xref: /linux/kernel/signal.c (revision 3d0fe49454652117522f60bfbefb978ba0e5300b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/signal.h>
53 
54 #include <asm/param.h>
55 #include <linux/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/siginfo.h>
58 #include <asm/cacheflush.h>
59 #include <asm/syscall.h>	/* for syscall_get_* */
60 
61 /*
62  * SLAB caches for signal bits.
63  */
64 
65 static struct kmem_cache *sigqueue_cachep;
66 
67 int print_fatal_signals __read_mostly;
68 
69 static void __user *sig_handler(struct task_struct *t, int sig)
70 {
71 	return t->sighand->action[sig - 1].sa.sa_handler;
72 }
73 
74 static inline bool sig_handler_ignored(void __user *handler, int sig)
75 {
76 	/* Is it explicitly or implicitly ignored? */
77 	return handler == SIG_IGN ||
78 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
79 }
80 
81 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
82 {
83 	void __user *handler;
84 
85 	handler = sig_handler(t, sig);
86 
87 	/* SIGKILL and SIGSTOP may not be sent to the global init */
88 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
89 		return true;
90 
91 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
92 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
93 		return true;
94 
95 	/* Only allow kernel generated signals to this kthread */
96 	if (unlikely((t->flags & PF_KTHREAD) &&
97 		     (handler == SIG_KTHREAD_KERNEL) && !force))
98 		return true;
99 
100 	return sig_handler_ignored(handler, sig);
101 }
102 
103 static bool sig_ignored(struct task_struct *t, int sig, bool force)
104 {
105 	/*
106 	 * Blocked signals are never ignored, since the
107 	 * signal handler may change by the time it is
108 	 * unblocked.
109 	 */
110 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
111 		return false;
112 
113 	/*
114 	 * Tracers may want to know about even ignored signal unless it
115 	 * is SIGKILL which can't be reported anyway but can be ignored
116 	 * by SIGNAL_UNKILLABLE task.
117 	 */
118 	if (t->ptrace && sig != SIGKILL)
119 		return false;
120 
121 	return sig_task_ignored(t, sig, force);
122 }
123 
124 /*
125  * Re-calculate pending state from the set of locally pending
126  * signals, globally pending signals, and blocked signals.
127  */
128 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
129 {
130 	unsigned long ready;
131 	long i;
132 
133 	switch (_NSIG_WORDS) {
134 	default:
135 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
136 			ready |= signal->sig[i] &~ blocked->sig[i];
137 		break;
138 
139 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
140 		ready |= signal->sig[2] &~ blocked->sig[2];
141 		ready |= signal->sig[1] &~ blocked->sig[1];
142 		ready |= signal->sig[0] &~ blocked->sig[0];
143 		break;
144 
145 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
146 		ready |= signal->sig[0] &~ blocked->sig[0];
147 		break;
148 
149 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
150 	}
151 	return ready !=	0;
152 }
153 
154 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
155 
156 static bool recalc_sigpending_tsk(struct task_struct *t)
157 {
158 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
159 	    PENDING(&t->pending, &t->blocked) ||
160 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
161 	    cgroup_task_frozen(t)) {
162 		set_tsk_thread_flag(t, TIF_SIGPENDING);
163 		return true;
164 	}
165 
166 	/*
167 	 * We must never clear the flag in another thread, or in current
168 	 * when it's possible the current syscall is returning -ERESTART*.
169 	 * So we don't clear it here, and only callers who know they should do.
170 	 */
171 	return false;
172 }
173 
174 /*
175  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
176  * This is superfluous when called on current, the wakeup is a harmless no-op.
177  */
178 void recalc_sigpending_and_wake(struct task_struct *t)
179 {
180 	if (recalc_sigpending_tsk(t))
181 		signal_wake_up(t, 0);
182 }
183 
184 void recalc_sigpending(void)
185 {
186 	if (!recalc_sigpending_tsk(current) && !freezing(current))
187 		clear_thread_flag(TIF_SIGPENDING);
188 
189 }
190 EXPORT_SYMBOL(recalc_sigpending);
191 
192 void calculate_sigpending(void)
193 {
194 	/* Have any signals or users of TIF_SIGPENDING been delayed
195 	 * until after fork?
196 	 */
197 	spin_lock_irq(&current->sighand->siglock);
198 	set_tsk_thread_flag(current, TIF_SIGPENDING);
199 	recalc_sigpending();
200 	spin_unlock_irq(&current->sighand->siglock);
201 }
202 
203 /* Given the mask, find the first available signal that should be serviced. */
204 
205 #define SYNCHRONOUS_MASK \
206 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
207 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
208 
209 int next_signal(struct sigpending *pending, sigset_t *mask)
210 {
211 	unsigned long i, *s, *m, x;
212 	int sig = 0;
213 
214 	s = pending->signal.sig;
215 	m = mask->sig;
216 
217 	/*
218 	 * Handle the first word specially: it contains the
219 	 * synchronous signals that need to be dequeued first.
220 	 */
221 	x = *s &~ *m;
222 	if (x) {
223 		if (x & SYNCHRONOUS_MASK)
224 			x &= SYNCHRONOUS_MASK;
225 		sig = ffz(~x) + 1;
226 		return sig;
227 	}
228 
229 	switch (_NSIG_WORDS) {
230 	default:
231 		for (i = 1; i < _NSIG_WORDS; ++i) {
232 			x = *++s &~ *++m;
233 			if (!x)
234 				continue;
235 			sig = ffz(~x) + i*_NSIG_BPW + 1;
236 			break;
237 		}
238 		break;
239 
240 	case 2:
241 		x = s[1] &~ m[1];
242 		if (!x)
243 			break;
244 		sig = ffz(~x) + _NSIG_BPW + 1;
245 		break;
246 
247 	case 1:
248 		/* Nothing to do */
249 		break;
250 	}
251 
252 	return sig;
253 }
254 
255 static inline void print_dropped_signal(int sig)
256 {
257 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
258 
259 	if (!print_fatal_signals)
260 		return;
261 
262 	if (!__ratelimit(&ratelimit_state))
263 		return;
264 
265 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
266 				current->comm, current->pid, sig);
267 }
268 
269 /**
270  * task_set_jobctl_pending - set jobctl pending bits
271  * @task: target task
272  * @mask: pending bits to set
273  *
274  * Clear @mask from @task->jobctl.  @mask must be subset of
275  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
276  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
277  * cleared.  If @task is already being killed or exiting, this function
278  * becomes noop.
279  *
280  * CONTEXT:
281  * Must be called with @task->sighand->siglock held.
282  *
283  * RETURNS:
284  * %true if @mask is set, %false if made noop because @task was dying.
285  */
286 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
287 {
288 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
289 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
290 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
291 
292 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
293 		return false;
294 
295 	if (mask & JOBCTL_STOP_SIGMASK)
296 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
297 
298 	task->jobctl |= mask;
299 	return true;
300 }
301 
302 /**
303  * task_clear_jobctl_trapping - clear jobctl trapping bit
304  * @task: target task
305  *
306  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
307  * Clear it and wake up the ptracer.  Note that we don't need any further
308  * locking.  @task->siglock guarantees that @task->parent points to the
309  * ptracer.
310  *
311  * CONTEXT:
312  * Must be called with @task->sighand->siglock held.
313  */
314 void task_clear_jobctl_trapping(struct task_struct *task)
315 {
316 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
317 		task->jobctl &= ~JOBCTL_TRAPPING;
318 		smp_mb();	/* advised by wake_up_bit() */
319 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
320 	}
321 }
322 
323 /**
324  * task_clear_jobctl_pending - clear jobctl pending bits
325  * @task: target task
326  * @mask: pending bits to clear
327  *
328  * Clear @mask from @task->jobctl.  @mask must be subset of
329  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
330  * STOP bits are cleared together.
331  *
332  * If clearing of @mask leaves no stop or trap pending, this function calls
333  * task_clear_jobctl_trapping().
334  *
335  * CONTEXT:
336  * Must be called with @task->sighand->siglock held.
337  */
338 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
339 {
340 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
341 
342 	if (mask & JOBCTL_STOP_PENDING)
343 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
344 
345 	task->jobctl &= ~mask;
346 
347 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
348 		task_clear_jobctl_trapping(task);
349 }
350 
351 /**
352  * task_participate_group_stop - participate in a group stop
353  * @task: task participating in a group stop
354  *
355  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
356  * Group stop states are cleared and the group stop count is consumed if
357  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
358  * stop, the appropriate `SIGNAL_*` flags are set.
359  *
360  * CONTEXT:
361  * Must be called with @task->sighand->siglock held.
362  *
363  * RETURNS:
364  * %true if group stop completion should be notified to the parent, %false
365  * otherwise.
366  */
367 static bool task_participate_group_stop(struct task_struct *task)
368 {
369 	struct signal_struct *sig = task->signal;
370 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
371 
372 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
373 
374 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
375 
376 	if (!consume)
377 		return false;
378 
379 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
380 		sig->group_stop_count--;
381 
382 	/*
383 	 * Tell the caller to notify completion iff we are entering into a
384 	 * fresh group stop.  Read comment in do_signal_stop() for details.
385 	 */
386 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
387 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
388 		return true;
389 	}
390 	return false;
391 }
392 
393 void task_join_group_stop(struct task_struct *task)
394 {
395 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
396 	struct signal_struct *sig = current->signal;
397 
398 	if (sig->group_stop_count) {
399 		sig->group_stop_count++;
400 		mask |= JOBCTL_STOP_CONSUME;
401 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
402 		return;
403 
404 	/* Have the new thread join an on-going signal group stop */
405 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
406 }
407 
408 /*
409  * allocate a new signal queue record
410  * - this may be called without locks if and only if t == current, otherwise an
411  *   appropriate lock must be held to stop the target task from exiting
412  */
413 static struct sigqueue *
414 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
415 		 int override_rlimit, const unsigned int sigqueue_flags)
416 {
417 	struct sigqueue *q = NULL;
418 	struct ucounts *ucounts;
419 	long sigpending;
420 
421 	/*
422 	 * Protect access to @t credentials. This can go away when all
423 	 * callers hold rcu read lock.
424 	 *
425 	 * NOTE! A pending signal will hold on to the user refcount,
426 	 * and we get/put the refcount only when the sigpending count
427 	 * changes from/to zero.
428 	 */
429 	rcu_read_lock();
430 	ucounts = task_ucounts(t);
431 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
432 	rcu_read_unlock();
433 	if (!sigpending)
434 		return NULL;
435 
436 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
437 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
438 	} else {
439 		print_dropped_signal(sig);
440 	}
441 
442 	if (unlikely(q == NULL)) {
443 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
444 	} else {
445 		INIT_LIST_HEAD(&q->list);
446 		q->flags = sigqueue_flags;
447 		q->ucounts = ucounts;
448 	}
449 	return q;
450 }
451 
452 static void __sigqueue_free(struct sigqueue *q)
453 {
454 	if (q->flags & SIGQUEUE_PREALLOC)
455 		return;
456 	if (q->ucounts) {
457 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
458 		q->ucounts = NULL;
459 	}
460 	kmem_cache_free(sigqueue_cachep, q);
461 }
462 
463 void flush_sigqueue(struct sigpending *queue)
464 {
465 	struct sigqueue *q;
466 
467 	sigemptyset(&queue->signal);
468 	while (!list_empty(&queue->list)) {
469 		q = list_entry(queue->list.next, struct sigqueue , list);
470 		list_del_init(&q->list);
471 		__sigqueue_free(q);
472 	}
473 }
474 
475 /*
476  * Flush all pending signals for this kthread.
477  */
478 void flush_signals(struct task_struct *t)
479 {
480 	unsigned long flags;
481 
482 	spin_lock_irqsave(&t->sighand->siglock, flags);
483 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
484 	flush_sigqueue(&t->pending);
485 	flush_sigqueue(&t->signal->shared_pending);
486 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
487 }
488 EXPORT_SYMBOL(flush_signals);
489 
490 #ifdef CONFIG_POSIX_TIMERS
491 static void __flush_itimer_signals(struct sigpending *pending)
492 {
493 	sigset_t signal, retain;
494 	struct sigqueue *q, *n;
495 
496 	signal = pending->signal;
497 	sigemptyset(&retain);
498 
499 	list_for_each_entry_safe(q, n, &pending->list, list) {
500 		int sig = q->info.si_signo;
501 
502 		if (likely(q->info.si_code != SI_TIMER)) {
503 			sigaddset(&retain, sig);
504 		} else {
505 			sigdelset(&signal, sig);
506 			list_del_init(&q->list);
507 			__sigqueue_free(q);
508 		}
509 	}
510 
511 	sigorsets(&pending->signal, &signal, &retain);
512 }
513 
514 void flush_itimer_signals(void)
515 {
516 	struct task_struct *tsk = current;
517 	unsigned long flags;
518 
519 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
520 	__flush_itimer_signals(&tsk->pending);
521 	__flush_itimer_signals(&tsk->signal->shared_pending);
522 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
523 }
524 #endif
525 
526 void ignore_signals(struct task_struct *t)
527 {
528 	int i;
529 
530 	for (i = 0; i < _NSIG; ++i)
531 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
532 
533 	flush_signals(t);
534 }
535 
536 /*
537  * Flush all handlers for a task.
538  */
539 
540 void
541 flush_signal_handlers(struct task_struct *t, int force_default)
542 {
543 	int i;
544 	struct k_sigaction *ka = &t->sighand->action[0];
545 	for (i = _NSIG ; i != 0 ; i--) {
546 		if (force_default || ka->sa.sa_handler != SIG_IGN)
547 			ka->sa.sa_handler = SIG_DFL;
548 		ka->sa.sa_flags = 0;
549 #ifdef __ARCH_HAS_SA_RESTORER
550 		ka->sa.sa_restorer = NULL;
551 #endif
552 		sigemptyset(&ka->sa.sa_mask);
553 		ka++;
554 	}
555 }
556 
557 bool unhandled_signal(struct task_struct *tsk, int sig)
558 {
559 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
560 	if (is_global_init(tsk))
561 		return true;
562 
563 	if (handler != SIG_IGN && handler != SIG_DFL)
564 		return false;
565 
566 	/* If dying, we handle all new signals by ignoring them */
567 	if (fatal_signal_pending(tsk))
568 		return false;
569 
570 	/* if ptraced, let the tracer determine */
571 	return !tsk->ptrace;
572 }
573 
574 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
575 			   bool *resched_timer)
576 {
577 	struct sigqueue *q, *first = NULL;
578 
579 	/*
580 	 * Collect the siginfo appropriate to this signal.  Check if
581 	 * there is another siginfo for the same signal.
582 	*/
583 	list_for_each_entry(q, &list->list, list) {
584 		if (q->info.si_signo == sig) {
585 			if (first)
586 				goto still_pending;
587 			first = q;
588 		}
589 	}
590 
591 	sigdelset(&list->signal, sig);
592 
593 	if (first) {
594 still_pending:
595 		list_del_init(&first->list);
596 		copy_siginfo(info, &first->info);
597 
598 		*resched_timer =
599 			(first->flags & SIGQUEUE_PREALLOC) &&
600 			(info->si_code == SI_TIMER) &&
601 			(info->si_sys_private);
602 
603 		__sigqueue_free(first);
604 	} else {
605 		/*
606 		 * Ok, it wasn't in the queue.  This must be
607 		 * a fast-pathed signal or we must have been
608 		 * out of queue space.  So zero out the info.
609 		 */
610 		clear_siginfo(info);
611 		info->si_signo = sig;
612 		info->si_errno = 0;
613 		info->si_code = SI_USER;
614 		info->si_pid = 0;
615 		info->si_uid = 0;
616 	}
617 }
618 
619 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
620 			kernel_siginfo_t *info, bool *resched_timer)
621 {
622 	int sig = next_signal(pending, mask);
623 
624 	if (sig)
625 		collect_signal(sig, pending, info, resched_timer);
626 	return sig;
627 }
628 
629 /*
630  * Dequeue a signal and return the element to the caller, which is
631  * expected to free it.
632  *
633  * All callers have to hold the siglock.
634  */
635 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
636 		   kernel_siginfo_t *info, enum pid_type *type)
637 {
638 	bool resched_timer = false;
639 	int signr;
640 
641 	/* We only dequeue private signals from ourselves, we don't let
642 	 * signalfd steal them
643 	 */
644 	*type = PIDTYPE_PID;
645 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
646 	if (!signr) {
647 		*type = PIDTYPE_TGID;
648 		signr = __dequeue_signal(&tsk->signal->shared_pending,
649 					 mask, info, &resched_timer);
650 #ifdef CONFIG_POSIX_TIMERS
651 		/*
652 		 * itimer signal ?
653 		 *
654 		 * itimers are process shared and we restart periodic
655 		 * itimers in the signal delivery path to prevent DoS
656 		 * attacks in the high resolution timer case. This is
657 		 * compliant with the old way of self-restarting
658 		 * itimers, as the SIGALRM is a legacy signal and only
659 		 * queued once. Changing the restart behaviour to
660 		 * restart the timer in the signal dequeue path is
661 		 * reducing the timer noise on heavy loaded !highres
662 		 * systems too.
663 		 */
664 		if (unlikely(signr == SIGALRM)) {
665 			struct hrtimer *tmr = &tsk->signal->real_timer;
666 
667 			if (!hrtimer_is_queued(tmr) &&
668 			    tsk->signal->it_real_incr != 0) {
669 				hrtimer_forward(tmr, tmr->base->get_time(),
670 						tsk->signal->it_real_incr);
671 				hrtimer_restart(tmr);
672 			}
673 		}
674 #endif
675 	}
676 
677 	recalc_sigpending();
678 	if (!signr)
679 		return 0;
680 
681 	if (unlikely(sig_kernel_stop(signr))) {
682 		/*
683 		 * Set a marker that we have dequeued a stop signal.  Our
684 		 * caller might release the siglock and then the pending
685 		 * stop signal it is about to process is no longer in the
686 		 * pending bitmasks, but must still be cleared by a SIGCONT
687 		 * (and overruled by a SIGKILL).  So those cases clear this
688 		 * shared flag after we've set it.  Note that this flag may
689 		 * remain set after the signal we return is ignored or
690 		 * handled.  That doesn't matter because its only purpose
691 		 * is to alert stop-signal processing code when another
692 		 * processor has come along and cleared the flag.
693 		 */
694 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
695 	}
696 #ifdef CONFIG_POSIX_TIMERS
697 	if (resched_timer) {
698 		/*
699 		 * Release the siglock to ensure proper locking order
700 		 * of timer locks outside of siglocks.  Note, we leave
701 		 * irqs disabled here, since the posix-timers code is
702 		 * about to disable them again anyway.
703 		 */
704 		spin_unlock(&tsk->sighand->siglock);
705 		posixtimer_rearm(info);
706 		spin_lock(&tsk->sighand->siglock);
707 
708 		/* Don't expose the si_sys_private value to userspace */
709 		info->si_sys_private = 0;
710 	}
711 #endif
712 	return signr;
713 }
714 EXPORT_SYMBOL_GPL(dequeue_signal);
715 
716 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
717 {
718 	struct task_struct *tsk = current;
719 	struct sigpending *pending = &tsk->pending;
720 	struct sigqueue *q, *sync = NULL;
721 
722 	/*
723 	 * Might a synchronous signal be in the queue?
724 	 */
725 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
726 		return 0;
727 
728 	/*
729 	 * Return the first synchronous signal in the queue.
730 	 */
731 	list_for_each_entry(q, &pending->list, list) {
732 		/* Synchronous signals have a positive si_code */
733 		if ((q->info.si_code > SI_USER) &&
734 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
735 			sync = q;
736 			goto next;
737 		}
738 	}
739 	return 0;
740 next:
741 	/*
742 	 * Check if there is another siginfo for the same signal.
743 	 */
744 	list_for_each_entry_continue(q, &pending->list, list) {
745 		if (q->info.si_signo == sync->info.si_signo)
746 			goto still_pending;
747 	}
748 
749 	sigdelset(&pending->signal, sync->info.si_signo);
750 	recalc_sigpending();
751 still_pending:
752 	list_del_init(&sync->list);
753 	copy_siginfo(info, &sync->info);
754 	__sigqueue_free(sync);
755 	return info->si_signo;
756 }
757 
758 /*
759  * Tell a process that it has a new active signal..
760  *
761  * NOTE! we rely on the previous spin_lock to
762  * lock interrupts for us! We can only be called with
763  * "siglock" held, and the local interrupt must
764  * have been disabled when that got acquired!
765  *
766  * No need to set need_resched since signal event passing
767  * goes through ->blocked
768  */
769 void signal_wake_up_state(struct task_struct *t, unsigned int state)
770 {
771 	lockdep_assert_held(&t->sighand->siglock);
772 
773 	set_tsk_thread_flag(t, TIF_SIGPENDING);
774 
775 	/*
776 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
777 	 * case. We don't check t->state here because there is a race with it
778 	 * executing another processor and just now entering stopped state.
779 	 * By using wake_up_state, we ensure the process will wake up and
780 	 * handle its death signal.
781 	 */
782 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
783 		kick_process(t);
784 }
785 
786 /*
787  * Remove signals in mask from the pending set and queue.
788  * Returns 1 if any signals were found.
789  *
790  * All callers must be holding the siglock.
791  */
792 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
793 {
794 	struct sigqueue *q, *n;
795 	sigset_t m;
796 
797 	sigandsets(&m, mask, &s->signal);
798 	if (sigisemptyset(&m))
799 		return;
800 
801 	sigandnsets(&s->signal, &s->signal, mask);
802 	list_for_each_entry_safe(q, n, &s->list, list) {
803 		if (sigismember(mask, q->info.si_signo)) {
804 			list_del_init(&q->list);
805 			__sigqueue_free(q);
806 		}
807 	}
808 }
809 
810 static inline int is_si_special(const struct kernel_siginfo *info)
811 {
812 	return info <= SEND_SIG_PRIV;
813 }
814 
815 static inline bool si_fromuser(const struct kernel_siginfo *info)
816 {
817 	return info == SEND_SIG_NOINFO ||
818 		(!is_si_special(info) && SI_FROMUSER(info));
819 }
820 
821 /*
822  * called with RCU read lock from check_kill_permission()
823  */
824 static bool kill_ok_by_cred(struct task_struct *t)
825 {
826 	const struct cred *cred = current_cred();
827 	const struct cred *tcred = __task_cred(t);
828 
829 	return uid_eq(cred->euid, tcred->suid) ||
830 	       uid_eq(cred->euid, tcred->uid) ||
831 	       uid_eq(cred->uid, tcred->suid) ||
832 	       uid_eq(cred->uid, tcred->uid) ||
833 	       ns_capable(tcred->user_ns, CAP_KILL);
834 }
835 
836 /*
837  * Bad permissions for sending the signal
838  * - the caller must hold the RCU read lock
839  */
840 static int check_kill_permission(int sig, struct kernel_siginfo *info,
841 				 struct task_struct *t)
842 {
843 	struct pid *sid;
844 	int error;
845 
846 	if (!valid_signal(sig))
847 		return -EINVAL;
848 
849 	if (!si_fromuser(info))
850 		return 0;
851 
852 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
853 	if (error)
854 		return error;
855 
856 	if (!same_thread_group(current, t) &&
857 	    !kill_ok_by_cred(t)) {
858 		switch (sig) {
859 		case SIGCONT:
860 			sid = task_session(t);
861 			/*
862 			 * We don't return the error if sid == NULL. The
863 			 * task was unhashed, the caller must notice this.
864 			 */
865 			if (!sid || sid == task_session(current))
866 				break;
867 			fallthrough;
868 		default:
869 			return -EPERM;
870 		}
871 	}
872 
873 	return security_task_kill(t, info, sig, NULL);
874 }
875 
876 /**
877  * ptrace_trap_notify - schedule trap to notify ptracer
878  * @t: tracee wanting to notify tracer
879  *
880  * This function schedules sticky ptrace trap which is cleared on the next
881  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
882  * ptracer.
883  *
884  * If @t is running, STOP trap will be taken.  If trapped for STOP and
885  * ptracer is listening for events, tracee is woken up so that it can
886  * re-trap for the new event.  If trapped otherwise, STOP trap will be
887  * eventually taken without returning to userland after the existing traps
888  * are finished by PTRACE_CONT.
889  *
890  * CONTEXT:
891  * Must be called with @task->sighand->siglock held.
892  */
893 static void ptrace_trap_notify(struct task_struct *t)
894 {
895 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
896 	lockdep_assert_held(&t->sighand->siglock);
897 
898 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
899 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
900 }
901 
902 /*
903  * Handle magic process-wide effects of stop/continue signals. Unlike
904  * the signal actions, these happen immediately at signal-generation
905  * time regardless of blocking, ignoring, or handling.  This does the
906  * actual continuing for SIGCONT, but not the actual stopping for stop
907  * signals. The process stop is done as a signal action for SIG_DFL.
908  *
909  * Returns true if the signal should be actually delivered, otherwise
910  * it should be dropped.
911  */
912 static bool prepare_signal(int sig, struct task_struct *p, bool force)
913 {
914 	struct signal_struct *signal = p->signal;
915 	struct task_struct *t;
916 	sigset_t flush;
917 
918 	if (signal->flags & SIGNAL_GROUP_EXIT) {
919 		if (signal->core_state)
920 			return sig == SIGKILL;
921 		/*
922 		 * The process is in the middle of dying, drop the signal.
923 		 */
924 		return false;
925 	} else if (sig_kernel_stop(sig)) {
926 		/*
927 		 * This is a stop signal.  Remove SIGCONT from all queues.
928 		 */
929 		siginitset(&flush, sigmask(SIGCONT));
930 		flush_sigqueue_mask(&flush, &signal->shared_pending);
931 		for_each_thread(p, t)
932 			flush_sigqueue_mask(&flush, &t->pending);
933 	} else if (sig == SIGCONT) {
934 		unsigned int why;
935 		/*
936 		 * Remove all stop signals from all queues, wake all threads.
937 		 */
938 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
939 		flush_sigqueue_mask(&flush, &signal->shared_pending);
940 		for_each_thread(p, t) {
941 			flush_sigqueue_mask(&flush, &t->pending);
942 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
943 			if (likely(!(t->ptrace & PT_SEIZED))) {
944 				t->jobctl &= ~JOBCTL_STOPPED;
945 				wake_up_state(t, __TASK_STOPPED);
946 			} else
947 				ptrace_trap_notify(t);
948 		}
949 
950 		/*
951 		 * Notify the parent with CLD_CONTINUED if we were stopped.
952 		 *
953 		 * If we were in the middle of a group stop, we pretend it
954 		 * was already finished, and then continued. Since SIGCHLD
955 		 * doesn't queue we report only CLD_STOPPED, as if the next
956 		 * CLD_CONTINUED was dropped.
957 		 */
958 		why = 0;
959 		if (signal->flags & SIGNAL_STOP_STOPPED)
960 			why |= SIGNAL_CLD_CONTINUED;
961 		else if (signal->group_stop_count)
962 			why |= SIGNAL_CLD_STOPPED;
963 
964 		if (why) {
965 			/*
966 			 * The first thread which returns from do_signal_stop()
967 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
968 			 * notify its parent. See get_signal().
969 			 */
970 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
971 			signal->group_stop_count = 0;
972 			signal->group_exit_code = 0;
973 		}
974 	}
975 
976 	return !sig_ignored(p, sig, force);
977 }
978 
979 /*
980  * Test if P wants to take SIG.  After we've checked all threads with this,
981  * it's equivalent to finding no threads not blocking SIG.  Any threads not
982  * blocking SIG were ruled out because they are not running and already
983  * have pending signals.  Such threads will dequeue from the shared queue
984  * as soon as they're available, so putting the signal on the shared queue
985  * will be equivalent to sending it to one such thread.
986  */
987 static inline bool wants_signal(int sig, struct task_struct *p)
988 {
989 	if (sigismember(&p->blocked, sig))
990 		return false;
991 
992 	if (p->flags & PF_EXITING)
993 		return false;
994 
995 	if (sig == SIGKILL)
996 		return true;
997 
998 	if (task_is_stopped_or_traced(p))
999 		return false;
1000 
1001 	return task_curr(p) || !task_sigpending(p);
1002 }
1003 
1004 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1005 {
1006 	struct signal_struct *signal = p->signal;
1007 	struct task_struct *t;
1008 
1009 	/*
1010 	 * Now find a thread we can wake up to take the signal off the queue.
1011 	 *
1012 	 * Try the suggested task first (may or may not be the main thread).
1013 	 */
1014 	if (wants_signal(sig, p))
1015 		t = p;
1016 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1017 		/*
1018 		 * There is just one thread and it does not need to be woken.
1019 		 * It will dequeue unblocked signals before it runs again.
1020 		 */
1021 		return;
1022 	else {
1023 		/*
1024 		 * Otherwise try to find a suitable thread.
1025 		 */
1026 		t = signal->curr_target;
1027 		while (!wants_signal(sig, t)) {
1028 			t = next_thread(t);
1029 			if (t == signal->curr_target)
1030 				/*
1031 				 * No thread needs to be woken.
1032 				 * Any eligible threads will see
1033 				 * the signal in the queue soon.
1034 				 */
1035 				return;
1036 		}
1037 		signal->curr_target = t;
1038 	}
1039 
1040 	/*
1041 	 * Found a killable thread.  If the signal will be fatal,
1042 	 * then start taking the whole group down immediately.
1043 	 */
1044 	if (sig_fatal(p, sig) &&
1045 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1046 	    !sigismember(&t->real_blocked, sig) &&
1047 	    (sig == SIGKILL || !p->ptrace)) {
1048 		/*
1049 		 * This signal will be fatal to the whole group.
1050 		 */
1051 		if (!sig_kernel_coredump(sig)) {
1052 			/*
1053 			 * Start a group exit and wake everybody up.
1054 			 * This way we don't have other threads
1055 			 * running and doing things after a slower
1056 			 * thread has the fatal signal pending.
1057 			 */
1058 			signal->flags = SIGNAL_GROUP_EXIT;
1059 			signal->group_exit_code = sig;
1060 			signal->group_stop_count = 0;
1061 			__for_each_thread(signal, t) {
1062 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1063 				sigaddset(&t->pending.signal, SIGKILL);
1064 				signal_wake_up(t, 1);
1065 			}
1066 			return;
1067 		}
1068 	}
1069 
1070 	/*
1071 	 * The signal is already in the shared-pending queue.
1072 	 * Tell the chosen thread to wake up and dequeue it.
1073 	 */
1074 	signal_wake_up(t, sig == SIGKILL);
1075 	return;
1076 }
1077 
1078 static inline bool legacy_queue(struct sigpending *signals, int sig)
1079 {
1080 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1081 }
1082 
1083 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1084 				struct task_struct *t, enum pid_type type, bool force)
1085 {
1086 	struct sigpending *pending;
1087 	struct sigqueue *q;
1088 	int override_rlimit;
1089 	int ret = 0, result;
1090 
1091 	lockdep_assert_held(&t->sighand->siglock);
1092 
1093 	result = TRACE_SIGNAL_IGNORED;
1094 	if (!prepare_signal(sig, t, force))
1095 		goto ret;
1096 
1097 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1098 	/*
1099 	 * Short-circuit ignored signals and support queuing
1100 	 * exactly one non-rt signal, so that we can get more
1101 	 * detailed information about the cause of the signal.
1102 	 */
1103 	result = TRACE_SIGNAL_ALREADY_PENDING;
1104 	if (legacy_queue(pending, sig))
1105 		goto ret;
1106 
1107 	result = TRACE_SIGNAL_DELIVERED;
1108 	/*
1109 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1110 	 */
1111 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1112 		goto out_set;
1113 
1114 	/*
1115 	 * Real-time signals must be queued if sent by sigqueue, or
1116 	 * some other real-time mechanism.  It is implementation
1117 	 * defined whether kill() does so.  We attempt to do so, on
1118 	 * the principle of least surprise, but since kill is not
1119 	 * allowed to fail with EAGAIN when low on memory we just
1120 	 * make sure at least one signal gets delivered and don't
1121 	 * pass on the info struct.
1122 	 */
1123 	if (sig < SIGRTMIN)
1124 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1125 	else
1126 		override_rlimit = 0;
1127 
1128 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1129 
1130 	if (q) {
1131 		list_add_tail(&q->list, &pending->list);
1132 		switch ((unsigned long) info) {
1133 		case (unsigned long) SEND_SIG_NOINFO:
1134 			clear_siginfo(&q->info);
1135 			q->info.si_signo = sig;
1136 			q->info.si_errno = 0;
1137 			q->info.si_code = SI_USER;
1138 			q->info.si_pid = task_tgid_nr_ns(current,
1139 							task_active_pid_ns(t));
1140 			rcu_read_lock();
1141 			q->info.si_uid =
1142 				from_kuid_munged(task_cred_xxx(t, user_ns),
1143 						 current_uid());
1144 			rcu_read_unlock();
1145 			break;
1146 		case (unsigned long) SEND_SIG_PRIV:
1147 			clear_siginfo(&q->info);
1148 			q->info.si_signo = sig;
1149 			q->info.si_errno = 0;
1150 			q->info.si_code = SI_KERNEL;
1151 			q->info.si_pid = 0;
1152 			q->info.si_uid = 0;
1153 			break;
1154 		default:
1155 			copy_siginfo(&q->info, info);
1156 			break;
1157 		}
1158 	} else if (!is_si_special(info) &&
1159 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1160 		/*
1161 		 * Queue overflow, abort.  We may abort if the
1162 		 * signal was rt and sent by user using something
1163 		 * other than kill().
1164 		 */
1165 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1166 		ret = -EAGAIN;
1167 		goto ret;
1168 	} else {
1169 		/*
1170 		 * This is a silent loss of information.  We still
1171 		 * send the signal, but the *info bits are lost.
1172 		 */
1173 		result = TRACE_SIGNAL_LOSE_INFO;
1174 	}
1175 
1176 out_set:
1177 	signalfd_notify(t, sig);
1178 	sigaddset(&pending->signal, sig);
1179 
1180 	/* Let multiprocess signals appear after on-going forks */
1181 	if (type > PIDTYPE_TGID) {
1182 		struct multiprocess_signals *delayed;
1183 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1184 			sigset_t *signal = &delayed->signal;
1185 			/* Can't queue both a stop and a continue signal */
1186 			if (sig == SIGCONT)
1187 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1188 			else if (sig_kernel_stop(sig))
1189 				sigdelset(signal, SIGCONT);
1190 			sigaddset(signal, sig);
1191 		}
1192 	}
1193 
1194 	complete_signal(sig, t, type);
1195 ret:
1196 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1197 	return ret;
1198 }
1199 
1200 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1201 {
1202 	bool ret = false;
1203 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1204 	case SIL_KILL:
1205 	case SIL_CHLD:
1206 	case SIL_RT:
1207 		ret = true;
1208 		break;
1209 	case SIL_TIMER:
1210 	case SIL_POLL:
1211 	case SIL_FAULT:
1212 	case SIL_FAULT_TRAPNO:
1213 	case SIL_FAULT_MCEERR:
1214 	case SIL_FAULT_BNDERR:
1215 	case SIL_FAULT_PKUERR:
1216 	case SIL_FAULT_PERF_EVENT:
1217 	case SIL_SYS:
1218 		ret = false;
1219 		break;
1220 	}
1221 	return ret;
1222 }
1223 
1224 int send_signal_locked(int sig, struct kernel_siginfo *info,
1225 		       struct task_struct *t, enum pid_type type)
1226 {
1227 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1228 	bool force = false;
1229 
1230 	if (info == SEND_SIG_NOINFO) {
1231 		/* Force if sent from an ancestor pid namespace */
1232 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1233 	} else if (info == SEND_SIG_PRIV) {
1234 		/* Don't ignore kernel generated signals */
1235 		force = true;
1236 	} else if (has_si_pid_and_uid(info)) {
1237 		/* SIGKILL and SIGSTOP is special or has ids */
1238 		struct user_namespace *t_user_ns;
1239 
1240 		rcu_read_lock();
1241 		t_user_ns = task_cred_xxx(t, user_ns);
1242 		if (current_user_ns() != t_user_ns) {
1243 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1244 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1245 		}
1246 		rcu_read_unlock();
1247 
1248 		/* A kernel generated signal? */
1249 		force = (info->si_code == SI_KERNEL);
1250 
1251 		/* From an ancestor pid namespace? */
1252 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1253 			info->si_pid = 0;
1254 			force = true;
1255 		}
1256 	}
1257 	return __send_signal_locked(sig, info, t, type, force);
1258 }
1259 
1260 static void print_fatal_signal(int signr)
1261 {
1262 	struct pt_regs *regs = task_pt_regs(current);
1263 	struct file *exe_file;
1264 
1265 	exe_file = get_task_exe_file(current);
1266 	if (exe_file) {
1267 		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1268 			exe_file, current->comm, signr);
1269 		fput(exe_file);
1270 	} else {
1271 		pr_info("%s: potentially unexpected fatal signal %d.\n",
1272 			current->comm, signr);
1273 	}
1274 
1275 #if defined(__i386__) && !defined(__arch_um__)
1276 	pr_info("code at %08lx: ", regs->ip);
1277 	{
1278 		int i;
1279 		for (i = 0; i < 16; i++) {
1280 			unsigned char insn;
1281 
1282 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1283 				break;
1284 			pr_cont("%02x ", insn);
1285 		}
1286 	}
1287 	pr_cont("\n");
1288 #endif
1289 	preempt_disable();
1290 	show_regs(regs);
1291 	preempt_enable();
1292 }
1293 
1294 static int __init setup_print_fatal_signals(char *str)
1295 {
1296 	get_option (&str, &print_fatal_signals);
1297 
1298 	return 1;
1299 }
1300 
1301 __setup("print-fatal-signals=", setup_print_fatal_signals);
1302 
1303 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1304 			enum pid_type type)
1305 {
1306 	unsigned long flags;
1307 	int ret = -ESRCH;
1308 
1309 	if (lock_task_sighand(p, &flags)) {
1310 		ret = send_signal_locked(sig, info, p, type);
1311 		unlock_task_sighand(p, &flags);
1312 	}
1313 
1314 	return ret;
1315 }
1316 
1317 enum sig_handler {
1318 	HANDLER_CURRENT, /* If reachable use the current handler */
1319 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1320 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1321 };
1322 
1323 /*
1324  * Force a signal that the process can't ignore: if necessary
1325  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1326  *
1327  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1328  * since we do not want to have a signal handler that was blocked
1329  * be invoked when user space had explicitly blocked it.
1330  *
1331  * We don't want to have recursive SIGSEGV's etc, for example,
1332  * that is why we also clear SIGNAL_UNKILLABLE.
1333  */
1334 static int
1335 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1336 	enum sig_handler handler)
1337 {
1338 	unsigned long int flags;
1339 	int ret, blocked, ignored;
1340 	struct k_sigaction *action;
1341 	int sig = info->si_signo;
1342 
1343 	spin_lock_irqsave(&t->sighand->siglock, flags);
1344 	action = &t->sighand->action[sig-1];
1345 	ignored = action->sa.sa_handler == SIG_IGN;
1346 	blocked = sigismember(&t->blocked, sig);
1347 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1348 		action->sa.sa_handler = SIG_DFL;
1349 		if (handler == HANDLER_EXIT)
1350 			action->sa.sa_flags |= SA_IMMUTABLE;
1351 		if (blocked) {
1352 			sigdelset(&t->blocked, sig);
1353 			recalc_sigpending_and_wake(t);
1354 		}
1355 	}
1356 	/*
1357 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1358 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1359 	 */
1360 	if (action->sa.sa_handler == SIG_DFL &&
1361 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1362 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1363 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1364 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1365 
1366 	return ret;
1367 }
1368 
1369 int force_sig_info(struct kernel_siginfo *info)
1370 {
1371 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1372 }
1373 
1374 /*
1375  * Nuke all other threads in the group.
1376  */
1377 int zap_other_threads(struct task_struct *p)
1378 {
1379 	struct task_struct *t = p;
1380 	int count = 0;
1381 
1382 	p->signal->group_stop_count = 0;
1383 
1384 	while_each_thread(p, t) {
1385 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1386 		/* Don't require de_thread to wait for the vhost_worker */
1387 		if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1388 			count++;
1389 
1390 		/* Don't bother with already dead threads */
1391 		if (t->exit_state)
1392 			continue;
1393 		sigaddset(&t->pending.signal, SIGKILL);
1394 		signal_wake_up(t, 1);
1395 	}
1396 
1397 	return count;
1398 }
1399 
1400 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1401 					   unsigned long *flags)
1402 {
1403 	struct sighand_struct *sighand;
1404 
1405 	rcu_read_lock();
1406 	for (;;) {
1407 		sighand = rcu_dereference(tsk->sighand);
1408 		if (unlikely(sighand == NULL))
1409 			break;
1410 
1411 		/*
1412 		 * This sighand can be already freed and even reused, but
1413 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1414 		 * initializes ->siglock: this slab can't go away, it has
1415 		 * the same object type, ->siglock can't be reinitialized.
1416 		 *
1417 		 * We need to ensure that tsk->sighand is still the same
1418 		 * after we take the lock, we can race with de_thread() or
1419 		 * __exit_signal(). In the latter case the next iteration
1420 		 * must see ->sighand == NULL.
1421 		 */
1422 		spin_lock_irqsave(&sighand->siglock, *flags);
1423 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1424 			break;
1425 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1426 	}
1427 	rcu_read_unlock();
1428 
1429 	return sighand;
1430 }
1431 
1432 #ifdef CONFIG_LOCKDEP
1433 void lockdep_assert_task_sighand_held(struct task_struct *task)
1434 {
1435 	struct sighand_struct *sighand;
1436 
1437 	rcu_read_lock();
1438 	sighand = rcu_dereference(task->sighand);
1439 	if (sighand)
1440 		lockdep_assert_held(&sighand->siglock);
1441 	else
1442 		WARN_ON_ONCE(1);
1443 	rcu_read_unlock();
1444 }
1445 #endif
1446 
1447 /*
1448  * send signal info to all the members of a group
1449  */
1450 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1451 			struct task_struct *p, enum pid_type type)
1452 {
1453 	int ret;
1454 
1455 	rcu_read_lock();
1456 	ret = check_kill_permission(sig, info, p);
1457 	rcu_read_unlock();
1458 
1459 	if (!ret && sig)
1460 		ret = do_send_sig_info(sig, info, p, type);
1461 
1462 	return ret;
1463 }
1464 
1465 /*
1466  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1467  * control characters do (^C, ^Z etc)
1468  * - the caller must hold at least a readlock on tasklist_lock
1469  */
1470 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1471 {
1472 	struct task_struct *p = NULL;
1473 	int ret = -ESRCH;
1474 
1475 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1476 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1477 		/*
1478 		 * If group_send_sig_info() succeeds at least once ret
1479 		 * becomes 0 and after that the code below has no effect.
1480 		 * Otherwise we return the last err or -ESRCH if this
1481 		 * process group is empty.
1482 		 */
1483 		if (ret)
1484 			ret = err;
1485 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1486 
1487 	return ret;
1488 }
1489 
1490 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1491 {
1492 	int error = -ESRCH;
1493 	struct task_struct *p;
1494 
1495 	for (;;) {
1496 		rcu_read_lock();
1497 		p = pid_task(pid, PIDTYPE_PID);
1498 		if (p)
1499 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1500 		rcu_read_unlock();
1501 		if (likely(!p || error != -ESRCH))
1502 			return error;
1503 
1504 		/*
1505 		 * The task was unhashed in between, try again.  If it
1506 		 * is dead, pid_task() will return NULL, if we race with
1507 		 * de_thread() it will find the new leader.
1508 		 */
1509 	}
1510 }
1511 
1512 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1513 {
1514 	int error;
1515 	rcu_read_lock();
1516 	error = kill_pid_info(sig, info, find_vpid(pid));
1517 	rcu_read_unlock();
1518 	return error;
1519 }
1520 
1521 static inline bool kill_as_cred_perm(const struct cred *cred,
1522 				     struct task_struct *target)
1523 {
1524 	const struct cred *pcred = __task_cred(target);
1525 
1526 	return uid_eq(cred->euid, pcred->suid) ||
1527 	       uid_eq(cred->euid, pcred->uid) ||
1528 	       uid_eq(cred->uid, pcred->suid) ||
1529 	       uid_eq(cred->uid, pcred->uid);
1530 }
1531 
1532 /*
1533  * The usb asyncio usage of siginfo is wrong.  The glibc support
1534  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1535  * AKA after the generic fields:
1536  *	kernel_pid_t	si_pid;
1537  *	kernel_uid32_t	si_uid;
1538  *	sigval_t	si_value;
1539  *
1540  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1541  * after the generic fields is:
1542  *	void __user 	*si_addr;
1543  *
1544  * This is a practical problem when there is a 64bit big endian kernel
1545  * and a 32bit userspace.  As the 32bit address will encoded in the low
1546  * 32bits of the pointer.  Those low 32bits will be stored at higher
1547  * address than appear in a 32 bit pointer.  So userspace will not
1548  * see the address it was expecting for it's completions.
1549  *
1550  * There is nothing in the encoding that can allow
1551  * copy_siginfo_to_user32 to detect this confusion of formats, so
1552  * handle this by requiring the caller of kill_pid_usb_asyncio to
1553  * notice when this situration takes place and to store the 32bit
1554  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1555  * parameter.
1556  */
1557 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1558 			 struct pid *pid, const struct cred *cred)
1559 {
1560 	struct kernel_siginfo info;
1561 	struct task_struct *p;
1562 	unsigned long flags;
1563 	int ret = -EINVAL;
1564 
1565 	if (!valid_signal(sig))
1566 		return ret;
1567 
1568 	clear_siginfo(&info);
1569 	info.si_signo = sig;
1570 	info.si_errno = errno;
1571 	info.si_code = SI_ASYNCIO;
1572 	*((sigval_t *)&info.si_pid) = addr;
1573 
1574 	rcu_read_lock();
1575 	p = pid_task(pid, PIDTYPE_PID);
1576 	if (!p) {
1577 		ret = -ESRCH;
1578 		goto out_unlock;
1579 	}
1580 	if (!kill_as_cred_perm(cred, p)) {
1581 		ret = -EPERM;
1582 		goto out_unlock;
1583 	}
1584 	ret = security_task_kill(p, &info, sig, cred);
1585 	if (ret)
1586 		goto out_unlock;
1587 
1588 	if (sig) {
1589 		if (lock_task_sighand(p, &flags)) {
1590 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1591 			unlock_task_sighand(p, &flags);
1592 		} else
1593 			ret = -ESRCH;
1594 	}
1595 out_unlock:
1596 	rcu_read_unlock();
1597 	return ret;
1598 }
1599 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1600 
1601 /*
1602  * kill_something_info() interprets pid in interesting ways just like kill(2).
1603  *
1604  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1605  * is probably wrong.  Should make it like BSD or SYSV.
1606  */
1607 
1608 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1609 {
1610 	int ret;
1611 
1612 	if (pid > 0)
1613 		return kill_proc_info(sig, info, pid);
1614 
1615 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1616 	if (pid == INT_MIN)
1617 		return -ESRCH;
1618 
1619 	read_lock(&tasklist_lock);
1620 	if (pid != -1) {
1621 		ret = __kill_pgrp_info(sig, info,
1622 				pid ? find_vpid(-pid) : task_pgrp(current));
1623 	} else {
1624 		int retval = 0, count = 0;
1625 		struct task_struct * p;
1626 
1627 		for_each_process(p) {
1628 			if (task_pid_vnr(p) > 1 &&
1629 					!same_thread_group(p, current)) {
1630 				int err = group_send_sig_info(sig, info, p,
1631 							      PIDTYPE_MAX);
1632 				++count;
1633 				if (err != -EPERM)
1634 					retval = err;
1635 			}
1636 		}
1637 		ret = count ? retval : -ESRCH;
1638 	}
1639 	read_unlock(&tasklist_lock);
1640 
1641 	return ret;
1642 }
1643 
1644 /*
1645  * These are for backward compatibility with the rest of the kernel source.
1646  */
1647 
1648 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1649 {
1650 	/*
1651 	 * Make sure legacy kernel users don't send in bad values
1652 	 * (normal paths check this in check_kill_permission).
1653 	 */
1654 	if (!valid_signal(sig))
1655 		return -EINVAL;
1656 
1657 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1658 }
1659 EXPORT_SYMBOL(send_sig_info);
1660 
1661 #define __si_special(priv) \
1662 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1663 
1664 int
1665 send_sig(int sig, struct task_struct *p, int priv)
1666 {
1667 	return send_sig_info(sig, __si_special(priv), p);
1668 }
1669 EXPORT_SYMBOL(send_sig);
1670 
1671 void force_sig(int sig)
1672 {
1673 	struct kernel_siginfo info;
1674 
1675 	clear_siginfo(&info);
1676 	info.si_signo = sig;
1677 	info.si_errno = 0;
1678 	info.si_code = SI_KERNEL;
1679 	info.si_pid = 0;
1680 	info.si_uid = 0;
1681 	force_sig_info(&info);
1682 }
1683 EXPORT_SYMBOL(force_sig);
1684 
1685 void force_fatal_sig(int sig)
1686 {
1687 	struct kernel_siginfo info;
1688 
1689 	clear_siginfo(&info);
1690 	info.si_signo = sig;
1691 	info.si_errno = 0;
1692 	info.si_code = SI_KERNEL;
1693 	info.si_pid = 0;
1694 	info.si_uid = 0;
1695 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1696 }
1697 
1698 void force_exit_sig(int sig)
1699 {
1700 	struct kernel_siginfo info;
1701 
1702 	clear_siginfo(&info);
1703 	info.si_signo = sig;
1704 	info.si_errno = 0;
1705 	info.si_code = SI_KERNEL;
1706 	info.si_pid = 0;
1707 	info.si_uid = 0;
1708 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1709 }
1710 
1711 /*
1712  * When things go south during signal handling, we
1713  * will force a SIGSEGV. And if the signal that caused
1714  * the problem was already a SIGSEGV, we'll want to
1715  * make sure we don't even try to deliver the signal..
1716  */
1717 void force_sigsegv(int sig)
1718 {
1719 	if (sig == SIGSEGV)
1720 		force_fatal_sig(SIGSEGV);
1721 	else
1722 		force_sig(SIGSEGV);
1723 }
1724 
1725 int force_sig_fault_to_task(int sig, int code, void __user *addr,
1726 			    struct task_struct *t)
1727 {
1728 	struct kernel_siginfo info;
1729 
1730 	clear_siginfo(&info);
1731 	info.si_signo = sig;
1732 	info.si_errno = 0;
1733 	info.si_code  = code;
1734 	info.si_addr  = addr;
1735 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1736 }
1737 
1738 int force_sig_fault(int sig, int code, void __user *addr)
1739 {
1740 	return force_sig_fault_to_task(sig, code, addr, current);
1741 }
1742 
1743 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1744 {
1745 	struct kernel_siginfo info;
1746 
1747 	clear_siginfo(&info);
1748 	info.si_signo = sig;
1749 	info.si_errno = 0;
1750 	info.si_code  = code;
1751 	info.si_addr  = addr;
1752 	return send_sig_info(info.si_signo, &info, t);
1753 }
1754 
1755 int force_sig_mceerr(int code, void __user *addr, short lsb)
1756 {
1757 	struct kernel_siginfo info;
1758 
1759 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1760 	clear_siginfo(&info);
1761 	info.si_signo = SIGBUS;
1762 	info.si_errno = 0;
1763 	info.si_code = code;
1764 	info.si_addr = addr;
1765 	info.si_addr_lsb = lsb;
1766 	return force_sig_info(&info);
1767 }
1768 
1769 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1770 {
1771 	struct kernel_siginfo info;
1772 
1773 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1774 	clear_siginfo(&info);
1775 	info.si_signo = SIGBUS;
1776 	info.si_errno = 0;
1777 	info.si_code = code;
1778 	info.si_addr = addr;
1779 	info.si_addr_lsb = lsb;
1780 	return send_sig_info(info.si_signo, &info, t);
1781 }
1782 EXPORT_SYMBOL(send_sig_mceerr);
1783 
1784 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1785 {
1786 	struct kernel_siginfo info;
1787 
1788 	clear_siginfo(&info);
1789 	info.si_signo = SIGSEGV;
1790 	info.si_errno = 0;
1791 	info.si_code  = SEGV_BNDERR;
1792 	info.si_addr  = addr;
1793 	info.si_lower = lower;
1794 	info.si_upper = upper;
1795 	return force_sig_info(&info);
1796 }
1797 
1798 #ifdef SEGV_PKUERR
1799 int force_sig_pkuerr(void __user *addr, u32 pkey)
1800 {
1801 	struct kernel_siginfo info;
1802 
1803 	clear_siginfo(&info);
1804 	info.si_signo = SIGSEGV;
1805 	info.si_errno = 0;
1806 	info.si_code  = SEGV_PKUERR;
1807 	info.si_addr  = addr;
1808 	info.si_pkey  = pkey;
1809 	return force_sig_info(&info);
1810 }
1811 #endif
1812 
1813 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1814 {
1815 	struct kernel_siginfo info;
1816 
1817 	clear_siginfo(&info);
1818 	info.si_signo     = SIGTRAP;
1819 	info.si_errno     = 0;
1820 	info.si_code      = TRAP_PERF;
1821 	info.si_addr      = addr;
1822 	info.si_perf_data = sig_data;
1823 	info.si_perf_type = type;
1824 
1825 	/*
1826 	 * Signals generated by perf events should not terminate the whole
1827 	 * process if SIGTRAP is blocked, however, delivering the signal
1828 	 * asynchronously is better than not delivering at all. But tell user
1829 	 * space if the signal was asynchronous, so it can clearly be
1830 	 * distinguished from normal synchronous ones.
1831 	 */
1832 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1833 				     TRAP_PERF_FLAG_ASYNC :
1834 				     0;
1835 
1836 	return send_sig_info(info.si_signo, &info, current);
1837 }
1838 
1839 /**
1840  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1841  * @syscall: syscall number to send to userland
1842  * @reason: filter-supplied reason code to send to userland (via si_errno)
1843  * @force_coredump: true to trigger a coredump
1844  *
1845  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1846  */
1847 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1848 {
1849 	struct kernel_siginfo info;
1850 
1851 	clear_siginfo(&info);
1852 	info.si_signo = SIGSYS;
1853 	info.si_code = SYS_SECCOMP;
1854 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1855 	info.si_errno = reason;
1856 	info.si_arch = syscall_get_arch(current);
1857 	info.si_syscall = syscall;
1858 	return force_sig_info_to_task(&info, current,
1859 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1860 }
1861 
1862 /* For the crazy architectures that include trap information in
1863  * the errno field, instead of an actual errno value.
1864  */
1865 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1866 {
1867 	struct kernel_siginfo info;
1868 
1869 	clear_siginfo(&info);
1870 	info.si_signo = SIGTRAP;
1871 	info.si_errno = errno;
1872 	info.si_code  = TRAP_HWBKPT;
1873 	info.si_addr  = addr;
1874 	return force_sig_info(&info);
1875 }
1876 
1877 /* For the rare architectures that include trap information using
1878  * si_trapno.
1879  */
1880 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1881 {
1882 	struct kernel_siginfo info;
1883 
1884 	clear_siginfo(&info);
1885 	info.si_signo = sig;
1886 	info.si_errno = 0;
1887 	info.si_code  = code;
1888 	info.si_addr  = addr;
1889 	info.si_trapno = trapno;
1890 	return force_sig_info(&info);
1891 }
1892 
1893 /* For the rare architectures that include trap information using
1894  * si_trapno.
1895  */
1896 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1897 			  struct task_struct *t)
1898 {
1899 	struct kernel_siginfo info;
1900 
1901 	clear_siginfo(&info);
1902 	info.si_signo = sig;
1903 	info.si_errno = 0;
1904 	info.si_code  = code;
1905 	info.si_addr  = addr;
1906 	info.si_trapno = trapno;
1907 	return send_sig_info(info.si_signo, &info, t);
1908 }
1909 
1910 int kill_pgrp(struct pid *pid, int sig, int priv)
1911 {
1912 	int ret;
1913 
1914 	read_lock(&tasklist_lock);
1915 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1916 	read_unlock(&tasklist_lock);
1917 
1918 	return ret;
1919 }
1920 EXPORT_SYMBOL(kill_pgrp);
1921 
1922 int kill_pid(struct pid *pid, int sig, int priv)
1923 {
1924 	return kill_pid_info(sig, __si_special(priv), pid);
1925 }
1926 EXPORT_SYMBOL(kill_pid);
1927 
1928 /*
1929  * These functions support sending signals using preallocated sigqueue
1930  * structures.  This is needed "because realtime applications cannot
1931  * afford to lose notifications of asynchronous events, like timer
1932  * expirations or I/O completions".  In the case of POSIX Timers
1933  * we allocate the sigqueue structure from the timer_create.  If this
1934  * allocation fails we are able to report the failure to the application
1935  * with an EAGAIN error.
1936  */
1937 struct sigqueue *sigqueue_alloc(void)
1938 {
1939 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1940 }
1941 
1942 void sigqueue_free(struct sigqueue *q)
1943 {
1944 	unsigned long flags;
1945 	spinlock_t *lock = &current->sighand->siglock;
1946 
1947 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1948 	/*
1949 	 * We must hold ->siglock while testing q->list
1950 	 * to serialize with collect_signal() or with
1951 	 * __exit_signal()->flush_sigqueue().
1952 	 */
1953 	spin_lock_irqsave(lock, flags);
1954 	q->flags &= ~SIGQUEUE_PREALLOC;
1955 	/*
1956 	 * If it is queued it will be freed when dequeued,
1957 	 * like the "regular" sigqueue.
1958 	 */
1959 	if (!list_empty(&q->list))
1960 		q = NULL;
1961 	spin_unlock_irqrestore(lock, flags);
1962 
1963 	if (q)
1964 		__sigqueue_free(q);
1965 }
1966 
1967 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1968 {
1969 	int sig = q->info.si_signo;
1970 	struct sigpending *pending;
1971 	struct task_struct *t;
1972 	unsigned long flags;
1973 	int ret, result;
1974 
1975 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1976 
1977 	ret = -1;
1978 	rcu_read_lock();
1979 
1980 	/*
1981 	 * This function is used by POSIX timers to deliver a timer signal.
1982 	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1983 	 * set), the signal must be delivered to the specific thread (queues
1984 	 * into t->pending).
1985 	 *
1986 	 * Where type is not PIDTYPE_PID, signals must be delivered to the
1987 	 * process. In this case, prefer to deliver to current if it is in
1988 	 * the same thread group as the target process, which avoids
1989 	 * unnecessarily waking up a potentially idle task.
1990 	 */
1991 	t = pid_task(pid, type);
1992 	if (!t)
1993 		goto ret;
1994 	if (type != PIDTYPE_PID && same_thread_group(t, current))
1995 		t = current;
1996 	if (!likely(lock_task_sighand(t, &flags)))
1997 		goto ret;
1998 
1999 	ret = 1; /* the signal is ignored */
2000 	result = TRACE_SIGNAL_IGNORED;
2001 	if (!prepare_signal(sig, t, false))
2002 		goto out;
2003 
2004 	ret = 0;
2005 	if (unlikely(!list_empty(&q->list))) {
2006 		/*
2007 		 * If an SI_TIMER entry is already queue just increment
2008 		 * the overrun count.
2009 		 */
2010 		BUG_ON(q->info.si_code != SI_TIMER);
2011 		q->info.si_overrun++;
2012 		result = TRACE_SIGNAL_ALREADY_PENDING;
2013 		goto out;
2014 	}
2015 	q->info.si_overrun = 0;
2016 
2017 	signalfd_notify(t, sig);
2018 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2019 	list_add_tail(&q->list, &pending->list);
2020 	sigaddset(&pending->signal, sig);
2021 	complete_signal(sig, t, type);
2022 	result = TRACE_SIGNAL_DELIVERED;
2023 out:
2024 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2025 	unlock_task_sighand(t, &flags);
2026 ret:
2027 	rcu_read_unlock();
2028 	return ret;
2029 }
2030 
2031 static void do_notify_pidfd(struct task_struct *task)
2032 {
2033 	struct pid *pid;
2034 
2035 	WARN_ON(task->exit_state == 0);
2036 	pid = task_pid(task);
2037 	wake_up_all(&pid->wait_pidfd);
2038 }
2039 
2040 /*
2041  * Let a parent know about the death of a child.
2042  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2043  *
2044  * Returns true if our parent ignored us and so we've switched to
2045  * self-reaping.
2046  */
2047 bool do_notify_parent(struct task_struct *tsk, int sig)
2048 {
2049 	struct kernel_siginfo info;
2050 	unsigned long flags;
2051 	struct sighand_struct *psig;
2052 	bool autoreap = false;
2053 	u64 utime, stime;
2054 
2055 	WARN_ON_ONCE(sig == -1);
2056 
2057 	/* do_notify_parent_cldstop should have been called instead.  */
2058 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2059 
2060 	WARN_ON_ONCE(!tsk->ptrace &&
2061 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2062 
2063 	/* Wake up all pidfd waiters */
2064 	do_notify_pidfd(tsk);
2065 
2066 	if (sig != SIGCHLD) {
2067 		/*
2068 		 * This is only possible if parent == real_parent.
2069 		 * Check if it has changed security domain.
2070 		 */
2071 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2072 			sig = SIGCHLD;
2073 	}
2074 
2075 	clear_siginfo(&info);
2076 	info.si_signo = sig;
2077 	info.si_errno = 0;
2078 	/*
2079 	 * We are under tasklist_lock here so our parent is tied to
2080 	 * us and cannot change.
2081 	 *
2082 	 * task_active_pid_ns will always return the same pid namespace
2083 	 * until a task passes through release_task.
2084 	 *
2085 	 * write_lock() currently calls preempt_disable() which is the
2086 	 * same as rcu_read_lock(), but according to Oleg, this is not
2087 	 * correct to rely on this
2088 	 */
2089 	rcu_read_lock();
2090 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2091 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2092 				       task_uid(tsk));
2093 	rcu_read_unlock();
2094 
2095 	task_cputime(tsk, &utime, &stime);
2096 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2097 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2098 
2099 	info.si_status = tsk->exit_code & 0x7f;
2100 	if (tsk->exit_code & 0x80)
2101 		info.si_code = CLD_DUMPED;
2102 	else if (tsk->exit_code & 0x7f)
2103 		info.si_code = CLD_KILLED;
2104 	else {
2105 		info.si_code = CLD_EXITED;
2106 		info.si_status = tsk->exit_code >> 8;
2107 	}
2108 
2109 	psig = tsk->parent->sighand;
2110 	spin_lock_irqsave(&psig->siglock, flags);
2111 	if (!tsk->ptrace && sig == SIGCHLD &&
2112 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2113 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2114 		/*
2115 		 * We are exiting and our parent doesn't care.  POSIX.1
2116 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2117 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2118 		 * automatically and not left for our parent's wait4 call.
2119 		 * Rather than having the parent do it as a magic kind of
2120 		 * signal handler, we just set this to tell do_exit that we
2121 		 * can be cleaned up without becoming a zombie.  Note that
2122 		 * we still call __wake_up_parent in this case, because a
2123 		 * blocked sys_wait4 might now return -ECHILD.
2124 		 *
2125 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2126 		 * is implementation-defined: we do (if you don't want
2127 		 * it, just use SIG_IGN instead).
2128 		 */
2129 		autoreap = true;
2130 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2131 			sig = 0;
2132 	}
2133 	/*
2134 	 * Send with __send_signal as si_pid and si_uid are in the
2135 	 * parent's namespaces.
2136 	 */
2137 	if (valid_signal(sig) && sig)
2138 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2139 	__wake_up_parent(tsk, tsk->parent);
2140 	spin_unlock_irqrestore(&psig->siglock, flags);
2141 
2142 	return autoreap;
2143 }
2144 
2145 /**
2146  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2147  * @tsk: task reporting the state change
2148  * @for_ptracer: the notification is for ptracer
2149  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2150  *
2151  * Notify @tsk's parent that the stopped/continued state has changed.  If
2152  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2153  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2154  *
2155  * CONTEXT:
2156  * Must be called with tasklist_lock at least read locked.
2157  */
2158 static void do_notify_parent_cldstop(struct task_struct *tsk,
2159 				     bool for_ptracer, int why)
2160 {
2161 	struct kernel_siginfo info;
2162 	unsigned long flags;
2163 	struct task_struct *parent;
2164 	struct sighand_struct *sighand;
2165 	u64 utime, stime;
2166 
2167 	if (for_ptracer) {
2168 		parent = tsk->parent;
2169 	} else {
2170 		tsk = tsk->group_leader;
2171 		parent = tsk->real_parent;
2172 	}
2173 
2174 	clear_siginfo(&info);
2175 	info.si_signo = SIGCHLD;
2176 	info.si_errno = 0;
2177 	/*
2178 	 * see comment in do_notify_parent() about the following 4 lines
2179 	 */
2180 	rcu_read_lock();
2181 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2182 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2183 	rcu_read_unlock();
2184 
2185 	task_cputime(tsk, &utime, &stime);
2186 	info.si_utime = nsec_to_clock_t(utime);
2187 	info.si_stime = nsec_to_clock_t(stime);
2188 
2189  	info.si_code = why;
2190  	switch (why) {
2191  	case CLD_CONTINUED:
2192  		info.si_status = SIGCONT;
2193  		break;
2194  	case CLD_STOPPED:
2195  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2196  		break;
2197  	case CLD_TRAPPED:
2198  		info.si_status = tsk->exit_code & 0x7f;
2199  		break;
2200  	default:
2201  		BUG();
2202  	}
2203 
2204 	sighand = parent->sighand;
2205 	spin_lock_irqsave(&sighand->siglock, flags);
2206 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2207 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2208 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2209 	/*
2210 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2211 	 */
2212 	__wake_up_parent(tsk, parent);
2213 	spin_unlock_irqrestore(&sighand->siglock, flags);
2214 }
2215 
2216 /*
2217  * This must be called with current->sighand->siglock held.
2218  *
2219  * This should be the path for all ptrace stops.
2220  * We always set current->last_siginfo while stopped here.
2221  * That makes it a way to test a stopped process for
2222  * being ptrace-stopped vs being job-control-stopped.
2223  *
2224  * Returns the signal the ptracer requested the code resume
2225  * with.  If the code did not stop because the tracer is gone,
2226  * the stop signal remains unchanged unless clear_code.
2227  */
2228 static int ptrace_stop(int exit_code, int why, unsigned long message,
2229 		       kernel_siginfo_t *info)
2230 	__releases(&current->sighand->siglock)
2231 	__acquires(&current->sighand->siglock)
2232 {
2233 	bool gstop_done = false;
2234 
2235 	if (arch_ptrace_stop_needed()) {
2236 		/*
2237 		 * The arch code has something special to do before a
2238 		 * ptrace stop.  This is allowed to block, e.g. for faults
2239 		 * on user stack pages.  We can't keep the siglock while
2240 		 * calling arch_ptrace_stop, so we must release it now.
2241 		 * To preserve proper semantics, we must do this before
2242 		 * any signal bookkeeping like checking group_stop_count.
2243 		 */
2244 		spin_unlock_irq(&current->sighand->siglock);
2245 		arch_ptrace_stop();
2246 		spin_lock_irq(&current->sighand->siglock);
2247 	}
2248 
2249 	/*
2250 	 * After this point ptrace_signal_wake_up or signal_wake_up
2251 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2252 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2253 	 * signals here to prevent ptrace_stop sleeping in schedule.
2254 	 */
2255 	if (!current->ptrace || __fatal_signal_pending(current))
2256 		return exit_code;
2257 
2258 	set_special_state(TASK_TRACED);
2259 	current->jobctl |= JOBCTL_TRACED;
2260 
2261 	/*
2262 	 * We're committing to trapping.  TRACED should be visible before
2263 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2264 	 * Also, transition to TRACED and updates to ->jobctl should be
2265 	 * atomic with respect to siglock and should be done after the arch
2266 	 * hook as siglock is released and regrabbed across it.
2267 	 *
2268 	 *     TRACER				    TRACEE
2269 	 *
2270 	 *     ptrace_attach()
2271 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2272 	 *     do_wait()
2273 	 *       set_current_state()                smp_wmb();
2274 	 *       ptrace_do_wait()
2275 	 *         wait_task_stopped()
2276 	 *           task_stopped_code()
2277 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2278 	 */
2279 	smp_wmb();
2280 
2281 	current->ptrace_message = message;
2282 	current->last_siginfo = info;
2283 	current->exit_code = exit_code;
2284 
2285 	/*
2286 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2287 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2288 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2289 	 * could be clear now.  We act as if SIGCONT is received after
2290 	 * TASK_TRACED is entered - ignore it.
2291 	 */
2292 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2293 		gstop_done = task_participate_group_stop(current);
2294 
2295 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2296 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2297 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2298 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2299 
2300 	/* entering a trap, clear TRAPPING */
2301 	task_clear_jobctl_trapping(current);
2302 
2303 	spin_unlock_irq(&current->sighand->siglock);
2304 	read_lock(&tasklist_lock);
2305 	/*
2306 	 * Notify parents of the stop.
2307 	 *
2308 	 * While ptraced, there are two parents - the ptracer and
2309 	 * the real_parent of the group_leader.  The ptracer should
2310 	 * know about every stop while the real parent is only
2311 	 * interested in the completion of group stop.  The states
2312 	 * for the two don't interact with each other.  Notify
2313 	 * separately unless they're gonna be duplicates.
2314 	 */
2315 	if (current->ptrace)
2316 		do_notify_parent_cldstop(current, true, why);
2317 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2318 		do_notify_parent_cldstop(current, false, why);
2319 
2320 	/*
2321 	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2322 	 * One a PREEMPTION kernel this can result in preemption requirement
2323 	 * which will be fulfilled after read_unlock() and the ptracer will be
2324 	 * put on the CPU.
2325 	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2326 	 * this task wait in schedule(). If this task gets preempted then it
2327 	 * remains enqueued on the runqueue. The ptracer will observe this and
2328 	 * then sleep for a delay of one HZ tick. In the meantime this task
2329 	 * gets scheduled, enters schedule() and will wait for the ptracer.
2330 	 *
2331 	 * This preemption point is not bad from a correctness point of
2332 	 * view but extends the runtime by one HZ tick time due to the
2333 	 * ptracer's sleep.  The preempt-disable section ensures that there
2334 	 * will be no preemption between unlock and schedule() and so
2335 	 * improving the performance since the ptracer will observe that
2336 	 * the tracee is scheduled out once it gets on the CPU.
2337 	 *
2338 	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2339 	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2340 	 * before unlocking tasklist_lock so there is no benefit in doing this.
2341 	 *
2342 	 * In fact disabling preemption is harmful on PREEMPT_RT because
2343 	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2344 	 * with preemption disabled due to the 'sleeping' spinlock
2345 	 * substitution of RT.
2346 	 */
2347 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2348 		preempt_disable();
2349 	read_unlock(&tasklist_lock);
2350 	cgroup_enter_frozen();
2351 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2352 		preempt_enable_no_resched();
2353 	schedule();
2354 	cgroup_leave_frozen(true);
2355 
2356 	/*
2357 	 * We are back.  Now reacquire the siglock before touching
2358 	 * last_siginfo, so that we are sure to have synchronized with
2359 	 * any signal-sending on another CPU that wants to examine it.
2360 	 */
2361 	spin_lock_irq(&current->sighand->siglock);
2362 	exit_code = current->exit_code;
2363 	current->last_siginfo = NULL;
2364 	current->ptrace_message = 0;
2365 	current->exit_code = 0;
2366 
2367 	/* LISTENING can be set only during STOP traps, clear it */
2368 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2369 
2370 	/*
2371 	 * Queued signals ignored us while we were stopped for tracing.
2372 	 * So check for any that we should take before resuming user mode.
2373 	 * This sets TIF_SIGPENDING, but never clears it.
2374 	 */
2375 	recalc_sigpending_tsk(current);
2376 	return exit_code;
2377 }
2378 
2379 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2380 {
2381 	kernel_siginfo_t info;
2382 
2383 	clear_siginfo(&info);
2384 	info.si_signo = signr;
2385 	info.si_code = exit_code;
2386 	info.si_pid = task_pid_vnr(current);
2387 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2388 
2389 	/* Let the debugger run.  */
2390 	return ptrace_stop(exit_code, why, message, &info);
2391 }
2392 
2393 int ptrace_notify(int exit_code, unsigned long message)
2394 {
2395 	int signr;
2396 
2397 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2398 	if (unlikely(task_work_pending(current)))
2399 		task_work_run();
2400 
2401 	spin_lock_irq(&current->sighand->siglock);
2402 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2403 	spin_unlock_irq(&current->sighand->siglock);
2404 	return signr;
2405 }
2406 
2407 /**
2408  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2409  * @signr: signr causing group stop if initiating
2410  *
2411  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2412  * and participate in it.  If already set, participate in the existing
2413  * group stop.  If participated in a group stop (and thus slept), %true is
2414  * returned with siglock released.
2415  *
2416  * If ptraced, this function doesn't handle stop itself.  Instead,
2417  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2418  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2419  * places afterwards.
2420  *
2421  * CONTEXT:
2422  * Must be called with @current->sighand->siglock held, which is released
2423  * on %true return.
2424  *
2425  * RETURNS:
2426  * %false if group stop is already cancelled or ptrace trap is scheduled.
2427  * %true if participated in group stop.
2428  */
2429 static bool do_signal_stop(int signr)
2430 	__releases(&current->sighand->siglock)
2431 {
2432 	struct signal_struct *sig = current->signal;
2433 
2434 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2435 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2436 		struct task_struct *t;
2437 
2438 		/* signr will be recorded in task->jobctl for retries */
2439 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2440 
2441 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2442 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2443 		    unlikely(sig->group_exec_task))
2444 			return false;
2445 		/*
2446 		 * There is no group stop already in progress.  We must
2447 		 * initiate one now.
2448 		 *
2449 		 * While ptraced, a task may be resumed while group stop is
2450 		 * still in effect and then receive a stop signal and
2451 		 * initiate another group stop.  This deviates from the
2452 		 * usual behavior as two consecutive stop signals can't
2453 		 * cause two group stops when !ptraced.  That is why we
2454 		 * also check !task_is_stopped(t) below.
2455 		 *
2456 		 * The condition can be distinguished by testing whether
2457 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2458 		 * group_exit_code in such case.
2459 		 *
2460 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2461 		 * an intervening stop signal is required to cause two
2462 		 * continued events regardless of ptrace.
2463 		 */
2464 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2465 			sig->group_exit_code = signr;
2466 
2467 		sig->group_stop_count = 0;
2468 
2469 		if (task_set_jobctl_pending(current, signr | gstop))
2470 			sig->group_stop_count++;
2471 
2472 		t = current;
2473 		while_each_thread(current, t) {
2474 			/*
2475 			 * Setting state to TASK_STOPPED for a group
2476 			 * stop is always done with the siglock held,
2477 			 * so this check has no races.
2478 			 */
2479 			if (!task_is_stopped(t) &&
2480 			    task_set_jobctl_pending(t, signr | gstop)) {
2481 				sig->group_stop_count++;
2482 				if (likely(!(t->ptrace & PT_SEIZED)))
2483 					signal_wake_up(t, 0);
2484 				else
2485 					ptrace_trap_notify(t);
2486 			}
2487 		}
2488 	}
2489 
2490 	if (likely(!current->ptrace)) {
2491 		int notify = 0;
2492 
2493 		/*
2494 		 * If there are no other threads in the group, or if there
2495 		 * is a group stop in progress and we are the last to stop,
2496 		 * report to the parent.
2497 		 */
2498 		if (task_participate_group_stop(current))
2499 			notify = CLD_STOPPED;
2500 
2501 		current->jobctl |= JOBCTL_STOPPED;
2502 		set_special_state(TASK_STOPPED);
2503 		spin_unlock_irq(&current->sighand->siglock);
2504 
2505 		/*
2506 		 * Notify the parent of the group stop completion.  Because
2507 		 * we're not holding either the siglock or tasklist_lock
2508 		 * here, ptracer may attach inbetween; however, this is for
2509 		 * group stop and should always be delivered to the real
2510 		 * parent of the group leader.  The new ptracer will get
2511 		 * its notification when this task transitions into
2512 		 * TASK_TRACED.
2513 		 */
2514 		if (notify) {
2515 			read_lock(&tasklist_lock);
2516 			do_notify_parent_cldstop(current, false, notify);
2517 			read_unlock(&tasklist_lock);
2518 		}
2519 
2520 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2521 		cgroup_enter_frozen();
2522 		schedule();
2523 		return true;
2524 	} else {
2525 		/*
2526 		 * While ptraced, group stop is handled by STOP trap.
2527 		 * Schedule it and let the caller deal with it.
2528 		 */
2529 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2530 		return false;
2531 	}
2532 }
2533 
2534 /**
2535  * do_jobctl_trap - take care of ptrace jobctl traps
2536  *
2537  * When PT_SEIZED, it's used for both group stop and explicit
2538  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2539  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2540  * the stop signal; otherwise, %SIGTRAP.
2541  *
2542  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2543  * number as exit_code and no siginfo.
2544  *
2545  * CONTEXT:
2546  * Must be called with @current->sighand->siglock held, which may be
2547  * released and re-acquired before returning with intervening sleep.
2548  */
2549 static void do_jobctl_trap(void)
2550 {
2551 	struct signal_struct *signal = current->signal;
2552 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2553 
2554 	if (current->ptrace & PT_SEIZED) {
2555 		if (!signal->group_stop_count &&
2556 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2557 			signr = SIGTRAP;
2558 		WARN_ON_ONCE(!signr);
2559 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2560 				 CLD_STOPPED, 0);
2561 	} else {
2562 		WARN_ON_ONCE(!signr);
2563 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2564 	}
2565 }
2566 
2567 /**
2568  * do_freezer_trap - handle the freezer jobctl trap
2569  *
2570  * Puts the task into frozen state, if only the task is not about to quit.
2571  * In this case it drops JOBCTL_TRAP_FREEZE.
2572  *
2573  * CONTEXT:
2574  * Must be called with @current->sighand->siglock held,
2575  * which is always released before returning.
2576  */
2577 static void do_freezer_trap(void)
2578 	__releases(&current->sighand->siglock)
2579 {
2580 	/*
2581 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2582 	 * let's make another loop to give it a chance to be handled.
2583 	 * In any case, we'll return back.
2584 	 */
2585 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2586 	     JOBCTL_TRAP_FREEZE) {
2587 		spin_unlock_irq(&current->sighand->siglock);
2588 		return;
2589 	}
2590 
2591 	/*
2592 	 * Now we're sure that there is no pending fatal signal and no
2593 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2594 	 * immediately (if there is a non-fatal signal pending), and
2595 	 * put the task into sleep.
2596 	 */
2597 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2598 	clear_thread_flag(TIF_SIGPENDING);
2599 	spin_unlock_irq(&current->sighand->siglock);
2600 	cgroup_enter_frozen();
2601 	schedule();
2602 }
2603 
2604 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2605 {
2606 	/*
2607 	 * We do not check sig_kernel_stop(signr) but set this marker
2608 	 * unconditionally because we do not know whether debugger will
2609 	 * change signr. This flag has no meaning unless we are going
2610 	 * to stop after return from ptrace_stop(). In this case it will
2611 	 * be checked in do_signal_stop(), we should only stop if it was
2612 	 * not cleared by SIGCONT while we were sleeping. See also the
2613 	 * comment in dequeue_signal().
2614 	 */
2615 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2616 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2617 
2618 	/* We're back.  Did the debugger cancel the sig?  */
2619 	if (signr == 0)
2620 		return signr;
2621 
2622 	/*
2623 	 * Update the siginfo structure if the signal has
2624 	 * changed.  If the debugger wanted something
2625 	 * specific in the siginfo structure then it should
2626 	 * have updated *info via PTRACE_SETSIGINFO.
2627 	 */
2628 	if (signr != info->si_signo) {
2629 		clear_siginfo(info);
2630 		info->si_signo = signr;
2631 		info->si_errno = 0;
2632 		info->si_code = SI_USER;
2633 		rcu_read_lock();
2634 		info->si_pid = task_pid_vnr(current->parent);
2635 		info->si_uid = from_kuid_munged(current_user_ns(),
2636 						task_uid(current->parent));
2637 		rcu_read_unlock();
2638 	}
2639 
2640 	/* If the (new) signal is now blocked, requeue it.  */
2641 	if (sigismember(&current->blocked, signr) ||
2642 	    fatal_signal_pending(current)) {
2643 		send_signal_locked(signr, info, current, type);
2644 		signr = 0;
2645 	}
2646 
2647 	return signr;
2648 }
2649 
2650 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2651 {
2652 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2653 	case SIL_FAULT:
2654 	case SIL_FAULT_TRAPNO:
2655 	case SIL_FAULT_MCEERR:
2656 	case SIL_FAULT_BNDERR:
2657 	case SIL_FAULT_PKUERR:
2658 	case SIL_FAULT_PERF_EVENT:
2659 		ksig->info.si_addr = arch_untagged_si_addr(
2660 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2661 		break;
2662 	case SIL_KILL:
2663 	case SIL_TIMER:
2664 	case SIL_POLL:
2665 	case SIL_CHLD:
2666 	case SIL_RT:
2667 	case SIL_SYS:
2668 		break;
2669 	}
2670 }
2671 
2672 bool get_signal(struct ksignal *ksig)
2673 {
2674 	struct sighand_struct *sighand = current->sighand;
2675 	struct signal_struct *signal = current->signal;
2676 	int signr;
2677 
2678 	clear_notify_signal();
2679 	if (unlikely(task_work_pending(current)))
2680 		task_work_run();
2681 
2682 	if (!task_sigpending(current))
2683 		return false;
2684 
2685 	if (unlikely(uprobe_deny_signal()))
2686 		return false;
2687 
2688 	/*
2689 	 * Do this once, we can't return to user-mode if freezing() == T.
2690 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2691 	 * thus do not need another check after return.
2692 	 */
2693 	try_to_freeze();
2694 
2695 relock:
2696 	spin_lock_irq(&sighand->siglock);
2697 
2698 	/*
2699 	 * Every stopped thread goes here after wakeup. Check to see if
2700 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2701 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2702 	 */
2703 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2704 		int why;
2705 
2706 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2707 			why = CLD_CONTINUED;
2708 		else
2709 			why = CLD_STOPPED;
2710 
2711 		signal->flags &= ~SIGNAL_CLD_MASK;
2712 
2713 		spin_unlock_irq(&sighand->siglock);
2714 
2715 		/*
2716 		 * Notify the parent that we're continuing.  This event is
2717 		 * always per-process and doesn't make whole lot of sense
2718 		 * for ptracers, who shouldn't consume the state via
2719 		 * wait(2) either, but, for backward compatibility, notify
2720 		 * the ptracer of the group leader too unless it's gonna be
2721 		 * a duplicate.
2722 		 */
2723 		read_lock(&tasklist_lock);
2724 		do_notify_parent_cldstop(current, false, why);
2725 
2726 		if (ptrace_reparented(current->group_leader))
2727 			do_notify_parent_cldstop(current->group_leader,
2728 						true, why);
2729 		read_unlock(&tasklist_lock);
2730 
2731 		goto relock;
2732 	}
2733 
2734 	for (;;) {
2735 		struct k_sigaction *ka;
2736 		enum pid_type type;
2737 
2738 		/* Has this task already been marked for death? */
2739 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2740 		     signal->group_exec_task) {
2741 			clear_siginfo(&ksig->info);
2742 			ksig->info.si_signo = signr = SIGKILL;
2743 			sigdelset(&current->pending.signal, SIGKILL);
2744 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2745 				&sighand->action[SIGKILL - 1]);
2746 			recalc_sigpending();
2747 			goto fatal;
2748 		}
2749 
2750 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2751 		    do_signal_stop(0))
2752 			goto relock;
2753 
2754 		if (unlikely(current->jobctl &
2755 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2756 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2757 				do_jobctl_trap();
2758 				spin_unlock_irq(&sighand->siglock);
2759 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2760 				do_freezer_trap();
2761 
2762 			goto relock;
2763 		}
2764 
2765 		/*
2766 		 * If the task is leaving the frozen state, let's update
2767 		 * cgroup counters and reset the frozen bit.
2768 		 */
2769 		if (unlikely(cgroup_task_frozen(current))) {
2770 			spin_unlock_irq(&sighand->siglock);
2771 			cgroup_leave_frozen(false);
2772 			goto relock;
2773 		}
2774 
2775 		/*
2776 		 * Signals generated by the execution of an instruction
2777 		 * need to be delivered before any other pending signals
2778 		 * so that the instruction pointer in the signal stack
2779 		 * frame points to the faulting instruction.
2780 		 */
2781 		type = PIDTYPE_PID;
2782 		signr = dequeue_synchronous_signal(&ksig->info);
2783 		if (!signr)
2784 			signr = dequeue_signal(current, &current->blocked,
2785 					       &ksig->info, &type);
2786 
2787 		if (!signr)
2788 			break; /* will return 0 */
2789 
2790 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2791 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2792 			signr = ptrace_signal(signr, &ksig->info, type);
2793 			if (!signr)
2794 				continue;
2795 		}
2796 
2797 		ka = &sighand->action[signr-1];
2798 
2799 		/* Trace actually delivered signals. */
2800 		trace_signal_deliver(signr, &ksig->info, ka);
2801 
2802 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2803 			continue;
2804 		if (ka->sa.sa_handler != SIG_DFL) {
2805 			/* Run the handler.  */
2806 			ksig->ka = *ka;
2807 
2808 			if (ka->sa.sa_flags & SA_ONESHOT)
2809 				ka->sa.sa_handler = SIG_DFL;
2810 
2811 			break; /* will return non-zero "signr" value */
2812 		}
2813 
2814 		/*
2815 		 * Now we are doing the default action for this signal.
2816 		 */
2817 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2818 			continue;
2819 
2820 		/*
2821 		 * Global init gets no signals it doesn't want.
2822 		 * Container-init gets no signals it doesn't want from same
2823 		 * container.
2824 		 *
2825 		 * Note that if global/container-init sees a sig_kernel_only()
2826 		 * signal here, the signal must have been generated internally
2827 		 * or must have come from an ancestor namespace. In either
2828 		 * case, the signal cannot be dropped.
2829 		 */
2830 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2831 				!sig_kernel_only(signr))
2832 			continue;
2833 
2834 		if (sig_kernel_stop(signr)) {
2835 			/*
2836 			 * The default action is to stop all threads in
2837 			 * the thread group.  The job control signals
2838 			 * do nothing in an orphaned pgrp, but SIGSTOP
2839 			 * always works.  Note that siglock needs to be
2840 			 * dropped during the call to is_orphaned_pgrp()
2841 			 * because of lock ordering with tasklist_lock.
2842 			 * This allows an intervening SIGCONT to be posted.
2843 			 * We need to check for that and bail out if necessary.
2844 			 */
2845 			if (signr != SIGSTOP) {
2846 				spin_unlock_irq(&sighand->siglock);
2847 
2848 				/* signals can be posted during this window */
2849 
2850 				if (is_current_pgrp_orphaned())
2851 					goto relock;
2852 
2853 				spin_lock_irq(&sighand->siglock);
2854 			}
2855 
2856 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2857 				/* It released the siglock.  */
2858 				goto relock;
2859 			}
2860 
2861 			/*
2862 			 * We didn't actually stop, due to a race
2863 			 * with SIGCONT or something like that.
2864 			 */
2865 			continue;
2866 		}
2867 
2868 	fatal:
2869 		spin_unlock_irq(&sighand->siglock);
2870 		if (unlikely(cgroup_task_frozen(current)))
2871 			cgroup_leave_frozen(true);
2872 
2873 		/*
2874 		 * Anything else is fatal, maybe with a core dump.
2875 		 */
2876 		current->flags |= PF_SIGNALED;
2877 
2878 		if (sig_kernel_coredump(signr)) {
2879 			if (print_fatal_signals)
2880 				print_fatal_signal(ksig->info.si_signo);
2881 			proc_coredump_connector(current);
2882 			/*
2883 			 * If it was able to dump core, this kills all
2884 			 * other threads in the group and synchronizes with
2885 			 * their demise.  If we lost the race with another
2886 			 * thread getting here, it set group_exit_code
2887 			 * first and our do_group_exit call below will use
2888 			 * that value and ignore the one we pass it.
2889 			 */
2890 			do_coredump(&ksig->info);
2891 		}
2892 
2893 		/*
2894 		 * PF_USER_WORKER threads will catch and exit on fatal signals
2895 		 * themselves. They have cleanup that must be performed, so
2896 		 * we cannot call do_exit() on their behalf.
2897 		 */
2898 		if (current->flags & PF_USER_WORKER)
2899 			goto out;
2900 
2901 		/*
2902 		 * Death signals, no core dump.
2903 		 */
2904 		do_group_exit(ksig->info.si_signo);
2905 		/* NOTREACHED */
2906 	}
2907 	spin_unlock_irq(&sighand->siglock);
2908 out:
2909 	ksig->sig = signr;
2910 
2911 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2912 		hide_si_addr_tag_bits(ksig);
2913 
2914 	return ksig->sig > 0;
2915 }
2916 
2917 /**
2918  * signal_delivered - called after signal delivery to update blocked signals
2919  * @ksig:		kernel signal struct
2920  * @stepping:		nonzero if debugger single-step or block-step in use
2921  *
2922  * This function should be called when a signal has successfully been
2923  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2924  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2925  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2926  */
2927 static void signal_delivered(struct ksignal *ksig, int stepping)
2928 {
2929 	sigset_t blocked;
2930 
2931 	/* A signal was successfully delivered, and the
2932 	   saved sigmask was stored on the signal frame,
2933 	   and will be restored by sigreturn.  So we can
2934 	   simply clear the restore sigmask flag.  */
2935 	clear_restore_sigmask();
2936 
2937 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2938 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2939 		sigaddset(&blocked, ksig->sig);
2940 	set_current_blocked(&blocked);
2941 	if (current->sas_ss_flags & SS_AUTODISARM)
2942 		sas_ss_reset(current);
2943 	if (stepping)
2944 		ptrace_notify(SIGTRAP, 0);
2945 }
2946 
2947 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2948 {
2949 	if (failed)
2950 		force_sigsegv(ksig->sig);
2951 	else
2952 		signal_delivered(ksig, stepping);
2953 }
2954 
2955 /*
2956  * It could be that complete_signal() picked us to notify about the
2957  * group-wide signal. Other threads should be notified now to take
2958  * the shared signals in @which since we will not.
2959  */
2960 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2961 {
2962 	sigset_t retarget;
2963 	struct task_struct *t;
2964 
2965 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2966 	if (sigisemptyset(&retarget))
2967 		return;
2968 
2969 	t = tsk;
2970 	while_each_thread(tsk, t) {
2971 		if (t->flags & PF_EXITING)
2972 			continue;
2973 
2974 		if (!has_pending_signals(&retarget, &t->blocked))
2975 			continue;
2976 		/* Remove the signals this thread can handle. */
2977 		sigandsets(&retarget, &retarget, &t->blocked);
2978 
2979 		if (!task_sigpending(t))
2980 			signal_wake_up(t, 0);
2981 
2982 		if (sigisemptyset(&retarget))
2983 			break;
2984 	}
2985 }
2986 
2987 void exit_signals(struct task_struct *tsk)
2988 {
2989 	int group_stop = 0;
2990 	sigset_t unblocked;
2991 
2992 	/*
2993 	 * @tsk is about to have PF_EXITING set - lock out users which
2994 	 * expect stable threadgroup.
2995 	 */
2996 	cgroup_threadgroup_change_begin(tsk);
2997 
2998 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2999 		sched_mm_cid_exit_signals(tsk);
3000 		tsk->flags |= PF_EXITING;
3001 		cgroup_threadgroup_change_end(tsk);
3002 		return;
3003 	}
3004 
3005 	spin_lock_irq(&tsk->sighand->siglock);
3006 	/*
3007 	 * From now this task is not visible for group-wide signals,
3008 	 * see wants_signal(), do_signal_stop().
3009 	 */
3010 	sched_mm_cid_exit_signals(tsk);
3011 	tsk->flags |= PF_EXITING;
3012 
3013 	cgroup_threadgroup_change_end(tsk);
3014 
3015 	if (!task_sigpending(tsk))
3016 		goto out;
3017 
3018 	unblocked = tsk->blocked;
3019 	signotset(&unblocked);
3020 	retarget_shared_pending(tsk, &unblocked);
3021 
3022 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3023 	    task_participate_group_stop(tsk))
3024 		group_stop = CLD_STOPPED;
3025 out:
3026 	spin_unlock_irq(&tsk->sighand->siglock);
3027 
3028 	/*
3029 	 * If group stop has completed, deliver the notification.  This
3030 	 * should always go to the real parent of the group leader.
3031 	 */
3032 	if (unlikely(group_stop)) {
3033 		read_lock(&tasklist_lock);
3034 		do_notify_parent_cldstop(tsk, false, group_stop);
3035 		read_unlock(&tasklist_lock);
3036 	}
3037 }
3038 
3039 /*
3040  * System call entry points.
3041  */
3042 
3043 /**
3044  *  sys_restart_syscall - restart a system call
3045  */
3046 SYSCALL_DEFINE0(restart_syscall)
3047 {
3048 	struct restart_block *restart = &current->restart_block;
3049 	return restart->fn(restart);
3050 }
3051 
3052 long do_no_restart_syscall(struct restart_block *param)
3053 {
3054 	return -EINTR;
3055 }
3056 
3057 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3058 {
3059 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3060 		sigset_t newblocked;
3061 		/* A set of now blocked but previously unblocked signals. */
3062 		sigandnsets(&newblocked, newset, &current->blocked);
3063 		retarget_shared_pending(tsk, &newblocked);
3064 	}
3065 	tsk->blocked = *newset;
3066 	recalc_sigpending();
3067 }
3068 
3069 /**
3070  * set_current_blocked - change current->blocked mask
3071  * @newset: new mask
3072  *
3073  * It is wrong to change ->blocked directly, this helper should be used
3074  * to ensure the process can't miss a shared signal we are going to block.
3075  */
3076 void set_current_blocked(sigset_t *newset)
3077 {
3078 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3079 	__set_current_blocked(newset);
3080 }
3081 
3082 void __set_current_blocked(const sigset_t *newset)
3083 {
3084 	struct task_struct *tsk = current;
3085 
3086 	/*
3087 	 * In case the signal mask hasn't changed, there is nothing we need
3088 	 * to do. The current->blocked shouldn't be modified by other task.
3089 	 */
3090 	if (sigequalsets(&tsk->blocked, newset))
3091 		return;
3092 
3093 	spin_lock_irq(&tsk->sighand->siglock);
3094 	__set_task_blocked(tsk, newset);
3095 	spin_unlock_irq(&tsk->sighand->siglock);
3096 }
3097 
3098 /*
3099  * This is also useful for kernel threads that want to temporarily
3100  * (or permanently) block certain signals.
3101  *
3102  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3103  * interface happily blocks "unblockable" signals like SIGKILL
3104  * and friends.
3105  */
3106 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3107 {
3108 	struct task_struct *tsk = current;
3109 	sigset_t newset;
3110 
3111 	/* Lockless, only current can change ->blocked, never from irq */
3112 	if (oldset)
3113 		*oldset = tsk->blocked;
3114 
3115 	switch (how) {
3116 	case SIG_BLOCK:
3117 		sigorsets(&newset, &tsk->blocked, set);
3118 		break;
3119 	case SIG_UNBLOCK:
3120 		sigandnsets(&newset, &tsk->blocked, set);
3121 		break;
3122 	case SIG_SETMASK:
3123 		newset = *set;
3124 		break;
3125 	default:
3126 		return -EINVAL;
3127 	}
3128 
3129 	__set_current_blocked(&newset);
3130 	return 0;
3131 }
3132 EXPORT_SYMBOL(sigprocmask);
3133 
3134 /*
3135  * The api helps set app-provided sigmasks.
3136  *
3137  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3138  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3139  *
3140  * Note that it does set_restore_sigmask() in advance, so it must be always
3141  * paired with restore_saved_sigmask_unless() before return from syscall.
3142  */
3143 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3144 {
3145 	sigset_t kmask;
3146 
3147 	if (!umask)
3148 		return 0;
3149 	if (sigsetsize != sizeof(sigset_t))
3150 		return -EINVAL;
3151 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3152 		return -EFAULT;
3153 
3154 	set_restore_sigmask();
3155 	current->saved_sigmask = current->blocked;
3156 	set_current_blocked(&kmask);
3157 
3158 	return 0;
3159 }
3160 
3161 #ifdef CONFIG_COMPAT
3162 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3163 			    size_t sigsetsize)
3164 {
3165 	sigset_t kmask;
3166 
3167 	if (!umask)
3168 		return 0;
3169 	if (sigsetsize != sizeof(compat_sigset_t))
3170 		return -EINVAL;
3171 	if (get_compat_sigset(&kmask, umask))
3172 		return -EFAULT;
3173 
3174 	set_restore_sigmask();
3175 	current->saved_sigmask = current->blocked;
3176 	set_current_blocked(&kmask);
3177 
3178 	return 0;
3179 }
3180 #endif
3181 
3182 /**
3183  *  sys_rt_sigprocmask - change the list of currently blocked signals
3184  *  @how: whether to add, remove, or set signals
3185  *  @nset: stores pending signals
3186  *  @oset: previous value of signal mask if non-null
3187  *  @sigsetsize: size of sigset_t type
3188  */
3189 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3190 		sigset_t __user *, oset, size_t, sigsetsize)
3191 {
3192 	sigset_t old_set, new_set;
3193 	int error;
3194 
3195 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3196 	if (sigsetsize != sizeof(sigset_t))
3197 		return -EINVAL;
3198 
3199 	old_set = current->blocked;
3200 
3201 	if (nset) {
3202 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3203 			return -EFAULT;
3204 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3205 
3206 		error = sigprocmask(how, &new_set, NULL);
3207 		if (error)
3208 			return error;
3209 	}
3210 
3211 	if (oset) {
3212 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3213 			return -EFAULT;
3214 	}
3215 
3216 	return 0;
3217 }
3218 
3219 #ifdef CONFIG_COMPAT
3220 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3221 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3222 {
3223 	sigset_t old_set = current->blocked;
3224 
3225 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3226 	if (sigsetsize != sizeof(sigset_t))
3227 		return -EINVAL;
3228 
3229 	if (nset) {
3230 		sigset_t new_set;
3231 		int error;
3232 		if (get_compat_sigset(&new_set, nset))
3233 			return -EFAULT;
3234 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3235 
3236 		error = sigprocmask(how, &new_set, NULL);
3237 		if (error)
3238 			return error;
3239 	}
3240 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3241 }
3242 #endif
3243 
3244 static void do_sigpending(sigset_t *set)
3245 {
3246 	spin_lock_irq(&current->sighand->siglock);
3247 	sigorsets(set, &current->pending.signal,
3248 		  &current->signal->shared_pending.signal);
3249 	spin_unlock_irq(&current->sighand->siglock);
3250 
3251 	/* Outside the lock because only this thread touches it.  */
3252 	sigandsets(set, &current->blocked, set);
3253 }
3254 
3255 /**
3256  *  sys_rt_sigpending - examine a pending signal that has been raised
3257  *			while blocked
3258  *  @uset: stores pending signals
3259  *  @sigsetsize: size of sigset_t type or larger
3260  */
3261 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3262 {
3263 	sigset_t set;
3264 
3265 	if (sigsetsize > sizeof(*uset))
3266 		return -EINVAL;
3267 
3268 	do_sigpending(&set);
3269 
3270 	if (copy_to_user(uset, &set, sigsetsize))
3271 		return -EFAULT;
3272 
3273 	return 0;
3274 }
3275 
3276 #ifdef CONFIG_COMPAT
3277 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3278 		compat_size_t, sigsetsize)
3279 {
3280 	sigset_t set;
3281 
3282 	if (sigsetsize > sizeof(*uset))
3283 		return -EINVAL;
3284 
3285 	do_sigpending(&set);
3286 
3287 	return put_compat_sigset(uset, &set, sigsetsize);
3288 }
3289 #endif
3290 
3291 static const struct {
3292 	unsigned char limit, layout;
3293 } sig_sicodes[] = {
3294 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3295 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3296 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3297 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3298 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3299 #if defined(SIGEMT)
3300 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3301 #endif
3302 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3303 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3304 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3305 };
3306 
3307 static bool known_siginfo_layout(unsigned sig, int si_code)
3308 {
3309 	if (si_code == SI_KERNEL)
3310 		return true;
3311 	else if ((si_code > SI_USER)) {
3312 		if (sig_specific_sicodes(sig)) {
3313 			if (si_code <= sig_sicodes[sig].limit)
3314 				return true;
3315 		}
3316 		else if (si_code <= NSIGPOLL)
3317 			return true;
3318 	}
3319 	else if (si_code >= SI_DETHREAD)
3320 		return true;
3321 	else if (si_code == SI_ASYNCNL)
3322 		return true;
3323 	return false;
3324 }
3325 
3326 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3327 {
3328 	enum siginfo_layout layout = SIL_KILL;
3329 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3330 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3331 		    (si_code <= sig_sicodes[sig].limit)) {
3332 			layout = sig_sicodes[sig].layout;
3333 			/* Handle the exceptions */
3334 			if ((sig == SIGBUS) &&
3335 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3336 				layout = SIL_FAULT_MCEERR;
3337 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3338 				layout = SIL_FAULT_BNDERR;
3339 #ifdef SEGV_PKUERR
3340 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3341 				layout = SIL_FAULT_PKUERR;
3342 #endif
3343 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3344 				layout = SIL_FAULT_PERF_EVENT;
3345 			else if (IS_ENABLED(CONFIG_SPARC) &&
3346 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3347 				layout = SIL_FAULT_TRAPNO;
3348 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3349 				 ((sig == SIGFPE) ||
3350 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3351 				layout = SIL_FAULT_TRAPNO;
3352 		}
3353 		else if (si_code <= NSIGPOLL)
3354 			layout = SIL_POLL;
3355 	} else {
3356 		if (si_code == SI_TIMER)
3357 			layout = SIL_TIMER;
3358 		else if (si_code == SI_SIGIO)
3359 			layout = SIL_POLL;
3360 		else if (si_code < 0)
3361 			layout = SIL_RT;
3362 	}
3363 	return layout;
3364 }
3365 
3366 static inline char __user *si_expansion(const siginfo_t __user *info)
3367 {
3368 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3369 }
3370 
3371 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3372 {
3373 	char __user *expansion = si_expansion(to);
3374 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3375 		return -EFAULT;
3376 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3377 		return -EFAULT;
3378 	return 0;
3379 }
3380 
3381 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3382 				       const siginfo_t __user *from)
3383 {
3384 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3385 		char __user *expansion = si_expansion(from);
3386 		char buf[SI_EXPANSION_SIZE];
3387 		int i;
3388 		/*
3389 		 * An unknown si_code might need more than
3390 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3391 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3392 		 * will return this data to userspace exactly.
3393 		 */
3394 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3395 			return -EFAULT;
3396 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3397 			if (buf[i] != 0)
3398 				return -E2BIG;
3399 		}
3400 	}
3401 	return 0;
3402 }
3403 
3404 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3405 				    const siginfo_t __user *from)
3406 {
3407 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3408 		return -EFAULT;
3409 	to->si_signo = signo;
3410 	return post_copy_siginfo_from_user(to, from);
3411 }
3412 
3413 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3414 {
3415 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3416 		return -EFAULT;
3417 	return post_copy_siginfo_from_user(to, from);
3418 }
3419 
3420 #ifdef CONFIG_COMPAT
3421 /**
3422  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3423  * @to: compat siginfo destination
3424  * @from: kernel siginfo source
3425  *
3426  * Note: This function does not work properly for the SIGCHLD on x32, but
3427  * fortunately it doesn't have to.  The only valid callers for this function are
3428  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3429  * The latter does not care because SIGCHLD will never cause a coredump.
3430  */
3431 void copy_siginfo_to_external32(struct compat_siginfo *to,
3432 		const struct kernel_siginfo *from)
3433 {
3434 	memset(to, 0, sizeof(*to));
3435 
3436 	to->si_signo = from->si_signo;
3437 	to->si_errno = from->si_errno;
3438 	to->si_code  = from->si_code;
3439 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3440 	case SIL_KILL:
3441 		to->si_pid = from->si_pid;
3442 		to->si_uid = from->si_uid;
3443 		break;
3444 	case SIL_TIMER:
3445 		to->si_tid     = from->si_tid;
3446 		to->si_overrun = from->si_overrun;
3447 		to->si_int     = from->si_int;
3448 		break;
3449 	case SIL_POLL:
3450 		to->si_band = from->si_band;
3451 		to->si_fd   = from->si_fd;
3452 		break;
3453 	case SIL_FAULT:
3454 		to->si_addr = ptr_to_compat(from->si_addr);
3455 		break;
3456 	case SIL_FAULT_TRAPNO:
3457 		to->si_addr = ptr_to_compat(from->si_addr);
3458 		to->si_trapno = from->si_trapno;
3459 		break;
3460 	case SIL_FAULT_MCEERR:
3461 		to->si_addr = ptr_to_compat(from->si_addr);
3462 		to->si_addr_lsb = from->si_addr_lsb;
3463 		break;
3464 	case SIL_FAULT_BNDERR:
3465 		to->si_addr = ptr_to_compat(from->si_addr);
3466 		to->si_lower = ptr_to_compat(from->si_lower);
3467 		to->si_upper = ptr_to_compat(from->si_upper);
3468 		break;
3469 	case SIL_FAULT_PKUERR:
3470 		to->si_addr = ptr_to_compat(from->si_addr);
3471 		to->si_pkey = from->si_pkey;
3472 		break;
3473 	case SIL_FAULT_PERF_EVENT:
3474 		to->si_addr = ptr_to_compat(from->si_addr);
3475 		to->si_perf_data = from->si_perf_data;
3476 		to->si_perf_type = from->si_perf_type;
3477 		to->si_perf_flags = from->si_perf_flags;
3478 		break;
3479 	case SIL_CHLD:
3480 		to->si_pid = from->si_pid;
3481 		to->si_uid = from->si_uid;
3482 		to->si_status = from->si_status;
3483 		to->si_utime = from->si_utime;
3484 		to->si_stime = from->si_stime;
3485 		break;
3486 	case SIL_RT:
3487 		to->si_pid = from->si_pid;
3488 		to->si_uid = from->si_uid;
3489 		to->si_int = from->si_int;
3490 		break;
3491 	case SIL_SYS:
3492 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3493 		to->si_syscall   = from->si_syscall;
3494 		to->si_arch      = from->si_arch;
3495 		break;
3496 	}
3497 }
3498 
3499 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3500 			   const struct kernel_siginfo *from)
3501 {
3502 	struct compat_siginfo new;
3503 
3504 	copy_siginfo_to_external32(&new, from);
3505 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3506 		return -EFAULT;
3507 	return 0;
3508 }
3509 
3510 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3511 					 const struct compat_siginfo *from)
3512 {
3513 	clear_siginfo(to);
3514 	to->si_signo = from->si_signo;
3515 	to->si_errno = from->si_errno;
3516 	to->si_code  = from->si_code;
3517 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3518 	case SIL_KILL:
3519 		to->si_pid = from->si_pid;
3520 		to->si_uid = from->si_uid;
3521 		break;
3522 	case SIL_TIMER:
3523 		to->si_tid     = from->si_tid;
3524 		to->si_overrun = from->si_overrun;
3525 		to->si_int     = from->si_int;
3526 		break;
3527 	case SIL_POLL:
3528 		to->si_band = from->si_band;
3529 		to->si_fd   = from->si_fd;
3530 		break;
3531 	case SIL_FAULT:
3532 		to->si_addr = compat_ptr(from->si_addr);
3533 		break;
3534 	case SIL_FAULT_TRAPNO:
3535 		to->si_addr = compat_ptr(from->si_addr);
3536 		to->si_trapno = from->si_trapno;
3537 		break;
3538 	case SIL_FAULT_MCEERR:
3539 		to->si_addr = compat_ptr(from->si_addr);
3540 		to->si_addr_lsb = from->si_addr_lsb;
3541 		break;
3542 	case SIL_FAULT_BNDERR:
3543 		to->si_addr = compat_ptr(from->si_addr);
3544 		to->si_lower = compat_ptr(from->si_lower);
3545 		to->si_upper = compat_ptr(from->si_upper);
3546 		break;
3547 	case SIL_FAULT_PKUERR:
3548 		to->si_addr = compat_ptr(from->si_addr);
3549 		to->si_pkey = from->si_pkey;
3550 		break;
3551 	case SIL_FAULT_PERF_EVENT:
3552 		to->si_addr = compat_ptr(from->si_addr);
3553 		to->si_perf_data = from->si_perf_data;
3554 		to->si_perf_type = from->si_perf_type;
3555 		to->si_perf_flags = from->si_perf_flags;
3556 		break;
3557 	case SIL_CHLD:
3558 		to->si_pid    = from->si_pid;
3559 		to->si_uid    = from->si_uid;
3560 		to->si_status = from->si_status;
3561 #ifdef CONFIG_X86_X32_ABI
3562 		if (in_x32_syscall()) {
3563 			to->si_utime = from->_sifields._sigchld_x32._utime;
3564 			to->si_stime = from->_sifields._sigchld_x32._stime;
3565 		} else
3566 #endif
3567 		{
3568 			to->si_utime = from->si_utime;
3569 			to->si_stime = from->si_stime;
3570 		}
3571 		break;
3572 	case SIL_RT:
3573 		to->si_pid = from->si_pid;
3574 		to->si_uid = from->si_uid;
3575 		to->si_int = from->si_int;
3576 		break;
3577 	case SIL_SYS:
3578 		to->si_call_addr = compat_ptr(from->si_call_addr);
3579 		to->si_syscall   = from->si_syscall;
3580 		to->si_arch      = from->si_arch;
3581 		break;
3582 	}
3583 	return 0;
3584 }
3585 
3586 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3587 				      const struct compat_siginfo __user *ufrom)
3588 {
3589 	struct compat_siginfo from;
3590 
3591 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3592 		return -EFAULT;
3593 
3594 	from.si_signo = signo;
3595 	return post_copy_siginfo_from_user32(to, &from);
3596 }
3597 
3598 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3599 			     const struct compat_siginfo __user *ufrom)
3600 {
3601 	struct compat_siginfo from;
3602 
3603 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3604 		return -EFAULT;
3605 
3606 	return post_copy_siginfo_from_user32(to, &from);
3607 }
3608 #endif /* CONFIG_COMPAT */
3609 
3610 /**
3611  *  do_sigtimedwait - wait for queued signals specified in @which
3612  *  @which: queued signals to wait for
3613  *  @info: if non-null, the signal's siginfo is returned here
3614  *  @ts: upper bound on process time suspension
3615  */
3616 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3617 		    const struct timespec64 *ts)
3618 {
3619 	ktime_t *to = NULL, timeout = KTIME_MAX;
3620 	struct task_struct *tsk = current;
3621 	sigset_t mask = *which;
3622 	enum pid_type type;
3623 	int sig, ret = 0;
3624 
3625 	if (ts) {
3626 		if (!timespec64_valid(ts))
3627 			return -EINVAL;
3628 		timeout = timespec64_to_ktime(*ts);
3629 		to = &timeout;
3630 	}
3631 
3632 	/*
3633 	 * Invert the set of allowed signals to get those we want to block.
3634 	 */
3635 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3636 	signotset(&mask);
3637 
3638 	spin_lock_irq(&tsk->sighand->siglock);
3639 	sig = dequeue_signal(tsk, &mask, info, &type);
3640 	if (!sig && timeout) {
3641 		/*
3642 		 * None ready, temporarily unblock those we're interested
3643 		 * while we are sleeping in so that we'll be awakened when
3644 		 * they arrive. Unblocking is always fine, we can avoid
3645 		 * set_current_blocked().
3646 		 */
3647 		tsk->real_blocked = tsk->blocked;
3648 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3649 		recalc_sigpending();
3650 		spin_unlock_irq(&tsk->sighand->siglock);
3651 
3652 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3653 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3654 					       HRTIMER_MODE_REL);
3655 		spin_lock_irq(&tsk->sighand->siglock);
3656 		__set_task_blocked(tsk, &tsk->real_blocked);
3657 		sigemptyset(&tsk->real_blocked);
3658 		sig = dequeue_signal(tsk, &mask, info, &type);
3659 	}
3660 	spin_unlock_irq(&tsk->sighand->siglock);
3661 
3662 	if (sig)
3663 		return sig;
3664 	return ret ? -EINTR : -EAGAIN;
3665 }
3666 
3667 /**
3668  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3669  *			in @uthese
3670  *  @uthese: queued signals to wait for
3671  *  @uinfo: if non-null, the signal's siginfo is returned here
3672  *  @uts: upper bound on process time suspension
3673  *  @sigsetsize: size of sigset_t type
3674  */
3675 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3676 		siginfo_t __user *, uinfo,
3677 		const struct __kernel_timespec __user *, uts,
3678 		size_t, sigsetsize)
3679 {
3680 	sigset_t these;
3681 	struct timespec64 ts;
3682 	kernel_siginfo_t info;
3683 	int ret;
3684 
3685 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3686 	if (sigsetsize != sizeof(sigset_t))
3687 		return -EINVAL;
3688 
3689 	if (copy_from_user(&these, uthese, sizeof(these)))
3690 		return -EFAULT;
3691 
3692 	if (uts) {
3693 		if (get_timespec64(&ts, uts))
3694 			return -EFAULT;
3695 	}
3696 
3697 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3698 
3699 	if (ret > 0 && uinfo) {
3700 		if (copy_siginfo_to_user(uinfo, &info))
3701 			ret = -EFAULT;
3702 	}
3703 
3704 	return ret;
3705 }
3706 
3707 #ifdef CONFIG_COMPAT_32BIT_TIME
3708 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3709 		siginfo_t __user *, uinfo,
3710 		const struct old_timespec32 __user *, uts,
3711 		size_t, sigsetsize)
3712 {
3713 	sigset_t these;
3714 	struct timespec64 ts;
3715 	kernel_siginfo_t info;
3716 	int ret;
3717 
3718 	if (sigsetsize != sizeof(sigset_t))
3719 		return -EINVAL;
3720 
3721 	if (copy_from_user(&these, uthese, sizeof(these)))
3722 		return -EFAULT;
3723 
3724 	if (uts) {
3725 		if (get_old_timespec32(&ts, uts))
3726 			return -EFAULT;
3727 	}
3728 
3729 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3730 
3731 	if (ret > 0 && uinfo) {
3732 		if (copy_siginfo_to_user(uinfo, &info))
3733 			ret = -EFAULT;
3734 	}
3735 
3736 	return ret;
3737 }
3738 #endif
3739 
3740 #ifdef CONFIG_COMPAT
3741 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3742 		struct compat_siginfo __user *, uinfo,
3743 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3744 {
3745 	sigset_t s;
3746 	struct timespec64 t;
3747 	kernel_siginfo_t info;
3748 	long ret;
3749 
3750 	if (sigsetsize != sizeof(sigset_t))
3751 		return -EINVAL;
3752 
3753 	if (get_compat_sigset(&s, uthese))
3754 		return -EFAULT;
3755 
3756 	if (uts) {
3757 		if (get_timespec64(&t, uts))
3758 			return -EFAULT;
3759 	}
3760 
3761 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3762 
3763 	if (ret > 0 && uinfo) {
3764 		if (copy_siginfo_to_user32(uinfo, &info))
3765 			ret = -EFAULT;
3766 	}
3767 
3768 	return ret;
3769 }
3770 
3771 #ifdef CONFIG_COMPAT_32BIT_TIME
3772 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3773 		struct compat_siginfo __user *, uinfo,
3774 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3775 {
3776 	sigset_t s;
3777 	struct timespec64 t;
3778 	kernel_siginfo_t info;
3779 	long ret;
3780 
3781 	if (sigsetsize != sizeof(sigset_t))
3782 		return -EINVAL;
3783 
3784 	if (get_compat_sigset(&s, uthese))
3785 		return -EFAULT;
3786 
3787 	if (uts) {
3788 		if (get_old_timespec32(&t, uts))
3789 			return -EFAULT;
3790 	}
3791 
3792 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3793 
3794 	if (ret > 0 && uinfo) {
3795 		if (copy_siginfo_to_user32(uinfo, &info))
3796 			ret = -EFAULT;
3797 	}
3798 
3799 	return ret;
3800 }
3801 #endif
3802 #endif
3803 
3804 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3805 {
3806 	clear_siginfo(info);
3807 	info->si_signo = sig;
3808 	info->si_errno = 0;
3809 	info->si_code = SI_USER;
3810 	info->si_pid = task_tgid_vnr(current);
3811 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3812 }
3813 
3814 /**
3815  *  sys_kill - send a signal to a process
3816  *  @pid: the PID of the process
3817  *  @sig: signal to be sent
3818  */
3819 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3820 {
3821 	struct kernel_siginfo info;
3822 
3823 	prepare_kill_siginfo(sig, &info);
3824 
3825 	return kill_something_info(sig, &info, pid);
3826 }
3827 
3828 /*
3829  * Verify that the signaler and signalee either are in the same pid namespace
3830  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3831  * namespace.
3832  */
3833 static bool access_pidfd_pidns(struct pid *pid)
3834 {
3835 	struct pid_namespace *active = task_active_pid_ns(current);
3836 	struct pid_namespace *p = ns_of_pid(pid);
3837 
3838 	for (;;) {
3839 		if (!p)
3840 			return false;
3841 		if (p == active)
3842 			break;
3843 		p = p->parent;
3844 	}
3845 
3846 	return true;
3847 }
3848 
3849 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3850 		siginfo_t __user *info)
3851 {
3852 #ifdef CONFIG_COMPAT
3853 	/*
3854 	 * Avoid hooking up compat syscalls and instead handle necessary
3855 	 * conversions here. Note, this is a stop-gap measure and should not be
3856 	 * considered a generic solution.
3857 	 */
3858 	if (in_compat_syscall())
3859 		return copy_siginfo_from_user32(
3860 			kinfo, (struct compat_siginfo __user *)info);
3861 #endif
3862 	return copy_siginfo_from_user(kinfo, info);
3863 }
3864 
3865 static struct pid *pidfd_to_pid(const struct file *file)
3866 {
3867 	struct pid *pid;
3868 
3869 	pid = pidfd_pid(file);
3870 	if (!IS_ERR(pid))
3871 		return pid;
3872 
3873 	return tgid_pidfd_to_pid(file);
3874 }
3875 
3876 /**
3877  * sys_pidfd_send_signal - Signal a process through a pidfd
3878  * @pidfd:  file descriptor of the process
3879  * @sig:    signal to send
3880  * @info:   signal info
3881  * @flags:  future flags
3882  *
3883  * The syscall currently only signals via PIDTYPE_PID which covers
3884  * kill(<positive-pid>, <signal>. It does not signal threads or process
3885  * groups.
3886  * In order to extend the syscall to threads and process groups the @flags
3887  * argument should be used. In essence, the @flags argument will determine
3888  * what is signaled and not the file descriptor itself. Put in other words,
3889  * grouping is a property of the flags argument not a property of the file
3890  * descriptor.
3891  *
3892  * Return: 0 on success, negative errno on failure
3893  */
3894 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3895 		siginfo_t __user *, info, unsigned int, flags)
3896 {
3897 	int ret;
3898 	struct fd f;
3899 	struct pid *pid;
3900 	kernel_siginfo_t kinfo;
3901 
3902 	/* Enforce flags be set to 0 until we add an extension. */
3903 	if (flags)
3904 		return -EINVAL;
3905 
3906 	f = fdget(pidfd);
3907 	if (!f.file)
3908 		return -EBADF;
3909 
3910 	/* Is this a pidfd? */
3911 	pid = pidfd_to_pid(f.file);
3912 	if (IS_ERR(pid)) {
3913 		ret = PTR_ERR(pid);
3914 		goto err;
3915 	}
3916 
3917 	ret = -EINVAL;
3918 	if (!access_pidfd_pidns(pid))
3919 		goto err;
3920 
3921 	if (info) {
3922 		ret = copy_siginfo_from_user_any(&kinfo, info);
3923 		if (unlikely(ret))
3924 			goto err;
3925 
3926 		ret = -EINVAL;
3927 		if (unlikely(sig != kinfo.si_signo))
3928 			goto err;
3929 
3930 		/* Only allow sending arbitrary signals to yourself. */
3931 		ret = -EPERM;
3932 		if ((task_pid(current) != pid) &&
3933 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3934 			goto err;
3935 	} else {
3936 		prepare_kill_siginfo(sig, &kinfo);
3937 	}
3938 
3939 	ret = kill_pid_info(sig, &kinfo, pid);
3940 
3941 err:
3942 	fdput(f);
3943 	return ret;
3944 }
3945 
3946 static int
3947 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3948 {
3949 	struct task_struct *p;
3950 	int error = -ESRCH;
3951 
3952 	rcu_read_lock();
3953 	p = find_task_by_vpid(pid);
3954 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3955 		error = check_kill_permission(sig, info, p);
3956 		/*
3957 		 * The null signal is a permissions and process existence
3958 		 * probe.  No signal is actually delivered.
3959 		 */
3960 		if (!error && sig) {
3961 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3962 			/*
3963 			 * If lock_task_sighand() failed we pretend the task
3964 			 * dies after receiving the signal. The window is tiny,
3965 			 * and the signal is private anyway.
3966 			 */
3967 			if (unlikely(error == -ESRCH))
3968 				error = 0;
3969 		}
3970 	}
3971 	rcu_read_unlock();
3972 
3973 	return error;
3974 }
3975 
3976 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3977 {
3978 	struct kernel_siginfo info;
3979 
3980 	clear_siginfo(&info);
3981 	info.si_signo = sig;
3982 	info.si_errno = 0;
3983 	info.si_code = SI_TKILL;
3984 	info.si_pid = task_tgid_vnr(current);
3985 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3986 
3987 	return do_send_specific(tgid, pid, sig, &info);
3988 }
3989 
3990 /**
3991  *  sys_tgkill - send signal to one specific thread
3992  *  @tgid: the thread group ID of the thread
3993  *  @pid: the PID of the thread
3994  *  @sig: signal to be sent
3995  *
3996  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3997  *  exists but it's not belonging to the target process anymore. This
3998  *  method solves the problem of threads exiting and PIDs getting reused.
3999  */
4000 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4001 {
4002 	/* This is only valid for single tasks */
4003 	if (pid <= 0 || tgid <= 0)
4004 		return -EINVAL;
4005 
4006 	return do_tkill(tgid, pid, sig);
4007 }
4008 
4009 /**
4010  *  sys_tkill - send signal to one specific task
4011  *  @pid: the PID of the task
4012  *  @sig: signal to be sent
4013  *
4014  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4015  */
4016 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4017 {
4018 	/* This is only valid for single tasks */
4019 	if (pid <= 0)
4020 		return -EINVAL;
4021 
4022 	return do_tkill(0, pid, sig);
4023 }
4024 
4025 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4026 {
4027 	/* Not even root can pretend to send signals from the kernel.
4028 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4029 	 */
4030 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4031 	    (task_pid_vnr(current) != pid))
4032 		return -EPERM;
4033 
4034 	/* POSIX.1b doesn't mention process groups.  */
4035 	return kill_proc_info(sig, info, pid);
4036 }
4037 
4038 /**
4039  *  sys_rt_sigqueueinfo - send signal information to a signal
4040  *  @pid: the PID of the thread
4041  *  @sig: signal to be sent
4042  *  @uinfo: signal info to be sent
4043  */
4044 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4045 		siginfo_t __user *, uinfo)
4046 {
4047 	kernel_siginfo_t info;
4048 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4049 	if (unlikely(ret))
4050 		return ret;
4051 	return do_rt_sigqueueinfo(pid, sig, &info);
4052 }
4053 
4054 #ifdef CONFIG_COMPAT
4055 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4056 			compat_pid_t, pid,
4057 			int, sig,
4058 			struct compat_siginfo __user *, uinfo)
4059 {
4060 	kernel_siginfo_t info;
4061 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4062 	if (unlikely(ret))
4063 		return ret;
4064 	return do_rt_sigqueueinfo(pid, sig, &info);
4065 }
4066 #endif
4067 
4068 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4069 {
4070 	/* This is only valid for single tasks */
4071 	if (pid <= 0 || tgid <= 0)
4072 		return -EINVAL;
4073 
4074 	/* Not even root can pretend to send signals from the kernel.
4075 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4076 	 */
4077 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4078 	    (task_pid_vnr(current) != pid))
4079 		return -EPERM;
4080 
4081 	return do_send_specific(tgid, pid, sig, info);
4082 }
4083 
4084 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4085 		siginfo_t __user *, uinfo)
4086 {
4087 	kernel_siginfo_t info;
4088 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4089 	if (unlikely(ret))
4090 		return ret;
4091 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4092 }
4093 
4094 #ifdef CONFIG_COMPAT
4095 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4096 			compat_pid_t, tgid,
4097 			compat_pid_t, pid,
4098 			int, sig,
4099 			struct compat_siginfo __user *, uinfo)
4100 {
4101 	kernel_siginfo_t info;
4102 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4103 	if (unlikely(ret))
4104 		return ret;
4105 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4106 }
4107 #endif
4108 
4109 /*
4110  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4111  */
4112 void kernel_sigaction(int sig, __sighandler_t action)
4113 {
4114 	spin_lock_irq(&current->sighand->siglock);
4115 	current->sighand->action[sig - 1].sa.sa_handler = action;
4116 	if (action == SIG_IGN) {
4117 		sigset_t mask;
4118 
4119 		sigemptyset(&mask);
4120 		sigaddset(&mask, sig);
4121 
4122 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4123 		flush_sigqueue_mask(&mask, &current->pending);
4124 		recalc_sigpending();
4125 	}
4126 	spin_unlock_irq(&current->sighand->siglock);
4127 }
4128 EXPORT_SYMBOL(kernel_sigaction);
4129 
4130 void __weak sigaction_compat_abi(struct k_sigaction *act,
4131 		struct k_sigaction *oact)
4132 {
4133 }
4134 
4135 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4136 {
4137 	struct task_struct *p = current, *t;
4138 	struct k_sigaction *k;
4139 	sigset_t mask;
4140 
4141 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4142 		return -EINVAL;
4143 
4144 	k = &p->sighand->action[sig-1];
4145 
4146 	spin_lock_irq(&p->sighand->siglock);
4147 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4148 		spin_unlock_irq(&p->sighand->siglock);
4149 		return -EINVAL;
4150 	}
4151 	if (oact)
4152 		*oact = *k;
4153 
4154 	/*
4155 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4156 	 * e.g. by having an architecture use the bit in their uapi.
4157 	 */
4158 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4159 
4160 	/*
4161 	 * Clear unknown flag bits in order to allow userspace to detect missing
4162 	 * support for flag bits and to allow the kernel to use non-uapi bits
4163 	 * internally.
4164 	 */
4165 	if (act)
4166 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4167 	if (oact)
4168 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4169 
4170 	sigaction_compat_abi(act, oact);
4171 
4172 	if (act) {
4173 		sigdelsetmask(&act->sa.sa_mask,
4174 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4175 		*k = *act;
4176 		/*
4177 		 * POSIX 3.3.1.3:
4178 		 *  "Setting a signal action to SIG_IGN for a signal that is
4179 		 *   pending shall cause the pending signal to be discarded,
4180 		 *   whether or not it is blocked."
4181 		 *
4182 		 *  "Setting a signal action to SIG_DFL for a signal that is
4183 		 *   pending and whose default action is to ignore the signal
4184 		 *   (for example, SIGCHLD), shall cause the pending signal to
4185 		 *   be discarded, whether or not it is blocked"
4186 		 */
4187 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4188 			sigemptyset(&mask);
4189 			sigaddset(&mask, sig);
4190 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4191 			for_each_thread(p, t)
4192 				flush_sigqueue_mask(&mask, &t->pending);
4193 		}
4194 	}
4195 
4196 	spin_unlock_irq(&p->sighand->siglock);
4197 	return 0;
4198 }
4199 
4200 #ifdef CONFIG_DYNAMIC_SIGFRAME
4201 static inline void sigaltstack_lock(void)
4202 	__acquires(&current->sighand->siglock)
4203 {
4204 	spin_lock_irq(&current->sighand->siglock);
4205 }
4206 
4207 static inline void sigaltstack_unlock(void)
4208 	__releases(&current->sighand->siglock)
4209 {
4210 	spin_unlock_irq(&current->sighand->siglock);
4211 }
4212 #else
4213 static inline void sigaltstack_lock(void) { }
4214 static inline void sigaltstack_unlock(void) { }
4215 #endif
4216 
4217 static int
4218 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4219 		size_t min_ss_size)
4220 {
4221 	struct task_struct *t = current;
4222 	int ret = 0;
4223 
4224 	if (oss) {
4225 		memset(oss, 0, sizeof(stack_t));
4226 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4227 		oss->ss_size = t->sas_ss_size;
4228 		oss->ss_flags = sas_ss_flags(sp) |
4229 			(current->sas_ss_flags & SS_FLAG_BITS);
4230 	}
4231 
4232 	if (ss) {
4233 		void __user *ss_sp = ss->ss_sp;
4234 		size_t ss_size = ss->ss_size;
4235 		unsigned ss_flags = ss->ss_flags;
4236 		int ss_mode;
4237 
4238 		if (unlikely(on_sig_stack(sp)))
4239 			return -EPERM;
4240 
4241 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4242 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4243 				ss_mode != 0))
4244 			return -EINVAL;
4245 
4246 		/*
4247 		 * Return before taking any locks if no actual
4248 		 * sigaltstack changes were requested.
4249 		 */
4250 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4251 		    t->sas_ss_size == ss_size &&
4252 		    t->sas_ss_flags == ss_flags)
4253 			return 0;
4254 
4255 		sigaltstack_lock();
4256 		if (ss_mode == SS_DISABLE) {
4257 			ss_size = 0;
4258 			ss_sp = NULL;
4259 		} else {
4260 			if (unlikely(ss_size < min_ss_size))
4261 				ret = -ENOMEM;
4262 			if (!sigaltstack_size_valid(ss_size))
4263 				ret = -ENOMEM;
4264 		}
4265 		if (!ret) {
4266 			t->sas_ss_sp = (unsigned long) ss_sp;
4267 			t->sas_ss_size = ss_size;
4268 			t->sas_ss_flags = ss_flags;
4269 		}
4270 		sigaltstack_unlock();
4271 	}
4272 	return ret;
4273 }
4274 
4275 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4276 {
4277 	stack_t new, old;
4278 	int err;
4279 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4280 		return -EFAULT;
4281 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4282 			      current_user_stack_pointer(),
4283 			      MINSIGSTKSZ);
4284 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4285 		err = -EFAULT;
4286 	return err;
4287 }
4288 
4289 int restore_altstack(const stack_t __user *uss)
4290 {
4291 	stack_t new;
4292 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4293 		return -EFAULT;
4294 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4295 			     MINSIGSTKSZ);
4296 	/* squash all but EFAULT for now */
4297 	return 0;
4298 }
4299 
4300 int __save_altstack(stack_t __user *uss, unsigned long sp)
4301 {
4302 	struct task_struct *t = current;
4303 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4304 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4305 		__put_user(t->sas_ss_size, &uss->ss_size);
4306 	return err;
4307 }
4308 
4309 #ifdef CONFIG_COMPAT
4310 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4311 				 compat_stack_t __user *uoss_ptr)
4312 {
4313 	stack_t uss, uoss;
4314 	int ret;
4315 
4316 	if (uss_ptr) {
4317 		compat_stack_t uss32;
4318 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4319 			return -EFAULT;
4320 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4321 		uss.ss_flags = uss32.ss_flags;
4322 		uss.ss_size = uss32.ss_size;
4323 	}
4324 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4325 			     compat_user_stack_pointer(),
4326 			     COMPAT_MINSIGSTKSZ);
4327 	if (ret >= 0 && uoss_ptr)  {
4328 		compat_stack_t old;
4329 		memset(&old, 0, sizeof(old));
4330 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4331 		old.ss_flags = uoss.ss_flags;
4332 		old.ss_size = uoss.ss_size;
4333 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4334 			ret = -EFAULT;
4335 	}
4336 	return ret;
4337 }
4338 
4339 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4340 			const compat_stack_t __user *, uss_ptr,
4341 			compat_stack_t __user *, uoss_ptr)
4342 {
4343 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4344 }
4345 
4346 int compat_restore_altstack(const compat_stack_t __user *uss)
4347 {
4348 	int err = do_compat_sigaltstack(uss, NULL);
4349 	/* squash all but -EFAULT for now */
4350 	return err == -EFAULT ? err : 0;
4351 }
4352 
4353 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4354 {
4355 	int err;
4356 	struct task_struct *t = current;
4357 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4358 			 &uss->ss_sp) |
4359 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4360 		__put_user(t->sas_ss_size, &uss->ss_size);
4361 	return err;
4362 }
4363 #endif
4364 
4365 #ifdef __ARCH_WANT_SYS_SIGPENDING
4366 
4367 /**
4368  *  sys_sigpending - examine pending signals
4369  *  @uset: where mask of pending signal is returned
4370  */
4371 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4372 {
4373 	sigset_t set;
4374 
4375 	if (sizeof(old_sigset_t) > sizeof(*uset))
4376 		return -EINVAL;
4377 
4378 	do_sigpending(&set);
4379 
4380 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4381 		return -EFAULT;
4382 
4383 	return 0;
4384 }
4385 
4386 #ifdef CONFIG_COMPAT
4387 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4388 {
4389 	sigset_t set;
4390 
4391 	do_sigpending(&set);
4392 
4393 	return put_user(set.sig[0], set32);
4394 }
4395 #endif
4396 
4397 #endif
4398 
4399 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4400 /**
4401  *  sys_sigprocmask - examine and change blocked signals
4402  *  @how: whether to add, remove, or set signals
4403  *  @nset: signals to add or remove (if non-null)
4404  *  @oset: previous value of signal mask if non-null
4405  *
4406  * Some platforms have their own version with special arguments;
4407  * others support only sys_rt_sigprocmask.
4408  */
4409 
4410 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4411 		old_sigset_t __user *, oset)
4412 {
4413 	old_sigset_t old_set, new_set;
4414 	sigset_t new_blocked;
4415 
4416 	old_set = current->blocked.sig[0];
4417 
4418 	if (nset) {
4419 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4420 			return -EFAULT;
4421 
4422 		new_blocked = current->blocked;
4423 
4424 		switch (how) {
4425 		case SIG_BLOCK:
4426 			sigaddsetmask(&new_blocked, new_set);
4427 			break;
4428 		case SIG_UNBLOCK:
4429 			sigdelsetmask(&new_blocked, new_set);
4430 			break;
4431 		case SIG_SETMASK:
4432 			new_blocked.sig[0] = new_set;
4433 			break;
4434 		default:
4435 			return -EINVAL;
4436 		}
4437 
4438 		set_current_blocked(&new_blocked);
4439 	}
4440 
4441 	if (oset) {
4442 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4443 			return -EFAULT;
4444 	}
4445 
4446 	return 0;
4447 }
4448 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4449 
4450 #ifndef CONFIG_ODD_RT_SIGACTION
4451 /**
4452  *  sys_rt_sigaction - alter an action taken by a process
4453  *  @sig: signal to be sent
4454  *  @act: new sigaction
4455  *  @oact: used to save the previous sigaction
4456  *  @sigsetsize: size of sigset_t type
4457  */
4458 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4459 		const struct sigaction __user *, act,
4460 		struct sigaction __user *, oact,
4461 		size_t, sigsetsize)
4462 {
4463 	struct k_sigaction new_sa, old_sa;
4464 	int ret;
4465 
4466 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4467 	if (sigsetsize != sizeof(sigset_t))
4468 		return -EINVAL;
4469 
4470 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4471 		return -EFAULT;
4472 
4473 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4474 	if (ret)
4475 		return ret;
4476 
4477 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4478 		return -EFAULT;
4479 
4480 	return 0;
4481 }
4482 #ifdef CONFIG_COMPAT
4483 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4484 		const struct compat_sigaction __user *, act,
4485 		struct compat_sigaction __user *, oact,
4486 		compat_size_t, sigsetsize)
4487 {
4488 	struct k_sigaction new_ka, old_ka;
4489 #ifdef __ARCH_HAS_SA_RESTORER
4490 	compat_uptr_t restorer;
4491 #endif
4492 	int ret;
4493 
4494 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4495 	if (sigsetsize != sizeof(compat_sigset_t))
4496 		return -EINVAL;
4497 
4498 	if (act) {
4499 		compat_uptr_t handler;
4500 		ret = get_user(handler, &act->sa_handler);
4501 		new_ka.sa.sa_handler = compat_ptr(handler);
4502 #ifdef __ARCH_HAS_SA_RESTORER
4503 		ret |= get_user(restorer, &act->sa_restorer);
4504 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4505 #endif
4506 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4507 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4508 		if (ret)
4509 			return -EFAULT;
4510 	}
4511 
4512 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4513 	if (!ret && oact) {
4514 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4515 			       &oact->sa_handler);
4516 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4517 					 sizeof(oact->sa_mask));
4518 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4519 #ifdef __ARCH_HAS_SA_RESTORER
4520 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4521 				&oact->sa_restorer);
4522 #endif
4523 	}
4524 	return ret;
4525 }
4526 #endif
4527 #endif /* !CONFIG_ODD_RT_SIGACTION */
4528 
4529 #ifdef CONFIG_OLD_SIGACTION
4530 SYSCALL_DEFINE3(sigaction, int, sig,
4531 		const struct old_sigaction __user *, act,
4532 	        struct old_sigaction __user *, oact)
4533 {
4534 	struct k_sigaction new_ka, old_ka;
4535 	int ret;
4536 
4537 	if (act) {
4538 		old_sigset_t mask;
4539 		if (!access_ok(act, sizeof(*act)) ||
4540 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4541 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4542 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4543 		    __get_user(mask, &act->sa_mask))
4544 			return -EFAULT;
4545 #ifdef __ARCH_HAS_KA_RESTORER
4546 		new_ka.ka_restorer = NULL;
4547 #endif
4548 		siginitset(&new_ka.sa.sa_mask, mask);
4549 	}
4550 
4551 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4552 
4553 	if (!ret && oact) {
4554 		if (!access_ok(oact, sizeof(*oact)) ||
4555 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4556 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4557 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4558 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4559 			return -EFAULT;
4560 	}
4561 
4562 	return ret;
4563 }
4564 #endif
4565 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4566 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4567 		const struct compat_old_sigaction __user *, act,
4568 	        struct compat_old_sigaction __user *, oact)
4569 {
4570 	struct k_sigaction new_ka, old_ka;
4571 	int ret;
4572 	compat_old_sigset_t mask;
4573 	compat_uptr_t handler, restorer;
4574 
4575 	if (act) {
4576 		if (!access_ok(act, sizeof(*act)) ||
4577 		    __get_user(handler, &act->sa_handler) ||
4578 		    __get_user(restorer, &act->sa_restorer) ||
4579 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4580 		    __get_user(mask, &act->sa_mask))
4581 			return -EFAULT;
4582 
4583 #ifdef __ARCH_HAS_KA_RESTORER
4584 		new_ka.ka_restorer = NULL;
4585 #endif
4586 		new_ka.sa.sa_handler = compat_ptr(handler);
4587 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4588 		siginitset(&new_ka.sa.sa_mask, mask);
4589 	}
4590 
4591 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4592 
4593 	if (!ret && oact) {
4594 		if (!access_ok(oact, sizeof(*oact)) ||
4595 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4596 			       &oact->sa_handler) ||
4597 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4598 			       &oact->sa_restorer) ||
4599 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4600 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4601 			return -EFAULT;
4602 	}
4603 	return ret;
4604 }
4605 #endif
4606 
4607 #ifdef CONFIG_SGETMASK_SYSCALL
4608 
4609 /*
4610  * For backwards compatibility.  Functionality superseded by sigprocmask.
4611  */
4612 SYSCALL_DEFINE0(sgetmask)
4613 {
4614 	/* SMP safe */
4615 	return current->blocked.sig[0];
4616 }
4617 
4618 SYSCALL_DEFINE1(ssetmask, int, newmask)
4619 {
4620 	int old = current->blocked.sig[0];
4621 	sigset_t newset;
4622 
4623 	siginitset(&newset, newmask);
4624 	set_current_blocked(&newset);
4625 
4626 	return old;
4627 }
4628 #endif /* CONFIG_SGETMASK_SYSCALL */
4629 
4630 #ifdef __ARCH_WANT_SYS_SIGNAL
4631 /*
4632  * For backwards compatibility.  Functionality superseded by sigaction.
4633  */
4634 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4635 {
4636 	struct k_sigaction new_sa, old_sa;
4637 	int ret;
4638 
4639 	new_sa.sa.sa_handler = handler;
4640 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4641 	sigemptyset(&new_sa.sa.sa_mask);
4642 
4643 	ret = do_sigaction(sig, &new_sa, &old_sa);
4644 
4645 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4646 }
4647 #endif /* __ARCH_WANT_SYS_SIGNAL */
4648 
4649 #ifdef __ARCH_WANT_SYS_PAUSE
4650 
4651 SYSCALL_DEFINE0(pause)
4652 {
4653 	while (!signal_pending(current)) {
4654 		__set_current_state(TASK_INTERRUPTIBLE);
4655 		schedule();
4656 	}
4657 	return -ERESTARTNOHAND;
4658 }
4659 
4660 #endif
4661 
4662 static int sigsuspend(sigset_t *set)
4663 {
4664 	current->saved_sigmask = current->blocked;
4665 	set_current_blocked(set);
4666 
4667 	while (!signal_pending(current)) {
4668 		__set_current_state(TASK_INTERRUPTIBLE);
4669 		schedule();
4670 	}
4671 	set_restore_sigmask();
4672 	return -ERESTARTNOHAND;
4673 }
4674 
4675 /**
4676  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4677  *	@unewset value until a signal is received
4678  *  @unewset: new signal mask value
4679  *  @sigsetsize: size of sigset_t type
4680  */
4681 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4682 {
4683 	sigset_t newset;
4684 
4685 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4686 	if (sigsetsize != sizeof(sigset_t))
4687 		return -EINVAL;
4688 
4689 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4690 		return -EFAULT;
4691 	return sigsuspend(&newset);
4692 }
4693 
4694 #ifdef CONFIG_COMPAT
4695 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4696 {
4697 	sigset_t newset;
4698 
4699 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4700 	if (sigsetsize != sizeof(sigset_t))
4701 		return -EINVAL;
4702 
4703 	if (get_compat_sigset(&newset, unewset))
4704 		return -EFAULT;
4705 	return sigsuspend(&newset);
4706 }
4707 #endif
4708 
4709 #ifdef CONFIG_OLD_SIGSUSPEND
4710 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4711 {
4712 	sigset_t blocked;
4713 	siginitset(&blocked, mask);
4714 	return sigsuspend(&blocked);
4715 }
4716 #endif
4717 #ifdef CONFIG_OLD_SIGSUSPEND3
4718 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4719 {
4720 	sigset_t blocked;
4721 	siginitset(&blocked, mask);
4722 	return sigsuspend(&blocked);
4723 }
4724 #endif
4725 
4726 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4727 {
4728 	return NULL;
4729 }
4730 
4731 static inline void siginfo_buildtime_checks(void)
4732 {
4733 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4734 
4735 	/* Verify the offsets in the two siginfos match */
4736 #define CHECK_OFFSET(field) \
4737 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4738 
4739 	/* kill */
4740 	CHECK_OFFSET(si_pid);
4741 	CHECK_OFFSET(si_uid);
4742 
4743 	/* timer */
4744 	CHECK_OFFSET(si_tid);
4745 	CHECK_OFFSET(si_overrun);
4746 	CHECK_OFFSET(si_value);
4747 
4748 	/* rt */
4749 	CHECK_OFFSET(si_pid);
4750 	CHECK_OFFSET(si_uid);
4751 	CHECK_OFFSET(si_value);
4752 
4753 	/* sigchld */
4754 	CHECK_OFFSET(si_pid);
4755 	CHECK_OFFSET(si_uid);
4756 	CHECK_OFFSET(si_status);
4757 	CHECK_OFFSET(si_utime);
4758 	CHECK_OFFSET(si_stime);
4759 
4760 	/* sigfault */
4761 	CHECK_OFFSET(si_addr);
4762 	CHECK_OFFSET(si_trapno);
4763 	CHECK_OFFSET(si_addr_lsb);
4764 	CHECK_OFFSET(si_lower);
4765 	CHECK_OFFSET(si_upper);
4766 	CHECK_OFFSET(si_pkey);
4767 	CHECK_OFFSET(si_perf_data);
4768 	CHECK_OFFSET(si_perf_type);
4769 	CHECK_OFFSET(si_perf_flags);
4770 
4771 	/* sigpoll */
4772 	CHECK_OFFSET(si_band);
4773 	CHECK_OFFSET(si_fd);
4774 
4775 	/* sigsys */
4776 	CHECK_OFFSET(si_call_addr);
4777 	CHECK_OFFSET(si_syscall);
4778 	CHECK_OFFSET(si_arch);
4779 #undef CHECK_OFFSET
4780 
4781 	/* usb asyncio */
4782 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4783 		     offsetof(struct siginfo, si_addr));
4784 	if (sizeof(int) == sizeof(void __user *)) {
4785 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4786 			     sizeof(void __user *));
4787 	} else {
4788 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4789 			      sizeof_field(struct siginfo, si_uid)) !=
4790 			     sizeof(void __user *));
4791 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4792 			     offsetof(struct siginfo, si_uid));
4793 	}
4794 #ifdef CONFIG_COMPAT
4795 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4796 		     offsetof(struct compat_siginfo, si_addr));
4797 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4798 		     sizeof(compat_uptr_t));
4799 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4800 		     sizeof_field(struct siginfo, si_pid));
4801 #endif
4802 }
4803 
4804 #if defined(CONFIG_SYSCTL)
4805 static struct ctl_table signal_debug_table[] = {
4806 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4807 	{
4808 		.procname	= "exception-trace",
4809 		.data		= &show_unhandled_signals,
4810 		.maxlen		= sizeof(int),
4811 		.mode		= 0644,
4812 		.proc_handler	= proc_dointvec
4813 	},
4814 #endif
4815 	{ }
4816 };
4817 
4818 static int __init init_signal_sysctls(void)
4819 {
4820 	register_sysctl_init("debug", signal_debug_table);
4821 	return 0;
4822 }
4823 early_initcall(init_signal_sysctls);
4824 #endif /* CONFIG_SYSCTL */
4825 
4826 void __init signals_init(void)
4827 {
4828 	siginfo_buildtime_checks();
4829 
4830 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4831 }
4832 
4833 #ifdef CONFIG_KGDB_KDB
4834 #include <linux/kdb.h>
4835 /*
4836  * kdb_send_sig - Allows kdb to send signals without exposing
4837  * signal internals.  This function checks if the required locks are
4838  * available before calling the main signal code, to avoid kdb
4839  * deadlocks.
4840  */
4841 void kdb_send_sig(struct task_struct *t, int sig)
4842 {
4843 	static struct task_struct *kdb_prev_t;
4844 	int new_t, ret;
4845 	if (!spin_trylock(&t->sighand->siglock)) {
4846 		kdb_printf("Can't do kill command now.\n"
4847 			   "The sigmask lock is held somewhere else in "
4848 			   "kernel, try again later\n");
4849 		return;
4850 	}
4851 	new_t = kdb_prev_t != t;
4852 	kdb_prev_t = t;
4853 	if (!task_is_running(t) && new_t) {
4854 		spin_unlock(&t->sighand->siglock);
4855 		kdb_printf("Process is not RUNNING, sending a signal from "
4856 			   "kdb risks deadlock\n"
4857 			   "on the run queue locks. "
4858 			   "The signal has _not_ been sent.\n"
4859 			   "Reissue the kill command if you want to risk "
4860 			   "the deadlock.\n");
4861 		return;
4862 	}
4863 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4864 	spin_unlock(&t->sighand->siglock);
4865 	if (ret)
4866 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4867 			   sig, t->pid);
4868 	else
4869 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4870 }
4871 #endif	/* CONFIG_KGDB_KDB */
4872