1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/ratelimit.h> 26 #include <linux/tracehook.h> 27 #include <linux/capability.h> 28 #include <linux/freezer.h> 29 #include <linux/pid_namespace.h> 30 #include <linux/nsproxy.h> 31 #include <linux/user_namespace.h> 32 #include <linux/uprobes.h> 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/signal.h> 35 36 #include <asm/param.h> 37 #include <asm/uaccess.h> 38 #include <asm/unistd.h> 39 #include <asm/siginfo.h> 40 #include <asm/cacheflush.h> 41 #include "audit.h" /* audit_signal_info() */ 42 43 /* 44 * SLAB caches for signal bits. 45 */ 46 47 static struct kmem_cache *sigqueue_cachep; 48 49 int print_fatal_signals __read_mostly; 50 51 static void __user *sig_handler(struct task_struct *t, int sig) 52 { 53 return t->sighand->action[sig - 1].sa.sa_handler; 54 } 55 56 static int sig_handler_ignored(void __user *handler, int sig) 57 { 58 /* Is it explicitly or implicitly ignored? */ 59 return handler == SIG_IGN || 60 (handler == SIG_DFL && sig_kernel_ignore(sig)); 61 } 62 63 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 64 { 65 void __user *handler; 66 67 handler = sig_handler(t, sig); 68 69 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 70 handler == SIG_DFL && !force) 71 return 1; 72 73 return sig_handler_ignored(handler, sig); 74 } 75 76 static int sig_ignored(struct task_struct *t, int sig, bool force) 77 { 78 /* 79 * Blocked signals are never ignored, since the 80 * signal handler may change by the time it is 81 * unblocked. 82 */ 83 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 84 return 0; 85 86 if (!sig_task_ignored(t, sig, force)) 87 return 0; 88 89 /* 90 * Tracers may want to know about even ignored signals. 91 */ 92 return !t->ptrace; 93 } 94 95 /* 96 * Re-calculate pending state from the set of locally pending 97 * signals, globally pending signals, and blocked signals. 98 */ 99 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 100 { 101 unsigned long ready; 102 long i; 103 104 switch (_NSIG_WORDS) { 105 default: 106 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 107 ready |= signal->sig[i] &~ blocked->sig[i]; 108 break; 109 110 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 111 ready |= signal->sig[2] &~ blocked->sig[2]; 112 ready |= signal->sig[1] &~ blocked->sig[1]; 113 ready |= signal->sig[0] &~ blocked->sig[0]; 114 break; 115 116 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 117 ready |= signal->sig[0] &~ blocked->sig[0]; 118 break; 119 120 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 121 } 122 return ready != 0; 123 } 124 125 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 126 127 static int recalc_sigpending_tsk(struct task_struct *t) 128 { 129 if ((t->jobctl & JOBCTL_PENDING_MASK) || 130 PENDING(&t->pending, &t->blocked) || 131 PENDING(&t->signal->shared_pending, &t->blocked)) { 132 set_tsk_thread_flag(t, TIF_SIGPENDING); 133 return 1; 134 } 135 /* 136 * We must never clear the flag in another thread, or in current 137 * when it's possible the current syscall is returning -ERESTART*. 138 * So we don't clear it here, and only callers who know they should do. 139 */ 140 return 0; 141 } 142 143 /* 144 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 145 * This is superfluous when called on current, the wakeup is a harmless no-op. 146 */ 147 void recalc_sigpending_and_wake(struct task_struct *t) 148 { 149 if (recalc_sigpending_tsk(t)) 150 signal_wake_up(t, 0); 151 } 152 153 void recalc_sigpending(void) 154 { 155 if (!recalc_sigpending_tsk(current) && !freezing(current)) 156 clear_thread_flag(TIF_SIGPENDING); 157 158 } 159 160 /* Given the mask, find the first available signal that should be serviced. */ 161 162 #define SYNCHRONOUS_MASK \ 163 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 164 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 165 166 int next_signal(struct sigpending *pending, sigset_t *mask) 167 { 168 unsigned long i, *s, *m, x; 169 int sig = 0; 170 171 s = pending->signal.sig; 172 m = mask->sig; 173 174 /* 175 * Handle the first word specially: it contains the 176 * synchronous signals that need to be dequeued first. 177 */ 178 x = *s &~ *m; 179 if (x) { 180 if (x & SYNCHRONOUS_MASK) 181 x &= SYNCHRONOUS_MASK; 182 sig = ffz(~x) + 1; 183 return sig; 184 } 185 186 switch (_NSIG_WORDS) { 187 default: 188 for (i = 1; i < _NSIG_WORDS; ++i) { 189 x = *++s &~ *++m; 190 if (!x) 191 continue; 192 sig = ffz(~x) + i*_NSIG_BPW + 1; 193 break; 194 } 195 break; 196 197 case 2: 198 x = s[1] &~ m[1]; 199 if (!x) 200 break; 201 sig = ffz(~x) + _NSIG_BPW + 1; 202 break; 203 204 case 1: 205 /* Nothing to do */ 206 break; 207 } 208 209 return sig; 210 } 211 212 static inline void print_dropped_signal(int sig) 213 { 214 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 215 216 if (!print_fatal_signals) 217 return; 218 219 if (!__ratelimit(&ratelimit_state)) 220 return; 221 222 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 223 current->comm, current->pid, sig); 224 } 225 226 /** 227 * task_set_jobctl_pending - set jobctl pending bits 228 * @task: target task 229 * @mask: pending bits to set 230 * 231 * Clear @mask from @task->jobctl. @mask must be subset of 232 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 233 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 234 * cleared. If @task is already being killed or exiting, this function 235 * becomes noop. 236 * 237 * CONTEXT: 238 * Must be called with @task->sighand->siglock held. 239 * 240 * RETURNS: 241 * %true if @mask is set, %false if made noop because @task was dying. 242 */ 243 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask) 244 { 245 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 246 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 247 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 248 249 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 250 return false; 251 252 if (mask & JOBCTL_STOP_SIGMASK) 253 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 254 255 task->jobctl |= mask; 256 return true; 257 } 258 259 /** 260 * task_clear_jobctl_trapping - clear jobctl trapping bit 261 * @task: target task 262 * 263 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 264 * Clear it and wake up the ptracer. Note that we don't need any further 265 * locking. @task->siglock guarantees that @task->parent points to the 266 * ptracer. 267 * 268 * CONTEXT: 269 * Must be called with @task->sighand->siglock held. 270 */ 271 void task_clear_jobctl_trapping(struct task_struct *task) 272 { 273 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 274 task->jobctl &= ~JOBCTL_TRAPPING; 275 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 276 } 277 } 278 279 /** 280 * task_clear_jobctl_pending - clear jobctl pending bits 281 * @task: target task 282 * @mask: pending bits to clear 283 * 284 * Clear @mask from @task->jobctl. @mask must be subset of 285 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 286 * STOP bits are cleared together. 287 * 288 * If clearing of @mask leaves no stop or trap pending, this function calls 289 * task_clear_jobctl_trapping(). 290 * 291 * CONTEXT: 292 * Must be called with @task->sighand->siglock held. 293 */ 294 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask) 295 { 296 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 297 298 if (mask & JOBCTL_STOP_PENDING) 299 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 300 301 task->jobctl &= ~mask; 302 303 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 304 task_clear_jobctl_trapping(task); 305 } 306 307 /** 308 * task_participate_group_stop - participate in a group stop 309 * @task: task participating in a group stop 310 * 311 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 312 * Group stop states are cleared and the group stop count is consumed if 313 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 314 * stop, the appropriate %SIGNAL_* flags are set. 315 * 316 * CONTEXT: 317 * Must be called with @task->sighand->siglock held. 318 * 319 * RETURNS: 320 * %true if group stop completion should be notified to the parent, %false 321 * otherwise. 322 */ 323 static bool task_participate_group_stop(struct task_struct *task) 324 { 325 struct signal_struct *sig = task->signal; 326 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 327 328 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 329 330 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 331 332 if (!consume) 333 return false; 334 335 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 336 sig->group_stop_count--; 337 338 /* 339 * Tell the caller to notify completion iff we are entering into a 340 * fresh group stop. Read comment in do_signal_stop() for details. 341 */ 342 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 343 sig->flags = SIGNAL_STOP_STOPPED; 344 return true; 345 } 346 return false; 347 } 348 349 /* 350 * allocate a new signal queue record 351 * - this may be called without locks if and only if t == current, otherwise an 352 * appropriate lock must be held to stop the target task from exiting 353 */ 354 static struct sigqueue * 355 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 356 { 357 struct sigqueue *q = NULL; 358 struct user_struct *user; 359 360 /* 361 * Protect access to @t credentials. This can go away when all 362 * callers hold rcu read lock. 363 */ 364 rcu_read_lock(); 365 user = get_uid(__task_cred(t)->user); 366 atomic_inc(&user->sigpending); 367 rcu_read_unlock(); 368 369 if (override_rlimit || 370 atomic_read(&user->sigpending) <= 371 task_rlimit(t, RLIMIT_SIGPENDING)) { 372 q = kmem_cache_alloc(sigqueue_cachep, flags); 373 } else { 374 print_dropped_signal(sig); 375 } 376 377 if (unlikely(q == NULL)) { 378 atomic_dec(&user->sigpending); 379 free_uid(user); 380 } else { 381 INIT_LIST_HEAD(&q->list); 382 q->flags = 0; 383 q->user = user; 384 } 385 386 return q; 387 } 388 389 static void __sigqueue_free(struct sigqueue *q) 390 { 391 if (q->flags & SIGQUEUE_PREALLOC) 392 return; 393 atomic_dec(&q->user->sigpending); 394 free_uid(q->user); 395 kmem_cache_free(sigqueue_cachep, q); 396 } 397 398 void flush_sigqueue(struct sigpending *queue) 399 { 400 struct sigqueue *q; 401 402 sigemptyset(&queue->signal); 403 while (!list_empty(&queue->list)) { 404 q = list_entry(queue->list.next, struct sigqueue , list); 405 list_del_init(&q->list); 406 __sigqueue_free(q); 407 } 408 } 409 410 /* 411 * Flush all pending signals for a task. 412 */ 413 void __flush_signals(struct task_struct *t) 414 { 415 clear_tsk_thread_flag(t, TIF_SIGPENDING); 416 flush_sigqueue(&t->pending); 417 flush_sigqueue(&t->signal->shared_pending); 418 } 419 420 void flush_signals(struct task_struct *t) 421 { 422 unsigned long flags; 423 424 spin_lock_irqsave(&t->sighand->siglock, flags); 425 __flush_signals(t); 426 spin_unlock_irqrestore(&t->sighand->siglock, flags); 427 } 428 429 static void __flush_itimer_signals(struct sigpending *pending) 430 { 431 sigset_t signal, retain; 432 struct sigqueue *q, *n; 433 434 signal = pending->signal; 435 sigemptyset(&retain); 436 437 list_for_each_entry_safe(q, n, &pending->list, list) { 438 int sig = q->info.si_signo; 439 440 if (likely(q->info.si_code != SI_TIMER)) { 441 sigaddset(&retain, sig); 442 } else { 443 sigdelset(&signal, sig); 444 list_del_init(&q->list); 445 __sigqueue_free(q); 446 } 447 } 448 449 sigorsets(&pending->signal, &signal, &retain); 450 } 451 452 void flush_itimer_signals(void) 453 { 454 struct task_struct *tsk = current; 455 unsigned long flags; 456 457 spin_lock_irqsave(&tsk->sighand->siglock, flags); 458 __flush_itimer_signals(&tsk->pending); 459 __flush_itimer_signals(&tsk->signal->shared_pending); 460 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 461 } 462 463 void ignore_signals(struct task_struct *t) 464 { 465 int i; 466 467 for (i = 0; i < _NSIG; ++i) 468 t->sighand->action[i].sa.sa_handler = SIG_IGN; 469 470 flush_signals(t); 471 } 472 473 /* 474 * Flush all handlers for a task. 475 */ 476 477 void 478 flush_signal_handlers(struct task_struct *t, int force_default) 479 { 480 int i; 481 struct k_sigaction *ka = &t->sighand->action[0]; 482 for (i = _NSIG ; i != 0 ; i--) { 483 if (force_default || ka->sa.sa_handler != SIG_IGN) 484 ka->sa.sa_handler = SIG_DFL; 485 ka->sa.sa_flags = 0; 486 sigemptyset(&ka->sa.sa_mask); 487 ka++; 488 } 489 } 490 491 int unhandled_signal(struct task_struct *tsk, int sig) 492 { 493 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 494 if (is_global_init(tsk)) 495 return 1; 496 if (handler != SIG_IGN && handler != SIG_DFL) 497 return 0; 498 /* if ptraced, let the tracer determine */ 499 return !tsk->ptrace; 500 } 501 502 /* 503 * Notify the system that a driver wants to block all signals for this 504 * process, and wants to be notified if any signals at all were to be 505 * sent/acted upon. If the notifier routine returns non-zero, then the 506 * signal will be acted upon after all. If the notifier routine returns 0, 507 * then then signal will be blocked. Only one block per process is 508 * allowed. priv is a pointer to private data that the notifier routine 509 * can use to determine if the signal should be blocked or not. 510 */ 511 void 512 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 513 { 514 unsigned long flags; 515 516 spin_lock_irqsave(¤t->sighand->siglock, flags); 517 current->notifier_mask = mask; 518 current->notifier_data = priv; 519 current->notifier = notifier; 520 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 521 } 522 523 /* Notify the system that blocking has ended. */ 524 525 void 526 unblock_all_signals(void) 527 { 528 unsigned long flags; 529 530 spin_lock_irqsave(¤t->sighand->siglock, flags); 531 current->notifier = NULL; 532 current->notifier_data = NULL; 533 recalc_sigpending(); 534 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 535 } 536 537 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 538 { 539 struct sigqueue *q, *first = NULL; 540 541 /* 542 * Collect the siginfo appropriate to this signal. Check if 543 * there is another siginfo for the same signal. 544 */ 545 list_for_each_entry(q, &list->list, list) { 546 if (q->info.si_signo == sig) { 547 if (first) 548 goto still_pending; 549 first = q; 550 } 551 } 552 553 sigdelset(&list->signal, sig); 554 555 if (first) { 556 still_pending: 557 list_del_init(&first->list); 558 copy_siginfo(info, &first->info); 559 __sigqueue_free(first); 560 } else { 561 /* 562 * Ok, it wasn't in the queue. This must be 563 * a fast-pathed signal or we must have been 564 * out of queue space. So zero out the info. 565 */ 566 info->si_signo = sig; 567 info->si_errno = 0; 568 info->si_code = SI_USER; 569 info->si_pid = 0; 570 info->si_uid = 0; 571 } 572 } 573 574 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 575 siginfo_t *info) 576 { 577 int sig = next_signal(pending, mask); 578 579 if (sig) { 580 if (current->notifier) { 581 if (sigismember(current->notifier_mask, sig)) { 582 if (!(current->notifier)(current->notifier_data)) { 583 clear_thread_flag(TIF_SIGPENDING); 584 return 0; 585 } 586 } 587 } 588 589 collect_signal(sig, pending, info); 590 } 591 592 return sig; 593 } 594 595 /* 596 * Dequeue a signal and return the element to the caller, which is 597 * expected to free it. 598 * 599 * All callers have to hold the siglock. 600 */ 601 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 602 { 603 int signr; 604 605 /* We only dequeue private signals from ourselves, we don't let 606 * signalfd steal them 607 */ 608 signr = __dequeue_signal(&tsk->pending, mask, info); 609 if (!signr) { 610 signr = __dequeue_signal(&tsk->signal->shared_pending, 611 mask, info); 612 /* 613 * itimer signal ? 614 * 615 * itimers are process shared and we restart periodic 616 * itimers in the signal delivery path to prevent DoS 617 * attacks in the high resolution timer case. This is 618 * compliant with the old way of self-restarting 619 * itimers, as the SIGALRM is a legacy signal and only 620 * queued once. Changing the restart behaviour to 621 * restart the timer in the signal dequeue path is 622 * reducing the timer noise on heavy loaded !highres 623 * systems too. 624 */ 625 if (unlikely(signr == SIGALRM)) { 626 struct hrtimer *tmr = &tsk->signal->real_timer; 627 628 if (!hrtimer_is_queued(tmr) && 629 tsk->signal->it_real_incr.tv64 != 0) { 630 hrtimer_forward(tmr, tmr->base->get_time(), 631 tsk->signal->it_real_incr); 632 hrtimer_restart(tmr); 633 } 634 } 635 } 636 637 recalc_sigpending(); 638 if (!signr) 639 return 0; 640 641 if (unlikely(sig_kernel_stop(signr))) { 642 /* 643 * Set a marker that we have dequeued a stop signal. Our 644 * caller might release the siglock and then the pending 645 * stop signal it is about to process is no longer in the 646 * pending bitmasks, but must still be cleared by a SIGCONT 647 * (and overruled by a SIGKILL). So those cases clear this 648 * shared flag after we've set it. Note that this flag may 649 * remain set after the signal we return is ignored or 650 * handled. That doesn't matter because its only purpose 651 * is to alert stop-signal processing code when another 652 * processor has come along and cleared the flag. 653 */ 654 current->jobctl |= JOBCTL_STOP_DEQUEUED; 655 } 656 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 657 /* 658 * Release the siglock to ensure proper locking order 659 * of timer locks outside of siglocks. Note, we leave 660 * irqs disabled here, since the posix-timers code is 661 * about to disable them again anyway. 662 */ 663 spin_unlock(&tsk->sighand->siglock); 664 do_schedule_next_timer(info); 665 spin_lock(&tsk->sighand->siglock); 666 } 667 return signr; 668 } 669 670 /* 671 * Tell a process that it has a new active signal.. 672 * 673 * NOTE! we rely on the previous spin_lock to 674 * lock interrupts for us! We can only be called with 675 * "siglock" held, and the local interrupt must 676 * have been disabled when that got acquired! 677 * 678 * No need to set need_resched since signal event passing 679 * goes through ->blocked 680 */ 681 void signal_wake_up(struct task_struct *t, int resume) 682 { 683 unsigned int mask; 684 685 set_tsk_thread_flag(t, TIF_SIGPENDING); 686 687 /* 688 * For SIGKILL, we want to wake it up in the stopped/traced/killable 689 * case. We don't check t->state here because there is a race with it 690 * executing another processor and just now entering stopped state. 691 * By using wake_up_state, we ensure the process will wake up and 692 * handle its death signal. 693 */ 694 mask = TASK_INTERRUPTIBLE; 695 if (resume) 696 mask |= TASK_WAKEKILL; 697 if (!wake_up_state(t, mask)) 698 kick_process(t); 699 } 700 701 /* 702 * Remove signals in mask from the pending set and queue. 703 * Returns 1 if any signals were found. 704 * 705 * All callers must be holding the siglock. 706 * 707 * This version takes a sigset mask and looks at all signals, 708 * not just those in the first mask word. 709 */ 710 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 711 { 712 struct sigqueue *q, *n; 713 sigset_t m; 714 715 sigandsets(&m, mask, &s->signal); 716 if (sigisemptyset(&m)) 717 return 0; 718 719 sigandnsets(&s->signal, &s->signal, mask); 720 list_for_each_entry_safe(q, n, &s->list, list) { 721 if (sigismember(mask, q->info.si_signo)) { 722 list_del_init(&q->list); 723 __sigqueue_free(q); 724 } 725 } 726 return 1; 727 } 728 /* 729 * Remove signals in mask from the pending set and queue. 730 * Returns 1 if any signals were found. 731 * 732 * All callers must be holding the siglock. 733 */ 734 static int rm_from_queue(unsigned long mask, struct sigpending *s) 735 { 736 struct sigqueue *q, *n; 737 738 if (!sigtestsetmask(&s->signal, mask)) 739 return 0; 740 741 sigdelsetmask(&s->signal, mask); 742 list_for_each_entry_safe(q, n, &s->list, list) { 743 if (q->info.si_signo < SIGRTMIN && 744 (mask & sigmask(q->info.si_signo))) { 745 list_del_init(&q->list); 746 __sigqueue_free(q); 747 } 748 } 749 return 1; 750 } 751 752 static inline int is_si_special(const struct siginfo *info) 753 { 754 return info <= SEND_SIG_FORCED; 755 } 756 757 static inline bool si_fromuser(const struct siginfo *info) 758 { 759 return info == SEND_SIG_NOINFO || 760 (!is_si_special(info) && SI_FROMUSER(info)); 761 } 762 763 /* 764 * called with RCU read lock from check_kill_permission() 765 */ 766 static int kill_ok_by_cred(struct task_struct *t) 767 { 768 const struct cred *cred = current_cred(); 769 const struct cred *tcred = __task_cred(t); 770 771 if (uid_eq(cred->euid, tcred->suid) || 772 uid_eq(cred->euid, tcred->uid) || 773 uid_eq(cred->uid, tcred->suid) || 774 uid_eq(cred->uid, tcred->uid)) 775 return 1; 776 777 if (ns_capable(tcred->user_ns, CAP_KILL)) 778 return 1; 779 780 return 0; 781 } 782 783 /* 784 * Bad permissions for sending the signal 785 * - the caller must hold the RCU read lock 786 */ 787 static int check_kill_permission(int sig, struct siginfo *info, 788 struct task_struct *t) 789 { 790 struct pid *sid; 791 int error; 792 793 if (!valid_signal(sig)) 794 return -EINVAL; 795 796 if (!si_fromuser(info)) 797 return 0; 798 799 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 800 if (error) 801 return error; 802 803 if (!same_thread_group(current, t) && 804 !kill_ok_by_cred(t)) { 805 switch (sig) { 806 case SIGCONT: 807 sid = task_session(t); 808 /* 809 * We don't return the error if sid == NULL. The 810 * task was unhashed, the caller must notice this. 811 */ 812 if (!sid || sid == task_session(current)) 813 break; 814 default: 815 return -EPERM; 816 } 817 } 818 819 return security_task_kill(t, info, sig, 0); 820 } 821 822 /** 823 * ptrace_trap_notify - schedule trap to notify ptracer 824 * @t: tracee wanting to notify tracer 825 * 826 * This function schedules sticky ptrace trap which is cleared on the next 827 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 828 * ptracer. 829 * 830 * If @t is running, STOP trap will be taken. If trapped for STOP and 831 * ptracer is listening for events, tracee is woken up so that it can 832 * re-trap for the new event. If trapped otherwise, STOP trap will be 833 * eventually taken without returning to userland after the existing traps 834 * are finished by PTRACE_CONT. 835 * 836 * CONTEXT: 837 * Must be called with @task->sighand->siglock held. 838 */ 839 static void ptrace_trap_notify(struct task_struct *t) 840 { 841 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 842 assert_spin_locked(&t->sighand->siglock); 843 844 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 845 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 846 } 847 848 /* 849 * Handle magic process-wide effects of stop/continue signals. Unlike 850 * the signal actions, these happen immediately at signal-generation 851 * time regardless of blocking, ignoring, or handling. This does the 852 * actual continuing for SIGCONT, but not the actual stopping for stop 853 * signals. The process stop is done as a signal action for SIG_DFL. 854 * 855 * Returns true if the signal should be actually delivered, otherwise 856 * it should be dropped. 857 */ 858 static int prepare_signal(int sig, struct task_struct *p, bool force) 859 { 860 struct signal_struct *signal = p->signal; 861 struct task_struct *t; 862 863 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { 864 /* 865 * The process is in the middle of dying, nothing to do. 866 */ 867 } else if (sig_kernel_stop(sig)) { 868 /* 869 * This is a stop signal. Remove SIGCONT from all queues. 870 */ 871 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); 872 t = p; 873 do { 874 rm_from_queue(sigmask(SIGCONT), &t->pending); 875 } while_each_thread(p, t); 876 } else if (sig == SIGCONT) { 877 unsigned int why; 878 /* 879 * Remove all stop signals from all queues, wake all threads. 880 */ 881 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); 882 t = p; 883 do { 884 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 885 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 886 if (likely(!(t->ptrace & PT_SEIZED))) 887 wake_up_state(t, __TASK_STOPPED); 888 else 889 ptrace_trap_notify(t); 890 } while_each_thread(p, t); 891 892 /* 893 * Notify the parent with CLD_CONTINUED if we were stopped. 894 * 895 * If we were in the middle of a group stop, we pretend it 896 * was already finished, and then continued. Since SIGCHLD 897 * doesn't queue we report only CLD_STOPPED, as if the next 898 * CLD_CONTINUED was dropped. 899 */ 900 why = 0; 901 if (signal->flags & SIGNAL_STOP_STOPPED) 902 why |= SIGNAL_CLD_CONTINUED; 903 else if (signal->group_stop_count) 904 why |= SIGNAL_CLD_STOPPED; 905 906 if (why) { 907 /* 908 * The first thread which returns from do_signal_stop() 909 * will take ->siglock, notice SIGNAL_CLD_MASK, and 910 * notify its parent. See get_signal_to_deliver(). 911 */ 912 signal->flags = why | SIGNAL_STOP_CONTINUED; 913 signal->group_stop_count = 0; 914 signal->group_exit_code = 0; 915 } 916 } 917 918 return !sig_ignored(p, sig, force); 919 } 920 921 /* 922 * Test if P wants to take SIG. After we've checked all threads with this, 923 * it's equivalent to finding no threads not blocking SIG. Any threads not 924 * blocking SIG were ruled out because they are not running and already 925 * have pending signals. Such threads will dequeue from the shared queue 926 * as soon as they're available, so putting the signal on the shared queue 927 * will be equivalent to sending it to one such thread. 928 */ 929 static inline int wants_signal(int sig, struct task_struct *p) 930 { 931 if (sigismember(&p->blocked, sig)) 932 return 0; 933 if (p->flags & PF_EXITING) 934 return 0; 935 if (sig == SIGKILL) 936 return 1; 937 if (task_is_stopped_or_traced(p)) 938 return 0; 939 return task_curr(p) || !signal_pending(p); 940 } 941 942 static void complete_signal(int sig, struct task_struct *p, int group) 943 { 944 struct signal_struct *signal = p->signal; 945 struct task_struct *t; 946 947 /* 948 * Now find a thread we can wake up to take the signal off the queue. 949 * 950 * If the main thread wants the signal, it gets first crack. 951 * Probably the least surprising to the average bear. 952 */ 953 if (wants_signal(sig, p)) 954 t = p; 955 else if (!group || thread_group_empty(p)) 956 /* 957 * There is just one thread and it does not need to be woken. 958 * It will dequeue unblocked signals before it runs again. 959 */ 960 return; 961 else { 962 /* 963 * Otherwise try to find a suitable thread. 964 */ 965 t = signal->curr_target; 966 while (!wants_signal(sig, t)) { 967 t = next_thread(t); 968 if (t == signal->curr_target) 969 /* 970 * No thread needs to be woken. 971 * Any eligible threads will see 972 * the signal in the queue soon. 973 */ 974 return; 975 } 976 signal->curr_target = t; 977 } 978 979 /* 980 * Found a killable thread. If the signal will be fatal, 981 * then start taking the whole group down immediately. 982 */ 983 if (sig_fatal(p, sig) && 984 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 985 !sigismember(&t->real_blocked, sig) && 986 (sig == SIGKILL || !t->ptrace)) { 987 /* 988 * This signal will be fatal to the whole group. 989 */ 990 if (!sig_kernel_coredump(sig)) { 991 /* 992 * Start a group exit and wake everybody up. 993 * This way we don't have other threads 994 * running and doing things after a slower 995 * thread has the fatal signal pending. 996 */ 997 signal->flags = SIGNAL_GROUP_EXIT; 998 signal->group_exit_code = sig; 999 signal->group_stop_count = 0; 1000 t = p; 1001 do { 1002 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1003 sigaddset(&t->pending.signal, SIGKILL); 1004 signal_wake_up(t, 1); 1005 } while_each_thread(p, t); 1006 return; 1007 } 1008 } 1009 1010 /* 1011 * The signal is already in the shared-pending queue. 1012 * Tell the chosen thread to wake up and dequeue it. 1013 */ 1014 signal_wake_up(t, sig == SIGKILL); 1015 return; 1016 } 1017 1018 static inline int legacy_queue(struct sigpending *signals, int sig) 1019 { 1020 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1021 } 1022 1023 #ifdef CONFIG_USER_NS 1024 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1025 { 1026 if (current_user_ns() == task_cred_xxx(t, user_ns)) 1027 return; 1028 1029 if (SI_FROMKERNEL(info)) 1030 return; 1031 1032 rcu_read_lock(); 1033 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 1034 make_kuid(current_user_ns(), info->si_uid)); 1035 rcu_read_unlock(); 1036 } 1037 #else 1038 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1039 { 1040 return; 1041 } 1042 #endif 1043 1044 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 1045 int group, int from_ancestor_ns) 1046 { 1047 struct sigpending *pending; 1048 struct sigqueue *q; 1049 int override_rlimit; 1050 int ret = 0, result; 1051 1052 assert_spin_locked(&t->sighand->siglock); 1053 1054 result = TRACE_SIGNAL_IGNORED; 1055 if (!prepare_signal(sig, t, 1056 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1057 goto ret; 1058 1059 pending = group ? &t->signal->shared_pending : &t->pending; 1060 /* 1061 * Short-circuit ignored signals and support queuing 1062 * exactly one non-rt signal, so that we can get more 1063 * detailed information about the cause of the signal. 1064 */ 1065 result = TRACE_SIGNAL_ALREADY_PENDING; 1066 if (legacy_queue(pending, sig)) 1067 goto ret; 1068 1069 result = TRACE_SIGNAL_DELIVERED; 1070 /* 1071 * fast-pathed signals for kernel-internal things like SIGSTOP 1072 * or SIGKILL. 1073 */ 1074 if (info == SEND_SIG_FORCED) 1075 goto out_set; 1076 1077 /* 1078 * Real-time signals must be queued if sent by sigqueue, or 1079 * some other real-time mechanism. It is implementation 1080 * defined whether kill() does so. We attempt to do so, on 1081 * the principle of least surprise, but since kill is not 1082 * allowed to fail with EAGAIN when low on memory we just 1083 * make sure at least one signal gets delivered and don't 1084 * pass on the info struct. 1085 */ 1086 if (sig < SIGRTMIN) 1087 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1088 else 1089 override_rlimit = 0; 1090 1091 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1092 override_rlimit); 1093 if (q) { 1094 list_add_tail(&q->list, &pending->list); 1095 switch ((unsigned long) info) { 1096 case (unsigned long) SEND_SIG_NOINFO: 1097 q->info.si_signo = sig; 1098 q->info.si_errno = 0; 1099 q->info.si_code = SI_USER; 1100 q->info.si_pid = task_tgid_nr_ns(current, 1101 task_active_pid_ns(t)); 1102 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1103 break; 1104 case (unsigned long) SEND_SIG_PRIV: 1105 q->info.si_signo = sig; 1106 q->info.si_errno = 0; 1107 q->info.si_code = SI_KERNEL; 1108 q->info.si_pid = 0; 1109 q->info.si_uid = 0; 1110 break; 1111 default: 1112 copy_siginfo(&q->info, info); 1113 if (from_ancestor_ns) 1114 q->info.si_pid = 0; 1115 break; 1116 } 1117 1118 userns_fixup_signal_uid(&q->info, t); 1119 1120 } else if (!is_si_special(info)) { 1121 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1122 /* 1123 * Queue overflow, abort. We may abort if the 1124 * signal was rt and sent by user using something 1125 * other than kill(). 1126 */ 1127 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1128 ret = -EAGAIN; 1129 goto ret; 1130 } else { 1131 /* 1132 * This is a silent loss of information. We still 1133 * send the signal, but the *info bits are lost. 1134 */ 1135 result = TRACE_SIGNAL_LOSE_INFO; 1136 } 1137 } 1138 1139 out_set: 1140 signalfd_notify(t, sig); 1141 sigaddset(&pending->signal, sig); 1142 complete_signal(sig, t, group); 1143 ret: 1144 trace_signal_generate(sig, info, t, group, result); 1145 return ret; 1146 } 1147 1148 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1149 int group) 1150 { 1151 int from_ancestor_ns = 0; 1152 1153 #ifdef CONFIG_PID_NS 1154 from_ancestor_ns = si_fromuser(info) && 1155 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1156 #endif 1157 1158 return __send_signal(sig, info, t, group, from_ancestor_ns); 1159 } 1160 1161 static void print_fatal_signal(struct pt_regs *regs, int signr) 1162 { 1163 printk("%s/%d: potentially unexpected fatal signal %d.\n", 1164 current->comm, task_pid_nr(current), signr); 1165 1166 #if defined(__i386__) && !defined(__arch_um__) 1167 printk("code at %08lx: ", regs->ip); 1168 { 1169 int i; 1170 for (i = 0; i < 16; i++) { 1171 unsigned char insn; 1172 1173 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1174 break; 1175 printk("%02x ", insn); 1176 } 1177 } 1178 #endif 1179 printk("\n"); 1180 preempt_disable(); 1181 show_regs(regs); 1182 preempt_enable(); 1183 } 1184 1185 static int __init setup_print_fatal_signals(char *str) 1186 { 1187 get_option (&str, &print_fatal_signals); 1188 1189 return 1; 1190 } 1191 1192 __setup("print-fatal-signals=", setup_print_fatal_signals); 1193 1194 int 1195 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1196 { 1197 return send_signal(sig, info, p, 1); 1198 } 1199 1200 static int 1201 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1202 { 1203 return send_signal(sig, info, t, 0); 1204 } 1205 1206 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1207 bool group) 1208 { 1209 unsigned long flags; 1210 int ret = -ESRCH; 1211 1212 if (lock_task_sighand(p, &flags)) { 1213 ret = send_signal(sig, info, p, group); 1214 unlock_task_sighand(p, &flags); 1215 } 1216 1217 return ret; 1218 } 1219 1220 /* 1221 * Force a signal that the process can't ignore: if necessary 1222 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1223 * 1224 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1225 * since we do not want to have a signal handler that was blocked 1226 * be invoked when user space had explicitly blocked it. 1227 * 1228 * We don't want to have recursive SIGSEGV's etc, for example, 1229 * that is why we also clear SIGNAL_UNKILLABLE. 1230 */ 1231 int 1232 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1233 { 1234 unsigned long int flags; 1235 int ret, blocked, ignored; 1236 struct k_sigaction *action; 1237 1238 spin_lock_irqsave(&t->sighand->siglock, flags); 1239 action = &t->sighand->action[sig-1]; 1240 ignored = action->sa.sa_handler == SIG_IGN; 1241 blocked = sigismember(&t->blocked, sig); 1242 if (blocked || ignored) { 1243 action->sa.sa_handler = SIG_DFL; 1244 if (blocked) { 1245 sigdelset(&t->blocked, sig); 1246 recalc_sigpending_and_wake(t); 1247 } 1248 } 1249 if (action->sa.sa_handler == SIG_DFL) 1250 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1251 ret = specific_send_sig_info(sig, info, t); 1252 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1253 1254 return ret; 1255 } 1256 1257 /* 1258 * Nuke all other threads in the group. 1259 */ 1260 int zap_other_threads(struct task_struct *p) 1261 { 1262 struct task_struct *t = p; 1263 int count = 0; 1264 1265 p->signal->group_stop_count = 0; 1266 1267 while_each_thread(p, t) { 1268 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1269 count++; 1270 1271 /* Don't bother with already dead threads */ 1272 if (t->exit_state) 1273 continue; 1274 sigaddset(&t->pending.signal, SIGKILL); 1275 signal_wake_up(t, 1); 1276 } 1277 1278 return count; 1279 } 1280 1281 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1282 unsigned long *flags) 1283 { 1284 struct sighand_struct *sighand; 1285 1286 for (;;) { 1287 local_irq_save(*flags); 1288 rcu_read_lock(); 1289 sighand = rcu_dereference(tsk->sighand); 1290 if (unlikely(sighand == NULL)) { 1291 rcu_read_unlock(); 1292 local_irq_restore(*flags); 1293 break; 1294 } 1295 1296 spin_lock(&sighand->siglock); 1297 if (likely(sighand == tsk->sighand)) { 1298 rcu_read_unlock(); 1299 break; 1300 } 1301 spin_unlock(&sighand->siglock); 1302 rcu_read_unlock(); 1303 local_irq_restore(*flags); 1304 } 1305 1306 return sighand; 1307 } 1308 1309 /* 1310 * send signal info to all the members of a group 1311 */ 1312 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1313 { 1314 int ret; 1315 1316 rcu_read_lock(); 1317 ret = check_kill_permission(sig, info, p); 1318 rcu_read_unlock(); 1319 1320 if (!ret && sig) 1321 ret = do_send_sig_info(sig, info, p, true); 1322 1323 return ret; 1324 } 1325 1326 /* 1327 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1328 * control characters do (^C, ^Z etc) 1329 * - the caller must hold at least a readlock on tasklist_lock 1330 */ 1331 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1332 { 1333 struct task_struct *p = NULL; 1334 int retval, success; 1335 1336 success = 0; 1337 retval = -ESRCH; 1338 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1339 int err = group_send_sig_info(sig, info, p); 1340 success |= !err; 1341 retval = err; 1342 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1343 return success ? 0 : retval; 1344 } 1345 1346 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1347 { 1348 int error = -ESRCH; 1349 struct task_struct *p; 1350 1351 rcu_read_lock(); 1352 retry: 1353 p = pid_task(pid, PIDTYPE_PID); 1354 if (p) { 1355 error = group_send_sig_info(sig, info, p); 1356 if (unlikely(error == -ESRCH)) 1357 /* 1358 * The task was unhashed in between, try again. 1359 * If it is dead, pid_task() will return NULL, 1360 * if we race with de_thread() it will find the 1361 * new leader. 1362 */ 1363 goto retry; 1364 } 1365 rcu_read_unlock(); 1366 1367 return error; 1368 } 1369 1370 int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1371 { 1372 int error; 1373 rcu_read_lock(); 1374 error = kill_pid_info(sig, info, find_vpid(pid)); 1375 rcu_read_unlock(); 1376 return error; 1377 } 1378 1379 static int kill_as_cred_perm(const struct cred *cred, 1380 struct task_struct *target) 1381 { 1382 const struct cred *pcred = __task_cred(target); 1383 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1384 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1385 return 0; 1386 return 1; 1387 } 1388 1389 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1390 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1391 const struct cred *cred, u32 secid) 1392 { 1393 int ret = -EINVAL; 1394 struct task_struct *p; 1395 unsigned long flags; 1396 1397 if (!valid_signal(sig)) 1398 return ret; 1399 1400 rcu_read_lock(); 1401 p = pid_task(pid, PIDTYPE_PID); 1402 if (!p) { 1403 ret = -ESRCH; 1404 goto out_unlock; 1405 } 1406 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1407 ret = -EPERM; 1408 goto out_unlock; 1409 } 1410 ret = security_task_kill(p, info, sig, secid); 1411 if (ret) 1412 goto out_unlock; 1413 1414 if (sig) { 1415 if (lock_task_sighand(p, &flags)) { 1416 ret = __send_signal(sig, info, p, 1, 0); 1417 unlock_task_sighand(p, &flags); 1418 } else 1419 ret = -ESRCH; 1420 } 1421 out_unlock: 1422 rcu_read_unlock(); 1423 return ret; 1424 } 1425 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1426 1427 /* 1428 * kill_something_info() interprets pid in interesting ways just like kill(2). 1429 * 1430 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1431 * is probably wrong. Should make it like BSD or SYSV. 1432 */ 1433 1434 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1435 { 1436 int ret; 1437 1438 if (pid > 0) { 1439 rcu_read_lock(); 1440 ret = kill_pid_info(sig, info, find_vpid(pid)); 1441 rcu_read_unlock(); 1442 return ret; 1443 } 1444 1445 read_lock(&tasklist_lock); 1446 if (pid != -1) { 1447 ret = __kill_pgrp_info(sig, info, 1448 pid ? find_vpid(-pid) : task_pgrp(current)); 1449 } else { 1450 int retval = 0, count = 0; 1451 struct task_struct * p; 1452 1453 for_each_process(p) { 1454 if (task_pid_vnr(p) > 1 && 1455 !same_thread_group(p, current)) { 1456 int err = group_send_sig_info(sig, info, p); 1457 ++count; 1458 if (err != -EPERM) 1459 retval = err; 1460 } 1461 } 1462 ret = count ? retval : -ESRCH; 1463 } 1464 read_unlock(&tasklist_lock); 1465 1466 return ret; 1467 } 1468 1469 /* 1470 * These are for backward compatibility with the rest of the kernel source. 1471 */ 1472 1473 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1474 { 1475 /* 1476 * Make sure legacy kernel users don't send in bad values 1477 * (normal paths check this in check_kill_permission). 1478 */ 1479 if (!valid_signal(sig)) 1480 return -EINVAL; 1481 1482 return do_send_sig_info(sig, info, p, false); 1483 } 1484 1485 #define __si_special(priv) \ 1486 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1487 1488 int 1489 send_sig(int sig, struct task_struct *p, int priv) 1490 { 1491 return send_sig_info(sig, __si_special(priv), p); 1492 } 1493 1494 void 1495 force_sig(int sig, struct task_struct *p) 1496 { 1497 force_sig_info(sig, SEND_SIG_PRIV, p); 1498 } 1499 1500 /* 1501 * When things go south during signal handling, we 1502 * will force a SIGSEGV. And if the signal that caused 1503 * the problem was already a SIGSEGV, we'll want to 1504 * make sure we don't even try to deliver the signal.. 1505 */ 1506 int 1507 force_sigsegv(int sig, struct task_struct *p) 1508 { 1509 if (sig == SIGSEGV) { 1510 unsigned long flags; 1511 spin_lock_irqsave(&p->sighand->siglock, flags); 1512 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1513 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1514 } 1515 force_sig(SIGSEGV, p); 1516 return 0; 1517 } 1518 1519 int kill_pgrp(struct pid *pid, int sig, int priv) 1520 { 1521 int ret; 1522 1523 read_lock(&tasklist_lock); 1524 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1525 read_unlock(&tasklist_lock); 1526 1527 return ret; 1528 } 1529 EXPORT_SYMBOL(kill_pgrp); 1530 1531 int kill_pid(struct pid *pid, int sig, int priv) 1532 { 1533 return kill_pid_info(sig, __si_special(priv), pid); 1534 } 1535 EXPORT_SYMBOL(kill_pid); 1536 1537 /* 1538 * These functions support sending signals using preallocated sigqueue 1539 * structures. This is needed "because realtime applications cannot 1540 * afford to lose notifications of asynchronous events, like timer 1541 * expirations or I/O completions". In the case of POSIX Timers 1542 * we allocate the sigqueue structure from the timer_create. If this 1543 * allocation fails we are able to report the failure to the application 1544 * with an EAGAIN error. 1545 */ 1546 struct sigqueue *sigqueue_alloc(void) 1547 { 1548 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1549 1550 if (q) 1551 q->flags |= SIGQUEUE_PREALLOC; 1552 1553 return q; 1554 } 1555 1556 void sigqueue_free(struct sigqueue *q) 1557 { 1558 unsigned long flags; 1559 spinlock_t *lock = ¤t->sighand->siglock; 1560 1561 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1562 /* 1563 * We must hold ->siglock while testing q->list 1564 * to serialize with collect_signal() or with 1565 * __exit_signal()->flush_sigqueue(). 1566 */ 1567 spin_lock_irqsave(lock, flags); 1568 q->flags &= ~SIGQUEUE_PREALLOC; 1569 /* 1570 * If it is queued it will be freed when dequeued, 1571 * like the "regular" sigqueue. 1572 */ 1573 if (!list_empty(&q->list)) 1574 q = NULL; 1575 spin_unlock_irqrestore(lock, flags); 1576 1577 if (q) 1578 __sigqueue_free(q); 1579 } 1580 1581 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1582 { 1583 int sig = q->info.si_signo; 1584 struct sigpending *pending; 1585 unsigned long flags; 1586 int ret, result; 1587 1588 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1589 1590 ret = -1; 1591 if (!likely(lock_task_sighand(t, &flags))) 1592 goto ret; 1593 1594 ret = 1; /* the signal is ignored */ 1595 result = TRACE_SIGNAL_IGNORED; 1596 if (!prepare_signal(sig, t, false)) 1597 goto out; 1598 1599 ret = 0; 1600 if (unlikely(!list_empty(&q->list))) { 1601 /* 1602 * If an SI_TIMER entry is already queue just increment 1603 * the overrun count. 1604 */ 1605 BUG_ON(q->info.si_code != SI_TIMER); 1606 q->info.si_overrun++; 1607 result = TRACE_SIGNAL_ALREADY_PENDING; 1608 goto out; 1609 } 1610 q->info.si_overrun = 0; 1611 1612 signalfd_notify(t, sig); 1613 pending = group ? &t->signal->shared_pending : &t->pending; 1614 list_add_tail(&q->list, &pending->list); 1615 sigaddset(&pending->signal, sig); 1616 complete_signal(sig, t, group); 1617 result = TRACE_SIGNAL_DELIVERED; 1618 out: 1619 trace_signal_generate(sig, &q->info, t, group, result); 1620 unlock_task_sighand(t, &flags); 1621 ret: 1622 return ret; 1623 } 1624 1625 /* 1626 * Let a parent know about the death of a child. 1627 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1628 * 1629 * Returns true if our parent ignored us and so we've switched to 1630 * self-reaping. 1631 */ 1632 bool do_notify_parent(struct task_struct *tsk, int sig) 1633 { 1634 struct siginfo info; 1635 unsigned long flags; 1636 struct sighand_struct *psig; 1637 bool autoreap = false; 1638 1639 BUG_ON(sig == -1); 1640 1641 /* do_notify_parent_cldstop should have been called instead. */ 1642 BUG_ON(task_is_stopped_or_traced(tsk)); 1643 1644 BUG_ON(!tsk->ptrace && 1645 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1646 1647 if (sig != SIGCHLD) { 1648 /* 1649 * This is only possible if parent == real_parent. 1650 * Check if it has changed security domain. 1651 */ 1652 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1653 sig = SIGCHLD; 1654 } 1655 1656 info.si_signo = sig; 1657 info.si_errno = 0; 1658 /* 1659 * We are under tasklist_lock here so our parent is tied to 1660 * us and cannot change. 1661 * 1662 * task_active_pid_ns will always return the same pid namespace 1663 * until a task passes through release_task. 1664 * 1665 * write_lock() currently calls preempt_disable() which is the 1666 * same as rcu_read_lock(), but according to Oleg, this is not 1667 * correct to rely on this 1668 */ 1669 rcu_read_lock(); 1670 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1671 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1672 task_uid(tsk)); 1673 rcu_read_unlock(); 1674 1675 info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime); 1676 info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime); 1677 1678 info.si_status = tsk->exit_code & 0x7f; 1679 if (tsk->exit_code & 0x80) 1680 info.si_code = CLD_DUMPED; 1681 else if (tsk->exit_code & 0x7f) 1682 info.si_code = CLD_KILLED; 1683 else { 1684 info.si_code = CLD_EXITED; 1685 info.si_status = tsk->exit_code >> 8; 1686 } 1687 1688 psig = tsk->parent->sighand; 1689 spin_lock_irqsave(&psig->siglock, flags); 1690 if (!tsk->ptrace && sig == SIGCHLD && 1691 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1692 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1693 /* 1694 * We are exiting and our parent doesn't care. POSIX.1 1695 * defines special semantics for setting SIGCHLD to SIG_IGN 1696 * or setting the SA_NOCLDWAIT flag: we should be reaped 1697 * automatically and not left for our parent's wait4 call. 1698 * Rather than having the parent do it as a magic kind of 1699 * signal handler, we just set this to tell do_exit that we 1700 * can be cleaned up without becoming a zombie. Note that 1701 * we still call __wake_up_parent in this case, because a 1702 * blocked sys_wait4 might now return -ECHILD. 1703 * 1704 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1705 * is implementation-defined: we do (if you don't want 1706 * it, just use SIG_IGN instead). 1707 */ 1708 autoreap = true; 1709 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1710 sig = 0; 1711 } 1712 if (valid_signal(sig) && sig) 1713 __group_send_sig_info(sig, &info, tsk->parent); 1714 __wake_up_parent(tsk, tsk->parent); 1715 spin_unlock_irqrestore(&psig->siglock, flags); 1716 1717 return autoreap; 1718 } 1719 1720 /** 1721 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1722 * @tsk: task reporting the state change 1723 * @for_ptracer: the notification is for ptracer 1724 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1725 * 1726 * Notify @tsk's parent that the stopped/continued state has changed. If 1727 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1728 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1729 * 1730 * CONTEXT: 1731 * Must be called with tasklist_lock at least read locked. 1732 */ 1733 static void do_notify_parent_cldstop(struct task_struct *tsk, 1734 bool for_ptracer, int why) 1735 { 1736 struct siginfo info; 1737 unsigned long flags; 1738 struct task_struct *parent; 1739 struct sighand_struct *sighand; 1740 1741 if (for_ptracer) { 1742 parent = tsk->parent; 1743 } else { 1744 tsk = tsk->group_leader; 1745 parent = tsk->real_parent; 1746 } 1747 1748 info.si_signo = SIGCHLD; 1749 info.si_errno = 0; 1750 /* 1751 * see comment in do_notify_parent() about the following 4 lines 1752 */ 1753 rcu_read_lock(); 1754 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns); 1755 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1756 rcu_read_unlock(); 1757 1758 info.si_utime = cputime_to_clock_t(tsk->utime); 1759 info.si_stime = cputime_to_clock_t(tsk->stime); 1760 1761 info.si_code = why; 1762 switch (why) { 1763 case CLD_CONTINUED: 1764 info.si_status = SIGCONT; 1765 break; 1766 case CLD_STOPPED: 1767 info.si_status = tsk->signal->group_exit_code & 0x7f; 1768 break; 1769 case CLD_TRAPPED: 1770 info.si_status = tsk->exit_code & 0x7f; 1771 break; 1772 default: 1773 BUG(); 1774 } 1775 1776 sighand = parent->sighand; 1777 spin_lock_irqsave(&sighand->siglock, flags); 1778 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1779 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1780 __group_send_sig_info(SIGCHLD, &info, parent); 1781 /* 1782 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1783 */ 1784 __wake_up_parent(tsk, parent); 1785 spin_unlock_irqrestore(&sighand->siglock, flags); 1786 } 1787 1788 static inline int may_ptrace_stop(void) 1789 { 1790 if (!likely(current->ptrace)) 1791 return 0; 1792 /* 1793 * Are we in the middle of do_coredump? 1794 * If so and our tracer is also part of the coredump stopping 1795 * is a deadlock situation, and pointless because our tracer 1796 * is dead so don't allow us to stop. 1797 * If SIGKILL was already sent before the caller unlocked 1798 * ->siglock we must see ->core_state != NULL. Otherwise it 1799 * is safe to enter schedule(). 1800 */ 1801 if (unlikely(current->mm->core_state) && 1802 unlikely(current->mm == current->parent->mm)) 1803 return 0; 1804 1805 return 1; 1806 } 1807 1808 /* 1809 * Return non-zero if there is a SIGKILL that should be waking us up. 1810 * Called with the siglock held. 1811 */ 1812 static int sigkill_pending(struct task_struct *tsk) 1813 { 1814 return sigismember(&tsk->pending.signal, SIGKILL) || 1815 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1816 } 1817 1818 /* 1819 * This must be called with current->sighand->siglock held. 1820 * 1821 * This should be the path for all ptrace stops. 1822 * We always set current->last_siginfo while stopped here. 1823 * That makes it a way to test a stopped process for 1824 * being ptrace-stopped vs being job-control-stopped. 1825 * 1826 * If we actually decide not to stop at all because the tracer 1827 * is gone, we keep current->exit_code unless clear_code. 1828 */ 1829 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1830 __releases(¤t->sighand->siglock) 1831 __acquires(¤t->sighand->siglock) 1832 { 1833 bool gstop_done = false; 1834 1835 if (arch_ptrace_stop_needed(exit_code, info)) { 1836 /* 1837 * The arch code has something special to do before a 1838 * ptrace stop. This is allowed to block, e.g. for faults 1839 * on user stack pages. We can't keep the siglock while 1840 * calling arch_ptrace_stop, so we must release it now. 1841 * To preserve proper semantics, we must do this before 1842 * any signal bookkeeping like checking group_stop_count. 1843 * Meanwhile, a SIGKILL could come in before we retake the 1844 * siglock. That must prevent us from sleeping in TASK_TRACED. 1845 * So after regaining the lock, we must check for SIGKILL. 1846 */ 1847 spin_unlock_irq(¤t->sighand->siglock); 1848 arch_ptrace_stop(exit_code, info); 1849 spin_lock_irq(¤t->sighand->siglock); 1850 if (sigkill_pending(current)) 1851 return; 1852 } 1853 1854 /* 1855 * We're committing to trapping. TRACED should be visible before 1856 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1857 * Also, transition to TRACED and updates to ->jobctl should be 1858 * atomic with respect to siglock and should be done after the arch 1859 * hook as siglock is released and regrabbed across it. 1860 */ 1861 set_current_state(TASK_TRACED); 1862 1863 current->last_siginfo = info; 1864 current->exit_code = exit_code; 1865 1866 /* 1867 * If @why is CLD_STOPPED, we're trapping to participate in a group 1868 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1869 * across siglock relocks since INTERRUPT was scheduled, PENDING 1870 * could be clear now. We act as if SIGCONT is received after 1871 * TASK_TRACED is entered - ignore it. 1872 */ 1873 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1874 gstop_done = task_participate_group_stop(current); 1875 1876 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1877 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1878 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1879 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1880 1881 /* entering a trap, clear TRAPPING */ 1882 task_clear_jobctl_trapping(current); 1883 1884 spin_unlock_irq(¤t->sighand->siglock); 1885 read_lock(&tasklist_lock); 1886 if (may_ptrace_stop()) { 1887 /* 1888 * Notify parents of the stop. 1889 * 1890 * While ptraced, there are two parents - the ptracer and 1891 * the real_parent of the group_leader. The ptracer should 1892 * know about every stop while the real parent is only 1893 * interested in the completion of group stop. The states 1894 * for the two don't interact with each other. Notify 1895 * separately unless they're gonna be duplicates. 1896 */ 1897 do_notify_parent_cldstop(current, true, why); 1898 if (gstop_done && ptrace_reparented(current)) 1899 do_notify_parent_cldstop(current, false, why); 1900 1901 /* 1902 * Don't want to allow preemption here, because 1903 * sys_ptrace() needs this task to be inactive. 1904 * 1905 * XXX: implement read_unlock_no_resched(). 1906 */ 1907 preempt_disable(); 1908 read_unlock(&tasklist_lock); 1909 preempt_enable_no_resched(); 1910 schedule(); 1911 } else { 1912 /* 1913 * By the time we got the lock, our tracer went away. 1914 * Don't drop the lock yet, another tracer may come. 1915 * 1916 * If @gstop_done, the ptracer went away between group stop 1917 * completion and here. During detach, it would have set 1918 * JOBCTL_STOP_PENDING on us and we'll re-enter 1919 * TASK_STOPPED in do_signal_stop() on return, so notifying 1920 * the real parent of the group stop completion is enough. 1921 */ 1922 if (gstop_done) 1923 do_notify_parent_cldstop(current, false, why); 1924 1925 __set_current_state(TASK_RUNNING); 1926 if (clear_code) 1927 current->exit_code = 0; 1928 read_unlock(&tasklist_lock); 1929 } 1930 1931 /* 1932 * While in TASK_TRACED, we were considered "frozen enough". 1933 * Now that we woke up, it's crucial if we're supposed to be 1934 * frozen that we freeze now before running anything substantial. 1935 */ 1936 try_to_freeze(); 1937 1938 /* 1939 * We are back. Now reacquire the siglock before touching 1940 * last_siginfo, so that we are sure to have synchronized with 1941 * any signal-sending on another CPU that wants to examine it. 1942 */ 1943 spin_lock_irq(¤t->sighand->siglock); 1944 current->last_siginfo = NULL; 1945 1946 /* LISTENING can be set only during STOP traps, clear it */ 1947 current->jobctl &= ~JOBCTL_LISTENING; 1948 1949 /* 1950 * Queued signals ignored us while we were stopped for tracing. 1951 * So check for any that we should take before resuming user mode. 1952 * This sets TIF_SIGPENDING, but never clears it. 1953 */ 1954 recalc_sigpending_tsk(current); 1955 } 1956 1957 static void ptrace_do_notify(int signr, int exit_code, int why) 1958 { 1959 siginfo_t info; 1960 1961 memset(&info, 0, sizeof info); 1962 info.si_signo = signr; 1963 info.si_code = exit_code; 1964 info.si_pid = task_pid_vnr(current); 1965 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1966 1967 /* Let the debugger run. */ 1968 ptrace_stop(exit_code, why, 1, &info); 1969 } 1970 1971 void ptrace_notify(int exit_code) 1972 { 1973 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1974 if (unlikely(current->task_works)) 1975 task_work_run(); 1976 1977 spin_lock_irq(¤t->sighand->siglock); 1978 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1979 spin_unlock_irq(¤t->sighand->siglock); 1980 } 1981 1982 /** 1983 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1984 * @signr: signr causing group stop if initiating 1985 * 1986 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1987 * and participate in it. If already set, participate in the existing 1988 * group stop. If participated in a group stop (and thus slept), %true is 1989 * returned with siglock released. 1990 * 1991 * If ptraced, this function doesn't handle stop itself. Instead, 1992 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1993 * untouched. The caller must ensure that INTERRUPT trap handling takes 1994 * places afterwards. 1995 * 1996 * CONTEXT: 1997 * Must be called with @current->sighand->siglock held, which is released 1998 * on %true return. 1999 * 2000 * RETURNS: 2001 * %false if group stop is already cancelled or ptrace trap is scheduled. 2002 * %true if participated in group stop. 2003 */ 2004 static bool do_signal_stop(int signr) 2005 __releases(¤t->sighand->siglock) 2006 { 2007 struct signal_struct *sig = current->signal; 2008 2009 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2010 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2011 struct task_struct *t; 2012 2013 /* signr will be recorded in task->jobctl for retries */ 2014 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2015 2016 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2017 unlikely(signal_group_exit(sig))) 2018 return false; 2019 /* 2020 * There is no group stop already in progress. We must 2021 * initiate one now. 2022 * 2023 * While ptraced, a task may be resumed while group stop is 2024 * still in effect and then receive a stop signal and 2025 * initiate another group stop. This deviates from the 2026 * usual behavior as two consecutive stop signals can't 2027 * cause two group stops when !ptraced. That is why we 2028 * also check !task_is_stopped(t) below. 2029 * 2030 * The condition can be distinguished by testing whether 2031 * SIGNAL_STOP_STOPPED is already set. Don't generate 2032 * group_exit_code in such case. 2033 * 2034 * This is not necessary for SIGNAL_STOP_CONTINUED because 2035 * an intervening stop signal is required to cause two 2036 * continued events regardless of ptrace. 2037 */ 2038 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2039 sig->group_exit_code = signr; 2040 2041 sig->group_stop_count = 0; 2042 2043 if (task_set_jobctl_pending(current, signr | gstop)) 2044 sig->group_stop_count++; 2045 2046 for (t = next_thread(current); t != current; 2047 t = next_thread(t)) { 2048 /* 2049 * Setting state to TASK_STOPPED for a group 2050 * stop is always done with the siglock held, 2051 * so this check has no races. 2052 */ 2053 if (!task_is_stopped(t) && 2054 task_set_jobctl_pending(t, signr | gstop)) { 2055 sig->group_stop_count++; 2056 if (likely(!(t->ptrace & PT_SEIZED))) 2057 signal_wake_up(t, 0); 2058 else 2059 ptrace_trap_notify(t); 2060 } 2061 } 2062 } 2063 2064 if (likely(!current->ptrace)) { 2065 int notify = 0; 2066 2067 /* 2068 * If there are no other threads in the group, or if there 2069 * is a group stop in progress and we are the last to stop, 2070 * report to the parent. 2071 */ 2072 if (task_participate_group_stop(current)) 2073 notify = CLD_STOPPED; 2074 2075 __set_current_state(TASK_STOPPED); 2076 spin_unlock_irq(¤t->sighand->siglock); 2077 2078 /* 2079 * Notify the parent of the group stop completion. Because 2080 * we're not holding either the siglock or tasklist_lock 2081 * here, ptracer may attach inbetween; however, this is for 2082 * group stop and should always be delivered to the real 2083 * parent of the group leader. The new ptracer will get 2084 * its notification when this task transitions into 2085 * TASK_TRACED. 2086 */ 2087 if (notify) { 2088 read_lock(&tasklist_lock); 2089 do_notify_parent_cldstop(current, false, notify); 2090 read_unlock(&tasklist_lock); 2091 } 2092 2093 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2094 schedule(); 2095 return true; 2096 } else { 2097 /* 2098 * While ptraced, group stop is handled by STOP trap. 2099 * Schedule it and let the caller deal with it. 2100 */ 2101 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2102 return false; 2103 } 2104 } 2105 2106 /** 2107 * do_jobctl_trap - take care of ptrace jobctl traps 2108 * 2109 * When PT_SEIZED, it's used for both group stop and explicit 2110 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2111 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2112 * the stop signal; otherwise, %SIGTRAP. 2113 * 2114 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2115 * number as exit_code and no siginfo. 2116 * 2117 * CONTEXT: 2118 * Must be called with @current->sighand->siglock held, which may be 2119 * released and re-acquired before returning with intervening sleep. 2120 */ 2121 static void do_jobctl_trap(void) 2122 { 2123 struct signal_struct *signal = current->signal; 2124 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2125 2126 if (current->ptrace & PT_SEIZED) { 2127 if (!signal->group_stop_count && 2128 !(signal->flags & SIGNAL_STOP_STOPPED)) 2129 signr = SIGTRAP; 2130 WARN_ON_ONCE(!signr); 2131 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2132 CLD_STOPPED); 2133 } else { 2134 WARN_ON_ONCE(!signr); 2135 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2136 current->exit_code = 0; 2137 } 2138 } 2139 2140 static int ptrace_signal(int signr, siginfo_t *info, 2141 struct pt_regs *regs, void *cookie) 2142 { 2143 ptrace_signal_deliver(regs, cookie); 2144 /* 2145 * We do not check sig_kernel_stop(signr) but set this marker 2146 * unconditionally because we do not know whether debugger will 2147 * change signr. This flag has no meaning unless we are going 2148 * to stop after return from ptrace_stop(). In this case it will 2149 * be checked in do_signal_stop(), we should only stop if it was 2150 * not cleared by SIGCONT while we were sleeping. See also the 2151 * comment in dequeue_signal(). 2152 */ 2153 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2154 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2155 2156 /* We're back. Did the debugger cancel the sig? */ 2157 signr = current->exit_code; 2158 if (signr == 0) 2159 return signr; 2160 2161 current->exit_code = 0; 2162 2163 /* 2164 * Update the siginfo structure if the signal has 2165 * changed. If the debugger wanted something 2166 * specific in the siginfo structure then it should 2167 * have updated *info via PTRACE_SETSIGINFO. 2168 */ 2169 if (signr != info->si_signo) { 2170 info->si_signo = signr; 2171 info->si_errno = 0; 2172 info->si_code = SI_USER; 2173 rcu_read_lock(); 2174 info->si_pid = task_pid_vnr(current->parent); 2175 info->si_uid = from_kuid_munged(current_user_ns(), 2176 task_uid(current->parent)); 2177 rcu_read_unlock(); 2178 } 2179 2180 /* If the (new) signal is now blocked, requeue it. */ 2181 if (sigismember(¤t->blocked, signr)) { 2182 specific_send_sig_info(signr, info, current); 2183 signr = 0; 2184 } 2185 2186 return signr; 2187 } 2188 2189 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 2190 struct pt_regs *regs, void *cookie) 2191 { 2192 struct sighand_struct *sighand = current->sighand; 2193 struct signal_struct *signal = current->signal; 2194 int signr; 2195 2196 if (unlikely(current->task_works)) 2197 task_work_run(); 2198 2199 if (unlikely(uprobe_deny_signal())) 2200 return 0; 2201 2202 relock: 2203 /* 2204 * We'll jump back here after any time we were stopped in TASK_STOPPED. 2205 * While in TASK_STOPPED, we were considered "frozen enough". 2206 * Now that we woke up, it's crucial if we're supposed to be 2207 * frozen that we freeze now before running anything substantial. 2208 */ 2209 try_to_freeze(); 2210 2211 spin_lock_irq(&sighand->siglock); 2212 /* 2213 * Every stopped thread goes here after wakeup. Check to see if 2214 * we should notify the parent, prepare_signal(SIGCONT) encodes 2215 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2216 */ 2217 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2218 int why; 2219 2220 if (signal->flags & SIGNAL_CLD_CONTINUED) 2221 why = CLD_CONTINUED; 2222 else 2223 why = CLD_STOPPED; 2224 2225 signal->flags &= ~SIGNAL_CLD_MASK; 2226 2227 spin_unlock_irq(&sighand->siglock); 2228 2229 /* 2230 * Notify the parent that we're continuing. This event is 2231 * always per-process and doesn't make whole lot of sense 2232 * for ptracers, who shouldn't consume the state via 2233 * wait(2) either, but, for backward compatibility, notify 2234 * the ptracer of the group leader too unless it's gonna be 2235 * a duplicate. 2236 */ 2237 read_lock(&tasklist_lock); 2238 do_notify_parent_cldstop(current, false, why); 2239 2240 if (ptrace_reparented(current->group_leader)) 2241 do_notify_parent_cldstop(current->group_leader, 2242 true, why); 2243 read_unlock(&tasklist_lock); 2244 2245 goto relock; 2246 } 2247 2248 for (;;) { 2249 struct k_sigaction *ka; 2250 2251 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2252 do_signal_stop(0)) 2253 goto relock; 2254 2255 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2256 do_jobctl_trap(); 2257 spin_unlock_irq(&sighand->siglock); 2258 goto relock; 2259 } 2260 2261 signr = dequeue_signal(current, ¤t->blocked, info); 2262 2263 if (!signr) 2264 break; /* will return 0 */ 2265 2266 if (unlikely(current->ptrace) && signr != SIGKILL) { 2267 signr = ptrace_signal(signr, info, 2268 regs, cookie); 2269 if (!signr) 2270 continue; 2271 } 2272 2273 ka = &sighand->action[signr-1]; 2274 2275 /* Trace actually delivered signals. */ 2276 trace_signal_deliver(signr, info, ka); 2277 2278 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2279 continue; 2280 if (ka->sa.sa_handler != SIG_DFL) { 2281 /* Run the handler. */ 2282 *return_ka = *ka; 2283 2284 if (ka->sa.sa_flags & SA_ONESHOT) 2285 ka->sa.sa_handler = SIG_DFL; 2286 2287 break; /* will return non-zero "signr" value */ 2288 } 2289 2290 /* 2291 * Now we are doing the default action for this signal. 2292 */ 2293 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2294 continue; 2295 2296 /* 2297 * Global init gets no signals it doesn't want. 2298 * Container-init gets no signals it doesn't want from same 2299 * container. 2300 * 2301 * Note that if global/container-init sees a sig_kernel_only() 2302 * signal here, the signal must have been generated internally 2303 * or must have come from an ancestor namespace. In either 2304 * case, the signal cannot be dropped. 2305 */ 2306 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2307 !sig_kernel_only(signr)) 2308 continue; 2309 2310 if (sig_kernel_stop(signr)) { 2311 /* 2312 * The default action is to stop all threads in 2313 * the thread group. The job control signals 2314 * do nothing in an orphaned pgrp, but SIGSTOP 2315 * always works. Note that siglock needs to be 2316 * dropped during the call to is_orphaned_pgrp() 2317 * because of lock ordering with tasklist_lock. 2318 * This allows an intervening SIGCONT to be posted. 2319 * We need to check for that and bail out if necessary. 2320 */ 2321 if (signr != SIGSTOP) { 2322 spin_unlock_irq(&sighand->siglock); 2323 2324 /* signals can be posted during this window */ 2325 2326 if (is_current_pgrp_orphaned()) 2327 goto relock; 2328 2329 spin_lock_irq(&sighand->siglock); 2330 } 2331 2332 if (likely(do_signal_stop(info->si_signo))) { 2333 /* It released the siglock. */ 2334 goto relock; 2335 } 2336 2337 /* 2338 * We didn't actually stop, due to a race 2339 * with SIGCONT or something like that. 2340 */ 2341 continue; 2342 } 2343 2344 spin_unlock_irq(&sighand->siglock); 2345 2346 /* 2347 * Anything else is fatal, maybe with a core dump. 2348 */ 2349 current->flags |= PF_SIGNALED; 2350 2351 if (sig_kernel_coredump(signr)) { 2352 if (print_fatal_signals) 2353 print_fatal_signal(regs, info->si_signo); 2354 /* 2355 * If it was able to dump core, this kills all 2356 * other threads in the group and synchronizes with 2357 * their demise. If we lost the race with another 2358 * thread getting here, it set group_exit_code 2359 * first and our do_group_exit call below will use 2360 * that value and ignore the one we pass it. 2361 */ 2362 do_coredump(info->si_signo, info->si_signo, regs); 2363 } 2364 2365 /* 2366 * Death signals, no core dump. 2367 */ 2368 do_group_exit(info->si_signo); 2369 /* NOTREACHED */ 2370 } 2371 spin_unlock_irq(&sighand->siglock); 2372 return signr; 2373 } 2374 2375 /** 2376 * signal_delivered - 2377 * @sig: number of signal being delivered 2378 * @info: siginfo_t of signal being delivered 2379 * @ka: sigaction setting that chose the handler 2380 * @regs: user register state 2381 * @stepping: nonzero if debugger single-step or block-step in use 2382 * 2383 * This function should be called when a signal has succesfully been 2384 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask 2385 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2386 * is set in @ka->sa.sa_flags. Tracing is notified. 2387 */ 2388 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka, 2389 struct pt_regs *regs, int stepping) 2390 { 2391 sigset_t blocked; 2392 2393 /* A signal was successfully delivered, and the 2394 saved sigmask was stored on the signal frame, 2395 and will be restored by sigreturn. So we can 2396 simply clear the restore sigmask flag. */ 2397 clear_restore_sigmask(); 2398 2399 sigorsets(&blocked, ¤t->blocked, &ka->sa.sa_mask); 2400 if (!(ka->sa.sa_flags & SA_NODEFER)) 2401 sigaddset(&blocked, sig); 2402 set_current_blocked(&blocked); 2403 tracehook_signal_handler(sig, info, ka, regs, stepping); 2404 } 2405 2406 /* 2407 * It could be that complete_signal() picked us to notify about the 2408 * group-wide signal. Other threads should be notified now to take 2409 * the shared signals in @which since we will not. 2410 */ 2411 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2412 { 2413 sigset_t retarget; 2414 struct task_struct *t; 2415 2416 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2417 if (sigisemptyset(&retarget)) 2418 return; 2419 2420 t = tsk; 2421 while_each_thread(tsk, t) { 2422 if (t->flags & PF_EXITING) 2423 continue; 2424 2425 if (!has_pending_signals(&retarget, &t->blocked)) 2426 continue; 2427 /* Remove the signals this thread can handle. */ 2428 sigandsets(&retarget, &retarget, &t->blocked); 2429 2430 if (!signal_pending(t)) 2431 signal_wake_up(t, 0); 2432 2433 if (sigisemptyset(&retarget)) 2434 break; 2435 } 2436 } 2437 2438 void exit_signals(struct task_struct *tsk) 2439 { 2440 int group_stop = 0; 2441 sigset_t unblocked; 2442 2443 /* 2444 * @tsk is about to have PF_EXITING set - lock out users which 2445 * expect stable threadgroup. 2446 */ 2447 threadgroup_change_begin(tsk); 2448 2449 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2450 tsk->flags |= PF_EXITING; 2451 threadgroup_change_end(tsk); 2452 return; 2453 } 2454 2455 spin_lock_irq(&tsk->sighand->siglock); 2456 /* 2457 * From now this task is not visible for group-wide signals, 2458 * see wants_signal(), do_signal_stop(). 2459 */ 2460 tsk->flags |= PF_EXITING; 2461 2462 threadgroup_change_end(tsk); 2463 2464 if (!signal_pending(tsk)) 2465 goto out; 2466 2467 unblocked = tsk->blocked; 2468 signotset(&unblocked); 2469 retarget_shared_pending(tsk, &unblocked); 2470 2471 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2472 task_participate_group_stop(tsk)) 2473 group_stop = CLD_STOPPED; 2474 out: 2475 spin_unlock_irq(&tsk->sighand->siglock); 2476 2477 /* 2478 * If group stop has completed, deliver the notification. This 2479 * should always go to the real parent of the group leader. 2480 */ 2481 if (unlikely(group_stop)) { 2482 read_lock(&tasklist_lock); 2483 do_notify_parent_cldstop(tsk, false, group_stop); 2484 read_unlock(&tasklist_lock); 2485 } 2486 } 2487 2488 EXPORT_SYMBOL(recalc_sigpending); 2489 EXPORT_SYMBOL_GPL(dequeue_signal); 2490 EXPORT_SYMBOL(flush_signals); 2491 EXPORT_SYMBOL(force_sig); 2492 EXPORT_SYMBOL(send_sig); 2493 EXPORT_SYMBOL(send_sig_info); 2494 EXPORT_SYMBOL(sigprocmask); 2495 EXPORT_SYMBOL(block_all_signals); 2496 EXPORT_SYMBOL(unblock_all_signals); 2497 2498 2499 /* 2500 * System call entry points. 2501 */ 2502 2503 /** 2504 * sys_restart_syscall - restart a system call 2505 */ 2506 SYSCALL_DEFINE0(restart_syscall) 2507 { 2508 struct restart_block *restart = ¤t_thread_info()->restart_block; 2509 return restart->fn(restart); 2510 } 2511 2512 long do_no_restart_syscall(struct restart_block *param) 2513 { 2514 return -EINTR; 2515 } 2516 2517 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2518 { 2519 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2520 sigset_t newblocked; 2521 /* A set of now blocked but previously unblocked signals. */ 2522 sigandnsets(&newblocked, newset, ¤t->blocked); 2523 retarget_shared_pending(tsk, &newblocked); 2524 } 2525 tsk->blocked = *newset; 2526 recalc_sigpending(); 2527 } 2528 2529 /** 2530 * set_current_blocked - change current->blocked mask 2531 * @newset: new mask 2532 * 2533 * It is wrong to change ->blocked directly, this helper should be used 2534 * to ensure the process can't miss a shared signal we are going to block. 2535 */ 2536 void set_current_blocked(sigset_t *newset) 2537 { 2538 struct task_struct *tsk = current; 2539 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2540 spin_lock_irq(&tsk->sighand->siglock); 2541 __set_task_blocked(tsk, newset); 2542 spin_unlock_irq(&tsk->sighand->siglock); 2543 } 2544 2545 void __set_current_blocked(const sigset_t *newset) 2546 { 2547 struct task_struct *tsk = current; 2548 2549 spin_lock_irq(&tsk->sighand->siglock); 2550 __set_task_blocked(tsk, newset); 2551 spin_unlock_irq(&tsk->sighand->siglock); 2552 } 2553 2554 /* 2555 * This is also useful for kernel threads that want to temporarily 2556 * (or permanently) block certain signals. 2557 * 2558 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2559 * interface happily blocks "unblockable" signals like SIGKILL 2560 * and friends. 2561 */ 2562 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2563 { 2564 struct task_struct *tsk = current; 2565 sigset_t newset; 2566 2567 /* Lockless, only current can change ->blocked, never from irq */ 2568 if (oldset) 2569 *oldset = tsk->blocked; 2570 2571 switch (how) { 2572 case SIG_BLOCK: 2573 sigorsets(&newset, &tsk->blocked, set); 2574 break; 2575 case SIG_UNBLOCK: 2576 sigandnsets(&newset, &tsk->blocked, set); 2577 break; 2578 case SIG_SETMASK: 2579 newset = *set; 2580 break; 2581 default: 2582 return -EINVAL; 2583 } 2584 2585 __set_current_blocked(&newset); 2586 return 0; 2587 } 2588 2589 /** 2590 * sys_rt_sigprocmask - change the list of currently blocked signals 2591 * @how: whether to add, remove, or set signals 2592 * @nset: stores pending signals 2593 * @oset: previous value of signal mask if non-null 2594 * @sigsetsize: size of sigset_t type 2595 */ 2596 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2597 sigset_t __user *, oset, size_t, sigsetsize) 2598 { 2599 sigset_t old_set, new_set; 2600 int error; 2601 2602 /* XXX: Don't preclude handling different sized sigset_t's. */ 2603 if (sigsetsize != sizeof(sigset_t)) 2604 return -EINVAL; 2605 2606 old_set = current->blocked; 2607 2608 if (nset) { 2609 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2610 return -EFAULT; 2611 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2612 2613 error = sigprocmask(how, &new_set, NULL); 2614 if (error) 2615 return error; 2616 } 2617 2618 if (oset) { 2619 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2620 return -EFAULT; 2621 } 2622 2623 return 0; 2624 } 2625 2626 long do_sigpending(void __user *set, unsigned long sigsetsize) 2627 { 2628 long error = -EINVAL; 2629 sigset_t pending; 2630 2631 if (sigsetsize > sizeof(sigset_t)) 2632 goto out; 2633 2634 spin_lock_irq(¤t->sighand->siglock); 2635 sigorsets(&pending, ¤t->pending.signal, 2636 ¤t->signal->shared_pending.signal); 2637 spin_unlock_irq(¤t->sighand->siglock); 2638 2639 /* Outside the lock because only this thread touches it. */ 2640 sigandsets(&pending, ¤t->blocked, &pending); 2641 2642 error = -EFAULT; 2643 if (!copy_to_user(set, &pending, sigsetsize)) 2644 error = 0; 2645 2646 out: 2647 return error; 2648 } 2649 2650 /** 2651 * sys_rt_sigpending - examine a pending signal that has been raised 2652 * while blocked 2653 * @set: stores pending signals 2654 * @sigsetsize: size of sigset_t type or larger 2655 */ 2656 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize) 2657 { 2658 return do_sigpending(set, sigsetsize); 2659 } 2660 2661 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2662 2663 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2664 { 2665 int err; 2666 2667 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2668 return -EFAULT; 2669 if (from->si_code < 0) 2670 return __copy_to_user(to, from, sizeof(siginfo_t)) 2671 ? -EFAULT : 0; 2672 /* 2673 * If you change siginfo_t structure, please be sure 2674 * this code is fixed accordingly. 2675 * Please remember to update the signalfd_copyinfo() function 2676 * inside fs/signalfd.c too, in case siginfo_t changes. 2677 * It should never copy any pad contained in the structure 2678 * to avoid security leaks, but must copy the generic 2679 * 3 ints plus the relevant union member. 2680 */ 2681 err = __put_user(from->si_signo, &to->si_signo); 2682 err |= __put_user(from->si_errno, &to->si_errno); 2683 err |= __put_user((short)from->si_code, &to->si_code); 2684 switch (from->si_code & __SI_MASK) { 2685 case __SI_KILL: 2686 err |= __put_user(from->si_pid, &to->si_pid); 2687 err |= __put_user(from->si_uid, &to->si_uid); 2688 break; 2689 case __SI_TIMER: 2690 err |= __put_user(from->si_tid, &to->si_tid); 2691 err |= __put_user(from->si_overrun, &to->si_overrun); 2692 err |= __put_user(from->si_ptr, &to->si_ptr); 2693 break; 2694 case __SI_POLL: 2695 err |= __put_user(from->si_band, &to->si_band); 2696 err |= __put_user(from->si_fd, &to->si_fd); 2697 break; 2698 case __SI_FAULT: 2699 err |= __put_user(from->si_addr, &to->si_addr); 2700 #ifdef __ARCH_SI_TRAPNO 2701 err |= __put_user(from->si_trapno, &to->si_trapno); 2702 #endif 2703 #ifdef BUS_MCEERR_AO 2704 /* 2705 * Other callers might not initialize the si_lsb field, 2706 * so check explicitly for the right codes here. 2707 */ 2708 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO) 2709 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2710 #endif 2711 break; 2712 case __SI_CHLD: 2713 err |= __put_user(from->si_pid, &to->si_pid); 2714 err |= __put_user(from->si_uid, &to->si_uid); 2715 err |= __put_user(from->si_status, &to->si_status); 2716 err |= __put_user(from->si_utime, &to->si_utime); 2717 err |= __put_user(from->si_stime, &to->si_stime); 2718 break; 2719 case __SI_RT: /* This is not generated by the kernel as of now. */ 2720 case __SI_MESGQ: /* But this is */ 2721 err |= __put_user(from->si_pid, &to->si_pid); 2722 err |= __put_user(from->si_uid, &to->si_uid); 2723 err |= __put_user(from->si_ptr, &to->si_ptr); 2724 break; 2725 #ifdef __ARCH_SIGSYS 2726 case __SI_SYS: 2727 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2728 err |= __put_user(from->si_syscall, &to->si_syscall); 2729 err |= __put_user(from->si_arch, &to->si_arch); 2730 break; 2731 #endif 2732 default: /* this is just in case for now ... */ 2733 err |= __put_user(from->si_pid, &to->si_pid); 2734 err |= __put_user(from->si_uid, &to->si_uid); 2735 break; 2736 } 2737 return err; 2738 } 2739 2740 #endif 2741 2742 /** 2743 * do_sigtimedwait - wait for queued signals specified in @which 2744 * @which: queued signals to wait for 2745 * @info: if non-null, the signal's siginfo is returned here 2746 * @ts: upper bound on process time suspension 2747 */ 2748 int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2749 const struct timespec *ts) 2750 { 2751 struct task_struct *tsk = current; 2752 long timeout = MAX_SCHEDULE_TIMEOUT; 2753 sigset_t mask = *which; 2754 int sig; 2755 2756 if (ts) { 2757 if (!timespec_valid(ts)) 2758 return -EINVAL; 2759 timeout = timespec_to_jiffies(ts); 2760 /* 2761 * We can be close to the next tick, add another one 2762 * to ensure we will wait at least the time asked for. 2763 */ 2764 if (ts->tv_sec || ts->tv_nsec) 2765 timeout++; 2766 } 2767 2768 /* 2769 * Invert the set of allowed signals to get those we want to block. 2770 */ 2771 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2772 signotset(&mask); 2773 2774 spin_lock_irq(&tsk->sighand->siglock); 2775 sig = dequeue_signal(tsk, &mask, info); 2776 if (!sig && timeout) { 2777 /* 2778 * None ready, temporarily unblock those we're interested 2779 * while we are sleeping in so that we'll be awakened when 2780 * they arrive. Unblocking is always fine, we can avoid 2781 * set_current_blocked(). 2782 */ 2783 tsk->real_blocked = tsk->blocked; 2784 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2785 recalc_sigpending(); 2786 spin_unlock_irq(&tsk->sighand->siglock); 2787 2788 timeout = schedule_timeout_interruptible(timeout); 2789 2790 spin_lock_irq(&tsk->sighand->siglock); 2791 __set_task_blocked(tsk, &tsk->real_blocked); 2792 siginitset(&tsk->real_blocked, 0); 2793 sig = dequeue_signal(tsk, &mask, info); 2794 } 2795 spin_unlock_irq(&tsk->sighand->siglock); 2796 2797 if (sig) 2798 return sig; 2799 return timeout ? -EINTR : -EAGAIN; 2800 } 2801 2802 /** 2803 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2804 * in @uthese 2805 * @uthese: queued signals to wait for 2806 * @uinfo: if non-null, the signal's siginfo is returned here 2807 * @uts: upper bound on process time suspension 2808 * @sigsetsize: size of sigset_t type 2809 */ 2810 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2811 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2812 size_t, sigsetsize) 2813 { 2814 sigset_t these; 2815 struct timespec ts; 2816 siginfo_t info; 2817 int ret; 2818 2819 /* XXX: Don't preclude handling different sized sigset_t's. */ 2820 if (sigsetsize != sizeof(sigset_t)) 2821 return -EINVAL; 2822 2823 if (copy_from_user(&these, uthese, sizeof(these))) 2824 return -EFAULT; 2825 2826 if (uts) { 2827 if (copy_from_user(&ts, uts, sizeof(ts))) 2828 return -EFAULT; 2829 } 2830 2831 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2832 2833 if (ret > 0 && uinfo) { 2834 if (copy_siginfo_to_user(uinfo, &info)) 2835 ret = -EFAULT; 2836 } 2837 2838 return ret; 2839 } 2840 2841 /** 2842 * sys_kill - send a signal to a process 2843 * @pid: the PID of the process 2844 * @sig: signal to be sent 2845 */ 2846 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2847 { 2848 struct siginfo info; 2849 2850 info.si_signo = sig; 2851 info.si_errno = 0; 2852 info.si_code = SI_USER; 2853 info.si_pid = task_tgid_vnr(current); 2854 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2855 2856 return kill_something_info(sig, &info, pid); 2857 } 2858 2859 static int 2860 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2861 { 2862 struct task_struct *p; 2863 int error = -ESRCH; 2864 2865 rcu_read_lock(); 2866 p = find_task_by_vpid(pid); 2867 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2868 error = check_kill_permission(sig, info, p); 2869 /* 2870 * The null signal is a permissions and process existence 2871 * probe. No signal is actually delivered. 2872 */ 2873 if (!error && sig) { 2874 error = do_send_sig_info(sig, info, p, false); 2875 /* 2876 * If lock_task_sighand() failed we pretend the task 2877 * dies after receiving the signal. The window is tiny, 2878 * and the signal is private anyway. 2879 */ 2880 if (unlikely(error == -ESRCH)) 2881 error = 0; 2882 } 2883 } 2884 rcu_read_unlock(); 2885 2886 return error; 2887 } 2888 2889 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2890 { 2891 struct siginfo info; 2892 2893 info.si_signo = sig; 2894 info.si_errno = 0; 2895 info.si_code = SI_TKILL; 2896 info.si_pid = task_tgid_vnr(current); 2897 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2898 2899 return do_send_specific(tgid, pid, sig, &info); 2900 } 2901 2902 /** 2903 * sys_tgkill - send signal to one specific thread 2904 * @tgid: the thread group ID of the thread 2905 * @pid: the PID of the thread 2906 * @sig: signal to be sent 2907 * 2908 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2909 * exists but it's not belonging to the target process anymore. This 2910 * method solves the problem of threads exiting and PIDs getting reused. 2911 */ 2912 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2913 { 2914 /* This is only valid for single tasks */ 2915 if (pid <= 0 || tgid <= 0) 2916 return -EINVAL; 2917 2918 return do_tkill(tgid, pid, sig); 2919 } 2920 2921 /** 2922 * sys_tkill - send signal to one specific task 2923 * @pid: the PID of the task 2924 * @sig: signal to be sent 2925 * 2926 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2927 */ 2928 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2929 { 2930 /* This is only valid for single tasks */ 2931 if (pid <= 0) 2932 return -EINVAL; 2933 2934 return do_tkill(0, pid, sig); 2935 } 2936 2937 /** 2938 * sys_rt_sigqueueinfo - send signal information to a signal 2939 * @pid: the PID of the thread 2940 * @sig: signal to be sent 2941 * @uinfo: signal info to be sent 2942 */ 2943 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 2944 siginfo_t __user *, uinfo) 2945 { 2946 siginfo_t info; 2947 2948 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2949 return -EFAULT; 2950 2951 /* Not even root can pretend to send signals from the kernel. 2952 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2953 */ 2954 if (info.si_code >= 0 || info.si_code == SI_TKILL) { 2955 /* We used to allow any < 0 si_code */ 2956 WARN_ON_ONCE(info.si_code < 0); 2957 return -EPERM; 2958 } 2959 info.si_signo = sig; 2960 2961 /* POSIX.1b doesn't mention process groups. */ 2962 return kill_proc_info(sig, &info, pid); 2963 } 2964 2965 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 2966 { 2967 /* This is only valid for single tasks */ 2968 if (pid <= 0 || tgid <= 0) 2969 return -EINVAL; 2970 2971 /* Not even root can pretend to send signals from the kernel. 2972 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2973 */ 2974 if (info->si_code >= 0 || info->si_code == SI_TKILL) { 2975 /* We used to allow any < 0 si_code */ 2976 WARN_ON_ONCE(info->si_code < 0); 2977 return -EPERM; 2978 } 2979 info->si_signo = sig; 2980 2981 return do_send_specific(tgid, pid, sig, info); 2982 } 2983 2984 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 2985 siginfo_t __user *, uinfo) 2986 { 2987 siginfo_t info; 2988 2989 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2990 return -EFAULT; 2991 2992 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 2993 } 2994 2995 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2996 { 2997 struct task_struct *t = current; 2998 struct k_sigaction *k; 2999 sigset_t mask; 3000 3001 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3002 return -EINVAL; 3003 3004 k = &t->sighand->action[sig-1]; 3005 3006 spin_lock_irq(¤t->sighand->siglock); 3007 if (oact) 3008 *oact = *k; 3009 3010 if (act) { 3011 sigdelsetmask(&act->sa.sa_mask, 3012 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3013 *k = *act; 3014 /* 3015 * POSIX 3.3.1.3: 3016 * "Setting a signal action to SIG_IGN for a signal that is 3017 * pending shall cause the pending signal to be discarded, 3018 * whether or not it is blocked." 3019 * 3020 * "Setting a signal action to SIG_DFL for a signal that is 3021 * pending and whose default action is to ignore the signal 3022 * (for example, SIGCHLD), shall cause the pending signal to 3023 * be discarded, whether or not it is blocked" 3024 */ 3025 if (sig_handler_ignored(sig_handler(t, sig), sig)) { 3026 sigemptyset(&mask); 3027 sigaddset(&mask, sig); 3028 rm_from_queue_full(&mask, &t->signal->shared_pending); 3029 do { 3030 rm_from_queue_full(&mask, &t->pending); 3031 t = next_thread(t); 3032 } while (t != current); 3033 } 3034 } 3035 3036 spin_unlock_irq(¤t->sighand->siglock); 3037 return 0; 3038 } 3039 3040 int 3041 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 3042 { 3043 stack_t oss; 3044 int error; 3045 3046 oss.ss_sp = (void __user *) current->sas_ss_sp; 3047 oss.ss_size = current->sas_ss_size; 3048 oss.ss_flags = sas_ss_flags(sp); 3049 3050 if (uss) { 3051 void __user *ss_sp; 3052 size_t ss_size; 3053 int ss_flags; 3054 3055 error = -EFAULT; 3056 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 3057 goto out; 3058 error = __get_user(ss_sp, &uss->ss_sp) | 3059 __get_user(ss_flags, &uss->ss_flags) | 3060 __get_user(ss_size, &uss->ss_size); 3061 if (error) 3062 goto out; 3063 3064 error = -EPERM; 3065 if (on_sig_stack(sp)) 3066 goto out; 3067 3068 error = -EINVAL; 3069 /* 3070 * Note - this code used to test ss_flags incorrectly: 3071 * old code may have been written using ss_flags==0 3072 * to mean ss_flags==SS_ONSTACK (as this was the only 3073 * way that worked) - this fix preserves that older 3074 * mechanism. 3075 */ 3076 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 3077 goto out; 3078 3079 if (ss_flags == SS_DISABLE) { 3080 ss_size = 0; 3081 ss_sp = NULL; 3082 } else { 3083 error = -ENOMEM; 3084 if (ss_size < MINSIGSTKSZ) 3085 goto out; 3086 } 3087 3088 current->sas_ss_sp = (unsigned long) ss_sp; 3089 current->sas_ss_size = ss_size; 3090 } 3091 3092 error = 0; 3093 if (uoss) { 3094 error = -EFAULT; 3095 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 3096 goto out; 3097 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 3098 __put_user(oss.ss_size, &uoss->ss_size) | 3099 __put_user(oss.ss_flags, &uoss->ss_flags); 3100 } 3101 3102 out: 3103 return error; 3104 } 3105 3106 #ifdef __ARCH_WANT_SYS_SIGPENDING 3107 3108 /** 3109 * sys_sigpending - examine pending signals 3110 * @set: where mask of pending signal is returned 3111 */ 3112 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3113 { 3114 return do_sigpending(set, sizeof(*set)); 3115 } 3116 3117 #endif 3118 3119 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3120 /** 3121 * sys_sigprocmask - examine and change blocked signals 3122 * @how: whether to add, remove, or set signals 3123 * @nset: signals to add or remove (if non-null) 3124 * @oset: previous value of signal mask if non-null 3125 * 3126 * Some platforms have their own version with special arguments; 3127 * others support only sys_rt_sigprocmask. 3128 */ 3129 3130 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3131 old_sigset_t __user *, oset) 3132 { 3133 old_sigset_t old_set, new_set; 3134 sigset_t new_blocked; 3135 3136 old_set = current->blocked.sig[0]; 3137 3138 if (nset) { 3139 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3140 return -EFAULT; 3141 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 3142 3143 new_blocked = current->blocked; 3144 3145 switch (how) { 3146 case SIG_BLOCK: 3147 sigaddsetmask(&new_blocked, new_set); 3148 break; 3149 case SIG_UNBLOCK: 3150 sigdelsetmask(&new_blocked, new_set); 3151 break; 3152 case SIG_SETMASK: 3153 new_blocked.sig[0] = new_set; 3154 break; 3155 default: 3156 return -EINVAL; 3157 } 3158 3159 __set_current_blocked(&new_blocked); 3160 } 3161 3162 if (oset) { 3163 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3164 return -EFAULT; 3165 } 3166 3167 return 0; 3168 } 3169 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3170 3171 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 3172 /** 3173 * sys_rt_sigaction - alter an action taken by a process 3174 * @sig: signal to be sent 3175 * @act: new sigaction 3176 * @oact: used to save the previous sigaction 3177 * @sigsetsize: size of sigset_t type 3178 */ 3179 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3180 const struct sigaction __user *, act, 3181 struct sigaction __user *, oact, 3182 size_t, sigsetsize) 3183 { 3184 struct k_sigaction new_sa, old_sa; 3185 int ret = -EINVAL; 3186 3187 /* XXX: Don't preclude handling different sized sigset_t's. */ 3188 if (sigsetsize != sizeof(sigset_t)) 3189 goto out; 3190 3191 if (act) { 3192 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3193 return -EFAULT; 3194 } 3195 3196 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3197 3198 if (!ret && oact) { 3199 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3200 return -EFAULT; 3201 } 3202 out: 3203 return ret; 3204 } 3205 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 3206 3207 #ifdef __ARCH_WANT_SYS_SGETMASK 3208 3209 /* 3210 * For backwards compatibility. Functionality superseded by sigprocmask. 3211 */ 3212 SYSCALL_DEFINE0(sgetmask) 3213 { 3214 /* SMP safe */ 3215 return current->blocked.sig[0]; 3216 } 3217 3218 SYSCALL_DEFINE1(ssetmask, int, newmask) 3219 { 3220 int old = current->blocked.sig[0]; 3221 sigset_t newset; 3222 3223 set_current_blocked(&newset); 3224 3225 return old; 3226 } 3227 #endif /* __ARCH_WANT_SGETMASK */ 3228 3229 #ifdef __ARCH_WANT_SYS_SIGNAL 3230 /* 3231 * For backwards compatibility. Functionality superseded by sigaction. 3232 */ 3233 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3234 { 3235 struct k_sigaction new_sa, old_sa; 3236 int ret; 3237 3238 new_sa.sa.sa_handler = handler; 3239 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3240 sigemptyset(&new_sa.sa.sa_mask); 3241 3242 ret = do_sigaction(sig, &new_sa, &old_sa); 3243 3244 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3245 } 3246 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3247 3248 #ifdef __ARCH_WANT_SYS_PAUSE 3249 3250 SYSCALL_DEFINE0(pause) 3251 { 3252 while (!signal_pending(current)) { 3253 current->state = TASK_INTERRUPTIBLE; 3254 schedule(); 3255 } 3256 return -ERESTARTNOHAND; 3257 } 3258 3259 #endif 3260 3261 int sigsuspend(sigset_t *set) 3262 { 3263 current->saved_sigmask = current->blocked; 3264 set_current_blocked(set); 3265 3266 current->state = TASK_INTERRUPTIBLE; 3267 schedule(); 3268 set_restore_sigmask(); 3269 return -ERESTARTNOHAND; 3270 } 3271 3272 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 3273 /** 3274 * sys_rt_sigsuspend - replace the signal mask for a value with the 3275 * @unewset value until a signal is received 3276 * @unewset: new signal mask value 3277 * @sigsetsize: size of sigset_t type 3278 */ 3279 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3280 { 3281 sigset_t newset; 3282 3283 /* XXX: Don't preclude handling different sized sigset_t's. */ 3284 if (sigsetsize != sizeof(sigset_t)) 3285 return -EINVAL; 3286 3287 if (copy_from_user(&newset, unewset, sizeof(newset))) 3288 return -EFAULT; 3289 return sigsuspend(&newset); 3290 } 3291 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 3292 3293 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 3294 { 3295 return NULL; 3296 } 3297 3298 void __init signals_init(void) 3299 { 3300 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3301 } 3302 3303 #ifdef CONFIG_KGDB_KDB 3304 #include <linux/kdb.h> 3305 /* 3306 * kdb_send_sig_info - Allows kdb to send signals without exposing 3307 * signal internals. This function checks if the required locks are 3308 * available before calling the main signal code, to avoid kdb 3309 * deadlocks. 3310 */ 3311 void 3312 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3313 { 3314 static struct task_struct *kdb_prev_t; 3315 int sig, new_t; 3316 if (!spin_trylock(&t->sighand->siglock)) { 3317 kdb_printf("Can't do kill command now.\n" 3318 "The sigmask lock is held somewhere else in " 3319 "kernel, try again later\n"); 3320 return; 3321 } 3322 spin_unlock(&t->sighand->siglock); 3323 new_t = kdb_prev_t != t; 3324 kdb_prev_t = t; 3325 if (t->state != TASK_RUNNING && new_t) { 3326 kdb_printf("Process is not RUNNING, sending a signal from " 3327 "kdb risks deadlock\n" 3328 "on the run queue locks. " 3329 "The signal has _not_ been sent.\n" 3330 "Reissue the kill command if you want to risk " 3331 "the deadlock.\n"); 3332 return; 3333 } 3334 sig = info->si_signo; 3335 if (send_sig_info(sig, info, t)) 3336 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3337 sig, t->pid); 3338 else 3339 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3340 } 3341 #endif /* CONFIG_KGDB_KDB */ 3342