 EXPORT_SYMBOL_GPL(dequeue_signal);
2490 EXPORT_SYMBOL(flush_signals);
2491 EXPORT_SYMBOL(force_sig);
2492 EXPORT_SYMBOL(send_sig);
2493 EXPORT_SYMBOL(send_sig_info);
2494 EXPORT_SYMBOL(sigprocmask);
2495 EXPORT_SYMBOL(block_all_signals);
2496 EXPORT_SYMBOL(unblock_all_signals);
2497 
2498 
2499 /*
2500  * System call entry points.
2501  */
2502 
2503 /**
2504  *  sys_restart_syscall - restart a system call
2505  */
2506 SYSCALL_DEFINE0(restart_syscall)
2507 {
2508 	struct restart_block *restart = &current_thread_info()->restart_block;
2509 	return restart->fn(restart);
2510 }
2511 
2512 long do_no_restart_syscall(struct restart_block *param)
2513 {
2514 	return -EINTR;
2515 }
2516 
2517 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2518 {
2519 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2520 		sigset_t newblocked;
2521 		/* A set of now blocked but previously unblocked signals. */
2522 		sigandnsets(&newblocked, newset, &current->blocked);
2523 		retarget_shared_pending(tsk, &newblocked);
2524 	}
2525 	tsk->blocked = *newset;
2526 	recalc_sigpending();
2527 }
2528 
2529 /**
2530  * set_current_blocked - change current->blocked mask
2531  * @newset: new mask
2532  *
2533  * It is wrong to change ->blocked directly, this helper should be used
2534  * to ensure the process can't miss a shared signal we are going to block.
2535  */
2536 void set_current_blocked(sigset_t *newset)
2537 {
2538 	struct task_struct *tsk = current;
2539 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2540 	spin_lock_irq(&tsk->sighand->siglock);
2541 	__set_task_blocked(tsk, newset);
2542 	spin_unlock_irq(&tsk->sighand->siglock);
2543 }
2544 
2545 void __set_current_blocked(const sigset_t *newset)
2546 {
2547 	struct task_struct *tsk = current;
2548 
2549 	spin_lock_irq(&tsk->sighand->siglock);
2550 	__set_task_blocked(tsk, newset);
2551 	spin_unlock_irq(&tsk->sighand->siglock);
2552 }
2553 
2554 /*
2555  * This is also useful for kernel threads that want to temporarily
2556  * (or permanently) block certain signals.
2557  *
2558  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2559  * interface happily blocks "unblockable" signals like SIGKILL
2560  * and friends.
2561  */
2562 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2563 {
2564 	struct task_struct *tsk = current;
2565 	sigset_t newset;
2566 
2567 	/* Lockless, only current can change ->blocked, never from irq */
2568 	if (oldset)
2569 		*oldset = tsk->blocked;
2570 
2571 	switch (how) {
2572 	case SIG_BLOCK:
2573 		sigorsets(&newset, &tsk->blocked, set);
2574 		break;
2575 	case SIG_UNBLOCK:
2576 		sigandnsets(&newset, &tsk->blocked, set);
2577 		break;
2578 	case SIG_SETMASK:
2579 		newset = *set;
2580 		break;
2581 	default:
2582 		return -EINVAL;
2583 	}
2584 
2585 	__set_current_blocked(&newset);
2586 	return 0;
2587 }
2588 
2589 /**
2590  *  sys_rt_sigprocmask - change the list of currently blocked signals
2591  *  @how: whether to add, remove, or set signals
2592  *  @nset: stores pending signals
2593  *  @oset: previous value of signal mask if non-null
2594  *  @sigsetsize: size of sigset_t type
2595  */
2596 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2597 		sigset_t __user *, oset, size_t, sigsetsize)
2598 {
2599 	sigset_t old_set, new_set;
2600 	int error;
2601 
2602 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2603 	if (sigsetsize != sizeof(sigset_t))
2604 		return -EINVAL;
2605 
2606 	old_set = current->blocked;
2607 
2608 	if (nset) {
2609 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2610 			return -EFAULT;
2611 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2612 
2613 		error = sigprocmask(how, &new_set, NULL);
2614 		if (error)
2615 			return error;
2616 	}
2617 
2618 	if (oset) {
2619 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2620 			return -EFAULT;
2621 	}
2622 
2623 	return 0;
2624 }
2625 
2626 long do_sigpending(void __user *set, unsigned long sigsetsize)
2627 {
2628 	long error = -EINVAL;
2629 	sigset_t pending;
2630 
2631 	if (sigsetsize > sizeof(sigset_t))
2632 		goto out;
2633 
2634 	spin_lock_irq(&current->sighand->siglock);
2635 	sigorsets(&pending, &current->pending.signal,
2636 		  &current->signal->shared_pending.signal);
2637 	spin_unlock_irq(&current->sighand->siglock);
2638 
2639 	/* Outside the lock because only this thread touches it.  */
2640 	sigandsets(&pending, &current->blocked, &pending);
2641 
2642 	error = -EFAULT;
2643 	if (!copy_to_user(set, &pending, sigsetsize))
2644 		error = 0;
2645 
2646 out:
2647 	return error;
2648 }
2649 
2650 /**
2651  *  sys_rt_sigpending - examine a pending signal that has been raised
2652  *			while blocked
2653  *  @set: stores pending signals
2654  *  @sigsetsize: size of sigset_t type or larger
2655  */
2656 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2657 {
2658 	return do_sigpending(set, sigsetsize);
2659 }
2660 
2661 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2662 
2663 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2664 {
2665 	int err;
2666 
2667 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2668 		return -EFAULT;
2669 	if (from->si_code < 0)
2670 		return __copy_to_user(to, from, sizeof(siginfo_t))
2671 			? -EFAULT : 0;
2672 	/*
2673 	 * If you change siginfo_t structure, please be sure
2674 	 * this code is fixed accordingly.
2675 	 * Please remember to update the signalfd_copyinfo() function
2676 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2677 	 * It should never copy any pad contained in the structure
2678 	 * to avoid security leaks, but must copy the generic
2679 	 * 3 ints plus the relevant union member.
2680 	 */
2681 	err = __put_user(from->si_signo, &to->si_signo);
2682 	err |= __put_user(from->si_errno, &to->si_errno);
2683 	err |= __put_user((short)from->si_code, &to->si_code);
2684 	switch (from->si_code & __SI_MASK) {
2685 	case __SI_KILL:
2686 		err |= __put_user(from->si_pid, &to->si_pid);
2687 		err |= __put_user(from->si_uid, &to->si_uid);
2688 		break;
2689 	case __SI_TIMER:
2690 		 err |= __put_user(from->si_tid, &to->si_tid);
2691 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2692 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2693 		break;
2694 	case __SI_POLL:
2695 		err |= __put_user(from->si_band, &to->si_band);
2696 		err |= __put_user(from->si_fd, &to->si_fd);
2697 		break;
2698 	case __SI_FAULT:
2699 		err |= __put_user(from->si_addr, &to->si_addr);
2700 #ifdef __ARCH_SI_TRAPNO
2701 		err |= __put_user(from->si_trapno, &to->si_trapno);
2702 #endif
2703 #ifdef BUS_MCEERR_AO
2704 		/*
2705 		 * Other callers might not initialize the si_lsb field,
2706 		 * so check explicitly for the right codes here.
2707 		 */
2708 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2709 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2710 #endif
2711 		break;
2712 	case __SI_CHLD:
2713 		err |= __put_user(from->si_pid, &to->si_pid);
2714 		err |= __put_user(from->si_uid, &to->si_uid);
2715 		err |= __put_user(from->si_status, &to->si_status);
2716 		err |= __put_user(from->si_utime, &to->si_utime);
2717 		err |= __put_user(from->si_stime, &to->si_stime);
2718 		break;
2719 	case __SI_RT: /* This is not generated by the kernel as of now. */
2720 	case __SI_MESGQ: /* But this is */
2721 		err |= __put_user(from->si_pid, &to->si_pid);
2722 		err |= __put_user(from->si_uid, &to->si_uid);
2723 		err |= __put_user(from->si_ptr, &to->si_ptr);
2724 		break;
2725 #ifdef __ARCH_SIGSYS
2726 	case __SI_SYS:
2727 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2728 		err |= __put_user(from->si_syscall, &to->si_syscall);
2729 		err |= __put_user(from->si_arch, &to->si_arch);
2730 		break;
2731 #endif
2732 	default: /* this is just in case for now ... */
2733 		err |= __put_user(from->si_pid, &to->si_pid);
2734 		err |= __put_user(from->si_uid, &to->si_uid);
2735 		break;
2736 	}
2737 	return err;
2738 }
2739 
2740 #endif
2741 
2742 /**
2743  *  do_sigtimedwait - wait for queued signals specified in @which
2744  *  @which: queued signals to wait for
2745  *  @info: if non-null, the signal's siginfo is returned here
2746  *  @ts: upper bound on process time suspension
2747  */
2748 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2749 			const struct timespec *ts)
2750 {
2751 	struct task_struct *tsk = current;
2752 	long timeout = MAX_SCHEDULE_TIMEOUT;
2753 	sigset_t mask = *which;
2754 	int sig;
2755 
2756 	if (ts) {
2757 		if (!timespec_valid(ts))
2758 			return -EINVAL;
2759 		timeout = timespec_to_jiffies(ts);
2760 		/*
2761 		 * We can be close to the next tick, add another one
2762 		 * to ensure we will wait at least the time asked for.
2763 		 */
2764 		if (ts->tv_sec || ts->tv_nsec)
2765 			timeout++;
2766 	}
2767 
2768 	/*
2769 	 * Invert the set of allowed signals to get those we want to block.
2770 	 */
2771 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2772 	signotset(&mask);
2773 
2774 	spin_lock_irq(&tsk->sighand->siglock);
2775 	sig = dequeue_signal(tsk, &mask, info);
2776 	if (!sig && timeout) {
2777 		/*
2778 		 * None ready, temporarily unblock those we're interested
2779 		 * while we are sleeping in so that we'll be awakened when
2780 		 * they arrive. Unblocking is always fine, we can avoid
2781 		 * set_current_blocked().
2782 		 */
2783 		tsk->real_blocked = tsk->blocked;
2784 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2785 		recalc_sigpending();
2786 		spin_unlock_irq(&tsk->sighand->siglock);
2787 
2788 		timeout = schedule_timeout_interruptible(timeout);
2789 
2790 		spin_lock_irq(&tsk->sighand->siglock);
2791 		__set_task_blocked(tsk, &tsk->real_blocked);
2792 		siginitset(&tsk->real_blocked, 0);
2793 		sig = dequeue_signal(tsk, &mask, info);
2794 	}
2795 	spin_unlock_irq(&tsk->sighand->siglock);
2796 
2797 	if (sig)
2798 		return sig;
2799 	return timeout ? -EINTR : -EAGAIN;
2800 }
2801 
2802 /**
2803  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2804  *			in @uthese
2805  *  @uthese: queued signals to wait for
2806  *  @uinfo: if non-null, the signal's siginfo is returned here
2807  *  @uts: upper bound on process time suspension
2808  *  @sigsetsize: size of sigset_t type
2809  */
2810 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2811 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2812 		size_t, sigsetsize)
2813 {
2814 	sigset_t these;
2815 	struct timespec ts;
2816 	siginfo_t info;
2817 	int ret;
2818 
2819 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2820 	if (sigsetsize != sizeof(sigset_t))
2821 		return -EINVAL;
2822 
2823 	if (copy_from_user(&these, uthese, sizeof(these)))
2824 		return -EFAULT;
2825 
2826 	if (uts) {
2827 		if (copy_from_user(&ts, uts, sizeof(ts)))
2828 			return -EFAULT;
2829 	}
2830 
2831 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2832 
2833 	if (ret > 0 && uinfo) {
2834 		if (copy_siginfo_to_user(uinfo, &info))
2835 			ret = -EFAULT;
2836 	}
2837 
2838 	return ret;
2839 }
2840 
2841 /**
2842  *  sys_kill - send a signal to a process
2843  *  @pid: the PID of the process
2844  *  @sig: signal to be sent
2845  */
2846 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2847 {
2848 	struct siginfo info;
2849 
2850 	info.si_signo = sig;
2851 	info.si_errno = 0;
2852 	info.si_code = SI_USER;
2853 	info.si_pid = task_tgid_vnr(current);
2854 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2855 
2856 	return kill_something_info(sig, &info, pid);
2857 }
2858 
2859 static int
2860 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2861 {
2862 	struct task_struct *p;
2863 	int error = -ESRCH;
2864 
2865 	rcu_read_lock();
2866 	p = find_task_by_vpid(pid);
2867 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2868 		error = check_kill_permission(sig, info, p);
2869 		/*
2870 		 * The null signal is a permissions and process existence
2871 		 * probe.  No signal is actually delivered.
2872 		 */
2873 		if (!error && sig) {
2874 			error = do_send_sig_info(sig, info, p, false);
2875 			/*
2876 			 * If lock_task_sighand() failed we pretend the task
2877 			 * dies after receiving the signal. The window is tiny,
2878 			 * and the signal is private anyway.
2879 			 */
2880 			if (unlikely(error == -ESRCH))
2881 				error = 0;
2882 		}
2883 	}
2884 	rcu_read_unlock();
2885 
2886 	return error;
2887 }
2888 
2889 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2890 {
2891 	struct siginfo info;
2892 
2893 	info.si_signo = sig;
2894 	info.si_errno = 0;
2895 	info.si_code = SI_TKILL;
2896 	info.si_pid = task_tgid_vnr(current);
2897 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2898 
2899 	return do_send_specific(tgid, pid, sig, &info);
2900 }
2901 
2902 /**
2903  *  sys_tgkill - send signal to one specific thread
2904  *  @tgid: the thread group ID of the thread
2905  *  @pid: the PID of the thread
2906  *  @sig: signal to be sent
2907  *
2908  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2909  *  exists but it's not belonging to the target process anymore. This
2910  *  method solves the problem of threads exiting and PIDs getting reused.
2911  */
2912 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2913 {
2914 	/* This is only valid for single tasks */
2915 	if (pid <= 0 || tgid <= 0)
2916 		return -EINVAL;
2917 
2918 	return do_tkill(tgid, pid, sig);
2919 }
2920 
2921 /**
2922  *  sys_tkill - send signal to one specific task
2923  *  @pid: the PID of the task
2924  *  @sig: signal to be sent
2925  *
2926  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2927  */
2928 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2929 {
2930 	/* This is only valid for single tasks */
2931 	if (pid <= 0)
2932 		return -EINVAL;
2933 
2934 	return do_tkill(0, pid, sig);
2935 }
2936 
2937 /**
2938  *  sys_rt_sigqueueinfo - send signal information to a signal
2939  *  @pid: the PID of the thread
2940  *  @sig: signal to be sent
2941  *  @uinfo: signal info to be sent
2942  */
2943 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2944 		siginfo_t __user *, uinfo)
2945 {
2946 	siginfo_t info;
2947 
2948 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2949 		return -EFAULT;
2950 
2951 	/* Not even root can pretend to send signals from the kernel.
2952 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2953 	 */
2954 	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2955 		/* We used to allow any < 0 si_code */
2956 		WARN_ON_ONCE(info.si_code < 0);
2957 		return -EPERM;
2958 	}
2959 	info.si_signo = sig;
2960 
2961 	/* POSIX.1b doesn't mention process groups.  */
2962 	return kill_proc_info(sig, &info, pid);
2963 }
2964 
2965 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2966 {
2967 	/* This is only valid for single tasks */
2968 	if (pid <= 0 || tgid <= 0)
2969 		return -EINVAL;
2970 
2971 	/* Not even root can pretend to send signals from the kernel.
2972 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2973 	 */
2974 	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2975 		/* We used to allow any < 0 si_code */
2976 		WARN_ON_ONCE(info->si_code < 0);
2977 		return -EPERM;
2978 	}
2979 	info->si_signo = sig;
2980 
2981 	return do_send_specific(tgid, pid, sig, info);
2982 }
2983 
2984 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2985 		siginfo_t __user *, uinfo)
2986 {
2987 	siginfo_t info;
2988 
2989 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2990 		return -EFAULT;
2991 
2992 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2993 }
2994 
2995 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2996 {
2997 	struct task_struct *t = current;
2998 	struct k_sigaction *k;
2999 	sigset_t mask;
3000 
3001 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3002 		return -EINVAL;
3003 
3004 	k = &t->sighand->action[sig-1];
3005 
3006 	spin_lock_irq(&current->sighand->siglock);
3007 	if (oact)
3008 		*oact = *k;
3009 
3010 	if (act) {
3011 		sigdelsetmask(&act->sa.sa_mask,
3012 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3013 		*k = *act;
3014 		/*
3015 		 * POSIX 3.3.1.3:
3016 		 *  "Setting a signal action to SIG_IGN for a signal that is
3017 		 *   pending shall cause the pending signal to be discarded,
3018 		 *   whether or not it is blocked."
3019 		 *
3020 		 *  "Setting a signal action to SIG_DFL for a signal that is
3021 		 *   pending and whose default action is to ignore the signal
3022 		 *   (for example, SIGCHLD), shall cause the pending signal to
3023 		 *   be discarded, whether or not it is blocked"
3024 		 */
3025 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3026 			sigemptyset(&mask);
3027 			sigaddset(&mask, sig);
3028 			rm_from_queue_full(&mask, &t->signal->shared_pending);
3029 			do {
3030 				rm_from_queue_full(&mask, &t->pending);
3031 				t = next_thread(t);
3032 			} while (t != current);
3033 		}
3034 	}
3035 
3036 	spin_unlock_irq(&current->sighand->siglock);
3037 	return 0;
3038 }
3039 
3040 int
3041 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3042 {
3043 	stack_t oss;
3044 	int error;
3045 
3046 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3047 	oss.ss_size = current->sas_ss_size;
3048 	oss.ss_flags = sas_ss_flags(sp);
3049 
3050 	if (uss) {
3051 		void __user *ss_sp;
3052 		size_t ss_size;
3053 		int ss_flags;
3054 
3055 		error = -EFAULT;
3056 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3057 			goto out;
3058 		error = __get_user(ss_sp, &uss->ss_sp) |
3059 			__get_user(ss_flags, &uss->ss_flags) |
3060 			__get_user(ss_size, &uss->ss_size);
3061 		if (error)
3062 			goto out;
3063 
3064 		error = -EPERM;
3065 		if (on_sig_stack(sp))
3066 			goto out;
3067 
3068 		error = -EINVAL;
3069 		/*
3070 		 * Note - this code used to test ss_flags incorrectly:
3071 		 *  	  old code may have been written using ss_flags==0
3072 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3073 		 *	  way that worked) - this fix preserves that older
3074 		 *	  mechanism.
3075 		 */
3076 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3077 			goto out;
3078 
3079 		if (ss_flags == SS_DISABLE) {
3080 			ss_size = 0;
3081 			ss_sp = NULL;
3082 		} else {
3083 			error = -ENOMEM;
3084 			if (ss_size < MINSIGSTKSZ)
3085 				goto out;
3086 		}
3087 
3088 		current->sas_ss_sp = (unsigned long) ss_sp;
3089 		current->sas_ss_size = ss_size;
3090 	}
3091 
3092 	error = 0;
3093 	if (uoss) {
3094 		error = -EFAULT;
3095 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3096 			goto out;
3097 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3098 			__put_user(oss.ss_size, &uoss->ss_size) |
3099 			__put_user(oss.ss_flags, &uoss->ss_flags);
3100 	}
3101 
3102 out:
3103 	return error;
3104 }
3105 
3106 #ifdef __ARCH_WANT_SYS_SIGPENDING
3107 
3108 /**
3109  *  sys_sigpending - examine pending signals
3110  *  @set: where mask of pending signal is returned
3111  */
3112 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3113 {
3114 	return do_sigpending(set, sizeof(*set));
3115 }
3116 
3117 #endif
3118 
3119 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3120 /**
3121  *  sys_sigprocmask - examine and change blocked signals
3122  *  @how: whether to add, remove, or set signals
3123  *  @nset: signals to add or remove (if non-null)
3124  *  @oset: previous value of signal mask if non-null
3125  *
3126  * Some platforms have their own version with special arguments;
3127  * others support only sys_rt_sigprocmask.
3128  */
3129 
3130 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3131 		old_sigset_t __user *, oset)
3132 {
3133 	old_sigset_t old_set, new_set;
3134 	sigset_t new_blocked;
3135 
3136 	old_set = current->blocked.sig[0];
3137 
3138 	if (nset) {
3139 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3140 			return -EFAULT;
3141 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3142 
3143 		new_blocked = current->blocked;
3144 
3145 		switch (how) {
3146 		case SIG_BLOCK:
3147 			sigaddsetmask(&new_blocked, new_set);
3148 			break;
3149 		case SIG_UNBLOCK:
3150 			sigdelsetmask(&new_blocked, new_set);
3151 			break;
3152 		case SIG_SETMASK:
3153 			new_blocked.sig[0] = new_set;
3154 			break;
3155 		default:
3156 			return -EINVAL;
3157 		}
3158 
3159 		__set_current_blocked(&new_blocked);
3160 	}
3161 
3162 	if (oset) {
3163 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3164 			return -EFAULT;
3165 	}
3166 
3167 	return 0;
3168 }
3169 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3170 
3171 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3172 /**
3173  *  sys_rt_sigaction - alter an action taken by a process
3174  *  @sig: signal to be sent
3175  *  @act: new sigaction
3176  *  @oact: used to save the previous sigaction
3177  *  @sigsetsize: size of sigset_t type
3178  */
3179 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3180 		const struct sigaction __user *, act,
3181 		struct sigaction __user *, oact,
3182 		size_t, sigsetsize)
3183 {
3184 	struct k_sigaction new_sa, old_sa;
3185 	int ret = -EINVAL;
3186 
3187 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3188 	if (sigsetsize != sizeof(sigset_t))
3189 		goto out;
3190 
3191 	if (act) {
3192 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3193 			return -EFAULT;
3194 	}
3195 
3196 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3197 
3198 	if (!ret && oact) {
3199 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3200 			return -EFAULT;
3201 	}
3202 out:
3203 	return ret;
3204 }
3205 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3206 
3207 #ifdef __ARCH_WANT_SYS_SGETMASK
3208 
3209 /*
3210  * For backwards compatibility.  Functionality superseded by sigprocmask.
3211  */
3212 SYSCALL_DEFINE0(sgetmask)
3213 {
3214 	/* SMP safe */
3215 	return current->blocked.sig[0];
3216 }
3217 
3218 SYSCALL_DEFINE1(ssetmask, int, newmask)
3219 {
3220 	int old = current->blocked.sig[0];
3221 	sigset_t newset;
3222 
3223 	set_current_blocked(&newset);
3224 
3225 	return old;
3226 }
3227 #endif /* __ARCH_WANT_SGETMASK */
3228 
3229 #ifdef __ARCH_WANT_SYS_SIGNAL
3230 /*
3231  * For backwards compatibility.  Functionality superseded by sigaction.
3232  */
3233 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3234 {
3235 	struct k_sigaction new_sa, old_sa;
3236 	int ret;
3237 
3238 	new_sa.sa.sa_handler = handler;
3239 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3240 	sigemptyset(&new_sa.sa.sa_mask);
3241 
3242 	ret = do_sigaction(sig, &new_sa, &old_sa);
3243 
3244 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3245 }
3246 #endif /* __ARCH_WANT_SYS_SIGNAL */
3247 
3248 #ifdef __ARCH_WANT_SYS_PAUSE
3249 
3250 SYSCALL_DEFINE0(pause)
3251 {
3252 	while (!signal_pending(current)) {
3253 		current->state = TASK_INTERRUPTIBLE;
3254 		schedule();
3255 	}
3256 	return -ERESTARTNOHAND;
3257 }
3258 
3259 #endif
3260 
3261 int sigsuspend(sigset_t *set)
3262 {
3263 	current->saved_sigmask = current->blocked;
3264 	set_current_blocked(set);
3265 
3266 	current->state = TASK_INTERRUPTIBLE;
3267 	schedule();
3268 	set_restore_sigmask();
3269 	return -ERESTARTNOHAND;
3270 }
3271 
3272 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3273 /**
3274  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3275  *	@unewset value until a signal is received
3276  *  @unewset: new signal mask value
3277  *  @sigsetsize: size of sigset_t type
3278  */
3279 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3280 {
3281 	sigset_t newset;
3282 
3283 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3284 	if (sigsetsize != sizeof(sigset_t))
3285 		return -EINVAL;
3286 
3287 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3288 		return -EFAULT;
3289 	return sigsuspend(&newset);
3290 }
3291 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3292 
3293 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3294 {
3295 	return NULL;
3296 }
3297 
3298 void __init signals_init(void)
3299 {
3300 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3301 }
3302 
3303 #ifdef CONFIG_KGDB_KDB
3304 #include <linux/kdb.h>
3305 /*
3306  * kdb_send_sig_info - Allows kdb to send signals without exposing
3307  * signal internals.  This function checks if the required locks are
3308  * available before calling the main signal code, to avoid kdb
3309  * deadlocks.
3310  */
3311 void
3312 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3313 {
3314 	static struct task_struct *kdb_prev_t;
3315 	int sig, new_t;
3316 	if (!spin_trylock(&t->sighand->siglock)) {
3317 		kdb_printf("Can't do kill command now.\n"
3318 			   "The sigmask lock is held somewhere else in "
3319 			   "kernel, try again later\n");
3320 		return;
3321 	}
3322 	spin_unlock(&t->sighand->siglock);
3323 	new_t = kdb_prev_t != t;
3324 	kdb_prev_t = t;
3325 	if (t->state != TASK_RUNNING && new_t) {
3326 		kdb_printf("Process is not RUNNING, sending a signal from "
3327 			   "kdb risks deadlock\n"
3328 			   "on the run queue locks. "
3329 			   "The signal has _not_ been sent.\n"
3330 			   "Reissue the kill command if you want to risk "
3331 			   "the deadlock.\n");
3332 		return;
3333 	}
3334 	sig = info->si_signo;
3335 	if (send_sig_info(sig, info, t))
3336 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3337 			   sig, t->pid);
3338 	else
3339 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3340 }
3341 #endif	/* CONFIG_KGDB_KDB */
3342