1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/user.h> 18 #include <linux/sched/debug.h> 19 #include <linux/sched/task.h> 20 #include <linux/sched/task_stack.h> 21 #include <linux/sched/cputime.h> 22 #include <linux/fs.h> 23 #include <linux/tty.h> 24 #include <linux/binfmts.h> 25 #include <linux/coredump.h> 26 #include <linux/security.h> 27 #include <linux/syscalls.h> 28 #include <linux/ptrace.h> 29 #include <linux/signal.h> 30 #include <linux/signalfd.h> 31 #include <linux/ratelimit.h> 32 #include <linux/tracehook.h> 33 #include <linux/capability.h> 34 #include <linux/freezer.h> 35 #include <linux/pid_namespace.h> 36 #include <linux/nsproxy.h> 37 #include <linux/user_namespace.h> 38 #include <linux/uprobes.h> 39 #include <linux/compat.h> 40 #include <linux/cn_proc.h> 41 #include <linux/compiler.h> 42 #include <linux/posix-timers.h> 43 #include <linux/livepatch.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/signal.h> 47 48 #include <asm/param.h> 49 #include <linux/uaccess.h> 50 #include <asm/unistd.h> 51 #include <asm/siginfo.h> 52 #include <asm/cacheflush.h> 53 #include "audit.h" /* audit_signal_info() */ 54 55 /* 56 * SLAB caches for signal bits. 57 */ 58 59 static struct kmem_cache *sigqueue_cachep; 60 61 int print_fatal_signals __read_mostly; 62 63 static void __user *sig_handler(struct task_struct *t, int sig) 64 { 65 return t->sighand->action[sig - 1].sa.sa_handler; 66 } 67 68 static int sig_handler_ignored(void __user *handler, int sig) 69 { 70 /* Is it explicitly or implicitly ignored? */ 71 return handler == SIG_IGN || 72 (handler == SIG_DFL && sig_kernel_ignore(sig)); 73 } 74 75 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 76 { 77 void __user *handler; 78 79 handler = sig_handler(t, sig); 80 81 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 82 handler == SIG_DFL && !force) 83 return 1; 84 85 return sig_handler_ignored(handler, sig); 86 } 87 88 static int sig_ignored(struct task_struct *t, int sig, bool force) 89 { 90 /* 91 * Blocked signals are never ignored, since the 92 * signal handler may change by the time it is 93 * unblocked. 94 */ 95 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 96 return 0; 97 98 if (!sig_task_ignored(t, sig, force)) 99 return 0; 100 101 /* 102 * Tracers may want to know about even ignored signals. 103 */ 104 return !t->ptrace; 105 } 106 107 /* 108 * Re-calculate pending state from the set of locally pending 109 * signals, globally pending signals, and blocked signals. 110 */ 111 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 112 { 113 unsigned long ready; 114 long i; 115 116 switch (_NSIG_WORDS) { 117 default: 118 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 119 ready |= signal->sig[i] &~ blocked->sig[i]; 120 break; 121 122 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 123 ready |= signal->sig[2] &~ blocked->sig[2]; 124 ready |= signal->sig[1] &~ blocked->sig[1]; 125 ready |= signal->sig[0] &~ blocked->sig[0]; 126 break; 127 128 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 129 ready |= signal->sig[0] &~ blocked->sig[0]; 130 break; 131 132 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 133 } 134 return ready != 0; 135 } 136 137 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 138 139 static int recalc_sigpending_tsk(struct task_struct *t) 140 { 141 if ((t->jobctl & JOBCTL_PENDING_MASK) || 142 PENDING(&t->pending, &t->blocked) || 143 PENDING(&t->signal->shared_pending, &t->blocked)) { 144 set_tsk_thread_flag(t, TIF_SIGPENDING); 145 return 1; 146 } 147 /* 148 * We must never clear the flag in another thread, or in current 149 * when it's possible the current syscall is returning -ERESTART*. 150 * So we don't clear it here, and only callers who know they should do. 151 */ 152 return 0; 153 } 154 155 /* 156 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 157 * This is superfluous when called on current, the wakeup is a harmless no-op. 158 */ 159 void recalc_sigpending_and_wake(struct task_struct *t) 160 { 161 if (recalc_sigpending_tsk(t)) 162 signal_wake_up(t, 0); 163 } 164 165 void recalc_sigpending(void) 166 { 167 if (!recalc_sigpending_tsk(current) && !freezing(current) && 168 !klp_patch_pending(current)) 169 clear_thread_flag(TIF_SIGPENDING); 170 171 } 172 173 /* Given the mask, find the first available signal that should be serviced. */ 174 175 #define SYNCHRONOUS_MASK \ 176 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 177 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 178 179 int next_signal(struct sigpending *pending, sigset_t *mask) 180 { 181 unsigned long i, *s, *m, x; 182 int sig = 0; 183 184 s = pending->signal.sig; 185 m = mask->sig; 186 187 /* 188 * Handle the first word specially: it contains the 189 * synchronous signals that need to be dequeued first. 190 */ 191 x = *s &~ *m; 192 if (x) { 193 if (x & SYNCHRONOUS_MASK) 194 x &= SYNCHRONOUS_MASK; 195 sig = ffz(~x) + 1; 196 return sig; 197 } 198 199 switch (_NSIG_WORDS) { 200 default: 201 for (i = 1; i < _NSIG_WORDS; ++i) { 202 x = *++s &~ *++m; 203 if (!x) 204 continue; 205 sig = ffz(~x) + i*_NSIG_BPW + 1; 206 break; 207 } 208 break; 209 210 case 2: 211 x = s[1] &~ m[1]; 212 if (!x) 213 break; 214 sig = ffz(~x) + _NSIG_BPW + 1; 215 break; 216 217 case 1: 218 /* Nothing to do */ 219 break; 220 } 221 222 return sig; 223 } 224 225 static inline void print_dropped_signal(int sig) 226 { 227 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 228 229 if (!print_fatal_signals) 230 return; 231 232 if (!__ratelimit(&ratelimit_state)) 233 return; 234 235 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 236 current->comm, current->pid, sig); 237 } 238 239 /** 240 * task_set_jobctl_pending - set jobctl pending bits 241 * @task: target task 242 * @mask: pending bits to set 243 * 244 * Clear @mask from @task->jobctl. @mask must be subset of 245 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 246 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 247 * cleared. If @task is already being killed or exiting, this function 248 * becomes noop. 249 * 250 * CONTEXT: 251 * Must be called with @task->sighand->siglock held. 252 * 253 * RETURNS: 254 * %true if @mask is set, %false if made noop because @task was dying. 255 */ 256 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 257 { 258 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 259 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 260 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 261 262 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 263 return false; 264 265 if (mask & JOBCTL_STOP_SIGMASK) 266 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 267 268 task->jobctl |= mask; 269 return true; 270 } 271 272 /** 273 * task_clear_jobctl_trapping - clear jobctl trapping bit 274 * @task: target task 275 * 276 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 277 * Clear it and wake up the ptracer. Note that we don't need any further 278 * locking. @task->siglock guarantees that @task->parent points to the 279 * ptracer. 280 * 281 * CONTEXT: 282 * Must be called with @task->sighand->siglock held. 283 */ 284 void task_clear_jobctl_trapping(struct task_struct *task) 285 { 286 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 287 task->jobctl &= ~JOBCTL_TRAPPING; 288 smp_mb(); /* advised by wake_up_bit() */ 289 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 290 } 291 } 292 293 /** 294 * task_clear_jobctl_pending - clear jobctl pending bits 295 * @task: target task 296 * @mask: pending bits to clear 297 * 298 * Clear @mask from @task->jobctl. @mask must be subset of 299 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 300 * STOP bits are cleared together. 301 * 302 * If clearing of @mask leaves no stop or trap pending, this function calls 303 * task_clear_jobctl_trapping(). 304 * 305 * CONTEXT: 306 * Must be called with @task->sighand->siglock held. 307 */ 308 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 309 { 310 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 311 312 if (mask & JOBCTL_STOP_PENDING) 313 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 314 315 task->jobctl &= ~mask; 316 317 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 318 task_clear_jobctl_trapping(task); 319 } 320 321 /** 322 * task_participate_group_stop - participate in a group stop 323 * @task: task participating in a group stop 324 * 325 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 326 * Group stop states are cleared and the group stop count is consumed if 327 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 328 * stop, the appropriate %SIGNAL_* flags are set. 329 * 330 * CONTEXT: 331 * Must be called with @task->sighand->siglock held. 332 * 333 * RETURNS: 334 * %true if group stop completion should be notified to the parent, %false 335 * otherwise. 336 */ 337 static bool task_participate_group_stop(struct task_struct *task) 338 { 339 struct signal_struct *sig = task->signal; 340 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 341 342 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 343 344 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 345 346 if (!consume) 347 return false; 348 349 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 350 sig->group_stop_count--; 351 352 /* 353 * Tell the caller to notify completion iff we are entering into a 354 * fresh group stop. Read comment in do_signal_stop() for details. 355 */ 356 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 357 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 358 return true; 359 } 360 return false; 361 } 362 363 /* 364 * allocate a new signal queue record 365 * - this may be called without locks if and only if t == current, otherwise an 366 * appropriate lock must be held to stop the target task from exiting 367 */ 368 static struct sigqueue * 369 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 370 { 371 struct sigqueue *q = NULL; 372 struct user_struct *user; 373 374 /* 375 * Protect access to @t credentials. This can go away when all 376 * callers hold rcu read lock. 377 */ 378 rcu_read_lock(); 379 user = get_uid(__task_cred(t)->user); 380 atomic_inc(&user->sigpending); 381 rcu_read_unlock(); 382 383 if (override_rlimit || 384 atomic_read(&user->sigpending) <= 385 task_rlimit(t, RLIMIT_SIGPENDING)) { 386 q = kmem_cache_alloc(sigqueue_cachep, flags); 387 } else { 388 print_dropped_signal(sig); 389 } 390 391 if (unlikely(q == NULL)) { 392 atomic_dec(&user->sigpending); 393 free_uid(user); 394 } else { 395 INIT_LIST_HEAD(&q->list); 396 q->flags = 0; 397 q->user = user; 398 } 399 400 return q; 401 } 402 403 static void __sigqueue_free(struct sigqueue *q) 404 { 405 if (q->flags & SIGQUEUE_PREALLOC) 406 return; 407 atomic_dec(&q->user->sigpending); 408 free_uid(q->user); 409 kmem_cache_free(sigqueue_cachep, q); 410 } 411 412 void flush_sigqueue(struct sigpending *queue) 413 { 414 struct sigqueue *q; 415 416 sigemptyset(&queue->signal); 417 while (!list_empty(&queue->list)) { 418 q = list_entry(queue->list.next, struct sigqueue , list); 419 list_del_init(&q->list); 420 __sigqueue_free(q); 421 } 422 } 423 424 /* 425 * Flush all pending signals for this kthread. 426 */ 427 void flush_signals(struct task_struct *t) 428 { 429 unsigned long flags; 430 431 spin_lock_irqsave(&t->sighand->siglock, flags); 432 clear_tsk_thread_flag(t, TIF_SIGPENDING); 433 flush_sigqueue(&t->pending); 434 flush_sigqueue(&t->signal->shared_pending); 435 spin_unlock_irqrestore(&t->sighand->siglock, flags); 436 } 437 438 #ifdef CONFIG_POSIX_TIMERS 439 static void __flush_itimer_signals(struct sigpending *pending) 440 { 441 sigset_t signal, retain; 442 struct sigqueue *q, *n; 443 444 signal = pending->signal; 445 sigemptyset(&retain); 446 447 list_for_each_entry_safe(q, n, &pending->list, list) { 448 int sig = q->info.si_signo; 449 450 if (likely(q->info.si_code != SI_TIMER)) { 451 sigaddset(&retain, sig); 452 } else { 453 sigdelset(&signal, sig); 454 list_del_init(&q->list); 455 __sigqueue_free(q); 456 } 457 } 458 459 sigorsets(&pending->signal, &signal, &retain); 460 } 461 462 void flush_itimer_signals(void) 463 { 464 struct task_struct *tsk = current; 465 unsigned long flags; 466 467 spin_lock_irqsave(&tsk->sighand->siglock, flags); 468 __flush_itimer_signals(&tsk->pending); 469 __flush_itimer_signals(&tsk->signal->shared_pending); 470 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 471 } 472 #endif 473 474 void ignore_signals(struct task_struct *t) 475 { 476 int i; 477 478 for (i = 0; i < _NSIG; ++i) 479 t->sighand->action[i].sa.sa_handler = SIG_IGN; 480 481 flush_signals(t); 482 } 483 484 /* 485 * Flush all handlers for a task. 486 */ 487 488 void 489 flush_signal_handlers(struct task_struct *t, int force_default) 490 { 491 int i; 492 struct k_sigaction *ka = &t->sighand->action[0]; 493 for (i = _NSIG ; i != 0 ; i--) { 494 if (force_default || ka->sa.sa_handler != SIG_IGN) 495 ka->sa.sa_handler = SIG_DFL; 496 ka->sa.sa_flags = 0; 497 #ifdef __ARCH_HAS_SA_RESTORER 498 ka->sa.sa_restorer = NULL; 499 #endif 500 sigemptyset(&ka->sa.sa_mask); 501 ka++; 502 } 503 } 504 505 int unhandled_signal(struct task_struct *tsk, int sig) 506 { 507 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 508 if (is_global_init(tsk)) 509 return 1; 510 if (handler != SIG_IGN && handler != SIG_DFL) 511 return 0; 512 /* if ptraced, let the tracer determine */ 513 return !tsk->ptrace; 514 } 515 516 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info, 517 bool *resched_timer) 518 { 519 struct sigqueue *q, *first = NULL; 520 521 /* 522 * Collect the siginfo appropriate to this signal. Check if 523 * there is another siginfo for the same signal. 524 */ 525 list_for_each_entry(q, &list->list, list) { 526 if (q->info.si_signo == sig) { 527 if (first) 528 goto still_pending; 529 first = q; 530 } 531 } 532 533 sigdelset(&list->signal, sig); 534 535 if (first) { 536 still_pending: 537 list_del_init(&first->list); 538 copy_siginfo(info, &first->info); 539 540 *resched_timer = 541 (first->flags & SIGQUEUE_PREALLOC) && 542 (info->si_code == SI_TIMER) && 543 (info->si_sys_private); 544 545 __sigqueue_free(first); 546 } else { 547 /* 548 * Ok, it wasn't in the queue. This must be 549 * a fast-pathed signal or we must have been 550 * out of queue space. So zero out the info. 551 */ 552 info->si_signo = sig; 553 info->si_errno = 0; 554 info->si_code = SI_USER; 555 info->si_pid = 0; 556 info->si_uid = 0; 557 } 558 } 559 560 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 561 siginfo_t *info, bool *resched_timer) 562 { 563 int sig = next_signal(pending, mask); 564 565 if (sig) 566 collect_signal(sig, pending, info, resched_timer); 567 return sig; 568 } 569 570 /* 571 * Dequeue a signal and return the element to the caller, which is 572 * expected to free it. 573 * 574 * All callers have to hold the siglock. 575 */ 576 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 577 { 578 bool resched_timer = false; 579 int signr; 580 581 /* We only dequeue private signals from ourselves, we don't let 582 * signalfd steal them 583 */ 584 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 585 if (!signr) { 586 signr = __dequeue_signal(&tsk->signal->shared_pending, 587 mask, info, &resched_timer); 588 #ifdef CONFIG_POSIX_TIMERS 589 /* 590 * itimer signal ? 591 * 592 * itimers are process shared and we restart periodic 593 * itimers in the signal delivery path to prevent DoS 594 * attacks in the high resolution timer case. This is 595 * compliant with the old way of self-restarting 596 * itimers, as the SIGALRM is a legacy signal and only 597 * queued once. Changing the restart behaviour to 598 * restart the timer in the signal dequeue path is 599 * reducing the timer noise on heavy loaded !highres 600 * systems too. 601 */ 602 if (unlikely(signr == SIGALRM)) { 603 struct hrtimer *tmr = &tsk->signal->real_timer; 604 605 if (!hrtimer_is_queued(tmr) && 606 tsk->signal->it_real_incr != 0) { 607 hrtimer_forward(tmr, tmr->base->get_time(), 608 tsk->signal->it_real_incr); 609 hrtimer_restart(tmr); 610 } 611 } 612 #endif 613 } 614 615 recalc_sigpending(); 616 if (!signr) 617 return 0; 618 619 if (unlikely(sig_kernel_stop(signr))) { 620 /* 621 * Set a marker that we have dequeued a stop signal. Our 622 * caller might release the siglock and then the pending 623 * stop signal it is about to process is no longer in the 624 * pending bitmasks, but must still be cleared by a SIGCONT 625 * (and overruled by a SIGKILL). So those cases clear this 626 * shared flag after we've set it. Note that this flag may 627 * remain set after the signal we return is ignored or 628 * handled. That doesn't matter because its only purpose 629 * is to alert stop-signal processing code when another 630 * processor has come along and cleared the flag. 631 */ 632 current->jobctl |= JOBCTL_STOP_DEQUEUED; 633 } 634 #ifdef CONFIG_POSIX_TIMERS 635 if (resched_timer) { 636 /* 637 * Release the siglock to ensure proper locking order 638 * of timer locks outside of siglocks. Note, we leave 639 * irqs disabled here, since the posix-timers code is 640 * about to disable them again anyway. 641 */ 642 spin_unlock(&tsk->sighand->siglock); 643 posixtimer_rearm(info); 644 spin_lock(&tsk->sighand->siglock); 645 } 646 #endif 647 return signr; 648 } 649 650 /* 651 * Tell a process that it has a new active signal.. 652 * 653 * NOTE! we rely on the previous spin_lock to 654 * lock interrupts for us! We can only be called with 655 * "siglock" held, and the local interrupt must 656 * have been disabled when that got acquired! 657 * 658 * No need to set need_resched since signal event passing 659 * goes through ->blocked 660 */ 661 void signal_wake_up_state(struct task_struct *t, unsigned int state) 662 { 663 set_tsk_thread_flag(t, TIF_SIGPENDING); 664 /* 665 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 666 * case. We don't check t->state here because there is a race with it 667 * executing another processor and just now entering stopped state. 668 * By using wake_up_state, we ensure the process will wake up and 669 * handle its death signal. 670 */ 671 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 672 kick_process(t); 673 } 674 675 /* 676 * Remove signals in mask from the pending set and queue. 677 * Returns 1 if any signals were found. 678 * 679 * All callers must be holding the siglock. 680 */ 681 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 682 { 683 struct sigqueue *q, *n; 684 sigset_t m; 685 686 sigandsets(&m, mask, &s->signal); 687 if (sigisemptyset(&m)) 688 return 0; 689 690 sigandnsets(&s->signal, &s->signal, mask); 691 list_for_each_entry_safe(q, n, &s->list, list) { 692 if (sigismember(mask, q->info.si_signo)) { 693 list_del_init(&q->list); 694 __sigqueue_free(q); 695 } 696 } 697 return 1; 698 } 699 700 static inline int is_si_special(const struct siginfo *info) 701 { 702 return info <= SEND_SIG_FORCED; 703 } 704 705 static inline bool si_fromuser(const struct siginfo *info) 706 { 707 return info == SEND_SIG_NOINFO || 708 (!is_si_special(info) && SI_FROMUSER(info)); 709 } 710 711 /* 712 * called with RCU read lock from check_kill_permission() 713 */ 714 static int kill_ok_by_cred(struct task_struct *t) 715 { 716 const struct cred *cred = current_cred(); 717 const struct cred *tcred = __task_cred(t); 718 719 if (uid_eq(cred->euid, tcred->suid) || 720 uid_eq(cred->euid, tcred->uid) || 721 uid_eq(cred->uid, tcred->suid) || 722 uid_eq(cred->uid, tcred->uid)) 723 return 1; 724 725 if (ns_capable(tcred->user_ns, CAP_KILL)) 726 return 1; 727 728 return 0; 729 } 730 731 /* 732 * Bad permissions for sending the signal 733 * - the caller must hold the RCU read lock 734 */ 735 static int check_kill_permission(int sig, struct siginfo *info, 736 struct task_struct *t) 737 { 738 struct pid *sid; 739 int error; 740 741 if (!valid_signal(sig)) 742 return -EINVAL; 743 744 if (!si_fromuser(info)) 745 return 0; 746 747 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 748 if (error) 749 return error; 750 751 if (!same_thread_group(current, t) && 752 !kill_ok_by_cred(t)) { 753 switch (sig) { 754 case SIGCONT: 755 sid = task_session(t); 756 /* 757 * We don't return the error if sid == NULL. The 758 * task was unhashed, the caller must notice this. 759 */ 760 if (!sid || sid == task_session(current)) 761 break; 762 default: 763 return -EPERM; 764 } 765 } 766 767 return security_task_kill(t, info, sig, 0); 768 } 769 770 /** 771 * ptrace_trap_notify - schedule trap to notify ptracer 772 * @t: tracee wanting to notify tracer 773 * 774 * This function schedules sticky ptrace trap which is cleared on the next 775 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 776 * ptracer. 777 * 778 * If @t is running, STOP trap will be taken. If trapped for STOP and 779 * ptracer is listening for events, tracee is woken up so that it can 780 * re-trap for the new event. If trapped otherwise, STOP trap will be 781 * eventually taken without returning to userland after the existing traps 782 * are finished by PTRACE_CONT. 783 * 784 * CONTEXT: 785 * Must be called with @task->sighand->siglock held. 786 */ 787 static void ptrace_trap_notify(struct task_struct *t) 788 { 789 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 790 assert_spin_locked(&t->sighand->siglock); 791 792 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 793 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 794 } 795 796 /* 797 * Handle magic process-wide effects of stop/continue signals. Unlike 798 * the signal actions, these happen immediately at signal-generation 799 * time regardless of blocking, ignoring, or handling. This does the 800 * actual continuing for SIGCONT, but not the actual stopping for stop 801 * signals. The process stop is done as a signal action for SIG_DFL. 802 * 803 * Returns true if the signal should be actually delivered, otherwise 804 * it should be dropped. 805 */ 806 static bool prepare_signal(int sig, struct task_struct *p, bool force) 807 { 808 struct signal_struct *signal = p->signal; 809 struct task_struct *t; 810 sigset_t flush; 811 812 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 813 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 814 return sig == SIGKILL; 815 /* 816 * The process is in the middle of dying, nothing to do. 817 */ 818 } else if (sig_kernel_stop(sig)) { 819 /* 820 * This is a stop signal. Remove SIGCONT from all queues. 821 */ 822 siginitset(&flush, sigmask(SIGCONT)); 823 flush_sigqueue_mask(&flush, &signal->shared_pending); 824 for_each_thread(p, t) 825 flush_sigqueue_mask(&flush, &t->pending); 826 } else if (sig == SIGCONT) { 827 unsigned int why; 828 /* 829 * Remove all stop signals from all queues, wake all threads. 830 */ 831 siginitset(&flush, SIG_KERNEL_STOP_MASK); 832 flush_sigqueue_mask(&flush, &signal->shared_pending); 833 for_each_thread(p, t) { 834 flush_sigqueue_mask(&flush, &t->pending); 835 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 836 if (likely(!(t->ptrace & PT_SEIZED))) 837 wake_up_state(t, __TASK_STOPPED); 838 else 839 ptrace_trap_notify(t); 840 } 841 842 /* 843 * Notify the parent with CLD_CONTINUED if we were stopped. 844 * 845 * If we were in the middle of a group stop, we pretend it 846 * was already finished, and then continued. Since SIGCHLD 847 * doesn't queue we report only CLD_STOPPED, as if the next 848 * CLD_CONTINUED was dropped. 849 */ 850 why = 0; 851 if (signal->flags & SIGNAL_STOP_STOPPED) 852 why |= SIGNAL_CLD_CONTINUED; 853 else if (signal->group_stop_count) 854 why |= SIGNAL_CLD_STOPPED; 855 856 if (why) { 857 /* 858 * The first thread which returns from do_signal_stop() 859 * will take ->siglock, notice SIGNAL_CLD_MASK, and 860 * notify its parent. See get_signal_to_deliver(). 861 */ 862 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 863 signal->group_stop_count = 0; 864 signal->group_exit_code = 0; 865 } 866 } 867 868 return !sig_ignored(p, sig, force); 869 } 870 871 /* 872 * Test if P wants to take SIG. After we've checked all threads with this, 873 * it's equivalent to finding no threads not blocking SIG. Any threads not 874 * blocking SIG were ruled out because they are not running and already 875 * have pending signals. Such threads will dequeue from the shared queue 876 * as soon as they're available, so putting the signal on the shared queue 877 * will be equivalent to sending it to one such thread. 878 */ 879 static inline int wants_signal(int sig, struct task_struct *p) 880 { 881 if (sigismember(&p->blocked, sig)) 882 return 0; 883 if (p->flags & PF_EXITING) 884 return 0; 885 if (sig == SIGKILL) 886 return 1; 887 if (task_is_stopped_or_traced(p)) 888 return 0; 889 return task_curr(p) || !signal_pending(p); 890 } 891 892 static void complete_signal(int sig, struct task_struct *p, int group) 893 { 894 struct signal_struct *signal = p->signal; 895 struct task_struct *t; 896 897 /* 898 * Now find a thread we can wake up to take the signal off the queue. 899 * 900 * If the main thread wants the signal, it gets first crack. 901 * Probably the least surprising to the average bear. 902 */ 903 if (wants_signal(sig, p)) 904 t = p; 905 else if (!group || thread_group_empty(p)) 906 /* 907 * There is just one thread and it does not need to be woken. 908 * It will dequeue unblocked signals before it runs again. 909 */ 910 return; 911 else { 912 /* 913 * Otherwise try to find a suitable thread. 914 */ 915 t = signal->curr_target; 916 while (!wants_signal(sig, t)) { 917 t = next_thread(t); 918 if (t == signal->curr_target) 919 /* 920 * No thread needs to be woken. 921 * Any eligible threads will see 922 * the signal in the queue soon. 923 */ 924 return; 925 } 926 signal->curr_target = t; 927 } 928 929 /* 930 * Found a killable thread. If the signal will be fatal, 931 * then start taking the whole group down immediately. 932 */ 933 if (sig_fatal(p, sig) && 934 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 935 !sigismember(&t->real_blocked, sig) && 936 (sig == SIGKILL || !t->ptrace)) { 937 /* 938 * This signal will be fatal to the whole group. 939 */ 940 if (!sig_kernel_coredump(sig)) { 941 /* 942 * Start a group exit and wake everybody up. 943 * This way we don't have other threads 944 * running and doing things after a slower 945 * thread has the fatal signal pending. 946 */ 947 signal->flags = SIGNAL_GROUP_EXIT; 948 signal->group_exit_code = sig; 949 signal->group_stop_count = 0; 950 t = p; 951 do { 952 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 953 sigaddset(&t->pending.signal, SIGKILL); 954 signal_wake_up(t, 1); 955 } while_each_thread(p, t); 956 return; 957 } 958 } 959 960 /* 961 * The signal is already in the shared-pending queue. 962 * Tell the chosen thread to wake up and dequeue it. 963 */ 964 signal_wake_up(t, sig == SIGKILL); 965 return; 966 } 967 968 static inline int legacy_queue(struct sigpending *signals, int sig) 969 { 970 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 971 } 972 973 #ifdef CONFIG_USER_NS 974 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 975 { 976 if (current_user_ns() == task_cred_xxx(t, user_ns)) 977 return; 978 979 if (SI_FROMKERNEL(info)) 980 return; 981 982 rcu_read_lock(); 983 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 984 make_kuid(current_user_ns(), info->si_uid)); 985 rcu_read_unlock(); 986 } 987 #else 988 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 989 { 990 return; 991 } 992 #endif 993 994 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 995 int group, int from_ancestor_ns) 996 { 997 struct sigpending *pending; 998 struct sigqueue *q; 999 int override_rlimit; 1000 int ret = 0, result; 1001 1002 assert_spin_locked(&t->sighand->siglock); 1003 1004 result = TRACE_SIGNAL_IGNORED; 1005 if (!prepare_signal(sig, t, 1006 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1007 goto ret; 1008 1009 pending = group ? &t->signal->shared_pending : &t->pending; 1010 /* 1011 * Short-circuit ignored signals and support queuing 1012 * exactly one non-rt signal, so that we can get more 1013 * detailed information about the cause of the signal. 1014 */ 1015 result = TRACE_SIGNAL_ALREADY_PENDING; 1016 if (legacy_queue(pending, sig)) 1017 goto ret; 1018 1019 result = TRACE_SIGNAL_DELIVERED; 1020 /* 1021 * fast-pathed signals for kernel-internal things like SIGSTOP 1022 * or SIGKILL. 1023 */ 1024 if (info == SEND_SIG_FORCED) 1025 goto out_set; 1026 1027 /* 1028 * Real-time signals must be queued if sent by sigqueue, or 1029 * some other real-time mechanism. It is implementation 1030 * defined whether kill() does so. We attempt to do so, on 1031 * the principle of least surprise, but since kill is not 1032 * allowed to fail with EAGAIN when low on memory we just 1033 * make sure at least one signal gets delivered and don't 1034 * pass on the info struct. 1035 */ 1036 if (sig < SIGRTMIN) 1037 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1038 else 1039 override_rlimit = 0; 1040 1041 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1042 override_rlimit); 1043 if (q) { 1044 list_add_tail(&q->list, &pending->list); 1045 switch ((unsigned long) info) { 1046 case (unsigned long) SEND_SIG_NOINFO: 1047 q->info.si_signo = sig; 1048 q->info.si_errno = 0; 1049 q->info.si_code = SI_USER; 1050 q->info.si_pid = task_tgid_nr_ns(current, 1051 task_active_pid_ns(t)); 1052 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1053 break; 1054 case (unsigned long) SEND_SIG_PRIV: 1055 q->info.si_signo = sig; 1056 q->info.si_errno = 0; 1057 q->info.si_code = SI_KERNEL; 1058 q->info.si_pid = 0; 1059 q->info.si_uid = 0; 1060 break; 1061 default: 1062 copy_siginfo(&q->info, info); 1063 if (from_ancestor_ns) 1064 q->info.si_pid = 0; 1065 break; 1066 } 1067 1068 userns_fixup_signal_uid(&q->info, t); 1069 1070 } else if (!is_si_special(info)) { 1071 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1072 /* 1073 * Queue overflow, abort. We may abort if the 1074 * signal was rt and sent by user using something 1075 * other than kill(). 1076 */ 1077 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1078 ret = -EAGAIN; 1079 goto ret; 1080 } else { 1081 /* 1082 * This is a silent loss of information. We still 1083 * send the signal, but the *info bits are lost. 1084 */ 1085 result = TRACE_SIGNAL_LOSE_INFO; 1086 } 1087 } 1088 1089 out_set: 1090 signalfd_notify(t, sig); 1091 sigaddset(&pending->signal, sig); 1092 complete_signal(sig, t, group); 1093 ret: 1094 trace_signal_generate(sig, info, t, group, result); 1095 return ret; 1096 } 1097 1098 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1099 int group) 1100 { 1101 int from_ancestor_ns = 0; 1102 1103 #ifdef CONFIG_PID_NS 1104 from_ancestor_ns = si_fromuser(info) && 1105 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1106 #endif 1107 1108 return __send_signal(sig, info, t, group, from_ancestor_ns); 1109 } 1110 1111 static void print_fatal_signal(int signr) 1112 { 1113 struct pt_regs *regs = signal_pt_regs(); 1114 pr_info("potentially unexpected fatal signal %d.\n", signr); 1115 1116 #if defined(__i386__) && !defined(__arch_um__) 1117 pr_info("code at %08lx: ", regs->ip); 1118 { 1119 int i; 1120 for (i = 0; i < 16; i++) { 1121 unsigned char insn; 1122 1123 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1124 break; 1125 pr_cont("%02x ", insn); 1126 } 1127 } 1128 pr_cont("\n"); 1129 #endif 1130 preempt_disable(); 1131 show_regs(regs); 1132 preempt_enable(); 1133 } 1134 1135 static int __init setup_print_fatal_signals(char *str) 1136 { 1137 get_option (&str, &print_fatal_signals); 1138 1139 return 1; 1140 } 1141 1142 __setup("print-fatal-signals=", setup_print_fatal_signals); 1143 1144 int 1145 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1146 { 1147 return send_signal(sig, info, p, 1); 1148 } 1149 1150 static int 1151 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1152 { 1153 return send_signal(sig, info, t, 0); 1154 } 1155 1156 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1157 bool group) 1158 { 1159 unsigned long flags; 1160 int ret = -ESRCH; 1161 1162 if (lock_task_sighand(p, &flags)) { 1163 ret = send_signal(sig, info, p, group); 1164 unlock_task_sighand(p, &flags); 1165 } 1166 1167 return ret; 1168 } 1169 1170 /* 1171 * Force a signal that the process can't ignore: if necessary 1172 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1173 * 1174 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1175 * since we do not want to have a signal handler that was blocked 1176 * be invoked when user space had explicitly blocked it. 1177 * 1178 * We don't want to have recursive SIGSEGV's etc, for example, 1179 * that is why we also clear SIGNAL_UNKILLABLE. 1180 */ 1181 int 1182 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1183 { 1184 unsigned long int flags; 1185 int ret, blocked, ignored; 1186 struct k_sigaction *action; 1187 1188 spin_lock_irqsave(&t->sighand->siglock, flags); 1189 action = &t->sighand->action[sig-1]; 1190 ignored = action->sa.sa_handler == SIG_IGN; 1191 blocked = sigismember(&t->blocked, sig); 1192 if (blocked || ignored) { 1193 action->sa.sa_handler = SIG_DFL; 1194 if (blocked) { 1195 sigdelset(&t->blocked, sig); 1196 recalc_sigpending_and_wake(t); 1197 } 1198 } 1199 /* 1200 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1201 * debugging to leave init killable. 1202 */ 1203 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1204 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1205 ret = specific_send_sig_info(sig, info, t); 1206 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1207 1208 return ret; 1209 } 1210 1211 /* 1212 * Nuke all other threads in the group. 1213 */ 1214 int zap_other_threads(struct task_struct *p) 1215 { 1216 struct task_struct *t = p; 1217 int count = 0; 1218 1219 p->signal->group_stop_count = 0; 1220 1221 while_each_thread(p, t) { 1222 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1223 count++; 1224 1225 /* Don't bother with already dead threads */ 1226 if (t->exit_state) 1227 continue; 1228 sigaddset(&t->pending.signal, SIGKILL); 1229 signal_wake_up(t, 1); 1230 } 1231 1232 return count; 1233 } 1234 1235 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1236 unsigned long *flags) 1237 { 1238 struct sighand_struct *sighand; 1239 1240 for (;;) { 1241 /* 1242 * Disable interrupts early to avoid deadlocks. 1243 * See rcu_read_unlock() comment header for details. 1244 */ 1245 local_irq_save(*flags); 1246 rcu_read_lock(); 1247 sighand = rcu_dereference(tsk->sighand); 1248 if (unlikely(sighand == NULL)) { 1249 rcu_read_unlock(); 1250 local_irq_restore(*flags); 1251 break; 1252 } 1253 /* 1254 * This sighand can be already freed and even reused, but 1255 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1256 * initializes ->siglock: this slab can't go away, it has 1257 * the same object type, ->siglock can't be reinitialized. 1258 * 1259 * We need to ensure that tsk->sighand is still the same 1260 * after we take the lock, we can race with de_thread() or 1261 * __exit_signal(). In the latter case the next iteration 1262 * must see ->sighand == NULL. 1263 */ 1264 spin_lock(&sighand->siglock); 1265 if (likely(sighand == tsk->sighand)) { 1266 rcu_read_unlock(); 1267 break; 1268 } 1269 spin_unlock(&sighand->siglock); 1270 rcu_read_unlock(); 1271 local_irq_restore(*flags); 1272 } 1273 1274 return sighand; 1275 } 1276 1277 /* 1278 * send signal info to all the members of a group 1279 */ 1280 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1281 { 1282 int ret; 1283 1284 rcu_read_lock(); 1285 ret = check_kill_permission(sig, info, p); 1286 rcu_read_unlock(); 1287 1288 if (!ret && sig) 1289 ret = do_send_sig_info(sig, info, p, true); 1290 1291 return ret; 1292 } 1293 1294 /* 1295 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1296 * control characters do (^C, ^Z etc) 1297 * - the caller must hold at least a readlock on tasklist_lock 1298 */ 1299 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1300 { 1301 struct task_struct *p = NULL; 1302 int retval, success; 1303 1304 success = 0; 1305 retval = -ESRCH; 1306 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1307 int err = group_send_sig_info(sig, info, p); 1308 success |= !err; 1309 retval = err; 1310 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1311 return success ? 0 : retval; 1312 } 1313 1314 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1315 { 1316 int error = -ESRCH; 1317 struct task_struct *p; 1318 1319 for (;;) { 1320 rcu_read_lock(); 1321 p = pid_task(pid, PIDTYPE_PID); 1322 if (p) 1323 error = group_send_sig_info(sig, info, p); 1324 rcu_read_unlock(); 1325 if (likely(!p || error != -ESRCH)) 1326 return error; 1327 1328 /* 1329 * The task was unhashed in between, try again. If it 1330 * is dead, pid_task() will return NULL, if we race with 1331 * de_thread() it will find the new leader. 1332 */ 1333 } 1334 } 1335 1336 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1337 { 1338 int error; 1339 rcu_read_lock(); 1340 error = kill_pid_info(sig, info, find_vpid(pid)); 1341 rcu_read_unlock(); 1342 return error; 1343 } 1344 1345 static int kill_as_cred_perm(const struct cred *cred, 1346 struct task_struct *target) 1347 { 1348 const struct cred *pcred = __task_cred(target); 1349 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1350 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1351 return 0; 1352 return 1; 1353 } 1354 1355 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1356 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1357 const struct cred *cred, u32 secid) 1358 { 1359 int ret = -EINVAL; 1360 struct task_struct *p; 1361 unsigned long flags; 1362 1363 if (!valid_signal(sig)) 1364 return ret; 1365 1366 rcu_read_lock(); 1367 p = pid_task(pid, PIDTYPE_PID); 1368 if (!p) { 1369 ret = -ESRCH; 1370 goto out_unlock; 1371 } 1372 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1373 ret = -EPERM; 1374 goto out_unlock; 1375 } 1376 ret = security_task_kill(p, info, sig, secid); 1377 if (ret) 1378 goto out_unlock; 1379 1380 if (sig) { 1381 if (lock_task_sighand(p, &flags)) { 1382 ret = __send_signal(sig, info, p, 1, 0); 1383 unlock_task_sighand(p, &flags); 1384 } else 1385 ret = -ESRCH; 1386 } 1387 out_unlock: 1388 rcu_read_unlock(); 1389 return ret; 1390 } 1391 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1392 1393 /* 1394 * kill_something_info() interprets pid in interesting ways just like kill(2). 1395 * 1396 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1397 * is probably wrong. Should make it like BSD or SYSV. 1398 */ 1399 1400 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1401 { 1402 int ret; 1403 1404 if (pid > 0) { 1405 rcu_read_lock(); 1406 ret = kill_pid_info(sig, info, find_vpid(pid)); 1407 rcu_read_unlock(); 1408 return ret; 1409 } 1410 1411 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1412 if (pid == INT_MIN) 1413 return -ESRCH; 1414 1415 read_lock(&tasklist_lock); 1416 if (pid != -1) { 1417 ret = __kill_pgrp_info(sig, info, 1418 pid ? find_vpid(-pid) : task_pgrp(current)); 1419 } else { 1420 int retval = 0, count = 0; 1421 struct task_struct * p; 1422 1423 for_each_process(p) { 1424 if (task_pid_vnr(p) > 1 && 1425 !same_thread_group(p, current)) { 1426 int err = group_send_sig_info(sig, info, p); 1427 ++count; 1428 if (err != -EPERM) 1429 retval = err; 1430 } 1431 } 1432 ret = count ? retval : -ESRCH; 1433 } 1434 read_unlock(&tasklist_lock); 1435 1436 return ret; 1437 } 1438 1439 /* 1440 * These are for backward compatibility with the rest of the kernel source. 1441 */ 1442 1443 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1444 { 1445 /* 1446 * Make sure legacy kernel users don't send in bad values 1447 * (normal paths check this in check_kill_permission). 1448 */ 1449 if (!valid_signal(sig)) 1450 return -EINVAL; 1451 1452 return do_send_sig_info(sig, info, p, false); 1453 } 1454 1455 #define __si_special(priv) \ 1456 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1457 1458 int 1459 send_sig(int sig, struct task_struct *p, int priv) 1460 { 1461 return send_sig_info(sig, __si_special(priv), p); 1462 } 1463 1464 void 1465 force_sig(int sig, struct task_struct *p) 1466 { 1467 force_sig_info(sig, SEND_SIG_PRIV, p); 1468 } 1469 1470 /* 1471 * When things go south during signal handling, we 1472 * will force a SIGSEGV. And if the signal that caused 1473 * the problem was already a SIGSEGV, we'll want to 1474 * make sure we don't even try to deliver the signal.. 1475 */ 1476 int 1477 force_sigsegv(int sig, struct task_struct *p) 1478 { 1479 if (sig == SIGSEGV) { 1480 unsigned long flags; 1481 spin_lock_irqsave(&p->sighand->siglock, flags); 1482 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1483 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1484 } 1485 force_sig(SIGSEGV, p); 1486 return 0; 1487 } 1488 1489 int kill_pgrp(struct pid *pid, int sig, int priv) 1490 { 1491 int ret; 1492 1493 read_lock(&tasklist_lock); 1494 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1495 read_unlock(&tasklist_lock); 1496 1497 return ret; 1498 } 1499 EXPORT_SYMBOL(kill_pgrp); 1500 1501 int kill_pid(struct pid *pid, int sig, int priv) 1502 { 1503 return kill_pid_info(sig, __si_special(priv), pid); 1504 } 1505 EXPORT_SYMBOL(kill_pid); 1506 1507 /* 1508 * These functions support sending signals using preallocated sigqueue 1509 * structures. This is needed "because realtime applications cannot 1510 * afford to lose notifications of asynchronous events, like timer 1511 * expirations or I/O completions". In the case of POSIX Timers 1512 * we allocate the sigqueue structure from the timer_create. If this 1513 * allocation fails we are able to report the failure to the application 1514 * with an EAGAIN error. 1515 */ 1516 struct sigqueue *sigqueue_alloc(void) 1517 { 1518 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1519 1520 if (q) 1521 q->flags |= SIGQUEUE_PREALLOC; 1522 1523 return q; 1524 } 1525 1526 void sigqueue_free(struct sigqueue *q) 1527 { 1528 unsigned long flags; 1529 spinlock_t *lock = ¤t->sighand->siglock; 1530 1531 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1532 /* 1533 * We must hold ->siglock while testing q->list 1534 * to serialize with collect_signal() or with 1535 * __exit_signal()->flush_sigqueue(). 1536 */ 1537 spin_lock_irqsave(lock, flags); 1538 q->flags &= ~SIGQUEUE_PREALLOC; 1539 /* 1540 * If it is queued it will be freed when dequeued, 1541 * like the "regular" sigqueue. 1542 */ 1543 if (!list_empty(&q->list)) 1544 q = NULL; 1545 spin_unlock_irqrestore(lock, flags); 1546 1547 if (q) 1548 __sigqueue_free(q); 1549 } 1550 1551 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1552 { 1553 int sig = q->info.si_signo; 1554 struct sigpending *pending; 1555 unsigned long flags; 1556 int ret, result; 1557 1558 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1559 1560 ret = -1; 1561 if (!likely(lock_task_sighand(t, &flags))) 1562 goto ret; 1563 1564 ret = 1; /* the signal is ignored */ 1565 result = TRACE_SIGNAL_IGNORED; 1566 if (!prepare_signal(sig, t, false)) 1567 goto out; 1568 1569 ret = 0; 1570 if (unlikely(!list_empty(&q->list))) { 1571 /* 1572 * If an SI_TIMER entry is already queue just increment 1573 * the overrun count. 1574 */ 1575 BUG_ON(q->info.si_code != SI_TIMER); 1576 q->info.si_overrun++; 1577 result = TRACE_SIGNAL_ALREADY_PENDING; 1578 goto out; 1579 } 1580 q->info.si_overrun = 0; 1581 1582 signalfd_notify(t, sig); 1583 pending = group ? &t->signal->shared_pending : &t->pending; 1584 list_add_tail(&q->list, &pending->list); 1585 sigaddset(&pending->signal, sig); 1586 complete_signal(sig, t, group); 1587 result = TRACE_SIGNAL_DELIVERED; 1588 out: 1589 trace_signal_generate(sig, &q->info, t, group, result); 1590 unlock_task_sighand(t, &flags); 1591 ret: 1592 return ret; 1593 } 1594 1595 /* 1596 * Let a parent know about the death of a child. 1597 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1598 * 1599 * Returns true if our parent ignored us and so we've switched to 1600 * self-reaping. 1601 */ 1602 bool do_notify_parent(struct task_struct *tsk, int sig) 1603 { 1604 struct siginfo info; 1605 unsigned long flags; 1606 struct sighand_struct *psig; 1607 bool autoreap = false; 1608 u64 utime, stime; 1609 1610 BUG_ON(sig == -1); 1611 1612 /* do_notify_parent_cldstop should have been called instead. */ 1613 BUG_ON(task_is_stopped_or_traced(tsk)); 1614 1615 BUG_ON(!tsk->ptrace && 1616 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1617 1618 if (sig != SIGCHLD) { 1619 /* 1620 * This is only possible if parent == real_parent. 1621 * Check if it has changed security domain. 1622 */ 1623 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1624 sig = SIGCHLD; 1625 } 1626 1627 info.si_signo = sig; 1628 info.si_errno = 0; 1629 /* 1630 * We are under tasklist_lock here so our parent is tied to 1631 * us and cannot change. 1632 * 1633 * task_active_pid_ns will always return the same pid namespace 1634 * until a task passes through release_task. 1635 * 1636 * write_lock() currently calls preempt_disable() which is the 1637 * same as rcu_read_lock(), but according to Oleg, this is not 1638 * correct to rely on this 1639 */ 1640 rcu_read_lock(); 1641 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1642 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1643 task_uid(tsk)); 1644 rcu_read_unlock(); 1645 1646 task_cputime(tsk, &utime, &stime); 1647 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1648 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1649 1650 info.si_status = tsk->exit_code & 0x7f; 1651 if (tsk->exit_code & 0x80) 1652 info.si_code = CLD_DUMPED; 1653 else if (tsk->exit_code & 0x7f) 1654 info.si_code = CLD_KILLED; 1655 else { 1656 info.si_code = CLD_EXITED; 1657 info.si_status = tsk->exit_code >> 8; 1658 } 1659 1660 psig = tsk->parent->sighand; 1661 spin_lock_irqsave(&psig->siglock, flags); 1662 if (!tsk->ptrace && sig == SIGCHLD && 1663 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1664 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1665 /* 1666 * We are exiting and our parent doesn't care. POSIX.1 1667 * defines special semantics for setting SIGCHLD to SIG_IGN 1668 * or setting the SA_NOCLDWAIT flag: we should be reaped 1669 * automatically and not left for our parent's wait4 call. 1670 * Rather than having the parent do it as a magic kind of 1671 * signal handler, we just set this to tell do_exit that we 1672 * can be cleaned up without becoming a zombie. Note that 1673 * we still call __wake_up_parent in this case, because a 1674 * blocked sys_wait4 might now return -ECHILD. 1675 * 1676 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1677 * is implementation-defined: we do (if you don't want 1678 * it, just use SIG_IGN instead). 1679 */ 1680 autoreap = true; 1681 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1682 sig = 0; 1683 } 1684 if (valid_signal(sig) && sig) 1685 __group_send_sig_info(sig, &info, tsk->parent); 1686 __wake_up_parent(tsk, tsk->parent); 1687 spin_unlock_irqrestore(&psig->siglock, flags); 1688 1689 return autoreap; 1690 } 1691 1692 /** 1693 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1694 * @tsk: task reporting the state change 1695 * @for_ptracer: the notification is for ptracer 1696 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1697 * 1698 * Notify @tsk's parent that the stopped/continued state has changed. If 1699 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1700 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1701 * 1702 * CONTEXT: 1703 * Must be called with tasklist_lock at least read locked. 1704 */ 1705 static void do_notify_parent_cldstop(struct task_struct *tsk, 1706 bool for_ptracer, int why) 1707 { 1708 struct siginfo info; 1709 unsigned long flags; 1710 struct task_struct *parent; 1711 struct sighand_struct *sighand; 1712 u64 utime, stime; 1713 1714 if (for_ptracer) { 1715 parent = tsk->parent; 1716 } else { 1717 tsk = tsk->group_leader; 1718 parent = tsk->real_parent; 1719 } 1720 1721 info.si_signo = SIGCHLD; 1722 info.si_errno = 0; 1723 /* 1724 * see comment in do_notify_parent() about the following 4 lines 1725 */ 1726 rcu_read_lock(); 1727 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1728 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1729 rcu_read_unlock(); 1730 1731 task_cputime(tsk, &utime, &stime); 1732 info.si_utime = nsec_to_clock_t(utime); 1733 info.si_stime = nsec_to_clock_t(stime); 1734 1735 info.si_code = why; 1736 switch (why) { 1737 case CLD_CONTINUED: 1738 info.si_status = SIGCONT; 1739 break; 1740 case CLD_STOPPED: 1741 info.si_status = tsk->signal->group_exit_code & 0x7f; 1742 break; 1743 case CLD_TRAPPED: 1744 info.si_status = tsk->exit_code & 0x7f; 1745 break; 1746 default: 1747 BUG(); 1748 } 1749 1750 sighand = parent->sighand; 1751 spin_lock_irqsave(&sighand->siglock, flags); 1752 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1753 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1754 __group_send_sig_info(SIGCHLD, &info, parent); 1755 /* 1756 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1757 */ 1758 __wake_up_parent(tsk, parent); 1759 spin_unlock_irqrestore(&sighand->siglock, flags); 1760 } 1761 1762 static inline int may_ptrace_stop(void) 1763 { 1764 if (!likely(current->ptrace)) 1765 return 0; 1766 /* 1767 * Are we in the middle of do_coredump? 1768 * If so and our tracer is also part of the coredump stopping 1769 * is a deadlock situation, and pointless because our tracer 1770 * is dead so don't allow us to stop. 1771 * If SIGKILL was already sent before the caller unlocked 1772 * ->siglock we must see ->core_state != NULL. Otherwise it 1773 * is safe to enter schedule(). 1774 * 1775 * This is almost outdated, a task with the pending SIGKILL can't 1776 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1777 * after SIGKILL was already dequeued. 1778 */ 1779 if (unlikely(current->mm->core_state) && 1780 unlikely(current->mm == current->parent->mm)) 1781 return 0; 1782 1783 return 1; 1784 } 1785 1786 /* 1787 * Return non-zero if there is a SIGKILL that should be waking us up. 1788 * Called with the siglock held. 1789 */ 1790 static int sigkill_pending(struct task_struct *tsk) 1791 { 1792 return sigismember(&tsk->pending.signal, SIGKILL) || 1793 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1794 } 1795 1796 /* 1797 * This must be called with current->sighand->siglock held. 1798 * 1799 * This should be the path for all ptrace stops. 1800 * We always set current->last_siginfo while stopped here. 1801 * That makes it a way to test a stopped process for 1802 * being ptrace-stopped vs being job-control-stopped. 1803 * 1804 * If we actually decide not to stop at all because the tracer 1805 * is gone, we keep current->exit_code unless clear_code. 1806 */ 1807 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1808 __releases(¤t->sighand->siglock) 1809 __acquires(¤t->sighand->siglock) 1810 { 1811 bool gstop_done = false; 1812 1813 if (arch_ptrace_stop_needed(exit_code, info)) { 1814 /* 1815 * The arch code has something special to do before a 1816 * ptrace stop. This is allowed to block, e.g. for faults 1817 * on user stack pages. We can't keep the siglock while 1818 * calling arch_ptrace_stop, so we must release it now. 1819 * To preserve proper semantics, we must do this before 1820 * any signal bookkeeping like checking group_stop_count. 1821 * Meanwhile, a SIGKILL could come in before we retake the 1822 * siglock. That must prevent us from sleeping in TASK_TRACED. 1823 * So after regaining the lock, we must check for SIGKILL. 1824 */ 1825 spin_unlock_irq(¤t->sighand->siglock); 1826 arch_ptrace_stop(exit_code, info); 1827 spin_lock_irq(¤t->sighand->siglock); 1828 if (sigkill_pending(current)) 1829 return; 1830 } 1831 1832 /* 1833 * We're committing to trapping. TRACED should be visible before 1834 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1835 * Also, transition to TRACED and updates to ->jobctl should be 1836 * atomic with respect to siglock and should be done after the arch 1837 * hook as siglock is released and regrabbed across it. 1838 */ 1839 set_current_state(TASK_TRACED); 1840 1841 current->last_siginfo = info; 1842 current->exit_code = exit_code; 1843 1844 /* 1845 * If @why is CLD_STOPPED, we're trapping to participate in a group 1846 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1847 * across siglock relocks since INTERRUPT was scheduled, PENDING 1848 * could be clear now. We act as if SIGCONT is received after 1849 * TASK_TRACED is entered - ignore it. 1850 */ 1851 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1852 gstop_done = task_participate_group_stop(current); 1853 1854 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1855 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1856 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1857 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1858 1859 /* entering a trap, clear TRAPPING */ 1860 task_clear_jobctl_trapping(current); 1861 1862 spin_unlock_irq(¤t->sighand->siglock); 1863 read_lock(&tasklist_lock); 1864 if (may_ptrace_stop()) { 1865 /* 1866 * Notify parents of the stop. 1867 * 1868 * While ptraced, there are two parents - the ptracer and 1869 * the real_parent of the group_leader. The ptracer should 1870 * know about every stop while the real parent is only 1871 * interested in the completion of group stop. The states 1872 * for the two don't interact with each other. Notify 1873 * separately unless they're gonna be duplicates. 1874 */ 1875 do_notify_parent_cldstop(current, true, why); 1876 if (gstop_done && ptrace_reparented(current)) 1877 do_notify_parent_cldstop(current, false, why); 1878 1879 /* 1880 * Don't want to allow preemption here, because 1881 * sys_ptrace() needs this task to be inactive. 1882 * 1883 * XXX: implement read_unlock_no_resched(). 1884 */ 1885 preempt_disable(); 1886 read_unlock(&tasklist_lock); 1887 preempt_enable_no_resched(); 1888 freezable_schedule(); 1889 } else { 1890 /* 1891 * By the time we got the lock, our tracer went away. 1892 * Don't drop the lock yet, another tracer may come. 1893 * 1894 * If @gstop_done, the ptracer went away between group stop 1895 * completion and here. During detach, it would have set 1896 * JOBCTL_STOP_PENDING on us and we'll re-enter 1897 * TASK_STOPPED in do_signal_stop() on return, so notifying 1898 * the real parent of the group stop completion is enough. 1899 */ 1900 if (gstop_done) 1901 do_notify_parent_cldstop(current, false, why); 1902 1903 /* tasklist protects us from ptrace_freeze_traced() */ 1904 __set_current_state(TASK_RUNNING); 1905 if (clear_code) 1906 current->exit_code = 0; 1907 read_unlock(&tasklist_lock); 1908 } 1909 1910 /* 1911 * We are back. Now reacquire the siglock before touching 1912 * last_siginfo, so that we are sure to have synchronized with 1913 * any signal-sending on another CPU that wants to examine it. 1914 */ 1915 spin_lock_irq(¤t->sighand->siglock); 1916 current->last_siginfo = NULL; 1917 1918 /* LISTENING can be set only during STOP traps, clear it */ 1919 current->jobctl &= ~JOBCTL_LISTENING; 1920 1921 /* 1922 * Queued signals ignored us while we were stopped for tracing. 1923 * So check for any that we should take before resuming user mode. 1924 * This sets TIF_SIGPENDING, but never clears it. 1925 */ 1926 recalc_sigpending_tsk(current); 1927 } 1928 1929 static void ptrace_do_notify(int signr, int exit_code, int why) 1930 { 1931 siginfo_t info; 1932 1933 memset(&info, 0, sizeof info); 1934 info.si_signo = signr; 1935 info.si_code = exit_code; 1936 info.si_pid = task_pid_vnr(current); 1937 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1938 1939 /* Let the debugger run. */ 1940 ptrace_stop(exit_code, why, 1, &info); 1941 } 1942 1943 void ptrace_notify(int exit_code) 1944 { 1945 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1946 if (unlikely(current->task_works)) 1947 task_work_run(); 1948 1949 spin_lock_irq(¤t->sighand->siglock); 1950 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1951 spin_unlock_irq(¤t->sighand->siglock); 1952 } 1953 1954 /** 1955 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1956 * @signr: signr causing group stop if initiating 1957 * 1958 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1959 * and participate in it. If already set, participate in the existing 1960 * group stop. If participated in a group stop (and thus slept), %true is 1961 * returned with siglock released. 1962 * 1963 * If ptraced, this function doesn't handle stop itself. Instead, 1964 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1965 * untouched. The caller must ensure that INTERRUPT trap handling takes 1966 * places afterwards. 1967 * 1968 * CONTEXT: 1969 * Must be called with @current->sighand->siglock held, which is released 1970 * on %true return. 1971 * 1972 * RETURNS: 1973 * %false if group stop is already cancelled or ptrace trap is scheduled. 1974 * %true if participated in group stop. 1975 */ 1976 static bool do_signal_stop(int signr) 1977 __releases(¤t->sighand->siglock) 1978 { 1979 struct signal_struct *sig = current->signal; 1980 1981 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 1982 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 1983 struct task_struct *t; 1984 1985 /* signr will be recorded in task->jobctl for retries */ 1986 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 1987 1988 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 1989 unlikely(signal_group_exit(sig))) 1990 return false; 1991 /* 1992 * There is no group stop already in progress. We must 1993 * initiate one now. 1994 * 1995 * While ptraced, a task may be resumed while group stop is 1996 * still in effect and then receive a stop signal and 1997 * initiate another group stop. This deviates from the 1998 * usual behavior as two consecutive stop signals can't 1999 * cause two group stops when !ptraced. That is why we 2000 * also check !task_is_stopped(t) below. 2001 * 2002 * The condition can be distinguished by testing whether 2003 * SIGNAL_STOP_STOPPED is already set. Don't generate 2004 * group_exit_code in such case. 2005 * 2006 * This is not necessary for SIGNAL_STOP_CONTINUED because 2007 * an intervening stop signal is required to cause two 2008 * continued events regardless of ptrace. 2009 */ 2010 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2011 sig->group_exit_code = signr; 2012 2013 sig->group_stop_count = 0; 2014 2015 if (task_set_jobctl_pending(current, signr | gstop)) 2016 sig->group_stop_count++; 2017 2018 t = current; 2019 while_each_thread(current, t) { 2020 /* 2021 * Setting state to TASK_STOPPED for a group 2022 * stop is always done with the siglock held, 2023 * so this check has no races. 2024 */ 2025 if (!task_is_stopped(t) && 2026 task_set_jobctl_pending(t, signr | gstop)) { 2027 sig->group_stop_count++; 2028 if (likely(!(t->ptrace & PT_SEIZED))) 2029 signal_wake_up(t, 0); 2030 else 2031 ptrace_trap_notify(t); 2032 } 2033 } 2034 } 2035 2036 if (likely(!current->ptrace)) { 2037 int notify = 0; 2038 2039 /* 2040 * If there are no other threads in the group, or if there 2041 * is a group stop in progress and we are the last to stop, 2042 * report to the parent. 2043 */ 2044 if (task_participate_group_stop(current)) 2045 notify = CLD_STOPPED; 2046 2047 __set_current_state(TASK_STOPPED); 2048 spin_unlock_irq(¤t->sighand->siglock); 2049 2050 /* 2051 * Notify the parent of the group stop completion. Because 2052 * we're not holding either the siglock or tasklist_lock 2053 * here, ptracer may attach inbetween; however, this is for 2054 * group stop and should always be delivered to the real 2055 * parent of the group leader. The new ptracer will get 2056 * its notification when this task transitions into 2057 * TASK_TRACED. 2058 */ 2059 if (notify) { 2060 read_lock(&tasklist_lock); 2061 do_notify_parent_cldstop(current, false, notify); 2062 read_unlock(&tasklist_lock); 2063 } 2064 2065 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2066 freezable_schedule(); 2067 return true; 2068 } else { 2069 /* 2070 * While ptraced, group stop is handled by STOP trap. 2071 * Schedule it and let the caller deal with it. 2072 */ 2073 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2074 return false; 2075 } 2076 } 2077 2078 /** 2079 * do_jobctl_trap - take care of ptrace jobctl traps 2080 * 2081 * When PT_SEIZED, it's used for both group stop and explicit 2082 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2083 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2084 * the stop signal; otherwise, %SIGTRAP. 2085 * 2086 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2087 * number as exit_code and no siginfo. 2088 * 2089 * CONTEXT: 2090 * Must be called with @current->sighand->siglock held, which may be 2091 * released and re-acquired before returning with intervening sleep. 2092 */ 2093 static void do_jobctl_trap(void) 2094 { 2095 struct signal_struct *signal = current->signal; 2096 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2097 2098 if (current->ptrace & PT_SEIZED) { 2099 if (!signal->group_stop_count && 2100 !(signal->flags & SIGNAL_STOP_STOPPED)) 2101 signr = SIGTRAP; 2102 WARN_ON_ONCE(!signr); 2103 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2104 CLD_STOPPED); 2105 } else { 2106 WARN_ON_ONCE(!signr); 2107 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2108 current->exit_code = 0; 2109 } 2110 } 2111 2112 static int ptrace_signal(int signr, siginfo_t *info) 2113 { 2114 /* 2115 * We do not check sig_kernel_stop(signr) but set this marker 2116 * unconditionally because we do not know whether debugger will 2117 * change signr. This flag has no meaning unless we are going 2118 * to stop after return from ptrace_stop(). In this case it will 2119 * be checked in do_signal_stop(), we should only stop if it was 2120 * not cleared by SIGCONT while we were sleeping. See also the 2121 * comment in dequeue_signal(). 2122 */ 2123 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2124 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2125 2126 /* We're back. Did the debugger cancel the sig? */ 2127 signr = current->exit_code; 2128 if (signr == 0) 2129 return signr; 2130 2131 current->exit_code = 0; 2132 2133 /* 2134 * Update the siginfo structure if the signal has 2135 * changed. If the debugger wanted something 2136 * specific in the siginfo structure then it should 2137 * have updated *info via PTRACE_SETSIGINFO. 2138 */ 2139 if (signr != info->si_signo) { 2140 info->si_signo = signr; 2141 info->si_errno = 0; 2142 info->si_code = SI_USER; 2143 rcu_read_lock(); 2144 info->si_pid = task_pid_vnr(current->parent); 2145 info->si_uid = from_kuid_munged(current_user_ns(), 2146 task_uid(current->parent)); 2147 rcu_read_unlock(); 2148 } 2149 2150 /* If the (new) signal is now blocked, requeue it. */ 2151 if (sigismember(¤t->blocked, signr)) { 2152 specific_send_sig_info(signr, info, current); 2153 signr = 0; 2154 } 2155 2156 return signr; 2157 } 2158 2159 int get_signal(struct ksignal *ksig) 2160 { 2161 struct sighand_struct *sighand = current->sighand; 2162 struct signal_struct *signal = current->signal; 2163 int signr; 2164 2165 if (unlikely(current->task_works)) 2166 task_work_run(); 2167 2168 if (unlikely(uprobe_deny_signal())) 2169 return 0; 2170 2171 /* 2172 * Do this once, we can't return to user-mode if freezing() == T. 2173 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2174 * thus do not need another check after return. 2175 */ 2176 try_to_freeze(); 2177 2178 relock: 2179 spin_lock_irq(&sighand->siglock); 2180 /* 2181 * Every stopped thread goes here after wakeup. Check to see if 2182 * we should notify the parent, prepare_signal(SIGCONT) encodes 2183 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2184 */ 2185 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2186 int why; 2187 2188 if (signal->flags & SIGNAL_CLD_CONTINUED) 2189 why = CLD_CONTINUED; 2190 else 2191 why = CLD_STOPPED; 2192 2193 signal->flags &= ~SIGNAL_CLD_MASK; 2194 2195 spin_unlock_irq(&sighand->siglock); 2196 2197 /* 2198 * Notify the parent that we're continuing. This event is 2199 * always per-process and doesn't make whole lot of sense 2200 * for ptracers, who shouldn't consume the state via 2201 * wait(2) either, but, for backward compatibility, notify 2202 * the ptracer of the group leader too unless it's gonna be 2203 * a duplicate. 2204 */ 2205 read_lock(&tasklist_lock); 2206 do_notify_parent_cldstop(current, false, why); 2207 2208 if (ptrace_reparented(current->group_leader)) 2209 do_notify_parent_cldstop(current->group_leader, 2210 true, why); 2211 read_unlock(&tasklist_lock); 2212 2213 goto relock; 2214 } 2215 2216 for (;;) { 2217 struct k_sigaction *ka; 2218 2219 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2220 do_signal_stop(0)) 2221 goto relock; 2222 2223 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2224 do_jobctl_trap(); 2225 spin_unlock_irq(&sighand->siglock); 2226 goto relock; 2227 } 2228 2229 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2230 2231 if (!signr) 2232 break; /* will return 0 */ 2233 2234 if (unlikely(current->ptrace) && signr != SIGKILL) { 2235 signr = ptrace_signal(signr, &ksig->info); 2236 if (!signr) 2237 continue; 2238 } 2239 2240 ka = &sighand->action[signr-1]; 2241 2242 /* Trace actually delivered signals. */ 2243 trace_signal_deliver(signr, &ksig->info, ka); 2244 2245 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2246 continue; 2247 if (ka->sa.sa_handler != SIG_DFL) { 2248 /* Run the handler. */ 2249 ksig->ka = *ka; 2250 2251 if (ka->sa.sa_flags & SA_ONESHOT) 2252 ka->sa.sa_handler = SIG_DFL; 2253 2254 break; /* will return non-zero "signr" value */ 2255 } 2256 2257 /* 2258 * Now we are doing the default action for this signal. 2259 */ 2260 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2261 continue; 2262 2263 /* 2264 * Global init gets no signals it doesn't want. 2265 * Container-init gets no signals it doesn't want from same 2266 * container. 2267 * 2268 * Note that if global/container-init sees a sig_kernel_only() 2269 * signal here, the signal must have been generated internally 2270 * or must have come from an ancestor namespace. In either 2271 * case, the signal cannot be dropped. 2272 */ 2273 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2274 !sig_kernel_only(signr)) 2275 continue; 2276 2277 if (sig_kernel_stop(signr)) { 2278 /* 2279 * The default action is to stop all threads in 2280 * the thread group. The job control signals 2281 * do nothing in an orphaned pgrp, but SIGSTOP 2282 * always works. Note that siglock needs to be 2283 * dropped during the call to is_orphaned_pgrp() 2284 * because of lock ordering with tasklist_lock. 2285 * This allows an intervening SIGCONT to be posted. 2286 * We need to check for that and bail out if necessary. 2287 */ 2288 if (signr != SIGSTOP) { 2289 spin_unlock_irq(&sighand->siglock); 2290 2291 /* signals can be posted during this window */ 2292 2293 if (is_current_pgrp_orphaned()) 2294 goto relock; 2295 2296 spin_lock_irq(&sighand->siglock); 2297 } 2298 2299 if (likely(do_signal_stop(ksig->info.si_signo))) { 2300 /* It released the siglock. */ 2301 goto relock; 2302 } 2303 2304 /* 2305 * We didn't actually stop, due to a race 2306 * with SIGCONT or something like that. 2307 */ 2308 continue; 2309 } 2310 2311 spin_unlock_irq(&sighand->siglock); 2312 2313 /* 2314 * Anything else is fatal, maybe with a core dump. 2315 */ 2316 current->flags |= PF_SIGNALED; 2317 2318 if (sig_kernel_coredump(signr)) { 2319 if (print_fatal_signals) 2320 print_fatal_signal(ksig->info.si_signo); 2321 proc_coredump_connector(current); 2322 /* 2323 * If it was able to dump core, this kills all 2324 * other threads in the group and synchronizes with 2325 * their demise. If we lost the race with another 2326 * thread getting here, it set group_exit_code 2327 * first and our do_group_exit call below will use 2328 * that value and ignore the one we pass it. 2329 */ 2330 do_coredump(&ksig->info); 2331 } 2332 2333 /* 2334 * Death signals, no core dump. 2335 */ 2336 do_group_exit(ksig->info.si_signo); 2337 /* NOTREACHED */ 2338 } 2339 spin_unlock_irq(&sighand->siglock); 2340 2341 ksig->sig = signr; 2342 return ksig->sig > 0; 2343 } 2344 2345 /** 2346 * signal_delivered - 2347 * @ksig: kernel signal struct 2348 * @stepping: nonzero if debugger single-step or block-step in use 2349 * 2350 * This function should be called when a signal has successfully been 2351 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2352 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2353 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2354 */ 2355 static void signal_delivered(struct ksignal *ksig, int stepping) 2356 { 2357 sigset_t blocked; 2358 2359 /* A signal was successfully delivered, and the 2360 saved sigmask was stored on the signal frame, 2361 and will be restored by sigreturn. So we can 2362 simply clear the restore sigmask flag. */ 2363 clear_restore_sigmask(); 2364 2365 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2366 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2367 sigaddset(&blocked, ksig->sig); 2368 set_current_blocked(&blocked); 2369 tracehook_signal_handler(stepping); 2370 } 2371 2372 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2373 { 2374 if (failed) 2375 force_sigsegv(ksig->sig, current); 2376 else 2377 signal_delivered(ksig, stepping); 2378 } 2379 2380 /* 2381 * It could be that complete_signal() picked us to notify about the 2382 * group-wide signal. Other threads should be notified now to take 2383 * the shared signals in @which since we will not. 2384 */ 2385 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2386 { 2387 sigset_t retarget; 2388 struct task_struct *t; 2389 2390 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2391 if (sigisemptyset(&retarget)) 2392 return; 2393 2394 t = tsk; 2395 while_each_thread(tsk, t) { 2396 if (t->flags & PF_EXITING) 2397 continue; 2398 2399 if (!has_pending_signals(&retarget, &t->blocked)) 2400 continue; 2401 /* Remove the signals this thread can handle. */ 2402 sigandsets(&retarget, &retarget, &t->blocked); 2403 2404 if (!signal_pending(t)) 2405 signal_wake_up(t, 0); 2406 2407 if (sigisemptyset(&retarget)) 2408 break; 2409 } 2410 } 2411 2412 void exit_signals(struct task_struct *tsk) 2413 { 2414 int group_stop = 0; 2415 sigset_t unblocked; 2416 2417 /* 2418 * @tsk is about to have PF_EXITING set - lock out users which 2419 * expect stable threadgroup. 2420 */ 2421 cgroup_threadgroup_change_begin(tsk); 2422 2423 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2424 tsk->flags |= PF_EXITING; 2425 cgroup_threadgroup_change_end(tsk); 2426 return; 2427 } 2428 2429 spin_lock_irq(&tsk->sighand->siglock); 2430 /* 2431 * From now this task is not visible for group-wide signals, 2432 * see wants_signal(), do_signal_stop(). 2433 */ 2434 tsk->flags |= PF_EXITING; 2435 2436 cgroup_threadgroup_change_end(tsk); 2437 2438 if (!signal_pending(tsk)) 2439 goto out; 2440 2441 unblocked = tsk->blocked; 2442 signotset(&unblocked); 2443 retarget_shared_pending(tsk, &unblocked); 2444 2445 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2446 task_participate_group_stop(tsk)) 2447 group_stop = CLD_STOPPED; 2448 out: 2449 spin_unlock_irq(&tsk->sighand->siglock); 2450 2451 /* 2452 * If group stop has completed, deliver the notification. This 2453 * should always go to the real parent of the group leader. 2454 */ 2455 if (unlikely(group_stop)) { 2456 read_lock(&tasklist_lock); 2457 do_notify_parent_cldstop(tsk, false, group_stop); 2458 read_unlock(&tasklist_lock); 2459 } 2460 } 2461 2462 EXPORT_SYMBOL(recalc_sigpending); 2463 EXPORT_SYMBOL_GPL(dequeue_signal); 2464 EXPORT_SYMBOL(flush_signals); 2465 EXPORT_SYMBOL(force_sig); 2466 EXPORT_SYMBOL(send_sig); 2467 EXPORT_SYMBOL(send_sig_info); 2468 EXPORT_SYMBOL(sigprocmask); 2469 2470 /* 2471 * System call entry points. 2472 */ 2473 2474 /** 2475 * sys_restart_syscall - restart a system call 2476 */ 2477 SYSCALL_DEFINE0(restart_syscall) 2478 { 2479 struct restart_block *restart = ¤t->restart_block; 2480 return restart->fn(restart); 2481 } 2482 2483 long do_no_restart_syscall(struct restart_block *param) 2484 { 2485 return -EINTR; 2486 } 2487 2488 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2489 { 2490 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2491 sigset_t newblocked; 2492 /* A set of now blocked but previously unblocked signals. */ 2493 sigandnsets(&newblocked, newset, ¤t->blocked); 2494 retarget_shared_pending(tsk, &newblocked); 2495 } 2496 tsk->blocked = *newset; 2497 recalc_sigpending(); 2498 } 2499 2500 /** 2501 * set_current_blocked - change current->blocked mask 2502 * @newset: new mask 2503 * 2504 * It is wrong to change ->blocked directly, this helper should be used 2505 * to ensure the process can't miss a shared signal we are going to block. 2506 */ 2507 void set_current_blocked(sigset_t *newset) 2508 { 2509 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2510 __set_current_blocked(newset); 2511 } 2512 2513 void __set_current_blocked(const sigset_t *newset) 2514 { 2515 struct task_struct *tsk = current; 2516 2517 /* 2518 * In case the signal mask hasn't changed, there is nothing we need 2519 * to do. The current->blocked shouldn't be modified by other task. 2520 */ 2521 if (sigequalsets(&tsk->blocked, newset)) 2522 return; 2523 2524 spin_lock_irq(&tsk->sighand->siglock); 2525 __set_task_blocked(tsk, newset); 2526 spin_unlock_irq(&tsk->sighand->siglock); 2527 } 2528 2529 /* 2530 * This is also useful for kernel threads that want to temporarily 2531 * (or permanently) block certain signals. 2532 * 2533 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2534 * interface happily blocks "unblockable" signals like SIGKILL 2535 * and friends. 2536 */ 2537 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2538 { 2539 struct task_struct *tsk = current; 2540 sigset_t newset; 2541 2542 /* Lockless, only current can change ->blocked, never from irq */ 2543 if (oldset) 2544 *oldset = tsk->blocked; 2545 2546 switch (how) { 2547 case SIG_BLOCK: 2548 sigorsets(&newset, &tsk->blocked, set); 2549 break; 2550 case SIG_UNBLOCK: 2551 sigandnsets(&newset, &tsk->blocked, set); 2552 break; 2553 case SIG_SETMASK: 2554 newset = *set; 2555 break; 2556 default: 2557 return -EINVAL; 2558 } 2559 2560 __set_current_blocked(&newset); 2561 return 0; 2562 } 2563 2564 /** 2565 * sys_rt_sigprocmask - change the list of currently blocked signals 2566 * @how: whether to add, remove, or set signals 2567 * @nset: stores pending signals 2568 * @oset: previous value of signal mask if non-null 2569 * @sigsetsize: size of sigset_t type 2570 */ 2571 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2572 sigset_t __user *, oset, size_t, sigsetsize) 2573 { 2574 sigset_t old_set, new_set; 2575 int error; 2576 2577 /* XXX: Don't preclude handling different sized sigset_t's. */ 2578 if (sigsetsize != sizeof(sigset_t)) 2579 return -EINVAL; 2580 2581 old_set = current->blocked; 2582 2583 if (nset) { 2584 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2585 return -EFAULT; 2586 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2587 2588 error = sigprocmask(how, &new_set, NULL); 2589 if (error) 2590 return error; 2591 } 2592 2593 if (oset) { 2594 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2595 return -EFAULT; 2596 } 2597 2598 return 0; 2599 } 2600 2601 #ifdef CONFIG_COMPAT 2602 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2603 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2604 { 2605 #ifdef __BIG_ENDIAN 2606 sigset_t old_set = current->blocked; 2607 2608 /* XXX: Don't preclude handling different sized sigset_t's. */ 2609 if (sigsetsize != sizeof(sigset_t)) 2610 return -EINVAL; 2611 2612 if (nset) { 2613 compat_sigset_t new32; 2614 sigset_t new_set; 2615 int error; 2616 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t))) 2617 return -EFAULT; 2618 2619 sigset_from_compat(&new_set, &new32); 2620 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2621 2622 error = sigprocmask(how, &new_set, NULL); 2623 if (error) 2624 return error; 2625 } 2626 if (oset) { 2627 compat_sigset_t old32; 2628 sigset_to_compat(&old32, &old_set); 2629 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t))) 2630 return -EFAULT; 2631 } 2632 return 0; 2633 #else 2634 return sys_rt_sigprocmask(how, (sigset_t __user *)nset, 2635 (sigset_t __user *)oset, sigsetsize); 2636 #endif 2637 } 2638 #endif 2639 2640 static int do_sigpending(void *set, unsigned long sigsetsize) 2641 { 2642 if (sigsetsize > sizeof(sigset_t)) 2643 return -EINVAL; 2644 2645 spin_lock_irq(¤t->sighand->siglock); 2646 sigorsets(set, ¤t->pending.signal, 2647 ¤t->signal->shared_pending.signal); 2648 spin_unlock_irq(¤t->sighand->siglock); 2649 2650 /* Outside the lock because only this thread touches it. */ 2651 sigandsets(set, ¤t->blocked, set); 2652 return 0; 2653 } 2654 2655 /** 2656 * sys_rt_sigpending - examine a pending signal that has been raised 2657 * while blocked 2658 * @uset: stores pending signals 2659 * @sigsetsize: size of sigset_t type or larger 2660 */ 2661 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2662 { 2663 sigset_t set; 2664 int err = do_sigpending(&set, sigsetsize); 2665 if (!err && copy_to_user(uset, &set, sigsetsize)) 2666 err = -EFAULT; 2667 return err; 2668 } 2669 2670 #ifdef CONFIG_COMPAT 2671 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2672 compat_size_t, sigsetsize) 2673 { 2674 #ifdef __BIG_ENDIAN 2675 sigset_t set; 2676 int err = do_sigpending(&set, sigsetsize); 2677 if (!err) { 2678 compat_sigset_t set32; 2679 sigset_to_compat(&set32, &set); 2680 /* we can get here only if sigsetsize <= sizeof(set) */ 2681 if (copy_to_user(uset, &set32, sigsetsize)) 2682 err = -EFAULT; 2683 } 2684 return err; 2685 #else 2686 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize); 2687 #endif 2688 } 2689 #endif 2690 2691 enum siginfo_layout siginfo_layout(int sig, int si_code) 2692 { 2693 enum siginfo_layout layout = SIL_KILL; 2694 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 2695 static const struct { 2696 unsigned char limit, layout; 2697 } filter[] = { 2698 [SIGILL] = { NSIGILL, SIL_FAULT }, 2699 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 2700 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 2701 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 2702 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 2703 #if defined(SIGEMT) && defined(NSIGEMT) 2704 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 2705 #endif 2706 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 2707 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 2708 #ifdef __ARCH_SIGSYS 2709 [SIGSYS] = { NSIGSYS, SIL_SYS }, 2710 #endif 2711 }; 2712 if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit)) 2713 layout = filter[sig].layout; 2714 else if (si_code <= NSIGPOLL) 2715 layout = SIL_POLL; 2716 } else { 2717 if (si_code == SI_TIMER) 2718 layout = SIL_TIMER; 2719 else if (si_code == SI_SIGIO) 2720 layout = SIL_POLL; 2721 else if (si_code < 0) 2722 layout = SIL_RT; 2723 /* Tests to support buggy kernel ABIs */ 2724 #ifdef TRAP_FIXME 2725 if ((sig == SIGTRAP) && (si_code == TRAP_FIXME)) 2726 layout = SIL_FAULT; 2727 #endif 2728 #ifdef FPE_FIXME 2729 if ((sig == SIGFPE) && (si_code == FPE_FIXME)) 2730 layout = SIL_FAULT; 2731 #endif 2732 } 2733 return layout; 2734 } 2735 2736 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2737 2738 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from) 2739 { 2740 int err; 2741 2742 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2743 return -EFAULT; 2744 if (from->si_code < 0) 2745 return __copy_to_user(to, from, sizeof(siginfo_t)) 2746 ? -EFAULT : 0; 2747 /* 2748 * If you change siginfo_t structure, please be sure 2749 * this code is fixed accordingly. 2750 * Please remember to update the signalfd_copyinfo() function 2751 * inside fs/signalfd.c too, in case siginfo_t changes. 2752 * It should never copy any pad contained in the structure 2753 * to avoid security leaks, but must copy the generic 2754 * 3 ints plus the relevant union member. 2755 */ 2756 err = __put_user(from->si_signo, &to->si_signo); 2757 err |= __put_user(from->si_errno, &to->si_errno); 2758 err |= __put_user(from->si_code, &to->si_code); 2759 switch (siginfo_layout(from->si_signo, from->si_code)) { 2760 case SIL_KILL: 2761 err |= __put_user(from->si_pid, &to->si_pid); 2762 err |= __put_user(from->si_uid, &to->si_uid); 2763 break; 2764 case SIL_TIMER: 2765 /* Unreached SI_TIMER is negative */ 2766 break; 2767 case SIL_POLL: 2768 err |= __put_user(from->si_band, &to->si_band); 2769 err |= __put_user(from->si_fd, &to->si_fd); 2770 break; 2771 case SIL_FAULT: 2772 err |= __put_user(from->si_addr, &to->si_addr); 2773 #ifdef __ARCH_SI_TRAPNO 2774 err |= __put_user(from->si_trapno, &to->si_trapno); 2775 #endif 2776 #ifdef BUS_MCEERR_AO 2777 /* 2778 * Other callers might not initialize the si_lsb field, 2779 * so check explicitly for the right codes here. 2780 */ 2781 if (from->si_signo == SIGBUS && 2782 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)) 2783 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2784 #endif 2785 #ifdef SEGV_BNDERR 2786 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) { 2787 err |= __put_user(from->si_lower, &to->si_lower); 2788 err |= __put_user(from->si_upper, &to->si_upper); 2789 } 2790 #endif 2791 #ifdef SEGV_PKUERR 2792 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR) 2793 err |= __put_user(from->si_pkey, &to->si_pkey); 2794 #endif 2795 break; 2796 case SIL_CHLD: 2797 err |= __put_user(from->si_pid, &to->si_pid); 2798 err |= __put_user(from->si_uid, &to->si_uid); 2799 err |= __put_user(from->si_status, &to->si_status); 2800 err |= __put_user(from->si_utime, &to->si_utime); 2801 err |= __put_user(from->si_stime, &to->si_stime); 2802 break; 2803 case SIL_RT: 2804 err |= __put_user(from->si_pid, &to->si_pid); 2805 err |= __put_user(from->si_uid, &to->si_uid); 2806 err |= __put_user(from->si_ptr, &to->si_ptr); 2807 break; 2808 #ifdef __ARCH_SIGSYS 2809 case SIL_SYS: 2810 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2811 err |= __put_user(from->si_syscall, &to->si_syscall); 2812 err |= __put_user(from->si_arch, &to->si_arch); 2813 break; 2814 #endif 2815 } 2816 return err; 2817 } 2818 2819 #endif 2820 2821 /** 2822 * do_sigtimedwait - wait for queued signals specified in @which 2823 * @which: queued signals to wait for 2824 * @info: if non-null, the signal's siginfo is returned here 2825 * @ts: upper bound on process time suspension 2826 */ 2827 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2828 const struct timespec *ts) 2829 { 2830 ktime_t *to = NULL, timeout = KTIME_MAX; 2831 struct task_struct *tsk = current; 2832 sigset_t mask = *which; 2833 int sig, ret = 0; 2834 2835 if (ts) { 2836 if (!timespec_valid(ts)) 2837 return -EINVAL; 2838 timeout = timespec_to_ktime(*ts); 2839 to = &timeout; 2840 } 2841 2842 /* 2843 * Invert the set of allowed signals to get those we want to block. 2844 */ 2845 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2846 signotset(&mask); 2847 2848 spin_lock_irq(&tsk->sighand->siglock); 2849 sig = dequeue_signal(tsk, &mask, info); 2850 if (!sig && timeout) { 2851 /* 2852 * None ready, temporarily unblock those we're interested 2853 * while we are sleeping in so that we'll be awakened when 2854 * they arrive. Unblocking is always fine, we can avoid 2855 * set_current_blocked(). 2856 */ 2857 tsk->real_blocked = tsk->blocked; 2858 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2859 recalc_sigpending(); 2860 spin_unlock_irq(&tsk->sighand->siglock); 2861 2862 __set_current_state(TASK_INTERRUPTIBLE); 2863 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 2864 HRTIMER_MODE_REL); 2865 spin_lock_irq(&tsk->sighand->siglock); 2866 __set_task_blocked(tsk, &tsk->real_blocked); 2867 sigemptyset(&tsk->real_blocked); 2868 sig = dequeue_signal(tsk, &mask, info); 2869 } 2870 spin_unlock_irq(&tsk->sighand->siglock); 2871 2872 if (sig) 2873 return sig; 2874 return ret ? -EINTR : -EAGAIN; 2875 } 2876 2877 /** 2878 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2879 * in @uthese 2880 * @uthese: queued signals to wait for 2881 * @uinfo: if non-null, the signal's siginfo is returned here 2882 * @uts: upper bound on process time suspension 2883 * @sigsetsize: size of sigset_t type 2884 */ 2885 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2886 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2887 size_t, sigsetsize) 2888 { 2889 sigset_t these; 2890 struct timespec ts; 2891 siginfo_t info; 2892 int ret; 2893 2894 /* XXX: Don't preclude handling different sized sigset_t's. */ 2895 if (sigsetsize != sizeof(sigset_t)) 2896 return -EINVAL; 2897 2898 if (copy_from_user(&these, uthese, sizeof(these))) 2899 return -EFAULT; 2900 2901 if (uts) { 2902 if (copy_from_user(&ts, uts, sizeof(ts))) 2903 return -EFAULT; 2904 } 2905 2906 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2907 2908 if (ret > 0 && uinfo) { 2909 if (copy_siginfo_to_user(uinfo, &info)) 2910 ret = -EFAULT; 2911 } 2912 2913 return ret; 2914 } 2915 2916 #ifdef CONFIG_COMPAT 2917 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese, 2918 struct compat_siginfo __user *, uinfo, 2919 struct compat_timespec __user *, uts, compat_size_t, sigsetsize) 2920 { 2921 compat_sigset_t s32; 2922 sigset_t s; 2923 struct timespec t; 2924 siginfo_t info; 2925 long ret; 2926 2927 if (sigsetsize != sizeof(sigset_t)) 2928 return -EINVAL; 2929 2930 if (copy_from_user(&s32, uthese, sizeof(compat_sigset_t))) 2931 return -EFAULT; 2932 sigset_from_compat(&s, &s32); 2933 2934 if (uts) { 2935 if (compat_get_timespec(&t, uts)) 2936 return -EFAULT; 2937 } 2938 2939 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 2940 2941 if (ret > 0 && uinfo) { 2942 if (copy_siginfo_to_user32(uinfo, &info)) 2943 ret = -EFAULT; 2944 } 2945 2946 return ret; 2947 } 2948 #endif 2949 2950 /** 2951 * sys_kill - send a signal to a process 2952 * @pid: the PID of the process 2953 * @sig: signal to be sent 2954 */ 2955 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2956 { 2957 struct siginfo info; 2958 2959 info.si_signo = sig; 2960 info.si_errno = 0; 2961 info.si_code = SI_USER; 2962 info.si_pid = task_tgid_vnr(current); 2963 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2964 2965 return kill_something_info(sig, &info, pid); 2966 } 2967 2968 static int 2969 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2970 { 2971 struct task_struct *p; 2972 int error = -ESRCH; 2973 2974 rcu_read_lock(); 2975 p = find_task_by_vpid(pid); 2976 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2977 error = check_kill_permission(sig, info, p); 2978 /* 2979 * The null signal is a permissions and process existence 2980 * probe. No signal is actually delivered. 2981 */ 2982 if (!error && sig) { 2983 error = do_send_sig_info(sig, info, p, false); 2984 /* 2985 * If lock_task_sighand() failed we pretend the task 2986 * dies after receiving the signal. The window is tiny, 2987 * and the signal is private anyway. 2988 */ 2989 if (unlikely(error == -ESRCH)) 2990 error = 0; 2991 } 2992 } 2993 rcu_read_unlock(); 2994 2995 return error; 2996 } 2997 2998 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2999 { 3000 struct siginfo info = {}; 3001 3002 info.si_signo = sig; 3003 info.si_errno = 0; 3004 info.si_code = SI_TKILL; 3005 info.si_pid = task_tgid_vnr(current); 3006 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3007 3008 return do_send_specific(tgid, pid, sig, &info); 3009 } 3010 3011 /** 3012 * sys_tgkill - send signal to one specific thread 3013 * @tgid: the thread group ID of the thread 3014 * @pid: the PID of the thread 3015 * @sig: signal to be sent 3016 * 3017 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3018 * exists but it's not belonging to the target process anymore. This 3019 * method solves the problem of threads exiting and PIDs getting reused. 3020 */ 3021 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3022 { 3023 /* This is only valid for single tasks */ 3024 if (pid <= 0 || tgid <= 0) 3025 return -EINVAL; 3026 3027 return do_tkill(tgid, pid, sig); 3028 } 3029 3030 /** 3031 * sys_tkill - send signal to one specific task 3032 * @pid: the PID of the task 3033 * @sig: signal to be sent 3034 * 3035 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3036 */ 3037 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3038 { 3039 /* This is only valid for single tasks */ 3040 if (pid <= 0) 3041 return -EINVAL; 3042 3043 return do_tkill(0, pid, sig); 3044 } 3045 3046 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info) 3047 { 3048 /* Not even root can pretend to send signals from the kernel. 3049 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3050 */ 3051 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3052 (task_pid_vnr(current) != pid)) 3053 return -EPERM; 3054 3055 info->si_signo = sig; 3056 3057 /* POSIX.1b doesn't mention process groups. */ 3058 return kill_proc_info(sig, info, pid); 3059 } 3060 3061 /** 3062 * sys_rt_sigqueueinfo - send signal information to a signal 3063 * @pid: the PID of the thread 3064 * @sig: signal to be sent 3065 * @uinfo: signal info to be sent 3066 */ 3067 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3068 siginfo_t __user *, uinfo) 3069 { 3070 siginfo_t info; 3071 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3072 return -EFAULT; 3073 return do_rt_sigqueueinfo(pid, sig, &info); 3074 } 3075 3076 #ifdef CONFIG_COMPAT 3077 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3078 compat_pid_t, pid, 3079 int, sig, 3080 struct compat_siginfo __user *, uinfo) 3081 { 3082 siginfo_t info = {}; 3083 int ret = copy_siginfo_from_user32(&info, uinfo); 3084 if (unlikely(ret)) 3085 return ret; 3086 return do_rt_sigqueueinfo(pid, sig, &info); 3087 } 3088 #endif 3089 3090 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 3091 { 3092 /* This is only valid for single tasks */ 3093 if (pid <= 0 || tgid <= 0) 3094 return -EINVAL; 3095 3096 /* Not even root can pretend to send signals from the kernel. 3097 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3098 */ 3099 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3100 (task_pid_vnr(current) != pid)) 3101 return -EPERM; 3102 3103 info->si_signo = sig; 3104 3105 return do_send_specific(tgid, pid, sig, info); 3106 } 3107 3108 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3109 siginfo_t __user *, uinfo) 3110 { 3111 siginfo_t info; 3112 3113 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3114 return -EFAULT; 3115 3116 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3117 } 3118 3119 #ifdef CONFIG_COMPAT 3120 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3121 compat_pid_t, tgid, 3122 compat_pid_t, pid, 3123 int, sig, 3124 struct compat_siginfo __user *, uinfo) 3125 { 3126 siginfo_t info = {}; 3127 3128 if (copy_siginfo_from_user32(&info, uinfo)) 3129 return -EFAULT; 3130 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3131 } 3132 #endif 3133 3134 /* 3135 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3136 */ 3137 void kernel_sigaction(int sig, __sighandler_t action) 3138 { 3139 spin_lock_irq(¤t->sighand->siglock); 3140 current->sighand->action[sig - 1].sa.sa_handler = action; 3141 if (action == SIG_IGN) { 3142 sigset_t mask; 3143 3144 sigemptyset(&mask); 3145 sigaddset(&mask, sig); 3146 3147 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3148 flush_sigqueue_mask(&mask, ¤t->pending); 3149 recalc_sigpending(); 3150 } 3151 spin_unlock_irq(¤t->sighand->siglock); 3152 } 3153 EXPORT_SYMBOL(kernel_sigaction); 3154 3155 void __weak sigaction_compat_abi(struct k_sigaction *act, 3156 struct k_sigaction *oact) 3157 { 3158 } 3159 3160 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3161 { 3162 struct task_struct *p = current, *t; 3163 struct k_sigaction *k; 3164 sigset_t mask; 3165 3166 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3167 return -EINVAL; 3168 3169 k = &p->sighand->action[sig-1]; 3170 3171 spin_lock_irq(&p->sighand->siglock); 3172 if (oact) 3173 *oact = *k; 3174 3175 sigaction_compat_abi(act, oact); 3176 3177 if (act) { 3178 sigdelsetmask(&act->sa.sa_mask, 3179 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3180 *k = *act; 3181 /* 3182 * POSIX 3.3.1.3: 3183 * "Setting a signal action to SIG_IGN for a signal that is 3184 * pending shall cause the pending signal to be discarded, 3185 * whether or not it is blocked." 3186 * 3187 * "Setting a signal action to SIG_DFL for a signal that is 3188 * pending and whose default action is to ignore the signal 3189 * (for example, SIGCHLD), shall cause the pending signal to 3190 * be discarded, whether or not it is blocked" 3191 */ 3192 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3193 sigemptyset(&mask); 3194 sigaddset(&mask, sig); 3195 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3196 for_each_thread(p, t) 3197 flush_sigqueue_mask(&mask, &t->pending); 3198 } 3199 } 3200 3201 spin_unlock_irq(&p->sighand->siglock); 3202 return 0; 3203 } 3204 3205 static int 3206 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp) 3207 { 3208 struct task_struct *t = current; 3209 3210 if (oss) { 3211 memset(oss, 0, sizeof(stack_t)); 3212 oss->ss_sp = (void __user *) t->sas_ss_sp; 3213 oss->ss_size = t->sas_ss_size; 3214 oss->ss_flags = sas_ss_flags(sp) | 3215 (current->sas_ss_flags & SS_FLAG_BITS); 3216 } 3217 3218 if (ss) { 3219 void __user *ss_sp = ss->ss_sp; 3220 size_t ss_size = ss->ss_size; 3221 unsigned ss_flags = ss->ss_flags; 3222 int ss_mode; 3223 3224 if (unlikely(on_sig_stack(sp))) 3225 return -EPERM; 3226 3227 ss_mode = ss_flags & ~SS_FLAG_BITS; 3228 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 3229 ss_mode != 0)) 3230 return -EINVAL; 3231 3232 if (ss_mode == SS_DISABLE) { 3233 ss_size = 0; 3234 ss_sp = NULL; 3235 } else { 3236 if (unlikely(ss_size < MINSIGSTKSZ)) 3237 return -ENOMEM; 3238 } 3239 3240 t->sas_ss_sp = (unsigned long) ss_sp; 3241 t->sas_ss_size = ss_size; 3242 t->sas_ss_flags = ss_flags; 3243 } 3244 return 0; 3245 } 3246 3247 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3248 { 3249 stack_t new, old; 3250 int err; 3251 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 3252 return -EFAULT; 3253 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 3254 current_user_stack_pointer()); 3255 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 3256 err = -EFAULT; 3257 return err; 3258 } 3259 3260 int restore_altstack(const stack_t __user *uss) 3261 { 3262 stack_t new; 3263 if (copy_from_user(&new, uss, sizeof(stack_t))) 3264 return -EFAULT; 3265 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer()); 3266 /* squash all but EFAULT for now */ 3267 return 0; 3268 } 3269 3270 int __save_altstack(stack_t __user *uss, unsigned long sp) 3271 { 3272 struct task_struct *t = current; 3273 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3274 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3275 __put_user(t->sas_ss_size, &uss->ss_size); 3276 if (err) 3277 return err; 3278 if (t->sas_ss_flags & SS_AUTODISARM) 3279 sas_ss_reset(t); 3280 return 0; 3281 } 3282 3283 #ifdef CONFIG_COMPAT 3284 COMPAT_SYSCALL_DEFINE2(sigaltstack, 3285 const compat_stack_t __user *, uss_ptr, 3286 compat_stack_t __user *, uoss_ptr) 3287 { 3288 stack_t uss, uoss; 3289 int ret; 3290 3291 if (uss_ptr) { 3292 compat_stack_t uss32; 3293 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3294 return -EFAULT; 3295 uss.ss_sp = compat_ptr(uss32.ss_sp); 3296 uss.ss_flags = uss32.ss_flags; 3297 uss.ss_size = uss32.ss_size; 3298 } 3299 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 3300 compat_user_stack_pointer()); 3301 if (ret >= 0 && uoss_ptr) { 3302 compat_stack_t old; 3303 memset(&old, 0, sizeof(old)); 3304 old.ss_sp = ptr_to_compat(uoss.ss_sp); 3305 old.ss_flags = uoss.ss_flags; 3306 old.ss_size = uoss.ss_size; 3307 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 3308 ret = -EFAULT; 3309 } 3310 return ret; 3311 } 3312 3313 int compat_restore_altstack(const compat_stack_t __user *uss) 3314 { 3315 int err = compat_sys_sigaltstack(uss, NULL); 3316 /* squash all but -EFAULT for now */ 3317 return err == -EFAULT ? err : 0; 3318 } 3319 3320 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3321 { 3322 int err; 3323 struct task_struct *t = current; 3324 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 3325 &uss->ss_sp) | 3326 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3327 __put_user(t->sas_ss_size, &uss->ss_size); 3328 if (err) 3329 return err; 3330 if (t->sas_ss_flags & SS_AUTODISARM) 3331 sas_ss_reset(t); 3332 return 0; 3333 } 3334 #endif 3335 3336 #ifdef __ARCH_WANT_SYS_SIGPENDING 3337 3338 /** 3339 * sys_sigpending - examine pending signals 3340 * @set: where mask of pending signal is returned 3341 */ 3342 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3343 { 3344 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 3345 } 3346 3347 #ifdef CONFIG_COMPAT 3348 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 3349 { 3350 #ifdef __BIG_ENDIAN 3351 sigset_t set; 3352 int err = do_sigpending(&set, sizeof(set.sig[0])); 3353 if (!err) 3354 err = put_user(set.sig[0], set32); 3355 return err; 3356 #else 3357 return sys_rt_sigpending((sigset_t __user *)set32, sizeof(*set32)); 3358 #endif 3359 } 3360 #endif 3361 3362 #endif 3363 3364 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3365 /** 3366 * sys_sigprocmask - examine and change blocked signals 3367 * @how: whether to add, remove, or set signals 3368 * @nset: signals to add or remove (if non-null) 3369 * @oset: previous value of signal mask if non-null 3370 * 3371 * Some platforms have their own version with special arguments; 3372 * others support only sys_rt_sigprocmask. 3373 */ 3374 3375 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3376 old_sigset_t __user *, oset) 3377 { 3378 old_sigset_t old_set, new_set; 3379 sigset_t new_blocked; 3380 3381 old_set = current->blocked.sig[0]; 3382 3383 if (nset) { 3384 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3385 return -EFAULT; 3386 3387 new_blocked = current->blocked; 3388 3389 switch (how) { 3390 case SIG_BLOCK: 3391 sigaddsetmask(&new_blocked, new_set); 3392 break; 3393 case SIG_UNBLOCK: 3394 sigdelsetmask(&new_blocked, new_set); 3395 break; 3396 case SIG_SETMASK: 3397 new_blocked.sig[0] = new_set; 3398 break; 3399 default: 3400 return -EINVAL; 3401 } 3402 3403 set_current_blocked(&new_blocked); 3404 } 3405 3406 if (oset) { 3407 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3408 return -EFAULT; 3409 } 3410 3411 return 0; 3412 } 3413 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3414 3415 #ifndef CONFIG_ODD_RT_SIGACTION 3416 /** 3417 * sys_rt_sigaction - alter an action taken by a process 3418 * @sig: signal to be sent 3419 * @act: new sigaction 3420 * @oact: used to save the previous sigaction 3421 * @sigsetsize: size of sigset_t type 3422 */ 3423 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3424 const struct sigaction __user *, act, 3425 struct sigaction __user *, oact, 3426 size_t, sigsetsize) 3427 { 3428 struct k_sigaction new_sa, old_sa; 3429 int ret = -EINVAL; 3430 3431 /* XXX: Don't preclude handling different sized sigset_t's. */ 3432 if (sigsetsize != sizeof(sigset_t)) 3433 goto out; 3434 3435 if (act) { 3436 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3437 return -EFAULT; 3438 } 3439 3440 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3441 3442 if (!ret && oact) { 3443 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3444 return -EFAULT; 3445 } 3446 out: 3447 return ret; 3448 } 3449 #ifdef CONFIG_COMPAT 3450 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 3451 const struct compat_sigaction __user *, act, 3452 struct compat_sigaction __user *, oact, 3453 compat_size_t, sigsetsize) 3454 { 3455 struct k_sigaction new_ka, old_ka; 3456 compat_sigset_t mask; 3457 #ifdef __ARCH_HAS_SA_RESTORER 3458 compat_uptr_t restorer; 3459 #endif 3460 int ret; 3461 3462 /* XXX: Don't preclude handling different sized sigset_t's. */ 3463 if (sigsetsize != sizeof(compat_sigset_t)) 3464 return -EINVAL; 3465 3466 if (act) { 3467 compat_uptr_t handler; 3468 ret = get_user(handler, &act->sa_handler); 3469 new_ka.sa.sa_handler = compat_ptr(handler); 3470 #ifdef __ARCH_HAS_SA_RESTORER 3471 ret |= get_user(restorer, &act->sa_restorer); 3472 new_ka.sa.sa_restorer = compat_ptr(restorer); 3473 #endif 3474 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask)); 3475 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 3476 if (ret) 3477 return -EFAULT; 3478 sigset_from_compat(&new_ka.sa.sa_mask, &mask); 3479 } 3480 3481 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3482 if (!ret && oact) { 3483 sigset_to_compat(&mask, &old_ka.sa.sa_mask); 3484 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 3485 &oact->sa_handler); 3486 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask)); 3487 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 3488 #ifdef __ARCH_HAS_SA_RESTORER 3489 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3490 &oact->sa_restorer); 3491 #endif 3492 } 3493 return ret; 3494 } 3495 #endif 3496 #endif /* !CONFIG_ODD_RT_SIGACTION */ 3497 3498 #ifdef CONFIG_OLD_SIGACTION 3499 SYSCALL_DEFINE3(sigaction, int, sig, 3500 const struct old_sigaction __user *, act, 3501 struct old_sigaction __user *, oact) 3502 { 3503 struct k_sigaction new_ka, old_ka; 3504 int ret; 3505 3506 if (act) { 3507 old_sigset_t mask; 3508 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3509 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 3510 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 3511 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3512 __get_user(mask, &act->sa_mask)) 3513 return -EFAULT; 3514 #ifdef __ARCH_HAS_KA_RESTORER 3515 new_ka.ka_restorer = NULL; 3516 #endif 3517 siginitset(&new_ka.sa.sa_mask, mask); 3518 } 3519 3520 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3521 3522 if (!ret && oact) { 3523 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3524 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 3525 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 3526 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3527 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3528 return -EFAULT; 3529 } 3530 3531 return ret; 3532 } 3533 #endif 3534 #ifdef CONFIG_COMPAT_OLD_SIGACTION 3535 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 3536 const struct compat_old_sigaction __user *, act, 3537 struct compat_old_sigaction __user *, oact) 3538 { 3539 struct k_sigaction new_ka, old_ka; 3540 int ret; 3541 compat_old_sigset_t mask; 3542 compat_uptr_t handler, restorer; 3543 3544 if (act) { 3545 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3546 __get_user(handler, &act->sa_handler) || 3547 __get_user(restorer, &act->sa_restorer) || 3548 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3549 __get_user(mask, &act->sa_mask)) 3550 return -EFAULT; 3551 3552 #ifdef __ARCH_HAS_KA_RESTORER 3553 new_ka.ka_restorer = NULL; 3554 #endif 3555 new_ka.sa.sa_handler = compat_ptr(handler); 3556 new_ka.sa.sa_restorer = compat_ptr(restorer); 3557 siginitset(&new_ka.sa.sa_mask, mask); 3558 } 3559 3560 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3561 3562 if (!ret && oact) { 3563 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3564 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 3565 &oact->sa_handler) || 3566 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3567 &oact->sa_restorer) || 3568 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3569 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3570 return -EFAULT; 3571 } 3572 return ret; 3573 } 3574 #endif 3575 3576 #ifdef CONFIG_SGETMASK_SYSCALL 3577 3578 /* 3579 * For backwards compatibility. Functionality superseded by sigprocmask. 3580 */ 3581 SYSCALL_DEFINE0(sgetmask) 3582 { 3583 /* SMP safe */ 3584 return current->blocked.sig[0]; 3585 } 3586 3587 SYSCALL_DEFINE1(ssetmask, int, newmask) 3588 { 3589 int old = current->blocked.sig[0]; 3590 sigset_t newset; 3591 3592 siginitset(&newset, newmask); 3593 set_current_blocked(&newset); 3594 3595 return old; 3596 } 3597 #endif /* CONFIG_SGETMASK_SYSCALL */ 3598 3599 #ifdef __ARCH_WANT_SYS_SIGNAL 3600 /* 3601 * For backwards compatibility. Functionality superseded by sigaction. 3602 */ 3603 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3604 { 3605 struct k_sigaction new_sa, old_sa; 3606 int ret; 3607 3608 new_sa.sa.sa_handler = handler; 3609 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3610 sigemptyset(&new_sa.sa.sa_mask); 3611 3612 ret = do_sigaction(sig, &new_sa, &old_sa); 3613 3614 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3615 } 3616 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3617 3618 #ifdef __ARCH_WANT_SYS_PAUSE 3619 3620 SYSCALL_DEFINE0(pause) 3621 { 3622 while (!signal_pending(current)) { 3623 __set_current_state(TASK_INTERRUPTIBLE); 3624 schedule(); 3625 } 3626 return -ERESTARTNOHAND; 3627 } 3628 3629 #endif 3630 3631 static int sigsuspend(sigset_t *set) 3632 { 3633 current->saved_sigmask = current->blocked; 3634 set_current_blocked(set); 3635 3636 while (!signal_pending(current)) { 3637 __set_current_state(TASK_INTERRUPTIBLE); 3638 schedule(); 3639 } 3640 set_restore_sigmask(); 3641 return -ERESTARTNOHAND; 3642 } 3643 3644 /** 3645 * sys_rt_sigsuspend - replace the signal mask for a value with the 3646 * @unewset value until a signal is received 3647 * @unewset: new signal mask value 3648 * @sigsetsize: size of sigset_t type 3649 */ 3650 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3651 { 3652 sigset_t newset; 3653 3654 /* XXX: Don't preclude handling different sized sigset_t's. */ 3655 if (sigsetsize != sizeof(sigset_t)) 3656 return -EINVAL; 3657 3658 if (copy_from_user(&newset, unewset, sizeof(newset))) 3659 return -EFAULT; 3660 return sigsuspend(&newset); 3661 } 3662 3663 #ifdef CONFIG_COMPAT 3664 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 3665 { 3666 #ifdef __BIG_ENDIAN 3667 sigset_t newset; 3668 compat_sigset_t newset32; 3669 3670 /* XXX: Don't preclude handling different sized sigset_t's. */ 3671 if (sigsetsize != sizeof(sigset_t)) 3672 return -EINVAL; 3673 3674 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t))) 3675 return -EFAULT; 3676 sigset_from_compat(&newset, &newset32); 3677 return sigsuspend(&newset); 3678 #else 3679 /* on little-endian bitmaps don't care about granularity */ 3680 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize); 3681 #endif 3682 } 3683 #endif 3684 3685 #ifdef CONFIG_OLD_SIGSUSPEND 3686 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 3687 { 3688 sigset_t blocked; 3689 siginitset(&blocked, mask); 3690 return sigsuspend(&blocked); 3691 } 3692 #endif 3693 #ifdef CONFIG_OLD_SIGSUSPEND3 3694 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 3695 { 3696 sigset_t blocked; 3697 siginitset(&blocked, mask); 3698 return sigsuspend(&blocked); 3699 } 3700 #endif 3701 3702 __weak const char *arch_vma_name(struct vm_area_struct *vma) 3703 { 3704 return NULL; 3705 } 3706 3707 void __init signals_init(void) 3708 { 3709 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */ 3710 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE 3711 != offsetof(struct siginfo, _sifields._pad)); 3712 3713 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3714 } 3715 3716 #ifdef CONFIG_KGDB_KDB 3717 #include <linux/kdb.h> 3718 /* 3719 * kdb_send_sig_info - Allows kdb to send signals without exposing 3720 * signal internals. This function checks if the required locks are 3721 * available before calling the main signal code, to avoid kdb 3722 * deadlocks. 3723 */ 3724 void 3725 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3726 { 3727 static struct task_struct *kdb_prev_t; 3728 int sig, new_t; 3729 if (!spin_trylock(&t->sighand->siglock)) { 3730 kdb_printf("Can't do kill command now.\n" 3731 "The sigmask lock is held somewhere else in " 3732 "kernel, try again later\n"); 3733 return; 3734 } 3735 spin_unlock(&t->sighand->siglock); 3736 new_t = kdb_prev_t != t; 3737 kdb_prev_t = t; 3738 if (t->state != TASK_RUNNING && new_t) { 3739 kdb_printf("Process is not RUNNING, sending a signal from " 3740 "kdb risks deadlock\n" 3741 "on the run queue locks. " 3742 "The signal has _not_ been sent.\n" 3743 "Reissue the kill command if you want to risk " 3744 "the deadlock.\n"); 3745 return; 3746 } 3747 sig = info->si_signo; 3748 if (send_sig_info(sig, info, t)) 3749 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3750 sig, t->pid); 3751 else 3752 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3753 } 3754 #endif /* CONFIG_KGDB_KDB */ 3755