xref: /linux/kernel/signal.c (revision 43347d56c8d9dd732cee2f8efd384ad21dd1f6c4)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43 #include <linux/livepatch.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/signal.h>
47 
48 #include <asm/param.h>
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/siginfo.h>
52 #include <asm/cacheflush.h>
53 #include "audit.h"	/* audit_signal_info() */
54 
55 /*
56  * SLAB caches for signal bits.
57  */
58 
59 static struct kmem_cache *sigqueue_cachep;
60 
61 int print_fatal_signals __read_mostly;
62 
63 static void __user *sig_handler(struct task_struct *t, int sig)
64 {
65 	return t->sighand->action[sig - 1].sa.sa_handler;
66 }
67 
68 static int sig_handler_ignored(void __user *handler, int sig)
69 {
70 	/* Is it explicitly or implicitly ignored? */
71 	return handler == SIG_IGN ||
72 		(handler == SIG_DFL && sig_kernel_ignore(sig));
73 }
74 
75 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
76 {
77 	void __user *handler;
78 
79 	handler = sig_handler(t, sig);
80 
81 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
82 			handler == SIG_DFL && !force)
83 		return 1;
84 
85 	return sig_handler_ignored(handler, sig);
86 }
87 
88 static int sig_ignored(struct task_struct *t, int sig, bool force)
89 {
90 	/*
91 	 * Blocked signals are never ignored, since the
92 	 * signal handler may change by the time it is
93 	 * unblocked.
94 	 */
95 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
96 		return 0;
97 
98 	if (!sig_task_ignored(t, sig, force))
99 		return 0;
100 
101 	/*
102 	 * Tracers may want to know about even ignored signals.
103 	 */
104 	return !t->ptrace;
105 }
106 
107 /*
108  * Re-calculate pending state from the set of locally pending
109  * signals, globally pending signals, and blocked signals.
110  */
111 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
112 {
113 	unsigned long ready;
114 	long i;
115 
116 	switch (_NSIG_WORDS) {
117 	default:
118 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
119 			ready |= signal->sig[i] &~ blocked->sig[i];
120 		break;
121 
122 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
123 		ready |= signal->sig[2] &~ blocked->sig[2];
124 		ready |= signal->sig[1] &~ blocked->sig[1];
125 		ready |= signal->sig[0] &~ blocked->sig[0];
126 		break;
127 
128 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
129 		ready |= signal->sig[0] &~ blocked->sig[0];
130 		break;
131 
132 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
133 	}
134 	return ready !=	0;
135 }
136 
137 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
138 
139 static int recalc_sigpending_tsk(struct task_struct *t)
140 {
141 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
142 	    PENDING(&t->pending, &t->blocked) ||
143 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
144 		set_tsk_thread_flag(t, TIF_SIGPENDING);
145 		return 1;
146 	}
147 	/*
148 	 * We must never clear the flag in another thread, or in current
149 	 * when it's possible the current syscall is returning -ERESTART*.
150 	 * So we don't clear it here, and only callers who know they should do.
151 	 */
152 	return 0;
153 }
154 
155 /*
156  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
157  * This is superfluous when called on current, the wakeup is a harmless no-op.
158  */
159 void recalc_sigpending_and_wake(struct task_struct *t)
160 {
161 	if (recalc_sigpending_tsk(t))
162 		signal_wake_up(t, 0);
163 }
164 
165 void recalc_sigpending(void)
166 {
167 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
168 	    !klp_patch_pending(current))
169 		clear_thread_flag(TIF_SIGPENDING);
170 
171 }
172 
173 /* Given the mask, find the first available signal that should be serviced. */
174 
175 #define SYNCHRONOUS_MASK \
176 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
177 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
178 
179 int next_signal(struct sigpending *pending, sigset_t *mask)
180 {
181 	unsigned long i, *s, *m, x;
182 	int sig = 0;
183 
184 	s = pending->signal.sig;
185 	m = mask->sig;
186 
187 	/*
188 	 * Handle the first word specially: it contains the
189 	 * synchronous signals that need to be dequeued first.
190 	 */
191 	x = *s &~ *m;
192 	if (x) {
193 		if (x & SYNCHRONOUS_MASK)
194 			x &= SYNCHRONOUS_MASK;
195 		sig = ffz(~x) + 1;
196 		return sig;
197 	}
198 
199 	switch (_NSIG_WORDS) {
200 	default:
201 		for (i = 1; i < _NSIG_WORDS; ++i) {
202 			x = *++s &~ *++m;
203 			if (!x)
204 				continue;
205 			sig = ffz(~x) + i*_NSIG_BPW + 1;
206 			break;
207 		}
208 		break;
209 
210 	case 2:
211 		x = s[1] &~ m[1];
212 		if (!x)
213 			break;
214 		sig = ffz(~x) + _NSIG_BPW + 1;
215 		break;
216 
217 	case 1:
218 		/* Nothing to do */
219 		break;
220 	}
221 
222 	return sig;
223 }
224 
225 static inline void print_dropped_signal(int sig)
226 {
227 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
228 
229 	if (!print_fatal_signals)
230 		return;
231 
232 	if (!__ratelimit(&ratelimit_state))
233 		return;
234 
235 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
236 				current->comm, current->pid, sig);
237 }
238 
239 /**
240  * task_set_jobctl_pending - set jobctl pending bits
241  * @task: target task
242  * @mask: pending bits to set
243  *
244  * Clear @mask from @task->jobctl.  @mask must be subset of
245  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
246  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
247  * cleared.  If @task is already being killed or exiting, this function
248  * becomes noop.
249  *
250  * CONTEXT:
251  * Must be called with @task->sighand->siglock held.
252  *
253  * RETURNS:
254  * %true if @mask is set, %false if made noop because @task was dying.
255  */
256 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
257 {
258 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
259 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
260 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
261 
262 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
263 		return false;
264 
265 	if (mask & JOBCTL_STOP_SIGMASK)
266 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
267 
268 	task->jobctl |= mask;
269 	return true;
270 }
271 
272 /**
273  * task_clear_jobctl_trapping - clear jobctl trapping bit
274  * @task: target task
275  *
276  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
277  * Clear it and wake up the ptracer.  Note that we don't need any further
278  * locking.  @task->siglock guarantees that @task->parent points to the
279  * ptracer.
280  *
281  * CONTEXT:
282  * Must be called with @task->sighand->siglock held.
283  */
284 void task_clear_jobctl_trapping(struct task_struct *task)
285 {
286 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
287 		task->jobctl &= ~JOBCTL_TRAPPING;
288 		smp_mb();	/* advised by wake_up_bit() */
289 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
290 	}
291 }
292 
293 /**
294  * task_clear_jobctl_pending - clear jobctl pending bits
295  * @task: target task
296  * @mask: pending bits to clear
297  *
298  * Clear @mask from @task->jobctl.  @mask must be subset of
299  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
300  * STOP bits are cleared together.
301  *
302  * If clearing of @mask leaves no stop or trap pending, this function calls
303  * task_clear_jobctl_trapping().
304  *
305  * CONTEXT:
306  * Must be called with @task->sighand->siglock held.
307  */
308 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
309 {
310 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
311 
312 	if (mask & JOBCTL_STOP_PENDING)
313 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
314 
315 	task->jobctl &= ~mask;
316 
317 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
318 		task_clear_jobctl_trapping(task);
319 }
320 
321 /**
322  * task_participate_group_stop - participate in a group stop
323  * @task: task participating in a group stop
324  *
325  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
326  * Group stop states are cleared and the group stop count is consumed if
327  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
328  * stop, the appropriate %SIGNAL_* flags are set.
329  *
330  * CONTEXT:
331  * Must be called with @task->sighand->siglock held.
332  *
333  * RETURNS:
334  * %true if group stop completion should be notified to the parent, %false
335  * otherwise.
336  */
337 static bool task_participate_group_stop(struct task_struct *task)
338 {
339 	struct signal_struct *sig = task->signal;
340 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
341 
342 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
343 
344 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
345 
346 	if (!consume)
347 		return false;
348 
349 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
350 		sig->group_stop_count--;
351 
352 	/*
353 	 * Tell the caller to notify completion iff we are entering into a
354 	 * fresh group stop.  Read comment in do_signal_stop() for details.
355 	 */
356 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
357 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
358 		return true;
359 	}
360 	return false;
361 }
362 
363 /*
364  * allocate a new signal queue record
365  * - this may be called without locks if and only if t == current, otherwise an
366  *   appropriate lock must be held to stop the target task from exiting
367  */
368 static struct sigqueue *
369 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
370 {
371 	struct sigqueue *q = NULL;
372 	struct user_struct *user;
373 
374 	/*
375 	 * Protect access to @t credentials. This can go away when all
376 	 * callers hold rcu read lock.
377 	 */
378 	rcu_read_lock();
379 	user = get_uid(__task_cred(t)->user);
380 	atomic_inc(&user->sigpending);
381 	rcu_read_unlock();
382 
383 	if (override_rlimit ||
384 	    atomic_read(&user->sigpending) <=
385 			task_rlimit(t, RLIMIT_SIGPENDING)) {
386 		q = kmem_cache_alloc(sigqueue_cachep, flags);
387 	} else {
388 		print_dropped_signal(sig);
389 	}
390 
391 	if (unlikely(q == NULL)) {
392 		atomic_dec(&user->sigpending);
393 		free_uid(user);
394 	} else {
395 		INIT_LIST_HEAD(&q->list);
396 		q->flags = 0;
397 		q->user = user;
398 	}
399 
400 	return q;
401 }
402 
403 static void __sigqueue_free(struct sigqueue *q)
404 {
405 	if (q->flags & SIGQUEUE_PREALLOC)
406 		return;
407 	atomic_dec(&q->user->sigpending);
408 	free_uid(q->user);
409 	kmem_cache_free(sigqueue_cachep, q);
410 }
411 
412 void flush_sigqueue(struct sigpending *queue)
413 {
414 	struct sigqueue *q;
415 
416 	sigemptyset(&queue->signal);
417 	while (!list_empty(&queue->list)) {
418 		q = list_entry(queue->list.next, struct sigqueue , list);
419 		list_del_init(&q->list);
420 		__sigqueue_free(q);
421 	}
422 }
423 
424 /*
425  * Flush all pending signals for this kthread.
426  */
427 void flush_signals(struct task_struct *t)
428 {
429 	unsigned long flags;
430 
431 	spin_lock_irqsave(&t->sighand->siglock, flags);
432 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
433 	flush_sigqueue(&t->pending);
434 	flush_sigqueue(&t->signal->shared_pending);
435 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
436 }
437 
438 #ifdef CONFIG_POSIX_TIMERS
439 static void __flush_itimer_signals(struct sigpending *pending)
440 {
441 	sigset_t signal, retain;
442 	struct sigqueue *q, *n;
443 
444 	signal = pending->signal;
445 	sigemptyset(&retain);
446 
447 	list_for_each_entry_safe(q, n, &pending->list, list) {
448 		int sig = q->info.si_signo;
449 
450 		if (likely(q->info.si_code != SI_TIMER)) {
451 			sigaddset(&retain, sig);
452 		} else {
453 			sigdelset(&signal, sig);
454 			list_del_init(&q->list);
455 			__sigqueue_free(q);
456 		}
457 	}
458 
459 	sigorsets(&pending->signal, &signal, &retain);
460 }
461 
462 void flush_itimer_signals(void)
463 {
464 	struct task_struct *tsk = current;
465 	unsigned long flags;
466 
467 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
468 	__flush_itimer_signals(&tsk->pending);
469 	__flush_itimer_signals(&tsk->signal->shared_pending);
470 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
471 }
472 #endif
473 
474 void ignore_signals(struct task_struct *t)
475 {
476 	int i;
477 
478 	for (i = 0; i < _NSIG; ++i)
479 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
480 
481 	flush_signals(t);
482 }
483 
484 /*
485  * Flush all handlers for a task.
486  */
487 
488 void
489 flush_signal_handlers(struct task_struct *t, int force_default)
490 {
491 	int i;
492 	struct k_sigaction *ka = &t->sighand->action[0];
493 	for (i = _NSIG ; i != 0 ; i--) {
494 		if (force_default || ka->sa.sa_handler != SIG_IGN)
495 			ka->sa.sa_handler = SIG_DFL;
496 		ka->sa.sa_flags = 0;
497 #ifdef __ARCH_HAS_SA_RESTORER
498 		ka->sa.sa_restorer = NULL;
499 #endif
500 		sigemptyset(&ka->sa.sa_mask);
501 		ka++;
502 	}
503 }
504 
505 int unhandled_signal(struct task_struct *tsk, int sig)
506 {
507 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
508 	if (is_global_init(tsk))
509 		return 1;
510 	if (handler != SIG_IGN && handler != SIG_DFL)
511 		return 0;
512 	/* if ptraced, let the tracer determine */
513 	return !tsk->ptrace;
514 }
515 
516 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
517 			   bool *resched_timer)
518 {
519 	struct sigqueue *q, *first = NULL;
520 
521 	/*
522 	 * Collect the siginfo appropriate to this signal.  Check if
523 	 * there is another siginfo for the same signal.
524 	*/
525 	list_for_each_entry(q, &list->list, list) {
526 		if (q->info.si_signo == sig) {
527 			if (first)
528 				goto still_pending;
529 			first = q;
530 		}
531 	}
532 
533 	sigdelset(&list->signal, sig);
534 
535 	if (first) {
536 still_pending:
537 		list_del_init(&first->list);
538 		copy_siginfo(info, &first->info);
539 
540 		*resched_timer =
541 			(first->flags & SIGQUEUE_PREALLOC) &&
542 			(info->si_code == SI_TIMER) &&
543 			(info->si_sys_private);
544 
545 		__sigqueue_free(first);
546 	} else {
547 		/*
548 		 * Ok, it wasn't in the queue.  This must be
549 		 * a fast-pathed signal or we must have been
550 		 * out of queue space.  So zero out the info.
551 		 */
552 		info->si_signo = sig;
553 		info->si_errno = 0;
554 		info->si_code = SI_USER;
555 		info->si_pid = 0;
556 		info->si_uid = 0;
557 	}
558 }
559 
560 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
561 			siginfo_t *info, bool *resched_timer)
562 {
563 	int sig = next_signal(pending, mask);
564 
565 	if (sig)
566 		collect_signal(sig, pending, info, resched_timer);
567 	return sig;
568 }
569 
570 /*
571  * Dequeue a signal and return the element to the caller, which is
572  * expected to free it.
573  *
574  * All callers have to hold the siglock.
575  */
576 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
577 {
578 	bool resched_timer = false;
579 	int signr;
580 
581 	/* We only dequeue private signals from ourselves, we don't let
582 	 * signalfd steal them
583 	 */
584 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
585 	if (!signr) {
586 		signr = __dequeue_signal(&tsk->signal->shared_pending,
587 					 mask, info, &resched_timer);
588 #ifdef CONFIG_POSIX_TIMERS
589 		/*
590 		 * itimer signal ?
591 		 *
592 		 * itimers are process shared and we restart periodic
593 		 * itimers in the signal delivery path to prevent DoS
594 		 * attacks in the high resolution timer case. This is
595 		 * compliant with the old way of self-restarting
596 		 * itimers, as the SIGALRM is a legacy signal and only
597 		 * queued once. Changing the restart behaviour to
598 		 * restart the timer in the signal dequeue path is
599 		 * reducing the timer noise on heavy loaded !highres
600 		 * systems too.
601 		 */
602 		if (unlikely(signr == SIGALRM)) {
603 			struct hrtimer *tmr = &tsk->signal->real_timer;
604 
605 			if (!hrtimer_is_queued(tmr) &&
606 			    tsk->signal->it_real_incr != 0) {
607 				hrtimer_forward(tmr, tmr->base->get_time(),
608 						tsk->signal->it_real_incr);
609 				hrtimer_restart(tmr);
610 			}
611 		}
612 #endif
613 	}
614 
615 	recalc_sigpending();
616 	if (!signr)
617 		return 0;
618 
619 	if (unlikely(sig_kernel_stop(signr))) {
620 		/*
621 		 * Set a marker that we have dequeued a stop signal.  Our
622 		 * caller might release the siglock and then the pending
623 		 * stop signal it is about to process is no longer in the
624 		 * pending bitmasks, but must still be cleared by a SIGCONT
625 		 * (and overruled by a SIGKILL).  So those cases clear this
626 		 * shared flag after we've set it.  Note that this flag may
627 		 * remain set after the signal we return is ignored or
628 		 * handled.  That doesn't matter because its only purpose
629 		 * is to alert stop-signal processing code when another
630 		 * processor has come along and cleared the flag.
631 		 */
632 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
633 	}
634 #ifdef CONFIG_POSIX_TIMERS
635 	if (resched_timer) {
636 		/*
637 		 * Release the siglock to ensure proper locking order
638 		 * of timer locks outside of siglocks.  Note, we leave
639 		 * irqs disabled here, since the posix-timers code is
640 		 * about to disable them again anyway.
641 		 */
642 		spin_unlock(&tsk->sighand->siglock);
643 		posixtimer_rearm(info);
644 		spin_lock(&tsk->sighand->siglock);
645 	}
646 #endif
647 	return signr;
648 }
649 
650 /*
651  * Tell a process that it has a new active signal..
652  *
653  * NOTE! we rely on the previous spin_lock to
654  * lock interrupts for us! We can only be called with
655  * "siglock" held, and the local interrupt must
656  * have been disabled when that got acquired!
657  *
658  * No need to set need_resched since signal event passing
659  * goes through ->blocked
660  */
661 void signal_wake_up_state(struct task_struct *t, unsigned int state)
662 {
663 	set_tsk_thread_flag(t, TIF_SIGPENDING);
664 	/*
665 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
666 	 * case. We don't check t->state here because there is a race with it
667 	 * executing another processor and just now entering stopped state.
668 	 * By using wake_up_state, we ensure the process will wake up and
669 	 * handle its death signal.
670 	 */
671 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
672 		kick_process(t);
673 }
674 
675 /*
676  * Remove signals in mask from the pending set and queue.
677  * Returns 1 if any signals were found.
678  *
679  * All callers must be holding the siglock.
680  */
681 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
682 {
683 	struct sigqueue *q, *n;
684 	sigset_t m;
685 
686 	sigandsets(&m, mask, &s->signal);
687 	if (sigisemptyset(&m))
688 		return 0;
689 
690 	sigandnsets(&s->signal, &s->signal, mask);
691 	list_for_each_entry_safe(q, n, &s->list, list) {
692 		if (sigismember(mask, q->info.si_signo)) {
693 			list_del_init(&q->list);
694 			__sigqueue_free(q);
695 		}
696 	}
697 	return 1;
698 }
699 
700 static inline int is_si_special(const struct siginfo *info)
701 {
702 	return info <= SEND_SIG_FORCED;
703 }
704 
705 static inline bool si_fromuser(const struct siginfo *info)
706 {
707 	return info == SEND_SIG_NOINFO ||
708 		(!is_si_special(info) && SI_FROMUSER(info));
709 }
710 
711 /*
712  * called with RCU read lock from check_kill_permission()
713  */
714 static int kill_ok_by_cred(struct task_struct *t)
715 {
716 	const struct cred *cred = current_cred();
717 	const struct cred *tcred = __task_cred(t);
718 
719 	if (uid_eq(cred->euid, tcred->suid) ||
720 	    uid_eq(cred->euid, tcred->uid)  ||
721 	    uid_eq(cred->uid,  tcred->suid) ||
722 	    uid_eq(cred->uid,  tcred->uid))
723 		return 1;
724 
725 	if (ns_capable(tcred->user_ns, CAP_KILL))
726 		return 1;
727 
728 	return 0;
729 }
730 
731 /*
732  * Bad permissions for sending the signal
733  * - the caller must hold the RCU read lock
734  */
735 static int check_kill_permission(int sig, struct siginfo *info,
736 				 struct task_struct *t)
737 {
738 	struct pid *sid;
739 	int error;
740 
741 	if (!valid_signal(sig))
742 		return -EINVAL;
743 
744 	if (!si_fromuser(info))
745 		return 0;
746 
747 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
748 	if (error)
749 		return error;
750 
751 	if (!same_thread_group(current, t) &&
752 	    !kill_ok_by_cred(t)) {
753 		switch (sig) {
754 		case SIGCONT:
755 			sid = task_session(t);
756 			/*
757 			 * We don't return the error if sid == NULL. The
758 			 * task was unhashed, the caller must notice this.
759 			 */
760 			if (!sid || sid == task_session(current))
761 				break;
762 		default:
763 			return -EPERM;
764 		}
765 	}
766 
767 	return security_task_kill(t, info, sig, 0);
768 }
769 
770 /**
771  * ptrace_trap_notify - schedule trap to notify ptracer
772  * @t: tracee wanting to notify tracer
773  *
774  * This function schedules sticky ptrace trap which is cleared on the next
775  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
776  * ptracer.
777  *
778  * If @t is running, STOP trap will be taken.  If trapped for STOP and
779  * ptracer is listening for events, tracee is woken up so that it can
780  * re-trap for the new event.  If trapped otherwise, STOP trap will be
781  * eventually taken without returning to userland after the existing traps
782  * are finished by PTRACE_CONT.
783  *
784  * CONTEXT:
785  * Must be called with @task->sighand->siglock held.
786  */
787 static void ptrace_trap_notify(struct task_struct *t)
788 {
789 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
790 	assert_spin_locked(&t->sighand->siglock);
791 
792 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
793 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
794 }
795 
796 /*
797  * Handle magic process-wide effects of stop/continue signals. Unlike
798  * the signal actions, these happen immediately at signal-generation
799  * time regardless of blocking, ignoring, or handling.  This does the
800  * actual continuing for SIGCONT, but not the actual stopping for stop
801  * signals. The process stop is done as a signal action for SIG_DFL.
802  *
803  * Returns true if the signal should be actually delivered, otherwise
804  * it should be dropped.
805  */
806 static bool prepare_signal(int sig, struct task_struct *p, bool force)
807 {
808 	struct signal_struct *signal = p->signal;
809 	struct task_struct *t;
810 	sigset_t flush;
811 
812 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
813 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
814 			return sig == SIGKILL;
815 		/*
816 		 * The process is in the middle of dying, nothing to do.
817 		 */
818 	} else if (sig_kernel_stop(sig)) {
819 		/*
820 		 * This is a stop signal.  Remove SIGCONT from all queues.
821 		 */
822 		siginitset(&flush, sigmask(SIGCONT));
823 		flush_sigqueue_mask(&flush, &signal->shared_pending);
824 		for_each_thread(p, t)
825 			flush_sigqueue_mask(&flush, &t->pending);
826 	} else if (sig == SIGCONT) {
827 		unsigned int why;
828 		/*
829 		 * Remove all stop signals from all queues, wake all threads.
830 		 */
831 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
832 		flush_sigqueue_mask(&flush, &signal->shared_pending);
833 		for_each_thread(p, t) {
834 			flush_sigqueue_mask(&flush, &t->pending);
835 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
836 			if (likely(!(t->ptrace & PT_SEIZED)))
837 				wake_up_state(t, __TASK_STOPPED);
838 			else
839 				ptrace_trap_notify(t);
840 		}
841 
842 		/*
843 		 * Notify the parent with CLD_CONTINUED if we were stopped.
844 		 *
845 		 * If we were in the middle of a group stop, we pretend it
846 		 * was already finished, and then continued. Since SIGCHLD
847 		 * doesn't queue we report only CLD_STOPPED, as if the next
848 		 * CLD_CONTINUED was dropped.
849 		 */
850 		why = 0;
851 		if (signal->flags & SIGNAL_STOP_STOPPED)
852 			why |= SIGNAL_CLD_CONTINUED;
853 		else if (signal->group_stop_count)
854 			why |= SIGNAL_CLD_STOPPED;
855 
856 		if (why) {
857 			/*
858 			 * The first thread which returns from do_signal_stop()
859 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
860 			 * notify its parent. See get_signal_to_deliver().
861 			 */
862 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
863 			signal->group_stop_count = 0;
864 			signal->group_exit_code = 0;
865 		}
866 	}
867 
868 	return !sig_ignored(p, sig, force);
869 }
870 
871 /*
872  * Test if P wants to take SIG.  After we've checked all threads with this,
873  * it's equivalent to finding no threads not blocking SIG.  Any threads not
874  * blocking SIG were ruled out because they are not running and already
875  * have pending signals.  Such threads will dequeue from the shared queue
876  * as soon as they're available, so putting the signal on the shared queue
877  * will be equivalent to sending it to one such thread.
878  */
879 static inline int wants_signal(int sig, struct task_struct *p)
880 {
881 	if (sigismember(&p->blocked, sig))
882 		return 0;
883 	if (p->flags & PF_EXITING)
884 		return 0;
885 	if (sig == SIGKILL)
886 		return 1;
887 	if (task_is_stopped_or_traced(p))
888 		return 0;
889 	return task_curr(p) || !signal_pending(p);
890 }
891 
892 static void complete_signal(int sig, struct task_struct *p, int group)
893 {
894 	struct signal_struct *signal = p->signal;
895 	struct task_struct *t;
896 
897 	/*
898 	 * Now find a thread we can wake up to take the signal off the queue.
899 	 *
900 	 * If the main thread wants the signal, it gets first crack.
901 	 * Probably the least surprising to the average bear.
902 	 */
903 	if (wants_signal(sig, p))
904 		t = p;
905 	else if (!group || thread_group_empty(p))
906 		/*
907 		 * There is just one thread and it does not need to be woken.
908 		 * It will dequeue unblocked signals before it runs again.
909 		 */
910 		return;
911 	else {
912 		/*
913 		 * Otherwise try to find a suitable thread.
914 		 */
915 		t = signal->curr_target;
916 		while (!wants_signal(sig, t)) {
917 			t = next_thread(t);
918 			if (t == signal->curr_target)
919 				/*
920 				 * No thread needs to be woken.
921 				 * Any eligible threads will see
922 				 * the signal in the queue soon.
923 				 */
924 				return;
925 		}
926 		signal->curr_target = t;
927 	}
928 
929 	/*
930 	 * Found a killable thread.  If the signal will be fatal,
931 	 * then start taking the whole group down immediately.
932 	 */
933 	if (sig_fatal(p, sig) &&
934 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
935 	    !sigismember(&t->real_blocked, sig) &&
936 	    (sig == SIGKILL || !t->ptrace)) {
937 		/*
938 		 * This signal will be fatal to the whole group.
939 		 */
940 		if (!sig_kernel_coredump(sig)) {
941 			/*
942 			 * Start a group exit and wake everybody up.
943 			 * This way we don't have other threads
944 			 * running and doing things after a slower
945 			 * thread has the fatal signal pending.
946 			 */
947 			signal->flags = SIGNAL_GROUP_EXIT;
948 			signal->group_exit_code = sig;
949 			signal->group_stop_count = 0;
950 			t = p;
951 			do {
952 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
953 				sigaddset(&t->pending.signal, SIGKILL);
954 				signal_wake_up(t, 1);
955 			} while_each_thread(p, t);
956 			return;
957 		}
958 	}
959 
960 	/*
961 	 * The signal is already in the shared-pending queue.
962 	 * Tell the chosen thread to wake up and dequeue it.
963 	 */
964 	signal_wake_up(t, sig == SIGKILL);
965 	return;
966 }
967 
968 static inline int legacy_queue(struct sigpending *signals, int sig)
969 {
970 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
971 }
972 
973 #ifdef CONFIG_USER_NS
974 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
975 {
976 	if (current_user_ns() == task_cred_xxx(t, user_ns))
977 		return;
978 
979 	if (SI_FROMKERNEL(info))
980 		return;
981 
982 	rcu_read_lock();
983 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
984 					make_kuid(current_user_ns(), info->si_uid));
985 	rcu_read_unlock();
986 }
987 #else
988 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
989 {
990 	return;
991 }
992 #endif
993 
994 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
995 			int group, int from_ancestor_ns)
996 {
997 	struct sigpending *pending;
998 	struct sigqueue *q;
999 	int override_rlimit;
1000 	int ret = 0, result;
1001 
1002 	assert_spin_locked(&t->sighand->siglock);
1003 
1004 	result = TRACE_SIGNAL_IGNORED;
1005 	if (!prepare_signal(sig, t,
1006 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1007 		goto ret;
1008 
1009 	pending = group ? &t->signal->shared_pending : &t->pending;
1010 	/*
1011 	 * Short-circuit ignored signals and support queuing
1012 	 * exactly one non-rt signal, so that we can get more
1013 	 * detailed information about the cause of the signal.
1014 	 */
1015 	result = TRACE_SIGNAL_ALREADY_PENDING;
1016 	if (legacy_queue(pending, sig))
1017 		goto ret;
1018 
1019 	result = TRACE_SIGNAL_DELIVERED;
1020 	/*
1021 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1022 	 * or SIGKILL.
1023 	 */
1024 	if (info == SEND_SIG_FORCED)
1025 		goto out_set;
1026 
1027 	/*
1028 	 * Real-time signals must be queued if sent by sigqueue, or
1029 	 * some other real-time mechanism.  It is implementation
1030 	 * defined whether kill() does so.  We attempt to do so, on
1031 	 * the principle of least surprise, but since kill is not
1032 	 * allowed to fail with EAGAIN when low on memory we just
1033 	 * make sure at least one signal gets delivered and don't
1034 	 * pass on the info struct.
1035 	 */
1036 	if (sig < SIGRTMIN)
1037 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1038 	else
1039 		override_rlimit = 0;
1040 
1041 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1042 		override_rlimit);
1043 	if (q) {
1044 		list_add_tail(&q->list, &pending->list);
1045 		switch ((unsigned long) info) {
1046 		case (unsigned long) SEND_SIG_NOINFO:
1047 			q->info.si_signo = sig;
1048 			q->info.si_errno = 0;
1049 			q->info.si_code = SI_USER;
1050 			q->info.si_pid = task_tgid_nr_ns(current,
1051 							task_active_pid_ns(t));
1052 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1053 			break;
1054 		case (unsigned long) SEND_SIG_PRIV:
1055 			q->info.si_signo = sig;
1056 			q->info.si_errno = 0;
1057 			q->info.si_code = SI_KERNEL;
1058 			q->info.si_pid = 0;
1059 			q->info.si_uid = 0;
1060 			break;
1061 		default:
1062 			copy_siginfo(&q->info, info);
1063 			if (from_ancestor_ns)
1064 				q->info.si_pid = 0;
1065 			break;
1066 		}
1067 
1068 		userns_fixup_signal_uid(&q->info, t);
1069 
1070 	} else if (!is_si_special(info)) {
1071 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1072 			/*
1073 			 * Queue overflow, abort.  We may abort if the
1074 			 * signal was rt and sent by user using something
1075 			 * other than kill().
1076 			 */
1077 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1078 			ret = -EAGAIN;
1079 			goto ret;
1080 		} else {
1081 			/*
1082 			 * This is a silent loss of information.  We still
1083 			 * send the signal, but the *info bits are lost.
1084 			 */
1085 			result = TRACE_SIGNAL_LOSE_INFO;
1086 		}
1087 	}
1088 
1089 out_set:
1090 	signalfd_notify(t, sig);
1091 	sigaddset(&pending->signal, sig);
1092 	complete_signal(sig, t, group);
1093 ret:
1094 	trace_signal_generate(sig, info, t, group, result);
1095 	return ret;
1096 }
1097 
1098 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1099 			int group)
1100 {
1101 	int from_ancestor_ns = 0;
1102 
1103 #ifdef CONFIG_PID_NS
1104 	from_ancestor_ns = si_fromuser(info) &&
1105 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1106 #endif
1107 
1108 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1109 }
1110 
1111 static void print_fatal_signal(int signr)
1112 {
1113 	struct pt_regs *regs = signal_pt_regs();
1114 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1115 
1116 #if defined(__i386__) && !defined(__arch_um__)
1117 	pr_info("code at %08lx: ", regs->ip);
1118 	{
1119 		int i;
1120 		for (i = 0; i < 16; i++) {
1121 			unsigned char insn;
1122 
1123 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1124 				break;
1125 			pr_cont("%02x ", insn);
1126 		}
1127 	}
1128 	pr_cont("\n");
1129 #endif
1130 	preempt_disable();
1131 	show_regs(regs);
1132 	preempt_enable();
1133 }
1134 
1135 static int __init setup_print_fatal_signals(char *str)
1136 {
1137 	get_option (&str, &print_fatal_signals);
1138 
1139 	return 1;
1140 }
1141 
1142 __setup("print-fatal-signals=", setup_print_fatal_signals);
1143 
1144 int
1145 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1146 {
1147 	return send_signal(sig, info, p, 1);
1148 }
1149 
1150 static int
1151 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1152 {
1153 	return send_signal(sig, info, t, 0);
1154 }
1155 
1156 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1157 			bool group)
1158 {
1159 	unsigned long flags;
1160 	int ret = -ESRCH;
1161 
1162 	if (lock_task_sighand(p, &flags)) {
1163 		ret = send_signal(sig, info, p, group);
1164 		unlock_task_sighand(p, &flags);
1165 	}
1166 
1167 	return ret;
1168 }
1169 
1170 /*
1171  * Force a signal that the process can't ignore: if necessary
1172  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1173  *
1174  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1175  * since we do not want to have a signal handler that was blocked
1176  * be invoked when user space had explicitly blocked it.
1177  *
1178  * We don't want to have recursive SIGSEGV's etc, for example,
1179  * that is why we also clear SIGNAL_UNKILLABLE.
1180  */
1181 int
1182 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1183 {
1184 	unsigned long int flags;
1185 	int ret, blocked, ignored;
1186 	struct k_sigaction *action;
1187 
1188 	spin_lock_irqsave(&t->sighand->siglock, flags);
1189 	action = &t->sighand->action[sig-1];
1190 	ignored = action->sa.sa_handler == SIG_IGN;
1191 	blocked = sigismember(&t->blocked, sig);
1192 	if (blocked || ignored) {
1193 		action->sa.sa_handler = SIG_DFL;
1194 		if (blocked) {
1195 			sigdelset(&t->blocked, sig);
1196 			recalc_sigpending_and_wake(t);
1197 		}
1198 	}
1199 	/*
1200 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1201 	 * debugging to leave init killable.
1202 	 */
1203 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1204 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1205 	ret = specific_send_sig_info(sig, info, t);
1206 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1207 
1208 	return ret;
1209 }
1210 
1211 /*
1212  * Nuke all other threads in the group.
1213  */
1214 int zap_other_threads(struct task_struct *p)
1215 {
1216 	struct task_struct *t = p;
1217 	int count = 0;
1218 
1219 	p->signal->group_stop_count = 0;
1220 
1221 	while_each_thread(p, t) {
1222 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1223 		count++;
1224 
1225 		/* Don't bother with already dead threads */
1226 		if (t->exit_state)
1227 			continue;
1228 		sigaddset(&t->pending.signal, SIGKILL);
1229 		signal_wake_up(t, 1);
1230 	}
1231 
1232 	return count;
1233 }
1234 
1235 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1236 					   unsigned long *flags)
1237 {
1238 	struct sighand_struct *sighand;
1239 
1240 	for (;;) {
1241 		/*
1242 		 * Disable interrupts early to avoid deadlocks.
1243 		 * See rcu_read_unlock() comment header for details.
1244 		 */
1245 		local_irq_save(*flags);
1246 		rcu_read_lock();
1247 		sighand = rcu_dereference(tsk->sighand);
1248 		if (unlikely(sighand == NULL)) {
1249 			rcu_read_unlock();
1250 			local_irq_restore(*flags);
1251 			break;
1252 		}
1253 		/*
1254 		 * This sighand can be already freed and even reused, but
1255 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1256 		 * initializes ->siglock: this slab can't go away, it has
1257 		 * the same object type, ->siglock can't be reinitialized.
1258 		 *
1259 		 * We need to ensure that tsk->sighand is still the same
1260 		 * after we take the lock, we can race with de_thread() or
1261 		 * __exit_signal(). In the latter case the next iteration
1262 		 * must see ->sighand == NULL.
1263 		 */
1264 		spin_lock(&sighand->siglock);
1265 		if (likely(sighand == tsk->sighand)) {
1266 			rcu_read_unlock();
1267 			break;
1268 		}
1269 		spin_unlock(&sighand->siglock);
1270 		rcu_read_unlock();
1271 		local_irq_restore(*flags);
1272 	}
1273 
1274 	return sighand;
1275 }
1276 
1277 /*
1278  * send signal info to all the members of a group
1279  */
1280 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1281 {
1282 	int ret;
1283 
1284 	rcu_read_lock();
1285 	ret = check_kill_permission(sig, info, p);
1286 	rcu_read_unlock();
1287 
1288 	if (!ret && sig)
1289 		ret = do_send_sig_info(sig, info, p, true);
1290 
1291 	return ret;
1292 }
1293 
1294 /*
1295  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1296  * control characters do (^C, ^Z etc)
1297  * - the caller must hold at least a readlock on tasklist_lock
1298  */
1299 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1300 {
1301 	struct task_struct *p = NULL;
1302 	int retval, success;
1303 
1304 	success = 0;
1305 	retval = -ESRCH;
1306 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1307 		int err = group_send_sig_info(sig, info, p);
1308 		success |= !err;
1309 		retval = err;
1310 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1311 	return success ? 0 : retval;
1312 }
1313 
1314 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1315 {
1316 	int error = -ESRCH;
1317 	struct task_struct *p;
1318 
1319 	for (;;) {
1320 		rcu_read_lock();
1321 		p = pid_task(pid, PIDTYPE_PID);
1322 		if (p)
1323 			error = group_send_sig_info(sig, info, p);
1324 		rcu_read_unlock();
1325 		if (likely(!p || error != -ESRCH))
1326 			return error;
1327 
1328 		/*
1329 		 * The task was unhashed in between, try again.  If it
1330 		 * is dead, pid_task() will return NULL, if we race with
1331 		 * de_thread() it will find the new leader.
1332 		 */
1333 	}
1334 }
1335 
1336 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1337 {
1338 	int error;
1339 	rcu_read_lock();
1340 	error = kill_pid_info(sig, info, find_vpid(pid));
1341 	rcu_read_unlock();
1342 	return error;
1343 }
1344 
1345 static int kill_as_cred_perm(const struct cred *cred,
1346 			     struct task_struct *target)
1347 {
1348 	const struct cred *pcred = __task_cred(target);
1349 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1350 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1351 		return 0;
1352 	return 1;
1353 }
1354 
1355 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1356 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1357 			 const struct cred *cred, u32 secid)
1358 {
1359 	int ret = -EINVAL;
1360 	struct task_struct *p;
1361 	unsigned long flags;
1362 
1363 	if (!valid_signal(sig))
1364 		return ret;
1365 
1366 	rcu_read_lock();
1367 	p = pid_task(pid, PIDTYPE_PID);
1368 	if (!p) {
1369 		ret = -ESRCH;
1370 		goto out_unlock;
1371 	}
1372 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1373 		ret = -EPERM;
1374 		goto out_unlock;
1375 	}
1376 	ret = security_task_kill(p, info, sig, secid);
1377 	if (ret)
1378 		goto out_unlock;
1379 
1380 	if (sig) {
1381 		if (lock_task_sighand(p, &flags)) {
1382 			ret = __send_signal(sig, info, p, 1, 0);
1383 			unlock_task_sighand(p, &flags);
1384 		} else
1385 			ret = -ESRCH;
1386 	}
1387 out_unlock:
1388 	rcu_read_unlock();
1389 	return ret;
1390 }
1391 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1392 
1393 /*
1394  * kill_something_info() interprets pid in interesting ways just like kill(2).
1395  *
1396  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1397  * is probably wrong.  Should make it like BSD or SYSV.
1398  */
1399 
1400 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1401 {
1402 	int ret;
1403 
1404 	if (pid > 0) {
1405 		rcu_read_lock();
1406 		ret = kill_pid_info(sig, info, find_vpid(pid));
1407 		rcu_read_unlock();
1408 		return ret;
1409 	}
1410 
1411 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1412 	if (pid == INT_MIN)
1413 		return -ESRCH;
1414 
1415 	read_lock(&tasklist_lock);
1416 	if (pid != -1) {
1417 		ret = __kill_pgrp_info(sig, info,
1418 				pid ? find_vpid(-pid) : task_pgrp(current));
1419 	} else {
1420 		int retval = 0, count = 0;
1421 		struct task_struct * p;
1422 
1423 		for_each_process(p) {
1424 			if (task_pid_vnr(p) > 1 &&
1425 					!same_thread_group(p, current)) {
1426 				int err = group_send_sig_info(sig, info, p);
1427 				++count;
1428 				if (err != -EPERM)
1429 					retval = err;
1430 			}
1431 		}
1432 		ret = count ? retval : -ESRCH;
1433 	}
1434 	read_unlock(&tasklist_lock);
1435 
1436 	return ret;
1437 }
1438 
1439 /*
1440  * These are for backward compatibility with the rest of the kernel source.
1441  */
1442 
1443 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1444 {
1445 	/*
1446 	 * Make sure legacy kernel users don't send in bad values
1447 	 * (normal paths check this in check_kill_permission).
1448 	 */
1449 	if (!valid_signal(sig))
1450 		return -EINVAL;
1451 
1452 	return do_send_sig_info(sig, info, p, false);
1453 }
1454 
1455 #define __si_special(priv) \
1456 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1457 
1458 int
1459 send_sig(int sig, struct task_struct *p, int priv)
1460 {
1461 	return send_sig_info(sig, __si_special(priv), p);
1462 }
1463 
1464 void
1465 force_sig(int sig, struct task_struct *p)
1466 {
1467 	force_sig_info(sig, SEND_SIG_PRIV, p);
1468 }
1469 
1470 /*
1471  * When things go south during signal handling, we
1472  * will force a SIGSEGV. And if the signal that caused
1473  * the problem was already a SIGSEGV, we'll want to
1474  * make sure we don't even try to deliver the signal..
1475  */
1476 int
1477 force_sigsegv(int sig, struct task_struct *p)
1478 {
1479 	if (sig == SIGSEGV) {
1480 		unsigned long flags;
1481 		spin_lock_irqsave(&p->sighand->siglock, flags);
1482 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1483 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1484 	}
1485 	force_sig(SIGSEGV, p);
1486 	return 0;
1487 }
1488 
1489 int kill_pgrp(struct pid *pid, int sig, int priv)
1490 {
1491 	int ret;
1492 
1493 	read_lock(&tasklist_lock);
1494 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1495 	read_unlock(&tasklist_lock);
1496 
1497 	return ret;
1498 }
1499 EXPORT_SYMBOL(kill_pgrp);
1500 
1501 int kill_pid(struct pid *pid, int sig, int priv)
1502 {
1503 	return kill_pid_info(sig, __si_special(priv), pid);
1504 }
1505 EXPORT_SYMBOL(kill_pid);
1506 
1507 /*
1508  * These functions support sending signals using preallocated sigqueue
1509  * structures.  This is needed "because realtime applications cannot
1510  * afford to lose notifications of asynchronous events, like timer
1511  * expirations or I/O completions".  In the case of POSIX Timers
1512  * we allocate the sigqueue structure from the timer_create.  If this
1513  * allocation fails we are able to report the failure to the application
1514  * with an EAGAIN error.
1515  */
1516 struct sigqueue *sigqueue_alloc(void)
1517 {
1518 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1519 
1520 	if (q)
1521 		q->flags |= SIGQUEUE_PREALLOC;
1522 
1523 	return q;
1524 }
1525 
1526 void sigqueue_free(struct sigqueue *q)
1527 {
1528 	unsigned long flags;
1529 	spinlock_t *lock = &current->sighand->siglock;
1530 
1531 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1532 	/*
1533 	 * We must hold ->siglock while testing q->list
1534 	 * to serialize with collect_signal() or with
1535 	 * __exit_signal()->flush_sigqueue().
1536 	 */
1537 	spin_lock_irqsave(lock, flags);
1538 	q->flags &= ~SIGQUEUE_PREALLOC;
1539 	/*
1540 	 * If it is queued it will be freed when dequeued,
1541 	 * like the "regular" sigqueue.
1542 	 */
1543 	if (!list_empty(&q->list))
1544 		q = NULL;
1545 	spin_unlock_irqrestore(lock, flags);
1546 
1547 	if (q)
1548 		__sigqueue_free(q);
1549 }
1550 
1551 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1552 {
1553 	int sig = q->info.si_signo;
1554 	struct sigpending *pending;
1555 	unsigned long flags;
1556 	int ret, result;
1557 
1558 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1559 
1560 	ret = -1;
1561 	if (!likely(lock_task_sighand(t, &flags)))
1562 		goto ret;
1563 
1564 	ret = 1; /* the signal is ignored */
1565 	result = TRACE_SIGNAL_IGNORED;
1566 	if (!prepare_signal(sig, t, false))
1567 		goto out;
1568 
1569 	ret = 0;
1570 	if (unlikely(!list_empty(&q->list))) {
1571 		/*
1572 		 * If an SI_TIMER entry is already queue just increment
1573 		 * the overrun count.
1574 		 */
1575 		BUG_ON(q->info.si_code != SI_TIMER);
1576 		q->info.si_overrun++;
1577 		result = TRACE_SIGNAL_ALREADY_PENDING;
1578 		goto out;
1579 	}
1580 	q->info.si_overrun = 0;
1581 
1582 	signalfd_notify(t, sig);
1583 	pending = group ? &t->signal->shared_pending : &t->pending;
1584 	list_add_tail(&q->list, &pending->list);
1585 	sigaddset(&pending->signal, sig);
1586 	complete_signal(sig, t, group);
1587 	result = TRACE_SIGNAL_DELIVERED;
1588 out:
1589 	trace_signal_generate(sig, &q->info, t, group, result);
1590 	unlock_task_sighand(t, &flags);
1591 ret:
1592 	return ret;
1593 }
1594 
1595 /*
1596  * Let a parent know about the death of a child.
1597  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1598  *
1599  * Returns true if our parent ignored us and so we've switched to
1600  * self-reaping.
1601  */
1602 bool do_notify_parent(struct task_struct *tsk, int sig)
1603 {
1604 	struct siginfo info;
1605 	unsigned long flags;
1606 	struct sighand_struct *psig;
1607 	bool autoreap = false;
1608 	u64 utime, stime;
1609 
1610 	BUG_ON(sig == -1);
1611 
1612  	/* do_notify_parent_cldstop should have been called instead.  */
1613  	BUG_ON(task_is_stopped_or_traced(tsk));
1614 
1615 	BUG_ON(!tsk->ptrace &&
1616 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1617 
1618 	if (sig != SIGCHLD) {
1619 		/*
1620 		 * This is only possible if parent == real_parent.
1621 		 * Check if it has changed security domain.
1622 		 */
1623 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1624 			sig = SIGCHLD;
1625 	}
1626 
1627 	info.si_signo = sig;
1628 	info.si_errno = 0;
1629 	/*
1630 	 * We are under tasklist_lock here so our parent is tied to
1631 	 * us and cannot change.
1632 	 *
1633 	 * task_active_pid_ns will always return the same pid namespace
1634 	 * until a task passes through release_task.
1635 	 *
1636 	 * write_lock() currently calls preempt_disable() which is the
1637 	 * same as rcu_read_lock(), but according to Oleg, this is not
1638 	 * correct to rely on this
1639 	 */
1640 	rcu_read_lock();
1641 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1642 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1643 				       task_uid(tsk));
1644 	rcu_read_unlock();
1645 
1646 	task_cputime(tsk, &utime, &stime);
1647 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1648 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1649 
1650 	info.si_status = tsk->exit_code & 0x7f;
1651 	if (tsk->exit_code & 0x80)
1652 		info.si_code = CLD_DUMPED;
1653 	else if (tsk->exit_code & 0x7f)
1654 		info.si_code = CLD_KILLED;
1655 	else {
1656 		info.si_code = CLD_EXITED;
1657 		info.si_status = tsk->exit_code >> 8;
1658 	}
1659 
1660 	psig = tsk->parent->sighand;
1661 	spin_lock_irqsave(&psig->siglock, flags);
1662 	if (!tsk->ptrace && sig == SIGCHLD &&
1663 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1664 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1665 		/*
1666 		 * We are exiting and our parent doesn't care.  POSIX.1
1667 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1668 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1669 		 * automatically and not left for our parent's wait4 call.
1670 		 * Rather than having the parent do it as a magic kind of
1671 		 * signal handler, we just set this to tell do_exit that we
1672 		 * can be cleaned up without becoming a zombie.  Note that
1673 		 * we still call __wake_up_parent in this case, because a
1674 		 * blocked sys_wait4 might now return -ECHILD.
1675 		 *
1676 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1677 		 * is implementation-defined: we do (if you don't want
1678 		 * it, just use SIG_IGN instead).
1679 		 */
1680 		autoreap = true;
1681 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1682 			sig = 0;
1683 	}
1684 	if (valid_signal(sig) && sig)
1685 		__group_send_sig_info(sig, &info, tsk->parent);
1686 	__wake_up_parent(tsk, tsk->parent);
1687 	spin_unlock_irqrestore(&psig->siglock, flags);
1688 
1689 	return autoreap;
1690 }
1691 
1692 /**
1693  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1694  * @tsk: task reporting the state change
1695  * @for_ptracer: the notification is for ptracer
1696  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1697  *
1698  * Notify @tsk's parent that the stopped/continued state has changed.  If
1699  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1700  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1701  *
1702  * CONTEXT:
1703  * Must be called with tasklist_lock at least read locked.
1704  */
1705 static void do_notify_parent_cldstop(struct task_struct *tsk,
1706 				     bool for_ptracer, int why)
1707 {
1708 	struct siginfo info;
1709 	unsigned long flags;
1710 	struct task_struct *parent;
1711 	struct sighand_struct *sighand;
1712 	u64 utime, stime;
1713 
1714 	if (for_ptracer) {
1715 		parent = tsk->parent;
1716 	} else {
1717 		tsk = tsk->group_leader;
1718 		parent = tsk->real_parent;
1719 	}
1720 
1721 	info.si_signo = SIGCHLD;
1722 	info.si_errno = 0;
1723 	/*
1724 	 * see comment in do_notify_parent() about the following 4 lines
1725 	 */
1726 	rcu_read_lock();
1727 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1728 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1729 	rcu_read_unlock();
1730 
1731 	task_cputime(tsk, &utime, &stime);
1732 	info.si_utime = nsec_to_clock_t(utime);
1733 	info.si_stime = nsec_to_clock_t(stime);
1734 
1735  	info.si_code = why;
1736  	switch (why) {
1737  	case CLD_CONTINUED:
1738  		info.si_status = SIGCONT;
1739  		break;
1740  	case CLD_STOPPED:
1741  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1742  		break;
1743  	case CLD_TRAPPED:
1744  		info.si_status = tsk->exit_code & 0x7f;
1745  		break;
1746  	default:
1747  		BUG();
1748  	}
1749 
1750 	sighand = parent->sighand;
1751 	spin_lock_irqsave(&sighand->siglock, flags);
1752 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1753 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1754 		__group_send_sig_info(SIGCHLD, &info, parent);
1755 	/*
1756 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1757 	 */
1758 	__wake_up_parent(tsk, parent);
1759 	spin_unlock_irqrestore(&sighand->siglock, flags);
1760 }
1761 
1762 static inline int may_ptrace_stop(void)
1763 {
1764 	if (!likely(current->ptrace))
1765 		return 0;
1766 	/*
1767 	 * Are we in the middle of do_coredump?
1768 	 * If so and our tracer is also part of the coredump stopping
1769 	 * is a deadlock situation, and pointless because our tracer
1770 	 * is dead so don't allow us to stop.
1771 	 * If SIGKILL was already sent before the caller unlocked
1772 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1773 	 * is safe to enter schedule().
1774 	 *
1775 	 * This is almost outdated, a task with the pending SIGKILL can't
1776 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1777 	 * after SIGKILL was already dequeued.
1778 	 */
1779 	if (unlikely(current->mm->core_state) &&
1780 	    unlikely(current->mm == current->parent->mm))
1781 		return 0;
1782 
1783 	return 1;
1784 }
1785 
1786 /*
1787  * Return non-zero if there is a SIGKILL that should be waking us up.
1788  * Called with the siglock held.
1789  */
1790 static int sigkill_pending(struct task_struct *tsk)
1791 {
1792 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1793 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1794 }
1795 
1796 /*
1797  * This must be called with current->sighand->siglock held.
1798  *
1799  * This should be the path for all ptrace stops.
1800  * We always set current->last_siginfo while stopped here.
1801  * That makes it a way to test a stopped process for
1802  * being ptrace-stopped vs being job-control-stopped.
1803  *
1804  * If we actually decide not to stop at all because the tracer
1805  * is gone, we keep current->exit_code unless clear_code.
1806  */
1807 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1808 	__releases(&current->sighand->siglock)
1809 	__acquires(&current->sighand->siglock)
1810 {
1811 	bool gstop_done = false;
1812 
1813 	if (arch_ptrace_stop_needed(exit_code, info)) {
1814 		/*
1815 		 * The arch code has something special to do before a
1816 		 * ptrace stop.  This is allowed to block, e.g. for faults
1817 		 * on user stack pages.  We can't keep the siglock while
1818 		 * calling arch_ptrace_stop, so we must release it now.
1819 		 * To preserve proper semantics, we must do this before
1820 		 * any signal bookkeeping like checking group_stop_count.
1821 		 * Meanwhile, a SIGKILL could come in before we retake the
1822 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1823 		 * So after regaining the lock, we must check for SIGKILL.
1824 		 */
1825 		spin_unlock_irq(&current->sighand->siglock);
1826 		arch_ptrace_stop(exit_code, info);
1827 		spin_lock_irq(&current->sighand->siglock);
1828 		if (sigkill_pending(current))
1829 			return;
1830 	}
1831 
1832 	/*
1833 	 * We're committing to trapping.  TRACED should be visible before
1834 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1835 	 * Also, transition to TRACED and updates to ->jobctl should be
1836 	 * atomic with respect to siglock and should be done after the arch
1837 	 * hook as siglock is released and regrabbed across it.
1838 	 */
1839 	set_current_state(TASK_TRACED);
1840 
1841 	current->last_siginfo = info;
1842 	current->exit_code = exit_code;
1843 
1844 	/*
1845 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1846 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1847 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1848 	 * could be clear now.  We act as if SIGCONT is received after
1849 	 * TASK_TRACED is entered - ignore it.
1850 	 */
1851 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1852 		gstop_done = task_participate_group_stop(current);
1853 
1854 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1855 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1856 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1857 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1858 
1859 	/* entering a trap, clear TRAPPING */
1860 	task_clear_jobctl_trapping(current);
1861 
1862 	spin_unlock_irq(&current->sighand->siglock);
1863 	read_lock(&tasklist_lock);
1864 	if (may_ptrace_stop()) {
1865 		/*
1866 		 * Notify parents of the stop.
1867 		 *
1868 		 * While ptraced, there are two parents - the ptracer and
1869 		 * the real_parent of the group_leader.  The ptracer should
1870 		 * know about every stop while the real parent is only
1871 		 * interested in the completion of group stop.  The states
1872 		 * for the two don't interact with each other.  Notify
1873 		 * separately unless they're gonna be duplicates.
1874 		 */
1875 		do_notify_parent_cldstop(current, true, why);
1876 		if (gstop_done && ptrace_reparented(current))
1877 			do_notify_parent_cldstop(current, false, why);
1878 
1879 		/*
1880 		 * Don't want to allow preemption here, because
1881 		 * sys_ptrace() needs this task to be inactive.
1882 		 *
1883 		 * XXX: implement read_unlock_no_resched().
1884 		 */
1885 		preempt_disable();
1886 		read_unlock(&tasklist_lock);
1887 		preempt_enable_no_resched();
1888 		freezable_schedule();
1889 	} else {
1890 		/*
1891 		 * By the time we got the lock, our tracer went away.
1892 		 * Don't drop the lock yet, another tracer may come.
1893 		 *
1894 		 * If @gstop_done, the ptracer went away between group stop
1895 		 * completion and here.  During detach, it would have set
1896 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1897 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1898 		 * the real parent of the group stop completion is enough.
1899 		 */
1900 		if (gstop_done)
1901 			do_notify_parent_cldstop(current, false, why);
1902 
1903 		/* tasklist protects us from ptrace_freeze_traced() */
1904 		__set_current_state(TASK_RUNNING);
1905 		if (clear_code)
1906 			current->exit_code = 0;
1907 		read_unlock(&tasklist_lock);
1908 	}
1909 
1910 	/*
1911 	 * We are back.  Now reacquire the siglock before touching
1912 	 * last_siginfo, so that we are sure to have synchronized with
1913 	 * any signal-sending on another CPU that wants to examine it.
1914 	 */
1915 	spin_lock_irq(&current->sighand->siglock);
1916 	current->last_siginfo = NULL;
1917 
1918 	/* LISTENING can be set only during STOP traps, clear it */
1919 	current->jobctl &= ~JOBCTL_LISTENING;
1920 
1921 	/*
1922 	 * Queued signals ignored us while we were stopped for tracing.
1923 	 * So check for any that we should take before resuming user mode.
1924 	 * This sets TIF_SIGPENDING, but never clears it.
1925 	 */
1926 	recalc_sigpending_tsk(current);
1927 }
1928 
1929 static void ptrace_do_notify(int signr, int exit_code, int why)
1930 {
1931 	siginfo_t info;
1932 
1933 	memset(&info, 0, sizeof info);
1934 	info.si_signo = signr;
1935 	info.si_code = exit_code;
1936 	info.si_pid = task_pid_vnr(current);
1937 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1938 
1939 	/* Let the debugger run.  */
1940 	ptrace_stop(exit_code, why, 1, &info);
1941 }
1942 
1943 void ptrace_notify(int exit_code)
1944 {
1945 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1946 	if (unlikely(current->task_works))
1947 		task_work_run();
1948 
1949 	spin_lock_irq(&current->sighand->siglock);
1950 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1951 	spin_unlock_irq(&current->sighand->siglock);
1952 }
1953 
1954 /**
1955  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1956  * @signr: signr causing group stop if initiating
1957  *
1958  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1959  * and participate in it.  If already set, participate in the existing
1960  * group stop.  If participated in a group stop (and thus slept), %true is
1961  * returned with siglock released.
1962  *
1963  * If ptraced, this function doesn't handle stop itself.  Instead,
1964  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1965  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1966  * places afterwards.
1967  *
1968  * CONTEXT:
1969  * Must be called with @current->sighand->siglock held, which is released
1970  * on %true return.
1971  *
1972  * RETURNS:
1973  * %false if group stop is already cancelled or ptrace trap is scheduled.
1974  * %true if participated in group stop.
1975  */
1976 static bool do_signal_stop(int signr)
1977 	__releases(&current->sighand->siglock)
1978 {
1979 	struct signal_struct *sig = current->signal;
1980 
1981 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1982 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1983 		struct task_struct *t;
1984 
1985 		/* signr will be recorded in task->jobctl for retries */
1986 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1987 
1988 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1989 		    unlikely(signal_group_exit(sig)))
1990 			return false;
1991 		/*
1992 		 * There is no group stop already in progress.  We must
1993 		 * initiate one now.
1994 		 *
1995 		 * While ptraced, a task may be resumed while group stop is
1996 		 * still in effect and then receive a stop signal and
1997 		 * initiate another group stop.  This deviates from the
1998 		 * usual behavior as two consecutive stop signals can't
1999 		 * cause two group stops when !ptraced.  That is why we
2000 		 * also check !task_is_stopped(t) below.
2001 		 *
2002 		 * The condition can be distinguished by testing whether
2003 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2004 		 * group_exit_code in such case.
2005 		 *
2006 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2007 		 * an intervening stop signal is required to cause two
2008 		 * continued events regardless of ptrace.
2009 		 */
2010 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2011 			sig->group_exit_code = signr;
2012 
2013 		sig->group_stop_count = 0;
2014 
2015 		if (task_set_jobctl_pending(current, signr | gstop))
2016 			sig->group_stop_count++;
2017 
2018 		t = current;
2019 		while_each_thread(current, t) {
2020 			/*
2021 			 * Setting state to TASK_STOPPED for a group
2022 			 * stop is always done with the siglock held,
2023 			 * so this check has no races.
2024 			 */
2025 			if (!task_is_stopped(t) &&
2026 			    task_set_jobctl_pending(t, signr | gstop)) {
2027 				sig->group_stop_count++;
2028 				if (likely(!(t->ptrace & PT_SEIZED)))
2029 					signal_wake_up(t, 0);
2030 				else
2031 					ptrace_trap_notify(t);
2032 			}
2033 		}
2034 	}
2035 
2036 	if (likely(!current->ptrace)) {
2037 		int notify = 0;
2038 
2039 		/*
2040 		 * If there are no other threads in the group, or if there
2041 		 * is a group stop in progress and we are the last to stop,
2042 		 * report to the parent.
2043 		 */
2044 		if (task_participate_group_stop(current))
2045 			notify = CLD_STOPPED;
2046 
2047 		__set_current_state(TASK_STOPPED);
2048 		spin_unlock_irq(&current->sighand->siglock);
2049 
2050 		/*
2051 		 * Notify the parent of the group stop completion.  Because
2052 		 * we're not holding either the siglock or tasklist_lock
2053 		 * here, ptracer may attach inbetween; however, this is for
2054 		 * group stop and should always be delivered to the real
2055 		 * parent of the group leader.  The new ptracer will get
2056 		 * its notification when this task transitions into
2057 		 * TASK_TRACED.
2058 		 */
2059 		if (notify) {
2060 			read_lock(&tasklist_lock);
2061 			do_notify_parent_cldstop(current, false, notify);
2062 			read_unlock(&tasklist_lock);
2063 		}
2064 
2065 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2066 		freezable_schedule();
2067 		return true;
2068 	} else {
2069 		/*
2070 		 * While ptraced, group stop is handled by STOP trap.
2071 		 * Schedule it and let the caller deal with it.
2072 		 */
2073 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2074 		return false;
2075 	}
2076 }
2077 
2078 /**
2079  * do_jobctl_trap - take care of ptrace jobctl traps
2080  *
2081  * When PT_SEIZED, it's used for both group stop and explicit
2082  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2083  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2084  * the stop signal; otherwise, %SIGTRAP.
2085  *
2086  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2087  * number as exit_code and no siginfo.
2088  *
2089  * CONTEXT:
2090  * Must be called with @current->sighand->siglock held, which may be
2091  * released and re-acquired before returning with intervening sleep.
2092  */
2093 static void do_jobctl_trap(void)
2094 {
2095 	struct signal_struct *signal = current->signal;
2096 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2097 
2098 	if (current->ptrace & PT_SEIZED) {
2099 		if (!signal->group_stop_count &&
2100 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2101 			signr = SIGTRAP;
2102 		WARN_ON_ONCE(!signr);
2103 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2104 				 CLD_STOPPED);
2105 	} else {
2106 		WARN_ON_ONCE(!signr);
2107 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2108 		current->exit_code = 0;
2109 	}
2110 }
2111 
2112 static int ptrace_signal(int signr, siginfo_t *info)
2113 {
2114 	/*
2115 	 * We do not check sig_kernel_stop(signr) but set this marker
2116 	 * unconditionally because we do not know whether debugger will
2117 	 * change signr. This flag has no meaning unless we are going
2118 	 * to stop after return from ptrace_stop(). In this case it will
2119 	 * be checked in do_signal_stop(), we should only stop if it was
2120 	 * not cleared by SIGCONT while we were sleeping. See also the
2121 	 * comment in dequeue_signal().
2122 	 */
2123 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2124 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2125 
2126 	/* We're back.  Did the debugger cancel the sig?  */
2127 	signr = current->exit_code;
2128 	if (signr == 0)
2129 		return signr;
2130 
2131 	current->exit_code = 0;
2132 
2133 	/*
2134 	 * Update the siginfo structure if the signal has
2135 	 * changed.  If the debugger wanted something
2136 	 * specific in the siginfo structure then it should
2137 	 * have updated *info via PTRACE_SETSIGINFO.
2138 	 */
2139 	if (signr != info->si_signo) {
2140 		info->si_signo = signr;
2141 		info->si_errno = 0;
2142 		info->si_code = SI_USER;
2143 		rcu_read_lock();
2144 		info->si_pid = task_pid_vnr(current->parent);
2145 		info->si_uid = from_kuid_munged(current_user_ns(),
2146 						task_uid(current->parent));
2147 		rcu_read_unlock();
2148 	}
2149 
2150 	/* If the (new) signal is now blocked, requeue it.  */
2151 	if (sigismember(&current->blocked, signr)) {
2152 		specific_send_sig_info(signr, info, current);
2153 		signr = 0;
2154 	}
2155 
2156 	return signr;
2157 }
2158 
2159 int get_signal(struct ksignal *ksig)
2160 {
2161 	struct sighand_struct *sighand = current->sighand;
2162 	struct signal_struct *signal = current->signal;
2163 	int signr;
2164 
2165 	if (unlikely(current->task_works))
2166 		task_work_run();
2167 
2168 	if (unlikely(uprobe_deny_signal()))
2169 		return 0;
2170 
2171 	/*
2172 	 * Do this once, we can't return to user-mode if freezing() == T.
2173 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2174 	 * thus do not need another check after return.
2175 	 */
2176 	try_to_freeze();
2177 
2178 relock:
2179 	spin_lock_irq(&sighand->siglock);
2180 	/*
2181 	 * Every stopped thread goes here after wakeup. Check to see if
2182 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2183 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2184 	 */
2185 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2186 		int why;
2187 
2188 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2189 			why = CLD_CONTINUED;
2190 		else
2191 			why = CLD_STOPPED;
2192 
2193 		signal->flags &= ~SIGNAL_CLD_MASK;
2194 
2195 		spin_unlock_irq(&sighand->siglock);
2196 
2197 		/*
2198 		 * Notify the parent that we're continuing.  This event is
2199 		 * always per-process and doesn't make whole lot of sense
2200 		 * for ptracers, who shouldn't consume the state via
2201 		 * wait(2) either, but, for backward compatibility, notify
2202 		 * the ptracer of the group leader too unless it's gonna be
2203 		 * a duplicate.
2204 		 */
2205 		read_lock(&tasklist_lock);
2206 		do_notify_parent_cldstop(current, false, why);
2207 
2208 		if (ptrace_reparented(current->group_leader))
2209 			do_notify_parent_cldstop(current->group_leader,
2210 						true, why);
2211 		read_unlock(&tasklist_lock);
2212 
2213 		goto relock;
2214 	}
2215 
2216 	for (;;) {
2217 		struct k_sigaction *ka;
2218 
2219 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2220 		    do_signal_stop(0))
2221 			goto relock;
2222 
2223 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2224 			do_jobctl_trap();
2225 			spin_unlock_irq(&sighand->siglock);
2226 			goto relock;
2227 		}
2228 
2229 		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2230 
2231 		if (!signr)
2232 			break; /* will return 0 */
2233 
2234 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2235 			signr = ptrace_signal(signr, &ksig->info);
2236 			if (!signr)
2237 				continue;
2238 		}
2239 
2240 		ka = &sighand->action[signr-1];
2241 
2242 		/* Trace actually delivered signals. */
2243 		trace_signal_deliver(signr, &ksig->info, ka);
2244 
2245 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2246 			continue;
2247 		if (ka->sa.sa_handler != SIG_DFL) {
2248 			/* Run the handler.  */
2249 			ksig->ka = *ka;
2250 
2251 			if (ka->sa.sa_flags & SA_ONESHOT)
2252 				ka->sa.sa_handler = SIG_DFL;
2253 
2254 			break; /* will return non-zero "signr" value */
2255 		}
2256 
2257 		/*
2258 		 * Now we are doing the default action for this signal.
2259 		 */
2260 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2261 			continue;
2262 
2263 		/*
2264 		 * Global init gets no signals it doesn't want.
2265 		 * Container-init gets no signals it doesn't want from same
2266 		 * container.
2267 		 *
2268 		 * Note that if global/container-init sees a sig_kernel_only()
2269 		 * signal here, the signal must have been generated internally
2270 		 * or must have come from an ancestor namespace. In either
2271 		 * case, the signal cannot be dropped.
2272 		 */
2273 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2274 				!sig_kernel_only(signr))
2275 			continue;
2276 
2277 		if (sig_kernel_stop(signr)) {
2278 			/*
2279 			 * The default action is to stop all threads in
2280 			 * the thread group.  The job control signals
2281 			 * do nothing in an orphaned pgrp, but SIGSTOP
2282 			 * always works.  Note that siglock needs to be
2283 			 * dropped during the call to is_orphaned_pgrp()
2284 			 * because of lock ordering with tasklist_lock.
2285 			 * This allows an intervening SIGCONT to be posted.
2286 			 * We need to check for that and bail out if necessary.
2287 			 */
2288 			if (signr != SIGSTOP) {
2289 				spin_unlock_irq(&sighand->siglock);
2290 
2291 				/* signals can be posted during this window */
2292 
2293 				if (is_current_pgrp_orphaned())
2294 					goto relock;
2295 
2296 				spin_lock_irq(&sighand->siglock);
2297 			}
2298 
2299 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2300 				/* It released the siglock.  */
2301 				goto relock;
2302 			}
2303 
2304 			/*
2305 			 * We didn't actually stop, due to a race
2306 			 * with SIGCONT or something like that.
2307 			 */
2308 			continue;
2309 		}
2310 
2311 		spin_unlock_irq(&sighand->siglock);
2312 
2313 		/*
2314 		 * Anything else is fatal, maybe with a core dump.
2315 		 */
2316 		current->flags |= PF_SIGNALED;
2317 
2318 		if (sig_kernel_coredump(signr)) {
2319 			if (print_fatal_signals)
2320 				print_fatal_signal(ksig->info.si_signo);
2321 			proc_coredump_connector(current);
2322 			/*
2323 			 * If it was able to dump core, this kills all
2324 			 * other threads in the group and synchronizes with
2325 			 * their demise.  If we lost the race with another
2326 			 * thread getting here, it set group_exit_code
2327 			 * first and our do_group_exit call below will use
2328 			 * that value and ignore the one we pass it.
2329 			 */
2330 			do_coredump(&ksig->info);
2331 		}
2332 
2333 		/*
2334 		 * Death signals, no core dump.
2335 		 */
2336 		do_group_exit(ksig->info.si_signo);
2337 		/* NOTREACHED */
2338 	}
2339 	spin_unlock_irq(&sighand->siglock);
2340 
2341 	ksig->sig = signr;
2342 	return ksig->sig > 0;
2343 }
2344 
2345 /**
2346  * signal_delivered -
2347  * @ksig:		kernel signal struct
2348  * @stepping:		nonzero if debugger single-step or block-step in use
2349  *
2350  * This function should be called when a signal has successfully been
2351  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2352  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2353  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2354  */
2355 static void signal_delivered(struct ksignal *ksig, int stepping)
2356 {
2357 	sigset_t blocked;
2358 
2359 	/* A signal was successfully delivered, and the
2360 	   saved sigmask was stored on the signal frame,
2361 	   and will be restored by sigreturn.  So we can
2362 	   simply clear the restore sigmask flag.  */
2363 	clear_restore_sigmask();
2364 
2365 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2366 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2367 		sigaddset(&blocked, ksig->sig);
2368 	set_current_blocked(&blocked);
2369 	tracehook_signal_handler(stepping);
2370 }
2371 
2372 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2373 {
2374 	if (failed)
2375 		force_sigsegv(ksig->sig, current);
2376 	else
2377 		signal_delivered(ksig, stepping);
2378 }
2379 
2380 /*
2381  * It could be that complete_signal() picked us to notify about the
2382  * group-wide signal. Other threads should be notified now to take
2383  * the shared signals in @which since we will not.
2384  */
2385 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2386 {
2387 	sigset_t retarget;
2388 	struct task_struct *t;
2389 
2390 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2391 	if (sigisemptyset(&retarget))
2392 		return;
2393 
2394 	t = tsk;
2395 	while_each_thread(tsk, t) {
2396 		if (t->flags & PF_EXITING)
2397 			continue;
2398 
2399 		if (!has_pending_signals(&retarget, &t->blocked))
2400 			continue;
2401 		/* Remove the signals this thread can handle. */
2402 		sigandsets(&retarget, &retarget, &t->blocked);
2403 
2404 		if (!signal_pending(t))
2405 			signal_wake_up(t, 0);
2406 
2407 		if (sigisemptyset(&retarget))
2408 			break;
2409 	}
2410 }
2411 
2412 void exit_signals(struct task_struct *tsk)
2413 {
2414 	int group_stop = 0;
2415 	sigset_t unblocked;
2416 
2417 	/*
2418 	 * @tsk is about to have PF_EXITING set - lock out users which
2419 	 * expect stable threadgroup.
2420 	 */
2421 	cgroup_threadgroup_change_begin(tsk);
2422 
2423 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2424 		tsk->flags |= PF_EXITING;
2425 		cgroup_threadgroup_change_end(tsk);
2426 		return;
2427 	}
2428 
2429 	spin_lock_irq(&tsk->sighand->siglock);
2430 	/*
2431 	 * From now this task is not visible for group-wide signals,
2432 	 * see wants_signal(), do_signal_stop().
2433 	 */
2434 	tsk->flags |= PF_EXITING;
2435 
2436 	cgroup_threadgroup_change_end(tsk);
2437 
2438 	if (!signal_pending(tsk))
2439 		goto out;
2440 
2441 	unblocked = tsk->blocked;
2442 	signotset(&unblocked);
2443 	retarget_shared_pending(tsk, &unblocked);
2444 
2445 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2446 	    task_participate_group_stop(tsk))
2447 		group_stop = CLD_STOPPED;
2448 out:
2449 	spin_unlock_irq(&tsk->sighand->siglock);
2450 
2451 	/*
2452 	 * If group stop has completed, deliver the notification.  This
2453 	 * should always go to the real parent of the group leader.
2454 	 */
2455 	if (unlikely(group_stop)) {
2456 		read_lock(&tasklist_lock);
2457 		do_notify_parent_cldstop(tsk, false, group_stop);
2458 		read_unlock(&tasklist_lock);
2459 	}
2460 }
2461 
2462 EXPORT_SYMBOL(recalc_sigpending);
2463 EXPORT_SYMBOL_GPL(dequeue_signal);
2464 EXPORT_SYMBOL(flush_signals);
2465 EXPORT_SYMBOL(force_sig);
2466 EXPORT_SYMBOL(send_sig);
2467 EXPORT_SYMBOL(send_sig_info);
2468 EXPORT_SYMBOL(sigprocmask);
2469 
2470 /*
2471  * System call entry points.
2472  */
2473 
2474 /**
2475  *  sys_restart_syscall - restart a system call
2476  */
2477 SYSCALL_DEFINE0(restart_syscall)
2478 {
2479 	struct restart_block *restart = &current->restart_block;
2480 	return restart->fn(restart);
2481 }
2482 
2483 long do_no_restart_syscall(struct restart_block *param)
2484 {
2485 	return -EINTR;
2486 }
2487 
2488 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2489 {
2490 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2491 		sigset_t newblocked;
2492 		/* A set of now blocked but previously unblocked signals. */
2493 		sigandnsets(&newblocked, newset, &current->blocked);
2494 		retarget_shared_pending(tsk, &newblocked);
2495 	}
2496 	tsk->blocked = *newset;
2497 	recalc_sigpending();
2498 }
2499 
2500 /**
2501  * set_current_blocked - change current->blocked mask
2502  * @newset: new mask
2503  *
2504  * It is wrong to change ->blocked directly, this helper should be used
2505  * to ensure the process can't miss a shared signal we are going to block.
2506  */
2507 void set_current_blocked(sigset_t *newset)
2508 {
2509 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2510 	__set_current_blocked(newset);
2511 }
2512 
2513 void __set_current_blocked(const sigset_t *newset)
2514 {
2515 	struct task_struct *tsk = current;
2516 
2517 	/*
2518 	 * In case the signal mask hasn't changed, there is nothing we need
2519 	 * to do. The current->blocked shouldn't be modified by other task.
2520 	 */
2521 	if (sigequalsets(&tsk->blocked, newset))
2522 		return;
2523 
2524 	spin_lock_irq(&tsk->sighand->siglock);
2525 	__set_task_blocked(tsk, newset);
2526 	spin_unlock_irq(&tsk->sighand->siglock);
2527 }
2528 
2529 /*
2530  * This is also useful for kernel threads that want to temporarily
2531  * (or permanently) block certain signals.
2532  *
2533  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2534  * interface happily blocks "unblockable" signals like SIGKILL
2535  * and friends.
2536  */
2537 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2538 {
2539 	struct task_struct *tsk = current;
2540 	sigset_t newset;
2541 
2542 	/* Lockless, only current can change ->blocked, never from irq */
2543 	if (oldset)
2544 		*oldset = tsk->blocked;
2545 
2546 	switch (how) {
2547 	case SIG_BLOCK:
2548 		sigorsets(&newset, &tsk->blocked, set);
2549 		break;
2550 	case SIG_UNBLOCK:
2551 		sigandnsets(&newset, &tsk->blocked, set);
2552 		break;
2553 	case SIG_SETMASK:
2554 		newset = *set;
2555 		break;
2556 	default:
2557 		return -EINVAL;
2558 	}
2559 
2560 	__set_current_blocked(&newset);
2561 	return 0;
2562 }
2563 
2564 /**
2565  *  sys_rt_sigprocmask - change the list of currently blocked signals
2566  *  @how: whether to add, remove, or set signals
2567  *  @nset: stores pending signals
2568  *  @oset: previous value of signal mask if non-null
2569  *  @sigsetsize: size of sigset_t type
2570  */
2571 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2572 		sigset_t __user *, oset, size_t, sigsetsize)
2573 {
2574 	sigset_t old_set, new_set;
2575 	int error;
2576 
2577 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2578 	if (sigsetsize != sizeof(sigset_t))
2579 		return -EINVAL;
2580 
2581 	old_set = current->blocked;
2582 
2583 	if (nset) {
2584 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2585 			return -EFAULT;
2586 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2587 
2588 		error = sigprocmask(how, &new_set, NULL);
2589 		if (error)
2590 			return error;
2591 	}
2592 
2593 	if (oset) {
2594 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2595 			return -EFAULT;
2596 	}
2597 
2598 	return 0;
2599 }
2600 
2601 #ifdef CONFIG_COMPAT
2602 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2603 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2604 {
2605 #ifdef __BIG_ENDIAN
2606 	sigset_t old_set = current->blocked;
2607 
2608 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2609 	if (sigsetsize != sizeof(sigset_t))
2610 		return -EINVAL;
2611 
2612 	if (nset) {
2613 		compat_sigset_t new32;
2614 		sigset_t new_set;
2615 		int error;
2616 		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2617 			return -EFAULT;
2618 
2619 		sigset_from_compat(&new_set, &new32);
2620 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2621 
2622 		error = sigprocmask(how, &new_set, NULL);
2623 		if (error)
2624 			return error;
2625 	}
2626 	if (oset) {
2627 		compat_sigset_t old32;
2628 		sigset_to_compat(&old32, &old_set);
2629 		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2630 			return -EFAULT;
2631 	}
2632 	return 0;
2633 #else
2634 	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2635 				  (sigset_t __user *)oset, sigsetsize);
2636 #endif
2637 }
2638 #endif
2639 
2640 static int do_sigpending(void *set, unsigned long sigsetsize)
2641 {
2642 	if (sigsetsize > sizeof(sigset_t))
2643 		return -EINVAL;
2644 
2645 	spin_lock_irq(&current->sighand->siglock);
2646 	sigorsets(set, &current->pending.signal,
2647 		  &current->signal->shared_pending.signal);
2648 	spin_unlock_irq(&current->sighand->siglock);
2649 
2650 	/* Outside the lock because only this thread touches it.  */
2651 	sigandsets(set, &current->blocked, set);
2652 	return 0;
2653 }
2654 
2655 /**
2656  *  sys_rt_sigpending - examine a pending signal that has been raised
2657  *			while blocked
2658  *  @uset: stores pending signals
2659  *  @sigsetsize: size of sigset_t type or larger
2660  */
2661 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2662 {
2663 	sigset_t set;
2664 	int err = do_sigpending(&set, sigsetsize);
2665 	if (!err && copy_to_user(uset, &set, sigsetsize))
2666 		err = -EFAULT;
2667 	return err;
2668 }
2669 
2670 #ifdef CONFIG_COMPAT
2671 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2672 		compat_size_t, sigsetsize)
2673 {
2674 #ifdef __BIG_ENDIAN
2675 	sigset_t set;
2676 	int err = do_sigpending(&set, sigsetsize);
2677 	if (!err) {
2678 		compat_sigset_t set32;
2679 		sigset_to_compat(&set32, &set);
2680 		/* we can get here only if sigsetsize <= sizeof(set) */
2681 		if (copy_to_user(uset, &set32, sigsetsize))
2682 			err = -EFAULT;
2683 	}
2684 	return err;
2685 #else
2686 	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2687 #endif
2688 }
2689 #endif
2690 
2691 enum siginfo_layout siginfo_layout(int sig, int si_code)
2692 {
2693 	enum siginfo_layout layout = SIL_KILL;
2694 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2695 		static const struct {
2696 			unsigned char limit, layout;
2697 		} filter[] = {
2698 			[SIGILL]  = { NSIGILL,  SIL_FAULT },
2699 			[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
2700 			[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2701 			[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
2702 			[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2703 #if defined(SIGEMT) && defined(NSIGEMT)
2704 			[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
2705 #endif
2706 			[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2707 			[SIGPOLL] = { NSIGPOLL, SIL_POLL },
2708 #ifdef __ARCH_SIGSYS
2709 			[SIGSYS]  = { NSIGSYS,  SIL_SYS },
2710 #endif
2711 		};
2712 		if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit))
2713 			layout = filter[sig].layout;
2714 		else if (si_code <= NSIGPOLL)
2715 			layout = SIL_POLL;
2716 	} else {
2717 		if (si_code == SI_TIMER)
2718 			layout = SIL_TIMER;
2719 		else if (si_code == SI_SIGIO)
2720 			layout = SIL_POLL;
2721 		else if (si_code < 0)
2722 			layout = SIL_RT;
2723 		/* Tests to support buggy kernel ABIs */
2724 #ifdef TRAP_FIXME
2725 		if ((sig == SIGTRAP) && (si_code == TRAP_FIXME))
2726 			layout = SIL_FAULT;
2727 #endif
2728 #ifdef FPE_FIXME
2729 		if ((sig == SIGFPE) && (si_code == FPE_FIXME))
2730 			layout = SIL_FAULT;
2731 #endif
2732 	}
2733 	return layout;
2734 }
2735 
2736 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2737 
2738 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2739 {
2740 	int err;
2741 
2742 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2743 		return -EFAULT;
2744 	if (from->si_code < 0)
2745 		return __copy_to_user(to, from, sizeof(siginfo_t))
2746 			? -EFAULT : 0;
2747 	/*
2748 	 * If you change siginfo_t structure, please be sure
2749 	 * this code is fixed accordingly.
2750 	 * Please remember to update the signalfd_copyinfo() function
2751 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2752 	 * It should never copy any pad contained in the structure
2753 	 * to avoid security leaks, but must copy the generic
2754 	 * 3 ints plus the relevant union member.
2755 	 */
2756 	err = __put_user(from->si_signo, &to->si_signo);
2757 	err |= __put_user(from->si_errno, &to->si_errno);
2758 	err |= __put_user(from->si_code, &to->si_code);
2759 	switch (siginfo_layout(from->si_signo, from->si_code)) {
2760 	case SIL_KILL:
2761 		err |= __put_user(from->si_pid, &to->si_pid);
2762 		err |= __put_user(from->si_uid, &to->si_uid);
2763 		break;
2764 	case SIL_TIMER:
2765 		/* Unreached SI_TIMER is negative */
2766 		break;
2767 	case SIL_POLL:
2768 		err |= __put_user(from->si_band, &to->si_band);
2769 		err |= __put_user(from->si_fd, &to->si_fd);
2770 		break;
2771 	case SIL_FAULT:
2772 		err |= __put_user(from->si_addr, &to->si_addr);
2773 #ifdef __ARCH_SI_TRAPNO
2774 		err |= __put_user(from->si_trapno, &to->si_trapno);
2775 #endif
2776 #ifdef BUS_MCEERR_AO
2777 		/*
2778 		 * Other callers might not initialize the si_lsb field,
2779 		 * so check explicitly for the right codes here.
2780 		 */
2781 		if (from->si_signo == SIGBUS &&
2782 		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2783 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2784 #endif
2785 #ifdef SEGV_BNDERR
2786 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2787 			err |= __put_user(from->si_lower, &to->si_lower);
2788 			err |= __put_user(from->si_upper, &to->si_upper);
2789 		}
2790 #endif
2791 #ifdef SEGV_PKUERR
2792 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2793 			err |= __put_user(from->si_pkey, &to->si_pkey);
2794 #endif
2795 		break;
2796 	case SIL_CHLD:
2797 		err |= __put_user(from->si_pid, &to->si_pid);
2798 		err |= __put_user(from->si_uid, &to->si_uid);
2799 		err |= __put_user(from->si_status, &to->si_status);
2800 		err |= __put_user(from->si_utime, &to->si_utime);
2801 		err |= __put_user(from->si_stime, &to->si_stime);
2802 		break;
2803 	case SIL_RT:
2804 		err |= __put_user(from->si_pid, &to->si_pid);
2805 		err |= __put_user(from->si_uid, &to->si_uid);
2806 		err |= __put_user(from->si_ptr, &to->si_ptr);
2807 		break;
2808 #ifdef __ARCH_SIGSYS
2809 	case SIL_SYS:
2810 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2811 		err |= __put_user(from->si_syscall, &to->si_syscall);
2812 		err |= __put_user(from->si_arch, &to->si_arch);
2813 		break;
2814 #endif
2815 	}
2816 	return err;
2817 }
2818 
2819 #endif
2820 
2821 /**
2822  *  do_sigtimedwait - wait for queued signals specified in @which
2823  *  @which: queued signals to wait for
2824  *  @info: if non-null, the signal's siginfo is returned here
2825  *  @ts: upper bound on process time suspension
2826  */
2827 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2828 		    const struct timespec *ts)
2829 {
2830 	ktime_t *to = NULL, timeout = KTIME_MAX;
2831 	struct task_struct *tsk = current;
2832 	sigset_t mask = *which;
2833 	int sig, ret = 0;
2834 
2835 	if (ts) {
2836 		if (!timespec_valid(ts))
2837 			return -EINVAL;
2838 		timeout = timespec_to_ktime(*ts);
2839 		to = &timeout;
2840 	}
2841 
2842 	/*
2843 	 * Invert the set of allowed signals to get those we want to block.
2844 	 */
2845 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2846 	signotset(&mask);
2847 
2848 	spin_lock_irq(&tsk->sighand->siglock);
2849 	sig = dequeue_signal(tsk, &mask, info);
2850 	if (!sig && timeout) {
2851 		/*
2852 		 * None ready, temporarily unblock those we're interested
2853 		 * while we are sleeping in so that we'll be awakened when
2854 		 * they arrive. Unblocking is always fine, we can avoid
2855 		 * set_current_blocked().
2856 		 */
2857 		tsk->real_blocked = tsk->blocked;
2858 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2859 		recalc_sigpending();
2860 		spin_unlock_irq(&tsk->sighand->siglock);
2861 
2862 		__set_current_state(TASK_INTERRUPTIBLE);
2863 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2864 							 HRTIMER_MODE_REL);
2865 		spin_lock_irq(&tsk->sighand->siglock);
2866 		__set_task_blocked(tsk, &tsk->real_blocked);
2867 		sigemptyset(&tsk->real_blocked);
2868 		sig = dequeue_signal(tsk, &mask, info);
2869 	}
2870 	spin_unlock_irq(&tsk->sighand->siglock);
2871 
2872 	if (sig)
2873 		return sig;
2874 	return ret ? -EINTR : -EAGAIN;
2875 }
2876 
2877 /**
2878  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2879  *			in @uthese
2880  *  @uthese: queued signals to wait for
2881  *  @uinfo: if non-null, the signal's siginfo is returned here
2882  *  @uts: upper bound on process time suspension
2883  *  @sigsetsize: size of sigset_t type
2884  */
2885 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2886 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2887 		size_t, sigsetsize)
2888 {
2889 	sigset_t these;
2890 	struct timespec ts;
2891 	siginfo_t info;
2892 	int ret;
2893 
2894 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2895 	if (sigsetsize != sizeof(sigset_t))
2896 		return -EINVAL;
2897 
2898 	if (copy_from_user(&these, uthese, sizeof(these)))
2899 		return -EFAULT;
2900 
2901 	if (uts) {
2902 		if (copy_from_user(&ts, uts, sizeof(ts)))
2903 			return -EFAULT;
2904 	}
2905 
2906 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2907 
2908 	if (ret > 0 && uinfo) {
2909 		if (copy_siginfo_to_user(uinfo, &info))
2910 			ret = -EFAULT;
2911 	}
2912 
2913 	return ret;
2914 }
2915 
2916 #ifdef CONFIG_COMPAT
2917 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
2918 		struct compat_siginfo __user *, uinfo,
2919 		struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
2920 {
2921 	compat_sigset_t s32;
2922 	sigset_t s;
2923 	struct timespec t;
2924 	siginfo_t info;
2925 	long ret;
2926 
2927 	if (sigsetsize != sizeof(sigset_t))
2928 		return -EINVAL;
2929 
2930 	if (copy_from_user(&s32, uthese, sizeof(compat_sigset_t)))
2931 		return -EFAULT;
2932 	sigset_from_compat(&s, &s32);
2933 
2934 	if (uts) {
2935 		if (compat_get_timespec(&t, uts))
2936 			return -EFAULT;
2937 	}
2938 
2939 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
2940 
2941 	if (ret > 0 && uinfo) {
2942 		if (copy_siginfo_to_user32(uinfo, &info))
2943 			ret = -EFAULT;
2944 	}
2945 
2946 	return ret;
2947 }
2948 #endif
2949 
2950 /**
2951  *  sys_kill - send a signal to a process
2952  *  @pid: the PID of the process
2953  *  @sig: signal to be sent
2954  */
2955 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2956 {
2957 	struct siginfo info;
2958 
2959 	info.si_signo = sig;
2960 	info.si_errno = 0;
2961 	info.si_code = SI_USER;
2962 	info.si_pid = task_tgid_vnr(current);
2963 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2964 
2965 	return kill_something_info(sig, &info, pid);
2966 }
2967 
2968 static int
2969 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2970 {
2971 	struct task_struct *p;
2972 	int error = -ESRCH;
2973 
2974 	rcu_read_lock();
2975 	p = find_task_by_vpid(pid);
2976 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2977 		error = check_kill_permission(sig, info, p);
2978 		/*
2979 		 * The null signal is a permissions and process existence
2980 		 * probe.  No signal is actually delivered.
2981 		 */
2982 		if (!error && sig) {
2983 			error = do_send_sig_info(sig, info, p, false);
2984 			/*
2985 			 * If lock_task_sighand() failed we pretend the task
2986 			 * dies after receiving the signal. The window is tiny,
2987 			 * and the signal is private anyway.
2988 			 */
2989 			if (unlikely(error == -ESRCH))
2990 				error = 0;
2991 		}
2992 	}
2993 	rcu_read_unlock();
2994 
2995 	return error;
2996 }
2997 
2998 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2999 {
3000 	struct siginfo info = {};
3001 
3002 	info.si_signo = sig;
3003 	info.si_errno = 0;
3004 	info.si_code = SI_TKILL;
3005 	info.si_pid = task_tgid_vnr(current);
3006 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3007 
3008 	return do_send_specific(tgid, pid, sig, &info);
3009 }
3010 
3011 /**
3012  *  sys_tgkill - send signal to one specific thread
3013  *  @tgid: the thread group ID of the thread
3014  *  @pid: the PID of the thread
3015  *  @sig: signal to be sent
3016  *
3017  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3018  *  exists but it's not belonging to the target process anymore. This
3019  *  method solves the problem of threads exiting and PIDs getting reused.
3020  */
3021 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3022 {
3023 	/* This is only valid for single tasks */
3024 	if (pid <= 0 || tgid <= 0)
3025 		return -EINVAL;
3026 
3027 	return do_tkill(tgid, pid, sig);
3028 }
3029 
3030 /**
3031  *  sys_tkill - send signal to one specific task
3032  *  @pid: the PID of the task
3033  *  @sig: signal to be sent
3034  *
3035  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3036  */
3037 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3038 {
3039 	/* This is only valid for single tasks */
3040 	if (pid <= 0)
3041 		return -EINVAL;
3042 
3043 	return do_tkill(0, pid, sig);
3044 }
3045 
3046 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3047 {
3048 	/* Not even root can pretend to send signals from the kernel.
3049 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3050 	 */
3051 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3052 	    (task_pid_vnr(current) != pid))
3053 		return -EPERM;
3054 
3055 	info->si_signo = sig;
3056 
3057 	/* POSIX.1b doesn't mention process groups.  */
3058 	return kill_proc_info(sig, info, pid);
3059 }
3060 
3061 /**
3062  *  sys_rt_sigqueueinfo - send signal information to a signal
3063  *  @pid: the PID of the thread
3064  *  @sig: signal to be sent
3065  *  @uinfo: signal info to be sent
3066  */
3067 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3068 		siginfo_t __user *, uinfo)
3069 {
3070 	siginfo_t info;
3071 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3072 		return -EFAULT;
3073 	return do_rt_sigqueueinfo(pid, sig, &info);
3074 }
3075 
3076 #ifdef CONFIG_COMPAT
3077 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3078 			compat_pid_t, pid,
3079 			int, sig,
3080 			struct compat_siginfo __user *, uinfo)
3081 {
3082 	siginfo_t info = {};
3083 	int ret = copy_siginfo_from_user32(&info, uinfo);
3084 	if (unlikely(ret))
3085 		return ret;
3086 	return do_rt_sigqueueinfo(pid, sig, &info);
3087 }
3088 #endif
3089 
3090 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3091 {
3092 	/* This is only valid for single tasks */
3093 	if (pid <= 0 || tgid <= 0)
3094 		return -EINVAL;
3095 
3096 	/* Not even root can pretend to send signals from the kernel.
3097 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3098 	 */
3099 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3100 	    (task_pid_vnr(current) != pid))
3101 		return -EPERM;
3102 
3103 	info->si_signo = sig;
3104 
3105 	return do_send_specific(tgid, pid, sig, info);
3106 }
3107 
3108 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3109 		siginfo_t __user *, uinfo)
3110 {
3111 	siginfo_t info;
3112 
3113 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3114 		return -EFAULT;
3115 
3116 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3117 }
3118 
3119 #ifdef CONFIG_COMPAT
3120 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3121 			compat_pid_t, tgid,
3122 			compat_pid_t, pid,
3123 			int, sig,
3124 			struct compat_siginfo __user *, uinfo)
3125 {
3126 	siginfo_t info = {};
3127 
3128 	if (copy_siginfo_from_user32(&info, uinfo))
3129 		return -EFAULT;
3130 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3131 }
3132 #endif
3133 
3134 /*
3135  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3136  */
3137 void kernel_sigaction(int sig, __sighandler_t action)
3138 {
3139 	spin_lock_irq(&current->sighand->siglock);
3140 	current->sighand->action[sig - 1].sa.sa_handler = action;
3141 	if (action == SIG_IGN) {
3142 		sigset_t mask;
3143 
3144 		sigemptyset(&mask);
3145 		sigaddset(&mask, sig);
3146 
3147 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3148 		flush_sigqueue_mask(&mask, &current->pending);
3149 		recalc_sigpending();
3150 	}
3151 	spin_unlock_irq(&current->sighand->siglock);
3152 }
3153 EXPORT_SYMBOL(kernel_sigaction);
3154 
3155 void __weak sigaction_compat_abi(struct k_sigaction *act,
3156 		struct k_sigaction *oact)
3157 {
3158 }
3159 
3160 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3161 {
3162 	struct task_struct *p = current, *t;
3163 	struct k_sigaction *k;
3164 	sigset_t mask;
3165 
3166 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3167 		return -EINVAL;
3168 
3169 	k = &p->sighand->action[sig-1];
3170 
3171 	spin_lock_irq(&p->sighand->siglock);
3172 	if (oact)
3173 		*oact = *k;
3174 
3175 	sigaction_compat_abi(act, oact);
3176 
3177 	if (act) {
3178 		sigdelsetmask(&act->sa.sa_mask,
3179 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3180 		*k = *act;
3181 		/*
3182 		 * POSIX 3.3.1.3:
3183 		 *  "Setting a signal action to SIG_IGN for a signal that is
3184 		 *   pending shall cause the pending signal to be discarded,
3185 		 *   whether or not it is blocked."
3186 		 *
3187 		 *  "Setting a signal action to SIG_DFL for a signal that is
3188 		 *   pending and whose default action is to ignore the signal
3189 		 *   (for example, SIGCHLD), shall cause the pending signal to
3190 		 *   be discarded, whether or not it is blocked"
3191 		 */
3192 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3193 			sigemptyset(&mask);
3194 			sigaddset(&mask, sig);
3195 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3196 			for_each_thread(p, t)
3197 				flush_sigqueue_mask(&mask, &t->pending);
3198 		}
3199 	}
3200 
3201 	spin_unlock_irq(&p->sighand->siglock);
3202 	return 0;
3203 }
3204 
3205 static int
3206 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
3207 {
3208 	struct task_struct *t = current;
3209 
3210 	if (oss) {
3211 		memset(oss, 0, sizeof(stack_t));
3212 		oss->ss_sp = (void __user *) t->sas_ss_sp;
3213 		oss->ss_size = t->sas_ss_size;
3214 		oss->ss_flags = sas_ss_flags(sp) |
3215 			(current->sas_ss_flags & SS_FLAG_BITS);
3216 	}
3217 
3218 	if (ss) {
3219 		void __user *ss_sp = ss->ss_sp;
3220 		size_t ss_size = ss->ss_size;
3221 		unsigned ss_flags = ss->ss_flags;
3222 		int ss_mode;
3223 
3224 		if (unlikely(on_sig_stack(sp)))
3225 			return -EPERM;
3226 
3227 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3228 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3229 				ss_mode != 0))
3230 			return -EINVAL;
3231 
3232 		if (ss_mode == SS_DISABLE) {
3233 			ss_size = 0;
3234 			ss_sp = NULL;
3235 		} else {
3236 			if (unlikely(ss_size < MINSIGSTKSZ))
3237 				return -ENOMEM;
3238 		}
3239 
3240 		t->sas_ss_sp = (unsigned long) ss_sp;
3241 		t->sas_ss_size = ss_size;
3242 		t->sas_ss_flags = ss_flags;
3243 	}
3244 	return 0;
3245 }
3246 
3247 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3248 {
3249 	stack_t new, old;
3250 	int err;
3251 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3252 		return -EFAULT;
3253 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3254 			      current_user_stack_pointer());
3255 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3256 		err = -EFAULT;
3257 	return err;
3258 }
3259 
3260 int restore_altstack(const stack_t __user *uss)
3261 {
3262 	stack_t new;
3263 	if (copy_from_user(&new, uss, sizeof(stack_t)))
3264 		return -EFAULT;
3265 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
3266 	/* squash all but EFAULT for now */
3267 	return 0;
3268 }
3269 
3270 int __save_altstack(stack_t __user *uss, unsigned long sp)
3271 {
3272 	struct task_struct *t = current;
3273 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3274 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3275 		__put_user(t->sas_ss_size, &uss->ss_size);
3276 	if (err)
3277 		return err;
3278 	if (t->sas_ss_flags & SS_AUTODISARM)
3279 		sas_ss_reset(t);
3280 	return 0;
3281 }
3282 
3283 #ifdef CONFIG_COMPAT
3284 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3285 			const compat_stack_t __user *, uss_ptr,
3286 			compat_stack_t __user *, uoss_ptr)
3287 {
3288 	stack_t uss, uoss;
3289 	int ret;
3290 
3291 	if (uss_ptr) {
3292 		compat_stack_t uss32;
3293 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3294 			return -EFAULT;
3295 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3296 		uss.ss_flags = uss32.ss_flags;
3297 		uss.ss_size = uss32.ss_size;
3298 	}
3299 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3300 			     compat_user_stack_pointer());
3301 	if (ret >= 0 && uoss_ptr)  {
3302 		compat_stack_t old;
3303 		memset(&old, 0, sizeof(old));
3304 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
3305 		old.ss_flags = uoss.ss_flags;
3306 		old.ss_size = uoss.ss_size;
3307 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3308 			ret = -EFAULT;
3309 	}
3310 	return ret;
3311 }
3312 
3313 int compat_restore_altstack(const compat_stack_t __user *uss)
3314 {
3315 	int err = compat_sys_sigaltstack(uss, NULL);
3316 	/* squash all but -EFAULT for now */
3317 	return err == -EFAULT ? err : 0;
3318 }
3319 
3320 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3321 {
3322 	int err;
3323 	struct task_struct *t = current;
3324 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3325 			 &uss->ss_sp) |
3326 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3327 		__put_user(t->sas_ss_size, &uss->ss_size);
3328 	if (err)
3329 		return err;
3330 	if (t->sas_ss_flags & SS_AUTODISARM)
3331 		sas_ss_reset(t);
3332 	return 0;
3333 }
3334 #endif
3335 
3336 #ifdef __ARCH_WANT_SYS_SIGPENDING
3337 
3338 /**
3339  *  sys_sigpending - examine pending signals
3340  *  @set: where mask of pending signal is returned
3341  */
3342 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3343 {
3344 	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3345 }
3346 
3347 #ifdef CONFIG_COMPAT
3348 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3349 {
3350 #ifdef __BIG_ENDIAN
3351 	sigset_t set;
3352 	int err = do_sigpending(&set, sizeof(set.sig[0]));
3353 	if (!err)
3354 		err = put_user(set.sig[0], set32);
3355 	return err;
3356 #else
3357 	return sys_rt_sigpending((sigset_t __user *)set32, sizeof(*set32));
3358 #endif
3359 }
3360 #endif
3361 
3362 #endif
3363 
3364 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3365 /**
3366  *  sys_sigprocmask - examine and change blocked signals
3367  *  @how: whether to add, remove, or set signals
3368  *  @nset: signals to add or remove (if non-null)
3369  *  @oset: previous value of signal mask if non-null
3370  *
3371  * Some platforms have their own version with special arguments;
3372  * others support only sys_rt_sigprocmask.
3373  */
3374 
3375 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3376 		old_sigset_t __user *, oset)
3377 {
3378 	old_sigset_t old_set, new_set;
3379 	sigset_t new_blocked;
3380 
3381 	old_set = current->blocked.sig[0];
3382 
3383 	if (nset) {
3384 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3385 			return -EFAULT;
3386 
3387 		new_blocked = current->blocked;
3388 
3389 		switch (how) {
3390 		case SIG_BLOCK:
3391 			sigaddsetmask(&new_blocked, new_set);
3392 			break;
3393 		case SIG_UNBLOCK:
3394 			sigdelsetmask(&new_blocked, new_set);
3395 			break;
3396 		case SIG_SETMASK:
3397 			new_blocked.sig[0] = new_set;
3398 			break;
3399 		default:
3400 			return -EINVAL;
3401 		}
3402 
3403 		set_current_blocked(&new_blocked);
3404 	}
3405 
3406 	if (oset) {
3407 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3408 			return -EFAULT;
3409 	}
3410 
3411 	return 0;
3412 }
3413 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3414 
3415 #ifndef CONFIG_ODD_RT_SIGACTION
3416 /**
3417  *  sys_rt_sigaction - alter an action taken by a process
3418  *  @sig: signal to be sent
3419  *  @act: new sigaction
3420  *  @oact: used to save the previous sigaction
3421  *  @sigsetsize: size of sigset_t type
3422  */
3423 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3424 		const struct sigaction __user *, act,
3425 		struct sigaction __user *, oact,
3426 		size_t, sigsetsize)
3427 {
3428 	struct k_sigaction new_sa, old_sa;
3429 	int ret = -EINVAL;
3430 
3431 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3432 	if (sigsetsize != sizeof(sigset_t))
3433 		goto out;
3434 
3435 	if (act) {
3436 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3437 			return -EFAULT;
3438 	}
3439 
3440 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3441 
3442 	if (!ret && oact) {
3443 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3444 			return -EFAULT;
3445 	}
3446 out:
3447 	return ret;
3448 }
3449 #ifdef CONFIG_COMPAT
3450 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3451 		const struct compat_sigaction __user *, act,
3452 		struct compat_sigaction __user *, oact,
3453 		compat_size_t, sigsetsize)
3454 {
3455 	struct k_sigaction new_ka, old_ka;
3456 	compat_sigset_t mask;
3457 #ifdef __ARCH_HAS_SA_RESTORER
3458 	compat_uptr_t restorer;
3459 #endif
3460 	int ret;
3461 
3462 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3463 	if (sigsetsize != sizeof(compat_sigset_t))
3464 		return -EINVAL;
3465 
3466 	if (act) {
3467 		compat_uptr_t handler;
3468 		ret = get_user(handler, &act->sa_handler);
3469 		new_ka.sa.sa_handler = compat_ptr(handler);
3470 #ifdef __ARCH_HAS_SA_RESTORER
3471 		ret |= get_user(restorer, &act->sa_restorer);
3472 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3473 #endif
3474 		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3475 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3476 		if (ret)
3477 			return -EFAULT;
3478 		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3479 	}
3480 
3481 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3482 	if (!ret && oact) {
3483 		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3484 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3485 			       &oact->sa_handler);
3486 		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3487 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3488 #ifdef __ARCH_HAS_SA_RESTORER
3489 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3490 				&oact->sa_restorer);
3491 #endif
3492 	}
3493 	return ret;
3494 }
3495 #endif
3496 #endif /* !CONFIG_ODD_RT_SIGACTION */
3497 
3498 #ifdef CONFIG_OLD_SIGACTION
3499 SYSCALL_DEFINE3(sigaction, int, sig,
3500 		const struct old_sigaction __user *, act,
3501 	        struct old_sigaction __user *, oact)
3502 {
3503 	struct k_sigaction new_ka, old_ka;
3504 	int ret;
3505 
3506 	if (act) {
3507 		old_sigset_t mask;
3508 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3509 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3510 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3511 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3512 		    __get_user(mask, &act->sa_mask))
3513 			return -EFAULT;
3514 #ifdef __ARCH_HAS_KA_RESTORER
3515 		new_ka.ka_restorer = NULL;
3516 #endif
3517 		siginitset(&new_ka.sa.sa_mask, mask);
3518 	}
3519 
3520 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3521 
3522 	if (!ret && oact) {
3523 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3524 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3525 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3526 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3527 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3528 			return -EFAULT;
3529 	}
3530 
3531 	return ret;
3532 }
3533 #endif
3534 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3535 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3536 		const struct compat_old_sigaction __user *, act,
3537 	        struct compat_old_sigaction __user *, oact)
3538 {
3539 	struct k_sigaction new_ka, old_ka;
3540 	int ret;
3541 	compat_old_sigset_t mask;
3542 	compat_uptr_t handler, restorer;
3543 
3544 	if (act) {
3545 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3546 		    __get_user(handler, &act->sa_handler) ||
3547 		    __get_user(restorer, &act->sa_restorer) ||
3548 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3549 		    __get_user(mask, &act->sa_mask))
3550 			return -EFAULT;
3551 
3552 #ifdef __ARCH_HAS_KA_RESTORER
3553 		new_ka.ka_restorer = NULL;
3554 #endif
3555 		new_ka.sa.sa_handler = compat_ptr(handler);
3556 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3557 		siginitset(&new_ka.sa.sa_mask, mask);
3558 	}
3559 
3560 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3561 
3562 	if (!ret && oact) {
3563 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3564 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3565 			       &oact->sa_handler) ||
3566 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3567 			       &oact->sa_restorer) ||
3568 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3569 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3570 			return -EFAULT;
3571 	}
3572 	return ret;
3573 }
3574 #endif
3575 
3576 #ifdef CONFIG_SGETMASK_SYSCALL
3577 
3578 /*
3579  * For backwards compatibility.  Functionality superseded by sigprocmask.
3580  */
3581 SYSCALL_DEFINE0(sgetmask)
3582 {
3583 	/* SMP safe */
3584 	return current->blocked.sig[0];
3585 }
3586 
3587 SYSCALL_DEFINE1(ssetmask, int, newmask)
3588 {
3589 	int old = current->blocked.sig[0];
3590 	sigset_t newset;
3591 
3592 	siginitset(&newset, newmask);
3593 	set_current_blocked(&newset);
3594 
3595 	return old;
3596 }
3597 #endif /* CONFIG_SGETMASK_SYSCALL */
3598 
3599 #ifdef __ARCH_WANT_SYS_SIGNAL
3600 /*
3601  * For backwards compatibility.  Functionality superseded by sigaction.
3602  */
3603 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3604 {
3605 	struct k_sigaction new_sa, old_sa;
3606 	int ret;
3607 
3608 	new_sa.sa.sa_handler = handler;
3609 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3610 	sigemptyset(&new_sa.sa.sa_mask);
3611 
3612 	ret = do_sigaction(sig, &new_sa, &old_sa);
3613 
3614 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3615 }
3616 #endif /* __ARCH_WANT_SYS_SIGNAL */
3617 
3618 #ifdef __ARCH_WANT_SYS_PAUSE
3619 
3620 SYSCALL_DEFINE0(pause)
3621 {
3622 	while (!signal_pending(current)) {
3623 		__set_current_state(TASK_INTERRUPTIBLE);
3624 		schedule();
3625 	}
3626 	return -ERESTARTNOHAND;
3627 }
3628 
3629 #endif
3630 
3631 static int sigsuspend(sigset_t *set)
3632 {
3633 	current->saved_sigmask = current->blocked;
3634 	set_current_blocked(set);
3635 
3636 	while (!signal_pending(current)) {
3637 		__set_current_state(TASK_INTERRUPTIBLE);
3638 		schedule();
3639 	}
3640 	set_restore_sigmask();
3641 	return -ERESTARTNOHAND;
3642 }
3643 
3644 /**
3645  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3646  *	@unewset value until a signal is received
3647  *  @unewset: new signal mask value
3648  *  @sigsetsize: size of sigset_t type
3649  */
3650 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3651 {
3652 	sigset_t newset;
3653 
3654 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3655 	if (sigsetsize != sizeof(sigset_t))
3656 		return -EINVAL;
3657 
3658 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3659 		return -EFAULT;
3660 	return sigsuspend(&newset);
3661 }
3662 
3663 #ifdef CONFIG_COMPAT
3664 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3665 {
3666 #ifdef __BIG_ENDIAN
3667 	sigset_t newset;
3668 	compat_sigset_t newset32;
3669 
3670 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3671 	if (sigsetsize != sizeof(sigset_t))
3672 		return -EINVAL;
3673 
3674 	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3675 		return -EFAULT;
3676 	sigset_from_compat(&newset, &newset32);
3677 	return sigsuspend(&newset);
3678 #else
3679 	/* on little-endian bitmaps don't care about granularity */
3680 	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3681 #endif
3682 }
3683 #endif
3684 
3685 #ifdef CONFIG_OLD_SIGSUSPEND
3686 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3687 {
3688 	sigset_t blocked;
3689 	siginitset(&blocked, mask);
3690 	return sigsuspend(&blocked);
3691 }
3692 #endif
3693 #ifdef CONFIG_OLD_SIGSUSPEND3
3694 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3695 {
3696 	sigset_t blocked;
3697 	siginitset(&blocked, mask);
3698 	return sigsuspend(&blocked);
3699 }
3700 #endif
3701 
3702 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3703 {
3704 	return NULL;
3705 }
3706 
3707 void __init signals_init(void)
3708 {
3709 	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3710 	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3711 		!= offsetof(struct siginfo, _sifields._pad));
3712 
3713 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3714 }
3715 
3716 #ifdef CONFIG_KGDB_KDB
3717 #include <linux/kdb.h>
3718 /*
3719  * kdb_send_sig_info - Allows kdb to send signals without exposing
3720  * signal internals.  This function checks if the required locks are
3721  * available before calling the main signal code, to avoid kdb
3722  * deadlocks.
3723  */
3724 void
3725 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3726 {
3727 	static struct task_struct *kdb_prev_t;
3728 	int sig, new_t;
3729 	if (!spin_trylock(&t->sighand->siglock)) {
3730 		kdb_printf("Can't do kill command now.\n"
3731 			   "The sigmask lock is held somewhere else in "
3732 			   "kernel, try again later\n");
3733 		return;
3734 	}
3735 	spin_unlock(&t->sighand->siglock);
3736 	new_t = kdb_prev_t != t;
3737 	kdb_prev_t = t;
3738 	if (t->state != TASK_RUNNING && new_t) {
3739 		kdb_printf("Process is not RUNNING, sending a signal from "
3740 			   "kdb risks deadlock\n"
3741 			   "on the run queue locks. "
3742 			   "The signal has _not_ been sent.\n"
3743 			   "Reissue the kill command if you want to risk "
3744 			   "the deadlock.\n");
3745 		return;
3746 	}
3747 	sig = info->si_signo;
3748 	if (send_sig_info(sig, info, t))
3749 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3750 			   sig, t->pid);
3751 	else
3752 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3753 }
3754 #endif	/* CONFIG_KGDB_KDB */
3755