xref: /linux/kernel/signal.c (revision 3ed03f4da06ede71ac53cf25b9441a372e9f2487)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/task_work.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51 
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h>	/* for syscall_get_* */
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	/* Only allow kernel generated signals to this kthread */
94 	if (unlikely((t->flags & PF_KTHREAD) &&
95 		     (handler == SIG_KTHREAD_KERNEL) && !force))
96 		return true;
97 
98 	return sig_handler_ignored(handler, sig);
99 }
100 
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 	/*
104 	 * Blocked signals are never ignored, since the
105 	 * signal handler may change by the time it is
106 	 * unblocked.
107 	 */
108 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 		return false;
110 
111 	/*
112 	 * Tracers may want to know about even ignored signal unless it
113 	 * is SIGKILL which can't be reported anyway but can be ignored
114 	 * by SIGNAL_UNKILLABLE task.
115 	 */
116 	if (t->ptrace && sig != SIGKILL)
117 		return false;
118 
119 	return sig_task_ignored(t, sig, force);
120 }
121 
122 /*
123  * Re-calculate pending state from the set of locally pending
124  * signals, globally pending signals, and blocked signals.
125  */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 	unsigned long ready;
129 	long i;
130 
131 	switch (_NSIG_WORDS) {
132 	default:
133 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 			ready |= signal->sig[i] &~ blocked->sig[i];
135 		break;
136 
137 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
138 		ready |= signal->sig[2] &~ blocked->sig[2];
139 		ready |= signal->sig[1] &~ blocked->sig[1];
140 		ready |= signal->sig[0] &~ blocked->sig[0];
141 		break;
142 
143 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
144 		ready |= signal->sig[0] &~ blocked->sig[0];
145 		break;
146 
147 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
148 	}
149 	return ready !=	0;
150 }
151 
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153 
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 	    PENDING(&t->pending, &t->blocked) ||
158 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
159 	    cgroup_task_frozen(t)) {
160 		set_tsk_thread_flag(t, TIF_SIGPENDING);
161 		return true;
162 	}
163 
164 	/*
165 	 * We must never clear the flag in another thread, or in current
166 	 * when it's possible the current syscall is returning -ERESTART*.
167 	 * So we don't clear it here, and only callers who know they should do.
168 	 */
169 	return false;
170 }
171 
172 /*
173  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174  * This is superfluous when called on current, the wakeup is a harmless no-op.
175  */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 	if (recalc_sigpending_tsk(t))
179 		signal_wake_up(t, 0);
180 }
181 
182 void recalc_sigpending(void)
183 {
184 	if (!recalc_sigpending_tsk(current) && !freezing(current))
185 		clear_thread_flag(TIF_SIGPENDING);
186 
187 }
188 EXPORT_SYMBOL(recalc_sigpending);
189 
190 void calculate_sigpending(void)
191 {
192 	/* Have any signals or users of TIF_SIGPENDING been delayed
193 	 * until after fork?
194 	 */
195 	spin_lock_irq(&current->sighand->siglock);
196 	set_tsk_thread_flag(current, TIF_SIGPENDING);
197 	recalc_sigpending();
198 	spin_unlock_irq(&current->sighand->siglock);
199 }
200 
201 /* Given the mask, find the first available signal that should be serviced. */
202 
203 #define SYNCHRONOUS_MASK \
204 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
206 
207 int next_signal(struct sigpending *pending, sigset_t *mask)
208 {
209 	unsigned long i, *s, *m, x;
210 	int sig = 0;
211 
212 	s = pending->signal.sig;
213 	m = mask->sig;
214 
215 	/*
216 	 * Handle the first word specially: it contains the
217 	 * synchronous signals that need to be dequeued first.
218 	 */
219 	x = *s &~ *m;
220 	if (x) {
221 		if (x & SYNCHRONOUS_MASK)
222 			x &= SYNCHRONOUS_MASK;
223 		sig = ffz(~x) + 1;
224 		return sig;
225 	}
226 
227 	switch (_NSIG_WORDS) {
228 	default:
229 		for (i = 1; i < _NSIG_WORDS; ++i) {
230 			x = *++s &~ *++m;
231 			if (!x)
232 				continue;
233 			sig = ffz(~x) + i*_NSIG_BPW + 1;
234 			break;
235 		}
236 		break;
237 
238 	case 2:
239 		x = s[1] &~ m[1];
240 		if (!x)
241 			break;
242 		sig = ffz(~x) + _NSIG_BPW + 1;
243 		break;
244 
245 	case 1:
246 		/* Nothing to do */
247 		break;
248 	}
249 
250 	return sig;
251 }
252 
253 static inline void print_dropped_signal(int sig)
254 {
255 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
256 
257 	if (!print_fatal_signals)
258 		return;
259 
260 	if (!__ratelimit(&ratelimit_state))
261 		return;
262 
263 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 				current->comm, current->pid, sig);
265 }
266 
267 /**
268  * task_set_jobctl_pending - set jobctl pending bits
269  * @task: target task
270  * @mask: pending bits to set
271  *
272  * Clear @mask from @task->jobctl.  @mask must be subset of
273  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
275  * cleared.  If @task is already being killed or exiting, this function
276  * becomes noop.
277  *
278  * CONTEXT:
279  * Must be called with @task->sighand->siglock held.
280  *
281  * RETURNS:
282  * %true if @mask is set, %false if made noop because @task was dying.
283  */
284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
285 {
286 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
289 
290 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
291 		return false;
292 
293 	if (mask & JOBCTL_STOP_SIGMASK)
294 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
295 
296 	task->jobctl |= mask;
297 	return true;
298 }
299 
300 /**
301  * task_clear_jobctl_trapping - clear jobctl trapping bit
302  * @task: target task
303  *
304  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305  * Clear it and wake up the ptracer.  Note that we don't need any further
306  * locking.  @task->siglock guarantees that @task->parent points to the
307  * ptracer.
308  *
309  * CONTEXT:
310  * Must be called with @task->sighand->siglock held.
311  */
312 void task_clear_jobctl_trapping(struct task_struct *task)
313 {
314 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 		task->jobctl &= ~JOBCTL_TRAPPING;
316 		smp_mb();	/* advised by wake_up_bit() */
317 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
318 	}
319 }
320 
321 /**
322  * task_clear_jobctl_pending - clear jobctl pending bits
323  * @task: target task
324  * @mask: pending bits to clear
325  *
326  * Clear @mask from @task->jobctl.  @mask must be subset of
327  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
328  * STOP bits are cleared together.
329  *
330  * If clearing of @mask leaves no stop or trap pending, this function calls
331  * task_clear_jobctl_trapping().
332  *
333  * CONTEXT:
334  * Must be called with @task->sighand->siglock held.
335  */
336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
337 {
338 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
339 
340 	if (mask & JOBCTL_STOP_PENDING)
341 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
342 
343 	task->jobctl &= ~mask;
344 
345 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 		task_clear_jobctl_trapping(task);
347 }
348 
349 /**
350  * task_participate_group_stop - participate in a group stop
351  * @task: task participating in a group stop
352  *
353  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354  * Group stop states are cleared and the group stop count is consumed if
355  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
356  * stop, the appropriate `SIGNAL_*` flags are set.
357  *
358  * CONTEXT:
359  * Must be called with @task->sighand->siglock held.
360  *
361  * RETURNS:
362  * %true if group stop completion should be notified to the parent, %false
363  * otherwise.
364  */
365 static bool task_participate_group_stop(struct task_struct *task)
366 {
367 	struct signal_struct *sig = task->signal;
368 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
369 
370 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
371 
372 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
373 
374 	if (!consume)
375 		return false;
376 
377 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 		sig->group_stop_count--;
379 
380 	/*
381 	 * Tell the caller to notify completion iff we are entering into a
382 	 * fresh group stop.  Read comment in do_signal_stop() for details.
383 	 */
384 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
386 		return true;
387 	}
388 	return false;
389 }
390 
391 void task_join_group_stop(struct task_struct *task)
392 {
393 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 	struct signal_struct *sig = current->signal;
395 
396 	if (sig->group_stop_count) {
397 		sig->group_stop_count++;
398 		mask |= JOBCTL_STOP_CONSUME;
399 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
400 		return;
401 
402 	/* Have the new thread join an on-going signal group stop */
403 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
404 }
405 
406 /*
407  * allocate a new signal queue record
408  * - this may be called without locks if and only if t == current, otherwise an
409  *   appropriate lock must be held to stop the target task from exiting
410  */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 		 int override_rlimit, const unsigned int sigqueue_flags)
414 {
415 	struct sigqueue *q = NULL;
416 	struct ucounts *ucounts = NULL;
417 	long sigpending;
418 
419 	/*
420 	 * Protect access to @t credentials. This can go away when all
421 	 * callers hold rcu read lock.
422 	 *
423 	 * NOTE! A pending signal will hold on to the user refcount,
424 	 * and we get/put the refcount only when the sigpending count
425 	 * changes from/to zero.
426 	 */
427 	rcu_read_lock();
428 	ucounts = task_ucounts(t);
429 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
430 	rcu_read_unlock();
431 	if (!sigpending)
432 		return NULL;
433 
434 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
436 	} else {
437 		print_dropped_signal(sig);
438 	}
439 
440 	if (unlikely(q == NULL)) {
441 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
442 	} else {
443 		INIT_LIST_HEAD(&q->list);
444 		q->flags = sigqueue_flags;
445 		q->ucounts = ucounts;
446 	}
447 	return q;
448 }
449 
450 static void __sigqueue_free(struct sigqueue *q)
451 {
452 	if (q->flags & SIGQUEUE_PREALLOC)
453 		return;
454 	if (q->ucounts) {
455 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
456 		q->ucounts = NULL;
457 	}
458 	kmem_cache_free(sigqueue_cachep, q);
459 }
460 
461 void flush_sigqueue(struct sigpending *queue)
462 {
463 	struct sigqueue *q;
464 
465 	sigemptyset(&queue->signal);
466 	while (!list_empty(&queue->list)) {
467 		q = list_entry(queue->list.next, struct sigqueue , list);
468 		list_del_init(&q->list);
469 		__sigqueue_free(q);
470 	}
471 }
472 
473 /*
474  * Flush all pending signals for this kthread.
475  */
476 void flush_signals(struct task_struct *t)
477 {
478 	unsigned long flags;
479 
480 	spin_lock_irqsave(&t->sighand->siglock, flags);
481 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 	flush_sigqueue(&t->pending);
483 	flush_sigqueue(&t->signal->shared_pending);
484 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
485 }
486 EXPORT_SYMBOL(flush_signals);
487 
488 #ifdef CONFIG_POSIX_TIMERS
489 static void __flush_itimer_signals(struct sigpending *pending)
490 {
491 	sigset_t signal, retain;
492 	struct sigqueue *q, *n;
493 
494 	signal = pending->signal;
495 	sigemptyset(&retain);
496 
497 	list_for_each_entry_safe(q, n, &pending->list, list) {
498 		int sig = q->info.si_signo;
499 
500 		if (likely(q->info.si_code != SI_TIMER)) {
501 			sigaddset(&retain, sig);
502 		} else {
503 			sigdelset(&signal, sig);
504 			list_del_init(&q->list);
505 			__sigqueue_free(q);
506 		}
507 	}
508 
509 	sigorsets(&pending->signal, &signal, &retain);
510 }
511 
512 void flush_itimer_signals(void)
513 {
514 	struct task_struct *tsk = current;
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 	__flush_itimer_signals(&tsk->pending);
519 	__flush_itimer_signals(&tsk->signal->shared_pending);
520 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521 }
522 #endif
523 
524 void ignore_signals(struct task_struct *t)
525 {
526 	int i;
527 
528 	for (i = 0; i < _NSIG; ++i)
529 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
530 
531 	flush_signals(t);
532 }
533 
534 /*
535  * Flush all handlers for a task.
536  */
537 
538 void
539 flush_signal_handlers(struct task_struct *t, int force_default)
540 {
541 	int i;
542 	struct k_sigaction *ka = &t->sighand->action[0];
543 	for (i = _NSIG ; i != 0 ; i--) {
544 		if (force_default || ka->sa.sa_handler != SIG_IGN)
545 			ka->sa.sa_handler = SIG_DFL;
546 		ka->sa.sa_flags = 0;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 		ka->sa.sa_restorer = NULL;
549 #endif
550 		sigemptyset(&ka->sa.sa_mask);
551 		ka++;
552 	}
553 }
554 
555 bool unhandled_signal(struct task_struct *tsk, int sig)
556 {
557 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 	if (is_global_init(tsk))
559 		return true;
560 
561 	if (handler != SIG_IGN && handler != SIG_DFL)
562 		return false;
563 
564 	/* if ptraced, let the tracer determine */
565 	return !tsk->ptrace;
566 }
567 
568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 			   bool *resched_timer)
570 {
571 	struct sigqueue *q, *first = NULL;
572 
573 	/*
574 	 * Collect the siginfo appropriate to this signal.  Check if
575 	 * there is another siginfo for the same signal.
576 	*/
577 	list_for_each_entry(q, &list->list, list) {
578 		if (q->info.si_signo == sig) {
579 			if (first)
580 				goto still_pending;
581 			first = q;
582 		}
583 	}
584 
585 	sigdelset(&list->signal, sig);
586 
587 	if (first) {
588 still_pending:
589 		list_del_init(&first->list);
590 		copy_siginfo(info, &first->info);
591 
592 		*resched_timer =
593 			(first->flags & SIGQUEUE_PREALLOC) &&
594 			(info->si_code == SI_TIMER) &&
595 			(info->si_sys_private);
596 
597 		__sigqueue_free(first);
598 	} else {
599 		/*
600 		 * Ok, it wasn't in the queue.  This must be
601 		 * a fast-pathed signal or we must have been
602 		 * out of queue space.  So zero out the info.
603 		 */
604 		clear_siginfo(info);
605 		info->si_signo = sig;
606 		info->si_errno = 0;
607 		info->si_code = SI_USER;
608 		info->si_pid = 0;
609 		info->si_uid = 0;
610 	}
611 }
612 
613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 			kernel_siginfo_t *info, bool *resched_timer)
615 {
616 	int sig = next_signal(pending, mask);
617 
618 	if (sig)
619 		collect_signal(sig, pending, info, resched_timer);
620 	return sig;
621 }
622 
623 /*
624  * Dequeue a signal and return the element to the caller, which is
625  * expected to free it.
626  *
627  * All callers have to hold the siglock.
628  */
629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
630 		   kernel_siginfo_t *info, enum pid_type *type)
631 {
632 	bool resched_timer = false;
633 	int signr;
634 
635 	/* We only dequeue private signals from ourselves, we don't let
636 	 * signalfd steal them
637 	 */
638 	*type = PIDTYPE_PID;
639 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
640 	if (!signr) {
641 		*type = PIDTYPE_TGID;
642 		signr = __dequeue_signal(&tsk->signal->shared_pending,
643 					 mask, info, &resched_timer);
644 #ifdef CONFIG_POSIX_TIMERS
645 		/*
646 		 * itimer signal ?
647 		 *
648 		 * itimers are process shared and we restart periodic
649 		 * itimers in the signal delivery path to prevent DoS
650 		 * attacks in the high resolution timer case. This is
651 		 * compliant with the old way of self-restarting
652 		 * itimers, as the SIGALRM is a legacy signal and only
653 		 * queued once. Changing the restart behaviour to
654 		 * restart the timer in the signal dequeue path is
655 		 * reducing the timer noise on heavy loaded !highres
656 		 * systems too.
657 		 */
658 		if (unlikely(signr == SIGALRM)) {
659 			struct hrtimer *tmr = &tsk->signal->real_timer;
660 
661 			if (!hrtimer_is_queued(tmr) &&
662 			    tsk->signal->it_real_incr != 0) {
663 				hrtimer_forward(tmr, tmr->base->get_time(),
664 						tsk->signal->it_real_incr);
665 				hrtimer_restart(tmr);
666 			}
667 		}
668 #endif
669 	}
670 
671 	recalc_sigpending();
672 	if (!signr)
673 		return 0;
674 
675 	if (unlikely(sig_kernel_stop(signr))) {
676 		/*
677 		 * Set a marker that we have dequeued a stop signal.  Our
678 		 * caller might release the siglock and then the pending
679 		 * stop signal it is about to process is no longer in the
680 		 * pending bitmasks, but must still be cleared by a SIGCONT
681 		 * (and overruled by a SIGKILL).  So those cases clear this
682 		 * shared flag after we've set it.  Note that this flag may
683 		 * remain set after the signal we return is ignored or
684 		 * handled.  That doesn't matter because its only purpose
685 		 * is to alert stop-signal processing code when another
686 		 * processor has come along and cleared the flag.
687 		 */
688 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
689 	}
690 #ifdef CONFIG_POSIX_TIMERS
691 	if (resched_timer) {
692 		/*
693 		 * Release the siglock to ensure proper locking order
694 		 * of timer locks outside of siglocks.  Note, we leave
695 		 * irqs disabled here, since the posix-timers code is
696 		 * about to disable them again anyway.
697 		 */
698 		spin_unlock(&tsk->sighand->siglock);
699 		posixtimer_rearm(info);
700 		spin_lock(&tsk->sighand->siglock);
701 
702 		/* Don't expose the si_sys_private value to userspace */
703 		info->si_sys_private = 0;
704 	}
705 #endif
706 	return signr;
707 }
708 EXPORT_SYMBOL_GPL(dequeue_signal);
709 
710 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
711 {
712 	struct task_struct *tsk = current;
713 	struct sigpending *pending = &tsk->pending;
714 	struct sigqueue *q, *sync = NULL;
715 
716 	/*
717 	 * Might a synchronous signal be in the queue?
718 	 */
719 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
720 		return 0;
721 
722 	/*
723 	 * Return the first synchronous signal in the queue.
724 	 */
725 	list_for_each_entry(q, &pending->list, list) {
726 		/* Synchronous signals have a positive si_code */
727 		if ((q->info.si_code > SI_USER) &&
728 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
729 			sync = q;
730 			goto next;
731 		}
732 	}
733 	return 0;
734 next:
735 	/*
736 	 * Check if there is another siginfo for the same signal.
737 	 */
738 	list_for_each_entry_continue(q, &pending->list, list) {
739 		if (q->info.si_signo == sync->info.si_signo)
740 			goto still_pending;
741 	}
742 
743 	sigdelset(&pending->signal, sync->info.si_signo);
744 	recalc_sigpending();
745 still_pending:
746 	list_del_init(&sync->list);
747 	copy_siginfo(info, &sync->info);
748 	__sigqueue_free(sync);
749 	return info->si_signo;
750 }
751 
752 /*
753  * Tell a process that it has a new active signal..
754  *
755  * NOTE! we rely on the previous spin_lock to
756  * lock interrupts for us! We can only be called with
757  * "siglock" held, and the local interrupt must
758  * have been disabled when that got acquired!
759  *
760  * No need to set need_resched since signal event passing
761  * goes through ->blocked
762  */
763 void signal_wake_up_state(struct task_struct *t, unsigned int state)
764 {
765 	lockdep_assert_held(&t->sighand->siglock);
766 
767 	set_tsk_thread_flag(t, TIF_SIGPENDING);
768 
769 	/*
770 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
771 	 * case. We don't check t->state here because there is a race with it
772 	 * executing another processor and just now entering stopped state.
773 	 * By using wake_up_state, we ensure the process will wake up and
774 	 * handle its death signal.
775 	 */
776 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
777 		kick_process(t);
778 }
779 
780 /*
781  * Remove signals in mask from the pending set and queue.
782  * Returns 1 if any signals were found.
783  *
784  * All callers must be holding the siglock.
785  */
786 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
787 {
788 	struct sigqueue *q, *n;
789 	sigset_t m;
790 
791 	sigandsets(&m, mask, &s->signal);
792 	if (sigisemptyset(&m))
793 		return;
794 
795 	sigandnsets(&s->signal, &s->signal, mask);
796 	list_for_each_entry_safe(q, n, &s->list, list) {
797 		if (sigismember(mask, q->info.si_signo)) {
798 			list_del_init(&q->list);
799 			__sigqueue_free(q);
800 		}
801 	}
802 }
803 
804 static inline int is_si_special(const struct kernel_siginfo *info)
805 {
806 	return info <= SEND_SIG_PRIV;
807 }
808 
809 static inline bool si_fromuser(const struct kernel_siginfo *info)
810 {
811 	return info == SEND_SIG_NOINFO ||
812 		(!is_si_special(info) && SI_FROMUSER(info));
813 }
814 
815 /*
816  * called with RCU read lock from check_kill_permission()
817  */
818 static bool kill_ok_by_cred(struct task_struct *t)
819 {
820 	const struct cred *cred = current_cred();
821 	const struct cred *tcred = __task_cred(t);
822 
823 	return uid_eq(cred->euid, tcred->suid) ||
824 	       uid_eq(cred->euid, tcred->uid) ||
825 	       uid_eq(cred->uid, tcred->suid) ||
826 	       uid_eq(cred->uid, tcred->uid) ||
827 	       ns_capable(tcred->user_ns, CAP_KILL);
828 }
829 
830 /*
831  * Bad permissions for sending the signal
832  * - the caller must hold the RCU read lock
833  */
834 static int check_kill_permission(int sig, struct kernel_siginfo *info,
835 				 struct task_struct *t)
836 {
837 	struct pid *sid;
838 	int error;
839 
840 	if (!valid_signal(sig))
841 		return -EINVAL;
842 
843 	if (!si_fromuser(info))
844 		return 0;
845 
846 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
847 	if (error)
848 		return error;
849 
850 	if (!same_thread_group(current, t) &&
851 	    !kill_ok_by_cred(t)) {
852 		switch (sig) {
853 		case SIGCONT:
854 			sid = task_session(t);
855 			/*
856 			 * We don't return the error if sid == NULL. The
857 			 * task was unhashed, the caller must notice this.
858 			 */
859 			if (!sid || sid == task_session(current))
860 				break;
861 			fallthrough;
862 		default:
863 			return -EPERM;
864 		}
865 	}
866 
867 	return security_task_kill(t, info, sig, NULL);
868 }
869 
870 /**
871  * ptrace_trap_notify - schedule trap to notify ptracer
872  * @t: tracee wanting to notify tracer
873  *
874  * This function schedules sticky ptrace trap which is cleared on the next
875  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
876  * ptracer.
877  *
878  * If @t is running, STOP trap will be taken.  If trapped for STOP and
879  * ptracer is listening for events, tracee is woken up so that it can
880  * re-trap for the new event.  If trapped otherwise, STOP trap will be
881  * eventually taken without returning to userland after the existing traps
882  * are finished by PTRACE_CONT.
883  *
884  * CONTEXT:
885  * Must be called with @task->sighand->siglock held.
886  */
887 static void ptrace_trap_notify(struct task_struct *t)
888 {
889 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
890 	lockdep_assert_held(&t->sighand->siglock);
891 
892 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
893 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
894 }
895 
896 /*
897  * Handle magic process-wide effects of stop/continue signals. Unlike
898  * the signal actions, these happen immediately at signal-generation
899  * time regardless of blocking, ignoring, or handling.  This does the
900  * actual continuing for SIGCONT, but not the actual stopping for stop
901  * signals. The process stop is done as a signal action for SIG_DFL.
902  *
903  * Returns true if the signal should be actually delivered, otherwise
904  * it should be dropped.
905  */
906 static bool prepare_signal(int sig, struct task_struct *p, bool force)
907 {
908 	struct signal_struct *signal = p->signal;
909 	struct task_struct *t;
910 	sigset_t flush;
911 
912 	if (signal->flags & SIGNAL_GROUP_EXIT) {
913 		if (signal->core_state)
914 			return sig == SIGKILL;
915 		/*
916 		 * The process is in the middle of dying, drop the signal.
917 		 */
918 		return false;
919 	} else if (sig_kernel_stop(sig)) {
920 		/*
921 		 * This is a stop signal.  Remove SIGCONT from all queues.
922 		 */
923 		siginitset(&flush, sigmask(SIGCONT));
924 		flush_sigqueue_mask(&flush, &signal->shared_pending);
925 		for_each_thread(p, t)
926 			flush_sigqueue_mask(&flush, &t->pending);
927 	} else if (sig == SIGCONT) {
928 		unsigned int why;
929 		/*
930 		 * Remove all stop signals from all queues, wake all threads.
931 		 */
932 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
933 		flush_sigqueue_mask(&flush, &signal->shared_pending);
934 		for_each_thread(p, t) {
935 			flush_sigqueue_mask(&flush, &t->pending);
936 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
937 			if (likely(!(t->ptrace & PT_SEIZED))) {
938 				t->jobctl &= ~JOBCTL_STOPPED;
939 				wake_up_state(t, __TASK_STOPPED);
940 			} else
941 				ptrace_trap_notify(t);
942 		}
943 
944 		/*
945 		 * Notify the parent with CLD_CONTINUED if we were stopped.
946 		 *
947 		 * If we were in the middle of a group stop, we pretend it
948 		 * was already finished, and then continued. Since SIGCHLD
949 		 * doesn't queue we report only CLD_STOPPED, as if the next
950 		 * CLD_CONTINUED was dropped.
951 		 */
952 		why = 0;
953 		if (signal->flags & SIGNAL_STOP_STOPPED)
954 			why |= SIGNAL_CLD_CONTINUED;
955 		else if (signal->group_stop_count)
956 			why |= SIGNAL_CLD_STOPPED;
957 
958 		if (why) {
959 			/*
960 			 * The first thread which returns from do_signal_stop()
961 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
962 			 * notify its parent. See get_signal().
963 			 */
964 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
965 			signal->group_stop_count = 0;
966 			signal->group_exit_code = 0;
967 		}
968 	}
969 
970 	return !sig_ignored(p, sig, force);
971 }
972 
973 /*
974  * Test if P wants to take SIG.  After we've checked all threads with this,
975  * it's equivalent to finding no threads not blocking SIG.  Any threads not
976  * blocking SIG were ruled out because they are not running and already
977  * have pending signals.  Such threads will dequeue from the shared queue
978  * as soon as they're available, so putting the signal on the shared queue
979  * will be equivalent to sending it to one such thread.
980  */
981 static inline bool wants_signal(int sig, struct task_struct *p)
982 {
983 	if (sigismember(&p->blocked, sig))
984 		return false;
985 
986 	if (p->flags & PF_EXITING)
987 		return false;
988 
989 	if (sig == SIGKILL)
990 		return true;
991 
992 	if (task_is_stopped_or_traced(p))
993 		return false;
994 
995 	return task_curr(p) || !task_sigpending(p);
996 }
997 
998 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
999 {
1000 	struct signal_struct *signal = p->signal;
1001 	struct task_struct *t;
1002 
1003 	/*
1004 	 * Now find a thread we can wake up to take the signal off the queue.
1005 	 *
1006 	 * Try the suggested task first (may or may not be the main thread).
1007 	 */
1008 	if (wants_signal(sig, p))
1009 		t = p;
1010 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1011 		/*
1012 		 * There is just one thread and it does not need to be woken.
1013 		 * It will dequeue unblocked signals before it runs again.
1014 		 */
1015 		return;
1016 	else {
1017 		/*
1018 		 * Otherwise try to find a suitable thread.
1019 		 */
1020 		t = signal->curr_target;
1021 		while (!wants_signal(sig, t)) {
1022 			t = next_thread(t);
1023 			if (t == signal->curr_target)
1024 				/*
1025 				 * No thread needs to be woken.
1026 				 * Any eligible threads will see
1027 				 * the signal in the queue soon.
1028 				 */
1029 				return;
1030 		}
1031 		signal->curr_target = t;
1032 	}
1033 
1034 	/*
1035 	 * Found a killable thread.  If the signal will be fatal,
1036 	 * then start taking the whole group down immediately.
1037 	 */
1038 	if (sig_fatal(p, sig) &&
1039 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1040 	    !sigismember(&t->real_blocked, sig) &&
1041 	    (sig == SIGKILL || !p->ptrace)) {
1042 		/*
1043 		 * This signal will be fatal to the whole group.
1044 		 */
1045 		if (!sig_kernel_coredump(sig)) {
1046 			/*
1047 			 * Start a group exit and wake everybody up.
1048 			 * This way we don't have other threads
1049 			 * running and doing things after a slower
1050 			 * thread has the fatal signal pending.
1051 			 */
1052 			signal->flags = SIGNAL_GROUP_EXIT;
1053 			signal->group_exit_code = sig;
1054 			signal->group_stop_count = 0;
1055 			t = p;
1056 			do {
1057 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1058 				sigaddset(&t->pending.signal, SIGKILL);
1059 				signal_wake_up(t, 1);
1060 			} while_each_thread(p, t);
1061 			return;
1062 		}
1063 	}
1064 
1065 	/*
1066 	 * The signal is already in the shared-pending queue.
1067 	 * Tell the chosen thread to wake up and dequeue it.
1068 	 */
1069 	signal_wake_up(t, sig == SIGKILL);
1070 	return;
1071 }
1072 
1073 static inline bool legacy_queue(struct sigpending *signals, int sig)
1074 {
1075 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1076 }
1077 
1078 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1079 				struct task_struct *t, enum pid_type type, bool force)
1080 {
1081 	struct sigpending *pending;
1082 	struct sigqueue *q;
1083 	int override_rlimit;
1084 	int ret = 0, result;
1085 
1086 	lockdep_assert_held(&t->sighand->siglock);
1087 
1088 	result = TRACE_SIGNAL_IGNORED;
1089 	if (!prepare_signal(sig, t, force))
1090 		goto ret;
1091 
1092 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1093 	/*
1094 	 * Short-circuit ignored signals and support queuing
1095 	 * exactly one non-rt signal, so that we can get more
1096 	 * detailed information about the cause of the signal.
1097 	 */
1098 	result = TRACE_SIGNAL_ALREADY_PENDING;
1099 	if (legacy_queue(pending, sig))
1100 		goto ret;
1101 
1102 	result = TRACE_SIGNAL_DELIVERED;
1103 	/*
1104 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1105 	 */
1106 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1107 		goto out_set;
1108 
1109 	/*
1110 	 * Real-time signals must be queued if sent by sigqueue, or
1111 	 * some other real-time mechanism.  It is implementation
1112 	 * defined whether kill() does so.  We attempt to do so, on
1113 	 * the principle of least surprise, but since kill is not
1114 	 * allowed to fail with EAGAIN when low on memory we just
1115 	 * make sure at least one signal gets delivered and don't
1116 	 * pass on the info struct.
1117 	 */
1118 	if (sig < SIGRTMIN)
1119 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1120 	else
1121 		override_rlimit = 0;
1122 
1123 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1124 
1125 	if (q) {
1126 		list_add_tail(&q->list, &pending->list);
1127 		switch ((unsigned long) info) {
1128 		case (unsigned long) SEND_SIG_NOINFO:
1129 			clear_siginfo(&q->info);
1130 			q->info.si_signo = sig;
1131 			q->info.si_errno = 0;
1132 			q->info.si_code = SI_USER;
1133 			q->info.si_pid = task_tgid_nr_ns(current,
1134 							task_active_pid_ns(t));
1135 			rcu_read_lock();
1136 			q->info.si_uid =
1137 				from_kuid_munged(task_cred_xxx(t, user_ns),
1138 						 current_uid());
1139 			rcu_read_unlock();
1140 			break;
1141 		case (unsigned long) SEND_SIG_PRIV:
1142 			clear_siginfo(&q->info);
1143 			q->info.si_signo = sig;
1144 			q->info.si_errno = 0;
1145 			q->info.si_code = SI_KERNEL;
1146 			q->info.si_pid = 0;
1147 			q->info.si_uid = 0;
1148 			break;
1149 		default:
1150 			copy_siginfo(&q->info, info);
1151 			break;
1152 		}
1153 	} else if (!is_si_special(info) &&
1154 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1155 		/*
1156 		 * Queue overflow, abort.  We may abort if the
1157 		 * signal was rt and sent by user using something
1158 		 * other than kill().
1159 		 */
1160 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1161 		ret = -EAGAIN;
1162 		goto ret;
1163 	} else {
1164 		/*
1165 		 * This is a silent loss of information.  We still
1166 		 * send the signal, but the *info bits are lost.
1167 		 */
1168 		result = TRACE_SIGNAL_LOSE_INFO;
1169 	}
1170 
1171 out_set:
1172 	signalfd_notify(t, sig);
1173 	sigaddset(&pending->signal, sig);
1174 
1175 	/* Let multiprocess signals appear after on-going forks */
1176 	if (type > PIDTYPE_TGID) {
1177 		struct multiprocess_signals *delayed;
1178 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1179 			sigset_t *signal = &delayed->signal;
1180 			/* Can't queue both a stop and a continue signal */
1181 			if (sig == SIGCONT)
1182 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1183 			else if (sig_kernel_stop(sig))
1184 				sigdelset(signal, SIGCONT);
1185 			sigaddset(signal, sig);
1186 		}
1187 	}
1188 
1189 	complete_signal(sig, t, type);
1190 ret:
1191 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1192 	return ret;
1193 }
1194 
1195 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1196 {
1197 	bool ret = false;
1198 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1199 	case SIL_KILL:
1200 	case SIL_CHLD:
1201 	case SIL_RT:
1202 		ret = true;
1203 		break;
1204 	case SIL_TIMER:
1205 	case SIL_POLL:
1206 	case SIL_FAULT:
1207 	case SIL_FAULT_TRAPNO:
1208 	case SIL_FAULT_MCEERR:
1209 	case SIL_FAULT_BNDERR:
1210 	case SIL_FAULT_PKUERR:
1211 	case SIL_FAULT_PERF_EVENT:
1212 	case SIL_SYS:
1213 		ret = false;
1214 		break;
1215 	}
1216 	return ret;
1217 }
1218 
1219 int send_signal_locked(int sig, struct kernel_siginfo *info,
1220 		       struct task_struct *t, enum pid_type type)
1221 {
1222 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1223 	bool force = false;
1224 
1225 	if (info == SEND_SIG_NOINFO) {
1226 		/* Force if sent from an ancestor pid namespace */
1227 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1228 	} else if (info == SEND_SIG_PRIV) {
1229 		/* Don't ignore kernel generated signals */
1230 		force = true;
1231 	} else if (has_si_pid_and_uid(info)) {
1232 		/* SIGKILL and SIGSTOP is special or has ids */
1233 		struct user_namespace *t_user_ns;
1234 
1235 		rcu_read_lock();
1236 		t_user_ns = task_cred_xxx(t, user_ns);
1237 		if (current_user_ns() != t_user_ns) {
1238 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1239 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1240 		}
1241 		rcu_read_unlock();
1242 
1243 		/* A kernel generated signal? */
1244 		force = (info->si_code == SI_KERNEL);
1245 
1246 		/* From an ancestor pid namespace? */
1247 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1248 			info->si_pid = 0;
1249 			force = true;
1250 		}
1251 	}
1252 	return __send_signal_locked(sig, info, t, type, force);
1253 }
1254 
1255 static void print_fatal_signal(int signr)
1256 {
1257 	struct pt_regs *regs = task_pt_regs(current);
1258 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1259 
1260 #if defined(__i386__) && !defined(__arch_um__)
1261 	pr_info("code at %08lx: ", regs->ip);
1262 	{
1263 		int i;
1264 		for (i = 0; i < 16; i++) {
1265 			unsigned char insn;
1266 
1267 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1268 				break;
1269 			pr_cont("%02x ", insn);
1270 		}
1271 	}
1272 	pr_cont("\n");
1273 #endif
1274 	preempt_disable();
1275 	show_regs(regs);
1276 	preempt_enable();
1277 }
1278 
1279 static int __init setup_print_fatal_signals(char *str)
1280 {
1281 	get_option (&str, &print_fatal_signals);
1282 
1283 	return 1;
1284 }
1285 
1286 __setup("print-fatal-signals=", setup_print_fatal_signals);
1287 
1288 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1289 			enum pid_type type)
1290 {
1291 	unsigned long flags;
1292 	int ret = -ESRCH;
1293 
1294 	if (lock_task_sighand(p, &flags)) {
1295 		ret = send_signal_locked(sig, info, p, type);
1296 		unlock_task_sighand(p, &flags);
1297 	}
1298 
1299 	return ret;
1300 }
1301 
1302 enum sig_handler {
1303 	HANDLER_CURRENT, /* If reachable use the current handler */
1304 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1305 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1306 };
1307 
1308 /*
1309  * Force a signal that the process can't ignore: if necessary
1310  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1311  *
1312  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1313  * since we do not want to have a signal handler that was blocked
1314  * be invoked when user space had explicitly blocked it.
1315  *
1316  * We don't want to have recursive SIGSEGV's etc, for example,
1317  * that is why we also clear SIGNAL_UNKILLABLE.
1318  */
1319 static int
1320 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1321 	enum sig_handler handler)
1322 {
1323 	unsigned long int flags;
1324 	int ret, blocked, ignored;
1325 	struct k_sigaction *action;
1326 	int sig = info->si_signo;
1327 
1328 	spin_lock_irqsave(&t->sighand->siglock, flags);
1329 	action = &t->sighand->action[sig-1];
1330 	ignored = action->sa.sa_handler == SIG_IGN;
1331 	blocked = sigismember(&t->blocked, sig);
1332 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1333 		action->sa.sa_handler = SIG_DFL;
1334 		if (handler == HANDLER_EXIT)
1335 			action->sa.sa_flags |= SA_IMMUTABLE;
1336 		if (blocked) {
1337 			sigdelset(&t->blocked, sig);
1338 			recalc_sigpending_and_wake(t);
1339 		}
1340 	}
1341 	/*
1342 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1343 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1344 	 */
1345 	if (action->sa.sa_handler == SIG_DFL &&
1346 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1347 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1348 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1349 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1350 
1351 	return ret;
1352 }
1353 
1354 int force_sig_info(struct kernel_siginfo *info)
1355 {
1356 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1357 }
1358 
1359 /*
1360  * Nuke all other threads in the group.
1361  */
1362 int zap_other_threads(struct task_struct *p)
1363 {
1364 	struct task_struct *t = p;
1365 	int count = 0;
1366 
1367 	p->signal->group_stop_count = 0;
1368 
1369 	while_each_thread(p, t) {
1370 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1371 		count++;
1372 
1373 		/* Don't bother with already dead threads */
1374 		if (t->exit_state)
1375 			continue;
1376 		sigaddset(&t->pending.signal, SIGKILL);
1377 		signal_wake_up(t, 1);
1378 	}
1379 
1380 	return count;
1381 }
1382 
1383 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1384 					   unsigned long *flags)
1385 {
1386 	struct sighand_struct *sighand;
1387 
1388 	rcu_read_lock();
1389 	for (;;) {
1390 		sighand = rcu_dereference(tsk->sighand);
1391 		if (unlikely(sighand == NULL))
1392 			break;
1393 
1394 		/*
1395 		 * This sighand can be already freed and even reused, but
1396 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1397 		 * initializes ->siglock: this slab can't go away, it has
1398 		 * the same object type, ->siglock can't be reinitialized.
1399 		 *
1400 		 * We need to ensure that tsk->sighand is still the same
1401 		 * after we take the lock, we can race with de_thread() or
1402 		 * __exit_signal(). In the latter case the next iteration
1403 		 * must see ->sighand == NULL.
1404 		 */
1405 		spin_lock_irqsave(&sighand->siglock, *flags);
1406 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1407 			break;
1408 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1409 	}
1410 	rcu_read_unlock();
1411 
1412 	return sighand;
1413 }
1414 
1415 #ifdef CONFIG_LOCKDEP
1416 void lockdep_assert_task_sighand_held(struct task_struct *task)
1417 {
1418 	struct sighand_struct *sighand;
1419 
1420 	rcu_read_lock();
1421 	sighand = rcu_dereference(task->sighand);
1422 	if (sighand)
1423 		lockdep_assert_held(&sighand->siglock);
1424 	else
1425 		WARN_ON_ONCE(1);
1426 	rcu_read_unlock();
1427 }
1428 #endif
1429 
1430 /*
1431  * send signal info to all the members of a group
1432  */
1433 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1434 			struct task_struct *p, enum pid_type type)
1435 {
1436 	int ret;
1437 
1438 	rcu_read_lock();
1439 	ret = check_kill_permission(sig, info, p);
1440 	rcu_read_unlock();
1441 
1442 	if (!ret && sig)
1443 		ret = do_send_sig_info(sig, info, p, type);
1444 
1445 	return ret;
1446 }
1447 
1448 /*
1449  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1450  * control characters do (^C, ^Z etc)
1451  * - the caller must hold at least a readlock on tasklist_lock
1452  */
1453 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1454 {
1455 	struct task_struct *p = NULL;
1456 	int retval, success;
1457 
1458 	success = 0;
1459 	retval = -ESRCH;
1460 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1461 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1462 		success |= !err;
1463 		retval = err;
1464 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1465 	return success ? 0 : retval;
1466 }
1467 
1468 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1469 {
1470 	int error = -ESRCH;
1471 	struct task_struct *p;
1472 
1473 	for (;;) {
1474 		rcu_read_lock();
1475 		p = pid_task(pid, PIDTYPE_PID);
1476 		if (p)
1477 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1478 		rcu_read_unlock();
1479 		if (likely(!p || error != -ESRCH))
1480 			return error;
1481 
1482 		/*
1483 		 * The task was unhashed in between, try again.  If it
1484 		 * is dead, pid_task() will return NULL, if we race with
1485 		 * de_thread() it will find the new leader.
1486 		 */
1487 	}
1488 }
1489 
1490 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1491 {
1492 	int error;
1493 	rcu_read_lock();
1494 	error = kill_pid_info(sig, info, find_vpid(pid));
1495 	rcu_read_unlock();
1496 	return error;
1497 }
1498 
1499 static inline bool kill_as_cred_perm(const struct cred *cred,
1500 				     struct task_struct *target)
1501 {
1502 	const struct cred *pcred = __task_cred(target);
1503 
1504 	return uid_eq(cred->euid, pcred->suid) ||
1505 	       uid_eq(cred->euid, pcred->uid) ||
1506 	       uid_eq(cred->uid, pcred->suid) ||
1507 	       uid_eq(cred->uid, pcred->uid);
1508 }
1509 
1510 /*
1511  * The usb asyncio usage of siginfo is wrong.  The glibc support
1512  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1513  * AKA after the generic fields:
1514  *	kernel_pid_t	si_pid;
1515  *	kernel_uid32_t	si_uid;
1516  *	sigval_t	si_value;
1517  *
1518  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1519  * after the generic fields is:
1520  *	void __user 	*si_addr;
1521  *
1522  * This is a practical problem when there is a 64bit big endian kernel
1523  * and a 32bit userspace.  As the 32bit address will encoded in the low
1524  * 32bits of the pointer.  Those low 32bits will be stored at higher
1525  * address than appear in a 32 bit pointer.  So userspace will not
1526  * see the address it was expecting for it's completions.
1527  *
1528  * There is nothing in the encoding that can allow
1529  * copy_siginfo_to_user32 to detect this confusion of formats, so
1530  * handle this by requiring the caller of kill_pid_usb_asyncio to
1531  * notice when this situration takes place and to store the 32bit
1532  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1533  * parameter.
1534  */
1535 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1536 			 struct pid *pid, const struct cred *cred)
1537 {
1538 	struct kernel_siginfo info;
1539 	struct task_struct *p;
1540 	unsigned long flags;
1541 	int ret = -EINVAL;
1542 
1543 	if (!valid_signal(sig))
1544 		return ret;
1545 
1546 	clear_siginfo(&info);
1547 	info.si_signo = sig;
1548 	info.si_errno = errno;
1549 	info.si_code = SI_ASYNCIO;
1550 	*((sigval_t *)&info.si_pid) = addr;
1551 
1552 	rcu_read_lock();
1553 	p = pid_task(pid, PIDTYPE_PID);
1554 	if (!p) {
1555 		ret = -ESRCH;
1556 		goto out_unlock;
1557 	}
1558 	if (!kill_as_cred_perm(cred, p)) {
1559 		ret = -EPERM;
1560 		goto out_unlock;
1561 	}
1562 	ret = security_task_kill(p, &info, sig, cred);
1563 	if (ret)
1564 		goto out_unlock;
1565 
1566 	if (sig) {
1567 		if (lock_task_sighand(p, &flags)) {
1568 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1569 			unlock_task_sighand(p, &flags);
1570 		} else
1571 			ret = -ESRCH;
1572 	}
1573 out_unlock:
1574 	rcu_read_unlock();
1575 	return ret;
1576 }
1577 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1578 
1579 /*
1580  * kill_something_info() interprets pid in interesting ways just like kill(2).
1581  *
1582  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1583  * is probably wrong.  Should make it like BSD or SYSV.
1584  */
1585 
1586 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1587 {
1588 	int ret;
1589 
1590 	if (pid > 0)
1591 		return kill_proc_info(sig, info, pid);
1592 
1593 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1594 	if (pid == INT_MIN)
1595 		return -ESRCH;
1596 
1597 	read_lock(&tasklist_lock);
1598 	if (pid != -1) {
1599 		ret = __kill_pgrp_info(sig, info,
1600 				pid ? find_vpid(-pid) : task_pgrp(current));
1601 	} else {
1602 		int retval = 0, count = 0;
1603 		struct task_struct * p;
1604 
1605 		for_each_process(p) {
1606 			if (task_pid_vnr(p) > 1 &&
1607 					!same_thread_group(p, current)) {
1608 				int err = group_send_sig_info(sig, info, p,
1609 							      PIDTYPE_MAX);
1610 				++count;
1611 				if (err != -EPERM)
1612 					retval = err;
1613 			}
1614 		}
1615 		ret = count ? retval : -ESRCH;
1616 	}
1617 	read_unlock(&tasklist_lock);
1618 
1619 	return ret;
1620 }
1621 
1622 /*
1623  * These are for backward compatibility with the rest of the kernel source.
1624  */
1625 
1626 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1627 {
1628 	/*
1629 	 * Make sure legacy kernel users don't send in bad values
1630 	 * (normal paths check this in check_kill_permission).
1631 	 */
1632 	if (!valid_signal(sig))
1633 		return -EINVAL;
1634 
1635 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1636 }
1637 EXPORT_SYMBOL(send_sig_info);
1638 
1639 #define __si_special(priv) \
1640 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1641 
1642 int
1643 send_sig(int sig, struct task_struct *p, int priv)
1644 {
1645 	return send_sig_info(sig, __si_special(priv), p);
1646 }
1647 EXPORT_SYMBOL(send_sig);
1648 
1649 void force_sig(int sig)
1650 {
1651 	struct kernel_siginfo info;
1652 
1653 	clear_siginfo(&info);
1654 	info.si_signo = sig;
1655 	info.si_errno = 0;
1656 	info.si_code = SI_KERNEL;
1657 	info.si_pid = 0;
1658 	info.si_uid = 0;
1659 	force_sig_info(&info);
1660 }
1661 EXPORT_SYMBOL(force_sig);
1662 
1663 void force_fatal_sig(int sig)
1664 {
1665 	struct kernel_siginfo info;
1666 
1667 	clear_siginfo(&info);
1668 	info.si_signo = sig;
1669 	info.si_errno = 0;
1670 	info.si_code = SI_KERNEL;
1671 	info.si_pid = 0;
1672 	info.si_uid = 0;
1673 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1674 }
1675 
1676 void force_exit_sig(int sig)
1677 {
1678 	struct kernel_siginfo info;
1679 
1680 	clear_siginfo(&info);
1681 	info.si_signo = sig;
1682 	info.si_errno = 0;
1683 	info.si_code = SI_KERNEL;
1684 	info.si_pid = 0;
1685 	info.si_uid = 0;
1686 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1687 }
1688 
1689 /*
1690  * When things go south during signal handling, we
1691  * will force a SIGSEGV. And if the signal that caused
1692  * the problem was already a SIGSEGV, we'll want to
1693  * make sure we don't even try to deliver the signal..
1694  */
1695 void force_sigsegv(int sig)
1696 {
1697 	if (sig == SIGSEGV)
1698 		force_fatal_sig(SIGSEGV);
1699 	else
1700 		force_sig(SIGSEGV);
1701 }
1702 
1703 int force_sig_fault_to_task(int sig, int code, void __user *addr
1704 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1705 	, struct task_struct *t)
1706 {
1707 	struct kernel_siginfo info;
1708 
1709 	clear_siginfo(&info);
1710 	info.si_signo = sig;
1711 	info.si_errno = 0;
1712 	info.si_code  = code;
1713 	info.si_addr  = addr;
1714 #ifdef __ia64__
1715 	info.si_imm = imm;
1716 	info.si_flags = flags;
1717 	info.si_isr = isr;
1718 #endif
1719 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1720 }
1721 
1722 int force_sig_fault(int sig, int code, void __user *addr
1723 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1724 {
1725 	return force_sig_fault_to_task(sig, code, addr
1726 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1727 }
1728 
1729 int send_sig_fault(int sig, int code, void __user *addr
1730 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1731 	, struct task_struct *t)
1732 {
1733 	struct kernel_siginfo info;
1734 
1735 	clear_siginfo(&info);
1736 	info.si_signo = sig;
1737 	info.si_errno = 0;
1738 	info.si_code  = code;
1739 	info.si_addr  = addr;
1740 #ifdef __ia64__
1741 	info.si_imm = imm;
1742 	info.si_flags = flags;
1743 	info.si_isr = isr;
1744 #endif
1745 	return send_sig_info(info.si_signo, &info, t);
1746 }
1747 
1748 int force_sig_mceerr(int code, void __user *addr, short lsb)
1749 {
1750 	struct kernel_siginfo info;
1751 
1752 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1753 	clear_siginfo(&info);
1754 	info.si_signo = SIGBUS;
1755 	info.si_errno = 0;
1756 	info.si_code = code;
1757 	info.si_addr = addr;
1758 	info.si_addr_lsb = lsb;
1759 	return force_sig_info(&info);
1760 }
1761 
1762 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1763 {
1764 	struct kernel_siginfo info;
1765 
1766 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1767 	clear_siginfo(&info);
1768 	info.si_signo = SIGBUS;
1769 	info.si_errno = 0;
1770 	info.si_code = code;
1771 	info.si_addr = addr;
1772 	info.si_addr_lsb = lsb;
1773 	return send_sig_info(info.si_signo, &info, t);
1774 }
1775 EXPORT_SYMBOL(send_sig_mceerr);
1776 
1777 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1778 {
1779 	struct kernel_siginfo info;
1780 
1781 	clear_siginfo(&info);
1782 	info.si_signo = SIGSEGV;
1783 	info.si_errno = 0;
1784 	info.si_code  = SEGV_BNDERR;
1785 	info.si_addr  = addr;
1786 	info.si_lower = lower;
1787 	info.si_upper = upper;
1788 	return force_sig_info(&info);
1789 }
1790 
1791 #ifdef SEGV_PKUERR
1792 int force_sig_pkuerr(void __user *addr, u32 pkey)
1793 {
1794 	struct kernel_siginfo info;
1795 
1796 	clear_siginfo(&info);
1797 	info.si_signo = SIGSEGV;
1798 	info.si_errno = 0;
1799 	info.si_code  = SEGV_PKUERR;
1800 	info.si_addr  = addr;
1801 	info.si_pkey  = pkey;
1802 	return force_sig_info(&info);
1803 }
1804 #endif
1805 
1806 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1807 {
1808 	struct kernel_siginfo info;
1809 
1810 	clear_siginfo(&info);
1811 	info.si_signo     = SIGTRAP;
1812 	info.si_errno     = 0;
1813 	info.si_code      = TRAP_PERF;
1814 	info.si_addr      = addr;
1815 	info.si_perf_data = sig_data;
1816 	info.si_perf_type = type;
1817 
1818 	/*
1819 	 * Signals generated by perf events should not terminate the whole
1820 	 * process if SIGTRAP is blocked, however, delivering the signal
1821 	 * asynchronously is better than not delivering at all. But tell user
1822 	 * space if the signal was asynchronous, so it can clearly be
1823 	 * distinguished from normal synchronous ones.
1824 	 */
1825 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1826 				     TRAP_PERF_FLAG_ASYNC :
1827 				     0;
1828 
1829 	return send_sig_info(info.si_signo, &info, current);
1830 }
1831 
1832 /**
1833  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1834  * @syscall: syscall number to send to userland
1835  * @reason: filter-supplied reason code to send to userland (via si_errno)
1836  * @force_coredump: true to trigger a coredump
1837  *
1838  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1839  */
1840 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1841 {
1842 	struct kernel_siginfo info;
1843 
1844 	clear_siginfo(&info);
1845 	info.si_signo = SIGSYS;
1846 	info.si_code = SYS_SECCOMP;
1847 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1848 	info.si_errno = reason;
1849 	info.si_arch = syscall_get_arch(current);
1850 	info.si_syscall = syscall;
1851 	return force_sig_info_to_task(&info, current,
1852 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1853 }
1854 
1855 /* For the crazy architectures that include trap information in
1856  * the errno field, instead of an actual errno value.
1857  */
1858 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1859 {
1860 	struct kernel_siginfo info;
1861 
1862 	clear_siginfo(&info);
1863 	info.si_signo = SIGTRAP;
1864 	info.si_errno = errno;
1865 	info.si_code  = TRAP_HWBKPT;
1866 	info.si_addr  = addr;
1867 	return force_sig_info(&info);
1868 }
1869 
1870 /* For the rare architectures that include trap information using
1871  * si_trapno.
1872  */
1873 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1874 {
1875 	struct kernel_siginfo info;
1876 
1877 	clear_siginfo(&info);
1878 	info.si_signo = sig;
1879 	info.si_errno = 0;
1880 	info.si_code  = code;
1881 	info.si_addr  = addr;
1882 	info.si_trapno = trapno;
1883 	return force_sig_info(&info);
1884 }
1885 
1886 /* For the rare architectures that include trap information using
1887  * si_trapno.
1888  */
1889 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1890 			  struct task_struct *t)
1891 {
1892 	struct kernel_siginfo info;
1893 
1894 	clear_siginfo(&info);
1895 	info.si_signo = sig;
1896 	info.si_errno = 0;
1897 	info.si_code  = code;
1898 	info.si_addr  = addr;
1899 	info.si_trapno = trapno;
1900 	return send_sig_info(info.si_signo, &info, t);
1901 }
1902 
1903 int kill_pgrp(struct pid *pid, int sig, int priv)
1904 {
1905 	int ret;
1906 
1907 	read_lock(&tasklist_lock);
1908 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1909 	read_unlock(&tasklist_lock);
1910 
1911 	return ret;
1912 }
1913 EXPORT_SYMBOL(kill_pgrp);
1914 
1915 int kill_pid(struct pid *pid, int sig, int priv)
1916 {
1917 	return kill_pid_info(sig, __si_special(priv), pid);
1918 }
1919 EXPORT_SYMBOL(kill_pid);
1920 
1921 /*
1922  * These functions support sending signals using preallocated sigqueue
1923  * structures.  This is needed "because realtime applications cannot
1924  * afford to lose notifications of asynchronous events, like timer
1925  * expirations or I/O completions".  In the case of POSIX Timers
1926  * we allocate the sigqueue structure from the timer_create.  If this
1927  * allocation fails we are able to report the failure to the application
1928  * with an EAGAIN error.
1929  */
1930 struct sigqueue *sigqueue_alloc(void)
1931 {
1932 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1933 }
1934 
1935 void sigqueue_free(struct sigqueue *q)
1936 {
1937 	unsigned long flags;
1938 	spinlock_t *lock = &current->sighand->siglock;
1939 
1940 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1941 	/*
1942 	 * We must hold ->siglock while testing q->list
1943 	 * to serialize with collect_signal() or with
1944 	 * __exit_signal()->flush_sigqueue().
1945 	 */
1946 	spin_lock_irqsave(lock, flags);
1947 	q->flags &= ~SIGQUEUE_PREALLOC;
1948 	/*
1949 	 * If it is queued it will be freed when dequeued,
1950 	 * like the "regular" sigqueue.
1951 	 */
1952 	if (!list_empty(&q->list))
1953 		q = NULL;
1954 	spin_unlock_irqrestore(lock, flags);
1955 
1956 	if (q)
1957 		__sigqueue_free(q);
1958 }
1959 
1960 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1961 {
1962 	int sig = q->info.si_signo;
1963 	struct sigpending *pending;
1964 	struct task_struct *t;
1965 	unsigned long flags;
1966 	int ret, result;
1967 
1968 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1969 
1970 	ret = -1;
1971 	rcu_read_lock();
1972 
1973 	/*
1974 	 * This function is used by POSIX timers to deliver a timer signal.
1975 	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1976 	 * set), the signal must be delivered to the specific thread (queues
1977 	 * into t->pending).
1978 	 *
1979 	 * Where type is not PIDTYPE_PID, signals must be delivered to the
1980 	 * process. In this case, prefer to deliver to current if it is in
1981 	 * the same thread group as the target process, which avoids
1982 	 * unnecessarily waking up a potentially idle task.
1983 	 */
1984 	t = pid_task(pid, type);
1985 	if (!t)
1986 		goto ret;
1987 	if (type != PIDTYPE_PID && same_thread_group(t, current))
1988 		t = current;
1989 	if (!likely(lock_task_sighand(t, &flags)))
1990 		goto ret;
1991 
1992 	ret = 1; /* the signal is ignored */
1993 	result = TRACE_SIGNAL_IGNORED;
1994 	if (!prepare_signal(sig, t, false))
1995 		goto out;
1996 
1997 	ret = 0;
1998 	if (unlikely(!list_empty(&q->list))) {
1999 		/*
2000 		 * If an SI_TIMER entry is already queue just increment
2001 		 * the overrun count.
2002 		 */
2003 		BUG_ON(q->info.si_code != SI_TIMER);
2004 		q->info.si_overrun++;
2005 		result = TRACE_SIGNAL_ALREADY_PENDING;
2006 		goto out;
2007 	}
2008 	q->info.si_overrun = 0;
2009 
2010 	signalfd_notify(t, sig);
2011 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2012 	list_add_tail(&q->list, &pending->list);
2013 	sigaddset(&pending->signal, sig);
2014 	complete_signal(sig, t, type);
2015 	result = TRACE_SIGNAL_DELIVERED;
2016 out:
2017 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2018 	unlock_task_sighand(t, &flags);
2019 ret:
2020 	rcu_read_unlock();
2021 	return ret;
2022 }
2023 
2024 static void do_notify_pidfd(struct task_struct *task)
2025 {
2026 	struct pid *pid;
2027 
2028 	WARN_ON(task->exit_state == 0);
2029 	pid = task_pid(task);
2030 	wake_up_all(&pid->wait_pidfd);
2031 }
2032 
2033 /*
2034  * Let a parent know about the death of a child.
2035  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2036  *
2037  * Returns true if our parent ignored us and so we've switched to
2038  * self-reaping.
2039  */
2040 bool do_notify_parent(struct task_struct *tsk, int sig)
2041 {
2042 	struct kernel_siginfo info;
2043 	unsigned long flags;
2044 	struct sighand_struct *psig;
2045 	bool autoreap = false;
2046 	u64 utime, stime;
2047 
2048 	WARN_ON_ONCE(sig == -1);
2049 
2050 	/* do_notify_parent_cldstop should have been called instead.  */
2051 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2052 
2053 	WARN_ON_ONCE(!tsk->ptrace &&
2054 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2055 
2056 	/* Wake up all pidfd waiters */
2057 	do_notify_pidfd(tsk);
2058 
2059 	if (sig != SIGCHLD) {
2060 		/*
2061 		 * This is only possible if parent == real_parent.
2062 		 * Check if it has changed security domain.
2063 		 */
2064 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2065 			sig = SIGCHLD;
2066 	}
2067 
2068 	clear_siginfo(&info);
2069 	info.si_signo = sig;
2070 	info.si_errno = 0;
2071 	/*
2072 	 * We are under tasklist_lock here so our parent is tied to
2073 	 * us and cannot change.
2074 	 *
2075 	 * task_active_pid_ns will always return the same pid namespace
2076 	 * until a task passes through release_task.
2077 	 *
2078 	 * write_lock() currently calls preempt_disable() which is the
2079 	 * same as rcu_read_lock(), but according to Oleg, this is not
2080 	 * correct to rely on this
2081 	 */
2082 	rcu_read_lock();
2083 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2084 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2085 				       task_uid(tsk));
2086 	rcu_read_unlock();
2087 
2088 	task_cputime(tsk, &utime, &stime);
2089 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2090 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2091 
2092 	info.si_status = tsk->exit_code & 0x7f;
2093 	if (tsk->exit_code & 0x80)
2094 		info.si_code = CLD_DUMPED;
2095 	else if (tsk->exit_code & 0x7f)
2096 		info.si_code = CLD_KILLED;
2097 	else {
2098 		info.si_code = CLD_EXITED;
2099 		info.si_status = tsk->exit_code >> 8;
2100 	}
2101 
2102 	psig = tsk->parent->sighand;
2103 	spin_lock_irqsave(&psig->siglock, flags);
2104 	if (!tsk->ptrace && sig == SIGCHLD &&
2105 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2106 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2107 		/*
2108 		 * We are exiting and our parent doesn't care.  POSIX.1
2109 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2110 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2111 		 * automatically and not left for our parent's wait4 call.
2112 		 * Rather than having the parent do it as a magic kind of
2113 		 * signal handler, we just set this to tell do_exit that we
2114 		 * can be cleaned up without becoming a zombie.  Note that
2115 		 * we still call __wake_up_parent in this case, because a
2116 		 * blocked sys_wait4 might now return -ECHILD.
2117 		 *
2118 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2119 		 * is implementation-defined: we do (if you don't want
2120 		 * it, just use SIG_IGN instead).
2121 		 */
2122 		autoreap = true;
2123 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2124 			sig = 0;
2125 	}
2126 	/*
2127 	 * Send with __send_signal as si_pid and si_uid are in the
2128 	 * parent's namespaces.
2129 	 */
2130 	if (valid_signal(sig) && sig)
2131 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2132 	__wake_up_parent(tsk, tsk->parent);
2133 	spin_unlock_irqrestore(&psig->siglock, flags);
2134 
2135 	return autoreap;
2136 }
2137 
2138 /**
2139  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2140  * @tsk: task reporting the state change
2141  * @for_ptracer: the notification is for ptracer
2142  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2143  *
2144  * Notify @tsk's parent that the stopped/continued state has changed.  If
2145  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2146  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2147  *
2148  * CONTEXT:
2149  * Must be called with tasklist_lock at least read locked.
2150  */
2151 static void do_notify_parent_cldstop(struct task_struct *tsk,
2152 				     bool for_ptracer, int why)
2153 {
2154 	struct kernel_siginfo info;
2155 	unsigned long flags;
2156 	struct task_struct *parent;
2157 	struct sighand_struct *sighand;
2158 	u64 utime, stime;
2159 
2160 	if (for_ptracer) {
2161 		parent = tsk->parent;
2162 	} else {
2163 		tsk = tsk->group_leader;
2164 		parent = tsk->real_parent;
2165 	}
2166 
2167 	clear_siginfo(&info);
2168 	info.si_signo = SIGCHLD;
2169 	info.si_errno = 0;
2170 	/*
2171 	 * see comment in do_notify_parent() about the following 4 lines
2172 	 */
2173 	rcu_read_lock();
2174 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2175 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2176 	rcu_read_unlock();
2177 
2178 	task_cputime(tsk, &utime, &stime);
2179 	info.si_utime = nsec_to_clock_t(utime);
2180 	info.si_stime = nsec_to_clock_t(stime);
2181 
2182  	info.si_code = why;
2183  	switch (why) {
2184  	case CLD_CONTINUED:
2185  		info.si_status = SIGCONT;
2186  		break;
2187  	case CLD_STOPPED:
2188  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2189  		break;
2190  	case CLD_TRAPPED:
2191  		info.si_status = tsk->exit_code & 0x7f;
2192  		break;
2193  	default:
2194  		BUG();
2195  	}
2196 
2197 	sighand = parent->sighand;
2198 	spin_lock_irqsave(&sighand->siglock, flags);
2199 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2200 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2201 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2202 	/*
2203 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2204 	 */
2205 	__wake_up_parent(tsk, parent);
2206 	spin_unlock_irqrestore(&sighand->siglock, flags);
2207 }
2208 
2209 /*
2210  * This must be called with current->sighand->siglock held.
2211  *
2212  * This should be the path for all ptrace stops.
2213  * We always set current->last_siginfo while stopped here.
2214  * That makes it a way to test a stopped process for
2215  * being ptrace-stopped vs being job-control-stopped.
2216  *
2217  * Returns the signal the ptracer requested the code resume
2218  * with.  If the code did not stop because the tracer is gone,
2219  * the stop signal remains unchanged unless clear_code.
2220  */
2221 static int ptrace_stop(int exit_code, int why, unsigned long message,
2222 		       kernel_siginfo_t *info)
2223 	__releases(&current->sighand->siglock)
2224 	__acquires(&current->sighand->siglock)
2225 {
2226 	bool gstop_done = false;
2227 
2228 	if (arch_ptrace_stop_needed()) {
2229 		/*
2230 		 * The arch code has something special to do before a
2231 		 * ptrace stop.  This is allowed to block, e.g. for faults
2232 		 * on user stack pages.  We can't keep the siglock while
2233 		 * calling arch_ptrace_stop, so we must release it now.
2234 		 * To preserve proper semantics, we must do this before
2235 		 * any signal bookkeeping like checking group_stop_count.
2236 		 */
2237 		spin_unlock_irq(&current->sighand->siglock);
2238 		arch_ptrace_stop();
2239 		spin_lock_irq(&current->sighand->siglock);
2240 	}
2241 
2242 	/*
2243 	 * After this point ptrace_signal_wake_up or signal_wake_up
2244 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2245 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2246 	 * signals here to prevent ptrace_stop sleeping in schedule.
2247 	 */
2248 	if (!current->ptrace || __fatal_signal_pending(current))
2249 		return exit_code;
2250 
2251 	set_special_state(TASK_TRACED);
2252 	current->jobctl |= JOBCTL_TRACED;
2253 
2254 	/*
2255 	 * We're committing to trapping.  TRACED should be visible before
2256 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2257 	 * Also, transition to TRACED and updates to ->jobctl should be
2258 	 * atomic with respect to siglock and should be done after the arch
2259 	 * hook as siglock is released and regrabbed across it.
2260 	 *
2261 	 *     TRACER				    TRACEE
2262 	 *
2263 	 *     ptrace_attach()
2264 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2265 	 *     do_wait()
2266 	 *       set_current_state()                smp_wmb();
2267 	 *       ptrace_do_wait()
2268 	 *         wait_task_stopped()
2269 	 *           task_stopped_code()
2270 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2271 	 */
2272 	smp_wmb();
2273 
2274 	current->ptrace_message = message;
2275 	current->last_siginfo = info;
2276 	current->exit_code = exit_code;
2277 
2278 	/*
2279 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2280 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2281 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2282 	 * could be clear now.  We act as if SIGCONT is received after
2283 	 * TASK_TRACED is entered - ignore it.
2284 	 */
2285 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2286 		gstop_done = task_participate_group_stop(current);
2287 
2288 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2289 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2290 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2291 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2292 
2293 	/* entering a trap, clear TRAPPING */
2294 	task_clear_jobctl_trapping(current);
2295 
2296 	spin_unlock_irq(&current->sighand->siglock);
2297 	read_lock(&tasklist_lock);
2298 	/*
2299 	 * Notify parents of the stop.
2300 	 *
2301 	 * While ptraced, there are two parents - the ptracer and
2302 	 * the real_parent of the group_leader.  The ptracer should
2303 	 * know about every stop while the real parent is only
2304 	 * interested in the completion of group stop.  The states
2305 	 * for the two don't interact with each other.  Notify
2306 	 * separately unless they're gonna be duplicates.
2307 	 */
2308 	if (current->ptrace)
2309 		do_notify_parent_cldstop(current, true, why);
2310 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2311 		do_notify_parent_cldstop(current, false, why);
2312 
2313 	/*
2314 	 * Don't want to allow preemption here, because
2315 	 * sys_ptrace() needs this task to be inactive.
2316 	 *
2317 	 * XXX: implement read_unlock_no_resched().
2318 	 */
2319 	preempt_disable();
2320 	read_unlock(&tasklist_lock);
2321 	cgroup_enter_frozen();
2322 	preempt_enable_no_resched();
2323 	schedule();
2324 	cgroup_leave_frozen(true);
2325 
2326 	/*
2327 	 * We are back.  Now reacquire the siglock before touching
2328 	 * last_siginfo, so that we are sure to have synchronized with
2329 	 * any signal-sending on another CPU that wants to examine it.
2330 	 */
2331 	spin_lock_irq(&current->sighand->siglock);
2332 	exit_code = current->exit_code;
2333 	current->last_siginfo = NULL;
2334 	current->ptrace_message = 0;
2335 	current->exit_code = 0;
2336 
2337 	/* LISTENING can be set only during STOP traps, clear it */
2338 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2339 
2340 	/*
2341 	 * Queued signals ignored us while we were stopped for tracing.
2342 	 * So check for any that we should take before resuming user mode.
2343 	 * This sets TIF_SIGPENDING, but never clears it.
2344 	 */
2345 	recalc_sigpending_tsk(current);
2346 	return exit_code;
2347 }
2348 
2349 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2350 {
2351 	kernel_siginfo_t info;
2352 
2353 	clear_siginfo(&info);
2354 	info.si_signo = signr;
2355 	info.si_code = exit_code;
2356 	info.si_pid = task_pid_vnr(current);
2357 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2358 
2359 	/* Let the debugger run.  */
2360 	return ptrace_stop(exit_code, why, message, &info);
2361 }
2362 
2363 int ptrace_notify(int exit_code, unsigned long message)
2364 {
2365 	int signr;
2366 
2367 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2368 	if (unlikely(task_work_pending(current)))
2369 		task_work_run();
2370 
2371 	spin_lock_irq(&current->sighand->siglock);
2372 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2373 	spin_unlock_irq(&current->sighand->siglock);
2374 	return signr;
2375 }
2376 
2377 /**
2378  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2379  * @signr: signr causing group stop if initiating
2380  *
2381  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2382  * and participate in it.  If already set, participate in the existing
2383  * group stop.  If participated in a group stop (and thus slept), %true is
2384  * returned with siglock released.
2385  *
2386  * If ptraced, this function doesn't handle stop itself.  Instead,
2387  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2388  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2389  * places afterwards.
2390  *
2391  * CONTEXT:
2392  * Must be called with @current->sighand->siglock held, which is released
2393  * on %true return.
2394  *
2395  * RETURNS:
2396  * %false if group stop is already cancelled or ptrace trap is scheduled.
2397  * %true if participated in group stop.
2398  */
2399 static bool do_signal_stop(int signr)
2400 	__releases(&current->sighand->siglock)
2401 {
2402 	struct signal_struct *sig = current->signal;
2403 
2404 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2405 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2406 		struct task_struct *t;
2407 
2408 		/* signr will be recorded in task->jobctl for retries */
2409 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2410 
2411 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2412 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2413 		    unlikely(sig->group_exec_task))
2414 			return false;
2415 		/*
2416 		 * There is no group stop already in progress.  We must
2417 		 * initiate one now.
2418 		 *
2419 		 * While ptraced, a task may be resumed while group stop is
2420 		 * still in effect and then receive a stop signal and
2421 		 * initiate another group stop.  This deviates from the
2422 		 * usual behavior as two consecutive stop signals can't
2423 		 * cause two group stops when !ptraced.  That is why we
2424 		 * also check !task_is_stopped(t) below.
2425 		 *
2426 		 * The condition can be distinguished by testing whether
2427 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2428 		 * group_exit_code in such case.
2429 		 *
2430 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2431 		 * an intervening stop signal is required to cause two
2432 		 * continued events regardless of ptrace.
2433 		 */
2434 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2435 			sig->group_exit_code = signr;
2436 
2437 		sig->group_stop_count = 0;
2438 
2439 		if (task_set_jobctl_pending(current, signr | gstop))
2440 			sig->group_stop_count++;
2441 
2442 		t = current;
2443 		while_each_thread(current, t) {
2444 			/*
2445 			 * Setting state to TASK_STOPPED for a group
2446 			 * stop is always done with the siglock held,
2447 			 * so this check has no races.
2448 			 */
2449 			if (!task_is_stopped(t) &&
2450 			    task_set_jobctl_pending(t, signr | gstop)) {
2451 				sig->group_stop_count++;
2452 				if (likely(!(t->ptrace & PT_SEIZED)))
2453 					signal_wake_up(t, 0);
2454 				else
2455 					ptrace_trap_notify(t);
2456 			}
2457 		}
2458 	}
2459 
2460 	if (likely(!current->ptrace)) {
2461 		int notify = 0;
2462 
2463 		/*
2464 		 * If there are no other threads in the group, or if there
2465 		 * is a group stop in progress and we are the last to stop,
2466 		 * report to the parent.
2467 		 */
2468 		if (task_participate_group_stop(current))
2469 			notify = CLD_STOPPED;
2470 
2471 		current->jobctl |= JOBCTL_STOPPED;
2472 		set_special_state(TASK_STOPPED);
2473 		spin_unlock_irq(&current->sighand->siglock);
2474 
2475 		/*
2476 		 * Notify the parent of the group stop completion.  Because
2477 		 * we're not holding either the siglock or tasklist_lock
2478 		 * here, ptracer may attach inbetween; however, this is for
2479 		 * group stop and should always be delivered to the real
2480 		 * parent of the group leader.  The new ptracer will get
2481 		 * its notification when this task transitions into
2482 		 * TASK_TRACED.
2483 		 */
2484 		if (notify) {
2485 			read_lock(&tasklist_lock);
2486 			do_notify_parent_cldstop(current, false, notify);
2487 			read_unlock(&tasklist_lock);
2488 		}
2489 
2490 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2491 		cgroup_enter_frozen();
2492 		schedule();
2493 		return true;
2494 	} else {
2495 		/*
2496 		 * While ptraced, group stop is handled by STOP trap.
2497 		 * Schedule it and let the caller deal with it.
2498 		 */
2499 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2500 		return false;
2501 	}
2502 }
2503 
2504 /**
2505  * do_jobctl_trap - take care of ptrace jobctl traps
2506  *
2507  * When PT_SEIZED, it's used for both group stop and explicit
2508  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2509  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2510  * the stop signal; otherwise, %SIGTRAP.
2511  *
2512  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2513  * number as exit_code and no siginfo.
2514  *
2515  * CONTEXT:
2516  * Must be called with @current->sighand->siglock held, which may be
2517  * released and re-acquired before returning with intervening sleep.
2518  */
2519 static void do_jobctl_trap(void)
2520 {
2521 	struct signal_struct *signal = current->signal;
2522 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2523 
2524 	if (current->ptrace & PT_SEIZED) {
2525 		if (!signal->group_stop_count &&
2526 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2527 			signr = SIGTRAP;
2528 		WARN_ON_ONCE(!signr);
2529 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2530 				 CLD_STOPPED, 0);
2531 	} else {
2532 		WARN_ON_ONCE(!signr);
2533 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2534 	}
2535 }
2536 
2537 /**
2538  * do_freezer_trap - handle the freezer jobctl trap
2539  *
2540  * Puts the task into frozen state, if only the task is not about to quit.
2541  * In this case it drops JOBCTL_TRAP_FREEZE.
2542  *
2543  * CONTEXT:
2544  * Must be called with @current->sighand->siglock held,
2545  * which is always released before returning.
2546  */
2547 static void do_freezer_trap(void)
2548 	__releases(&current->sighand->siglock)
2549 {
2550 	/*
2551 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2552 	 * let's make another loop to give it a chance to be handled.
2553 	 * In any case, we'll return back.
2554 	 */
2555 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2556 	     JOBCTL_TRAP_FREEZE) {
2557 		spin_unlock_irq(&current->sighand->siglock);
2558 		return;
2559 	}
2560 
2561 	/*
2562 	 * Now we're sure that there is no pending fatal signal and no
2563 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2564 	 * immediately (if there is a non-fatal signal pending), and
2565 	 * put the task into sleep.
2566 	 */
2567 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2568 	clear_thread_flag(TIF_SIGPENDING);
2569 	spin_unlock_irq(&current->sighand->siglock);
2570 	cgroup_enter_frozen();
2571 	schedule();
2572 }
2573 
2574 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2575 {
2576 	/*
2577 	 * We do not check sig_kernel_stop(signr) but set this marker
2578 	 * unconditionally because we do not know whether debugger will
2579 	 * change signr. This flag has no meaning unless we are going
2580 	 * to stop after return from ptrace_stop(). In this case it will
2581 	 * be checked in do_signal_stop(), we should only stop if it was
2582 	 * not cleared by SIGCONT while we were sleeping. See also the
2583 	 * comment in dequeue_signal().
2584 	 */
2585 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2586 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2587 
2588 	/* We're back.  Did the debugger cancel the sig?  */
2589 	if (signr == 0)
2590 		return signr;
2591 
2592 	/*
2593 	 * Update the siginfo structure if the signal has
2594 	 * changed.  If the debugger wanted something
2595 	 * specific in the siginfo structure then it should
2596 	 * have updated *info via PTRACE_SETSIGINFO.
2597 	 */
2598 	if (signr != info->si_signo) {
2599 		clear_siginfo(info);
2600 		info->si_signo = signr;
2601 		info->si_errno = 0;
2602 		info->si_code = SI_USER;
2603 		rcu_read_lock();
2604 		info->si_pid = task_pid_vnr(current->parent);
2605 		info->si_uid = from_kuid_munged(current_user_ns(),
2606 						task_uid(current->parent));
2607 		rcu_read_unlock();
2608 	}
2609 
2610 	/* If the (new) signal is now blocked, requeue it.  */
2611 	if (sigismember(&current->blocked, signr) ||
2612 	    fatal_signal_pending(current)) {
2613 		send_signal_locked(signr, info, current, type);
2614 		signr = 0;
2615 	}
2616 
2617 	return signr;
2618 }
2619 
2620 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2621 {
2622 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2623 	case SIL_FAULT:
2624 	case SIL_FAULT_TRAPNO:
2625 	case SIL_FAULT_MCEERR:
2626 	case SIL_FAULT_BNDERR:
2627 	case SIL_FAULT_PKUERR:
2628 	case SIL_FAULT_PERF_EVENT:
2629 		ksig->info.si_addr = arch_untagged_si_addr(
2630 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2631 		break;
2632 	case SIL_KILL:
2633 	case SIL_TIMER:
2634 	case SIL_POLL:
2635 	case SIL_CHLD:
2636 	case SIL_RT:
2637 	case SIL_SYS:
2638 		break;
2639 	}
2640 }
2641 
2642 bool get_signal(struct ksignal *ksig)
2643 {
2644 	struct sighand_struct *sighand = current->sighand;
2645 	struct signal_struct *signal = current->signal;
2646 	int signr;
2647 
2648 	clear_notify_signal();
2649 	if (unlikely(task_work_pending(current)))
2650 		task_work_run();
2651 
2652 	if (!task_sigpending(current))
2653 		return false;
2654 
2655 	if (unlikely(uprobe_deny_signal()))
2656 		return false;
2657 
2658 	/*
2659 	 * Do this once, we can't return to user-mode if freezing() == T.
2660 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2661 	 * thus do not need another check after return.
2662 	 */
2663 	try_to_freeze();
2664 
2665 relock:
2666 	spin_lock_irq(&sighand->siglock);
2667 
2668 	/*
2669 	 * Every stopped thread goes here after wakeup. Check to see if
2670 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2671 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2672 	 */
2673 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2674 		int why;
2675 
2676 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2677 			why = CLD_CONTINUED;
2678 		else
2679 			why = CLD_STOPPED;
2680 
2681 		signal->flags &= ~SIGNAL_CLD_MASK;
2682 
2683 		spin_unlock_irq(&sighand->siglock);
2684 
2685 		/*
2686 		 * Notify the parent that we're continuing.  This event is
2687 		 * always per-process and doesn't make whole lot of sense
2688 		 * for ptracers, who shouldn't consume the state via
2689 		 * wait(2) either, but, for backward compatibility, notify
2690 		 * the ptracer of the group leader too unless it's gonna be
2691 		 * a duplicate.
2692 		 */
2693 		read_lock(&tasklist_lock);
2694 		do_notify_parent_cldstop(current, false, why);
2695 
2696 		if (ptrace_reparented(current->group_leader))
2697 			do_notify_parent_cldstop(current->group_leader,
2698 						true, why);
2699 		read_unlock(&tasklist_lock);
2700 
2701 		goto relock;
2702 	}
2703 
2704 	for (;;) {
2705 		struct k_sigaction *ka;
2706 		enum pid_type type;
2707 
2708 		/* Has this task already been marked for death? */
2709 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2710 		     signal->group_exec_task) {
2711 			clear_siginfo(&ksig->info);
2712 			ksig->info.si_signo = signr = SIGKILL;
2713 			sigdelset(&current->pending.signal, SIGKILL);
2714 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2715 				&sighand->action[SIGKILL - 1]);
2716 			recalc_sigpending();
2717 			goto fatal;
2718 		}
2719 
2720 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2721 		    do_signal_stop(0))
2722 			goto relock;
2723 
2724 		if (unlikely(current->jobctl &
2725 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2726 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2727 				do_jobctl_trap();
2728 				spin_unlock_irq(&sighand->siglock);
2729 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2730 				do_freezer_trap();
2731 
2732 			goto relock;
2733 		}
2734 
2735 		/*
2736 		 * If the task is leaving the frozen state, let's update
2737 		 * cgroup counters and reset the frozen bit.
2738 		 */
2739 		if (unlikely(cgroup_task_frozen(current))) {
2740 			spin_unlock_irq(&sighand->siglock);
2741 			cgroup_leave_frozen(false);
2742 			goto relock;
2743 		}
2744 
2745 		/*
2746 		 * Signals generated by the execution of an instruction
2747 		 * need to be delivered before any other pending signals
2748 		 * so that the instruction pointer in the signal stack
2749 		 * frame points to the faulting instruction.
2750 		 */
2751 		type = PIDTYPE_PID;
2752 		signr = dequeue_synchronous_signal(&ksig->info);
2753 		if (!signr)
2754 			signr = dequeue_signal(current, &current->blocked,
2755 					       &ksig->info, &type);
2756 
2757 		if (!signr)
2758 			break; /* will return 0 */
2759 
2760 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2761 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2762 			signr = ptrace_signal(signr, &ksig->info, type);
2763 			if (!signr)
2764 				continue;
2765 		}
2766 
2767 		ka = &sighand->action[signr-1];
2768 
2769 		/* Trace actually delivered signals. */
2770 		trace_signal_deliver(signr, &ksig->info, ka);
2771 
2772 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2773 			continue;
2774 		if (ka->sa.sa_handler != SIG_DFL) {
2775 			/* Run the handler.  */
2776 			ksig->ka = *ka;
2777 
2778 			if (ka->sa.sa_flags & SA_ONESHOT)
2779 				ka->sa.sa_handler = SIG_DFL;
2780 
2781 			break; /* will return non-zero "signr" value */
2782 		}
2783 
2784 		/*
2785 		 * Now we are doing the default action for this signal.
2786 		 */
2787 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2788 			continue;
2789 
2790 		/*
2791 		 * Global init gets no signals it doesn't want.
2792 		 * Container-init gets no signals it doesn't want from same
2793 		 * container.
2794 		 *
2795 		 * Note that if global/container-init sees a sig_kernel_only()
2796 		 * signal here, the signal must have been generated internally
2797 		 * or must have come from an ancestor namespace. In either
2798 		 * case, the signal cannot be dropped.
2799 		 */
2800 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2801 				!sig_kernel_only(signr))
2802 			continue;
2803 
2804 		if (sig_kernel_stop(signr)) {
2805 			/*
2806 			 * The default action is to stop all threads in
2807 			 * the thread group.  The job control signals
2808 			 * do nothing in an orphaned pgrp, but SIGSTOP
2809 			 * always works.  Note that siglock needs to be
2810 			 * dropped during the call to is_orphaned_pgrp()
2811 			 * because of lock ordering with tasklist_lock.
2812 			 * This allows an intervening SIGCONT to be posted.
2813 			 * We need to check for that and bail out if necessary.
2814 			 */
2815 			if (signr != SIGSTOP) {
2816 				spin_unlock_irq(&sighand->siglock);
2817 
2818 				/* signals can be posted during this window */
2819 
2820 				if (is_current_pgrp_orphaned())
2821 					goto relock;
2822 
2823 				spin_lock_irq(&sighand->siglock);
2824 			}
2825 
2826 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2827 				/* It released the siglock.  */
2828 				goto relock;
2829 			}
2830 
2831 			/*
2832 			 * We didn't actually stop, due to a race
2833 			 * with SIGCONT or something like that.
2834 			 */
2835 			continue;
2836 		}
2837 
2838 	fatal:
2839 		spin_unlock_irq(&sighand->siglock);
2840 		if (unlikely(cgroup_task_frozen(current)))
2841 			cgroup_leave_frozen(true);
2842 
2843 		/*
2844 		 * Anything else is fatal, maybe with a core dump.
2845 		 */
2846 		current->flags |= PF_SIGNALED;
2847 
2848 		if (sig_kernel_coredump(signr)) {
2849 			if (print_fatal_signals)
2850 				print_fatal_signal(ksig->info.si_signo);
2851 			proc_coredump_connector(current);
2852 			/*
2853 			 * If it was able to dump core, this kills all
2854 			 * other threads in the group and synchronizes with
2855 			 * their demise.  If we lost the race with another
2856 			 * thread getting here, it set group_exit_code
2857 			 * first and our do_group_exit call below will use
2858 			 * that value and ignore the one we pass it.
2859 			 */
2860 			do_coredump(&ksig->info);
2861 		}
2862 
2863 		/*
2864 		 * PF_IO_WORKER threads will catch and exit on fatal signals
2865 		 * themselves. They have cleanup that must be performed, so
2866 		 * we cannot call do_exit() on their behalf.
2867 		 */
2868 		if (current->flags & PF_IO_WORKER)
2869 			goto out;
2870 
2871 		/*
2872 		 * Death signals, no core dump.
2873 		 */
2874 		do_group_exit(ksig->info.si_signo);
2875 		/* NOTREACHED */
2876 	}
2877 	spin_unlock_irq(&sighand->siglock);
2878 out:
2879 	ksig->sig = signr;
2880 
2881 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2882 		hide_si_addr_tag_bits(ksig);
2883 
2884 	return ksig->sig > 0;
2885 }
2886 
2887 /**
2888  * signal_delivered - called after signal delivery to update blocked signals
2889  * @ksig:		kernel signal struct
2890  * @stepping:		nonzero if debugger single-step or block-step in use
2891  *
2892  * This function should be called when a signal has successfully been
2893  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2894  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2895  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2896  */
2897 static void signal_delivered(struct ksignal *ksig, int stepping)
2898 {
2899 	sigset_t blocked;
2900 
2901 	/* A signal was successfully delivered, and the
2902 	   saved sigmask was stored on the signal frame,
2903 	   and will be restored by sigreturn.  So we can
2904 	   simply clear the restore sigmask flag.  */
2905 	clear_restore_sigmask();
2906 
2907 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2908 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2909 		sigaddset(&blocked, ksig->sig);
2910 	set_current_blocked(&blocked);
2911 	if (current->sas_ss_flags & SS_AUTODISARM)
2912 		sas_ss_reset(current);
2913 	if (stepping)
2914 		ptrace_notify(SIGTRAP, 0);
2915 }
2916 
2917 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2918 {
2919 	if (failed)
2920 		force_sigsegv(ksig->sig);
2921 	else
2922 		signal_delivered(ksig, stepping);
2923 }
2924 
2925 /*
2926  * It could be that complete_signal() picked us to notify about the
2927  * group-wide signal. Other threads should be notified now to take
2928  * the shared signals in @which since we will not.
2929  */
2930 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2931 {
2932 	sigset_t retarget;
2933 	struct task_struct *t;
2934 
2935 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2936 	if (sigisemptyset(&retarget))
2937 		return;
2938 
2939 	t = tsk;
2940 	while_each_thread(tsk, t) {
2941 		if (t->flags & PF_EXITING)
2942 			continue;
2943 
2944 		if (!has_pending_signals(&retarget, &t->blocked))
2945 			continue;
2946 		/* Remove the signals this thread can handle. */
2947 		sigandsets(&retarget, &retarget, &t->blocked);
2948 
2949 		if (!task_sigpending(t))
2950 			signal_wake_up(t, 0);
2951 
2952 		if (sigisemptyset(&retarget))
2953 			break;
2954 	}
2955 }
2956 
2957 void exit_signals(struct task_struct *tsk)
2958 {
2959 	int group_stop = 0;
2960 	sigset_t unblocked;
2961 
2962 	/*
2963 	 * @tsk is about to have PF_EXITING set - lock out users which
2964 	 * expect stable threadgroup.
2965 	 */
2966 	cgroup_threadgroup_change_begin(tsk);
2967 
2968 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2969 		sched_mm_cid_exit_signals(tsk);
2970 		tsk->flags |= PF_EXITING;
2971 		cgroup_threadgroup_change_end(tsk);
2972 		return;
2973 	}
2974 
2975 	spin_lock_irq(&tsk->sighand->siglock);
2976 	/*
2977 	 * From now this task is not visible for group-wide signals,
2978 	 * see wants_signal(), do_signal_stop().
2979 	 */
2980 	sched_mm_cid_exit_signals(tsk);
2981 	tsk->flags |= PF_EXITING;
2982 
2983 	cgroup_threadgroup_change_end(tsk);
2984 
2985 	if (!task_sigpending(tsk))
2986 		goto out;
2987 
2988 	unblocked = tsk->blocked;
2989 	signotset(&unblocked);
2990 	retarget_shared_pending(tsk, &unblocked);
2991 
2992 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2993 	    task_participate_group_stop(tsk))
2994 		group_stop = CLD_STOPPED;
2995 out:
2996 	spin_unlock_irq(&tsk->sighand->siglock);
2997 
2998 	/*
2999 	 * If group stop has completed, deliver the notification.  This
3000 	 * should always go to the real parent of the group leader.
3001 	 */
3002 	if (unlikely(group_stop)) {
3003 		read_lock(&tasklist_lock);
3004 		do_notify_parent_cldstop(tsk, false, group_stop);
3005 		read_unlock(&tasklist_lock);
3006 	}
3007 }
3008 
3009 /*
3010  * System call entry points.
3011  */
3012 
3013 /**
3014  *  sys_restart_syscall - restart a system call
3015  */
3016 SYSCALL_DEFINE0(restart_syscall)
3017 {
3018 	struct restart_block *restart = &current->restart_block;
3019 	return restart->fn(restart);
3020 }
3021 
3022 long do_no_restart_syscall(struct restart_block *param)
3023 {
3024 	return -EINTR;
3025 }
3026 
3027 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3028 {
3029 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3030 		sigset_t newblocked;
3031 		/* A set of now blocked but previously unblocked signals. */
3032 		sigandnsets(&newblocked, newset, &current->blocked);
3033 		retarget_shared_pending(tsk, &newblocked);
3034 	}
3035 	tsk->blocked = *newset;
3036 	recalc_sigpending();
3037 }
3038 
3039 /**
3040  * set_current_blocked - change current->blocked mask
3041  * @newset: new mask
3042  *
3043  * It is wrong to change ->blocked directly, this helper should be used
3044  * to ensure the process can't miss a shared signal we are going to block.
3045  */
3046 void set_current_blocked(sigset_t *newset)
3047 {
3048 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3049 	__set_current_blocked(newset);
3050 }
3051 
3052 void __set_current_blocked(const sigset_t *newset)
3053 {
3054 	struct task_struct *tsk = current;
3055 
3056 	/*
3057 	 * In case the signal mask hasn't changed, there is nothing we need
3058 	 * to do. The current->blocked shouldn't be modified by other task.
3059 	 */
3060 	if (sigequalsets(&tsk->blocked, newset))
3061 		return;
3062 
3063 	spin_lock_irq(&tsk->sighand->siglock);
3064 	__set_task_blocked(tsk, newset);
3065 	spin_unlock_irq(&tsk->sighand->siglock);
3066 }
3067 
3068 /*
3069  * This is also useful for kernel threads that want to temporarily
3070  * (or permanently) block certain signals.
3071  *
3072  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3073  * interface happily blocks "unblockable" signals like SIGKILL
3074  * and friends.
3075  */
3076 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3077 {
3078 	struct task_struct *tsk = current;
3079 	sigset_t newset;
3080 
3081 	/* Lockless, only current can change ->blocked, never from irq */
3082 	if (oldset)
3083 		*oldset = tsk->blocked;
3084 
3085 	switch (how) {
3086 	case SIG_BLOCK:
3087 		sigorsets(&newset, &tsk->blocked, set);
3088 		break;
3089 	case SIG_UNBLOCK:
3090 		sigandnsets(&newset, &tsk->blocked, set);
3091 		break;
3092 	case SIG_SETMASK:
3093 		newset = *set;
3094 		break;
3095 	default:
3096 		return -EINVAL;
3097 	}
3098 
3099 	__set_current_blocked(&newset);
3100 	return 0;
3101 }
3102 EXPORT_SYMBOL(sigprocmask);
3103 
3104 /*
3105  * The api helps set app-provided sigmasks.
3106  *
3107  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3108  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3109  *
3110  * Note that it does set_restore_sigmask() in advance, so it must be always
3111  * paired with restore_saved_sigmask_unless() before return from syscall.
3112  */
3113 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3114 {
3115 	sigset_t kmask;
3116 
3117 	if (!umask)
3118 		return 0;
3119 	if (sigsetsize != sizeof(sigset_t))
3120 		return -EINVAL;
3121 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3122 		return -EFAULT;
3123 
3124 	set_restore_sigmask();
3125 	current->saved_sigmask = current->blocked;
3126 	set_current_blocked(&kmask);
3127 
3128 	return 0;
3129 }
3130 
3131 #ifdef CONFIG_COMPAT
3132 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3133 			    size_t sigsetsize)
3134 {
3135 	sigset_t kmask;
3136 
3137 	if (!umask)
3138 		return 0;
3139 	if (sigsetsize != sizeof(compat_sigset_t))
3140 		return -EINVAL;
3141 	if (get_compat_sigset(&kmask, umask))
3142 		return -EFAULT;
3143 
3144 	set_restore_sigmask();
3145 	current->saved_sigmask = current->blocked;
3146 	set_current_blocked(&kmask);
3147 
3148 	return 0;
3149 }
3150 #endif
3151 
3152 /**
3153  *  sys_rt_sigprocmask - change the list of currently blocked signals
3154  *  @how: whether to add, remove, or set signals
3155  *  @nset: stores pending signals
3156  *  @oset: previous value of signal mask if non-null
3157  *  @sigsetsize: size of sigset_t type
3158  */
3159 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3160 		sigset_t __user *, oset, size_t, sigsetsize)
3161 {
3162 	sigset_t old_set, new_set;
3163 	int error;
3164 
3165 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3166 	if (sigsetsize != sizeof(sigset_t))
3167 		return -EINVAL;
3168 
3169 	old_set = current->blocked;
3170 
3171 	if (nset) {
3172 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3173 			return -EFAULT;
3174 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3175 
3176 		error = sigprocmask(how, &new_set, NULL);
3177 		if (error)
3178 			return error;
3179 	}
3180 
3181 	if (oset) {
3182 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3183 			return -EFAULT;
3184 	}
3185 
3186 	return 0;
3187 }
3188 
3189 #ifdef CONFIG_COMPAT
3190 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3191 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3192 {
3193 	sigset_t old_set = current->blocked;
3194 
3195 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3196 	if (sigsetsize != sizeof(sigset_t))
3197 		return -EINVAL;
3198 
3199 	if (nset) {
3200 		sigset_t new_set;
3201 		int error;
3202 		if (get_compat_sigset(&new_set, nset))
3203 			return -EFAULT;
3204 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3205 
3206 		error = sigprocmask(how, &new_set, NULL);
3207 		if (error)
3208 			return error;
3209 	}
3210 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3211 }
3212 #endif
3213 
3214 static void do_sigpending(sigset_t *set)
3215 {
3216 	spin_lock_irq(&current->sighand->siglock);
3217 	sigorsets(set, &current->pending.signal,
3218 		  &current->signal->shared_pending.signal);
3219 	spin_unlock_irq(&current->sighand->siglock);
3220 
3221 	/* Outside the lock because only this thread touches it.  */
3222 	sigandsets(set, &current->blocked, set);
3223 }
3224 
3225 /**
3226  *  sys_rt_sigpending - examine a pending signal that has been raised
3227  *			while blocked
3228  *  @uset: stores pending signals
3229  *  @sigsetsize: size of sigset_t type or larger
3230  */
3231 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3232 {
3233 	sigset_t set;
3234 
3235 	if (sigsetsize > sizeof(*uset))
3236 		return -EINVAL;
3237 
3238 	do_sigpending(&set);
3239 
3240 	if (copy_to_user(uset, &set, sigsetsize))
3241 		return -EFAULT;
3242 
3243 	return 0;
3244 }
3245 
3246 #ifdef CONFIG_COMPAT
3247 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3248 		compat_size_t, sigsetsize)
3249 {
3250 	sigset_t set;
3251 
3252 	if (sigsetsize > sizeof(*uset))
3253 		return -EINVAL;
3254 
3255 	do_sigpending(&set);
3256 
3257 	return put_compat_sigset(uset, &set, sigsetsize);
3258 }
3259 #endif
3260 
3261 static const struct {
3262 	unsigned char limit, layout;
3263 } sig_sicodes[] = {
3264 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3265 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3266 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3267 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3268 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3269 #if defined(SIGEMT)
3270 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3271 #endif
3272 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3273 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3274 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3275 };
3276 
3277 static bool known_siginfo_layout(unsigned sig, int si_code)
3278 {
3279 	if (si_code == SI_KERNEL)
3280 		return true;
3281 	else if ((si_code > SI_USER)) {
3282 		if (sig_specific_sicodes(sig)) {
3283 			if (si_code <= sig_sicodes[sig].limit)
3284 				return true;
3285 		}
3286 		else if (si_code <= NSIGPOLL)
3287 			return true;
3288 	}
3289 	else if (si_code >= SI_DETHREAD)
3290 		return true;
3291 	else if (si_code == SI_ASYNCNL)
3292 		return true;
3293 	return false;
3294 }
3295 
3296 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3297 {
3298 	enum siginfo_layout layout = SIL_KILL;
3299 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3300 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3301 		    (si_code <= sig_sicodes[sig].limit)) {
3302 			layout = sig_sicodes[sig].layout;
3303 			/* Handle the exceptions */
3304 			if ((sig == SIGBUS) &&
3305 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3306 				layout = SIL_FAULT_MCEERR;
3307 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3308 				layout = SIL_FAULT_BNDERR;
3309 #ifdef SEGV_PKUERR
3310 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3311 				layout = SIL_FAULT_PKUERR;
3312 #endif
3313 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3314 				layout = SIL_FAULT_PERF_EVENT;
3315 			else if (IS_ENABLED(CONFIG_SPARC) &&
3316 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3317 				layout = SIL_FAULT_TRAPNO;
3318 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3319 				 ((sig == SIGFPE) ||
3320 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3321 				layout = SIL_FAULT_TRAPNO;
3322 		}
3323 		else if (si_code <= NSIGPOLL)
3324 			layout = SIL_POLL;
3325 	} else {
3326 		if (si_code == SI_TIMER)
3327 			layout = SIL_TIMER;
3328 		else if (si_code == SI_SIGIO)
3329 			layout = SIL_POLL;
3330 		else if (si_code < 0)
3331 			layout = SIL_RT;
3332 	}
3333 	return layout;
3334 }
3335 
3336 static inline char __user *si_expansion(const siginfo_t __user *info)
3337 {
3338 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3339 }
3340 
3341 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3342 {
3343 	char __user *expansion = si_expansion(to);
3344 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3345 		return -EFAULT;
3346 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3347 		return -EFAULT;
3348 	return 0;
3349 }
3350 
3351 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3352 				       const siginfo_t __user *from)
3353 {
3354 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3355 		char __user *expansion = si_expansion(from);
3356 		char buf[SI_EXPANSION_SIZE];
3357 		int i;
3358 		/*
3359 		 * An unknown si_code might need more than
3360 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3361 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3362 		 * will return this data to userspace exactly.
3363 		 */
3364 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3365 			return -EFAULT;
3366 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3367 			if (buf[i] != 0)
3368 				return -E2BIG;
3369 		}
3370 	}
3371 	return 0;
3372 }
3373 
3374 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3375 				    const siginfo_t __user *from)
3376 {
3377 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3378 		return -EFAULT;
3379 	to->si_signo = signo;
3380 	return post_copy_siginfo_from_user(to, from);
3381 }
3382 
3383 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3384 {
3385 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3386 		return -EFAULT;
3387 	return post_copy_siginfo_from_user(to, from);
3388 }
3389 
3390 #ifdef CONFIG_COMPAT
3391 /**
3392  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3393  * @to: compat siginfo destination
3394  * @from: kernel siginfo source
3395  *
3396  * Note: This function does not work properly for the SIGCHLD on x32, but
3397  * fortunately it doesn't have to.  The only valid callers for this function are
3398  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3399  * The latter does not care because SIGCHLD will never cause a coredump.
3400  */
3401 void copy_siginfo_to_external32(struct compat_siginfo *to,
3402 		const struct kernel_siginfo *from)
3403 {
3404 	memset(to, 0, sizeof(*to));
3405 
3406 	to->si_signo = from->si_signo;
3407 	to->si_errno = from->si_errno;
3408 	to->si_code  = from->si_code;
3409 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3410 	case SIL_KILL:
3411 		to->si_pid = from->si_pid;
3412 		to->si_uid = from->si_uid;
3413 		break;
3414 	case SIL_TIMER:
3415 		to->si_tid     = from->si_tid;
3416 		to->si_overrun = from->si_overrun;
3417 		to->si_int     = from->si_int;
3418 		break;
3419 	case SIL_POLL:
3420 		to->si_band = from->si_band;
3421 		to->si_fd   = from->si_fd;
3422 		break;
3423 	case SIL_FAULT:
3424 		to->si_addr = ptr_to_compat(from->si_addr);
3425 		break;
3426 	case SIL_FAULT_TRAPNO:
3427 		to->si_addr = ptr_to_compat(from->si_addr);
3428 		to->si_trapno = from->si_trapno;
3429 		break;
3430 	case SIL_FAULT_MCEERR:
3431 		to->si_addr = ptr_to_compat(from->si_addr);
3432 		to->si_addr_lsb = from->si_addr_lsb;
3433 		break;
3434 	case SIL_FAULT_BNDERR:
3435 		to->si_addr = ptr_to_compat(from->si_addr);
3436 		to->si_lower = ptr_to_compat(from->si_lower);
3437 		to->si_upper = ptr_to_compat(from->si_upper);
3438 		break;
3439 	case SIL_FAULT_PKUERR:
3440 		to->si_addr = ptr_to_compat(from->si_addr);
3441 		to->si_pkey = from->si_pkey;
3442 		break;
3443 	case SIL_FAULT_PERF_EVENT:
3444 		to->si_addr = ptr_to_compat(from->si_addr);
3445 		to->si_perf_data = from->si_perf_data;
3446 		to->si_perf_type = from->si_perf_type;
3447 		to->si_perf_flags = from->si_perf_flags;
3448 		break;
3449 	case SIL_CHLD:
3450 		to->si_pid = from->si_pid;
3451 		to->si_uid = from->si_uid;
3452 		to->si_status = from->si_status;
3453 		to->si_utime = from->si_utime;
3454 		to->si_stime = from->si_stime;
3455 		break;
3456 	case SIL_RT:
3457 		to->si_pid = from->si_pid;
3458 		to->si_uid = from->si_uid;
3459 		to->si_int = from->si_int;
3460 		break;
3461 	case SIL_SYS:
3462 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3463 		to->si_syscall   = from->si_syscall;
3464 		to->si_arch      = from->si_arch;
3465 		break;
3466 	}
3467 }
3468 
3469 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3470 			   const struct kernel_siginfo *from)
3471 {
3472 	struct compat_siginfo new;
3473 
3474 	copy_siginfo_to_external32(&new, from);
3475 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3476 		return -EFAULT;
3477 	return 0;
3478 }
3479 
3480 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3481 					 const struct compat_siginfo *from)
3482 {
3483 	clear_siginfo(to);
3484 	to->si_signo = from->si_signo;
3485 	to->si_errno = from->si_errno;
3486 	to->si_code  = from->si_code;
3487 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3488 	case SIL_KILL:
3489 		to->si_pid = from->si_pid;
3490 		to->si_uid = from->si_uid;
3491 		break;
3492 	case SIL_TIMER:
3493 		to->si_tid     = from->si_tid;
3494 		to->si_overrun = from->si_overrun;
3495 		to->si_int     = from->si_int;
3496 		break;
3497 	case SIL_POLL:
3498 		to->si_band = from->si_band;
3499 		to->si_fd   = from->si_fd;
3500 		break;
3501 	case SIL_FAULT:
3502 		to->si_addr = compat_ptr(from->si_addr);
3503 		break;
3504 	case SIL_FAULT_TRAPNO:
3505 		to->si_addr = compat_ptr(from->si_addr);
3506 		to->si_trapno = from->si_trapno;
3507 		break;
3508 	case SIL_FAULT_MCEERR:
3509 		to->si_addr = compat_ptr(from->si_addr);
3510 		to->si_addr_lsb = from->si_addr_lsb;
3511 		break;
3512 	case SIL_FAULT_BNDERR:
3513 		to->si_addr = compat_ptr(from->si_addr);
3514 		to->si_lower = compat_ptr(from->si_lower);
3515 		to->si_upper = compat_ptr(from->si_upper);
3516 		break;
3517 	case SIL_FAULT_PKUERR:
3518 		to->si_addr = compat_ptr(from->si_addr);
3519 		to->si_pkey = from->si_pkey;
3520 		break;
3521 	case SIL_FAULT_PERF_EVENT:
3522 		to->si_addr = compat_ptr(from->si_addr);
3523 		to->si_perf_data = from->si_perf_data;
3524 		to->si_perf_type = from->si_perf_type;
3525 		to->si_perf_flags = from->si_perf_flags;
3526 		break;
3527 	case SIL_CHLD:
3528 		to->si_pid    = from->si_pid;
3529 		to->si_uid    = from->si_uid;
3530 		to->si_status = from->si_status;
3531 #ifdef CONFIG_X86_X32_ABI
3532 		if (in_x32_syscall()) {
3533 			to->si_utime = from->_sifields._sigchld_x32._utime;
3534 			to->si_stime = from->_sifields._sigchld_x32._stime;
3535 		} else
3536 #endif
3537 		{
3538 			to->si_utime = from->si_utime;
3539 			to->si_stime = from->si_stime;
3540 		}
3541 		break;
3542 	case SIL_RT:
3543 		to->si_pid = from->si_pid;
3544 		to->si_uid = from->si_uid;
3545 		to->si_int = from->si_int;
3546 		break;
3547 	case SIL_SYS:
3548 		to->si_call_addr = compat_ptr(from->si_call_addr);
3549 		to->si_syscall   = from->si_syscall;
3550 		to->si_arch      = from->si_arch;
3551 		break;
3552 	}
3553 	return 0;
3554 }
3555 
3556 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3557 				      const struct compat_siginfo __user *ufrom)
3558 {
3559 	struct compat_siginfo from;
3560 
3561 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3562 		return -EFAULT;
3563 
3564 	from.si_signo = signo;
3565 	return post_copy_siginfo_from_user32(to, &from);
3566 }
3567 
3568 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3569 			     const struct compat_siginfo __user *ufrom)
3570 {
3571 	struct compat_siginfo from;
3572 
3573 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3574 		return -EFAULT;
3575 
3576 	return post_copy_siginfo_from_user32(to, &from);
3577 }
3578 #endif /* CONFIG_COMPAT */
3579 
3580 /**
3581  *  do_sigtimedwait - wait for queued signals specified in @which
3582  *  @which: queued signals to wait for
3583  *  @info: if non-null, the signal's siginfo is returned here
3584  *  @ts: upper bound on process time suspension
3585  */
3586 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3587 		    const struct timespec64 *ts)
3588 {
3589 	ktime_t *to = NULL, timeout = KTIME_MAX;
3590 	struct task_struct *tsk = current;
3591 	sigset_t mask = *which;
3592 	enum pid_type type;
3593 	int sig, ret = 0;
3594 
3595 	if (ts) {
3596 		if (!timespec64_valid(ts))
3597 			return -EINVAL;
3598 		timeout = timespec64_to_ktime(*ts);
3599 		to = &timeout;
3600 	}
3601 
3602 	/*
3603 	 * Invert the set of allowed signals to get those we want to block.
3604 	 */
3605 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3606 	signotset(&mask);
3607 
3608 	spin_lock_irq(&tsk->sighand->siglock);
3609 	sig = dequeue_signal(tsk, &mask, info, &type);
3610 	if (!sig && timeout) {
3611 		/*
3612 		 * None ready, temporarily unblock those we're interested
3613 		 * while we are sleeping in so that we'll be awakened when
3614 		 * they arrive. Unblocking is always fine, we can avoid
3615 		 * set_current_blocked().
3616 		 */
3617 		tsk->real_blocked = tsk->blocked;
3618 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3619 		recalc_sigpending();
3620 		spin_unlock_irq(&tsk->sighand->siglock);
3621 
3622 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3623 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3624 					       HRTIMER_MODE_REL);
3625 		spin_lock_irq(&tsk->sighand->siglock);
3626 		__set_task_blocked(tsk, &tsk->real_blocked);
3627 		sigemptyset(&tsk->real_blocked);
3628 		sig = dequeue_signal(tsk, &mask, info, &type);
3629 	}
3630 	spin_unlock_irq(&tsk->sighand->siglock);
3631 
3632 	if (sig)
3633 		return sig;
3634 	return ret ? -EINTR : -EAGAIN;
3635 }
3636 
3637 /**
3638  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3639  *			in @uthese
3640  *  @uthese: queued signals to wait for
3641  *  @uinfo: if non-null, the signal's siginfo is returned here
3642  *  @uts: upper bound on process time suspension
3643  *  @sigsetsize: size of sigset_t type
3644  */
3645 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3646 		siginfo_t __user *, uinfo,
3647 		const struct __kernel_timespec __user *, uts,
3648 		size_t, sigsetsize)
3649 {
3650 	sigset_t these;
3651 	struct timespec64 ts;
3652 	kernel_siginfo_t info;
3653 	int ret;
3654 
3655 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3656 	if (sigsetsize != sizeof(sigset_t))
3657 		return -EINVAL;
3658 
3659 	if (copy_from_user(&these, uthese, sizeof(these)))
3660 		return -EFAULT;
3661 
3662 	if (uts) {
3663 		if (get_timespec64(&ts, uts))
3664 			return -EFAULT;
3665 	}
3666 
3667 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3668 
3669 	if (ret > 0 && uinfo) {
3670 		if (copy_siginfo_to_user(uinfo, &info))
3671 			ret = -EFAULT;
3672 	}
3673 
3674 	return ret;
3675 }
3676 
3677 #ifdef CONFIG_COMPAT_32BIT_TIME
3678 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3679 		siginfo_t __user *, uinfo,
3680 		const struct old_timespec32 __user *, uts,
3681 		size_t, sigsetsize)
3682 {
3683 	sigset_t these;
3684 	struct timespec64 ts;
3685 	kernel_siginfo_t info;
3686 	int ret;
3687 
3688 	if (sigsetsize != sizeof(sigset_t))
3689 		return -EINVAL;
3690 
3691 	if (copy_from_user(&these, uthese, sizeof(these)))
3692 		return -EFAULT;
3693 
3694 	if (uts) {
3695 		if (get_old_timespec32(&ts, uts))
3696 			return -EFAULT;
3697 	}
3698 
3699 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3700 
3701 	if (ret > 0 && uinfo) {
3702 		if (copy_siginfo_to_user(uinfo, &info))
3703 			ret = -EFAULT;
3704 	}
3705 
3706 	return ret;
3707 }
3708 #endif
3709 
3710 #ifdef CONFIG_COMPAT
3711 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3712 		struct compat_siginfo __user *, uinfo,
3713 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3714 {
3715 	sigset_t s;
3716 	struct timespec64 t;
3717 	kernel_siginfo_t info;
3718 	long ret;
3719 
3720 	if (sigsetsize != sizeof(sigset_t))
3721 		return -EINVAL;
3722 
3723 	if (get_compat_sigset(&s, uthese))
3724 		return -EFAULT;
3725 
3726 	if (uts) {
3727 		if (get_timespec64(&t, uts))
3728 			return -EFAULT;
3729 	}
3730 
3731 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3732 
3733 	if (ret > 0 && uinfo) {
3734 		if (copy_siginfo_to_user32(uinfo, &info))
3735 			ret = -EFAULT;
3736 	}
3737 
3738 	return ret;
3739 }
3740 
3741 #ifdef CONFIG_COMPAT_32BIT_TIME
3742 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3743 		struct compat_siginfo __user *, uinfo,
3744 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3745 {
3746 	sigset_t s;
3747 	struct timespec64 t;
3748 	kernel_siginfo_t info;
3749 	long ret;
3750 
3751 	if (sigsetsize != sizeof(sigset_t))
3752 		return -EINVAL;
3753 
3754 	if (get_compat_sigset(&s, uthese))
3755 		return -EFAULT;
3756 
3757 	if (uts) {
3758 		if (get_old_timespec32(&t, uts))
3759 			return -EFAULT;
3760 	}
3761 
3762 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3763 
3764 	if (ret > 0 && uinfo) {
3765 		if (copy_siginfo_to_user32(uinfo, &info))
3766 			ret = -EFAULT;
3767 	}
3768 
3769 	return ret;
3770 }
3771 #endif
3772 #endif
3773 
3774 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3775 {
3776 	clear_siginfo(info);
3777 	info->si_signo = sig;
3778 	info->si_errno = 0;
3779 	info->si_code = SI_USER;
3780 	info->si_pid = task_tgid_vnr(current);
3781 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3782 }
3783 
3784 /**
3785  *  sys_kill - send a signal to a process
3786  *  @pid: the PID of the process
3787  *  @sig: signal to be sent
3788  */
3789 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3790 {
3791 	struct kernel_siginfo info;
3792 
3793 	prepare_kill_siginfo(sig, &info);
3794 
3795 	return kill_something_info(sig, &info, pid);
3796 }
3797 
3798 /*
3799  * Verify that the signaler and signalee either are in the same pid namespace
3800  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3801  * namespace.
3802  */
3803 static bool access_pidfd_pidns(struct pid *pid)
3804 {
3805 	struct pid_namespace *active = task_active_pid_ns(current);
3806 	struct pid_namespace *p = ns_of_pid(pid);
3807 
3808 	for (;;) {
3809 		if (!p)
3810 			return false;
3811 		if (p == active)
3812 			break;
3813 		p = p->parent;
3814 	}
3815 
3816 	return true;
3817 }
3818 
3819 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3820 		siginfo_t __user *info)
3821 {
3822 #ifdef CONFIG_COMPAT
3823 	/*
3824 	 * Avoid hooking up compat syscalls and instead handle necessary
3825 	 * conversions here. Note, this is a stop-gap measure and should not be
3826 	 * considered a generic solution.
3827 	 */
3828 	if (in_compat_syscall())
3829 		return copy_siginfo_from_user32(
3830 			kinfo, (struct compat_siginfo __user *)info);
3831 #endif
3832 	return copy_siginfo_from_user(kinfo, info);
3833 }
3834 
3835 static struct pid *pidfd_to_pid(const struct file *file)
3836 {
3837 	struct pid *pid;
3838 
3839 	pid = pidfd_pid(file);
3840 	if (!IS_ERR(pid))
3841 		return pid;
3842 
3843 	return tgid_pidfd_to_pid(file);
3844 }
3845 
3846 /**
3847  * sys_pidfd_send_signal - Signal a process through a pidfd
3848  * @pidfd:  file descriptor of the process
3849  * @sig:    signal to send
3850  * @info:   signal info
3851  * @flags:  future flags
3852  *
3853  * The syscall currently only signals via PIDTYPE_PID which covers
3854  * kill(<positive-pid>, <signal>. It does not signal threads or process
3855  * groups.
3856  * In order to extend the syscall to threads and process groups the @flags
3857  * argument should be used. In essence, the @flags argument will determine
3858  * what is signaled and not the file descriptor itself. Put in other words,
3859  * grouping is a property of the flags argument not a property of the file
3860  * descriptor.
3861  *
3862  * Return: 0 on success, negative errno on failure
3863  */
3864 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3865 		siginfo_t __user *, info, unsigned int, flags)
3866 {
3867 	int ret;
3868 	struct fd f;
3869 	struct pid *pid;
3870 	kernel_siginfo_t kinfo;
3871 
3872 	/* Enforce flags be set to 0 until we add an extension. */
3873 	if (flags)
3874 		return -EINVAL;
3875 
3876 	f = fdget(pidfd);
3877 	if (!f.file)
3878 		return -EBADF;
3879 
3880 	/* Is this a pidfd? */
3881 	pid = pidfd_to_pid(f.file);
3882 	if (IS_ERR(pid)) {
3883 		ret = PTR_ERR(pid);
3884 		goto err;
3885 	}
3886 
3887 	ret = -EINVAL;
3888 	if (!access_pidfd_pidns(pid))
3889 		goto err;
3890 
3891 	if (info) {
3892 		ret = copy_siginfo_from_user_any(&kinfo, info);
3893 		if (unlikely(ret))
3894 			goto err;
3895 
3896 		ret = -EINVAL;
3897 		if (unlikely(sig != kinfo.si_signo))
3898 			goto err;
3899 
3900 		/* Only allow sending arbitrary signals to yourself. */
3901 		ret = -EPERM;
3902 		if ((task_pid(current) != pid) &&
3903 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3904 			goto err;
3905 	} else {
3906 		prepare_kill_siginfo(sig, &kinfo);
3907 	}
3908 
3909 	ret = kill_pid_info(sig, &kinfo, pid);
3910 
3911 err:
3912 	fdput(f);
3913 	return ret;
3914 }
3915 
3916 static int
3917 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3918 {
3919 	struct task_struct *p;
3920 	int error = -ESRCH;
3921 
3922 	rcu_read_lock();
3923 	p = find_task_by_vpid(pid);
3924 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3925 		error = check_kill_permission(sig, info, p);
3926 		/*
3927 		 * The null signal is a permissions and process existence
3928 		 * probe.  No signal is actually delivered.
3929 		 */
3930 		if (!error && sig) {
3931 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3932 			/*
3933 			 * If lock_task_sighand() failed we pretend the task
3934 			 * dies after receiving the signal. The window is tiny,
3935 			 * and the signal is private anyway.
3936 			 */
3937 			if (unlikely(error == -ESRCH))
3938 				error = 0;
3939 		}
3940 	}
3941 	rcu_read_unlock();
3942 
3943 	return error;
3944 }
3945 
3946 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3947 {
3948 	struct kernel_siginfo info;
3949 
3950 	clear_siginfo(&info);
3951 	info.si_signo = sig;
3952 	info.si_errno = 0;
3953 	info.si_code = SI_TKILL;
3954 	info.si_pid = task_tgid_vnr(current);
3955 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3956 
3957 	return do_send_specific(tgid, pid, sig, &info);
3958 }
3959 
3960 /**
3961  *  sys_tgkill - send signal to one specific thread
3962  *  @tgid: the thread group ID of the thread
3963  *  @pid: the PID of the thread
3964  *  @sig: signal to be sent
3965  *
3966  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3967  *  exists but it's not belonging to the target process anymore. This
3968  *  method solves the problem of threads exiting and PIDs getting reused.
3969  */
3970 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3971 {
3972 	/* This is only valid for single tasks */
3973 	if (pid <= 0 || tgid <= 0)
3974 		return -EINVAL;
3975 
3976 	return do_tkill(tgid, pid, sig);
3977 }
3978 
3979 /**
3980  *  sys_tkill - send signal to one specific task
3981  *  @pid: the PID of the task
3982  *  @sig: signal to be sent
3983  *
3984  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3985  */
3986 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3987 {
3988 	/* This is only valid for single tasks */
3989 	if (pid <= 0)
3990 		return -EINVAL;
3991 
3992 	return do_tkill(0, pid, sig);
3993 }
3994 
3995 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3996 {
3997 	/* Not even root can pretend to send signals from the kernel.
3998 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3999 	 */
4000 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4001 	    (task_pid_vnr(current) != pid))
4002 		return -EPERM;
4003 
4004 	/* POSIX.1b doesn't mention process groups.  */
4005 	return kill_proc_info(sig, info, pid);
4006 }
4007 
4008 /**
4009  *  sys_rt_sigqueueinfo - send signal information to a signal
4010  *  @pid: the PID of the thread
4011  *  @sig: signal to be sent
4012  *  @uinfo: signal info to be sent
4013  */
4014 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4015 		siginfo_t __user *, uinfo)
4016 {
4017 	kernel_siginfo_t info;
4018 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4019 	if (unlikely(ret))
4020 		return ret;
4021 	return do_rt_sigqueueinfo(pid, sig, &info);
4022 }
4023 
4024 #ifdef CONFIG_COMPAT
4025 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4026 			compat_pid_t, pid,
4027 			int, sig,
4028 			struct compat_siginfo __user *, uinfo)
4029 {
4030 	kernel_siginfo_t info;
4031 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4032 	if (unlikely(ret))
4033 		return ret;
4034 	return do_rt_sigqueueinfo(pid, sig, &info);
4035 }
4036 #endif
4037 
4038 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4039 {
4040 	/* This is only valid for single tasks */
4041 	if (pid <= 0 || tgid <= 0)
4042 		return -EINVAL;
4043 
4044 	/* Not even root can pretend to send signals from the kernel.
4045 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4046 	 */
4047 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4048 	    (task_pid_vnr(current) != pid))
4049 		return -EPERM;
4050 
4051 	return do_send_specific(tgid, pid, sig, info);
4052 }
4053 
4054 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4055 		siginfo_t __user *, uinfo)
4056 {
4057 	kernel_siginfo_t info;
4058 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4059 	if (unlikely(ret))
4060 		return ret;
4061 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4062 }
4063 
4064 #ifdef CONFIG_COMPAT
4065 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4066 			compat_pid_t, tgid,
4067 			compat_pid_t, pid,
4068 			int, sig,
4069 			struct compat_siginfo __user *, uinfo)
4070 {
4071 	kernel_siginfo_t info;
4072 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4073 	if (unlikely(ret))
4074 		return ret;
4075 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4076 }
4077 #endif
4078 
4079 /*
4080  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4081  */
4082 void kernel_sigaction(int sig, __sighandler_t action)
4083 {
4084 	spin_lock_irq(&current->sighand->siglock);
4085 	current->sighand->action[sig - 1].sa.sa_handler = action;
4086 	if (action == SIG_IGN) {
4087 		sigset_t mask;
4088 
4089 		sigemptyset(&mask);
4090 		sigaddset(&mask, sig);
4091 
4092 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4093 		flush_sigqueue_mask(&mask, &current->pending);
4094 		recalc_sigpending();
4095 	}
4096 	spin_unlock_irq(&current->sighand->siglock);
4097 }
4098 EXPORT_SYMBOL(kernel_sigaction);
4099 
4100 void __weak sigaction_compat_abi(struct k_sigaction *act,
4101 		struct k_sigaction *oact)
4102 {
4103 }
4104 
4105 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4106 {
4107 	struct task_struct *p = current, *t;
4108 	struct k_sigaction *k;
4109 	sigset_t mask;
4110 
4111 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4112 		return -EINVAL;
4113 
4114 	k = &p->sighand->action[sig-1];
4115 
4116 	spin_lock_irq(&p->sighand->siglock);
4117 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4118 		spin_unlock_irq(&p->sighand->siglock);
4119 		return -EINVAL;
4120 	}
4121 	if (oact)
4122 		*oact = *k;
4123 
4124 	/*
4125 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4126 	 * e.g. by having an architecture use the bit in their uapi.
4127 	 */
4128 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4129 
4130 	/*
4131 	 * Clear unknown flag bits in order to allow userspace to detect missing
4132 	 * support for flag bits and to allow the kernel to use non-uapi bits
4133 	 * internally.
4134 	 */
4135 	if (act)
4136 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4137 	if (oact)
4138 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4139 
4140 	sigaction_compat_abi(act, oact);
4141 
4142 	if (act) {
4143 		sigdelsetmask(&act->sa.sa_mask,
4144 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4145 		*k = *act;
4146 		/*
4147 		 * POSIX 3.3.1.3:
4148 		 *  "Setting a signal action to SIG_IGN for a signal that is
4149 		 *   pending shall cause the pending signal to be discarded,
4150 		 *   whether or not it is blocked."
4151 		 *
4152 		 *  "Setting a signal action to SIG_DFL for a signal that is
4153 		 *   pending and whose default action is to ignore the signal
4154 		 *   (for example, SIGCHLD), shall cause the pending signal to
4155 		 *   be discarded, whether or not it is blocked"
4156 		 */
4157 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4158 			sigemptyset(&mask);
4159 			sigaddset(&mask, sig);
4160 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4161 			for_each_thread(p, t)
4162 				flush_sigqueue_mask(&mask, &t->pending);
4163 		}
4164 	}
4165 
4166 	spin_unlock_irq(&p->sighand->siglock);
4167 	return 0;
4168 }
4169 
4170 #ifdef CONFIG_DYNAMIC_SIGFRAME
4171 static inline void sigaltstack_lock(void)
4172 	__acquires(&current->sighand->siglock)
4173 {
4174 	spin_lock_irq(&current->sighand->siglock);
4175 }
4176 
4177 static inline void sigaltstack_unlock(void)
4178 	__releases(&current->sighand->siglock)
4179 {
4180 	spin_unlock_irq(&current->sighand->siglock);
4181 }
4182 #else
4183 static inline void sigaltstack_lock(void) { }
4184 static inline void sigaltstack_unlock(void) { }
4185 #endif
4186 
4187 static int
4188 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4189 		size_t min_ss_size)
4190 {
4191 	struct task_struct *t = current;
4192 	int ret = 0;
4193 
4194 	if (oss) {
4195 		memset(oss, 0, sizeof(stack_t));
4196 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4197 		oss->ss_size = t->sas_ss_size;
4198 		oss->ss_flags = sas_ss_flags(sp) |
4199 			(current->sas_ss_flags & SS_FLAG_BITS);
4200 	}
4201 
4202 	if (ss) {
4203 		void __user *ss_sp = ss->ss_sp;
4204 		size_t ss_size = ss->ss_size;
4205 		unsigned ss_flags = ss->ss_flags;
4206 		int ss_mode;
4207 
4208 		if (unlikely(on_sig_stack(sp)))
4209 			return -EPERM;
4210 
4211 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4212 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4213 				ss_mode != 0))
4214 			return -EINVAL;
4215 
4216 		/*
4217 		 * Return before taking any locks if no actual
4218 		 * sigaltstack changes were requested.
4219 		 */
4220 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4221 		    t->sas_ss_size == ss_size &&
4222 		    t->sas_ss_flags == ss_flags)
4223 			return 0;
4224 
4225 		sigaltstack_lock();
4226 		if (ss_mode == SS_DISABLE) {
4227 			ss_size = 0;
4228 			ss_sp = NULL;
4229 		} else {
4230 			if (unlikely(ss_size < min_ss_size))
4231 				ret = -ENOMEM;
4232 			if (!sigaltstack_size_valid(ss_size))
4233 				ret = -ENOMEM;
4234 		}
4235 		if (!ret) {
4236 			t->sas_ss_sp = (unsigned long) ss_sp;
4237 			t->sas_ss_size = ss_size;
4238 			t->sas_ss_flags = ss_flags;
4239 		}
4240 		sigaltstack_unlock();
4241 	}
4242 	return ret;
4243 }
4244 
4245 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4246 {
4247 	stack_t new, old;
4248 	int err;
4249 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4250 		return -EFAULT;
4251 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4252 			      current_user_stack_pointer(),
4253 			      MINSIGSTKSZ);
4254 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4255 		err = -EFAULT;
4256 	return err;
4257 }
4258 
4259 int restore_altstack(const stack_t __user *uss)
4260 {
4261 	stack_t new;
4262 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4263 		return -EFAULT;
4264 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4265 			     MINSIGSTKSZ);
4266 	/* squash all but EFAULT for now */
4267 	return 0;
4268 }
4269 
4270 int __save_altstack(stack_t __user *uss, unsigned long sp)
4271 {
4272 	struct task_struct *t = current;
4273 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4274 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4275 		__put_user(t->sas_ss_size, &uss->ss_size);
4276 	return err;
4277 }
4278 
4279 #ifdef CONFIG_COMPAT
4280 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4281 				 compat_stack_t __user *uoss_ptr)
4282 {
4283 	stack_t uss, uoss;
4284 	int ret;
4285 
4286 	if (uss_ptr) {
4287 		compat_stack_t uss32;
4288 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4289 			return -EFAULT;
4290 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4291 		uss.ss_flags = uss32.ss_flags;
4292 		uss.ss_size = uss32.ss_size;
4293 	}
4294 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4295 			     compat_user_stack_pointer(),
4296 			     COMPAT_MINSIGSTKSZ);
4297 	if (ret >= 0 && uoss_ptr)  {
4298 		compat_stack_t old;
4299 		memset(&old, 0, sizeof(old));
4300 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4301 		old.ss_flags = uoss.ss_flags;
4302 		old.ss_size = uoss.ss_size;
4303 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4304 			ret = -EFAULT;
4305 	}
4306 	return ret;
4307 }
4308 
4309 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4310 			const compat_stack_t __user *, uss_ptr,
4311 			compat_stack_t __user *, uoss_ptr)
4312 {
4313 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4314 }
4315 
4316 int compat_restore_altstack(const compat_stack_t __user *uss)
4317 {
4318 	int err = do_compat_sigaltstack(uss, NULL);
4319 	/* squash all but -EFAULT for now */
4320 	return err == -EFAULT ? err : 0;
4321 }
4322 
4323 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4324 {
4325 	int err;
4326 	struct task_struct *t = current;
4327 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4328 			 &uss->ss_sp) |
4329 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4330 		__put_user(t->sas_ss_size, &uss->ss_size);
4331 	return err;
4332 }
4333 #endif
4334 
4335 #ifdef __ARCH_WANT_SYS_SIGPENDING
4336 
4337 /**
4338  *  sys_sigpending - examine pending signals
4339  *  @uset: where mask of pending signal is returned
4340  */
4341 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4342 {
4343 	sigset_t set;
4344 
4345 	if (sizeof(old_sigset_t) > sizeof(*uset))
4346 		return -EINVAL;
4347 
4348 	do_sigpending(&set);
4349 
4350 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4351 		return -EFAULT;
4352 
4353 	return 0;
4354 }
4355 
4356 #ifdef CONFIG_COMPAT
4357 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4358 {
4359 	sigset_t set;
4360 
4361 	do_sigpending(&set);
4362 
4363 	return put_user(set.sig[0], set32);
4364 }
4365 #endif
4366 
4367 #endif
4368 
4369 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4370 /**
4371  *  sys_sigprocmask - examine and change blocked signals
4372  *  @how: whether to add, remove, or set signals
4373  *  @nset: signals to add or remove (if non-null)
4374  *  @oset: previous value of signal mask if non-null
4375  *
4376  * Some platforms have their own version with special arguments;
4377  * others support only sys_rt_sigprocmask.
4378  */
4379 
4380 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4381 		old_sigset_t __user *, oset)
4382 {
4383 	old_sigset_t old_set, new_set;
4384 	sigset_t new_blocked;
4385 
4386 	old_set = current->blocked.sig[0];
4387 
4388 	if (nset) {
4389 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4390 			return -EFAULT;
4391 
4392 		new_blocked = current->blocked;
4393 
4394 		switch (how) {
4395 		case SIG_BLOCK:
4396 			sigaddsetmask(&new_blocked, new_set);
4397 			break;
4398 		case SIG_UNBLOCK:
4399 			sigdelsetmask(&new_blocked, new_set);
4400 			break;
4401 		case SIG_SETMASK:
4402 			new_blocked.sig[0] = new_set;
4403 			break;
4404 		default:
4405 			return -EINVAL;
4406 		}
4407 
4408 		set_current_blocked(&new_blocked);
4409 	}
4410 
4411 	if (oset) {
4412 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4413 			return -EFAULT;
4414 	}
4415 
4416 	return 0;
4417 }
4418 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4419 
4420 #ifndef CONFIG_ODD_RT_SIGACTION
4421 /**
4422  *  sys_rt_sigaction - alter an action taken by a process
4423  *  @sig: signal to be sent
4424  *  @act: new sigaction
4425  *  @oact: used to save the previous sigaction
4426  *  @sigsetsize: size of sigset_t type
4427  */
4428 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4429 		const struct sigaction __user *, act,
4430 		struct sigaction __user *, oact,
4431 		size_t, sigsetsize)
4432 {
4433 	struct k_sigaction new_sa, old_sa;
4434 	int ret;
4435 
4436 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4437 	if (sigsetsize != sizeof(sigset_t))
4438 		return -EINVAL;
4439 
4440 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4441 		return -EFAULT;
4442 
4443 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4444 	if (ret)
4445 		return ret;
4446 
4447 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4448 		return -EFAULT;
4449 
4450 	return 0;
4451 }
4452 #ifdef CONFIG_COMPAT
4453 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4454 		const struct compat_sigaction __user *, act,
4455 		struct compat_sigaction __user *, oact,
4456 		compat_size_t, sigsetsize)
4457 {
4458 	struct k_sigaction new_ka, old_ka;
4459 #ifdef __ARCH_HAS_SA_RESTORER
4460 	compat_uptr_t restorer;
4461 #endif
4462 	int ret;
4463 
4464 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4465 	if (sigsetsize != sizeof(compat_sigset_t))
4466 		return -EINVAL;
4467 
4468 	if (act) {
4469 		compat_uptr_t handler;
4470 		ret = get_user(handler, &act->sa_handler);
4471 		new_ka.sa.sa_handler = compat_ptr(handler);
4472 #ifdef __ARCH_HAS_SA_RESTORER
4473 		ret |= get_user(restorer, &act->sa_restorer);
4474 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4475 #endif
4476 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4477 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4478 		if (ret)
4479 			return -EFAULT;
4480 	}
4481 
4482 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4483 	if (!ret && oact) {
4484 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4485 			       &oact->sa_handler);
4486 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4487 					 sizeof(oact->sa_mask));
4488 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4489 #ifdef __ARCH_HAS_SA_RESTORER
4490 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4491 				&oact->sa_restorer);
4492 #endif
4493 	}
4494 	return ret;
4495 }
4496 #endif
4497 #endif /* !CONFIG_ODD_RT_SIGACTION */
4498 
4499 #ifdef CONFIG_OLD_SIGACTION
4500 SYSCALL_DEFINE3(sigaction, int, sig,
4501 		const struct old_sigaction __user *, act,
4502 	        struct old_sigaction __user *, oact)
4503 {
4504 	struct k_sigaction new_ka, old_ka;
4505 	int ret;
4506 
4507 	if (act) {
4508 		old_sigset_t mask;
4509 		if (!access_ok(act, sizeof(*act)) ||
4510 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4511 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4512 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4513 		    __get_user(mask, &act->sa_mask))
4514 			return -EFAULT;
4515 #ifdef __ARCH_HAS_KA_RESTORER
4516 		new_ka.ka_restorer = NULL;
4517 #endif
4518 		siginitset(&new_ka.sa.sa_mask, mask);
4519 	}
4520 
4521 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4522 
4523 	if (!ret && oact) {
4524 		if (!access_ok(oact, sizeof(*oact)) ||
4525 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4526 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4527 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4528 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4529 			return -EFAULT;
4530 	}
4531 
4532 	return ret;
4533 }
4534 #endif
4535 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4536 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4537 		const struct compat_old_sigaction __user *, act,
4538 	        struct compat_old_sigaction __user *, oact)
4539 {
4540 	struct k_sigaction new_ka, old_ka;
4541 	int ret;
4542 	compat_old_sigset_t mask;
4543 	compat_uptr_t handler, restorer;
4544 
4545 	if (act) {
4546 		if (!access_ok(act, sizeof(*act)) ||
4547 		    __get_user(handler, &act->sa_handler) ||
4548 		    __get_user(restorer, &act->sa_restorer) ||
4549 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4550 		    __get_user(mask, &act->sa_mask))
4551 			return -EFAULT;
4552 
4553 #ifdef __ARCH_HAS_KA_RESTORER
4554 		new_ka.ka_restorer = NULL;
4555 #endif
4556 		new_ka.sa.sa_handler = compat_ptr(handler);
4557 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4558 		siginitset(&new_ka.sa.sa_mask, mask);
4559 	}
4560 
4561 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4562 
4563 	if (!ret && oact) {
4564 		if (!access_ok(oact, sizeof(*oact)) ||
4565 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4566 			       &oact->sa_handler) ||
4567 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4568 			       &oact->sa_restorer) ||
4569 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4570 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4571 			return -EFAULT;
4572 	}
4573 	return ret;
4574 }
4575 #endif
4576 
4577 #ifdef CONFIG_SGETMASK_SYSCALL
4578 
4579 /*
4580  * For backwards compatibility.  Functionality superseded by sigprocmask.
4581  */
4582 SYSCALL_DEFINE0(sgetmask)
4583 {
4584 	/* SMP safe */
4585 	return current->blocked.sig[0];
4586 }
4587 
4588 SYSCALL_DEFINE1(ssetmask, int, newmask)
4589 {
4590 	int old = current->blocked.sig[0];
4591 	sigset_t newset;
4592 
4593 	siginitset(&newset, newmask);
4594 	set_current_blocked(&newset);
4595 
4596 	return old;
4597 }
4598 #endif /* CONFIG_SGETMASK_SYSCALL */
4599 
4600 #ifdef __ARCH_WANT_SYS_SIGNAL
4601 /*
4602  * For backwards compatibility.  Functionality superseded by sigaction.
4603  */
4604 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4605 {
4606 	struct k_sigaction new_sa, old_sa;
4607 	int ret;
4608 
4609 	new_sa.sa.sa_handler = handler;
4610 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4611 	sigemptyset(&new_sa.sa.sa_mask);
4612 
4613 	ret = do_sigaction(sig, &new_sa, &old_sa);
4614 
4615 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4616 }
4617 #endif /* __ARCH_WANT_SYS_SIGNAL */
4618 
4619 #ifdef __ARCH_WANT_SYS_PAUSE
4620 
4621 SYSCALL_DEFINE0(pause)
4622 {
4623 	while (!signal_pending(current)) {
4624 		__set_current_state(TASK_INTERRUPTIBLE);
4625 		schedule();
4626 	}
4627 	return -ERESTARTNOHAND;
4628 }
4629 
4630 #endif
4631 
4632 static int sigsuspend(sigset_t *set)
4633 {
4634 	current->saved_sigmask = current->blocked;
4635 	set_current_blocked(set);
4636 
4637 	while (!signal_pending(current)) {
4638 		__set_current_state(TASK_INTERRUPTIBLE);
4639 		schedule();
4640 	}
4641 	set_restore_sigmask();
4642 	return -ERESTARTNOHAND;
4643 }
4644 
4645 /**
4646  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4647  *	@unewset value until a signal is received
4648  *  @unewset: new signal mask value
4649  *  @sigsetsize: size of sigset_t type
4650  */
4651 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4652 {
4653 	sigset_t newset;
4654 
4655 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4656 	if (sigsetsize != sizeof(sigset_t))
4657 		return -EINVAL;
4658 
4659 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4660 		return -EFAULT;
4661 	return sigsuspend(&newset);
4662 }
4663 
4664 #ifdef CONFIG_COMPAT
4665 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4666 {
4667 	sigset_t newset;
4668 
4669 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4670 	if (sigsetsize != sizeof(sigset_t))
4671 		return -EINVAL;
4672 
4673 	if (get_compat_sigset(&newset, unewset))
4674 		return -EFAULT;
4675 	return sigsuspend(&newset);
4676 }
4677 #endif
4678 
4679 #ifdef CONFIG_OLD_SIGSUSPEND
4680 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4681 {
4682 	sigset_t blocked;
4683 	siginitset(&blocked, mask);
4684 	return sigsuspend(&blocked);
4685 }
4686 #endif
4687 #ifdef CONFIG_OLD_SIGSUSPEND3
4688 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4689 {
4690 	sigset_t blocked;
4691 	siginitset(&blocked, mask);
4692 	return sigsuspend(&blocked);
4693 }
4694 #endif
4695 
4696 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4697 {
4698 	return NULL;
4699 }
4700 
4701 static inline void siginfo_buildtime_checks(void)
4702 {
4703 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4704 
4705 	/* Verify the offsets in the two siginfos match */
4706 #define CHECK_OFFSET(field) \
4707 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4708 
4709 	/* kill */
4710 	CHECK_OFFSET(si_pid);
4711 	CHECK_OFFSET(si_uid);
4712 
4713 	/* timer */
4714 	CHECK_OFFSET(si_tid);
4715 	CHECK_OFFSET(si_overrun);
4716 	CHECK_OFFSET(si_value);
4717 
4718 	/* rt */
4719 	CHECK_OFFSET(si_pid);
4720 	CHECK_OFFSET(si_uid);
4721 	CHECK_OFFSET(si_value);
4722 
4723 	/* sigchld */
4724 	CHECK_OFFSET(si_pid);
4725 	CHECK_OFFSET(si_uid);
4726 	CHECK_OFFSET(si_status);
4727 	CHECK_OFFSET(si_utime);
4728 	CHECK_OFFSET(si_stime);
4729 
4730 	/* sigfault */
4731 	CHECK_OFFSET(si_addr);
4732 	CHECK_OFFSET(si_trapno);
4733 	CHECK_OFFSET(si_addr_lsb);
4734 	CHECK_OFFSET(si_lower);
4735 	CHECK_OFFSET(si_upper);
4736 	CHECK_OFFSET(si_pkey);
4737 	CHECK_OFFSET(si_perf_data);
4738 	CHECK_OFFSET(si_perf_type);
4739 	CHECK_OFFSET(si_perf_flags);
4740 
4741 	/* sigpoll */
4742 	CHECK_OFFSET(si_band);
4743 	CHECK_OFFSET(si_fd);
4744 
4745 	/* sigsys */
4746 	CHECK_OFFSET(si_call_addr);
4747 	CHECK_OFFSET(si_syscall);
4748 	CHECK_OFFSET(si_arch);
4749 #undef CHECK_OFFSET
4750 
4751 	/* usb asyncio */
4752 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4753 		     offsetof(struct siginfo, si_addr));
4754 	if (sizeof(int) == sizeof(void __user *)) {
4755 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4756 			     sizeof(void __user *));
4757 	} else {
4758 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4759 			      sizeof_field(struct siginfo, si_uid)) !=
4760 			     sizeof(void __user *));
4761 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4762 			     offsetof(struct siginfo, si_uid));
4763 	}
4764 #ifdef CONFIG_COMPAT
4765 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4766 		     offsetof(struct compat_siginfo, si_addr));
4767 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4768 		     sizeof(compat_uptr_t));
4769 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4770 		     sizeof_field(struct siginfo, si_pid));
4771 #endif
4772 }
4773 
4774 void __init signals_init(void)
4775 {
4776 	siginfo_buildtime_checks();
4777 
4778 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4779 }
4780 
4781 #ifdef CONFIG_KGDB_KDB
4782 #include <linux/kdb.h>
4783 /*
4784  * kdb_send_sig - Allows kdb to send signals without exposing
4785  * signal internals.  This function checks if the required locks are
4786  * available before calling the main signal code, to avoid kdb
4787  * deadlocks.
4788  */
4789 void kdb_send_sig(struct task_struct *t, int sig)
4790 {
4791 	static struct task_struct *kdb_prev_t;
4792 	int new_t, ret;
4793 	if (!spin_trylock(&t->sighand->siglock)) {
4794 		kdb_printf("Can't do kill command now.\n"
4795 			   "The sigmask lock is held somewhere else in "
4796 			   "kernel, try again later\n");
4797 		return;
4798 	}
4799 	new_t = kdb_prev_t != t;
4800 	kdb_prev_t = t;
4801 	if (!task_is_running(t) && new_t) {
4802 		spin_unlock(&t->sighand->siglock);
4803 		kdb_printf("Process is not RUNNING, sending a signal from "
4804 			   "kdb risks deadlock\n"
4805 			   "on the run queue locks. "
4806 			   "The signal has _not_ been sent.\n"
4807 			   "Reissue the kill command if you want to risk "
4808 			   "the deadlock.\n");
4809 		return;
4810 	}
4811 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4812 	spin_unlock(&t->sighand->siglock);
4813 	if (ret)
4814 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4815 			   sig, t->pid);
4816 	else
4817 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4818 }
4819 #endif	/* CONFIG_KGDB_KDB */
4820