1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/capability.h> 26 #include <linux/freezer.h> 27 #include <linux/pid_namespace.h> 28 #include <linux/nsproxy.h> 29 30 #include <asm/param.h> 31 #include <asm/uaccess.h> 32 #include <asm/unistd.h> 33 #include <asm/siginfo.h> 34 #include "audit.h" /* audit_signal_info() */ 35 36 /* 37 * SLAB caches for signal bits. 38 */ 39 40 static struct kmem_cache *sigqueue_cachep; 41 42 43 static int sig_ignored(struct task_struct *t, int sig) 44 { 45 void __user * handler; 46 47 /* 48 * Tracers always want to know about signals.. 49 */ 50 if (t->ptrace & PT_PTRACED) 51 return 0; 52 53 /* 54 * Blocked signals are never ignored, since the 55 * signal handler may change by the time it is 56 * unblocked. 57 */ 58 if (sigismember(&t->blocked, sig)) 59 return 0; 60 61 /* Is it explicitly or implicitly ignored? */ 62 handler = t->sighand->action[sig-1].sa.sa_handler; 63 return handler == SIG_IGN || 64 (handler == SIG_DFL && sig_kernel_ignore(sig)); 65 } 66 67 /* 68 * Re-calculate pending state from the set of locally pending 69 * signals, globally pending signals, and blocked signals. 70 */ 71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 72 { 73 unsigned long ready; 74 long i; 75 76 switch (_NSIG_WORDS) { 77 default: 78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 79 ready |= signal->sig[i] &~ blocked->sig[i]; 80 break; 81 82 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 83 ready |= signal->sig[2] &~ blocked->sig[2]; 84 ready |= signal->sig[1] &~ blocked->sig[1]; 85 ready |= signal->sig[0] &~ blocked->sig[0]; 86 break; 87 88 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 89 ready |= signal->sig[0] &~ blocked->sig[0]; 90 break; 91 92 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 93 } 94 return ready != 0; 95 } 96 97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 98 99 static int recalc_sigpending_tsk(struct task_struct *t) 100 { 101 if (t->signal->group_stop_count > 0 || 102 (freezing(t)) || 103 PENDING(&t->pending, &t->blocked) || 104 PENDING(&t->signal->shared_pending, &t->blocked)) { 105 set_tsk_thread_flag(t, TIF_SIGPENDING); 106 return 1; 107 } 108 /* 109 * We must never clear the flag in another thread, or in current 110 * when it's possible the current syscall is returning -ERESTART*. 111 * So we don't clear it here, and only callers who know they should do. 112 */ 113 return 0; 114 } 115 116 /* 117 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 118 * This is superfluous when called on current, the wakeup is a harmless no-op. 119 */ 120 void recalc_sigpending_and_wake(struct task_struct *t) 121 { 122 if (recalc_sigpending_tsk(t)) 123 signal_wake_up(t, 0); 124 } 125 126 void recalc_sigpending(void) 127 { 128 if (!recalc_sigpending_tsk(current)) 129 clear_thread_flag(TIF_SIGPENDING); 130 131 } 132 133 /* Given the mask, find the first available signal that should be serviced. */ 134 135 int next_signal(struct sigpending *pending, sigset_t *mask) 136 { 137 unsigned long i, *s, *m, x; 138 int sig = 0; 139 140 s = pending->signal.sig; 141 m = mask->sig; 142 switch (_NSIG_WORDS) { 143 default: 144 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 145 if ((x = *s &~ *m) != 0) { 146 sig = ffz(~x) + i*_NSIG_BPW + 1; 147 break; 148 } 149 break; 150 151 case 2: if ((x = s[0] &~ m[0]) != 0) 152 sig = 1; 153 else if ((x = s[1] &~ m[1]) != 0) 154 sig = _NSIG_BPW + 1; 155 else 156 break; 157 sig += ffz(~x); 158 break; 159 160 case 1: if ((x = *s &~ *m) != 0) 161 sig = ffz(~x) + 1; 162 break; 163 } 164 165 return sig; 166 } 167 168 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 169 int override_rlimit) 170 { 171 struct sigqueue *q = NULL; 172 struct user_struct *user; 173 174 /* 175 * In order to avoid problems with "switch_user()", we want to make 176 * sure that the compiler doesn't re-load "t->user" 177 */ 178 user = t->user; 179 barrier(); 180 atomic_inc(&user->sigpending); 181 if (override_rlimit || 182 atomic_read(&user->sigpending) <= 183 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 184 q = kmem_cache_alloc(sigqueue_cachep, flags); 185 if (unlikely(q == NULL)) { 186 atomic_dec(&user->sigpending); 187 } else { 188 INIT_LIST_HEAD(&q->list); 189 q->flags = 0; 190 q->user = get_uid(user); 191 } 192 return(q); 193 } 194 195 static void __sigqueue_free(struct sigqueue *q) 196 { 197 if (q->flags & SIGQUEUE_PREALLOC) 198 return; 199 atomic_dec(&q->user->sigpending); 200 free_uid(q->user); 201 kmem_cache_free(sigqueue_cachep, q); 202 } 203 204 void flush_sigqueue(struct sigpending *queue) 205 { 206 struct sigqueue *q; 207 208 sigemptyset(&queue->signal); 209 while (!list_empty(&queue->list)) { 210 q = list_entry(queue->list.next, struct sigqueue , list); 211 list_del_init(&q->list); 212 __sigqueue_free(q); 213 } 214 } 215 216 /* 217 * Flush all pending signals for a task. 218 */ 219 void flush_signals(struct task_struct *t) 220 { 221 unsigned long flags; 222 223 spin_lock_irqsave(&t->sighand->siglock, flags); 224 clear_tsk_thread_flag(t,TIF_SIGPENDING); 225 flush_sigqueue(&t->pending); 226 flush_sigqueue(&t->signal->shared_pending); 227 spin_unlock_irqrestore(&t->sighand->siglock, flags); 228 } 229 230 void ignore_signals(struct task_struct *t) 231 { 232 int i; 233 234 for (i = 0; i < _NSIG; ++i) 235 t->sighand->action[i].sa.sa_handler = SIG_IGN; 236 237 flush_signals(t); 238 } 239 240 /* 241 * Flush all handlers for a task. 242 */ 243 244 void 245 flush_signal_handlers(struct task_struct *t, int force_default) 246 { 247 int i; 248 struct k_sigaction *ka = &t->sighand->action[0]; 249 for (i = _NSIG ; i != 0 ; i--) { 250 if (force_default || ka->sa.sa_handler != SIG_IGN) 251 ka->sa.sa_handler = SIG_DFL; 252 ka->sa.sa_flags = 0; 253 sigemptyset(&ka->sa.sa_mask); 254 ka++; 255 } 256 } 257 258 int unhandled_signal(struct task_struct *tsk, int sig) 259 { 260 if (is_init(tsk)) 261 return 1; 262 if (tsk->ptrace & PT_PTRACED) 263 return 0; 264 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) || 265 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL); 266 } 267 268 269 /* Notify the system that a driver wants to block all signals for this 270 * process, and wants to be notified if any signals at all were to be 271 * sent/acted upon. If the notifier routine returns non-zero, then the 272 * signal will be acted upon after all. If the notifier routine returns 0, 273 * then then signal will be blocked. Only one block per process is 274 * allowed. priv is a pointer to private data that the notifier routine 275 * can use to determine if the signal should be blocked or not. */ 276 277 void 278 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 279 { 280 unsigned long flags; 281 282 spin_lock_irqsave(¤t->sighand->siglock, flags); 283 current->notifier_mask = mask; 284 current->notifier_data = priv; 285 current->notifier = notifier; 286 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 287 } 288 289 /* Notify the system that blocking has ended. */ 290 291 void 292 unblock_all_signals(void) 293 { 294 unsigned long flags; 295 296 spin_lock_irqsave(¤t->sighand->siglock, flags); 297 current->notifier = NULL; 298 current->notifier_data = NULL; 299 recalc_sigpending(); 300 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 301 } 302 303 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info) 304 { 305 struct sigqueue *q, *first = NULL; 306 int still_pending = 0; 307 308 if (unlikely(!sigismember(&list->signal, sig))) 309 return 0; 310 311 /* 312 * Collect the siginfo appropriate to this signal. Check if 313 * there is another siginfo for the same signal. 314 */ 315 list_for_each_entry(q, &list->list, list) { 316 if (q->info.si_signo == sig) { 317 if (first) { 318 still_pending = 1; 319 break; 320 } 321 first = q; 322 } 323 } 324 if (first) { 325 list_del_init(&first->list); 326 copy_siginfo(info, &first->info); 327 __sigqueue_free(first); 328 if (!still_pending) 329 sigdelset(&list->signal, sig); 330 } else { 331 332 /* Ok, it wasn't in the queue. This must be 333 a fast-pathed signal or we must have been 334 out of queue space. So zero out the info. 335 */ 336 sigdelset(&list->signal, sig); 337 info->si_signo = sig; 338 info->si_errno = 0; 339 info->si_code = 0; 340 info->si_pid = 0; 341 info->si_uid = 0; 342 } 343 return 1; 344 } 345 346 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 347 siginfo_t *info) 348 { 349 int sig = next_signal(pending, mask); 350 351 if (sig) { 352 if (current->notifier) { 353 if (sigismember(current->notifier_mask, sig)) { 354 if (!(current->notifier)(current->notifier_data)) { 355 clear_thread_flag(TIF_SIGPENDING); 356 return 0; 357 } 358 } 359 } 360 361 if (!collect_signal(sig, pending, info)) 362 sig = 0; 363 } 364 365 return sig; 366 } 367 368 /* 369 * Dequeue a signal and return the element to the caller, which is 370 * expected to free it. 371 * 372 * All callers have to hold the siglock. 373 */ 374 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 375 { 376 int signr = 0; 377 378 /* We only dequeue private signals from ourselves, we don't let 379 * signalfd steal them 380 */ 381 if (tsk == current) 382 signr = __dequeue_signal(&tsk->pending, mask, info); 383 if (!signr) { 384 signr = __dequeue_signal(&tsk->signal->shared_pending, 385 mask, info); 386 /* 387 * itimer signal ? 388 * 389 * itimers are process shared and we restart periodic 390 * itimers in the signal delivery path to prevent DoS 391 * attacks in the high resolution timer case. This is 392 * compliant with the old way of self restarting 393 * itimers, as the SIGALRM is a legacy signal and only 394 * queued once. Changing the restart behaviour to 395 * restart the timer in the signal dequeue path is 396 * reducing the timer noise on heavy loaded !highres 397 * systems too. 398 */ 399 if (unlikely(signr == SIGALRM)) { 400 struct hrtimer *tmr = &tsk->signal->real_timer; 401 402 if (!hrtimer_is_queued(tmr) && 403 tsk->signal->it_real_incr.tv64 != 0) { 404 hrtimer_forward(tmr, tmr->base->get_time(), 405 tsk->signal->it_real_incr); 406 hrtimer_restart(tmr); 407 } 408 } 409 } 410 if (likely(tsk == current)) 411 recalc_sigpending(); 412 if (signr && unlikely(sig_kernel_stop(signr))) { 413 /* 414 * Set a marker that we have dequeued a stop signal. Our 415 * caller might release the siglock and then the pending 416 * stop signal it is about to process is no longer in the 417 * pending bitmasks, but must still be cleared by a SIGCONT 418 * (and overruled by a SIGKILL). So those cases clear this 419 * shared flag after we've set it. Note that this flag may 420 * remain set after the signal we return is ignored or 421 * handled. That doesn't matter because its only purpose 422 * is to alert stop-signal processing code when another 423 * processor has come along and cleared the flag. 424 */ 425 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) 426 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 427 } 428 if ( signr && 429 ((info->si_code & __SI_MASK) == __SI_TIMER) && 430 info->si_sys_private){ 431 /* 432 * Release the siglock to ensure proper locking order 433 * of timer locks outside of siglocks. Note, we leave 434 * irqs disabled here, since the posix-timers code is 435 * about to disable them again anyway. 436 */ 437 spin_unlock(&tsk->sighand->siglock); 438 do_schedule_next_timer(info); 439 spin_lock(&tsk->sighand->siglock); 440 } 441 return signr; 442 } 443 444 /* 445 * Tell a process that it has a new active signal.. 446 * 447 * NOTE! we rely on the previous spin_lock to 448 * lock interrupts for us! We can only be called with 449 * "siglock" held, and the local interrupt must 450 * have been disabled when that got acquired! 451 * 452 * No need to set need_resched since signal event passing 453 * goes through ->blocked 454 */ 455 void signal_wake_up(struct task_struct *t, int resume) 456 { 457 unsigned int mask; 458 459 set_tsk_thread_flag(t, TIF_SIGPENDING); 460 461 /* 462 * For SIGKILL, we want to wake it up in the stopped/traced case. 463 * We don't check t->state here because there is a race with it 464 * executing another processor and just now entering stopped state. 465 * By using wake_up_state, we ensure the process will wake up and 466 * handle its death signal. 467 */ 468 mask = TASK_INTERRUPTIBLE; 469 if (resume) 470 mask |= TASK_STOPPED | TASK_TRACED; 471 if (!wake_up_state(t, mask)) 472 kick_process(t); 473 } 474 475 /* 476 * Remove signals in mask from the pending set and queue. 477 * Returns 1 if any signals were found. 478 * 479 * All callers must be holding the siglock. 480 * 481 * This version takes a sigset mask and looks at all signals, 482 * not just those in the first mask word. 483 */ 484 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 485 { 486 struct sigqueue *q, *n; 487 sigset_t m; 488 489 sigandsets(&m, mask, &s->signal); 490 if (sigisemptyset(&m)) 491 return 0; 492 493 signandsets(&s->signal, &s->signal, mask); 494 list_for_each_entry_safe(q, n, &s->list, list) { 495 if (sigismember(mask, q->info.si_signo)) { 496 list_del_init(&q->list); 497 __sigqueue_free(q); 498 } 499 } 500 return 1; 501 } 502 /* 503 * Remove signals in mask from the pending set and queue. 504 * Returns 1 if any signals were found. 505 * 506 * All callers must be holding the siglock. 507 */ 508 static int rm_from_queue(unsigned long mask, struct sigpending *s) 509 { 510 struct sigqueue *q, *n; 511 512 if (!sigtestsetmask(&s->signal, mask)) 513 return 0; 514 515 sigdelsetmask(&s->signal, mask); 516 list_for_each_entry_safe(q, n, &s->list, list) { 517 if (q->info.si_signo < SIGRTMIN && 518 (mask & sigmask(q->info.si_signo))) { 519 list_del_init(&q->list); 520 __sigqueue_free(q); 521 } 522 } 523 return 1; 524 } 525 526 /* 527 * Bad permissions for sending the signal 528 */ 529 static int check_kill_permission(int sig, struct siginfo *info, 530 struct task_struct *t) 531 { 532 int error = -EINVAL; 533 if (!valid_signal(sig)) 534 return error; 535 536 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 537 if (error) 538 return error; 539 540 error = -EPERM; 541 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 542 && ((sig != SIGCONT) || 543 (process_session(current) != process_session(t))) 544 && (current->euid ^ t->suid) && (current->euid ^ t->uid) 545 && (current->uid ^ t->suid) && (current->uid ^ t->uid) 546 && !capable(CAP_KILL)) 547 return error; 548 549 return security_task_kill(t, info, sig, 0); 550 } 551 552 /* forward decl */ 553 static void do_notify_parent_cldstop(struct task_struct *tsk, int why); 554 555 /* 556 * Handle magic process-wide effects of stop/continue signals. 557 * Unlike the signal actions, these happen immediately at signal-generation 558 * time regardless of blocking, ignoring, or handling. This does the 559 * actual continuing for SIGCONT, but not the actual stopping for stop 560 * signals. The process stop is done as a signal action for SIG_DFL. 561 */ 562 static void handle_stop_signal(int sig, struct task_struct *p) 563 { 564 struct task_struct *t; 565 566 if (p->signal->flags & SIGNAL_GROUP_EXIT) 567 /* 568 * The process is in the middle of dying already. 569 */ 570 return; 571 572 if (sig_kernel_stop(sig)) { 573 /* 574 * This is a stop signal. Remove SIGCONT from all queues. 575 */ 576 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); 577 t = p; 578 do { 579 rm_from_queue(sigmask(SIGCONT), &t->pending); 580 t = next_thread(t); 581 } while (t != p); 582 } else if (sig == SIGCONT) { 583 /* 584 * Remove all stop signals from all queues, 585 * and wake all threads. 586 */ 587 if (unlikely(p->signal->group_stop_count > 0)) { 588 /* 589 * There was a group stop in progress. We'll 590 * pretend it finished before we got here. We are 591 * obliged to report it to the parent: if the 592 * SIGSTOP happened "after" this SIGCONT, then it 593 * would have cleared this pending SIGCONT. If it 594 * happened "before" this SIGCONT, then the parent 595 * got the SIGCHLD about the stop finishing before 596 * the continue happened. We do the notification 597 * now, and it's as if the stop had finished and 598 * the SIGCHLD was pending on entry to this kill. 599 */ 600 p->signal->group_stop_count = 0; 601 p->signal->flags = SIGNAL_STOP_CONTINUED; 602 spin_unlock(&p->sighand->siglock); 603 do_notify_parent_cldstop(p, CLD_STOPPED); 604 spin_lock(&p->sighand->siglock); 605 } 606 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 607 t = p; 608 do { 609 unsigned int state; 610 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 611 612 /* 613 * If there is a handler for SIGCONT, we must make 614 * sure that no thread returns to user mode before 615 * we post the signal, in case it was the only 616 * thread eligible to run the signal handler--then 617 * it must not do anything between resuming and 618 * running the handler. With the TIF_SIGPENDING 619 * flag set, the thread will pause and acquire the 620 * siglock that we hold now and until we've queued 621 * the pending signal. 622 * 623 * Wake up the stopped thread _after_ setting 624 * TIF_SIGPENDING 625 */ 626 state = TASK_STOPPED; 627 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 628 set_tsk_thread_flag(t, TIF_SIGPENDING); 629 state |= TASK_INTERRUPTIBLE; 630 } 631 wake_up_state(t, state); 632 633 t = next_thread(t); 634 } while (t != p); 635 636 if (p->signal->flags & SIGNAL_STOP_STOPPED) { 637 /* 638 * We were in fact stopped, and are now continued. 639 * Notify the parent with CLD_CONTINUED. 640 */ 641 p->signal->flags = SIGNAL_STOP_CONTINUED; 642 p->signal->group_exit_code = 0; 643 spin_unlock(&p->sighand->siglock); 644 do_notify_parent_cldstop(p, CLD_CONTINUED); 645 spin_lock(&p->sighand->siglock); 646 } else { 647 /* 648 * We are not stopped, but there could be a stop 649 * signal in the middle of being processed after 650 * being removed from the queue. Clear that too. 651 */ 652 p->signal->flags = 0; 653 } 654 } else if (sig == SIGKILL) { 655 /* 656 * Make sure that any pending stop signal already dequeued 657 * is undone by the wakeup for SIGKILL. 658 */ 659 p->signal->flags = 0; 660 } 661 } 662 663 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 664 struct sigpending *signals) 665 { 666 struct sigqueue * q = NULL; 667 int ret = 0; 668 669 /* 670 * Deliver the signal to listening signalfds. This must be called 671 * with the sighand lock held. 672 */ 673 signalfd_notify(t, sig); 674 675 /* 676 * fast-pathed signals for kernel-internal things like SIGSTOP 677 * or SIGKILL. 678 */ 679 if (info == SEND_SIG_FORCED) 680 goto out_set; 681 682 /* Real-time signals must be queued if sent by sigqueue, or 683 some other real-time mechanism. It is implementation 684 defined whether kill() does so. We attempt to do so, on 685 the principle of least surprise, but since kill is not 686 allowed to fail with EAGAIN when low on memory we just 687 make sure at least one signal gets delivered and don't 688 pass on the info struct. */ 689 690 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 691 (is_si_special(info) || 692 info->si_code >= 0))); 693 if (q) { 694 list_add_tail(&q->list, &signals->list); 695 switch ((unsigned long) info) { 696 case (unsigned long) SEND_SIG_NOINFO: 697 q->info.si_signo = sig; 698 q->info.si_errno = 0; 699 q->info.si_code = SI_USER; 700 q->info.si_pid = current->pid; 701 q->info.si_uid = current->uid; 702 break; 703 case (unsigned long) SEND_SIG_PRIV: 704 q->info.si_signo = sig; 705 q->info.si_errno = 0; 706 q->info.si_code = SI_KERNEL; 707 q->info.si_pid = 0; 708 q->info.si_uid = 0; 709 break; 710 default: 711 copy_siginfo(&q->info, info); 712 break; 713 } 714 } else if (!is_si_special(info)) { 715 if (sig >= SIGRTMIN && info->si_code != SI_USER) 716 /* 717 * Queue overflow, abort. We may abort if the signal was rt 718 * and sent by user using something other than kill(). 719 */ 720 return -EAGAIN; 721 } 722 723 out_set: 724 sigaddset(&signals->signal, sig); 725 return ret; 726 } 727 728 #define LEGACY_QUEUE(sigptr, sig) \ 729 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) 730 731 int print_fatal_signals; 732 733 static void print_fatal_signal(struct pt_regs *regs, int signr) 734 { 735 printk("%s/%d: potentially unexpected fatal signal %d.\n", 736 current->comm, current->pid, signr); 737 738 #ifdef __i386__ 739 printk("code at %08lx: ", regs->eip); 740 { 741 int i; 742 for (i = 0; i < 16; i++) { 743 unsigned char insn; 744 745 __get_user(insn, (unsigned char *)(regs->eip + i)); 746 printk("%02x ", insn); 747 } 748 } 749 #endif 750 printk("\n"); 751 show_regs(regs); 752 } 753 754 static int __init setup_print_fatal_signals(char *str) 755 { 756 get_option (&str, &print_fatal_signals); 757 758 return 1; 759 } 760 761 __setup("print-fatal-signals=", setup_print_fatal_signals); 762 763 static int 764 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 765 { 766 int ret = 0; 767 768 BUG_ON(!irqs_disabled()); 769 assert_spin_locked(&t->sighand->siglock); 770 771 /* Short-circuit ignored signals. */ 772 if (sig_ignored(t, sig)) 773 goto out; 774 775 /* Support queueing exactly one non-rt signal, so that we 776 can get more detailed information about the cause of 777 the signal. */ 778 if (LEGACY_QUEUE(&t->pending, sig)) 779 goto out; 780 781 ret = send_signal(sig, info, t, &t->pending); 782 if (!ret && !sigismember(&t->blocked, sig)) 783 signal_wake_up(t, sig == SIGKILL); 784 out: 785 return ret; 786 } 787 788 /* 789 * Force a signal that the process can't ignore: if necessary 790 * we unblock the signal and change any SIG_IGN to SIG_DFL. 791 * 792 * Note: If we unblock the signal, we always reset it to SIG_DFL, 793 * since we do not want to have a signal handler that was blocked 794 * be invoked when user space had explicitly blocked it. 795 * 796 * We don't want to have recursive SIGSEGV's etc, for example. 797 */ 798 int 799 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 800 { 801 unsigned long int flags; 802 int ret, blocked, ignored; 803 struct k_sigaction *action; 804 805 spin_lock_irqsave(&t->sighand->siglock, flags); 806 action = &t->sighand->action[sig-1]; 807 ignored = action->sa.sa_handler == SIG_IGN; 808 blocked = sigismember(&t->blocked, sig); 809 if (blocked || ignored) { 810 action->sa.sa_handler = SIG_DFL; 811 if (blocked) { 812 sigdelset(&t->blocked, sig); 813 recalc_sigpending_and_wake(t); 814 } 815 } 816 ret = specific_send_sig_info(sig, info, t); 817 spin_unlock_irqrestore(&t->sighand->siglock, flags); 818 819 return ret; 820 } 821 822 void 823 force_sig_specific(int sig, struct task_struct *t) 824 { 825 force_sig_info(sig, SEND_SIG_FORCED, t); 826 } 827 828 /* 829 * Test if P wants to take SIG. After we've checked all threads with this, 830 * it's equivalent to finding no threads not blocking SIG. Any threads not 831 * blocking SIG were ruled out because they are not running and already 832 * have pending signals. Such threads will dequeue from the shared queue 833 * as soon as they're available, so putting the signal on the shared queue 834 * will be equivalent to sending it to one such thread. 835 */ 836 static inline int wants_signal(int sig, struct task_struct *p) 837 { 838 if (sigismember(&p->blocked, sig)) 839 return 0; 840 if (p->flags & PF_EXITING) 841 return 0; 842 if (sig == SIGKILL) 843 return 1; 844 if (p->state & (TASK_STOPPED | TASK_TRACED)) 845 return 0; 846 return task_curr(p) || !signal_pending(p); 847 } 848 849 static void 850 __group_complete_signal(int sig, struct task_struct *p) 851 { 852 struct task_struct *t; 853 854 /* 855 * Now find a thread we can wake up to take the signal off the queue. 856 * 857 * If the main thread wants the signal, it gets first crack. 858 * Probably the least surprising to the average bear. 859 */ 860 if (wants_signal(sig, p)) 861 t = p; 862 else if (thread_group_empty(p)) 863 /* 864 * There is just one thread and it does not need to be woken. 865 * It will dequeue unblocked signals before it runs again. 866 */ 867 return; 868 else { 869 /* 870 * Otherwise try to find a suitable thread. 871 */ 872 t = p->signal->curr_target; 873 if (t == NULL) 874 /* restart balancing at this thread */ 875 t = p->signal->curr_target = p; 876 877 while (!wants_signal(sig, t)) { 878 t = next_thread(t); 879 if (t == p->signal->curr_target) 880 /* 881 * No thread needs to be woken. 882 * Any eligible threads will see 883 * the signal in the queue soon. 884 */ 885 return; 886 } 887 p->signal->curr_target = t; 888 } 889 890 /* 891 * Found a killable thread. If the signal will be fatal, 892 * then start taking the whole group down immediately. 893 */ 894 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && 895 !sigismember(&t->real_blocked, sig) && 896 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { 897 /* 898 * This signal will be fatal to the whole group. 899 */ 900 if (!sig_kernel_coredump(sig)) { 901 /* 902 * Start a group exit and wake everybody up. 903 * This way we don't have other threads 904 * running and doing things after a slower 905 * thread has the fatal signal pending. 906 */ 907 p->signal->flags = SIGNAL_GROUP_EXIT; 908 p->signal->group_exit_code = sig; 909 p->signal->group_stop_count = 0; 910 t = p; 911 do { 912 sigaddset(&t->pending.signal, SIGKILL); 913 signal_wake_up(t, 1); 914 t = next_thread(t); 915 } while (t != p); 916 return; 917 } 918 919 /* 920 * There will be a core dump. We make all threads other 921 * than the chosen one go into a group stop so that nothing 922 * happens until it gets scheduled, takes the signal off 923 * the shared queue, and does the core dump. This is a 924 * little more complicated than strictly necessary, but it 925 * keeps the signal state that winds up in the core dump 926 * unchanged from the death state, e.g. which thread had 927 * the core-dump signal unblocked. 928 */ 929 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 930 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 931 p->signal->group_stop_count = 0; 932 p->signal->group_exit_task = t; 933 t = p; 934 do { 935 p->signal->group_stop_count++; 936 signal_wake_up(t, 0); 937 t = next_thread(t); 938 } while (t != p); 939 wake_up_process(p->signal->group_exit_task); 940 return; 941 } 942 943 /* 944 * The signal is already in the shared-pending queue. 945 * Tell the chosen thread to wake up and dequeue it. 946 */ 947 signal_wake_up(t, sig == SIGKILL); 948 return; 949 } 950 951 int 952 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 953 { 954 int ret = 0; 955 956 assert_spin_locked(&p->sighand->siglock); 957 handle_stop_signal(sig, p); 958 959 /* Short-circuit ignored signals. */ 960 if (sig_ignored(p, sig)) 961 return ret; 962 963 if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) 964 /* This is a non-RT signal and we already have one queued. */ 965 return ret; 966 967 /* 968 * Put this signal on the shared-pending queue, or fail with EAGAIN. 969 * We always use the shared queue for process-wide signals, 970 * to avoid several races. 971 */ 972 ret = send_signal(sig, info, p, &p->signal->shared_pending); 973 if (unlikely(ret)) 974 return ret; 975 976 __group_complete_signal(sig, p); 977 return 0; 978 } 979 980 /* 981 * Nuke all other threads in the group. 982 */ 983 void zap_other_threads(struct task_struct *p) 984 { 985 struct task_struct *t; 986 987 p->signal->flags = SIGNAL_GROUP_EXIT; 988 p->signal->group_stop_count = 0; 989 990 if (thread_group_empty(p)) 991 return; 992 993 for (t = next_thread(p); t != p; t = next_thread(t)) { 994 /* 995 * Don't bother with already dead threads 996 */ 997 if (t->exit_state) 998 continue; 999 1000 /* SIGKILL will be handled before any pending SIGSTOP */ 1001 sigaddset(&t->pending.signal, SIGKILL); 1002 signal_wake_up(t, 1); 1003 } 1004 } 1005 1006 /* 1007 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 1008 */ 1009 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 1010 { 1011 struct sighand_struct *sighand; 1012 1013 for (;;) { 1014 sighand = rcu_dereference(tsk->sighand); 1015 if (unlikely(sighand == NULL)) 1016 break; 1017 1018 spin_lock_irqsave(&sighand->siglock, *flags); 1019 if (likely(sighand == tsk->sighand)) 1020 break; 1021 spin_unlock_irqrestore(&sighand->siglock, *flags); 1022 } 1023 1024 return sighand; 1025 } 1026 1027 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1028 { 1029 unsigned long flags; 1030 int ret; 1031 1032 ret = check_kill_permission(sig, info, p); 1033 1034 if (!ret && sig) { 1035 ret = -ESRCH; 1036 if (lock_task_sighand(p, &flags)) { 1037 ret = __group_send_sig_info(sig, info, p); 1038 unlock_task_sighand(p, &flags); 1039 } 1040 } 1041 1042 return ret; 1043 } 1044 1045 /* 1046 * kill_pgrp_info() sends a signal to a process group: this is what the tty 1047 * control characters do (^C, ^Z etc) 1048 */ 1049 1050 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1051 { 1052 struct task_struct *p = NULL; 1053 int retval, success; 1054 1055 success = 0; 1056 retval = -ESRCH; 1057 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1058 int err = group_send_sig_info(sig, info, p); 1059 success |= !err; 1060 retval = err; 1061 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1062 return success ? 0 : retval; 1063 } 1064 1065 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1066 { 1067 int retval; 1068 1069 read_lock(&tasklist_lock); 1070 retval = __kill_pgrp_info(sig, info, pgrp); 1071 read_unlock(&tasklist_lock); 1072 1073 return retval; 1074 } 1075 1076 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1077 { 1078 int error; 1079 struct task_struct *p; 1080 1081 rcu_read_lock(); 1082 if (unlikely(sig_needs_tasklist(sig))) 1083 read_lock(&tasklist_lock); 1084 1085 p = pid_task(pid, PIDTYPE_PID); 1086 error = -ESRCH; 1087 if (p) 1088 error = group_send_sig_info(sig, info, p); 1089 1090 if (unlikely(sig_needs_tasklist(sig))) 1091 read_unlock(&tasklist_lock); 1092 rcu_read_unlock(); 1093 return error; 1094 } 1095 1096 int 1097 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1098 { 1099 int error; 1100 rcu_read_lock(); 1101 error = kill_pid_info(sig, info, find_pid(pid)); 1102 rcu_read_unlock(); 1103 return error; 1104 } 1105 1106 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1107 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, 1108 uid_t uid, uid_t euid, u32 secid) 1109 { 1110 int ret = -EINVAL; 1111 struct task_struct *p; 1112 1113 if (!valid_signal(sig)) 1114 return ret; 1115 1116 read_lock(&tasklist_lock); 1117 p = pid_task(pid, PIDTYPE_PID); 1118 if (!p) { 1119 ret = -ESRCH; 1120 goto out_unlock; 1121 } 1122 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 1123 && (euid != p->suid) && (euid != p->uid) 1124 && (uid != p->suid) && (uid != p->uid)) { 1125 ret = -EPERM; 1126 goto out_unlock; 1127 } 1128 ret = security_task_kill(p, info, sig, secid); 1129 if (ret) 1130 goto out_unlock; 1131 if (sig && p->sighand) { 1132 unsigned long flags; 1133 spin_lock_irqsave(&p->sighand->siglock, flags); 1134 ret = __group_send_sig_info(sig, info, p); 1135 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1136 } 1137 out_unlock: 1138 read_unlock(&tasklist_lock); 1139 return ret; 1140 } 1141 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); 1142 1143 /* 1144 * kill_something_info() interprets pid in interesting ways just like kill(2). 1145 * 1146 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1147 * is probably wrong. Should make it like BSD or SYSV. 1148 */ 1149 1150 static int kill_something_info(int sig, struct siginfo *info, int pid) 1151 { 1152 int ret; 1153 rcu_read_lock(); 1154 if (!pid) { 1155 ret = kill_pgrp_info(sig, info, task_pgrp(current)); 1156 } else if (pid == -1) { 1157 int retval = 0, count = 0; 1158 struct task_struct * p; 1159 1160 read_lock(&tasklist_lock); 1161 for_each_process(p) { 1162 if (p->pid > 1 && p->tgid != current->tgid) { 1163 int err = group_send_sig_info(sig, info, p); 1164 ++count; 1165 if (err != -EPERM) 1166 retval = err; 1167 } 1168 } 1169 read_unlock(&tasklist_lock); 1170 ret = count ? retval : -ESRCH; 1171 } else if (pid < 0) { 1172 ret = kill_pgrp_info(sig, info, find_pid(-pid)); 1173 } else { 1174 ret = kill_pid_info(sig, info, find_pid(pid)); 1175 } 1176 rcu_read_unlock(); 1177 return ret; 1178 } 1179 1180 /* 1181 * These are for backward compatibility with the rest of the kernel source. 1182 */ 1183 1184 /* 1185 * These two are the most common entry points. They send a signal 1186 * just to the specific thread. 1187 */ 1188 int 1189 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1190 { 1191 int ret; 1192 unsigned long flags; 1193 1194 /* 1195 * Make sure legacy kernel users don't send in bad values 1196 * (normal paths check this in check_kill_permission). 1197 */ 1198 if (!valid_signal(sig)) 1199 return -EINVAL; 1200 1201 /* 1202 * We need the tasklist lock even for the specific 1203 * thread case (when we don't need to follow the group 1204 * lists) in order to avoid races with "p->sighand" 1205 * going away or changing from under us. 1206 */ 1207 read_lock(&tasklist_lock); 1208 spin_lock_irqsave(&p->sighand->siglock, flags); 1209 ret = specific_send_sig_info(sig, info, p); 1210 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1211 read_unlock(&tasklist_lock); 1212 return ret; 1213 } 1214 1215 #define __si_special(priv) \ 1216 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1217 1218 int 1219 send_sig(int sig, struct task_struct *p, int priv) 1220 { 1221 return send_sig_info(sig, __si_special(priv), p); 1222 } 1223 1224 /* 1225 * This is the entry point for "process-wide" signals. 1226 * They will go to an appropriate thread in the thread group. 1227 */ 1228 int 1229 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1230 { 1231 int ret; 1232 read_lock(&tasklist_lock); 1233 ret = group_send_sig_info(sig, info, p); 1234 read_unlock(&tasklist_lock); 1235 return ret; 1236 } 1237 1238 void 1239 force_sig(int sig, struct task_struct *p) 1240 { 1241 force_sig_info(sig, SEND_SIG_PRIV, p); 1242 } 1243 1244 /* 1245 * When things go south during signal handling, we 1246 * will force a SIGSEGV. And if the signal that caused 1247 * the problem was already a SIGSEGV, we'll want to 1248 * make sure we don't even try to deliver the signal.. 1249 */ 1250 int 1251 force_sigsegv(int sig, struct task_struct *p) 1252 { 1253 if (sig == SIGSEGV) { 1254 unsigned long flags; 1255 spin_lock_irqsave(&p->sighand->siglock, flags); 1256 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1257 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1258 } 1259 force_sig(SIGSEGV, p); 1260 return 0; 1261 } 1262 1263 int kill_pgrp(struct pid *pid, int sig, int priv) 1264 { 1265 return kill_pgrp_info(sig, __si_special(priv), pid); 1266 } 1267 EXPORT_SYMBOL(kill_pgrp); 1268 1269 int kill_pid(struct pid *pid, int sig, int priv) 1270 { 1271 return kill_pid_info(sig, __si_special(priv), pid); 1272 } 1273 EXPORT_SYMBOL(kill_pid); 1274 1275 int 1276 kill_proc(pid_t pid, int sig, int priv) 1277 { 1278 return kill_proc_info(sig, __si_special(priv), pid); 1279 } 1280 1281 /* 1282 * These functions support sending signals using preallocated sigqueue 1283 * structures. This is needed "because realtime applications cannot 1284 * afford to lose notifications of asynchronous events, like timer 1285 * expirations or I/O completions". In the case of Posix Timers 1286 * we allocate the sigqueue structure from the timer_create. If this 1287 * allocation fails we are able to report the failure to the application 1288 * with an EAGAIN error. 1289 */ 1290 1291 struct sigqueue *sigqueue_alloc(void) 1292 { 1293 struct sigqueue *q; 1294 1295 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1296 q->flags |= SIGQUEUE_PREALLOC; 1297 return(q); 1298 } 1299 1300 void sigqueue_free(struct sigqueue *q) 1301 { 1302 unsigned long flags; 1303 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1304 /* 1305 * If the signal is still pending remove it from the 1306 * pending queue. 1307 */ 1308 if (unlikely(!list_empty(&q->list))) { 1309 spinlock_t *lock = ¤t->sighand->siglock; 1310 read_lock(&tasklist_lock); 1311 spin_lock_irqsave(lock, flags); 1312 if (!list_empty(&q->list)) 1313 list_del_init(&q->list); 1314 spin_unlock_irqrestore(lock, flags); 1315 read_unlock(&tasklist_lock); 1316 } 1317 q->flags &= ~SIGQUEUE_PREALLOC; 1318 __sigqueue_free(q); 1319 } 1320 1321 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1322 { 1323 unsigned long flags; 1324 int ret = 0; 1325 1326 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1327 1328 /* 1329 * The rcu based delayed sighand destroy makes it possible to 1330 * run this without tasklist lock held. The task struct itself 1331 * cannot go away as create_timer did get_task_struct(). 1332 * 1333 * We return -1, when the task is marked exiting, so 1334 * posix_timer_event can redirect it to the group leader 1335 */ 1336 rcu_read_lock(); 1337 1338 if (!likely(lock_task_sighand(p, &flags))) { 1339 ret = -1; 1340 goto out_err; 1341 } 1342 1343 if (unlikely(!list_empty(&q->list))) { 1344 /* 1345 * If an SI_TIMER entry is already queue just increment 1346 * the overrun count. 1347 */ 1348 BUG_ON(q->info.si_code != SI_TIMER); 1349 q->info.si_overrun++; 1350 goto out; 1351 } 1352 /* Short-circuit ignored signals. */ 1353 if (sig_ignored(p, sig)) { 1354 ret = 1; 1355 goto out; 1356 } 1357 /* 1358 * Deliver the signal to listening signalfds. This must be called 1359 * with the sighand lock held. 1360 */ 1361 signalfd_notify(p, sig); 1362 1363 list_add_tail(&q->list, &p->pending.list); 1364 sigaddset(&p->pending.signal, sig); 1365 if (!sigismember(&p->blocked, sig)) 1366 signal_wake_up(p, sig == SIGKILL); 1367 1368 out: 1369 unlock_task_sighand(p, &flags); 1370 out_err: 1371 rcu_read_unlock(); 1372 1373 return ret; 1374 } 1375 1376 int 1377 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1378 { 1379 unsigned long flags; 1380 int ret = 0; 1381 1382 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1383 1384 read_lock(&tasklist_lock); 1385 /* Since it_lock is held, p->sighand cannot be NULL. */ 1386 spin_lock_irqsave(&p->sighand->siglock, flags); 1387 handle_stop_signal(sig, p); 1388 1389 /* Short-circuit ignored signals. */ 1390 if (sig_ignored(p, sig)) { 1391 ret = 1; 1392 goto out; 1393 } 1394 1395 if (unlikely(!list_empty(&q->list))) { 1396 /* 1397 * If an SI_TIMER entry is already queue just increment 1398 * the overrun count. Other uses should not try to 1399 * send the signal multiple times. 1400 */ 1401 BUG_ON(q->info.si_code != SI_TIMER); 1402 q->info.si_overrun++; 1403 goto out; 1404 } 1405 /* 1406 * Deliver the signal to listening signalfds. This must be called 1407 * with the sighand lock held. 1408 */ 1409 signalfd_notify(p, sig); 1410 1411 /* 1412 * Put this signal on the shared-pending queue. 1413 * We always use the shared queue for process-wide signals, 1414 * to avoid several races. 1415 */ 1416 list_add_tail(&q->list, &p->signal->shared_pending.list); 1417 sigaddset(&p->signal->shared_pending.signal, sig); 1418 1419 __group_complete_signal(sig, p); 1420 out: 1421 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1422 read_unlock(&tasklist_lock); 1423 return ret; 1424 } 1425 1426 /* 1427 * Wake up any threads in the parent blocked in wait* syscalls. 1428 */ 1429 static inline void __wake_up_parent(struct task_struct *p, 1430 struct task_struct *parent) 1431 { 1432 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1433 } 1434 1435 /* 1436 * Let a parent know about the death of a child. 1437 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1438 */ 1439 1440 void do_notify_parent(struct task_struct *tsk, int sig) 1441 { 1442 struct siginfo info; 1443 unsigned long flags; 1444 struct sighand_struct *psig; 1445 1446 BUG_ON(sig == -1); 1447 1448 /* do_notify_parent_cldstop should have been called instead. */ 1449 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); 1450 1451 BUG_ON(!tsk->ptrace && 1452 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1453 1454 info.si_signo = sig; 1455 info.si_errno = 0; 1456 info.si_pid = tsk->pid; 1457 info.si_uid = tsk->uid; 1458 1459 /* FIXME: find out whether or not this is supposed to be c*time. */ 1460 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, 1461 tsk->signal->utime)); 1462 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, 1463 tsk->signal->stime)); 1464 1465 info.si_status = tsk->exit_code & 0x7f; 1466 if (tsk->exit_code & 0x80) 1467 info.si_code = CLD_DUMPED; 1468 else if (tsk->exit_code & 0x7f) 1469 info.si_code = CLD_KILLED; 1470 else { 1471 info.si_code = CLD_EXITED; 1472 info.si_status = tsk->exit_code >> 8; 1473 } 1474 1475 psig = tsk->parent->sighand; 1476 spin_lock_irqsave(&psig->siglock, flags); 1477 if (!tsk->ptrace && sig == SIGCHLD && 1478 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1479 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1480 /* 1481 * We are exiting and our parent doesn't care. POSIX.1 1482 * defines special semantics for setting SIGCHLD to SIG_IGN 1483 * or setting the SA_NOCLDWAIT flag: we should be reaped 1484 * automatically and not left for our parent's wait4 call. 1485 * Rather than having the parent do it as a magic kind of 1486 * signal handler, we just set this to tell do_exit that we 1487 * can be cleaned up without becoming a zombie. Note that 1488 * we still call __wake_up_parent in this case, because a 1489 * blocked sys_wait4 might now return -ECHILD. 1490 * 1491 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1492 * is implementation-defined: we do (if you don't want 1493 * it, just use SIG_IGN instead). 1494 */ 1495 tsk->exit_signal = -1; 1496 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1497 sig = 0; 1498 } 1499 if (valid_signal(sig) && sig > 0) 1500 __group_send_sig_info(sig, &info, tsk->parent); 1501 __wake_up_parent(tsk, tsk->parent); 1502 spin_unlock_irqrestore(&psig->siglock, flags); 1503 } 1504 1505 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1506 { 1507 struct siginfo info; 1508 unsigned long flags; 1509 struct task_struct *parent; 1510 struct sighand_struct *sighand; 1511 1512 if (tsk->ptrace & PT_PTRACED) 1513 parent = tsk->parent; 1514 else { 1515 tsk = tsk->group_leader; 1516 parent = tsk->real_parent; 1517 } 1518 1519 info.si_signo = SIGCHLD; 1520 info.si_errno = 0; 1521 info.si_pid = tsk->pid; 1522 info.si_uid = tsk->uid; 1523 1524 /* FIXME: find out whether or not this is supposed to be c*time. */ 1525 info.si_utime = cputime_to_jiffies(tsk->utime); 1526 info.si_stime = cputime_to_jiffies(tsk->stime); 1527 1528 info.si_code = why; 1529 switch (why) { 1530 case CLD_CONTINUED: 1531 info.si_status = SIGCONT; 1532 break; 1533 case CLD_STOPPED: 1534 info.si_status = tsk->signal->group_exit_code & 0x7f; 1535 break; 1536 case CLD_TRAPPED: 1537 info.si_status = tsk->exit_code & 0x7f; 1538 break; 1539 default: 1540 BUG(); 1541 } 1542 1543 sighand = parent->sighand; 1544 spin_lock_irqsave(&sighand->siglock, flags); 1545 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1546 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1547 __group_send_sig_info(SIGCHLD, &info, parent); 1548 /* 1549 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1550 */ 1551 __wake_up_parent(tsk, parent); 1552 spin_unlock_irqrestore(&sighand->siglock, flags); 1553 } 1554 1555 static inline int may_ptrace_stop(void) 1556 { 1557 if (!likely(current->ptrace & PT_PTRACED)) 1558 return 0; 1559 1560 if (unlikely(current->parent == current->real_parent && 1561 (current->ptrace & PT_ATTACHED))) 1562 return 0; 1563 1564 /* 1565 * Are we in the middle of do_coredump? 1566 * If so and our tracer is also part of the coredump stopping 1567 * is a deadlock situation, and pointless because our tracer 1568 * is dead so don't allow us to stop. 1569 * If SIGKILL was already sent before the caller unlocked 1570 * ->siglock we must see ->core_waiters != 0. Otherwise it 1571 * is safe to enter schedule(). 1572 */ 1573 if (unlikely(current->mm->core_waiters) && 1574 unlikely(current->mm == current->parent->mm)) 1575 return 0; 1576 1577 return 1; 1578 } 1579 1580 /* 1581 * This must be called with current->sighand->siglock held. 1582 * 1583 * This should be the path for all ptrace stops. 1584 * We always set current->last_siginfo while stopped here. 1585 * That makes it a way to test a stopped process for 1586 * being ptrace-stopped vs being job-control-stopped. 1587 * 1588 * If we actually decide not to stop at all because the tracer is gone, 1589 * we leave nostop_code in current->exit_code. 1590 */ 1591 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) 1592 { 1593 /* 1594 * If there is a group stop in progress, 1595 * we must participate in the bookkeeping. 1596 */ 1597 if (current->signal->group_stop_count > 0) 1598 --current->signal->group_stop_count; 1599 1600 current->last_siginfo = info; 1601 current->exit_code = exit_code; 1602 1603 /* Let the debugger run. */ 1604 set_current_state(TASK_TRACED); 1605 spin_unlock_irq(¤t->sighand->siglock); 1606 try_to_freeze(); 1607 read_lock(&tasklist_lock); 1608 if (may_ptrace_stop()) { 1609 do_notify_parent_cldstop(current, CLD_TRAPPED); 1610 read_unlock(&tasklist_lock); 1611 schedule(); 1612 } else { 1613 /* 1614 * By the time we got the lock, our tracer went away. 1615 * Don't stop here. 1616 */ 1617 read_unlock(&tasklist_lock); 1618 set_current_state(TASK_RUNNING); 1619 current->exit_code = nostop_code; 1620 } 1621 1622 /* 1623 * We are back. Now reacquire the siglock before touching 1624 * last_siginfo, so that we are sure to have synchronized with 1625 * any signal-sending on another CPU that wants to examine it. 1626 */ 1627 spin_lock_irq(¤t->sighand->siglock); 1628 current->last_siginfo = NULL; 1629 1630 /* 1631 * Queued signals ignored us while we were stopped for tracing. 1632 * So check for any that we should take before resuming user mode. 1633 * This sets TIF_SIGPENDING, but never clears it. 1634 */ 1635 recalc_sigpending_tsk(current); 1636 } 1637 1638 void ptrace_notify(int exit_code) 1639 { 1640 siginfo_t info; 1641 1642 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1643 1644 memset(&info, 0, sizeof info); 1645 info.si_signo = SIGTRAP; 1646 info.si_code = exit_code; 1647 info.si_pid = current->pid; 1648 info.si_uid = current->uid; 1649 1650 /* Let the debugger run. */ 1651 spin_lock_irq(¤t->sighand->siglock); 1652 ptrace_stop(exit_code, 0, &info); 1653 spin_unlock_irq(¤t->sighand->siglock); 1654 } 1655 1656 static void 1657 finish_stop(int stop_count) 1658 { 1659 /* 1660 * If there are no other threads in the group, or if there is 1661 * a group stop in progress and we are the last to stop, 1662 * report to the parent. When ptraced, every thread reports itself. 1663 */ 1664 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) { 1665 read_lock(&tasklist_lock); 1666 do_notify_parent_cldstop(current, CLD_STOPPED); 1667 read_unlock(&tasklist_lock); 1668 } 1669 1670 do { 1671 schedule(); 1672 } while (try_to_freeze()); 1673 /* 1674 * Now we don't run again until continued. 1675 */ 1676 current->exit_code = 0; 1677 } 1678 1679 /* 1680 * This performs the stopping for SIGSTOP and other stop signals. 1681 * We have to stop all threads in the thread group. 1682 * Returns nonzero if we've actually stopped and released the siglock. 1683 * Returns zero if we didn't stop and still hold the siglock. 1684 */ 1685 static int do_signal_stop(int signr) 1686 { 1687 struct signal_struct *sig = current->signal; 1688 int stop_count; 1689 1690 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) 1691 return 0; 1692 1693 if (sig->group_stop_count > 0) { 1694 /* 1695 * There is a group stop in progress. We don't need to 1696 * start another one. 1697 */ 1698 stop_count = --sig->group_stop_count; 1699 } else { 1700 /* 1701 * There is no group stop already in progress. 1702 * We must initiate one now. 1703 */ 1704 struct task_struct *t; 1705 1706 sig->group_exit_code = signr; 1707 1708 stop_count = 0; 1709 for (t = next_thread(current); t != current; t = next_thread(t)) 1710 /* 1711 * Setting state to TASK_STOPPED for a group 1712 * stop is always done with the siglock held, 1713 * so this check has no races. 1714 */ 1715 if (!t->exit_state && 1716 !(t->state & (TASK_STOPPED|TASK_TRACED))) { 1717 stop_count++; 1718 signal_wake_up(t, 0); 1719 } 1720 sig->group_stop_count = stop_count; 1721 } 1722 1723 if (stop_count == 0) 1724 sig->flags = SIGNAL_STOP_STOPPED; 1725 current->exit_code = sig->group_exit_code; 1726 __set_current_state(TASK_STOPPED); 1727 1728 spin_unlock_irq(¤t->sighand->siglock); 1729 finish_stop(stop_count); 1730 return 1; 1731 } 1732 1733 /* 1734 * Do appropriate magic when group_stop_count > 0. 1735 * We return nonzero if we stopped, after releasing the siglock. 1736 * We return zero if we still hold the siglock and should look 1737 * for another signal without checking group_stop_count again. 1738 */ 1739 static int handle_group_stop(void) 1740 { 1741 int stop_count; 1742 1743 if (current->signal->group_exit_task == current) { 1744 /* 1745 * Group stop is so we can do a core dump, 1746 * We are the initiating thread, so get on with it. 1747 */ 1748 current->signal->group_exit_task = NULL; 1749 return 0; 1750 } 1751 1752 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1753 /* 1754 * Group stop is so another thread can do a core dump, 1755 * or else we are racing against a death signal. 1756 * Just punt the stop so we can get the next signal. 1757 */ 1758 return 0; 1759 1760 /* 1761 * There is a group stop in progress. We stop 1762 * without any associated signal being in our queue. 1763 */ 1764 stop_count = --current->signal->group_stop_count; 1765 if (stop_count == 0) 1766 current->signal->flags = SIGNAL_STOP_STOPPED; 1767 current->exit_code = current->signal->group_exit_code; 1768 set_current_state(TASK_STOPPED); 1769 spin_unlock_irq(¤t->sighand->siglock); 1770 finish_stop(stop_count); 1771 return 1; 1772 } 1773 1774 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1775 struct pt_regs *regs, void *cookie) 1776 { 1777 sigset_t *mask = ¤t->blocked; 1778 int signr = 0; 1779 1780 try_to_freeze(); 1781 1782 relock: 1783 spin_lock_irq(¤t->sighand->siglock); 1784 for (;;) { 1785 struct k_sigaction *ka; 1786 1787 if (unlikely(current->signal->group_stop_count > 0) && 1788 handle_group_stop()) 1789 goto relock; 1790 1791 signr = dequeue_signal(current, mask, info); 1792 1793 if (!signr) 1794 break; /* will return 0 */ 1795 1796 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { 1797 ptrace_signal_deliver(regs, cookie); 1798 1799 /* Let the debugger run. */ 1800 ptrace_stop(signr, signr, info); 1801 1802 /* We're back. Did the debugger cancel the sig? */ 1803 signr = current->exit_code; 1804 if (signr == 0) 1805 continue; 1806 1807 current->exit_code = 0; 1808 1809 /* Update the siginfo structure if the signal has 1810 changed. If the debugger wanted something 1811 specific in the siginfo structure then it should 1812 have updated *info via PTRACE_SETSIGINFO. */ 1813 if (signr != info->si_signo) { 1814 info->si_signo = signr; 1815 info->si_errno = 0; 1816 info->si_code = SI_USER; 1817 info->si_pid = current->parent->pid; 1818 info->si_uid = current->parent->uid; 1819 } 1820 1821 /* If the (new) signal is now blocked, requeue it. */ 1822 if (sigismember(¤t->blocked, signr)) { 1823 specific_send_sig_info(signr, info, current); 1824 continue; 1825 } 1826 } 1827 1828 ka = ¤t->sighand->action[signr-1]; 1829 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1830 continue; 1831 if (ka->sa.sa_handler != SIG_DFL) { 1832 /* Run the handler. */ 1833 *return_ka = *ka; 1834 1835 if (ka->sa.sa_flags & SA_ONESHOT) 1836 ka->sa.sa_handler = SIG_DFL; 1837 1838 break; /* will return non-zero "signr" value */ 1839 } 1840 1841 /* 1842 * Now we are doing the default action for this signal. 1843 */ 1844 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1845 continue; 1846 1847 /* 1848 * Init of a pid space gets no signals it doesn't want from 1849 * within that pid space. It can of course get signals from 1850 * its parent pid space. 1851 */ 1852 if (current == child_reaper(current)) 1853 continue; 1854 1855 if (sig_kernel_stop(signr)) { 1856 /* 1857 * The default action is to stop all threads in 1858 * the thread group. The job control signals 1859 * do nothing in an orphaned pgrp, but SIGSTOP 1860 * always works. Note that siglock needs to be 1861 * dropped during the call to is_orphaned_pgrp() 1862 * because of lock ordering with tasklist_lock. 1863 * This allows an intervening SIGCONT to be posted. 1864 * We need to check for that and bail out if necessary. 1865 */ 1866 if (signr != SIGSTOP) { 1867 spin_unlock_irq(¤t->sighand->siglock); 1868 1869 /* signals can be posted during this window */ 1870 1871 if (is_current_pgrp_orphaned()) 1872 goto relock; 1873 1874 spin_lock_irq(¤t->sighand->siglock); 1875 } 1876 1877 if (likely(do_signal_stop(signr))) { 1878 /* It released the siglock. */ 1879 goto relock; 1880 } 1881 1882 /* 1883 * We didn't actually stop, due to a race 1884 * with SIGCONT or something like that. 1885 */ 1886 continue; 1887 } 1888 1889 spin_unlock_irq(¤t->sighand->siglock); 1890 1891 /* 1892 * Anything else is fatal, maybe with a core dump. 1893 */ 1894 current->flags |= PF_SIGNALED; 1895 if ((signr != SIGKILL) && print_fatal_signals) 1896 print_fatal_signal(regs, signr); 1897 if (sig_kernel_coredump(signr)) { 1898 /* 1899 * If it was able to dump core, this kills all 1900 * other threads in the group and synchronizes with 1901 * their demise. If we lost the race with another 1902 * thread getting here, it set group_exit_code 1903 * first and our do_group_exit call below will use 1904 * that value and ignore the one we pass it. 1905 */ 1906 do_coredump((long)signr, signr, regs); 1907 } 1908 1909 /* 1910 * Death signals, no core dump. 1911 */ 1912 do_group_exit(signr); 1913 /* NOTREACHED */ 1914 } 1915 spin_unlock_irq(¤t->sighand->siglock); 1916 return signr; 1917 } 1918 1919 EXPORT_SYMBOL(recalc_sigpending); 1920 EXPORT_SYMBOL_GPL(dequeue_signal); 1921 EXPORT_SYMBOL(flush_signals); 1922 EXPORT_SYMBOL(force_sig); 1923 EXPORT_SYMBOL(kill_proc); 1924 EXPORT_SYMBOL(ptrace_notify); 1925 EXPORT_SYMBOL(send_sig); 1926 EXPORT_SYMBOL(send_sig_info); 1927 EXPORT_SYMBOL(sigprocmask); 1928 EXPORT_SYMBOL(block_all_signals); 1929 EXPORT_SYMBOL(unblock_all_signals); 1930 1931 1932 /* 1933 * System call entry points. 1934 */ 1935 1936 asmlinkage long sys_restart_syscall(void) 1937 { 1938 struct restart_block *restart = ¤t_thread_info()->restart_block; 1939 return restart->fn(restart); 1940 } 1941 1942 long do_no_restart_syscall(struct restart_block *param) 1943 { 1944 return -EINTR; 1945 } 1946 1947 /* 1948 * We don't need to get the kernel lock - this is all local to this 1949 * particular thread.. (and that's good, because this is _heavily_ 1950 * used by various programs) 1951 */ 1952 1953 /* 1954 * This is also useful for kernel threads that want to temporarily 1955 * (or permanently) block certain signals. 1956 * 1957 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 1958 * interface happily blocks "unblockable" signals like SIGKILL 1959 * and friends. 1960 */ 1961 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 1962 { 1963 int error; 1964 1965 spin_lock_irq(¤t->sighand->siglock); 1966 if (oldset) 1967 *oldset = current->blocked; 1968 1969 error = 0; 1970 switch (how) { 1971 case SIG_BLOCK: 1972 sigorsets(¤t->blocked, ¤t->blocked, set); 1973 break; 1974 case SIG_UNBLOCK: 1975 signandsets(¤t->blocked, ¤t->blocked, set); 1976 break; 1977 case SIG_SETMASK: 1978 current->blocked = *set; 1979 break; 1980 default: 1981 error = -EINVAL; 1982 } 1983 recalc_sigpending(); 1984 spin_unlock_irq(¤t->sighand->siglock); 1985 1986 return error; 1987 } 1988 1989 asmlinkage long 1990 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 1991 { 1992 int error = -EINVAL; 1993 sigset_t old_set, new_set; 1994 1995 /* XXX: Don't preclude handling different sized sigset_t's. */ 1996 if (sigsetsize != sizeof(sigset_t)) 1997 goto out; 1998 1999 if (set) { 2000 error = -EFAULT; 2001 if (copy_from_user(&new_set, set, sizeof(*set))) 2002 goto out; 2003 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2004 2005 error = sigprocmask(how, &new_set, &old_set); 2006 if (error) 2007 goto out; 2008 if (oset) 2009 goto set_old; 2010 } else if (oset) { 2011 spin_lock_irq(¤t->sighand->siglock); 2012 old_set = current->blocked; 2013 spin_unlock_irq(¤t->sighand->siglock); 2014 2015 set_old: 2016 error = -EFAULT; 2017 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2018 goto out; 2019 } 2020 error = 0; 2021 out: 2022 return error; 2023 } 2024 2025 long do_sigpending(void __user *set, unsigned long sigsetsize) 2026 { 2027 long error = -EINVAL; 2028 sigset_t pending; 2029 2030 if (sigsetsize > sizeof(sigset_t)) 2031 goto out; 2032 2033 spin_lock_irq(¤t->sighand->siglock); 2034 sigorsets(&pending, ¤t->pending.signal, 2035 ¤t->signal->shared_pending.signal); 2036 spin_unlock_irq(¤t->sighand->siglock); 2037 2038 /* Outside the lock because only this thread touches it. */ 2039 sigandsets(&pending, ¤t->blocked, &pending); 2040 2041 error = -EFAULT; 2042 if (!copy_to_user(set, &pending, sigsetsize)) 2043 error = 0; 2044 2045 out: 2046 return error; 2047 } 2048 2049 asmlinkage long 2050 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2051 { 2052 return do_sigpending(set, sigsetsize); 2053 } 2054 2055 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2056 2057 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2058 { 2059 int err; 2060 2061 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2062 return -EFAULT; 2063 if (from->si_code < 0) 2064 return __copy_to_user(to, from, sizeof(siginfo_t)) 2065 ? -EFAULT : 0; 2066 /* 2067 * If you change siginfo_t structure, please be sure 2068 * this code is fixed accordingly. 2069 * Please remember to update the signalfd_copyinfo() function 2070 * inside fs/signalfd.c too, in case siginfo_t changes. 2071 * It should never copy any pad contained in the structure 2072 * to avoid security leaks, but must copy the generic 2073 * 3 ints plus the relevant union member. 2074 */ 2075 err = __put_user(from->si_signo, &to->si_signo); 2076 err |= __put_user(from->si_errno, &to->si_errno); 2077 err |= __put_user((short)from->si_code, &to->si_code); 2078 switch (from->si_code & __SI_MASK) { 2079 case __SI_KILL: 2080 err |= __put_user(from->si_pid, &to->si_pid); 2081 err |= __put_user(from->si_uid, &to->si_uid); 2082 break; 2083 case __SI_TIMER: 2084 err |= __put_user(from->si_tid, &to->si_tid); 2085 err |= __put_user(from->si_overrun, &to->si_overrun); 2086 err |= __put_user(from->si_ptr, &to->si_ptr); 2087 break; 2088 case __SI_POLL: 2089 err |= __put_user(from->si_band, &to->si_band); 2090 err |= __put_user(from->si_fd, &to->si_fd); 2091 break; 2092 case __SI_FAULT: 2093 err |= __put_user(from->si_addr, &to->si_addr); 2094 #ifdef __ARCH_SI_TRAPNO 2095 err |= __put_user(from->si_trapno, &to->si_trapno); 2096 #endif 2097 break; 2098 case __SI_CHLD: 2099 err |= __put_user(from->si_pid, &to->si_pid); 2100 err |= __put_user(from->si_uid, &to->si_uid); 2101 err |= __put_user(from->si_status, &to->si_status); 2102 err |= __put_user(from->si_utime, &to->si_utime); 2103 err |= __put_user(from->si_stime, &to->si_stime); 2104 break; 2105 case __SI_RT: /* This is not generated by the kernel as of now. */ 2106 case __SI_MESGQ: /* But this is */ 2107 err |= __put_user(from->si_pid, &to->si_pid); 2108 err |= __put_user(from->si_uid, &to->si_uid); 2109 err |= __put_user(from->si_ptr, &to->si_ptr); 2110 break; 2111 default: /* this is just in case for now ... */ 2112 err |= __put_user(from->si_pid, &to->si_pid); 2113 err |= __put_user(from->si_uid, &to->si_uid); 2114 break; 2115 } 2116 return err; 2117 } 2118 2119 #endif 2120 2121 asmlinkage long 2122 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2123 siginfo_t __user *uinfo, 2124 const struct timespec __user *uts, 2125 size_t sigsetsize) 2126 { 2127 int ret, sig; 2128 sigset_t these; 2129 struct timespec ts; 2130 siginfo_t info; 2131 long timeout = 0; 2132 2133 /* XXX: Don't preclude handling different sized sigset_t's. */ 2134 if (sigsetsize != sizeof(sigset_t)) 2135 return -EINVAL; 2136 2137 if (copy_from_user(&these, uthese, sizeof(these))) 2138 return -EFAULT; 2139 2140 /* 2141 * Invert the set of allowed signals to get those we 2142 * want to block. 2143 */ 2144 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2145 signotset(&these); 2146 2147 if (uts) { 2148 if (copy_from_user(&ts, uts, sizeof(ts))) 2149 return -EFAULT; 2150 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2151 || ts.tv_sec < 0) 2152 return -EINVAL; 2153 } 2154 2155 spin_lock_irq(¤t->sighand->siglock); 2156 sig = dequeue_signal(current, &these, &info); 2157 if (!sig) { 2158 timeout = MAX_SCHEDULE_TIMEOUT; 2159 if (uts) 2160 timeout = (timespec_to_jiffies(&ts) 2161 + (ts.tv_sec || ts.tv_nsec)); 2162 2163 if (timeout) { 2164 /* None ready -- temporarily unblock those we're 2165 * interested while we are sleeping in so that we'll 2166 * be awakened when they arrive. */ 2167 current->real_blocked = current->blocked; 2168 sigandsets(¤t->blocked, ¤t->blocked, &these); 2169 recalc_sigpending(); 2170 spin_unlock_irq(¤t->sighand->siglock); 2171 2172 timeout = schedule_timeout_interruptible(timeout); 2173 2174 spin_lock_irq(¤t->sighand->siglock); 2175 sig = dequeue_signal(current, &these, &info); 2176 current->blocked = current->real_blocked; 2177 siginitset(¤t->real_blocked, 0); 2178 recalc_sigpending(); 2179 } 2180 } 2181 spin_unlock_irq(¤t->sighand->siglock); 2182 2183 if (sig) { 2184 ret = sig; 2185 if (uinfo) { 2186 if (copy_siginfo_to_user(uinfo, &info)) 2187 ret = -EFAULT; 2188 } 2189 } else { 2190 ret = -EAGAIN; 2191 if (timeout) 2192 ret = -EINTR; 2193 } 2194 2195 return ret; 2196 } 2197 2198 asmlinkage long 2199 sys_kill(int pid, int sig) 2200 { 2201 struct siginfo info; 2202 2203 info.si_signo = sig; 2204 info.si_errno = 0; 2205 info.si_code = SI_USER; 2206 info.si_pid = current->tgid; 2207 info.si_uid = current->uid; 2208 2209 return kill_something_info(sig, &info, pid); 2210 } 2211 2212 static int do_tkill(int tgid, int pid, int sig) 2213 { 2214 int error; 2215 struct siginfo info; 2216 struct task_struct *p; 2217 2218 error = -ESRCH; 2219 info.si_signo = sig; 2220 info.si_errno = 0; 2221 info.si_code = SI_TKILL; 2222 info.si_pid = current->tgid; 2223 info.si_uid = current->uid; 2224 2225 read_lock(&tasklist_lock); 2226 p = find_task_by_pid(pid); 2227 if (p && (tgid <= 0 || p->tgid == tgid)) { 2228 error = check_kill_permission(sig, &info, p); 2229 /* 2230 * The null signal is a permissions and process existence 2231 * probe. No signal is actually delivered. 2232 */ 2233 if (!error && sig && p->sighand) { 2234 spin_lock_irq(&p->sighand->siglock); 2235 handle_stop_signal(sig, p); 2236 error = specific_send_sig_info(sig, &info, p); 2237 spin_unlock_irq(&p->sighand->siglock); 2238 } 2239 } 2240 read_unlock(&tasklist_lock); 2241 2242 return error; 2243 } 2244 2245 /** 2246 * sys_tgkill - send signal to one specific thread 2247 * @tgid: the thread group ID of the thread 2248 * @pid: the PID of the thread 2249 * @sig: signal to be sent 2250 * 2251 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2252 * exists but it's not belonging to the target process anymore. This 2253 * method solves the problem of threads exiting and PIDs getting reused. 2254 */ 2255 asmlinkage long sys_tgkill(int tgid, int pid, int sig) 2256 { 2257 /* This is only valid for single tasks */ 2258 if (pid <= 0 || tgid <= 0) 2259 return -EINVAL; 2260 2261 return do_tkill(tgid, pid, sig); 2262 } 2263 2264 /* 2265 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2266 */ 2267 asmlinkage long 2268 sys_tkill(int pid, int sig) 2269 { 2270 /* This is only valid for single tasks */ 2271 if (pid <= 0) 2272 return -EINVAL; 2273 2274 return do_tkill(0, pid, sig); 2275 } 2276 2277 asmlinkage long 2278 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) 2279 { 2280 siginfo_t info; 2281 2282 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2283 return -EFAULT; 2284 2285 /* Not even root can pretend to send signals from the kernel. 2286 Nor can they impersonate a kill(), which adds source info. */ 2287 if (info.si_code >= 0) 2288 return -EPERM; 2289 info.si_signo = sig; 2290 2291 /* POSIX.1b doesn't mention process groups. */ 2292 return kill_proc_info(sig, &info, pid); 2293 } 2294 2295 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2296 { 2297 struct k_sigaction *k; 2298 sigset_t mask; 2299 2300 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2301 return -EINVAL; 2302 2303 k = ¤t->sighand->action[sig-1]; 2304 2305 spin_lock_irq(¤t->sighand->siglock); 2306 if (signal_pending(current)) { 2307 /* 2308 * If there might be a fatal signal pending on multiple 2309 * threads, make sure we take it before changing the action. 2310 */ 2311 spin_unlock_irq(¤t->sighand->siglock); 2312 return -ERESTARTNOINTR; 2313 } 2314 2315 if (oact) 2316 *oact = *k; 2317 2318 if (act) { 2319 sigdelsetmask(&act->sa.sa_mask, 2320 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2321 *k = *act; 2322 /* 2323 * POSIX 3.3.1.3: 2324 * "Setting a signal action to SIG_IGN for a signal that is 2325 * pending shall cause the pending signal to be discarded, 2326 * whether or not it is blocked." 2327 * 2328 * "Setting a signal action to SIG_DFL for a signal that is 2329 * pending and whose default action is to ignore the signal 2330 * (for example, SIGCHLD), shall cause the pending signal to 2331 * be discarded, whether or not it is blocked" 2332 */ 2333 if (act->sa.sa_handler == SIG_IGN || 2334 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) { 2335 struct task_struct *t = current; 2336 sigemptyset(&mask); 2337 sigaddset(&mask, sig); 2338 rm_from_queue_full(&mask, &t->signal->shared_pending); 2339 do { 2340 rm_from_queue_full(&mask, &t->pending); 2341 recalc_sigpending_and_wake(t); 2342 t = next_thread(t); 2343 } while (t != current); 2344 } 2345 } 2346 2347 spin_unlock_irq(¤t->sighand->siglock); 2348 return 0; 2349 } 2350 2351 int 2352 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2353 { 2354 stack_t oss; 2355 int error; 2356 2357 if (uoss) { 2358 oss.ss_sp = (void __user *) current->sas_ss_sp; 2359 oss.ss_size = current->sas_ss_size; 2360 oss.ss_flags = sas_ss_flags(sp); 2361 } 2362 2363 if (uss) { 2364 void __user *ss_sp; 2365 size_t ss_size; 2366 int ss_flags; 2367 2368 error = -EFAULT; 2369 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2370 || __get_user(ss_sp, &uss->ss_sp) 2371 || __get_user(ss_flags, &uss->ss_flags) 2372 || __get_user(ss_size, &uss->ss_size)) 2373 goto out; 2374 2375 error = -EPERM; 2376 if (on_sig_stack(sp)) 2377 goto out; 2378 2379 error = -EINVAL; 2380 /* 2381 * 2382 * Note - this code used to test ss_flags incorrectly 2383 * old code may have been written using ss_flags==0 2384 * to mean ss_flags==SS_ONSTACK (as this was the only 2385 * way that worked) - this fix preserves that older 2386 * mechanism 2387 */ 2388 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2389 goto out; 2390 2391 if (ss_flags == SS_DISABLE) { 2392 ss_size = 0; 2393 ss_sp = NULL; 2394 } else { 2395 error = -ENOMEM; 2396 if (ss_size < MINSIGSTKSZ) 2397 goto out; 2398 } 2399 2400 current->sas_ss_sp = (unsigned long) ss_sp; 2401 current->sas_ss_size = ss_size; 2402 } 2403 2404 if (uoss) { 2405 error = -EFAULT; 2406 if (copy_to_user(uoss, &oss, sizeof(oss))) 2407 goto out; 2408 } 2409 2410 error = 0; 2411 out: 2412 return error; 2413 } 2414 2415 #ifdef __ARCH_WANT_SYS_SIGPENDING 2416 2417 asmlinkage long 2418 sys_sigpending(old_sigset_t __user *set) 2419 { 2420 return do_sigpending(set, sizeof(*set)); 2421 } 2422 2423 #endif 2424 2425 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2426 /* Some platforms have their own version with special arguments others 2427 support only sys_rt_sigprocmask. */ 2428 2429 asmlinkage long 2430 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2431 { 2432 int error; 2433 old_sigset_t old_set, new_set; 2434 2435 if (set) { 2436 error = -EFAULT; 2437 if (copy_from_user(&new_set, set, sizeof(*set))) 2438 goto out; 2439 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2440 2441 spin_lock_irq(¤t->sighand->siglock); 2442 old_set = current->blocked.sig[0]; 2443 2444 error = 0; 2445 switch (how) { 2446 default: 2447 error = -EINVAL; 2448 break; 2449 case SIG_BLOCK: 2450 sigaddsetmask(¤t->blocked, new_set); 2451 break; 2452 case SIG_UNBLOCK: 2453 sigdelsetmask(¤t->blocked, new_set); 2454 break; 2455 case SIG_SETMASK: 2456 current->blocked.sig[0] = new_set; 2457 break; 2458 } 2459 2460 recalc_sigpending(); 2461 spin_unlock_irq(¤t->sighand->siglock); 2462 if (error) 2463 goto out; 2464 if (oset) 2465 goto set_old; 2466 } else if (oset) { 2467 old_set = current->blocked.sig[0]; 2468 set_old: 2469 error = -EFAULT; 2470 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2471 goto out; 2472 } 2473 error = 0; 2474 out: 2475 return error; 2476 } 2477 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2478 2479 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2480 asmlinkage long 2481 sys_rt_sigaction(int sig, 2482 const struct sigaction __user *act, 2483 struct sigaction __user *oact, 2484 size_t sigsetsize) 2485 { 2486 struct k_sigaction new_sa, old_sa; 2487 int ret = -EINVAL; 2488 2489 /* XXX: Don't preclude handling different sized sigset_t's. */ 2490 if (sigsetsize != sizeof(sigset_t)) 2491 goto out; 2492 2493 if (act) { 2494 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2495 return -EFAULT; 2496 } 2497 2498 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2499 2500 if (!ret && oact) { 2501 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2502 return -EFAULT; 2503 } 2504 out: 2505 return ret; 2506 } 2507 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2508 2509 #ifdef __ARCH_WANT_SYS_SGETMASK 2510 2511 /* 2512 * For backwards compatibility. Functionality superseded by sigprocmask. 2513 */ 2514 asmlinkage long 2515 sys_sgetmask(void) 2516 { 2517 /* SMP safe */ 2518 return current->blocked.sig[0]; 2519 } 2520 2521 asmlinkage long 2522 sys_ssetmask(int newmask) 2523 { 2524 int old; 2525 2526 spin_lock_irq(¤t->sighand->siglock); 2527 old = current->blocked.sig[0]; 2528 2529 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2530 sigmask(SIGSTOP))); 2531 recalc_sigpending(); 2532 spin_unlock_irq(¤t->sighand->siglock); 2533 2534 return old; 2535 } 2536 #endif /* __ARCH_WANT_SGETMASK */ 2537 2538 #ifdef __ARCH_WANT_SYS_SIGNAL 2539 /* 2540 * For backwards compatibility. Functionality superseded by sigaction. 2541 */ 2542 asmlinkage unsigned long 2543 sys_signal(int sig, __sighandler_t handler) 2544 { 2545 struct k_sigaction new_sa, old_sa; 2546 int ret; 2547 2548 new_sa.sa.sa_handler = handler; 2549 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2550 sigemptyset(&new_sa.sa.sa_mask); 2551 2552 ret = do_sigaction(sig, &new_sa, &old_sa); 2553 2554 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2555 } 2556 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2557 2558 #ifdef __ARCH_WANT_SYS_PAUSE 2559 2560 asmlinkage long 2561 sys_pause(void) 2562 { 2563 current->state = TASK_INTERRUPTIBLE; 2564 schedule(); 2565 return -ERESTARTNOHAND; 2566 } 2567 2568 #endif 2569 2570 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2571 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) 2572 { 2573 sigset_t newset; 2574 2575 /* XXX: Don't preclude handling different sized sigset_t's. */ 2576 if (sigsetsize != sizeof(sigset_t)) 2577 return -EINVAL; 2578 2579 if (copy_from_user(&newset, unewset, sizeof(newset))) 2580 return -EFAULT; 2581 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2582 2583 spin_lock_irq(¤t->sighand->siglock); 2584 current->saved_sigmask = current->blocked; 2585 current->blocked = newset; 2586 recalc_sigpending(); 2587 spin_unlock_irq(¤t->sighand->siglock); 2588 2589 current->state = TASK_INTERRUPTIBLE; 2590 schedule(); 2591 set_thread_flag(TIF_RESTORE_SIGMASK); 2592 return -ERESTARTNOHAND; 2593 } 2594 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2595 2596 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 2597 { 2598 return NULL; 2599 } 2600 2601 void __init signals_init(void) 2602 { 2603 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 2604 } 2605