1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/tracehook.h> 26 #include <linux/capability.h> 27 #include <linux/freezer.h> 28 #include <linux/pid_namespace.h> 29 #include <linux/nsproxy.h> 30 #include <trace/sched.h> 31 32 #include <asm/param.h> 33 #include <asm/uaccess.h> 34 #include <asm/unistd.h> 35 #include <asm/siginfo.h> 36 #include "audit.h" /* audit_signal_info() */ 37 38 /* 39 * SLAB caches for signal bits. 40 */ 41 42 static struct kmem_cache *sigqueue_cachep; 43 44 static void __user *sig_handler(struct task_struct *t, int sig) 45 { 46 return t->sighand->action[sig - 1].sa.sa_handler; 47 } 48 49 static int sig_handler_ignored(void __user *handler, int sig) 50 { 51 /* Is it explicitly or implicitly ignored? */ 52 return handler == SIG_IGN || 53 (handler == SIG_DFL && sig_kernel_ignore(sig)); 54 } 55 56 static int sig_ignored(struct task_struct *t, int sig) 57 { 58 void __user *handler; 59 60 /* 61 * Blocked signals are never ignored, since the 62 * signal handler may change by the time it is 63 * unblocked. 64 */ 65 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 66 return 0; 67 68 handler = sig_handler(t, sig); 69 if (!sig_handler_ignored(handler, sig)) 70 return 0; 71 72 /* 73 * Tracers may want to know about even ignored signals. 74 */ 75 return !tracehook_consider_ignored_signal(t, sig, handler); 76 } 77 78 /* 79 * Re-calculate pending state from the set of locally pending 80 * signals, globally pending signals, and blocked signals. 81 */ 82 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 83 { 84 unsigned long ready; 85 long i; 86 87 switch (_NSIG_WORDS) { 88 default: 89 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 90 ready |= signal->sig[i] &~ blocked->sig[i]; 91 break; 92 93 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 94 ready |= signal->sig[2] &~ blocked->sig[2]; 95 ready |= signal->sig[1] &~ blocked->sig[1]; 96 ready |= signal->sig[0] &~ blocked->sig[0]; 97 break; 98 99 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 100 ready |= signal->sig[0] &~ blocked->sig[0]; 101 break; 102 103 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 104 } 105 return ready != 0; 106 } 107 108 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 109 110 static int recalc_sigpending_tsk(struct task_struct *t) 111 { 112 if (t->signal->group_stop_count > 0 || 113 PENDING(&t->pending, &t->blocked) || 114 PENDING(&t->signal->shared_pending, &t->blocked)) { 115 set_tsk_thread_flag(t, TIF_SIGPENDING); 116 return 1; 117 } 118 /* 119 * We must never clear the flag in another thread, or in current 120 * when it's possible the current syscall is returning -ERESTART*. 121 * So we don't clear it here, and only callers who know they should do. 122 */ 123 return 0; 124 } 125 126 /* 127 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 128 * This is superfluous when called on current, the wakeup is a harmless no-op. 129 */ 130 void recalc_sigpending_and_wake(struct task_struct *t) 131 { 132 if (recalc_sigpending_tsk(t)) 133 signal_wake_up(t, 0); 134 } 135 136 void recalc_sigpending(void) 137 { 138 if (unlikely(tracehook_force_sigpending())) 139 set_thread_flag(TIF_SIGPENDING); 140 else if (!recalc_sigpending_tsk(current) && !freezing(current)) 141 clear_thread_flag(TIF_SIGPENDING); 142 143 } 144 145 /* Given the mask, find the first available signal that should be serviced. */ 146 147 int next_signal(struct sigpending *pending, sigset_t *mask) 148 { 149 unsigned long i, *s, *m, x; 150 int sig = 0; 151 152 s = pending->signal.sig; 153 m = mask->sig; 154 switch (_NSIG_WORDS) { 155 default: 156 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 157 if ((x = *s &~ *m) != 0) { 158 sig = ffz(~x) + i*_NSIG_BPW + 1; 159 break; 160 } 161 break; 162 163 case 2: if ((x = s[0] &~ m[0]) != 0) 164 sig = 1; 165 else if ((x = s[1] &~ m[1]) != 0) 166 sig = _NSIG_BPW + 1; 167 else 168 break; 169 sig += ffz(~x); 170 break; 171 172 case 1: if ((x = *s &~ *m) != 0) 173 sig = ffz(~x) + 1; 174 break; 175 } 176 177 return sig; 178 } 179 180 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 181 int override_rlimit) 182 { 183 struct sigqueue *q = NULL; 184 struct user_struct *user; 185 186 /* 187 * In order to avoid problems with "switch_user()", we want to make 188 * sure that the compiler doesn't re-load "t->user" 189 */ 190 user = t->user; 191 barrier(); 192 atomic_inc(&user->sigpending); 193 if (override_rlimit || 194 atomic_read(&user->sigpending) <= 195 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 196 q = kmem_cache_alloc(sigqueue_cachep, flags); 197 if (unlikely(q == NULL)) { 198 atomic_dec(&user->sigpending); 199 } else { 200 INIT_LIST_HEAD(&q->list); 201 q->flags = 0; 202 q->user = get_uid(user); 203 } 204 return(q); 205 } 206 207 static void __sigqueue_free(struct sigqueue *q) 208 { 209 if (q->flags & SIGQUEUE_PREALLOC) 210 return; 211 atomic_dec(&q->user->sigpending); 212 free_uid(q->user); 213 kmem_cache_free(sigqueue_cachep, q); 214 } 215 216 void flush_sigqueue(struct sigpending *queue) 217 { 218 struct sigqueue *q; 219 220 sigemptyset(&queue->signal); 221 while (!list_empty(&queue->list)) { 222 q = list_entry(queue->list.next, struct sigqueue , list); 223 list_del_init(&q->list); 224 __sigqueue_free(q); 225 } 226 } 227 228 /* 229 * Flush all pending signals for a task. 230 */ 231 void flush_signals(struct task_struct *t) 232 { 233 unsigned long flags; 234 235 spin_lock_irqsave(&t->sighand->siglock, flags); 236 clear_tsk_thread_flag(t, TIF_SIGPENDING); 237 flush_sigqueue(&t->pending); 238 flush_sigqueue(&t->signal->shared_pending); 239 spin_unlock_irqrestore(&t->sighand->siglock, flags); 240 } 241 242 static void __flush_itimer_signals(struct sigpending *pending) 243 { 244 sigset_t signal, retain; 245 struct sigqueue *q, *n; 246 247 signal = pending->signal; 248 sigemptyset(&retain); 249 250 list_for_each_entry_safe(q, n, &pending->list, list) { 251 int sig = q->info.si_signo; 252 253 if (likely(q->info.si_code != SI_TIMER)) { 254 sigaddset(&retain, sig); 255 } else { 256 sigdelset(&signal, sig); 257 list_del_init(&q->list); 258 __sigqueue_free(q); 259 } 260 } 261 262 sigorsets(&pending->signal, &signal, &retain); 263 } 264 265 void flush_itimer_signals(void) 266 { 267 struct task_struct *tsk = current; 268 unsigned long flags; 269 270 spin_lock_irqsave(&tsk->sighand->siglock, flags); 271 __flush_itimer_signals(&tsk->pending); 272 __flush_itimer_signals(&tsk->signal->shared_pending); 273 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 274 } 275 276 void ignore_signals(struct task_struct *t) 277 { 278 int i; 279 280 for (i = 0; i < _NSIG; ++i) 281 t->sighand->action[i].sa.sa_handler = SIG_IGN; 282 283 flush_signals(t); 284 } 285 286 /* 287 * Flush all handlers for a task. 288 */ 289 290 void 291 flush_signal_handlers(struct task_struct *t, int force_default) 292 { 293 int i; 294 struct k_sigaction *ka = &t->sighand->action[0]; 295 for (i = _NSIG ; i != 0 ; i--) { 296 if (force_default || ka->sa.sa_handler != SIG_IGN) 297 ka->sa.sa_handler = SIG_DFL; 298 ka->sa.sa_flags = 0; 299 sigemptyset(&ka->sa.sa_mask); 300 ka++; 301 } 302 } 303 304 int unhandled_signal(struct task_struct *tsk, int sig) 305 { 306 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 307 if (is_global_init(tsk)) 308 return 1; 309 if (handler != SIG_IGN && handler != SIG_DFL) 310 return 0; 311 return !tracehook_consider_fatal_signal(tsk, sig, handler); 312 } 313 314 315 /* Notify the system that a driver wants to block all signals for this 316 * process, and wants to be notified if any signals at all were to be 317 * sent/acted upon. If the notifier routine returns non-zero, then the 318 * signal will be acted upon after all. If the notifier routine returns 0, 319 * then then signal will be blocked. Only one block per process is 320 * allowed. priv is a pointer to private data that the notifier routine 321 * can use to determine if the signal should be blocked or not. */ 322 323 void 324 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 325 { 326 unsigned long flags; 327 328 spin_lock_irqsave(¤t->sighand->siglock, flags); 329 current->notifier_mask = mask; 330 current->notifier_data = priv; 331 current->notifier = notifier; 332 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 333 } 334 335 /* Notify the system that blocking has ended. */ 336 337 void 338 unblock_all_signals(void) 339 { 340 unsigned long flags; 341 342 spin_lock_irqsave(¤t->sighand->siglock, flags); 343 current->notifier = NULL; 344 current->notifier_data = NULL; 345 recalc_sigpending(); 346 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 347 } 348 349 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 350 { 351 struct sigqueue *q, *first = NULL; 352 353 /* 354 * Collect the siginfo appropriate to this signal. Check if 355 * there is another siginfo for the same signal. 356 */ 357 list_for_each_entry(q, &list->list, list) { 358 if (q->info.si_signo == sig) { 359 if (first) 360 goto still_pending; 361 first = q; 362 } 363 } 364 365 sigdelset(&list->signal, sig); 366 367 if (first) { 368 still_pending: 369 list_del_init(&first->list); 370 copy_siginfo(info, &first->info); 371 __sigqueue_free(first); 372 } else { 373 /* Ok, it wasn't in the queue. This must be 374 a fast-pathed signal or we must have been 375 out of queue space. So zero out the info. 376 */ 377 info->si_signo = sig; 378 info->si_errno = 0; 379 info->si_code = 0; 380 info->si_pid = 0; 381 info->si_uid = 0; 382 } 383 } 384 385 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 386 siginfo_t *info) 387 { 388 int sig = next_signal(pending, mask); 389 390 if (sig) { 391 if (current->notifier) { 392 if (sigismember(current->notifier_mask, sig)) { 393 if (!(current->notifier)(current->notifier_data)) { 394 clear_thread_flag(TIF_SIGPENDING); 395 return 0; 396 } 397 } 398 } 399 400 collect_signal(sig, pending, info); 401 } 402 403 return sig; 404 } 405 406 /* 407 * Dequeue a signal and return the element to the caller, which is 408 * expected to free it. 409 * 410 * All callers have to hold the siglock. 411 */ 412 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 413 { 414 int signr; 415 416 /* We only dequeue private signals from ourselves, we don't let 417 * signalfd steal them 418 */ 419 signr = __dequeue_signal(&tsk->pending, mask, info); 420 if (!signr) { 421 signr = __dequeue_signal(&tsk->signal->shared_pending, 422 mask, info); 423 /* 424 * itimer signal ? 425 * 426 * itimers are process shared and we restart periodic 427 * itimers in the signal delivery path to prevent DoS 428 * attacks in the high resolution timer case. This is 429 * compliant with the old way of self restarting 430 * itimers, as the SIGALRM is a legacy signal and only 431 * queued once. Changing the restart behaviour to 432 * restart the timer in the signal dequeue path is 433 * reducing the timer noise on heavy loaded !highres 434 * systems too. 435 */ 436 if (unlikely(signr == SIGALRM)) { 437 struct hrtimer *tmr = &tsk->signal->real_timer; 438 439 if (!hrtimer_is_queued(tmr) && 440 tsk->signal->it_real_incr.tv64 != 0) { 441 hrtimer_forward(tmr, tmr->base->get_time(), 442 tsk->signal->it_real_incr); 443 hrtimer_restart(tmr); 444 } 445 } 446 } 447 448 recalc_sigpending(); 449 if (!signr) 450 return 0; 451 452 if (unlikely(sig_kernel_stop(signr))) { 453 /* 454 * Set a marker that we have dequeued a stop signal. Our 455 * caller might release the siglock and then the pending 456 * stop signal it is about to process is no longer in the 457 * pending bitmasks, but must still be cleared by a SIGCONT 458 * (and overruled by a SIGKILL). So those cases clear this 459 * shared flag after we've set it. Note that this flag may 460 * remain set after the signal we return is ignored or 461 * handled. That doesn't matter because its only purpose 462 * is to alert stop-signal processing code when another 463 * processor has come along and cleared the flag. 464 */ 465 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 466 } 467 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 468 /* 469 * Release the siglock to ensure proper locking order 470 * of timer locks outside of siglocks. Note, we leave 471 * irqs disabled here, since the posix-timers code is 472 * about to disable them again anyway. 473 */ 474 spin_unlock(&tsk->sighand->siglock); 475 do_schedule_next_timer(info); 476 spin_lock(&tsk->sighand->siglock); 477 } 478 return signr; 479 } 480 481 /* 482 * Tell a process that it has a new active signal.. 483 * 484 * NOTE! we rely on the previous spin_lock to 485 * lock interrupts for us! We can only be called with 486 * "siglock" held, and the local interrupt must 487 * have been disabled when that got acquired! 488 * 489 * No need to set need_resched since signal event passing 490 * goes through ->blocked 491 */ 492 void signal_wake_up(struct task_struct *t, int resume) 493 { 494 unsigned int mask; 495 496 set_tsk_thread_flag(t, TIF_SIGPENDING); 497 498 /* 499 * For SIGKILL, we want to wake it up in the stopped/traced/killable 500 * case. We don't check t->state here because there is a race with it 501 * executing another processor and just now entering stopped state. 502 * By using wake_up_state, we ensure the process will wake up and 503 * handle its death signal. 504 */ 505 mask = TASK_INTERRUPTIBLE; 506 if (resume) 507 mask |= TASK_WAKEKILL; 508 if (!wake_up_state(t, mask)) 509 kick_process(t); 510 } 511 512 /* 513 * Remove signals in mask from the pending set and queue. 514 * Returns 1 if any signals were found. 515 * 516 * All callers must be holding the siglock. 517 * 518 * This version takes a sigset mask and looks at all signals, 519 * not just those in the first mask word. 520 */ 521 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 522 { 523 struct sigqueue *q, *n; 524 sigset_t m; 525 526 sigandsets(&m, mask, &s->signal); 527 if (sigisemptyset(&m)) 528 return 0; 529 530 signandsets(&s->signal, &s->signal, mask); 531 list_for_each_entry_safe(q, n, &s->list, list) { 532 if (sigismember(mask, q->info.si_signo)) { 533 list_del_init(&q->list); 534 __sigqueue_free(q); 535 } 536 } 537 return 1; 538 } 539 /* 540 * Remove signals in mask from the pending set and queue. 541 * Returns 1 if any signals were found. 542 * 543 * All callers must be holding the siglock. 544 */ 545 static int rm_from_queue(unsigned long mask, struct sigpending *s) 546 { 547 struct sigqueue *q, *n; 548 549 if (!sigtestsetmask(&s->signal, mask)) 550 return 0; 551 552 sigdelsetmask(&s->signal, mask); 553 list_for_each_entry_safe(q, n, &s->list, list) { 554 if (q->info.si_signo < SIGRTMIN && 555 (mask & sigmask(q->info.si_signo))) { 556 list_del_init(&q->list); 557 __sigqueue_free(q); 558 } 559 } 560 return 1; 561 } 562 563 /* 564 * Bad permissions for sending the signal 565 */ 566 static int check_kill_permission(int sig, struct siginfo *info, 567 struct task_struct *t) 568 { 569 struct pid *sid; 570 int error; 571 572 if (!valid_signal(sig)) 573 return -EINVAL; 574 575 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info))) 576 return 0; 577 578 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 579 if (error) 580 return error; 581 582 if ((current->euid ^ t->suid) && (current->euid ^ t->uid) && 583 (current->uid ^ t->suid) && (current->uid ^ t->uid) && 584 !capable(CAP_KILL)) { 585 switch (sig) { 586 case SIGCONT: 587 sid = task_session(t); 588 /* 589 * We don't return the error if sid == NULL. The 590 * task was unhashed, the caller must notice this. 591 */ 592 if (!sid || sid == task_session(current)) 593 break; 594 default: 595 return -EPERM; 596 } 597 } 598 599 return security_task_kill(t, info, sig, 0); 600 } 601 602 /* 603 * Handle magic process-wide effects of stop/continue signals. Unlike 604 * the signal actions, these happen immediately at signal-generation 605 * time regardless of blocking, ignoring, or handling. This does the 606 * actual continuing for SIGCONT, but not the actual stopping for stop 607 * signals. The process stop is done as a signal action for SIG_DFL. 608 * 609 * Returns true if the signal should be actually delivered, otherwise 610 * it should be dropped. 611 */ 612 static int prepare_signal(int sig, struct task_struct *p) 613 { 614 struct signal_struct *signal = p->signal; 615 struct task_struct *t; 616 617 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { 618 /* 619 * The process is in the middle of dying, nothing to do. 620 */ 621 } else if (sig_kernel_stop(sig)) { 622 /* 623 * This is a stop signal. Remove SIGCONT from all queues. 624 */ 625 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); 626 t = p; 627 do { 628 rm_from_queue(sigmask(SIGCONT), &t->pending); 629 } while_each_thread(p, t); 630 } else if (sig == SIGCONT) { 631 unsigned int why; 632 /* 633 * Remove all stop signals from all queues, 634 * and wake all threads. 635 */ 636 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); 637 t = p; 638 do { 639 unsigned int state; 640 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 641 /* 642 * If there is a handler for SIGCONT, we must make 643 * sure that no thread returns to user mode before 644 * we post the signal, in case it was the only 645 * thread eligible to run the signal handler--then 646 * it must not do anything between resuming and 647 * running the handler. With the TIF_SIGPENDING 648 * flag set, the thread will pause and acquire the 649 * siglock that we hold now and until we've queued 650 * the pending signal. 651 * 652 * Wake up the stopped thread _after_ setting 653 * TIF_SIGPENDING 654 */ 655 state = __TASK_STOPPED; 656 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 657 set_tsk_thread_flag(t, TIF_SIGPENDING); 658 state |= TASK_INTERRUPTIBLE; 659 } 660 wake_up_state(t, state); 661 } while_each_thread(p, t); 662 663 /* 664 * Notify the parent with CLD_CONTINUED if we were stopped. 665 * 666 * If we were in the middle of a group stop, we pretend it 667 * was already finished, and then continued. Since SIGCHLD 668 * doesn't queue we report only CLD_STOPPED, as if the next 669 * CLD_CONTINUED was dropped. 670 */ 671 why = 0; 672 if (signal->flags & SIGNAL_STOP_STOPPED) 673 why |= SIGNAL_CLD_CONTINUED; 674 else if (signal->group_stop_count) 675 why |= SIGNAL_CLD_STOPPED; 676 677 if (why) { 678 /* 679 * The first thread which returns from finish_stop() 680 * will take ->siglock, notice SIGNAL_CLD_MASK, and 681 * notify its parent. See get_signal_to_deliver(). 682 */ 683 signal->flags = why | SIGNAL_STOP_CONTINUED; 684 signal->group_stop_count = 0; 685 signal->group_exit_code = 0; 686 } else { 687 /* 688 * We are not stopped, but there could be a stop 689 * signal in the middle of being processed after 690 * being removed from the queue. Clear that too. 691 */ 692 signal->flags &= ~SIGNAL_STOP_DEQUEUED; 693 } 694 } 695 696 return !sig_ignored(p, sig); 697 } 698 699 /* 700 * Test if P wants to take SIG. After we've checked all threads with this, 701 * it's equivalent to finding no threads not blocking SIG. Any threads not 702 * blocking SIG were ruled out because they are not running and already 703 * have pending signals. Such threads will dequeue from the shared queue 704 * as soon as they're available, so putting the signal on the shared queue 705 * will be equivalent to sending it to one such thread. 706 */ 707 static inline int wants_signal(int sig, struct task_struct *p) 708 { 709 if (sigismember(&p->blocked, sig)) 710 return 0; 711 if (p->flags & PF_EXITING) 712 return 0; 713 if (sig == SIGKILL) 714 return 1; 715 if (task_is_stopped_or_traced(p)) 716 return 0; 717 return task_curr(p) || !signal_pending(p); 718 } 719 720 static void complete_signal(int sig, struct task_struct *p, int group) 721 { 722 struct signal_struct *signal = p->signal; 723 struct task_struct *t; 724 725 /* 726 * Now find a thread we can wake up to take the signal off the queue. 727 * 728 * If the main thread wants the signal, it gets first crack. 729 * Probably the least surprising to the average bear. 730 */ 731 if (wants_signal(sig, p)) 732 t = p; 733 else if (!group || thread_group_empty(p)) 734 /* 735 * There is just one thread and it does not need to be woken. 736 * It will dequeue unblocked signals before it runs again. 737 */ 738 return; 739 else { 740 /* 741 * Otherwise try to find a suitable thread. 742 */ 743 t = signal->curr_target; 744 while (!wants_signal(sig, t)) { 745 t = next_thread(t); 746 if (t == signal->curr_target) 747 /* 748 * No thread needs to be woken. 749 * Any eligible threads will see 750 * the signal in the queue soon. 751 */ 752 return; 753 } 754 signal->curr_target = t; 755 } 756 757 /* 758 * Found a killable thread. If the signal will be fatal, 759 * then start taking the whole group down immediately. 760 */ 761 if (sig_fatal(p, sig) && 762 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 763 !sigismember(&t->real_blocked, sig) && 764 (sig == SIGKILL || 765 !tracehook_consider_fatal_signal(t, sig, SIG_DFL))) { 766 /* 767 * This signal will be fatal to the whole group. 768 */ 769 if (!sig_kernel_coredump(sig)) { 770 /* 771 * Start a group exit and wake everybody up. 772 * This way we don't have other threads 773 * running and doing things after a slower 774 * thread has the fatal signal pending. 775 */ 776 signal->flags = SIGNAL_GROUP_EXIT; 777 signal->group_exit_code = sig; 778 signal->group_stop_count = 0; 779 t = p; 780 do { 781 sigaddset(&t->pending.signal, SIGKILL); 782 signal_wake_up(t, 1); 783 } while_each_thread(p, t); 784 return; 785 } 786 } 787 788 /* 789 * The signal is already in the shared-pending queue. 790 * Tell the chosen thread to wake up and dequeue it. 791 */ 792 signal_wake_up(t, sig == SIGKILL); 793 return; 794 } 795 796 static inline int legacy_queue(struct sigpending *signals, int sig) 797 { 798 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 799 } 800 801 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 802 int group) 803 { 804 struct sigpending *pending; 805 struct sigqueue *q; 806 807 trace_sched_signal_send(sig, t); 808 809 assert_spin_locked(&t->sighand->siglock); 810 if (!prepare_signal(sig, t)) 811 return 0; 812 813 pending = group ? &t->signal->shared_pending : &t->pending; 814 /* 815 * Short-circuit ignored signals and support queuing 816 * exactly one non-rt signal, so that we can get more 817 * detailed information about the cause of the signal. 818 */ 819 if (legacy_queue(pending, sig)) 820 return 0; 821 /* 822 * fast-pathed signals for kernel-internal things like SIGSTOP 823 * or SIGKILL. 824 */ 825 if (info == SEND_SIG_FORCED) 826 goto out_set; 827 828 /* Real-time signals must be queued if sent by sigqueue, or 829 some other real-time mechanism. It is implementation 830 defined whether kill() does so. We attempt to do so, on 831 the principle of least surprise, but since kill is not 832 allowed to fail with EAGAIN when low on memory we just 833 make sure at least one signal gets delivered and don't 834 pass on the info struct. */ 835 836 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 837 (is_si_special(info) || 838 info->si_code >= 0))); 839 if (q) { 840 list_add_tail(&q->list, &pending->list); 841 switch ((unsigned long) info) { 842 case (unsigned long) SEND_SIG_NOINFO: 843 q->info.si_signo = sig; 844 q->info.si_errno = 0; 845 q->info.si_code = SI_USER; 846 q->info.si_pid = task_pid_vnr(current); 847 q->info.si_uid = current->uid; 848 break; 849 case (unsigned long) SEND_SIG_PRIV: 850 q->info.si_signo = sig; 851 q->info.si_errno = 0; 852 q->info.si_code = SI_KERNEL; 853 q->info.si_pid = 0; 854 q->info.si_uid = 0; 855 break; 856 default: 857 copy_siginfo(&q->info, info); 858 break; 859 } 860 } else if (!is_si_special(info)) { 861 if (sig >= SIGRTMIN && info->si_code != SI_USER) 862 /* 863 * Queue overflow, abort. We may abort if the signal was rt 864 * and sent by user using something other than kill(). 865 */ 866 return -EAGAIN; 867 } 868 869 out_set: 870 signalfd_notify(t, sig); 871 sigaddset(&pending->signal, sig); 872 complete_signal(sig, t, group); 873 return 0; 874 } 875 876 int print_fatal_signals; 877 878 static void print_fatal_signal(struct pt_regs *regs, int signr) 879 { 880 printk("%s/%d: potentially unexpected fatal signal %d.\n", 881 current->comm, task_pid_nr(current), signr); 882 883 #if defined(__i386__) && !defined(__arch_um__) 884 printk("code at %08lx: ", regs->ip); 885 { 886 int i; 887 for (i = 0; i < 16; i++) { 888 unsigned char insn; 889 890 __get_user(insn, (unsigned char *)(regs->ip + i)); 891 printk("%02x ", insn); 892 } 893 } 894 #endif 895 printk("\n"); 896 show_regs(regs); 897 } 898 899 static int __init setup_print_fatal_signals(char *str) 900 { 901 get_option (&str, &print_fatal_signals); 902 903 return 1; 904 } 905 906 __setup("print-fatal-signals=", setup_print_fatal_signals); 907 908 int 909 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 910 { 911 return send_signal(sig, info, p, 1); 912 } 913 914 static int 915 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 916 { 917 return send_signal(sig, info, t, 0); 918 } 919 920 /* 921 * Force a signal that the process can't ignore: if necessary 922 * we unblock the signal and change any SIG_IGN to SIG_DFL. 923 * 924 * Note: If we unblock the signal, we always reset it to SIG_DFL, 925 * since we do not want to have a signal handler that was blocked 926 * be invoked when user space had explicitly blocked it. 927 * 928 * We don't want to have recursive SIGSEGV's etc, for example, 929 * that is why we also clear SIGNAL_UNKILLABLE. 930 */ 931 int 932 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 933 { 934 unsigned long int flags; 935 int ret, blocked, ignored; 936 struct k_sigaction *action; 937 938 spin_lock_irqsave(&t->sighand->siglock, flags); 939 action = &t->sighand->action[sig-1]; 940 ignored = action->sa.sa_handler == SIG_IGN; 941 blocked = sigismember(&t->blocked, sig); 942 if (blocked || ignored) { 943 action->sa.sa_handler = SIG_DFL; 944 if (blocked) { 945 sigdelset(&t->blocked, sig); 946 recalc_sigpending_and_wake(t); 947 } 948 } 949 if (action->sa.sa_handler == SIG_DFL) 950 t->signal->flags &= ~SIGNAL_UNKILLABLE; 951 ret = specific_send_sig_info(sig, info, t); 952 spin_unlock_irqrestore(&t->sighand->siglock, flags); 953 954 return ret; 955 } 956 957 void 958 force_sig_specific(int sig, struct task_struct *t) 959 { 960 force_sig_info(sig, SEND_SIG_FORCED, t); 961 } 962 963 /* 964 * Nuke all other threads in the group. 965 */ 966 void zap_other_threads(struct task_struct *p) 967 { 968 struct task_struct *t; 969 970 p->signal->group_stop_count = 0; 971 972 for (t = next_thread(p); t != p; t = next_thread(t)) { 973 /* 974 * Don't bother with already dead threads 975 */ 976 if (t->exit_state) 977 continue; 978 979 /* SIGKILL will be handled before any pending SIGSTOP */ 980 sigaddset(&t->pending.signal, SIGKILL); 981 signal_wake_up(t, 1); 982 } 983 } 984 985 int __fatal_signal_pending(struct task_struct *tsk) 986 { 987 return sigismember(&tsk->pending.signal, SIGKILL); 988 } 989 EXPORT_SYMBOL(__fatal_signal_pending); 990 991 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 992 { 993 struct sighand_struct *sighand; 994 995 rcu_read_lock(); 996 for (;;) { 997 sighand = rcu_dereference(tsk->sighand); 998 if (unlikely(sighand == NULL)) 999 break; 1000 1001 spin_lock_irqsave(&sighand->siglock, *flags); 1002 if (likely(sighand == tsk->sighand)) 1003 break; 1004 spin_unlock_irqrestore(&sighand->siglock, *flags); 1005 } 1006 rcu_read_unlock(); 1007 1008 return sighand; 1009 } 1010 1011 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1012 { 1013 unsigned long flags; 1014 int ret; 1015 1016 ret = check_kill_permission(sig, info, p); 1017 1018 if (!ret && sig) { 1019 ret = -ESRCH; 1020 if (lock_task_sighand(p, &flags)) { 1021 ret = __group_send_sig_info(sig, info, p); 1022 unlock_task_sighand(p, &flags); 1023 } 1024 } 1025 1026 return ret; 1027 } 1028 1029 /* 1030 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1031 * control characters do (^C, ^Z etc) 1032 */ 1033 1034 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1035 { 1036 struct task_struct *p = NULL; 1037 int retval, success; 1038 1039 success = 0; 1040 retval = -ESRCH; 1041 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1042 int err = group_send_sig_info(sig, info, p); 1043 success |= !err; 1044 retval = err; 1045 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1046 return success ? 0 : retval; 1047 } 1048 1049 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1050 { 1051 int error = -ESRCH; 1052 struct task_struct *p; 1053 1054 rcu_read_lock(); 1055 retry: 1056 p = pid_task(pid, PIDTYPE_PID); 1057 if (p) { 1058 error = group_send_sig_info(sig, info, p); 1059 if (unlikely(error == -ESRCH)) 1060 /* 1061 * The task was unhashed in between, try again. 1062 * If it is dead, pid_task() will return NULL, 1063 * if we race with de_thread() it will find the 1064 * new leader. 1065 */ 1066 goto retry; 1067 } 1068 rcu_read_unlock(); 1069 1070 return error; 1071 } 1072 1073 int 1074 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1075 { 1076 int error; 1077 rcu_read_lock(); 1078 error = kill_pid_info(sig, info, find_vpid(pid)); 1079 rcu_read_unlock(); 1080 return error; 1081 } 1082 1083 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1084 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, 1085 uid_t uid, uid_t euid, u32 secid) 1086 { 1087 int ret = -EINVAL; 1088 struct task_struct *p; 1089 1090 if (!valid_signal(sig)) 1091 return ret; 1092 1093 read_lock(&tasklist_lock); 1094 p = pid_task(pid, PIDTYPE_PID); 1095 if (!p) { 1096 ret = -ESRCH; 1097 goto out_unlock; 1098 } 1099 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 1100 && (euid != p->suid) && (euid != p->uid) 1101 && (uid != p->suid) && (uid != p->uid)) { 1102 ret = -EPERM; 1103 goto out_unlock; 1104 } 1105 ret = security_task_kill(p, info, sig, secid); 1106 if (ret) 1107 goto out_unlock; 1108 if (sig && p->sighand) { 1109 unsigned long flags; 1110 spin_lock_irqsave(&p->sighand->siglock, flags); 1111 ret = __group_send_sig_info(sig, info, p); 1112 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1113 } 1114 out_unlock: 1115 read_unlock(&tasklist_lock); 1116 return ret; 1117 } 1118 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); 1119 1120 /* 1121 * kill_something_info() interprets pid in interesting ways just like kill(2). 1122 * 1123 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1124 * is probably wrong. Should make it like BSD or SYSV. 1125 */ 1126 1127 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1128 { 1129 int ret; 1130 1131 if (pid > 0) { 1132 rcu_read_lock(); 1133 ret = kill_pid_info(sig, info, find_vpid(pid)); 1134 rcu_read_unlock(); 1135 return ret; 1136 } 1137 1138 read_lock(&tasklist_lock); 1139 if (pid != -1) { 1140 ret = __kill_pgrp_info(sig, info, 1141 pid ? find_vpid(-pid) : task_pgrp(current)); 1142 } else { 1143 int retval = 0, count = 0; 1144 struct task_struct * p; 1145 1146 for_each_process(p) { 1147 if (p->pid > 1 && !same_thread_group(p, current)) { 1148 int err = group_send_sig_info(sig, info, p); 1149 ++count; 1150 if (err != -EPERM) 1151 retval = err; 1152 } 1153 } 1154 ret = count ? retval : -ESRCH; 1155 } 1156 read_unlock(&tasklist_lock); 1157 1158 return ret; 1159 } 1160 1161 /* 1162 * These are for backward compatibility with the rest of the kernel source. 1163 */ 1164 1165 /* 1166 * The caller must ensure the task can't exit. 1167 */ 1168 int 1169 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1170 { 1171 int ret; 1172 unsigned long flags; 1173 1174 /* 1175 * Make sure legacy kernel users don't send in bad values 1176 * (normal paths check this in check_kill_permission). 1177 */ 1178 if (!valid_signal(sig)) 1179 return -EINVAL; 1180 1181 spin_lock_irqsave(&p->sighand->siglock, flags); 1182 ret = specific_send_sig_info(sig, info, p); 1183 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1184 return ret; 1185 } 1186 1187 #define __si_special(priv) \ 1188 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1189 1190 int 1191 send_sig(int sig, struct task_struct *p, int priv) 1192 { 1193 return send_sig_info(sig, __si_special(priv), p); 1194 } 1195 1196 void 1197 force_sig(int sig, struct task_struct *p) 1198 { 1199 force_sig_info(sig, SEND_SIG_PRIV, p); 1200 } 1201 1202 /* 1203 * When things go south during signal handling, we 1204 * will force a SIGSEGV. And if the signal that caused 1205 * the problem was already a SIGSEGV, we'll want to 1206 * make sure we don't even try to deliver the signal.. 1207 */ 1208 int 1209 force_sigsegv(int sig, struct task_struct *p) 1210 { 1211 if (sig == SIGSEGV) { 1212 unsigned long flags; 1213 spin_lock_irqsave(&p->sighand->siglock, flags); 1214 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1215 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1216 } 1217 force_sig(SIGSEGV, p); 1218 return 0; 1219 } 1220 1221 int kill_pgrp(struct pid *pid, int sig, int priv) 1222 { 1223 int ret; 1224 1225 read_lock(&tasklist_lock); 1226 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1227 read_unlock(&tasklist_lock); 1228 1229 return ret; 1230 } 1231 EXPORT_SYMBOL(kill_pgrp); 1232 1233 int kill_pid(struct pid *pid, int sig, int priv) 1234 { 1235 return kill_pid_info(sig, __si_special(priv), pid); 1236 } 1237 EXPORT_SYMBOL(kill_pid); 1238 1239 /* 1240 * These functions support sending signals using preallocated sigqueue 1241 * structures. This is needed "because realtime applications cannot 1242 * afford to lose notifications of asynchronous events, like timer 1243 * expirations or I/O completions". In the case of Posix Timers 1244 * we allocate the sigqueue structure from the timer_create. If this 1245 * allocation fails we are able to report the failure to the application 1246 * with an EAGAIN error. 1247 */ 1248 1249 struct sigqueue *sigqueue_alloc(void) 1250 { 1251 struct sigqueue *q; 1252 1253 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1254 q->flags |= SIGQUEUE_PREALLOC; 1255 return(q); 1256 } 1257 1258 void sigqueue_free(struct sigqueue *q) 1259 { 1260 unsigned long flags; 1261 spinlock_t *lock = ¤t->sighand->siglock; 1262 1263 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1264 /* 1265 * We must hold ->siglock while testing q->list 1266 * to serialize with collect_signal() or with 1267 * __exit_signal()->flush_sigqueue(). 1268 */ 1269 spin_lock_irqsave(lock, flags); 1270 q->flags &= ~SIGQUEUE_PREALLOC; 1271 /* 1272 * If it is queued it will be freed when dequeued, 1273 * like the "regular" sigqueue. 1274 */ 1275 if (!list_empty(&q->list)) 1276 q = NULL; 1277 spin_unlock_irqrestore(lock, flags); 1278 1279 if (q) 1280 __sigqueue_free(q); 1281 } 1282 1283 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1284 { 1285 int sig = q->info.si_signo; 1286 struct sigpending *pending; 1287 unsigned long flags; 1288 int ret; 1289 1290 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1291 1292 ret = -1; 1293 if (!likely(lock_task_sighand(t, &flags))) 1294 goto ret; 1295 1296 ret = 1; /* the signal is ignored */ 1297 if (!prepare_signal(sig, t)) 1298 goto out; 1299 1300 ret = 0; 1301 if (unlikely(!list_empty(&q->list))) { 1302 /* 1303 * If an SI_TIMER entry is already queue just increment 1304 * the overrun count. 1305 */ 1306 BUG_ON(q->info.si_code != SI_TIMER); 1307 q->info.si_overrun++; 1308 goto out; 1309 } 1310 q->info.si_overrun = 0; 1311 1312 signalfd_notify(t, sig); 1313 pending = group ? &t->signal->shared_pending : &t->pending; 1314 list_add_tail(&q->list, &pending->list); 1315 sigaddset(&pending->signal, sig); 1316 complete_signal(sig, t, group); 1317 out: 1318 unlock_task_sighand(t, &flags); 1319 ret: 1320 return ret; 1321 } 1322 1323 /* 1324 * Wake up any threads in the parent blocked in wait* syscalls. 1325 */ 1326 static inline void __wake_up_parent(struct task_struct *p, 1327 struct task_struct *parent) 1328 { 1329 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1330 } 1331 1332 /* 1333 * Let a parent know about the death of a child. 1334 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1335 * 1336 * Returns -1 if our parent ignored us and so we've switched to 1337 * self-reaping, or else @sig. 1338 */ 1339 int do_notify_parent(struct task_struct *tsk, int sig) 1340 { 1341 struct siginfo info; 1342 unsigned long flags; 1343 struct sighand_struct *psig; 1344 struct task_cputime cputime; 1345 int ret = sig; 1346 1347 BUG_ON(sig == -1); 1348 1349 /* do_notify_parent_cldstop should have been called instead. */ 1350 BUG_ON(task_is_stopped_or_traced(tsk)); 1351 1352 BUG_ON(!tsk->ptrace && 1353 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1354 1355 info.si_signo = sig; 1356 info.si_errno = 0; 1357 /* 1358 * we are under tasklist_lock here so our parent is tied to 1359 * us and cannot exit and release its namespace. 1360 * 1361 * the only it can is to switch its nsproxy with sys_unshare, 1362 * bu uncharing pid namespaces is not allowed, so we'll always 1363 * see relevant namespace 1364 * 1365 * write_lock() currently calls preempt_disable() which is the 1366 * same as rcu_read_lock(), but according to Oleg, this is not 1367 * correct to rely on this 1368 */ 1369 rcu_read_lock(); 1370 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); 1371 rcu_read_unlock(); 1372 1373 info.si_uid = tsk->uid; 1374 1375 thread_group_cputime(tsk, &cputime); 1376 info.si_utime = cputime_to_jiffies(cputime.utime); 1377 info.si_stime = cputime_to_jiffies(cputime.stime); 1378 1379 info.si_status = tsk->exit_code & 0x7f; 1380 if (tsk->exit_code & 0x80) 1381 info.si_code = CLD_DUMPED; 1382 else if (tsk->exit_code & 0x7f) 1383 info.si_code = CLD_KILLED; 1384 else { 1385 info.si_code = CLD_EXITED; 1386 info.si_status = tsk->exit_code >> 8; 1387 } 1388 1389 psig = tsk->parent->sighand; 1390 spin_lock_irqsave(&psig->siglock, flags); 1391 if (!tsk->ptrace && sig == SIGCHLD && 1392 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1393 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1394 /* 1395 * We are exiting and our parent doesn't care. POSIX.1 1396 * defines special semantics for setting SIGCHLD to SIG_IGN 1397 * or setting the SA_NOCLDWAIT flag: we should be reaped 1398 * automatically and not left for our parent's wait4 call. 1399 * Rather than having the parent do it as a magic kind of 1400 * signal handler, we just set this to tell do_exit that we 1401 * can be cleaned up without becoming a zombie. Note that 1402 * we still call __wake_up_parent in this case, because a 1403 * blocked sys_wait4 might now return -ECHILD. 1404 * 1405 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1406 * is implementation-defined: we do (if you don't want 1407 * it, just use SIG_IGN instead). 1408 */ 1409 ret = tsk->exit_signal = -1; 1410 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1411 sig = -1; 1412 } 1413 if (valid_signal(sig) && sig > 0) 1414 __group_send_sig_info(sig, &info, tsk->parent); 1415 __wake_up_parent(tsk, tsk->parent); 1416 spin_unlock_irqrestore(&psig->siglock, flags); 1417 1418 return ret; 1419 } 1420 1421 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1422 { 1423 struct siginfo info; 1424 unsigned long flags; 1425 struct task_struct *parent; 1426 struct sighand_struct *sighand; 1427 1428 if (tsk->ptrace & PT_PTRACED) 1429 parent = tsk->parent; 1430 else { 1431 tsk = tsk->group_leader; 1432 parent = tsk->real_parent; 1433 } 1434 1435 info.si_signo = SIGCHLD; 1436 info.si_errno = 0; 1437 /* 1438 * see comment in do_notify_parent() abot the following 3 lines 1439 */ 1440 rcu_read_lock(); 1441 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); 1442 rcu_read_unlock(); 1443 1444 info.si_uid = tsk->uid; 1445 1446 info.si_utime = cputime_to_clock_t(tsk->utime); 1447 info.si_stime = cputime_to_clock_t(tsk->stime); 1448 1449 info.si_code = why; 1450 switch (why) { 1451 case CLD_CONTINUED: 1452 info.si_status = SIGCONT; 1453 break; 1454 case CLD_STOPPED: 1455 info.si_status = tsk->signal->group_exit_code & 0x7f; 1456 break; 1457 case CLD_TRAPPED: 1458 info.si_status = tsk->exit_code & 0x7f; 1459 break; 1460 default: 1461 BUG(); 1462 } 1463 1464 sighand = parent->sighand; 1465 spin_lock_irqsave(&sighand->siglock, flags); 1466 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1467 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1468 __group_send_sig_info(SIGCHLD, &info, parent); 1469 /* 1470 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1471 */ 1472 __wake_up_parent(tsk, parent); 1473 spin_unlock_irqrestore(&sighand->siglock, flags); 1474 } 1475 1476 static inline int may_ptrace_stop(void) 1477 { 1478 if (!likely(current->ptrace & PT_PTRACED)) 1479 return 0; 1480 /* 1481 * Are we in the middle of do_coredump? 1482 * If so and our tracer is also part of the coredump stopping 1483 * is a deadlock situation, and pointless because our tracer 1484 * is dead so don't allow us to stop. 1485 * If SIGKILL was already sent before the caller unlocked 1486 * ->siglock we must see ->core_state != NULL. Otherwise it 1487 * is safe to enter schedule(). 1488 */ 1489 if (unlikely(current->mm->core_state) && 1490 unlikely(current->mm == current->parent->mm)) 1491 return 0; 1492 1493 return 1; 1494 } 1495 1496 /* 1497 * Return nonzero if there is a SIGKILL that should be waking us up. 1498 * Called with the siglock held. 1499 */ 1500 static int sigkill_pending(struct task_struct *tsk) 1501 { 1502 return sigismember(&tsk->pending.signal, SIGKILL) || 1503 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1504 } 1505 1506 /* 1507 * This must be called with current->sighand->siglock held. 1508 * 1509 * This should be the path for all ptrace stops. 1510 * We always set current->last_siginfo while stopped here. 1511 * That makes it a way to test a stopped process for 1512 * being ptrace-stopped vs being job-control-stopped. 1513 * 1514 * If we actually decide not to stop at all because the tracer 1515 * is gone, we keep current->exit_code unless clear_code. 1516 */ 1517 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info) 1518 { 1519 if (arch_ptrace_stop_needed(exit_code, info)) { 1520 /* 1521 * The arch code has something special to do before a 1522 * ptrace stop. This is allowed to block, e.g. for faults 1523 * on user stack pages. We can't keep the siglock while 1524 * calling arch_ptrace_stop, so we must release it now. 1525 * To preserve proper semantics, we must do this before 1526 * any signal bookkeeping like checking group_stop_count. 1527 * Meanwhile, a SIGKILL could come in before we retake the 1528 * siglock. That must prevent us from sleeping in TASK_TRACED. 1529 * So after regaining the lock, we must check for SIGKILL. 1530 */ 1531 spin_unlock_irq(¤t->sighand->siglock); 1532 arch_ptrace_stop(exit_code, info); 1533 spin_lock_irq(¤t->sighand->siglock); 1534 if (sigkill_pending(current)) 1535 return; 1536 } 1537 1538 /* 1539 * If there is a group stop in progress, 1540 * we must participate in the bookkeeping. 1541 */ 1542 if (current->signal->group_stop_count > 0) 1543 --current->signal->group_stop_count; 1544 1545 current->last_siginfo = info; 1546 current->exit_code = exit_code; 1547 1548 /* Let the debugger run. */ 1549 __set_current_state(TASK_TRACED); 1550 spin_unlock_irq(¤t->sighand->siglock); 1551 read_lock(&tasklist_lock); 1552 if (may_ptrace_stop()) { 1553 do_notify_parent_cldstop(current, CLD_TRAPPED); 1554 read_unlock(&tasklist_lock); 1555 schedule(); 1556 } else { 1557 /* 1558 * By the time we got the lock, our tracer went away. 1559 * Don't drop the lock yet, another tracer may come. 1560 */ 1561 __set_current_state(TASK_RUNNING); 1562 if (clear_code) 1563 current->exit_code = 0; 1564 read_unlock(&tasklist_lock); 1565 } 1566 1567 /* 1568 * While in TASK_TRACED, we were considered "frozen enough". 1569 * Now that we woke up, it's crucial if we're supposed to be 1570 * frozen that we freeze now before running anything substantial. 1571 */ 1572 try_to_freeze(); 1573 1574 /* 1575 * We are back. Now reacquire the siglock before touching 1576 * last_siginfo, so that we are sure to have synchronized with 1577 * any signal-sending on another CPU that wants to examine it. 1578 */ 1579 spin_lock_irq(¤t->sighand->siglock); 1580 current->last_siginfo = NULL; 1581 1582 /* 1583 * Queued signals ignored us while we were stopped for tracing. 1584 * So check for any that we should take before resuming user mode. 1585 * This sets TIF_SIGPENDING, but never clears it. 1586 */ 1587 recalc_sigpending_tsk(current); 1588 } 1589 1590 void ptrace_notify(int exit_code) 1591 { 1592 siginfo_t info; 1593 1594 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1595 1596 memset(&info, 0, sizeof info); 1597 info.si_signo = SIGTRAP; 1598 info.si_code = exit_code; 1599 info.si_pid = task_pid_vnr(current); 1600 info.si_uid = current->uid; 1601 1602 /* Let the debugger run. */ 1603 spin_lock_irq(¤t->sighand->siglock); 1604 ptrace_stop(exit_code, 1, &info); 1605 spin_unlock_irq(¤t->sighand->siglock); 1606 } 1607 1608 static void 1609 finish_stop(int stop_count) 1610 { 1611 /* 1612 * If there are no other threads in the group, or if there is 1613 * a group stop in progress and we are the last to stop, 1614 * report to the parent. When ptraced, every thread reports itself. 1615 */ 1616 if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) { 1617 read_lock(&tasklist_lock); 1618 do_notify_parent_cldstop(current, CLD_STOPPED); 1619 read_unlock(&tasklist_lock); 1620 } 1621 1622 do { 1623 schedule(); 1624 } while (try_to_freeze()); 1625 /* 1626 * Now we don't run again until continued. 1627 */ 1628 current->exit_code = 0; 1629 } 1630 1631 /* 1632 * This performs the stopping for SIGSTOP and other stop signals. 1633 * We have to stop all threads in the thread group. 1634 * Returns nonzero if we've actually stopped and released the siglock. 1635 * Returns zero if we didn't stop and still hold the siglock. 1636 */ 1637 static int do_signal_stop(int signr) 1638 { 1639 struct signal_struct *sig = current->signal; 1640 int stop_count; 1641 1642 if (sig->group_stop_count > 0) { 1643 /* 1644 * There is a group stop in progress. We don't need to 1645 * start another one. 1646 */ 1647 stop_count = --sig->group_stop_count; 1648 } else { 1649 struct task_struct *t; 1650 1651 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || 1652 unlikely(signal_group_exit(sig))) 1653 return 0; 1654 /* 1655 * There is no group stop already in progress. 1656 * We must initiate one now. 1657 */ 1658 sig->group_exit_code = signr; 1659 1660 stop_count = 0; 1661 for (t = next_thread(current); t != current; t = next_thread(t)) 1662 /* 1663 * Setting state to TASK_STOPPED for a group 1664 * stop is always done with the siglock held, 1665 * so this check has no races. 1666 */ 1667 if (!(t->flags & PF_EXITING) && 1668 !task_is_stopped_or_traced(t)) { 1669 stop_count++; 1670 signal_wake_up(t, 0); 1671 } 1672 sig->group_stop_count = stop_count; 1673 } 1674 1675 if (stop_count == 0) 1676 sig->flags = SIGNAL_STOP_STOPPED; 1677 current->exit_code = sig->group_exit_code; 1678 __set_current_state(TASK_STOPPED); 1679 1680 spin_unlock_irq(¤t->sighand->siglock); 1681 finish_stop(stop_count); 1682 return 1; 1683 } 1684 1685 static int ptrace_signal(int signr, siginfo_t *info, 1686 struct pt_regs *regs, void *cookie) 1687 { 1688 if (!(current->ptrace & PT_PTRACED)) 1689 return signr; 1690 1691 ptrace_signal_deliver(regs, cookie); 1692 1693 /* Let the debugger run. */ 1694 ptrace_stop(signr, 0, info); 1695 1696 /* We're back. Did the debugger cancel the sig? */ 1697 signr = current->exit_code; 1698 if (signr == 0) 1699 return signr; 1700 1701 current->exit_code = 0; 1702 1703 /* Update the siginfo structure if the signal has 1704 changed. If the debugger wanted something 1705 specific in the siginfo structure then it should 1706 have updated *info via PTRACE_SETSIGINFO. */ 1707 if (signr != info->si_signo) { 1708 info->si_signo = signr; 1709 info->si_errno = 0; 1710 info->si_code = SI_USER; 1711 info->si_pid = task_pid_vnr(current->parent); 1712 info->si_uid = current->parent->uid; 1713 } 1714 1715 /* If the (new) signal is now blocked, requeue it. */ 1716 if (sigismember(¤t->blocked, signr)) { 1717 specific_send_sig_info(signr, info, current); 1718 signr = 0; 1719 } 1720 1721 return signr; 1722 } 1723 1724 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1725 struct pt_regs *regs, void *cookie) 1726 { 1727 struct sighand_struct *sighand = current->sighand; 1728 struct signal_struct *signal = current->signal; 1729 int signr; 1730 1731 relock: 1732 /* 1733 * We'll jump back here after any time we were stopped in TASK_STOPPED. 1734 * While in TASK_STOPPED, we were considered "frozen enough". 1735 * Now that we woke up, it's crucial if we're supposed to be 1736 * frozen that we freeze now before running anything substantial. 1737 */ 1738 try_to_freeze(); 1739 1740 spin_lock_irq(&sighand->siglock); 1741 /* 1742 * Every stopped thread goes here after wakeup. Check to see if 1743 * we should notify the parent, prepare_signal(SIGCONT) encodes 1744 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 1745 */ 1746 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 1747 int why = (signal->flags & SIGNAL_STOP_CONTINUED) 1748 ? CLD_CONTINUED : CLD_STOPPED; 1749 signal->flags &= ~SIGNAL_CLD_MASK; 1750 spin_unlock_irq(&sighand->siglock); 1751 1752 if (unlikely(!tracehook_notify_jctl(1, why))) 1753 goto relock; 1754 1755 read_lock(&tasklist_lock); 1756 do_notify_parent_cldstop(current->group_leader, why); 1757 read_unlock(&tasklist_lock); 1758 goto relock; 1759 } 1760 1761 for (;;) { 1762 struct k_sigaction *ka; 1763 1764 if (unlikely(signal->group_stop_count > 0) && 1765 do_signal_stop(0)) 1766 goto relock; 1767 1768 /* 1769 * Tracing can induce an artifical signal and choose sigaction. 1770 * The return value in @signr determines the default action, 1771 * but @info->si_signo is the signal number we will report. 1772 */ 1773 signr = tracehook_get_signal(current, regs, info, return_ka); 1774 if (unlikely(signr < 0)) 1775 goto relock; 1776 if (unlikely(signr != 0)) 1777 ka = return_ka; 1778 else { 1779 signr = dequeue_signal(current, ¤t->blocked, 1780 info); 1781 1782 if (!signr) 1783 break; /* will return 0 */ 1784 1785 if (signr != SIGKILL) { 1786 signr = ptrace_signal(signr, info, 1787 regs, cookie); 1788 if (!signr) 1789 continue; 1790 } 1791 1792 ka = &sighand->action[signr-1]; 1793 } 1794 1795 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1796 continue; 1797 if (ka->sa.sa_handler != SIG_DFL) { 1798 /* Run the handler. */ 1799 *return_ka = *ka; 1800 1801 if (ka->sa.sa_flags & SA_ONESHOT) 1802 ka->sa.sa_handler = SIG_DFL; 1803 1804 break; /* will return non-zero "signr" value */ 1805 } 1806 1807 /* 1808 * Now we are doing the default action for this signal. 1809 */ 1810 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1811 continue; 1812 1813 /* 1814 * Global init gets no signals it doesn't want. 1815 */ 1816 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 1817 !signal_group_exit(signal)) 1818 continue; 1819 1820 if (sig_kernel_stop(signr)) { 1821 /* 1822 * The default action is to stop all threads in 1823 * the thread group. The job control signals 1824 * do nothing in an orphaned pgrp, but SIGSTOP 1825 * always works. Note that siglock needs to be 1826 * dropped during the call to is_orphaned_pgrp() 1827 * because of lock ordering with tasklist_lock. 1828 * This allows an intervening SIGCONT to be posted. 1829 * We need to check for that and bail out if necessary. 1830 */ 1831 if (signr != SIGSTOP) { 1832 spin_unlock_irq(&sighand->siglock); 1833 1834 /* signals can be posted during this window */ 1835 1836 if (is_current_pgrp_orphaned()) 1837 goto relock; 1838 1839 spin_lock_irq(&sighand->siglock); 1840 } 1841 1842 if (likely(do_signal_stop(info->si_signo))) { 1843 /* It released the siglock. */ 1844 goto relock; 1845 } 1846 1847 /* 1848 * We didn't actually stop, due to a race 1849 * with SIGCONT or something like that. 1850 */ 1851 continue; 1852 } 1853 1854 spin_unlock_irq(&sighand->siglock); 1855 1856 /* 1857 * Anything else is fatal, maybe with a core dump. 1858 */ 1859 current->flags |= PF_SIGNALED; 1860 1861 if (sig_kernel_coredump(signr)) { 1862 if (print_fatal_signals) 1863 print_fatal_signal(regs, info->si_signo); 1864 /* 1865 * If it was able to dump core, this kills all 1866 * other threads in the group and synchronizes with 1867 * their demise. If we lost the race with another 1868 * thread getting here, it set group_exit_code 1869 * first and our do_group_exit call below will use 1870 * that value and ignore the one we pass it. 1871 */ 1872 do_coredump(info->si_signo, info->si_signo, regs); 1873 } 1874 1875 /* 1876 * Death signals, no core dump. 1877 */ 1878 do_group_exit(info->si_signo); 1879 /* NOTREACHED */ 1880 } 1881 spin_unlock_irq(&sighand->siglock); 1882 return signr; 1883 } 1884 1885 void exit_signals(struct task_struct *tsk) 1886 { 1887 int group_stop = 0; 1888 struct task_struct *t; 1889 1890 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 1891 tsk->flags |= PF_EXITING; 1892 return; 1893 } 1894 1895 spin_lock_irq(&tsk->sighand->siglock); 1896 /* 1897 * From now this task is not visible for group-wide signals, 1898 * see wants_signal(), do_signal_stop(). 1899 */ 1900 tsk->flags |= PF_EXITING; 1901 if (!signal_pending(tsk)) 1902 goto out; 1903 1904 /* It could be that __group_complete_signal() choose us to 1905 * notify about group-wide signal. Another thread should be 1906 * woken now to take the signal since we will not. 1907 */ 1908 for (t = tsk; (t = next_thread(t)) != tsk; ) 1909 if (!signal_pending(t) && !(t->flags & PF_EXITING)) 1910 recalc_sigpending_and_wake(t); 1911 1912 if (unlikely(tsk->signal->group_stop_count) && 1913 !--tsk->signal->group_stop_count) { 1914 tsk->signal->flags = SIGNAL_STOP_STOPPED; 1915 group_stop = 1; 1916 } 1917 out: 1918 spin_unlock_irq(&tsk->sighand->siglock); 1919 1920 if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) { 1921 read_lock(&tasklist_lock); 1922 do_notify_parent_cldstop(tsk, CLD_STOPPED); 1923 read_unlock(&tasklist_lock); 1924 } 1925 } 1926 1927 EXPORT_SYMBOL(recalc_sigpending); 1928 EXPORT_SYMBOL_GPL(dequeue_signal); 1929 EXPORT_SYMBOL(flush_signals); 1930 EXPORT_SYMBOL(force_sig); 1931 EXPORT_SYMBOL(send_sig); 1932 EXPORT_SYMBOL(send_sig_info); 1933 EXPORT_SYMBOL(sigprocmask); 1934 EXPORT_SYMBOL(block_all_signals); 1935 EXPORT_SYMBOL(unblock_all_signals); 1936 1937 1938 /* 1939 * System call entry points. 1940 */ 1941 1942 asmlinkage long sys_restart_syscall(void) 1943 { 1944 struct restart_block *restart = ¤t_thread_info()->restart_block; 1945 return restart->fn(restart); 1946 } 1947 1948 long do_no_restart_syscall(struct restart_block *param) 1949 { 1950 return -EINTR; 1951 } 1952 1953 /* 1954 * We don't need to get the kernel lock - this is all local to this 1955 * particular thread.. (and that's good, because this is _heavily_ 1956 * used by various programs) 1957 */ 1958 1959 /* 1960 * This is also useful for kernel threads that want to temporarily 1961 * (or permanently) block certain signals. 1962 * 1963 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 1964 * interface happily blocks "unblockable" signals like SIGKILL 1965 * and friends. 1966 */ 1967 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 1968 { 1969 int error; 1970 1971 spin_lock_irq(¤t->sighand->siglock); 1972 if (oldset) 1973 *oldset = current->blocked; 1974 1975 error = 0; 1976 switch (how) { 1977 case SIG_BLOCK: 1978 sigorsets(¤t->blocked, ¤t->blocked, set); 1979 break; 1980 case SIG_UNBLOCK: 1981 signandsets(¤t->blocked, ¤t->blocked, set); 1982 break; 1983 case SIG_SETMASK: 1984 current->blocked = *set; 1985 break; 1986 default: 1987 error = -EINVAL; 1988 } 1989 recalc_sigpending(); 1990 spin_unlock_irq(¤t->sighand->siglock); 1991 1992 return error; 1993 } 1994 1995 asmlinkage long 1996 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 1997 { 1998 int error = -EINVAL; 1999 sigset_t old_set, new_set; 2000 2001 /* XXX: Don't preclude handling different sized sigset_t's. */ 2002 if (sigsetsize != sizeof(sigset_t)) 2003 goto out; 2004 2005 if (set) { 2006 error = -EFAULT; 2007 if (copy_from_user(&new_set, set, sizeof(*set))) 2008 goto out; 2009 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2010 2011 error = sigprocmask(how, &new_set, &old_set); 2012 if (error) 2013 goto out; 2014 if (oset) 2015 goto set_old; 2016 } else if (oset) { 2017 spin_lock_irq(¤t->sighand->siglock); 2018 old_set = current->blocked; 2019 spin_unlock_irq(¤t->sighand->siglock); 2020 2021 set_old: 2022 error = -EFAULT; 2023 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2024 goto out; 2025 } 2026 error = 0; 2027 out: 2028 return error; 2029 } 2030 2031 long do_sigpending(void __user *set, unsigned long sigsetsize) 2032 { 2033 long error = -EINVAL; 2034 sigset_t pending; 2035 2036 if (sigsetsize > sizeof(sigset_t)) 2037 goto out; 2038 2039 spin_lock_irq(¤t->sighand->siglock); 2040 sigorsets(&pending, ¤t->pending.signal, 2041 ¤t->signal->shared_pending.signal); 2042 spin_unlock_irq(¤t->sighand->siglock); 2043 2044 /* Outside the lock because only this thread touches it. */ 2045 sigandsets(&pending, ¤t->blocked, &pending); 2046 2047 error = -EFAULT; 2048 if (!copy_to_user(set, &pending, sigsetsize)) 2049 error = 0; 2050 2051 out: 2052 return error; 2053 } 2054 2055 asmlinkage long 2056 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2057 { 2058 return do_sigpending(set, sigsetsize); 2059 } 2060 2061 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2062 2063 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2064 { 2065 int err; 2066 2067 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2068 return -EFAULT; 2069 if (from->si_code < 0) 2070 return __copy_to_user(to, from, sizeof(siginfo_t)) 2071 ? -EFAULT : 0; 2072 /* 2073 * If you change siginfo_t structure, please be sure 2074 * this code is fixed accordingly. 2075 * Please remember to update the signalfd_copyinfo() function 2076 * inside fs/signalfd.c too, in case siginfo_t changes. 2077 * It should never copy any pad contained in the structure 2078 * to avoid security leaks, but must copy the generic 2079 * 3 ints plus the relevant union member. 2080 */ 2081 err = __put_user(from->si_signo, &to->si_signo); 2082 err |= __put_user(from->si_errno, &to->si_errno); 2083 err |= __put_user((short)from->si_code, &to->si_code); 2084 switch (from->si_code & __SI_MASK) { 2085 case __SI_KILL: 2086 err |= __put_user(from->si_pid, &to->si_pid); 2087 err |= __put_user(from->si_uid, &to->si_uid); 2088 break; 2089 case __SI_TIMER: 2090 err |= __put_user(from->si_tid, &to->si_tid); 2091 err |= __put_user(from->si_overrun, &to->si_overrun); 2092 err |= __put_user(from->si_ptr, &to->si_ptr); 2093 break; 2094 case __SI_POLL: 2095 err |= __put_user(from->si_band, &to->si_band); 2096 err |= __put_user(from->si_fd, &to->si_fd); 2097 break; 2098 case __SI_FAULT: 2099 err |= __put_user(from->si_addr, &to->si_addr); 2100 #ifdef __ARCH_SI_TRAPNO 2101 err |= __put_user(from->si_trapno, &to->si_trapno); 2102 #endif 2103 break; 2104 case __SI_CHLD: 2105 err |= __put_user(from->si_pid, &to->si_pid); 2106 err |= __put_user(from->si_uid, &to->si_uid); 2107 err |= __put_user(from->si_status, &to->si_status); 2108 err |= __put_user(from->si_utime, &to->si_utime); 2109 err |= __put_user(from->si_stime, &to->si_stime); 2110 break; 2111 case __SI_RT: /* This is not generated by the kernel as of now. */ 2112 case __SI_MESGQ: /* But this is */ 2113 err |= __put_user(from->si_pid, &to->si_pid); 2114 err |= __put_user(from->si_uid, &to->si_uid); 2115 err |= __put_user(from->si_ptr, &to->si_ptr); 2116 break; 2117 default: /* this is just in case for now ... */ 2118 err |= __put_user(from->si_pid, &to->si_pid); 2119 err |= __put_user(from->si_uid, &to->si_uid); 2120 break; 2121 } 2122 return err; 2123 } 2124 2125 #endif 2126 2127 asmlinkage long 2128 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2129 siginfo_t __user *uinfo, 2130 const struct timespec __user *uts, 2131 size_t sigsetsize) 2132 { 2133 int ret, sig; 2134 sigset_t these; 2135 struct timespec ts; 2136 siginfo_t info; 2137 long timeout = 0; 2138 2139 /* XXX: Don't preclude handling different sized sigset_t's. */ 2140 if (sigsetsize != sizeof(sigset_t)) 2141 return -EINVAL; 2142 2143 if (copy_from_user(&these, uthese, sizeof(these))) 2144 return -EFAULT; 2145 2146 /* 2147 * Invert the set of allowed signals to get those we 2148 * want to block. 2149 */ 2150 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2151 signotset(&these); 2152 2153 if (uts) { 2154 if (copy_from_user(&ts, uts, sizeof(ts))) 2155 return -EFAULT; 2156 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2157 || ts.tv_sec < 0) 2158 return -EINVAL; 2159 } 2160 2161 spin_lock_irq(¤t->sighand->siglock); 2162 sig = dequeue_signal(current, &these, &info); 2163 if (!sig) { 2164 timeout = MAX_SCHEDULE_TIMEOUT; 2165 if (uts) 2166 timeout = (timespec_to_jiffies(&ts) 2167 + (ts.tv_sec || ts.tv_nsec)); 2168 2169 if (timeout) { 2170 /* None ready -- temporarily unblock those we're 2171 * interested while we are sleeping in so that we'll 2172 * be awakened when they arrive. */ 2173 current->real_blocked = current->blocked; 2174 sigandsets(¤t->blocked, ¤t->blocked, &these); 2175 recalc_sigpending(); 2176 spin_unlock_irq(¤t->sighand->siglock); 2177 2178 timeout = schedule_timeout_interruptible(timeout); 2179 2180 spin_lock_irq(¤t->sighand->siglock); 2181 sig = dequeue_signal(current, &these, &info); 2182 current->blocked = current->real_blocked; 2183 siginitset(¤t->real_blocked, 0); 2184 recalc_sigpending(); 2185 } 2186 } 2187 spin_unlock_irq(¤t->sighand->siglock); 2188 2189 if (sig) { 2190 ret = sig; 2191 if (uinfo) { 2192 if (copy_siginfo_to_user(uinfo, &info)) 2193 ret = -EFAULT; 2194 } 2195 } else { 2196 ret = -EAGAIN; 2197 if (timeout) 2198 ret = -EINTR; 2199 } 2200 2201 return ret; 2202 } 2203 2204 asmlinkage long 2205 sys_kill(pid_t pid, int sig) 2206 { 2207 struct siginfo info; 2208 2209 info.si_signo = sig; 2210 info.si_errno = 0; 2211 info.si_code = SI_USER; 2212 info.si_pid = task_tgid_vnr(current); 2213 info.si_uid = current->uid; 2214 2215 return kill_something_info(sig, &info, pid); 2216 } 2217 2218 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2219 { 2220 int error; 2221 struct siginfo info; 2222 struct task_struct *p; 2223 unsigned long flags; 2224 2225 error = -ESRCH; 2226 info.si_signo = sig; 2227 info.si_errno = 0; 2228 info.si_code = SI_TKILL; 2229 info.si_pid = task_tgid_vnr(current); 2230 info.si_uid = current->uid; 2231 2232 rcu_read_lock(); 2233 p = find_task_by_vpid(pid); 2234 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2235 error = check_kill_permission(sig, &info, p); 2236 /* 2237 * The null signal is a permissions and process existence 2238 * probe. No signal is actually delivered. 2239 * 2240 * If lock_task_sighand() fails we pretend the task dies 2241 * after receiving the signal. The window is tiny, and the 2242 * signal is private anyway. 2243 */ 2244 if (!error && sig && lock_task_sighand(p, &flags)) { 2245 error = specific_send_sig_info(sig, &info, p); 2246 unlock_task_sighand(p, &flags); 2247 } 2248 } 2249 rcu_read_unlock(); 2250 2251 return error; 2252 } 2253 2254 /** 2255 * sys_tgkill - send signal to one specific thread 2256 * @tgid: the thread group ID of the thread 2257 * @pid: the PID of the thread 2258 * @sig: signal to be sent 2259 * 2260 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2261 * exists but it's not belonging to the target process anymore. This 2262 * method solves the problem of threads exiting and PIDs getting reused. 2263 */ 2264 asmlinkage long sys_tgkill(pid_t tgid, pid_t pid, int sig) 2265 { 2266 /* This is only valid for single tasks */ 2267 if (pid <= 0 || tgid <= 0) 2268 return -EINVAL; 2269 2270 return do_tkill(tgid, pid, sig); 2271 } 2272 2273 /* 2274 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2275 */ 2276 asmlinkage long 2277 sys_tkill(pid_t pid, int sig) 2278 { 2279 /* This is only valid for single tasks */ 2280 if (pid <= 0) 2281 return -EINVAL; 2282 2283 return do_tkill(0, pid, sig); 2284 } 2285 2286 asmlinkage long 2287 sys_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t __user *uinfo) 2288 { 2289 siginfo_t info; 2290 2291 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2292 return -EFAULT; 2293 2294 /* Not even root can pretend to send signals from the kernel. 2295 Nor can they impersonate a kill(), which adds source info. */ 2296 if (info.si_code >= 0) 2297 return -EPERM; 2298 info.si_signo = sig; 2299 2300 /* POSIX.1b doesn't mention process groups. */ 2301 return kill_proc_info(sig, &info, pid); 2302 } 2303 2304 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2305 { 2306 struct task_struct *t = current; 2307 struct k_sigaction *k; 2308 sigset_t mask; 2309 2310 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2311 return -EINVAL; 2312 2313 k = &t->sighand->action[sig-1]; 2314 2315 spin_lock_irq(¤t->sighand->siglock); 2316 if (oact) 2317 *oact = *k; 2318 2319 if (act) { 2320 sigdelsetmask(&act->sa.sa_mask, 2321 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2322 *k = *act; 2323 /* 2324 * POSIX 3.3.1.3: 2325 * "Setting a signal action to SIG_IGN for a signal that is 2326 * pending shall cause the pending signal to be discarded, 2327 * whether or not it is blocked." 2328 * 2329 * "Setting a signal action to SIG_DFL for a signal that is 2330 * pending and whose default action is to ignore the signal 2331 * (for example, SIGCHLD), shall cause the pending signal to 2332 * be discarded, whether or not it is blocked" 2333 */ 2334 if (sig_handler_ignored(sig_handler(t, sig), sig)) { 2335 sigemptyset(&mask); 2336 sigaddset(&mask, sig); 2337 rm_from_queue_full(&mask, &t->signal->shared_pending); 2338 do { 2339 rm_from_queue_full(&mask, &t->pending); 2340 t = next_thread(t); 2341 } while (t != current); 2342 } 2343 } 2344 2345 spin_unlock_irq(¤t->sighand->siglock); 2346 return 0; 2347 } 2348 2349 int 2350 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2351 { 2352 stack_t oss; 2353 int error; 2354 2355 if (uoss) { 2356 oss.ss_sp = (void __user *) current->sas_ss_sp; 2357 oss.ss_size = current->sas_ss_size; 2358 oss.ss_flags = sas_ss_flags(sp); 2359 } 2360 2361 if (uss) { 2362 void __user *ss_sp; 2363 size_t ss_size; 2364 int ss_flags; 2365 2366 error = -EFAULT; 2367 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2368 || __get_user(ss_sp, &uss->ss_sp) 2369 || __get_user(ss_flags, &uss->ss_flags) 2370 || __get_user(ss_size, &uss->ss_size)) 2371 goto out; 2372 2373 error = -EPERM; 2374 if (on_sig_stack(sp)) 2375 goto out; 2376 2377 error = -EINVAL; 2378 /* 2379 * 2380 * Note - this code used to test ss_flags incorrectly 2381 * old code may have been written using ss_flags==0 2382 * to mean ss_flags==SS_ONSTACK (as this was the only 2383 * way that worked) - this fix preserves that older 2384 * mechanism 2385 */ 2386 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2387 goto out; 2388 2389 if (ss_flags == SS_DISABLE) { 2390 ss_size = 0; 2391 ss_sp = NULL; 2392 } else { 2393 error = -ENOMEM; 2394 if (ss_size < MINSIGSTKSZ) 2395 goto out; 2396 } 2397 2398 current->sas_ss_sp = (unsigned long) ss_sp; 2399 current->sas_ss_size = ss_size; 2400 } 2401 2402 if (uoss) { 2403 error = -EFAULT; 2404 if (copy_to_user(uoss, &oss, sizeof(oss))) 2405 goto out; 2406 } 2407 2408 error = 0; 2409 out: 2410 return error; 2411 } 2412 2413 #ifdef __ARCH_WANT_SYS_SIGPENDING 2414 2415 asmlinkage long 2416 sys_sigpending(old_sigset_t __user *set) 2417 { 2418 return do_sigpending(set, sizeof(*set)); 2419 } 2420 2421 #endif 2422 2423 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2424 /* Some platforms have their own version with special arguments others 2425 support only sys_rt_sigprocmask. */ 2426 2427 asmlinkage long 2428 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2429 { 2430 int error; 2431 old_sigset_t old_set, new_set; 2432 2433 if (set) { 2434 error = -EFAULT; 2435 if (copy_from_user(&new_set, set, sizeof(*set))) 2436 goto out; 2437 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2438 2439 spin_lock_irq(¤t->sighand->siglock); 2440 old_set = current->blocked.sig[0]; 2441 2442 error = 0; 2443 switch (how) { 2444 default: 2445 error = -EINVAL; 2446 break; 2447 case SIG_BLOCK: 2448 sigaddsetmask(¤t->blocked, new_set); 2449 break; 2450 case SIG_UNBLOCK: 2451 sigdelsetmask(¤t->blocked, new_set); 2452 break; 2453 case SIG_SETMASK: 2454 current->blocked.sig[0] = new_set; 2455 break; 2456 } 2457 2458 recalc_sigpending(); 2459 spin_unlock_irq(¤t->sighand->siglock); 2460 if (error) 2461 goto out; 2462 if (oset) 2463 goto set_old; 2464 } else if (oset) { 2465 old_set = current->blocked.sig[0]; 2466 set_old: 2467 error = -EFAULT; 2468 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2469 goto out; 2470 } 2471 error = 0; 2472 out: 2473 return error; 2474 } 2475 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2476 2477 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2478 asmlinkage long 2479 sys_rt_sigaction(int sig, 2480 const struct sigaction __user *act, 2481 struct sigaction __user *oact, 2482 size_t sigsetsize) 2483 { 2484 struct k_sigaction new_sa, old_sa; 2485 int ret = -EINVAL; 2486 2487 /* XXX: Don't preclude handling different sized sigset_t's. */ 2488 if (sigsetsize != sizeof(sigset_t)) 2489 goto out; 2490 2491 if (act) { 2492 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2493 return -EFAULT; 2494 } 2495 2496 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2497 2498 if (!ret && oact) { 2499 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2500 return -EFAULT; 2501 } 2502 out: 2503 return ret; 2504 } 2505 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2506 2507 #ifdef __ARCH_WANT_SYS_SGETMASK 2508 2509 /* 2510 * For backwards compatibility. Functionality superseded by sigprocmask. 2511 */ 2512 asmlinkage long 2513 sys_sgetmask(void) 2514 { 2515 /* SMP safe */ 2516 return current->blocked.sig[0]; 2517 } 2518 2519 asmlinkage long 2520 sys_ssetmask(int newmask) 2521 { 2522 int old; 2523 2524 spin_lock_irq(¤t->sighand->siglock); 2525 old = current->blocked.sig[0]; 2526 2527 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2528 sigmask(SIGSTOP))); 2529 recalc_sigpending(); 2530 spin_unlock_irq(¤t->sighand->siglock); 2531 2532 return old; 2533 } 2534 #endif /* __ARCH_WANT_SGETMASK */ 2535 2536 #ifdef __ARCH_WANT_SYS_SIGNAL 2537 /* 2538 * For backwards compatibility. Functionality superseded by sigaction. 2539 */ 2540 asmlinkage unsigned long 2541 sys_signal(int sig, __sighandler_t handler) 2542 { 2543 struct k_sigaction new_sa, old_sa; 2544 int ret; 2545 2546 new_sa.sa.sa_handler = handler; 2547 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2548 sigemptyset(&new_sa.sa.sa_mask); 2549 2550 ret = do_sigaction(sig, &new_sa, &old_sa); 2551 2552 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2553 } 2554 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2555 2556 #ifdef __ARCH_WANT_SYS_PAUSE 2557 2558 asmlinkage long 2559 sys_pause(void) 2560 { 2561 current->state = TASK_INTERRUPTIBLE; 2562 schedule(); 2563 return -ERESTARTNOHAND; 2564 } 2565 2566 #endif 2567 2568 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2569 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) 2570 { 2571 sigset_t newset; 2572 2573 /* XXX: Don't preclude handling different sized sigset_t's. */ 2574 if (sigsetsize != sizeof(sigset_t)) 2575 return -EINVAL; 2576 2577 if (copy_from_user(&newset, unewset, sizeof(newset))) 2578 return -EFAULT; 2579 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2580 2581 spin_lock_irq(¤t->sighand->siglock); 2582 current->saved_sigmask = current->blocked; 2583 current->blocked = newset; 2584 recalc_sigpending(); 2585 spin_unlock_irq(¤t->sighand->siglock); 2586 2587 current->state = TASK_INTERRUPTIBLE; 2588 schedule(); 2589 set_restore_sigmask(); 2590 return -ERESTARTNOHAND; 2591 } 2592 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2593 2594 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 2595 { 2596 return NULL; 2597 } 2598 2599 void __init signals_init(void) 2600 { 2601 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 2602 } 2603