xref: /linux/kernel/signal.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51 
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h>	/* for syscall_get_* */
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	/* Only allow kernel generated signals to this kthread */
94 	if (unlikely((t->flags & PF_KTHREAD) &&
95 		     (handler == SIG_KTHREAD_KERNEL) && !force))
96 		return true;
97 
98 	return sig_handler_ignored(handler, sig);
99 }
100 
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 	/*
104 	 * Blocked signals are never ignored, since the
105 	 * signal handler may change by the time it is
106 	 * unblocked.
107 	 */
108 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 		return false;
110 
111 	/*
112 	 * Tracers may want to know about even ignored signal unless it
113 	 * is SIGKILL which can't be reported anyway but can be ignored
114 	 * by SIGNAL_UNKILLABLE task.
115 	 */
116 	if (t->ptrace && sig != SIGKILL)
117 		return false;
118 
119 	return sig_task_ignored(t, sig, force);
120 }
121 
122 /*
123  * Re-calculate pending state from the set of locally pending
124  * signals, globally pending signals, and blocked signals.
125  */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 	unsigned long ready;
129 	long i;
130 
131 	switch (_NSIG_WORDS) {
132 	default:
133 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 			ready |= signal->sig[i] &~ blocked->sig[i];
135 		break;
136 
137 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
138 		ready |= signal->sig[2] &~ blocked->sig[2];
139 		ready |= signal->sig[1] &~ blocked->sig[1];
140 		ready |= signal->sig[0] &~ blocked->sig[0];
141 		break;
142 
143 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
144 		ready |= signal->sig[0] &~ blocked->sig[0];
145 		break;
146 
147 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
148 	}
149 	return ready !=	0;
150 }
151 
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153 
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 	    PENDING(&t->pending, &t->blocked) ||
158 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
159 	    cgroup_task_frozen(t)) {
160 		set_tsk_thread_flag(t, TIF_SIGPENDING);
161 		return true;
162 	}
163 
164 	/*
165 	 * We must never clear the flag in another thread, or in current
166 	 * when it's possible the current syscall is returning -ERESTART*.
167 	 * So we don't clear it here, and only callers who know they should do.
168 	 */
169 	return false;
170 }
171 
172 /*
173  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174  * This is superfluous when called on current, the wakeup is a harmless no-op.
175  */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 	if (recalc_sigpending_tsk(t))
179 		signal_wake_up(t, 0);
180 }
181 
182 void recalc_sigpending(void)
183 {
184 	if (!recalc_sigpending_tsk(current) && !freezing(current))
185 		clear_thread_flag(TIF_SIGPENDING);
186 
187 }
188 EXPORT_SYMBOL(recalc_sigpending);
189 
190 void calculate_sigpending(void)
191 {
192 	/* Have any signals or users of TIF_SIGPENDING been delayed
193 	 * until after fork?
194 	 */
195 	spin_lock_irq(&current->sighand->siglock);
196 	set_tsk_thread_flag(current, TIF_SIGPENDING);
197 	recalc_sigpending();
198 	spin_unlock_irq(&current->sighand->siglock);
199 }
200 
201 /* Given the mask, find the first available signal that should be serviced. */
202 
203 #define SYNCHRONOUS_MASK \
204 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
206 
207 int next_signal(struct sigpending *pending, sigset_t *mask)
208 {
209 	unsigned long i, *s, *m, x;
210 	int sig = 0;
211 
212 	s = pending->signal.sig;
213 	m = mask->sig;
214 
215 	/*
216 	 * Handle the first word specially: it contains the
217 	 * synchronous signals that need to be dequeued first.
218 	 */
219 	x = *s &~ *m;
220 	if (x) {
221 		if (x & SYNCHRONOUS_MASK)
222 			x &= SYNCHRONOUS_MASK;
223 		sig = ffz(~x) + 1;
224 		return sig;
225 	}
226 
227 	switch (_NSIG_WORDS) {
228 	default:
229 		for (i = 1; i < _NSIG_WORDS; ++i) {
230 			x = *++s &~ *++m;
231 			if (!x)
232 				continue;
233 			sig = ffz(~x) + i*_NSIG_BPW + 1;
234 			break;
235 		}
236 		break;
237 
238 	case 2:
239 		x = s[1] &~ m[1];
240 		if (!x)
241 			break;
242 		sig = ffz(~x) + _NSIG_BPW + 1;
243 		break;
244 
245 	case 1:
246 		/* Nothing to do */
247 		break;
248 	}
249 
250 	return sig;
251 }
252 
253 static inline void print_dropped_signal(int sig)
254 {
255 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
256 
257 	if (!print_fatal_signals)
258 		return;
259 
260 	if (!__ratelimit(&ratelimit_state))
261 		return;
262 
263 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 				current->comm, current->pid, sig);
265 }
266 
267 /**
268  * task_set_jobctl_pending - set jobctl pending bits
269  * @task: target task
270  * @mask: pending bits to set
271  *
272  * Clear @mask from @task->jobctl.  @mask must be subset of
273  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
275  * cleared.  If @task is already being killed or exiting, this function
276  * becomes noop.
277  *
278  * CONTEXT:
279  * Must be called with @task->sighand->siglock held.
280  *
281  * RETURNS:
282  * %true if @mask is set, %false if made noop because @task was dying.
283  */
284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
285 {
286 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
289 
290 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
291 		return false;
292 
293 	if (mask & JOBCTL_STOP_SIGMASK)
294 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
295 
296 	task->jobctl |= mask;
297 	return true;
298 }
299 
300 /**
301  * task_clear_jobctl_trapping - clear jobctl trapping bit
302  * @task: target task
303  *
304  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305  * Clear it and wake up the ptracer.  Note that we don't need any further
306  * locking.  @task->siglock guarantees that @task->parent points to the
307  * ptracer.
308  *
309  * CONTEXT:
310  * Must be called with @task->sighand->siglock held.
311  */
312 void task_clear_jobctl_trapping(struct task_struct *task)
313 {
314 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 		task->jobctl &= ~JOBCTL_TRAPPING;
316 		smp_mb();	/* advised by wake_up_bit() */
317 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
318 	}
319 }
320 
321 /**
322  * task_clear_jobctl_pending - clear jobctl pending bits
323  * @task: target task
324  * @mask: pending bits to clear
325  *
326  * Clear @mask from @task->jobctl.  @mask must be subset of
327  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
328  * STOP bits are cleared together.
329  *
330  * If clearing of @mask leaves no stop or trap pending, this function calls
331  * task_clear_jobctl_trapping().
332  *
333  * CONTEXT:
334  * Must be called with @task->sighand->siglock held.
335  */
336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
337 {
338 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
339 
340 	if (mask & JOBCTL_STOP_PENDING)
341 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
342 
343 	task->jobctl &= ~mask;
344 
345 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 		task_clear_jobctl_trapping(task);
347 }
348 
349 /**
350  * task_participate_group_stop - participate in a group stop
351  * @task: task participating in a group stop
352  *
353  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354  * Group stop states are cleared and the group stop count is consumed if
355  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
356  * stop, the appropriate `SIGNAL_*` flags are set.
357  *
358  * CONTEXT:
359  * Must be called with @task->sighand->siglock held.
360  *
361  * RETURNS:
362  * %true if group stop completion should be notified to the parent, %false
363  * otherwise.
364  */
365 static bool task_participate_group_stop(struct task_struct *task)
366 {
367 	struct signal_struct *sig = task->signal;
368 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
369 
370 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
371 
372 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
373 
374 	if (!consume)
375 		return false;
376 
377 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 		sig->group_stop_count--;
379 
380 	/*
381 	 * Tell the caller to notify completion iff we are entering into a
382 	 * fresh group stop.  Read comment in do_signal_stop() for details.
383 	 */
384 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
386 		return true;
387 	}
388 	return false;
389 }
390 
391 void task_join_group_stop(struct task_struct *task)
392 {
393 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 	struct signal_struct *sig = current->signal;
395 
396 	if (sig->group_stop_count) {
397 		sig->group_stop_count++;
398 		mask |= JOBCTL_STOP_CONSUME;
399 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
400 		return;
401 
402 	/* Have the new thread join an on-going signal group stop */
403 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
404 }
405 
406 /*
407  * allocate a new signal queue record
408  * - this may be called without locks if and only if t == current, otherwise an
409  *   appropriate lock must be held to stop the target task from exiting
410  */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 		 int override_rlimit, const unsigned int sigqueue_flags)
414 {
415 	struct sigqueue *q = NULL;
416 	struct ucounts *ucounts = NULL;
417 	long sigpending;
418 
419 	/*
420 	 * Protect access to @t credentials. This can go away when all
421 	 * callers hold rcu read lock.
422 	 *
423 	 * NOTE! A pending signal will hold on to the user refcount,
424 	 * and we get/put the refcount only when the sigpending count
425 	 * changes from/to zero.
426 	 */
427 	rcu_read_lock();
428 	ucounts = task_ucounts(t);
429 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
430 	rcu_read_unlock();
431 	if (!sigpending)
432 		return NULL;
433 
434 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
436 	} else {
437 		print_dropped_signal(sig);
438 	}
439 
440 	if (unlikely(q == NULL)) {
441 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
442 	} else {
443 		INIT_LIST_HEAD(&q->list);
444 		q->flags = sigqueue_flags;
445 		q->ucounts = ucounts;
446 	}
447 	return q;
448 }
449 
450 static void __sigqueue_free(struct sigqueue *q)
451 {
452 	if (q->flags & SIGQUEUE_PREALLOC)
453 		return;
454 	if (q->ucounts) {
455 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
456 		q->ucounts = NULL;
457 	}
458 	kmem_cache_free(sigqueue_cachep, q);
459 }
460 
461 void flush_sigqueue(struct sigpending *queue)
462 {
463 	struct sigqueue *q;
464 
465 	sigemptyset(&queue->signal);
466 	while (!list_empty(&queue->list)) {
467 		q = list_entry(queue->list.next, struct sigqueue , list);
468 		list_del_init(&q->list);
469 		__sigqueue_free(q);
470 	}
471 }
472 
473 /*
474  * Flush all pending signals for this kthread.
475  */
476 void flush_signals(struct task_struct *t)
477 {
478 	unsigned long flags;
479 
480 	spin_lock_irqsave(&t->sighand->siglock, flags);
481 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 	flush_sigqueue(&t->pending);
483 	flush_sigqueue(&t->signal->shared_pending);
484 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
485 }
486 EXPORT_SYMBOL(flush_signals);
487 
488 #ifdef CONFIG_POSIX_TIMERS
489 static void __flush_itimer_signals(struct sigpending *pending)
490 {
491 	sigset_t signal, retain;
492 	struct sigqueue *q, *n;
493 
494 	signal = pending->signal;
495 	sigemptyset(&retain);
496 
497 	list_for_each_entry_safe(q, n, &pending->list, list) {
498 		int sig = q->info.si_signo;
499 
500 		if (likely(q->info.si_code != SI_TIMER)) {
501 			sigaddset(&retain, sig);
502 		} else {
503 			sigdelset(&signal, sig);
504 			list_del_init(&q->list);
505 			__sigqueue_free(q);
506 		}
507 	}
508 
509 	sigorsets(&pending->signal, &signal, &retain);
510 }
511 
512 void flush_itimer_signals(void)
513 {
514 	struct task_struct *tsk = current;
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 	__flush_itimer_signals(&tsk->pending);
519 	__flush_itimer_signals(&tsk->signal->shared_pending);
520 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521 }
522 #endif
523 
524 void ignore_signals(struct task_struct *t)
525 {
526 	int i;
527 
528 	for (i = 0; i < _NSIG; ++i)
529 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
530 
531 	flush_signals(t);
532 }
533 
534 /*
535  * Flush all handlers for a task.
536  */
537 
538 void
539 flush_signal_handlers(struct task_struct *t, int force_default)
540 {
541 	int i;
542 	struct k_sigaction *ka = &t->sighand->action[0];
543 	for (i = _NSIG ; i != 0 ; i--) {
544 		if (force_default || ka->sa.sa_handler != SIG_IGN)
545 			ka->sa.sa_handler = SIG_DFL;
546 		ka->sa.sa_flags = 0;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 		ka->sa.sa_restorer = NULL;
549 #endif
550 		sigemptyset(&ka->sa.sa_mask);
551 		ka++;
552 	}
553 }
554 
555 bool unhandled_signal(struct task_struct *tsk, int sig)
556 {
557 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 	if (is_global_init(tsk))
559 		return true;
560 
561 	if (handler != SIG_IGN && handler != SIG_DFL)
562 		return false;
563 
564 	/* if ptraced, let the tracer determine */
565 	return !tsk->ptrace;
566 }
567 
568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 			   bool *resched_timer)
570 {
571 	struct sigqueue *q, *first = NULL;
572 
573 	/*
574 	 * Collect the siginfo appropriate to this signal.  Check if
575 	 * there is another siginfo for the same signal.
576 	*/
577 	list_for_each_entry(q, &list->list, list) {
578 		if (q->info.si_signo == sig) {
579 			if (first)
580 				goto still_pending;
581 			first = q;
582 		}
583 	}
584 
585 	sigdelset(&list->signal, sig);
586 
587 	if (first) {
588 still_pending:
589 		list_del_init(&first->list);
590 		copy_siginfo(info, &first->info);
591 
592 		*resched_timer =
593 			(first->flags & SIGQUEUE_PREALLOC) &&
594 			(info->si_code == SI_TIMER) &&
595 			(info->si_sys_private);
596 
597 		__sigqueue_free(first);
598 	} else {
599 		/*
600 		 * Ok, it wasn't in the queue.  This must be
601 		 * a fast-pathed signal or we must have been
602 		 * out of queue space.  So zero out the info.
603 		 */
604 		clear_siginfo(info);
605 		info->si_signo = sig;
606 		info->si_errno = 0;
607 		info->si_code = SI_USER;
608 		info->si_pid = 0;
609 		info->si_uid = 0;
610 	}
611 }
612 
613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 			kernel_siginfo_t *info, bool *resched_timer)
615 {
616 	int sig = next_signal(pending, mask);
617 
618 	if (sig)
619 		collect_signal(sig, pending, info, resched_timer);
620 	return sig;
621 }
622 
623 /*
624  * Dequeue a signal and return the element to the caller, which is
625  * expected to free it.
626  *
627  * All callers have to hold the siglock.
628  */
629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
630 {
631 	bool resched_timer = false;
632 	int signr;
633 
634 	/* We only dequeue private signals from ourselves, we don't let
635 	 * signalfd steal them
636 	 */
637 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
638 	if (!signr) {
639 		signr = __dequeue_signal(&tsk->signal->shared_pending,
640 					 mask, info, &resched_timer);
641 #ifdef CONFIG_POSIX_TIMERS
642 		/*
643 		 * itimer signal ?
644 		 *
645 		 * itimers are process shared and we restart periodic
646 		 * itimers in the signal delivery path to prevent DoS
647 		 * attacks in the high resolution timer case. This is
648 		 * compliant with the old way of self-restarting
649 		 * itimers, as the SIGALRM is a legacy signal and only
650 		 * queued once. Changing the restart behaviour to
651 		 * restart the timer in the signal dequeue path is
652 		 * reducing the timer noise on heavy loaded !highres
653 		 * systems too.
654 		 */
655 		if (unlikely(signr == SIGALRM)) {
656 			struct hrtimer *tmr = &tsk->signal->real_timer;
657 
658 			if (!hrtimer_is_queued(tmr) &&
659 			    tsk->signal->it_real_incr != 0) {
660 				hrtimer_forward(tmr, tmr->base->get_time(),
661 						tsk->signal->it_real_incr);
662 				hrtimer_restart(tmr);
663 			}
664 		}
665 #endif
666 	}
667 
668 	recalc_sigpending();
669 	if (!signr)
670 		return 0;
671 
672 	if (unlikely(sig_kernel_stop(signr))) {
673 		/*
674 		 * Set a marker that we have dequeued a stop signal.  Our
675 		 * caller might release the siglock and then the pending
676 		 * stop signal it is about to process is no longer in the
677 		 * pending bitmasks, but must still be cleared by a SIGCONT
678 		 * (and overruled by a SIGKILL).  So those cases clear this
679 		 * shared flag after we've set it.  Note that this flag may
680 		 * remain set after the signal we return is ignored or
681 		 * handled.  That doesn't matter because its only purpose
682 		 * is to alert stop-signal processing code when another
683 		 * processor has come along and cleared the flag.
684 		 */
685 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
686 	}
687 #ifdef CONFIG_POSIX_TIMERS
688 	if (resched_timer) {
689 		/*
690 		 * Release the siglock to ensure proper locking order
691 		 * of timer locks outside of siglocks.  Note, we leave
692 		 * irqs disabled here, since the posix-timers code is
693 		 * about to disable them again anyway.
694 		 */
695 		spin_unlock(&tsk->sighand->siglock);
696 		posixtimer_rearm(info);
697 		spin_lock(&tsk->sighand->siglock);
698 
699 		/* Don't expose the si_sys_private value to userspace */
700 		info->si_sys_private = 0;
701 	}
702 #endif
703 	return signr;
704 }
705 EXPORT_SYMBOL_GPL(dequeue_signal);
706 
707 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
708 {
709 	struct task_struct *tsk = current;
710 	struct sigpending *pending = &tsk->pending;
711 	struct sigqueue *q, *sync = NULL;
712 
713 	/*
714 	 * Might a synchronous signal be in the queue?
715 	 */
716 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
717 		return 0;
718 
719 	/*
720 	 * Return the first synchronous signal in the queue.
721 	 */
722 	list_for_each_entry(q, &pending->list, list) {
723 		/* Synchronous signals have a positive si_code */
724 		if ((q->info.si_code > SI_USER) &&
725 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
726 			sync = q;
727 			goto next;
728 		}
729 	}
730 	return 0;
731 next:
732 	/*
733 	 * Check if there is another siginfo for the same signal.
734 	 */
735 	list_for_each_entry_continue(q, &pending->list, list) {
736 		if (q->info.si_signo == sync->info.si_signo)
737 			goto still_pending;
738 	}
739 
740 	sigdelset(&pending->signal, sync->info.si_signo);
741 	recalc_sigpending();
742 still_pending:
743 	list_del_init(&sync->list);
744 	copy_siginfo(info, &sync->info);
745 	__sigqueue_free(sync);
746 	return info->si_signo;
747 }
748 
749 /*
750  * Tell a process that it has a new active signal..
751  *
752  * NOTE! we rely on the previous spin_lock to
753  * lock interrupts for us! We can only be called with
754  * "siglock" held, and the local interrupt must
755  * have been disabled when that got acquired!
756  *
757  * No need to set need_resched since signal event passing
758  * goes through ->blocked
759  */
760 void signal_wake_up_state(struct task_struct *t, unsigned int state)
761 {
762 	set_tsk_thread_flag(t, TIF_SIGPENDING);
763 	/*
764 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
765 	 * case. We don't check t->state here because there is a race with it
766 	 * executing another processor and just now entering stopped state.
767 	 * By using wake_up_state, we ensure the process will wake up and
768 	 * handle its death signal.
769 	 */
770 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
771 		kick_process(t);
772 }
773 
774 /*
775  * Remove signals in mask from the pending set and queue.
776  * Returns 1 if any signals were found.
777  *
778  * All callers must be holding the siglock.
779  */
780 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
781 {
782 	struct sigqueue *q, *n;
783 	sigset_t m;
784 
785 	sigandsets(&m, mask, &s->signal);
786 	if (sigisemptyset(&m))
787 		return;
788 
789 	sigandnsets(&s->signal, &s->signal, mask);
790 	list_for_each_entry_safe(q, n, &s->list, list) {
791 		if (sigismember(mask, q->info.si_signo)) {
792 			list_del_init(&q->list);
793 			__sigqueue_free(q);
794 		}
795 	}
796 }
797 
798 static inline int is_si_special(const struct kernel_siginfo *info)
799 {
800 	return info <= SEND_SIG_PRIV;
801 }
802 
803 static inline bool si_fromuser(const struct kernel_siginfo *info)
804 {
805 	return info == SEND_SIG_NOINFO ||
806 		(!is_si_special(info) && SI_FROMUSER(info));
807 }
808 
809 /*
810  * called with RCU read lock from check_kill_permission()
811  */
812 static bool kill_ok_by_cred(struct task_struct *t)
813 {
814 	const struct cred *cred = current_cred();
815 	const struct cred *tcred = __task_cred(t);
816 
817 	return uid_eq(cred->euid, tcred->suid) ||
818 	       uid_eq(cred->euid, tcred->uid) ||
819 	       uid_eq(cred->uid, tcred->suid) ||
820 	       uid_eq(cred->uid, tcred->uid) ||
821 	       ns_capable(tcred->user_ns, CAP_KILL);
822 }
823 
824 /*
825  * Bad permissions for sending the signal
826  * - the caller must hold the RCU read lock
827  */
828 static int check_kill_permission(int sig, struct kernel_siginfo *info,
829 				 struct task_struct *t)
830 {
831 	struct pid *sid;
832 	int error;
833 
834 	if (!valid_signal(sig))
835 		return -EINVAL;
836 
837 	if (!si_fromuser(info))
838 		return 0;
839 
840 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
841 	if (error)
842 		return error;
843 
844 	if (!same_thread_group(current, t) &&
845 	    !kill_ok_by_cred(t)) {
846 		switch (sig) {
847 		case SIGCONT:
848 			sid = task_session(t);
849 			/*
850 			 * We don't return the error if sid == NULL. The
851 			 * task was unhashed, the caller must notice this.
852 			 */
853 			if (!sid || sid == task_session(current))
854 				break;
855 			fallthrough;
856 		default:
857 			return -EPERM;
858 		}
859 	}
860 
861 	return security_task_kill(t, info, sig, NULL);
862 }
863 
864 /**
865  * ptrace_trap_notify - schedule trap to notify ptracer
866  * @t: tracee wanting to notify tracer
867  *
868  * This function schedules sticky ptrace trap which is cleared on the next
869  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
870  * ptracer.
871  *
872  * If @t is running, STOP trap will be taken.  If trapped for STOP and
873  * ptracer is listening for events, tracee is woken up so that it can
874  * re-trap for the new event.  If trapped otherwise, STOP trap will be
875  * eventually taken without returning to userland after the existing traps
876  * are finished by PTRACE_CONT.
877  *
878  * CONTEXT:
879  * Must be called with @task->sighand->siglock held.
880  */
881 static void ptrace_trap_notify(struct task_struct *t)
882 {
883 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
884 	assert_spin_locked(&t->sighand->siglock);
885 
886 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
887 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
888 }
889 
890 /*
891  * Handle magic process-wide effects of stop/continue signals. Unlike
892  * the signal actions, these happen immediately at signal-generation
893  * time regardless of blocking, ignoring, or handling.  This does the
894  * actual continuing for SIGCONT, but not the actual stopping for stop
895  * signals. The process stop is done as a signal action for SIG_DFL.
896  *
897  * Returns true if the signal should be actually delivered, otherwise
898  * it should be dropped.
899  */
900 static bool prepare_signal(int sig, struct task_struct *p, bool force)
901 {
902 	struct signal_struct *signal = p->signal;
903 	struct task_struct *t;
904 	sigset_t flush;
905 
906 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
907 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
908 			return sig == SIGKILL;
909 		/*
910 		 * The process is in the middle of dying, nothing to do.
911 		 */
912 	} else if (sig_kernel_stop(sig)) {
913 		/*
914 		 * This is a stop signal.  Remove SIGCONT from all queues.
915 		 */
916 		siginitset(&flush, sigmask(SIGCONT));
917 		flush_sigqueue_mask(&flush, &signal->shared_pending);
918 		for_each_thread(p, t)
919 			flush_sigqueue_mask(&flush, &t->pending);
920 	} else if (sig == SIGCONT) {
921 		unsigned int why;
922 		/*
923 		 * Remove all stop signals from all queues, wake all threads.
924 		 */
925 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
926 		flush_sigqueue_mask(&flush, &signal->shared_pending);
927 		for_each_thread(p, t) {
928 			flush_sigqueue_mask(&flush, &t->pending);
929 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
930 			if (likely(!(t->ptrace & PT_SEIZED)))
931 				wake_up_state(t, __TASK_STOPPED);
932 			else
933 				ptrace_trap_notify(t);
934 		}
935 
936 		/*
937 		 * Notify the parent with CLD_CONTINUED if we were stopped.
938 		 *
939 		 * If we were in the middle of a group stop, we pretend it
940 		 * was already finished, and then continued. Since SIGCHLD
941 		 * doesn't queue we report only CLD_STOPPED, as if the next
942 		 * CLD_CONTINUED was dropped.
943 		 */
944 		why = 0;
945 		if (signal->flags & SIGNAL_STOP_STOPPED)
946 			why |= SIGNAL_CLD_CONTINUED;
947 		else if (signal->group_stop_count)
948 			why |= SIGNAL_CLD_STOPPED;
949 
950 		if (why) {
951 			/*
952 			 * The first thread which returns from do_signal_stop()
953 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
954 			 * notify its parent. See get_signal().
955 			 */
956 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
957 			signal->group_stop_count = 0;
958 			signal->group_exit_code = 0;
959 		}
960 	}
961 
962 	return !sig_ignored(p, sig, force);
963 }
964 
965 /*
966  * Test if P wants to take SIG.  After we've checked all threads with this,
967  * it's equivalent to finding no threads not blocking SIG.  Any threads not
968  * blocking SIG were ruled out because they are not running and already
969  * have pending signals.  Such threads will dequeue from the shared queue
970  * as soon as they're available, so putting the signal on the shared queue
971  * will be equivalent to sending it to one such thread.
972  */
973 static inline bool wants_signal(int sig, struct task_struct *p)
974 {
975 	if (sigismember(&p->blocked, sig))
976 		return false;
977 
978 	if (p->flags & PF_EXITING)
979 		return false;
980 
981 	if (sig == SIGKILL)
982 		return true;
983 
984 	if (task_is_stopped_or_traced(p))
985 		return false;
986 
987 	return task_curr(p) || !task_sigpending(p);
988 }
989 
990 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
991 {
992 	struct signal_struct *signal = p->signal;
993 	struct task_struct *t;
994 
995 	/*
996 	 * Now find a thread we can wake up to take the signal off the queue.
997 	 *
998 	 * If the main thread wants the signal, it gets first crack.
999 	 * Probably the least surprising to the average bear.
1000 	 */
1001 	if (wants_signal(sig, p))
1002 		t = p;
1003 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1004 		/*
1005 		 * There is just one thread and it does not need to be woken.
1006 		 * It will dequeue unblocked signals before it runs again.
1007 		 */
1008 		return;
1009 	else {
1010 		/*
1011 		 * Otherwise try to find a suitable thread.
1012 		 */
1013 		t = signal->curr_target;
1014 		while (!wants_signal(sig, t)) {
1015 			t = next_thread(t);
1016 			if (t == signal->curr_target)
1017 				/*
1018 				 * No thread needs to be woken.
1019 				 * Any eligible threads will see
1020 				 * the signal in the queue soon.
1021 				 */
1022 				return;
1023 		}
1024 		signal->curr_target = t;
1025 	}
1026 
1027 	/*
1028 	 * Found a killable thread.  If the signal will be fatal,
1029 	 * then start taking the whole group down immediately.
1030 	 */
1031 	if (sig_fatal(p, sig) &&
1032 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1033 	    !sigismember(&t->real_blocked, sig) &&
1034 	    (sig == SIGKILL || !p->ptrace)) {
1035 		/*
1036 		 * This signal will be fatal to the whole group.
1037 		 */
1038 		if (!sig_kernel_coredump(sig)) {
1039 			/*
1040 			 * Start a group exit and wake everybody up.
1041 			 * This way we don't have other threads
1042 			 * running and doing things after a slower
1043 			 * thread has the fatal signal pending.
1044 			 */
1045 			signal->flags = SIGNAL_GROUP_EXIT;
1046 			signal->group_exit_code = sig;
1047 			signal->group_stop_count = 0;
1048 			t = p;
1049 			do {
1050 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1051 				sigaddset(&t->pending.signal, SIGKILL);
1052 				signal_wake_up(t, 1);
1053 			} while_each_thread(p, t);
1054 			return;
1055 		}
1056 	}
1057 
1058 	/*
1059 	 * The signal is already in the shared-pending queue.
1060 	 * Tell the chosen thread to wake up and dequeue it.
1061 	 */
1062 	signal_wake_up(t, sig == SIGKILL);
1063 	return;
1064 }
1065 
1066 static inline bool legacy_queue(struct sigpending *signals, int sig)
1067 {
1068 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1069 }
1070 
1071 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1072 			enum pid_type type, bool force)
1073 {
1074 	struct sigpending *pending;
1075 	struct sigqueue *q;
1076 	int override_rlimit;
1077 	int ret = 0, result;
1078 
1079 	assert_spin_locked(&t->sighand->siglock);
1080 
1081 	result = TRACE_SIGNAL_IGNORED;
1082 	if (!prepare_signal(sig, t, force))
1083 		goto ret;
1084 
1085 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1086 	/*
1087 	 * Short-circuit ignored signals and support queuing
1088 	 * exactly one non-rt signal, so that we can get more
1089 	 * detailed information about the cause of the signal.
1090 	 */
1091 	result = TRACE_SIGNAL_ALREADY_PENDING;
1092 	if (legacy_queue(pending, sig))
1093 		goto ret;
1094 
1095 	result = TRACE_SIGNAL_DELIVERED;
1096 	/*
1097 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1098 	 */
1099 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1100 		goto out_set;
1101 
1102 	/*
1103 	 * Real-time signals must be queued if sent by sigqueue, or
1104 	 * some other real-time mechanism.  It is implementation
1105 	 * defined whether kill() does so.  We attempt to do so, on
1106 	 * the principle of least surprise, but since kill is not
1107 	 * allowed to fail with EAGAIN when low on memory we just
1108 	 * make sure at least one signal gets delivered and don't
1109 	 * pass on the info struct.
1110 	 */
1111 	if (sig < SIGRTMIN)
1112 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1113 	else
1114 		override_rlimit = 0;
1115 
1116 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1117 
1118 	if (q) {
1119 		list_add_tail(&q->list, &pending->list);
1120 		switch ((unsigned long) info) {
1121 		case (unsigned long) SEND_SIG_NOINFO:
1122 			clear_siginfo(&q->info);
1123 			q->info.si_signo = sig;
1124 			q->info.si_errno = 0;
1125 			q->info.si_code = SI_USER;
1126 			q->info.si_pid = task_tgid_nr_ns(current,
1127 							task_active_pid_ns(t));
1128 			rcu_read_lock();
1129 			q->info.si_uid =
1130 				from_kuid_munged(task_cred_xxx(t, user_ns),
1131 						 current_uid());
1132 			rcu_read_unlock();
1133 			break;
1134 		case (unsigned long) SEND_SIG_PRIV:
1135 			clear_siginfo(&q->info);
1136 			q->info.si_signo = sig;
1137 			q->info.si_errno = 0;
1138 			q->info.si_code = SI_KERNEL;
1139 			q->info.si_pid = 0;
1140 			q->info.si_uid = 0;
1141 			break;
1142 		default:
1143 			copy_siginfo(&q->info, info);
1144 			break;
1145 		}
1146 	} else if (!is_si_special(info) &&
1147 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1148 		/*
1149 		 * Queue overflow, abort.  We may abort if the
1150 		 * signal was rt and sent by user using something
1151 		 * other than kill().
1152 		 */
1153 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1154 		ret = -EAGAIN;
1155 		goto ret;
1156 	} else {
1157 		/*
1158 		 * This is a silent loss of information.  We still
1159 		 * send the signal, but the *info bits are lost.
1160 		 */
1161 		result = TRACE_SIGNAL_LOSE_INFO;
1162 	}
1163 
1164 out_set:
1165 	signalfd_notify(t, sig);
1166 	sigaddset(&pending->signal, sig);
1167 
1168 	/* Let multiprocess signals appear after on-going forks */
1169 	if (type > PIDTYPE_TGID) {
1170 		struct multiprocess_signals *delayed;
1171 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1172 			sigset_t *signal = &delayed->signal;
1173 			/* Can't queue both a stop and a continue signal */
1174 			if (sig == SIGCONT)
1175 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1176 			else if (sig_kernel_stop(sig))
1177 				sigdelset(signal, SIGCONT);
1178 			sigaddset(signal, sig);
1179 		}
1180 	}
1181 
1182 	complete_signal(sig, t, type);
1183 ret:
1184 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1185 	return ret;
1186 }
1187 
1188 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1189 {
1190 	bool ret = false;
1191 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1192 	case SIL_KILL:
1193 	case SIL_CHLD:
1194 	case SIL_RT:
1195 		ret = true;
1196 		break;
1197 	case SIL_TIMER:
1198 	case SIL_POLL:
1199 	case SIL_FAULT:
1200 	case SIL_FAULT_TRAPNO:
1201 	case SIL_FAULT_MCEERR:
1202 	case SIL_FAULT_BNDERR:
1203 	case SIL_FAULT_PKUERR:
1204 	case SIL_FAULT_PERF_EVENT:
1205 	case SIL_SYS:
1206 		ret = false;
1207 		break;
1208 	}
1209 	return ret;
1210 }
1211 
1212 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1213 			enum pid_type type)
1214 {
1215 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1216 	bool force = false;
1217 
1218 	if (info == SEND_SIG_NOINFO) {
1219 		/* Force if sent from an ancestor pid namespace */
1220 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1221 	} else if (info == SEND_SIG_PRIV) {
1222 		/* Don't ignore kernel generated signals */
1223 		force = true;
1224 	} else if (has_si_pid_and_uid(info)) {
1225 		/* SIGKILL and SIGSTOP is special or has ids */
1226 		struct user_namespace *t_user_ns;
1227 
1228 		rcu_read_lock();
1229 		t_user_ns = task_cred_xxx(t, user_ns);
1230 		if (current_user_ns() != t_user_ns) {
1231 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1232 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1233 		}
1234 		rcu_read_unlock();
1235 
1236 		/* A kernel generated signal? */
1237 		force = (info->si_code == SI_KERNEL);
1238 
1239 		/* From an ancestor pid namespace? */
1240 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1241 			info->si_pid = 0;
1242 			force = true;
1243 		}
1244 	}
1245 	return __send_signal(sig, info, t, type, force);
1246 }
1247 
1248 static void print_fatal_signal(int signr)
1249 {
1250 	struct pt_regs *regs = signal_pt_regs();
1251 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1252 
1253 #if defined(__i386__) && !defined(__arch_um__)
1254 	pr_info("code at %08lx: ", regs->ip);
1255 	{
1256 		int i;
1257 		for (i = 0; i < 16; i++) {
1258 			unsigned char insn;
1259 
1260 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1261 				break;
1262 			pr_cont("%02x ", insn);
1263 		}
1264 	}
1265 	pr_cont("\n");
1266 #endif
1267 	preempt_disable();
1268 	show_regs(regs);
1269 	preempt_enable();
1270 }
1271 
1272 static int __init setup_print_fatal_signals(char *str)
1273 {
1274 	get_option (&str, &print_fatal_signals);
1275 
1276 	return 1;
1277 }
1278 
1279 __setup("print-fatal-signals=", setup_print_fatal_signals);
1280 
1281 int
1282 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1283 {
1284 	return send_signal(sig, info, p, PIDTYPE_TGID);
1285 }
1286 
1287 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1288 			enum pid_type type)
1289 {
1290 	unsigned long flags;
1291 	int ret = -ESRCH;
1292 
1293 	if (lock_task_sighand(p, &flags)) {
1294 		ret = send_signal(sig, info, p, type);
1295 		unlock_task_sighand(p, &flags);
1296 	}
1297 
1298 	return ret;
1299 }
1300 
1301 /*
1302  * Force a signal that the process can't ignore: if necessary
1303  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1304  *
1305  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1306  * since we do not want to have a signal handler that was blocked
1307  * be invoked when user space had explicitly blocked it.
1308  *
1309  * We don't want to have recursive SIGSEGV's etc, for example,
1310  * that is why we also clear SIGNAL_UNKILLABLE.
1311  */
1312 static int
1313 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, bool sigdfl)
1314 {
1315 	unsigned long int flags;
1316 	int ret, blocked, ignored;
1317 	struct k_sigaction *action;
1318 	int sig = info->si_signo;
1319 
1320 	spin_lock_irqsave(&t->sighand->siglock, flags);
1321 	action = &t->sighand->action[sig-1];
1322 	ignored = action->sa.sa_handler == SIG_IGN;
1323 	blocked = sigismember(&t->blocked, sig);
1324 	if (blocked || ignored || sigdfl) {
1325 		action->sa.sa_handler = SIG_DFL;
1326 		action->sa.sa_flags |= SA_IMMUTABLE;
1327 		if (blocked) {
1328 			sigdelset(&t->blocked, sig);
1329 			recalc_sigpending_and_wake(t);
1330 		}
1331 	}
1332 	/*
1333 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1334 	 * debugging to leave init killable.
1335 	 */
1336 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1337 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1338 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1339 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1340 
1341 	return ret;
1342 }
1343 
1344 int force_sig_info(struct kernel_siginfo *info)
1345 {
1346 	return force_sig_info_to_task(info, current, false);
1347 }
1348 
1349 /*
1350  * Nuke all other threads in the group.
1351  */
1352 int zap_other_threads(struct task_struct *p)
1353 {
1354 	struct task_struct *t = p;
1355 	int count = 0;
1356 
1357 	p->signal->group_stop_count = 0;
1358 
1359 	while_each_thread(p, t) {
1360 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1361 		count++;
1362 
1363 		/* Don't bother with already dead threads */
1364 		if (t->exit_state)
1365 			continue;
1366 		sigaddset(&t->pending.signal, SIGKILL);
1367 		signal_wake_up(t, 1);
1368 	}
1369 
1370 	return count;
1371 }
1372 
1373 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1374 					   unsigned long *flags)
1375 {
1376 	struct sighand_struct *sighand;
1377 
1378 	rcu_read_lock();
1379 	for (;;) {
1380 		sighand = rcu_dereference(tsk->sighand);
1381 		if (unlikely(sighand == NULL))
1382 			break;
1383 
1384 		/*
1385 		 * This sighand can be already freed and even reused, but
1386 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1387 		 * initializes ->siglock: this slab can't go away, it has
1388 		 * the same object type, ->siglock can't be reinitialized.
1389 		 *
1390 		 * We need to ensure that tsk->sighand is still the same
1391 		 * after we take the lock, we can race with de_thread() or
1392 		 * __exit_signal(). In the latter case the next iteration
1393 		 * must see ->sighand == NULL.
1394 		 */
1395 		spin_lock_irqsave(&sighand->siglock, *flags);
1396 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1397 			break;
1398 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1399 	}
1400 	rcu_read_unlock();
1401 
1402 	return sighand;
1403 }
1404 
1405 #ifdef CONFIG_LOCKDEP
1406 void lockdep_assert_task_sighand_held(struct task_struct *task)
1407 {
1408 	struct sighand_struct *sighand;
1409 
1410 	rcu_read_lock();
1411 	sighand = rcu_dereference(task->sighand);
1412 	if (sighand)
1413 		lockdep_assert_held(&sighand->siglock);
1414 	else
1415 		WARN_ON_ONCE(1);
1416 	rcu_read_unlock();
1417 }
1418 #endif
1419 
1420 /*
1421  * send signal info to all the members of a group
1422  */
1423 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1424 			struct task_struct *p, enum pid_type type)
1425 {
1426 	int ret;
1427 
1428 	rcu_read_lock();
1429 	ret = check_kill_permission(sig, info, p);
1430 	rcu_read_unlock();
1431 
1432 	if (!ret && sig)
1433 		ret = do_send_sig_info(sig, info, p, type);
1434 
1435 	return ret;
1436 }
1437 
1438 /*
1439  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1440  * control characters do (^C, ^Z etc)
1441  * - the caller must hold at least a readlock on tasklist_lock
1442  */
1443 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1444 {
1445 	struct task_struct *p = NULL;
1446 	int retval, success;
1447 
1448 	success = 0;
1449 	retval = -ESRCH;
1450 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1451 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1452 		success |= !err;
1453 		retval = err;
1454 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1455 	return success ? 0 : retval;
1456 }
1457 
1458 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1459 {
1460 	int error = -ESRCH;
1461 	struct task_struct *p;
1462 
1463 	for (;;) {
1464 		rcu_read_lock();
1465 		p = pid_task(pid, PIDTYPE_PID);
1466 		if (p)
1467 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1468 		rcu_read_unlock();
1469 		if (likely(!p || error != -ESRCH))
1470 			return error;
1471 
1472 		/*
1473 		 * The task was unhashed in between, try again.  If it
1474 		 * is dead, pid_task() will return NULL, if we race with
1475 		 * de_thread() it will find the new leader.
1476 		 */
1477 	}
1478 }
1479 
1480 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1481 {
1482 	int error;
1483 	rcu_read_lock();
1484 	error = kill_pid_info(sig, info, find_vpid(pid));
1485 	rcu_read_unlock();
1486 	return error;
1487 }
1488 
1489 static inline bool kill_as_cred_perm(const struct cred *cred,
1490 				     struct task_struct *target)
1491 {
1492 	const struct cred *pcred = __task_cred(target);
1493 
1494 	return uid_eq(cred->euid, pcred->suid) ||
1495 	       uid_eq(cred->euid, pcred->uid) ||
1496 	       uid_eq(cred->uid, pcred->suid) ||
1497 	       uid_eq(cred->uid, pcred->uid);
1498 }
1499 
1500 /*
1501  * The usb asyncio usage of siginfo is wrong.  The glibc support
1502  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1503  * AKA after the generic fields:
1504  *	kernel_pid_t	si_pid;
1505  *	kernel_uid32_t	si_uid;
1506  *	sigval_t	si_value;
1507  *
1508  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1509  * after the generic fields is:
1510  *	void __user 	*si_addr;
1511  *
1512  * This is a practical problem when there is a 64bit big endian kernel
1513  * and a 32bit userspace.  As the 32bit address will encoded in the low
1514  * 32bits of the pointer.  Those low 32bits will be stored at higher
1515  * address than appear in a 32 bit pointer.  So userspace will not
1516  * see the address it was expecting for it's completions.
1517  *
1518  * There is nothing in the encoding that can allow
1519  * copy_siginfo_to_user32 to detect this confusion of formats, so
1520  * handle this by requiring the caller of kill_pid_usb_asyncio to
1521  * notice when this situration takes place and to store the 32bit
1522  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1523  * parameter.
1524  */
1525 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1526 			 struct pid *pid, const struct cred *cred)
1527 {
1528 	struct kernel_siginfo info;
1529 	struct task_struct *p;
1530 	unsigned long flags;
1531 	int ret = -EINVAL;
1532 
1533 	if (!valid_signal(sig))
1534 		return ret;
1535 
1536 	clear_siginfo(&info);
1537 	info.si_signo = sig;
1538 	info.si_errno = errno;
1539 	info.si_code = SI_ASYNCIO;
1540 	*((sigval_t *)&info.si_pid) = addr;
1541 
1542 	rcu_read_lock();
1543 	p = pid_task(pid, PIDTYPE_PID);
1544 	if (!p) {
1545 		ret = -ESRCH;
1546 		goto out_unlock;
1547 	}
1548 	if (!kill_as_cred_perm(cred, p)) {
1549 		ret = -EPERM;
1550 		goto out_unlock;
1551 	}
1552 	ret = security_task_kill(p, &info, sig, cred);
1553 	if (ret)
1554 		goto out_unlock;
1555 
1556 	if (sig) {
1557 		if (lock_task_sighand(p, &flags)) {
1558 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1559 			unlock_task_sighand(p, &flags);
1560 		} else
1561 			ret = -ESRCH;
1562 	}
1563 out_unlock:
1564 	rcu_read_unlock();
1565 	return ret;
1566 }
1567 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1568 
1569 /*
1570  * kill_something_info() interprets pid in interesting ways just like kill(2).
1571  *
1572  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1573  * is probably wrong.  Should make it like BSD or SYSV.
1574  */
1575 
1576 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1577 {
1578 	int ret;
1579 
1580 	if (pid > 0)
1581 		return kill_proc_info(sig, info, pid);
1582 
1583 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1584 	if (pid == INT_MIN)
1585 		return -ESRCH;
1586 
1587 	read_lock(&tasklist_lock);
1588 	if (pid != -1) {
1589 		ret = __kill_pgrp_info(sig, info,
1590 				pid ? find_vpid(-pid) : task_pgrp(current));
1591 	} else {
1592 		int retval = 0, count = 0;
1593 		struct task_struct * p;
1594 
1595 		for_each_process(p) {
1596 			if (task_pid_vnr(p) > 1 &&
1597 					!same_thread_group(p, current)) {
1598 				int err = group_send_sig_info(sig, info, p,
1599 							      PIDTYPE_MAX);
1600 				++count;
1601 				if (err != -EPERM)
1602 					retval = err;
1603 			}
1604 		}
1605 		ret = count ? retval : -ESRCH;
1606 	}
1607 	read_unlock(&tasklist_lock);
1608 
1609 	return ret;
1610 }
1611 
1612 /*
1613  * These are for backward compatibility with the rest of the kernel source.
1614  */
1615 
1616 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1617 {
1618 	/*
1619 	 * Make sure legacy kernel users don't send in bad values
1620 	 * (normal paths check this in check_kill_permission).
1621 	 */
1622 	if (!valid_signal(sig))
1623 		return -EINVAL;
1624 
1625 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1626 }
1627 EXPORT_SYMBOL(send_sig_info);
1628 
1629 #define __si_special(priv) \
1630 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1631 
1632 int
1633 send_sig(int sig, struct task_struct *p, int priv)
1634 {
1635 	return send_sig_info(sig, __si_special(priv), p);
1636 }
1637 EXPORT_SYMBOL(send_sig);
1638 
1639 void force_sig(int sig)
1640 {
1641 	struct kernel_siginfo info;
1642 
1643 	clear_siginfo(&info);
1644 	info.si_signo = sig;
1645 	info.si_errno = 0;
1646 	info.si_code = SI_KERNEL;
1647 	info.si_pid = 0;
1648 	info.si_uid = 0;
1649 	force_sig_info(&info);
1650 }
1651 EXPORT_SYMBOL(force_sig);
1652 
1653 void force_fatal_sig(int sig)
1654 {
1655 	struct kernel_siginfo info;
1656 
1657 	clear_siginfo(&info);
1658 	info.si_signo = sig;
1659 	info.si_errno = 0;
1660 	info.si_code = SI_KERNEL;
1661 	info.si_pid = 0;
1662 	info.si_uid = 0;
1663 	force_sig_info_to_task(&info, current, true);
1664 }
1665 
1666 /*
1667  * When things go south during signal handling, we
1668  * will force a SIGSEGV. And if the signal that caused
1669  * the problem was already a SIGSEGV, we'll want to
1670  * make sure we don't even try to deliver the signal..
1671  */
1672 void force_sigsegv(int sig)
1673 {
1674 	if (sig == SIGSEGV)
1675 		force_fatal_sig(SIGSEGV);
1676 	else
1677 		force_sig(SIGSEGV);
1678 }
1679 
1680 int force_sig_fault_to_task(int sig, int code, void __user *addr
1681 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1682 	, struct task_struct *t)
1683 {
1684 	struct kernel_siginfo info;
1685 
1686 	clear_siginfo(&info);
1687 	info.si_signo = sig;
1688 	info.si_errno = 0;
1689 	info.si_code  = code;
1690 	info.si_addr  = addr;
1691 #ifdef __ia64__
1692 	info.si_imm = imm;
1693 	info.si_flags = flags;
1694 	info.si_isr = isr;
1695 #endif
1696 	return force_sig_info_to_task(&info, t, false);
1697 }
1698 
1699 int force_sig_fault(int sig, int code, void __user *addr
1700 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1701 {
1702 	return force_sig_fault_to_task(sig, code, addr
1703 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1704 }
1705 
1706 int send_sig_fault(int sig, int code, void __user *addr
1707 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1708 	, struct task_struct *t)
1709 {
1710 	struct kernel_siginfo info;
1711 
1712 	clear_siginfo(&info);
1713 	info.si_signo = sig;
1714 	info.si_errno = 0;
1715 	info.si_code  = code;
1716 	info.si_addr  = addr;
1717 #ifdef __ia64__
1718 	info.si_imm = imm;
1719 	info.si_flags = flags;
1720 	info.si_isr = isr;
1721 #endif
1722 	return send_sig_info(info.si_signo, &info, t);
1723 }
1724 
1725 int force_sig_mceerr(int code, void __user *addr, short lsb)
1726 {
1727 	struct kernel_siginfo info;
1728 
1729 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1730 	clear_siginfo(&info);
1731 	info.si_signo = SIGBUS;
1732 	info.si_errno = 0;
1733 	info.si_code = code;
1734 	info.si_addr = addr;
1735 	info.si_addr_lsb = lsb;
1736 	return force_sig_info(&info);
1737 }
1738 
1739 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1740 {
1741 	struct kernel_siginfo info;
1742 
1743 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1744 	clear_siginfo(&info);
1745 	info.si_signo = SIGBUS;
1746 	info.si_errno = 0;
1747 	info.si_code = code;
1748 	info.si_addr = addr;
1749 	info.si_addr_lsb = lsb;
1750 	return send_sig_info(info.si_signo, &info, t);
1751 }
1752 EXPORT_SYMBOL(send_sig_mceerr);
1753 
1754 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1755 {
1756 	struct kernel_siginfo info;
1757 
1758 	clear_siginfo(&info);
1759 	info.si_signo = SIGSEGV;
1760 	info.si_errno = 0;
1761 	info.si_code  = SEGV_BNDERR;
1762 	info.si_addr  = addr;
1763 	info.si_lower = lower;
1764 	info.si_upper = upper;
1765 	return force_sig_info(&info);
1766 }
1767 
1768 #ifdef SEGV_PKUERR
1769 int force_sig_pkuerr(void __user *addr, u32 pkey)
1770 {
1771 	struct kernel_siginfo info;
1772 
1773 	clear_siginfo(&info);
1774 	info.si_signo = SIGSEGV;
1775 	info.si_errno = 0;
1776 	info.si_code  = SEGV_PKUERR;
1777 	info.si_addr  = addr;
1778 	info.si_pkey  = pkey;
1779 	return force_sig_info(&info);
1780 }
1781 #endif
1782 
1783 int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1784 {
1785 	struct kernel_siginfo info;
1786 
1787 	clear_siginfo(&info);
1788 	info.si_signo     = SIGTRAP;
1789 	info.si_errno     = 0;
1790 	info.si_code      = TRAP_PERF;
1791 	info.si_addr      = addr;
1792 	info.si_perf_data = sig_data;
1793 	info.si_perf_type = type;
1794 
1795 	return force_sig_info(&info);
1796 }
1797 
1798 /**
1799  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1800  * @syscall: syscall number to send to userland
1801  * @reason: filter-supplied reason code to send to userland (via si_errno)
1802  *
1803  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1804  */
1805 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1806 {
1807 	struct kernel_siginfo info;
1808 
1809 	clear_siginfo(&info);
1810 	info.si_signo = SIGSYS;
1811 	info.si_code = SYS_SECCOMP;
1812 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1813 	info.si_errno = reason;
1814 	info.si_arch = syscall_get_arch(current);
1815 	info.si_syscall = syscall;
1816 	return force_sig_info_to_task(&info, current, force_coredump);
1817 }
1818 
1819 /* For the crazy architectures that include trap information in
1820  * the errno field, instead of an actual errno value.
1821  */
1822 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1823 {
1824 	struct kernel_siginfo info;
1825 
1826 	clear_siginfo(&info);
1827 	info.si_signo = SIGTRAP;
1828 	info.si_errno = errno;
1829 	info.si_code  = TRAP_HWBKPT;
1830 	info.si_addr  = addr;
1831 	return force_sig_info(&info);
1832 }
1833 
1834 /* For the rare architectures that include trap information using
1835  * si_trapno.
1836  */
1837 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1838 {
1839 	struct kernel_siginfo info;
1840 
1841 	clear_siginfo(&info);
1842 	info.si_signo = sig;
1843 	info.si_errno = 0;
1844 	info.si_code  = code;
1845 	info.si_addr  = addr;
1846 	info.si_trapno = trapno;
1847 	return force_sig_info(&info);
1848 }
1849 
1850 /* For the rare architectures that include trap information using
1851  * si_trapno.
1852  */
1853 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1854 			  struct task_struct *t)
1855 {
1856 	struct kernel_siginfo info;
1857 
1858 	clear_siginfo(&info);
1859 	info.si_signo = sig;
1860 	info.si_errno = 0;
1861 	info.si_code  = code;
1862 	info.si_addr  = addr;
1863 	info.si_trapno = trapno;
1864 	return send_sig_info(info.si_signo, &info, t);
1865 }
1866 
1867 int kill_pgrp(struct pid *pid, int sig, int priv)
1868 {
1869 	int ret;
1870 
1871 	read_lock(&tasklist_lock);
1872 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1873 	read_unlock(&tasklist_lock);
1874 
1875 	return ret;
1876 }
1877 EXPORT_SYMBOL(kill_pgrp);
1878 
1879 int kill_pid(struct pid *pid, int sig, int priv)
1880 {
1881 	return kill_pid_info(sig, __si_special(priv), pid);
1882 }
1883 EXPORT_SYMBOL(kill_pid);
1884 
1885 /*
1886  * These functions support sending signals using preallocated sigqueue
1887  * structures.  This is needed "because realtime applications cannot
1888  * afford to lose notifications of asynchronous events, like timer
1889  * expirations or I/O completions".  In the case of POSIX Timers
1890  * we allocate the sigqueue structure from the timer_create.  If this
1891  * allocation fails we are able to report the failure to the application
1892  * with an EAGAIN error.
1893  */
1894 struct sigqueue *sigqueue_alloc(void)
1895 {
1896 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1897 }
1898 
1899 void sigqueue_free(struct sigqueue *q)
1900 {
1901 	unsigned long flags;
1902 	spinlock_t *lock = &current->sighand->siglock;
1903 
1904 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1905 	/*
1906 	 * We must hold ->siglock while testing q->list
1907 	 * to serialize with collect_signal() or with
1908 	 * __exit_signal()->flush_sigqueue().
1909 	 */
1910 	spin_lock_irqsave(lock, flags);
1911 	q->flags &= ~SIGQUEUE_PREALLOC;
1912 	/*
1913 	 * If it is queued it will be freed when dequeued,
1914 	 * like the "regular" sigqueue.
1915 	 */
1916 	if (!list_empty(&q->list))
1917 		q = NULL;
1918 	spin_unlock_irqrestore(lock, flags);
1919 
1920 	if (q)
1921 		__sigqueue_free(q);
1922 }
1923 
1924 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1925 {
1926 	int sig = q->info.si_signo;
1927 	struct sigpending *pending;
1928 	struct task_struct *t;
1929 	unsigned long flags;
1930 	int ret, result;
1931 
1932 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1933 
1934 	ret = -1;
1935 	rcu_read_lock();
1936 	t = pid_task(pid, type);
1937 	if (!t || !likely(lock_task_sighand(t, &flags)))
1938 		goto ret;
1939 
1940 	ret = 1; /* the signal is ignored */
1941 	result = TRACE_SIGNAL_IGNORED;
1942 	if (!prepare_signal(sig, t, false))
1943 		goto out;
1944 
1945 	ret = 0;
1946 	if (unlikely(!list_empty(&q->list))) {
1947 		/*
1948 		 * If an SI_TIMER entry is already queue just increment
1949 		 * the overrun count.
1950 		 */
1951 		BUG_ON(q->info.si_code != SI_TIMER);
1952 		q->info.si_overrun++;
1953 		result = TRACE_SIGNAL_ALREADY_PENDING;
1954 		goto out;
1955 	}
1956 	q->info.si_overrun = 0;
1957 
1958 	signalfd_notify(t, sig);
1959 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1960 	list_add_tail(&q->list, &pending->list);
1961 	sigaddset(&pending->signal, sig);
1962 	complete_signal(sig, t, type);
1963 	result = TRACE_SIGNAL_DELIVERED;
1964 out:
1965 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1966 	unlock_task_sighand(t, &flags);
1967 ret:
1968 	rcu_read_unlock();
1969 	return ret;
1970 }
1971 
1972 static void do_notify_pidfd(struct task_struct *task)
1973 {
1974 	struct pid *pid;
1975 
1976 	WARN_ON(task->exit_state == 0);
1977 	pid = task_pid(task);
1978 	wake_up_all(&pid->wait_pidfd);
1979 }
1980 
1981 /*
1982  * Let a parent know about the death of a child.
1983  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1984  *
1985  * Returns true if our parent ignored us and so we've switched to
1986  * self-reaping.
1987  */
1988 bool do_notify_parent(struct task_struct *tsk, int sig)
1989 {
1990 	struct kernel_siginfo info;
1991 	unsigned long flags;
1992 	struct sighand_struct *psig;
1993 	bool autoreap = false;
1994 	u64 utime, stime;
1995 
1996 	BUG_ON(sig == -1);
1997 
1998  	/* do_notify_parent_cldstop should have been called instead.  */
1999  	BUG_ON(task_is_stopped_or_traced(tsk));
2000 
2001 	BUG_ON(!tsk->ptrace &&
2002 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2003 
2004 	/* Wake up all pidfd waiters */
2005 	do_notify_pidfd(tsk);
2006 
2007 	if (sig != SIGCHLD) {
2008 		/*
2009 		 * This is only possible if parent == real_parent.
2010 		 * Check if it has changed security domain.
2011 		 */
2012 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2013 			sig = SIGCHLD;
2014 	}
2015 
2016 	clear_siginfo(&info);
2017 	info.si_signo = sig;
2018 	info.si_errno = 0;
2019 	/*
2020 	 * We are under tasklist_lock here so our parent is tied to
2021 	 * us and cannot change.
2022 	 *
2023 	 * task_active_pid_ns will always return the same pid namespace
2024 	 * until a task passes through release_task.
2025 	 *
2026 	 * write_lock() currently calls preempt_disable() which is the
2027 	 * same as rcu_read_lock(), but according to Oleg, this is not
2028 	 * correct to rely on this
2029 	 */
2030 	rcu_read_lock();
2031 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2032 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2033 				       task_uid(tsk));
2034 	rcu_read_unlock();
2035 
2036 	task_cputime(tsk, &utime, &stime);
2037 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2038 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2039 
2040 	info.si_status = tsk->exit_code & 0x7f;
2041 	if (tsk->exit_code & 0x80)
2042 		info.si_code = CLD_DUMPED;
2043 	else if (tsk->exit_code & 0x7f)
2044 		info.si_code = CLD_KILLED;
2045 	else {
2046 		info.si_code = CLD_EXITED;
2047 		info.si_status = tsk->exit_code >> 8;
2048 	}
2049 
2050 	psig = tsk->parent->sighand;
2051 	spin_lock_irqsave(&psig->siglock, flags);
2052 	if (!tsk->ptrace && sig == SIGCHLD &&
2053 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2054 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2055 		/*
2056 		 * We are exiting and our parent doesn't care.  POSIX.1
2057 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2058 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2059 		 * automatically and not left for our parent's wait4 call.
2060 		 * Rather than having the parent do it as a magic kind of
2061 		 * signal handler, we just set this to tell do_exit that we
2062 		 * can be cleaned up without becoming a zombie.  Note that
2063 		 * we still call __wake_up_parent in this case, because a
2064 		 * blocked sys_wait4 might now return -ECHILD.
2065 		 *
2066 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2067 		 * is implementation-defined: we do (if you don't want
2068 		 * it, just use SIG_IGN instead).
2069 		 */
2070 		autoreap = true;
2071 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2072 			sig = 0;
2073 	}
2074 	/*
2075 	 * Send with __send_signal as si_pid and si_uid are in the
2076 	 * parent's namespaces.
2077 	 */
2078 	if (valid_signal(sig) && sig)
2079 		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2080 	__wake_up_parent(tsk, tsk->parent);
2081 	spin_unlock_irqrestore(&psig->siglock, flags);
2082 
2083 	return autoreap;
2084 }
2085 
2086 /**
2087  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2088  * @tsk: task reporting the state change
2089  * @for_ptracer: the notification is for ptracer
2090  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2091  *
2092  * Notify @tsk's parent that the stopped/continued state has changed.  If
2093  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2094  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2095  *
2096  * CONTEXT:
2097  * Must be called with tasklist_lock at least read locked.
2098  */
2099 static void do_notify_parent_cldstop(struct task_struct *tsk,
2100 				     bool for_ptracer, int why)
2101 {
2102 	struct kernel_siginfo info;
2103 	unsigned long flags;
2104 	struct task_struct *parent;
2105 	struct sighand_struct *sighand;
2106 	u64 utime, stime;
2107 
2108 	if (for_ptracer) {
2109 		parent = tsk->parent;
2110 	} else {
2111 		tsk = tsk->group_leader;
2112 		parent = tsk->real_parent;
2113 	}
2114 
2115 	clear_siginfo(&info);
2116 	info.si_signo = SIGCHLD;
2117 	info.si_errno = 0;
2118 	/*
2119 	 * see comment in do_notify_parent() about the following 4 lines
2120 	 */
2121 	rcu_read_lock();
2122 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2123 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2124 	rcu_read_unlock();
2125 
2126 	task_cputime(tsk, &utime, &stime);
2127 	info.si_utime = nsec_to_clock_t(utime);
2128 	info.si_stime = nsec_to_clock_t(stime);
2129 
2130  	info.si_code = why;
2131  	switch (why) {
2132  	case CLD_CONTINUED:
2133  		info.si_status = SIGCONT;
2134  		break;
2135  	case CLD_STOPPED:
2136  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2137  		break;
2138  	case CLD_TRAPPED:
2139  		info.si_status = tsk->exit_code & 0x7f;
2140  		break;
2141  	default:
2142  		BUG();
2143  	}
2144 
2145 	sighand = parent->sighand;
2146 	spin_lock_irqsave(&sighand->siglock, flags);
2147 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2148 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2149 		__group_send_sig_info(SIGCHLD, &info, parent);
2150 	/*
2151 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2152 	 */
2153 	__wake_up_parent(tsk, parent);
2154 	spin_unlock_irqrestore(&sighand->siglock, flags);
2155 }
2156 
2157 /*
2158  * This must be called with current->sighand->siglock held.
2159  *
2160  * This should be the path for all ptrace stops.
2161  * We always set current->last_siginfo while stopped here.
2162  * That makes it a way to test a stopped process for
2163  * being ptrace-stopped vs being job-control-stopped.
2164  *
2165  * If we actually decide not to stop at all because the tracer
2166  * is gone, we keep current->exit_code unless clear_code.
2167  */
2168 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2169 	__releases(&current->sighand->siglock)
2170 	__acquires(&current->sighand->siglock)
2171 {
2172 	bool gstop_done = false;
2173 
2174 	if (arch_ptrace_stop_needed()) {
2175 		/*
2176 		 * The arch code has something special to do before a
2177 		 * ptrace stop.  This is allowed to block, e.g. for faults
2178 		 * on user stack pages.  We can't keep the siglock while
2179 		 * calling arch_ptrace_stop, so we must release it now.
2180 		 * To preserve proper semantics, we must do this before
2181 		 * any signal bookkeeping like checking group_stop_count.
2182 		 */
2183 		spin_unlock_irq(&current->sighand->siglock);
2184 		arch_ptrace_stop();
2185 		spin_lock_irq(&current->sighand->siglock);
2186 	}
2187 
2188 	/*
2189 	 * schedule() will not sleep if there is a pending signal that
2190 	 * can awaken the task.
2191 	 */
2192 	set_special_state(TASK_TRACED);
2193 
2194 	/*
2195 	 * We're committing to trapping.  TRACED should be visible before
2196 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2197 	 * Also, transition to TRACED and updates to ->jobctl should be
2198 	 * atomic with respect to siglock and should be done after the arch
2199 	 * hook as siglock is released and regrabbed across it.
2200 	 *
2201 	 *     TRACER				    TRACEE
2202 	 *
2203 	 *     ptrace_attach()
2204 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2205 	 *     do_wait()
2206 	 *       set_current_state()                smp_wmb();
2207 	 *       ptrace_do_wait()
2208 	 *         wait_task_stopped()
2209 	 *           task_stopped_code()
2210 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2211 	 */
2212 	smp_wmb();
2213 
2214 	current->last_siginfo = info;
2215 	current->exit_code = exit_code;
2216 
2217 	/*
2218 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2219 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2220 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2221 	 * could be clear now.  We act as if SIGCONT is received after
2222 	 * TASK_TRACED is entered - ignore it.
2223 	 */
2224 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2225 		gstop_done = task_participate_group_stop(current);
2226 
2227 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2228 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2229 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2230 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2231 
2232 	/* entering a trap, clear TRAPPING */
2233 	task_clear_jobctl_trapping(current);
2234 
2235 	spin_unlock_irq(&current->sighand->siglock);
2236 	read_lock(&tasklist_lock);
2237 	if (likely(current->ptrace)) {
2238 		/*
2239 		 * Notify parents of the stop.
2240 		 *
2241 		 * While ptraced, there are two parents - the ptracer and
2242 		 * the real_parent of the group_leader.  The ptracer should
2243 		 * know about every stop while the real parent is only
2244 		 * interested in the completion of group stop.  The states
2245 		 * for the two don't interact with each other.  Notify
2246 		 * separately unless they're gonna be duplicates.
2247 		 */
2248 		do_notify_parent_cldstop(current, true, why);
2249 		if (gstop_done && ptrace_reparented(current))
2250 			do_notify_parent_cldstop(current, false, why);
2251 
2252 		/*
2253 		 * Don't want to allow preemption here, because
2254 		 * sys_ptrace() needs this task to be inactive.
2255 		 *
2256 		 * XXX: implement read_unlock_no_resched().
2257 		 */
2258 		preempt_disable();
2259 		read_unlock(&tasklist_lock);
2260 		cgroup_enter_frozen();
2261 		preempt_enable_no_resched();
2262 		freezable_schedule();
2263 		cgroup_leave_frozen(true);
2264 	} else {
2265 		/*
2266 		 * By the time we got the lock, our tracer went away.
2267 		 * Don't drop the lock yet, another tracer may come.
2268 		 *
2269 		 * If @gstop_done, the ptracer went away between group stop
2270 		 * completion and here.  During detach, it would have set
2271 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2272 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2273 		 * the real parent of the group stop completion is enough.
2274 		 */
2275 		if (gstop_done)
2276 			do_notify_parent_cldstop(current, false, why);
2277 
2278 		/* tasklist protects us from ptrace_freeze_traced() */
2279 		__set_current_state(TASK_RUNNING);
2280 		if (clear_code)
2281 			current->exit_code = 0;
2282 		read_unlock(&tasklist_lock);
2283 	}
2284 
2285 	/*
2286 	 * We are back.  Now reacquire the siglock before touching
2287 	 * last_siginfo, so that we are sure to have synchronized with
2288 	 * any signal-sending on another CPU that wants to examine it.
2289 	 */
2290 	spin_lock_irq(&current->sighand->siglock);
2291 	current->last_siginfo = NULL;
2292 
2293 	/* LISTENING can be set only during STOP traps, clear it */
2294 	current->jobctl &= ~JOBCTL_LISTENING;
2295 
2296 	/*
2297 	 * Queued signals ignored us while we were stopped for tracing.
2298 	 * So check for any that we should take before resuming user mode.
2299 	 * This sets TIF_SIGPENDING, but never clears it.
2300 	 */
2301 	recalc_sigpending_tsk(current);
2302 }
2303 
2304 static void ptrace_do_notify(int signr, int exit_code, int why)
2305 {
2306 	kernel_siginfo_t info;
2307 
2308 	clear_siginfo(&info);
2309 	info.si_signo = signr;
2310 	info.si_code = exit_code;
2311 	info.si_pid = task_pid_vnr(current);
2312 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2313 
2314 	/* Let the debugger run.  */
2315 	ptrace_stop(exit_code, why, 1, &info);
2316 }
2317 
2318 void ptrace_notify(int exit_code)
2319 {
2320 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2321 	if (unlikely(current->task_works))
2322 		task_work_run();
2323 
2324 	spin_lock_irq(&current->sighand->siglock);
2325 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2326 	spin_unlock_irq(&current->sighand->siglock);
2327 }
2328 
2329 /**
2330  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2331  * @signr: signr causing group stop if initiating
2332  *
2333  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2334  * and participate in it.  If already set, participate in the existing
2335  * group stop.  If participated in a group stop (and thus slept), %true is
2336  * returned with siglock released.
2337  *
2338  * If ptraced, this function doesn't handle stop itself.  Instead,
2339  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2340  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2341  * places afterwards.
2342  *
2343  * CONTEXT:
2344  * Must be called with @current->sighand->siglock held, which is released
2345  * on %true return.
2346  *
2347  * RETURNS:
2348  * %false if group stop is already cancelled or ptrace trap is scheduled.
2349  * %true if participated in group stop.
2350  */
2351 static bool do_signal_stop(int signr)
2352 	__releases(&current->sighand->siglock)
2353 {
2354 	struct signal_struct *sig = current->signal;
2355 
2356 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2357 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2358 		struct task_struct *t;
2359 
2360 		/* signr will be recorded in task->jobctl for retries */
2361 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2362 
2363 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2364 		    unlikely(signal_group_exit(sig)))
2365 			return false;
2366 		/*
2367 		 * There is no group stop already in progress.  We must
2368 		 * initiate one now.
2369 		 *
2370 		 * While ptraced, a task may be resumed while group stop is
2371 		 * still in effect and then receive a stop signal and
2372 		 * initiate another group stop.  This deviates from the
2373 		 * usual behavior as two consecutive stop signals can't
2374 		 * cause two group stops when !ptraced.  That is why we
2375 		 * also check !task_is_stopped(t) below.
2376 		 *
2377 		 * The condition can be distinguished by testing whether
2378 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2379 		 * group_exit_code in such case.
2380 		 *
2381 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2382 		 * an intervening stop signal is required to cause two
2383 		 * continued events regardless of ptrace.
2384 		 */
2385 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2386 			sig->group_exit_code = signr;
2387 
2388 		sig->group_stop_count = 0;
2389 
2390 		if (task_set_jobctl_pending(current, signr | gstop))
2391 			sig->group_stop_count++;
2392 
2393 		t = current;
2394 		while_each_thread(current, t) {
2395 			/*
2396 			 * Setting state to TASK_STOPPED for a group
2397 			 * stop is always done with the siglock held,
2398 			 * so this check has no races.
2399 			 */
2400 			if (!task_is_stopped(t) &&
2401 			    task_set_jobctl_pending(t, signr | gstop)) {
2402 				sig->group_stop_count++;
2403 				if (likely(!(t->ptrace & PT_SEIZED)))
2404 					signal_wake_up(t, 0);
2405 				else
2406 					ptrace_trap_notify(t);
2407 			}
2408 		}
2409 	}
2410 
2411 	if (likely(!current->ptrace)) {
2412 		int notify = 0;
2413 
2414 		/*
2415 		 * If there are no other threads in the group, or if there
2416 		 * is a group stop in progress and we are the last to stop,
2417 		 * report to the parent.
2418 		 */
2419 		if (task_participate_group_stop(current))
2420 			notify = CLD_STOPPED;
2421 
2422 		set_special_state(TASK_STOPPED);
2423 		spin_unlock_irq(&current->sighand->siglock);
2424 
2425 		/*
2426 		 * Notify the parent of the group stop completion.  Because
2427 		 * we're not holding either the siglock or tasklist_lock
2428 		 * here, ptracer may attach inbetween; however, this is for
2429 		 * group stop and should always be delivered to the real
2430 		 * parent of the group leader.  The new ptracer will get
2431 		 * its notification when this task transitions into
2432 		 * TASK_TRACED.
2433 		 */
2434 		if (notify) {
2435 			read_lock(&tasklist_lock);
2436 			do_notify_parent_cldstop(current, false, notify);
2437 			read_unlock(&tasklist_lock);
2438 		}
2439 
2440 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2441 		cgroup_enter_frozen();
2442 		freezable_schedule();
2443 		return true;
2444 	} else {
2445 		/*
2446 		 * While ptraced, group stop is handled by STOP trap.
2447 		 * Schedule it and let the caller deal with it.
2448 		 */
2449 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2450 		return false;
2451 	}
2452 }
2453 
2454 /**
2455  * do_jobctl_trap - take care of ptrace jobctl traps
2456  *
2457  * When PT_SEIZED, it's used for both group stop and explicit
2458  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2459  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2460  * the stop signal; otherwise, %SIGTRAP.
2461  *
2462  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2463  * number as exit_code and no siginfo.
2464  *
2465  * CONTEXT:
2466  * Must be called with @current->sighand->siglock held, which may be
2467  * released and re-acquired before returning with intervening sleep.
2468  */
2469 static void do_jobctl_trap(void)
2470 {
2471 	struct signal_struct *signal = current->signal;
2472 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2473 
2474 	if (current->ptrace & PT_SEIZED) {
2475 		if (!signal->group_stop_count &&
2476 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2477 			signr = SIGTRAP;
2478 		WARN_ON_ONCE(!signr);
2479 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2480 				 CLD_STOPPED);
2481 	} else {
2482 		WARN_ON_ONCE(!signr);
2483 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2484 		current->exit_code = 0;
2485 	}
2486 }
2487 
2488 /**
2489  * do_freezer_trap - handle the freezer jobctl trap
2490  *
2491  * Puts the task into frozen state, if only the task is not about to quit.
2492  * In this case it drops JOBCTL_TRAP_FREEZE.
2493  *
2494  * CONTEXT:
2495  * Must be called with @current->sighand->siglock held,
2496  * which is always released before returning.
2497  */
2498 static void do_freezer_trap(void)
2499 	__releases(&current->sighand->siglock)
2500 {
2501 	/*
2502 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2503 	 * let's make another loop to give it a chance to be handled.
2504 	 * In any case, we'll return back.
2505 	 */
2506 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2507 	     JOBCTL_TRAP_FREEZE) {
2508 		spin_unlock_irq(&current->sighand->siglock);
2509 		return;
2510 	}
2511 
2512 	/*
2513 	 * Now we're sure that there is no pending fatal signal and no
2514 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2515 	 * immediately (if there is a non-fatal signal pending), and
2516 	 * put the task into sleep.
2517 	 */
2518 	__set_current_state(TASK_INTERRUPTIBLE);
2519 	clear_thread_flag(TIF_SIGPENDING);
2520 	spin_unlock_irq(&current->sighand->siglock);
2521 	cgroup_enter_frozen();
2522 	freezable_schedule();
2523 }
2524 
2525 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2526 {
2527 	/*
2528 	 * We do not check sig_kernel_stop(signr) but set this marker
2529 	 * unconditionally because we do not know whether debugger will
2530 	 * change signr. This flag has no meaning unless we are going
2531 	 * to stop after return from ptrace_stop(). In this case it will
2532 	 * be checked in do_signal_stop(), we should only stop if it was
2533 	 * not cleared by SIGCONT while we were sleeping. See also the
2534 	 * comment in dequeue_signal().
2535 	 */
2536 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2537 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2538 
2539 	/* We're back.  Did the debugger cancel the sig?  */
2540 	signr = current->exit_code;
2541 	if (signr == 0)
2542 		return signr;
2543 
2544 	current->exit_code = 0;
2545 
2546 	/*
2547 	 * Update the siginfo structure if the signal has
2548 	 * changed.  If the debugger wanted something
2549 	 * specific in the siginfo structure then it should
2550 	 * have updated *info via PTRACE_SETSIGINFO.
2551 	 */
2552 	if (signr != info->si_signo) {
2553 		clear_siginfo(info);
2554 		info->si_signo = signr;
2555 		info->si_errno = 0;
2556 		info->si_code = SI_USER;
2557 		rcu_read_lock();
2558 		info->si_pid = task_pid_vnr(current->parent);
2559 		info->si_uid = from_kuid_munged(current_user_ns(),
2560 						task_uid(current->parent));
2561 		rcu_read_unlock();
2562 	}
2563 
2564 	/* If the (new) signal is now blocked, requeue it.  */
2565 	if (sigismember(&current->blocked, signr)) {
2566 		send_signal(signr, info, current, PIDTYPE_PID);
2567 		signr = 0;
2568 	}
2569 
2570 	return signr;
2571 }
2572 
2573 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2574 {
2575 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2576 	case SIL_FAULT:
2577 	case SIL_FAULT_TRAPNO:
2578 	case SIL_FAULT_MCEERR:
2579 	case SIL_FAULT_BNDERR:
2580 	case SIL_FAULT_PKUERR:
2581 	case SIL_FAULT_PERF_EVENT:
2582 		ksig->info.si_addr = arch_untagged_si_addr(
2583 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2584 		break;
2585 	case SIL_KILL:
2586 	case SIL_TIMER:
2587 	case SIL_POLL:
2588 	case SIL_CHLD:
2589 	case SIL_RT:
2590 	case SIL_SYS:
2591 		break;
2592 	}
2593 }
2594 
2595 bool get_signal(struct ksignal *ksig)
2596 {
2597 	struct sighand_struct *sighand = current->sighand;
2598 	struct signal_struct *signal = current->signal;
2599 	int signr;
2600 
2601 	if (unlikely(current->task_works))
2602 		task_work_run();
2603 
2604 	/*
2605 	 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2606 	 * that the arch handlers don't all have to do it. If we get here
2607 	 * without TIF_SIGPENDING, just exit after running signal work.
2608 	 */
2609 	if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2610 		if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2611 			tracehook_notify_signal();
2612 		if (!task_sigpending(current))
2613 			return false;
2614 	}
2615 
2616 	if (unlikely(uprobe_deny_signal()))
2617 		return false;
2618 
2619 	/*
2620 	 * Do this once, we can't return to user-mode if freezing() == T.
2621 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2622 	 * thus do not need another check after return.
2623 	 */
2624 	try_to_freeze();
2625 
2626 relock:
2627 	spin_lock_irq(&sighand->siglock);
2628 
2629 	/*
2630 	 * Every stopped thread goes here after wakeup. Check to see if
2631 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2632 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2633 	 */
2634 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2635 		int why;
2636 
2637 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2638 			why = CLD_CONTINUED;
2639 		else
2640 			why = CLD_STOPPED;
2641 
2642 		signal->flags &= ~SIGNAL_CLD_MASK;
2643 
2644 		spin_unlock_irq(&sighand->siglock);
2645 
2646 		/*
2647 		 * Notify the parent that we're continuing.  This event is
2648 		 * always per-process and doesn't make whole lot of sense
2649 		 * for ptracers, who shouldn't consume the state via
2650 		 * wait(2) either, but, for backward compatibility, notify
2651 		 * the ptracer of the group leader too unless it's gonna be
2652 		 * a duplicate.
2653 		 */
2654 		read_lock(&tasklist_lock);
2655 		do_notify_parent_cldstop(current, false, why);
2656 
2657 		if (ptrace_reparented(current->group_leader))
2658 			do_notify_parent_cldstop(current->group_leader,
2659 						true, why);
2660 		read_unlock(&tasklist_lock);
2661 
2662 		goto relock;
2663 	}
2664 
2665 	/* Has this task already been marked for death? */
2666 	if (signal_group_exit(signal)) {
2667 		ksig->info.si_signo = signr = SIGKILL;
2668 		sigdelset(&current->pending.signal, SIGKILL);
2669 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2670 				&sighand->action[SIGKILL - 1]);
2671 		recalc_sigpending();
2672 		goto fatal;
2673 	}
2674 
2675 	for (;;) {
2676 		struct k_sigaction *ka;
2677 
2678 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2679 		    do_signal_stop(0))
2680 			goto relock;
2681 
2682 		if (unlikely(current->jobctl &
2683 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2684 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2685 				do_jobctl_trap();
2686 				spin_unlock_irq(&sighand->siglock);
2687 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2688 				do_freezer_trap();
2689 
2690 			goto relock;
2691 		}
2692 
2693 		/*
2694 		 * If the task is leaving the frozen state, let's update
2695 		 * cgroup counters and reset the frozen bit.
2696 		 */
2697 		if (unlikely(cgroup_task_frozen(current))) {
2698 			spin_unlock_irq(&sighand->siglock);
2699 			cgroup_leave_frozen(false);
2700 			goto relock;
2701 		}
2702 
2703 		/*
2704 		 * Signals generated by the execution of an instruction
2705 		 * need to be delivered before any other pending signals
2706 		 * so that the instruction pointer in the signal stack
2707 		 * frame points to the faulting instruction.
2708 		 */
2709 		signr = dequeue_synchronous_signal(&ksig->info);
2710 		if (!signr)
2711 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2712 
2713 		if (!signr)
2714 			break; /* will return 0 */
2715 
2716 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2717 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2718 			signr = ptrace_signal(signr, &ksig->info);
2719 			if (!signr)
2720 				continue;
2721 		}
2722 
2723 		ka = &sighand->action[signr-1];
2724 
2725 		/* Trace actually delivered signals. */
2726 		trace_signal_deliver(signr, &ksig->info, ka);
2727 
2728 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2729 			continue;
2730 		if (ka->sa.sa_handler != SIG_DFL) {
2731 			/* Run the handler.  */
2732 			ksig->ka = *ka;
2733 
2734 			if (ka->sa.sa_flags & SA_ONESHOT)
2735 				ka->sa.sa_handler = SIG_DFL;
2736 
2737 			break; /* will return non-zero "signr" value */
2738 		}
2739 
2740 		/*
2741 		 * Now we are doing the default action for this signal.
2742 		 */
2743 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2744 			continue;
2745 
2746 		/*
2747 		 * Global init gets no signals it doesn't want.
2748 		 * Container-init gets no signals it doesn't want from same
2749 		 * container.
2750 		 *
2751 		 * Note that if global/container-init sees a sig_kernel_only()
2752 		 * signal here, the signal must have been generated internally
2753 		 * or must have come from an ancestor namespace. In either
2754 		 * case, the signal cannot be dropped.
2755 		 */
2756 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2757 				!sig_kernel_only(signr))
2758 			continue;
2759 
2760 		if (sig_kernel_stop(signr)) {
2761 			/*
2762 			 * The default action is to stop all threads in
2763 			 * the thread group.  The job control signals
2764 			 * do nothing in an orphaned pgrp, but SIGSTOP
2765 			 * always works.  Note that siglock needs to be
2766 			 * dropped during the call to is_orphaned_pgrp()
2767 			 * because of lock ordering with tasklist_lock.
2768 			 * This allows an intervening SIGCONT to be posted.
2769 			 * We need to check for that and bail out if necessary.
2770 			 */
2771 			if (signr != SIGSTOP) {
2772 				spin_unlock_irq(&sighand->siglock);
2773 
2774 				/* signals can be posted during this window */
2775 
2776 				if (is_current_pgrp_orphaned())
2777 					goto relock;
2778 
2779 				spin_lock_irq(&sighand->siglock);
2780 			}
2781 
2782 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2783 				/* It released the siglock.  */
2784 				goto relock;
2785 			}
2786 
2787 			/*
2788 			 * We didn't actually stop, due to a race
2789 			 * with SIGCONT or something like that.
2790 			 */
2791 			continue;
2792 		}
2793 
2794 	fatal:
2795 		spin_unlock_irq(&sighand->siglock);
2796 		if (unlikely(cgroup_task_frozen(current)))
2797 			cgroup_leave_frozen(true);
2798 
2799 		/*
2800 		 * Anything else is fatal, maybe with a core dump.
2801 		 */
2802 		current->flags |= PF_SIGNALED;
2803 
2804 		if (sig_kernel_coredump(signr)) {
2805 			if (print_fatal_signals)
2806 				print_fatal_signal(ksig->info.si_signo);
2807 			proc_coredump_connector(current);
2808 			/*
2809 			 * If it was able to dump core, this kills all
2810 			 * other threads in the group and synchronizes with
2811 			 * their demise.  If we lost the race with another
2812 			 * thread getting here, it set group_exit_code
2813 			 * first and our do_group_exit call below will use
2814 			 * that value and ignore the one we pass it.
2815 			 */
2816 			do_coredump(&ksig->info);
2817 		}
2818 
2819 		/*
2820 		 * PF_IO_WORKER threads will catch and exit on fatal signals
2821 		 * themselves. They have cleanup that must be performed, so
2822 		 * we cannot call do_exit() on their behalf.
2823 		 */
2824 		if (current->flags & PF_IO_WORKER)
2825 			goto out;
2826 
2827 		/*
2828 		 * Death signals, no core dump.
2829 		 */
2830 		do_group_exit(ksig->info.si_signo);
2831 		/* NOTREACHED */
2832 	}
2833 	spin_unlock_irq(&sighand->siglock);
2834 out:
2835 	ksig->sig = signr;
2836 
2837 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2838 		hide_si_addr_tag_bits(ksig);
2839 
2840 	return ksig->sig > 0;
2841 }
2842 
2843 /**
2844  * signal_delivered -
2845  * @ksig:		kernel signal struct
2846  * @stepping:		nonzero if debugger single-step or block-step in use
2847  *
2848  * This function should be called when a signal has successfully been
2849  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2850  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2851  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2852  */
2853 static void signal_delivered(struct ksignal *ksig, int stepping)
2854 {
2855 	sigset_t blocked;
2856 
2857 	/* A signal was successfully delivered, and the
2858 	   saved sigmask was stored on the signal frame,
2859 	   and will be restored by sigreturn.  So we can
2860 	   simply clear the restore sigmask flag.  */
2861 	clear_restore_sigmask();
2862 
2863 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2864 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2865 		sigaddset(&blocked, ksig->sig);
2866 	set_current_blocked(&blocked);
2867 	if (current->sas_ss_flags & SS_AUTODISARM)
2868 		sas_ss_reset(current);
2869 	tracehook_signal_handler(stepping);
2870 }
2871 
2872 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2873 {
2874 	if (failed)
2875 		force_sigsegv(ksig->sig);
2876 	else
2877 		signal_delivered(ksig, stepping);
2878 }
2879 
2880 /*
2881  * It could be that complete_signal() picked us to notify about the
2882  * group-wide signal. Other threads should be notified now to take
2883  * the shared signals in @which since we will not.
2884  */
2885 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2886 {
2887 	sigset_t retarget;
2888 	struct task_struct *t;
2889 
2890 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2891 	if (sigisemptyset(&retarget))
2892 		return;
2893 
2894 	t = tsk;
2895 	while_each_thread(tsk, t) {
2896 		if (t->flags & PF_EXITING)
2897 			continue;
2898 
2899 		if (!has_pending_signals(&retarget, &t->blocked))
2900 			continue;
2901 		/* Remove the signals this thread can handle. */
2902 		sigandsets(&retarget, &retarget, &t->blocked);
2903 
2904 		if (!task_sigpending(t))
2905 			signal_wake_up(t, 0);
2906 
2907 		if (sigisemptyset(&retarget))
2908 			break;
2909 	}
2910 }
2911 
2912 void exit_signals(struct task_struct *tsk)
2913 {
2914 	int group_stop = 0;
2915 	sigset_t unblocked;
2916 
2917 	/*
2918 	 * @tsk is about to have PF_EXITING set - lock out users which
2919 	 * expect stable threadgroup.
2920 	 */
2921 	cgroup_threadgroup_change_begin(tsk);
2922 
2923 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2924 		tsk->flags |= PF_EXITING;
2925 		cgroup_threadgroup_change_end(tsk);
2926 		return;
2927 	}
2928 
2929 	spin_lock_irq(&tsk->sighand->siglock);
2930 	/*
2931 	 * From now this task is not visible for group-wide signals,
2932 	 * see wants_signal(), do_signal_stop().
2933 	 */
2934 	tsk->flags |= PF_EXITING;
2935 
2936 	cgroup_threadgroup_change_end(tsk);
2937 
2938 	if (!task_sigpending(tsk))
2939 		goto out;
2940 
2941 	unblocked = tsk->blocked;
2942 	signotset(&unblocked);
2943 	retarget_shared_pending(tsk, &unblocked);
2944 
2945 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2946 	    task_participate_group_stop(tsk))
2947 		group_stop = CLD_STOPPED;
2948 out:
2949 	spin_unlock_irq(&tsk->sighand->siglock);
2950 
2951 	/*
2952 	 * If group stop has completed, deliver the notification.  This
2953 	 * should always go to the real parent of the group leader.
2954 	 */
2955 	if (unlikely(group_stop)) {
2956 		read_lock(&tasklist_lock);
2957 		do_notify_parent_cldstop(tsk, false, group_stop);
2958 		read_unlock(&tasklist_lock);
2959 	}
2960 }
2961 
2962 /*
2963  * System call entry points.
2964  */
2965 
2966 /**
2967  *  sys_restart_syscall - restart a system call
2968  */
2969 SYSCALL_DEFINE0(restart_syscall)
2970 {
2971 	struct restart_block *restart = &current->restart_block;
2972 	return restart->fn(restart);
2973 }
2974 
2975 long do_no_restart_syscall(struct restart_block *param)
2976 {
2977 	return -EINTR;
2978 }
2979 
2980 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2981 {
2982 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
2983 		sigset_t newblocked;
2984 		/* A set of now blocked but previously unblocked signals. */
2985 		sigandnsets(&newblocked, newset, &current->blocked);
2986 		retarget_shared_pending(tsk, &newblocked);
2987 	}
2988 	tsk->blocked = *newset;
2989 	recalc_sigpending();
2990 }
2991 
2992 /**
2993  * set_current_blocked - change current->blocked mask
2994  * @newset: new mask
2995  *
2996  * It is wrong to change ->blocked directly, this helper should be used
2997  * to ensure the process can't miss a shared signal we are going to block.
2998  */
2999 void set_current_blocked(sigset_t *newset)
3000 {
3001 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3002 	__set_current_blocked(newset);
3003 }
3004 
3005 void __set_current_blocked(const sigset_t *newset)
3006 {
3007 	struct task_struct *tsk = current;
3008 
3009 	/*
3010 	 * In case the signal mask hasn't changed, there is nothing we need
3011 	 * to do. The current->blocked shouldn't be modified by other task.
3012 	 */
3013 	if (sigequalsets(&tsk->blocked, newset))
3014 		return;
3015 
3016 	spin_lock_irq(&tsk->sighand->siglock);
3017 	__set_task_blocked(tsk, newset);
3018 	spin_unlock_irq(&tsk->sighand->siglock);
3019 }
3020 
3021 /*
3022  * This is also useful for kernel threads that want to temporarily
3023  * (or permanently) block certain signals.
3024  *
3025  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3026  * interface happily blocks "unblockable" signals like SIGKILL
3027  * and friends.
3028  */
3029 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3030 {
3031 	struct task_struct *tsk = current;
3032 	sigset_t newset;
3033 
3034 	/* Lockless, only current can change ->blocked, never from irq */
3035 	if (oldset)
3036 		*oldset = tsk->blocked;
3037 
3038 	switch (how) {
3039 	case SIG_BLOCK:
3040 		sigorsets(&newset, &tsk->blocked, set);
3041 		break;
3042 	case SIG_UNBLOCK:
3043 		sigandnsets(&newset, &tsk->blocked, set);
3044 		break;
3045 	case SIG_SETMASK:
3046 		newset = *set;
3047 		break;
3048 	default:
3049 		return -EINVAL;
3050 	}
3051 
3052 	__set_current_blocked(&newset);
3053 	return 0;
3054 }
3055 EXPORT_SYMBOL(sigprocmask);
3056 
3057 /*
3058  * The api helps set app-provided sigmasks.
3059  *
3060  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3061  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3062  *
3063  * Note that it does set_restore_sigmask() in advance, so it must be always
3064  * paired with restore_saved_sigmask_unless() before return from syscall.
3065  */
3066 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3067 {
3068 	sigset_t kmask;
3069 
3070 	if (!umask)
3071 		return 0;
3072 	if (sigsetsize != sizeof(sigset_t))
3073 		return -EINVAL;
3074 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3075 		return -EFAULT;
3076 
3077 	set_restore_sigmask();
3078 	current->saved_sigmask = current->blocked;
3079 	set_current_blocked(&kmask);
3080 
3081 	return 0;
3082 }
3083 
3084 #ifdef CONFIG_COMPAT
3085 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3086 			    size_t sigsetsize)
3087 {
3088 	sigset_t kmask;
3089 
3090 	if (!umask)
3091 		return 0;
3092 	if (sigsetsize != sizeof(compat_sigset_t))
3093 		return -EINVAL;
3094 	if (get_compat_sigset(&kmask, umask))
3095 		return -EFAULT;
3096 
3097 	set_restore_sigmask();
3098 	current->saved_sigmask = current->blocked;
3099 	set_current_blocked(&kmask);
3100 
3101 	return 0;
3102 }
3103 #endif
3104 
3105 /**
3106  *  sys_rt_sigprocmask - change the list of currently blocked signals
3107  *  @how: whether to add, remove, or set signals
3108  *  @nset: stores pending signals
3109  *  @oset: previous value of signal mask if non-null
3110  *  @sigsetsize: size of sigset_t type
3111  */
3112 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3113 		sigset_t __user *, oset, size_t, sigsetsize)
3114 {
3115 	sigset_t old_set, new_set;
3116 	int error;
3117 
3118 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3119 	if (sigsetsize != sizeof(sigset_t))
3120 		return -EINVAL;
3121 
3122 	old_set = current->blocked;
3123 
3124 	if (nset) {
3125 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3126 			return -EFAULT;
3127 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3128 
3129 		error = sigprocmask(how, &new_set, NULL);
3130 		if (error)
3131 			return error;
3132 	}
3133 
3134 	if (oset) {
3135 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3136 			return -EFAULT;
3137 	}
3138 
3139 	return 0;
3140 }
3141 
3142 #ifdef CONFIG_COMPAT
3143 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3144 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3145 {
3146 	sigset_t old_set = current->blocked;
3147 
3148 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3149 	if (sigsetsize != sizeof(sigset_t))
3150 		return -EINVAL;
3151 
3152 	if (nset) {
3153 		sigset_t new_set;
3154 		int error;
3155 		if (get_compat_sigset(&new_set, nset))
3156 			return -EFAULT;
3157 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3158 
3159 		error = sigprocmask(how, &new_set, NULL);
3160 		if (error)
3161 			return error;
3162 	}
3163 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3164 }
3165 #endif
3166 
3167 static void do_sigpending(sigset_t *set)
3168 {
3169 	spin_lock_irq(&current->sighand->siglock);
3170 	sigorsets(set, &current->pending.signal,
3171 		  &current->signal->shared_pending.signal);
3172 	spin_unlock_irq(&current->sighand->siglock);
3173 
3174 	/* Outside the lock because only this thread touches it.  */
3175 	sigandsets(set, &current->blocked, set);
3176 }
3177 
3178 /**
3179  *  sys_rt_sigpending - examine a pending signal that has been raised
3180  *			while blocked
3181  *  @uset: stores pending signals
3182  *  @sigsetsize: size of sigset_t type or larger
3183  */
3184 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3185 {
3186 	sigset_t set;
3187 
3188 	if (sigsetsize > sizeof(*uset))
3189 		return -EINVAL;
3190 
3191 	do_sigpending(&set);
3192 
3193 	if (copy_to_user(uset, &set, sigsetsize))
3194 		return -EFAULT;
3195 
3196 	return 0;
3197 }
3198 
3199 #ifdef CONFIG_COMPAT
3200 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3201 		compat_size_t, sigsetsize)
3202 {
3203 	sigset_t set;
3204 
3205 	if (sigsetsize > sizeof(*uset))
3206 		return -EINVAL;
3207 
3208 	do_sigpending(&set);
3209 
3210 	return put_compat_sigset(uset, &set, sigsetsize);
3211 }
3212 #endif
3213 
3214 static const struct {
3215 	unsigned char limit, layout;
3216 } sig_sicodes[] = {
3217 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3218 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3219 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3220 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3221 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3222 #if defined(SIGEMT)
3223 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3224 #endif
3225 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3226 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3227 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3228 };
3229 
3230 static bool known_siginfo_layout(unsigned sig, int si_code)
3231 {
3232 	if (si_code == SI_KERNEL)
3233 		return true;
3234 	else if ((si_code > SI_USER)) {
3235 		if (sig_specific_sicodes(sig)) {
3236 			if (si_code <= sig_sicodes[sig].limit)
3237 				return true;
3238 		}
3239 		else if (si_code <= NSIGPOLL)
3240 			return true;
3241 	}
3242 	else if (si_code >= SI_DETHREAD)
3243 		return true;
3244 	else if (si_code == SI_ASYNCNL)
3245 		return true;
3246 	return false;
3247 }
3248 
3249 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3250 {
3251 	enum siginfo_layout layout = SIL_KILL;
3252 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3253 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3254 		    (si_code <= sig_sicodes[sig].limit)) {
3255 			layout = sig_sicodes[sig].layout;
3256 			/* Handle the exceptions */
3257 			if ((sig == SIGBUS) &&
3258 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3259 				layout = SIL_FAULT_MCEERR;
3260 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3261 				layout = SIL_FAULT_BNDERR;
3262 #ifdef SEGV_PKUERR
3263 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3264 				layout = SIL_FAULT_PKUERR;
3265 #endif
3266 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3267 				layout = SIL_FAULT_PERF_EVENT;
3268 			else if (IS_ENABLED(CONFIG_SPARC) &&
3269 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3270 				layout = SIL_FAULT_TRAPNO;
3271 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3272 				 ((sig == SIGFPE) ||
3273 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3274 				layout = SIL_FAULT_TRAPNO;
3275 		}
3276 		else if (si_code <= NSIGPOLL)
3277 			layout = SIL_POLL;
3278 	} else {
3279 		if (si_code == SI_TIMER)
3280 			layout = SIL_TIMER;
3281 		else if (si_code == SI_SIGIO)
3282 			layout = SIL_POLL;
3283 		else if (si_code < 0)
3284 			layout = SIL_RT;
3285 	}
3286 	return layout;
3287 }
3288 
3289 static inline char __user *si_expansion(const siginfo_t __user *info)
3290 {
3291 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3292 }
3293 
3294 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3295 {
3296 	char __user *expansion = si_expansion(to);
3297 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3298 		return -EFAULT;
3299 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3300 		return -EFAULT;
3301 	return 0;
3302 }
3303 
3304 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3305 				       const siginfo_t __user *from)
3306 {
3307 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3308 		char __user *expansion = si_expansion(from);
3309 		char buf[SI_EXPANSION_SIZE];
3310 		int i;
3311 		/*
3312 		 * An unknown si_code might need more than
3313 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3314 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3315 		 * will return this data to userspace exactly.
3316 		 */
3317 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3318 			return -EFAULT;
3319 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3320 			if (buf[i] != 0)
3321 				return -E2BIG;
3322 		}
3323 	}
3324 	return 0;
3325 }
3326 
3327 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3328 				    const siginfo_t __user *from)
3329 {
3330 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3331 		return -EFAULT;
3332 	to->si_signo = signo;
3333 	return post_copy_siginfo_from_user(to, from);
3334 }
3335 
3336 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3337 {
3338 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3339 		return -EFAULT;
3340 	return post_copy_siginfo_from_user(to, from);
3341 }
3342 
3343 #ifdef CONFIG_COMPAT
3344 /**
3345  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3346  * @to: compat siginfo destination
3347  * @from: kernel siginfo source
3348  *
3349  * Note: This function does not work properly for the SIGCHLD on x32, but
3350  * fortunately it doesn't have to.  The only valid callers for this function are
3351  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3352  * The latter does not care because SIGCHLD will never cause a coredump.
3353  */
3354 void copy_siginfo_to_external32(struct compat_siginfo *to,
3355 		const struct kernel_siginfo *from)
3356 {
3357 	memset(to, 0, sizeof(*to));
3358 
3359 	to->si_signo = from->si_signo;
3360 	to->si_errno = from->si_errno;
3361 	to->si_code  = from->si_code;
3362 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3363 	case SIL_KILL:
3364 		to->si_pid = from->si_pid;
3365 		to->si_uid = from->si_uid;
3366 		break;
3367 	case SIL_TIMER:
3368 		to->si_tid     = from->si_tid;
3369 		to->si_overrun = from->si_overrun;
3370 		to->si_int     = from->si_int;
3371 		break;
3372 	case SIL_POLL:
3373 		to->si_band = from->si_band;
3374 		to->si_fd   = from->si_fd;
3375 		break;
3376 	case SIL_FAULT:
3377 		to->si_addr = ptr_to_compat(from->si_addr);
3378 		break;
3379 	case SIL_FAULT_TRAPNO:
3380 		to->si_addr = ptr_to_compat(from->si_addr);
3381 		to->si_trapno = from->si_trapno;
3382 		break;
3383 	case SIL_FAULT_MCEERR:
3384 		to->si_addr = ptr_to_compat(from->si_addr);
3385 		to->si_addr_lsb = from->si_addr_lsb;
3386 		break;
3387 	case SIL_FAULT_BNDERR:
3388 		to->si_addr = ptr_to_compat(from->si_addr);
3389 		to->si_lower = ptr_to_compat(from->si_lower);
3390 		to->si_upper = ptr_to_compat(from->si_upper);
3391 		break;
3392 	case SIL_FAULT_PKUERR:
3393 		to->si_addr = ptr_to_compat(from->si_addr);
3394 		to->si_pkey = from->si_pkey;
3395 		break;
3396 	case SIL_FAULT_PERF_EVENT:
3397 		to->si_addr = ptr_to_compat(from->si_addr);
3398 		to->si_perf_data = from->si_perf_data;
3399 		to->si_perf_type = from->si_perf_type;
3400 		break;
3401 	case SIL_CHLD:
3402 		to->si_pid = from->si_pid;
3403 		to->si_uid = from->si_uid;
3404 		to->si_status = from->si_status;
3405 		to->si_utime = from->si_utime;
3406 		to->si_stime = from->si_stime;
3407 		break;
3408 	case SIL_RT:
3409 		to->si_pid = from->si_pid;
3410 		to->si_uid = from->si_uid;
3411 		to->si_int = from->si_int;
3412 		break;
3413 	case SIL_SYS:
3414 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3415 		to->si_syscall   = from->si_syscall;
3416 		to->si_arch      = from->si_arch;
3417 		break;
3418 	}
3419 }
3420 
3421 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3422 			   const struct kernel_siginfo *from)
3423 {
3424 	struct compat_siginfo new;
3425 
3426 	copy_siginfo_to_external32(&new, from);
3427 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3428 		return -EFAULT;
3429 	return 0;
3430 }
3431 
3432 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3433 					 const struct compat_siginfo *from)
3434 {
3435 	clear_siginfo(to);
3436 	to->si_signo = from->si_signo;
3437 	to->si_errno = from->si_errno;
3438 	to->si_code  = from->si_code;
3439 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3440 	case SIL_KILL:
3441 		to->si_pid = from->si_pid;
3442 		to->si_uid = from->si_uid;
3443 		break;
3444 	case SIL_TIMER:
3445 		to->si_tid     = from->si_tid;
3446 		to->si_overrun = from->si_overrun;
3447 		to->si_int     = from->si_int;
3448 		break;
3449 	case SIL_POLL:
3450 		to->si_band = from->si_band;
3451 		to->si_fd   = from->si_fd;
3452 		break;
3453 	case SIL_FAULT:
3454 		to->si_addr = compat_ptr(from->si_addr);
3455 		break;
3456 	case SIL_FAULT_TRAPNO:
3457 		to->si_addr = compat_ptr(from->si_addr);
3458 		to->si_trapno = from->si_trapno;
3459 		break;
3460 	case SIL_FAULT_MCEERR:
3461 		to->si_addr = compat_ptr(from->si_addr);
3462 		to->si_addr_lsb = from->si_addr_lsb;
3463 		break;
3464 	case SIL_FAULT_BNDERR:
3465 		to->si_addr = compat_ptr(from->si_addr);
3466 		to->si_lower = compat_ptr(from->si_lower);
3467 		to->si_upper = compat_ptr(from->si_upper);
3468 		break;
3469 	case SIL_FAULT_PKUERR:
3470 		to->si_addr = compat_ptr(from->si_addr);
3471 		to->si_pkey = from->si_pkey;
3472 		break;
3473 	case SIL_FAULT_PERF_EVENT:
3474 		to->si_addr = compat_ptr(from->si_addr);
3475 		to->si_perf_data = from->si_perf_data;
3476 		to->si_perf_type = from->si_perf_type;
3477 		break;
3478 	case SIL_CHLD:
3479 		to->si_pid    = from->si_pid;
3480 		to->si_uid    = from->si_uid;
3481 		to->si_status = from->si_status;
3482 #ifdef CONFIG_X86_X32_ABI
3483 		if (in_x32_syscall()) {
3484 			to->si_utime = from->_sifields._sigchld_x32._utime;
3485 			to->si_stime = from->_sifields._sigchld_x32._stime;
3486 		} else
3487 #endif
3488 		{
3489 			to->si_utime = from->si_utime;
3490 			to->si_stime = from->si_stime;
3491 		}
3492 		break;
3493 	case SIL_RT:
3494 		to->si_pid = from->si_pid;
3495 		to->si_uid = from->si_uid;
3496 		to->si_int = from->si_int;
3497 		break;
3498 	case SIL_SYS:
3499 		to->si_call_addr = compat_ptr(from->si_call_addr);
3500 		to->si_syscall   = from->si_syscall;
3501 		to->si_arch      = from->si_arch;
3502 		break;
3503 	}
3504 	return 0;
3505 }
3506 
3507 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3508 				      const struct compat_siginfo __user *ufrom)
3509 {
3510 	struct compat_siginfo from;
3511 
3512 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3513 		return -EFAULT;
3514 
3515 	from.si_signo = signo;
3516 	return post_copy_siginfo_from_user32(to, &from);
3517 }
3518 
3519 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3520 			     const struct compat_siginfo __user *ufrom)
3521 {
3522 	struct compat_siginfo from;
3523 
3524 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3525 		return -EFAULT;
3526 
3527 	return post_copy_siginfo_from_user32(to, &from);
3528 }
3529 #endif /* CONFIG_COMPAT */
3530 
3531 /**
3532  *  do_sigtimedwait - wait for queued signals specified in @which
3533  *  @which: queued signals to wait for
3534  *  @info: if non-null, the signal's siginfo is returned here
3535  *  @ts: upper bound on process time suspension
3536  */
3537 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3538 		    const struct timespec64 *ts)
3539 {
3540 	ktime_t *to = NULL, timeout = KTIME_MAX;
3541 	struct task_struct *tsk = current;
3542 	sigset_t mask = *which;
3543 	int sig, ret = 0;
3544 
3545 	if (ts) {
3546 		if (!timespec64_valid(ts))
3547 			return -EINVAL;
3548 		timeout = timespec64_to_ktime(*ts);
3549 		to = &timeout;
3550 	}
3551 
3552 	/*
3553 	 * Invert the set of allowed signals to get those we want to block.
3554 	 */
3555 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3556 	signotset(&mask);
3557 
3558 	spin_lock_irq(&tsk->sighand->siglock);
3559 	sig = dequeue_signal(tsk, &mask, info);
3560 	if (!sig && timeout) {
3561 		/*
3562 		 * None ready, temporarily unblock those we're interested
3563 		 * while we are sleeping in so that we'll be awakened when
3564 		 * they arrive. Unblocking is always fine, we can avoid
3565 		 * set_current_blocked().
3566 		 */
3567 		tsk->real_blocked = tsk->blocked;
3568 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3569 		recalc_sigpending();
3570 		spin_unlock_irq(&tsk->sighand->siglock);
3571 
3572 		__set_current_state(TASK_INTERRUPTIBLE);
3573 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3574 							 HRTIMER_MODE_REL);
3575 		spin_lock_irq(&tsk->sighand->siglock);
3576 		__set_task_blocked(tsk, &tsk->real_blocked);
3577 		sigemptyset(&tsk->real_blocked);
3578 		sig = dequeue_signal(tsk, &mask, info);
3579 	}
3580 	spin_unlock_irq(&tsk->sighand->siglock);
3581 
3582 	if (sig)
3583 		return sig;
3584 	return ret ? -EINTR : -EAGAIN;
3585 }
3586 
3587 /**
3588  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3589  *			in @uthese
3590  *  @uthese: queued signals to wait for
3591  *  @uinfo: if non-null, the signal's siginfo is returned here
3592  *  @uts: upper bound on process time suspension
3593  *  @sigsetsize: size of sigset_t type
3594  */
3595 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3596 		siginfo_t __user *, uinfo,
3597 		const struct __kernel_timespec __user *, uts,
3598 		size_t, sigsetsize)
3599 {
3600 	sigset_t these;
3601 	struct timespec64 ts;
3602 	kernel_siginfo_t info;
3603 	int ret;
3604 
3605 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3606 	if (sigsetsize != sizeof(sigset_t))
3607 		return -EINVAL;
3608 
3609 	if (copy_from_user(&these, uthese, sizeof(these)))
3610 		return -EFAULT;
3611 
3612 	if (uts) {
3613 		if (get_timespec64(&ts, uts))
3614 			return -EFAULT;
3615 	}
3616 
3617 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3618 
3619 	if (ret > 0 && uinfo) {
3620 		if (copy_siginfo_to_user(uinfo, &info))
3621 			ret = -EFAULT;
3622 	}
3623 
3624 	return ret;
3625 }
3626 
3627 #ifdef CONFIG_COMPAT_32BIT_TIME
3628 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3629 		siginfo_t __user *, uinfo,
3630 		const struct old_timespec32 __user *, uts,
3631 		size_t, sigsetsize)
3632 {
3633 	sigset_t these;
3634 	struct timespec64 ts;
3635 	kernel_siginfo_t info;
3636 	int ret;
3637 
3638 	if (sigsetsize != sizeof(sigset_t))
3639 		return -EINVAL;
3640 
3641 	if (copy_from_user(&these, uthese, sizeof(these)))
3642 		return -EFAULT;
3643 
3644 	if (uts) {
3645 		if (get_old_timespec32(&ts, uts))
3646 			return -EFAULT;
3647 	}
3648 
3649 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3650 
3651 	if (ret > 0 && uinfo) {
3652 		if (copy_siginfo_to_user(uinfo, &info))
3653 			ret = -EFAULT;
3654 	}
3655 
3656 	return ret;
3657 }
3658 #endif
3659 
3660 #ifdef CONFIG_COMPAT
3661 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3662 		struct compat_siginfo __user *, uinfo,
3663 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3664 {
3665 	sigset_t s;
3666 	struct timespec64 t;
3667 	kernel_siginfo_t info;
3668 	long ret;
3669 
3670 	if (sigsetsize != sizeof(sigset_t))
3671 		return -EINVAL;
3672 
3673 	if (get_compat_sigset(&s, uthese))
3674 		return -EFAULT;
3675 
3676 	if (uts) {
3677 		if (get_timespec64(&t, uts))
3678 			return -EFAULT;
3679 	}
3680 
3681 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3682 
3683 	if (ret > 0 && uinfo) {
3684 		if (copy_siginfo_to_user32(uinfo, &info))
3685 			ret = -EFAULT;
3686 	}
3687 
3688 	return ret;
3689 }
3690 
3691 #ifdef CONFIG_COMPAT_32BIT_TIME
3692 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3693 		struct compat_siginfo __user *, uinfo,
3694 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3695 {
3696 	sigset_t s;
3697 	struct timespec64 t;
3698 	kernel_siginfo_t info;
3699 	long ret;
3700 
3701 	if (sigsetsize != sizeof(sigset_t))
3702 		return -EINVAL;
3703 
3704 	if (get_compat_sigset(&s, uthese))
3705 		return -EFAULT;
3706 
3707 	if (uts) {
3708 		if (get_old_timespec32(&t, uts))
3709 			return -EFAULT;
3710 	}
3711 
3712 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3713 
3714 	if (ret > 0 && uinfo) {
3715 		if (copy_siginfo_to_user32(uinfo, &info))
3716 			ret = -EFAULT;
3717 	}
3718 
3719 	return ret;
3720 }
3721 #endif
3722 #endif
3723 
3724 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3725 {
3726 	clear_siginfo(info);
3727 	info->si_signo = sig;
3728 	info->si_errno = 0;
3729 	info->si_code = SI_USER;
3730 	info->si_pid = task_tgid_vnr(current);
3731 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3732 }
3733 
3734 /**
3735  *  sys_kill - send a signal to a process
3736  *  @pid: the PID of the process
3737  *  @sig: signal to be sent
3738  */
3739 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3740 {
3741 	struct kernel_siginfo info;
3742 
3743 	prepare_kill_siginfo(sig, &info);
3744 
3745 	return kill_something_info(sig, &info, pid);
3746 }
3747 
3748 /*
3749  * Verify that the signaler and signalee either are in the same pid namespace
3750  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3751  * namespace.
3752  */
3753 static bool access_pidfd_pidns(struct pid *pid)
3754 {
3755 	struct pid_namespace *active = task_active_pid_ns(current);
3756 	struct pid_namespace *p = ns_of_pid(pid);
3757 
3758 	for (;;) {
3759 		if (!p)
3760 			return false;
3761 		if (p == active)
3762 			break;
3763 		p = p->parent;
3764 	}
3765 
3766 	return true;
3767 }
3768 
3769 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3770 		siginfo_t __user *info)
3771 {
3772 #ifdef CONFIG_COMPAT
3773 	/*
3774 	 * Avoid hooking up compat syscalls and instead handle necessary
3775 	 * conversions here. Note, this is a stop-gap measure and should not be
3776 	 * considered a generic solution.
3777 	 */
3778 	if (in_compat_syscall())
3779 		return copy_siginfo_from_user32(
3780 			kinfo, (struct compat_siginfo __user *)info);
3781 #endif
3782 	return copy_siginfo_from_user(kinfo, info);
3783 }
3784 
3785 static struct pid *pidfd_to_pid(const struct file *file)
3786 {
3787 	struct pid *pid;
3788 
3789 	pid = pidfd_pid(file);
3790 	if (!IS_ERR(pid))
3791 		return pid;
3792 
3793 	return tgid_pidfd_to_pid(file);
3794 }
3795 
3796 /**
3797  * sys_pidfd_send_signal - Signal a process through a pidfd
3798  * @pidfd:  file descriptor of the process
3799  * @sig:    signal to send
3800  * @info:   signal info
3801  * @flags:  future flags
3802  *
3803  * The syscall currently only signals via PIDTYPE_PID which covers
3804  * kill(<positive-pid>, <signal>. It does not signal threads or process
3805  * groups.
3806  * In order to extend the syscall to threads and process groups the @flags
3807  * argument should be used. In essence, the @flags argument will determine
3808  * what is signaled and not the file descriptor itself. Put in other words,
3809  * grouping is a property of the flags argument not a property of the file
3810  * descriptor.
3811  *
3812  * Return: 0 on success, negative errno on failure
3813  */
3814 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3815 		siginfo_t __user *, info, unsigned int, flags)
3816 {
3817 	int ret;
3818 	struct fd f;
3819 	struct pid *pid;
3820 	kernel_siginfo_t kinfo;
3821 
3822 	/* Enforce flags be set to 0 until we add an extension. */
3823 	if (flags)
3824 		return -EINVAL;
3825 
3826 	f = fdget(pidfd);
3827 	if (!f.file)
3828 		return -EBADF;
3829 
3830 	/* Is this a pidfd? */
3831 	pid = pidfd_to_pid(f.file);
3832 	if (IS_ERR(pid)) {
3833 		ret = PTR_ERR(pid);
3834 		goto err;
3835 	}
3836 
3837 	ret = -EINVAL;
3838 	if (!access_pidfd_pidns(pid))
3839 		goto err;
3840 
3841 	if (info) {
3842 		ret = copy_siginfo_from_user_any(&kinfo, info);
3843 		if (unlikely(ret))
3844 			goto err;
3845 
3846 		ret = -EINVAL;
3847 		if (unlikely(sig != kinfo.si_signo))
3848 			goto err;
3849 
3850 		/* Only allow sending arbitrary signals to yourself. */
3851 		ret = -EPERM;
3852 		if ((task_pid(current) != pid) &&
3853 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3854 			goto err;
3855 	} else {
3856 		prepare_kill_siginfo(sig, &kinfo);
3857 	}
3858 
3859 	ret = kill_pid_info(sig, &kinfo, pid);
3860 
3861 err:
3862 	fdput(f);
3863 	return ret;
3864 }
3865 
3866 static int
3867 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3868 {
3869 	struct task_struct *p;
3870 	int error = -ESRCH;
3871 
3872 	rcu_read_lock();
3873 	p = find_task_by_vpid(pid);
3874 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3875 		error = check_kill_permission(sig, info, p);
3876 		/*
3877 		 * The null signal is a permissions and process existence
3878 		 * probe.  No signal is actually delivered.
3879 		 */
3880 		if (!error && sig) {
3881 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3882 			/*
3883 			 * If lock_task_sighand() failed we pretend the task
3884 			 * dies after receiving the signal. The window is tiny,
3885 			 * and the signal is private anyway.
3886 			 */
3887 			if (unlikely(error == -ESRCH))
3888 				error = 0;
3889 		}
3890 	}
3891 	rcu_read_unlock();
3892 
3893 	return error;
3894 }
3895 
3896 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3897 {
3898 	struct kernel_siginfo info;
3899 
3900 	clear_siginfo(&info);
3901 	info.si_signo = sig;
3902 	info.si_errno = 0;
3903 	info.si_code = SI_TKILL;
3904 	info.si_pid = task_tgid_vnr(current);
3905 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3906 
3907 	return do_send_specific(tgid, pid, sig, &info);
3908 }
3909 
3910 /**
3911  *  sys_tgkill - send signal to one specific thread
3912  *  @tgid: the thread group ID of the thread
3913  *  @pid: the PID of the thread
3914  *  @sig: signal to be sent
3915  *
3916  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3917  *  exists but it's not belonging to the target process anymore. This
3918  *  method solves the problem of threads exiting and PIDs getting reused.
3919  */
3920 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3921 {
3922 	/* This is only valid for single tasks */
3923 	if (pid <= 0 || tgid <= 0)
3924 		return -EINVAL;
3925 
3926 	return do_tkill(tgid, pid, sig);
3927 }
3928 
3929 /**
3930  *  sys_tkill - send signal to one specific task
3931  *  @pid: the PID of the task
3932  *  @sig: signal to be sent
3933  *
3934  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3935  */
3936 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3937 {
3938 	/* This is only valid for single tasks */
3939 	if (pid <= 0)
3940 		return -EINVAL;
3941 
3942 	return do_tkill(0, pid, sig);
3943 }
3944 
3945 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3946 {
3947 	/* Not even root can pretend to send signals from the kernel.
3948 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3949 	 */
3950 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3951 	    (task_pid_vnr(current) != pid))
3952 		return -EPERM;
3953 
3954 	/* POSIX.1b doesn't mention process groups.  */
3955 	return kill_proc_info(sig, info, pid);
3956 }
3957 
3958 /**
3959  *  sys_rt_sigqueueinfo - send signal information to a signal
3960  *  @pid: the PID of the thread
3961  *  @sig: signal to be sent
3962  *  @uinfo: signal info to be sent
3963  */
3964 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3965 		siginfo_t __user *, uinfo)
3966 {
3967 	kernel_siginfo_t info;
3968 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3969 	if (unlikely(ret))
3970 		return ret;
3971 	return do_rt_sigqueueinfo(pid, sig, &info);
3972 }
3973 
3974 #ifdef CONFIG_COMPAT
3975 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3976 			compat_pid_t, pid,
3977 			int, sig,
3978 			struct compat_siginfo __user *, uinfo)
3979 {
3980 	kernel_siginfo_t info;
3981 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3982 	if (unlikely(ret))
3983 		return ret;
3984 	return do_rt_sigqueueinfo(pid, sig, &info);
3985 }
3986 #endif
3987 
3988 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3989 {
3990 	/* This is only valid for single tasks */
3991 	if (pid <= 0 || tgid <= 0)
3992 		return -EINVAL;
3993 
3994 	/* Not even root can pretend to send signals from the kernel.
3995 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3996 	 */
3997 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3998 	    (task_pid_vnr(current) != pid))
3999 		return -EPERM;
4000 
4001 	return do_send_specific(tgid, pid, sig, info);
4002 }
4003 
4004 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4005 		siginfo_t __user *, uinfo)
4006 {
4007 	kernel_siginfo_t info;
4008 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4009 	if (unlikely(ret))
4010 		return ret;
4011 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4012 }
4013 
4014 #ifdef CONFIG_COMPAT
4015 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4016 			compat_pid_t, tgid,
4017 			compat_pid_t, pid,
4018 			int, sig,
4019 			struct compat_siginfo __user *, uinfo)
4020 {
4021 	kernel_siginfo_t info;
4022 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4023 	if (unlikely(ret))
4024 		return ret;
4025 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4026 }
4027 #endif
4028 
4029 /*
4030  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4031  */
4032 void kernel_sigaction(int sig, __sighandler_t action)
4033 {
4034 	spin_lock_irq(&current->sighand->siglock);
4035 	current->sighand->action[sig - 1].sa.sa_handler = action;
4036 	if (action == SIG_IGN) {
4037 		sigset_t mask;
4038 
4039 		sigemptyset(&mask);
4040 		sigaddset(&mask, sig);
4041 
4042 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4043 		flush_sigqueue_mask(&mask, &current->pending);
4044 		recalc_sigpending();
4045 	}
4046 	spin_unlock_irq(&current->sighand->siglock);
4047 }
4048 EXPORT_SYMBOL(kernel_sigaction);
4049 
4050 void __weak sigaction_compat_abi(struct k_sigaction *act,
4051 		struct k_sigaction *oact)
4052 {
4053 }
4054 
4055 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4056 {
4057 	struct task_struct *p = current, *t;
4058 	struct k_sigaction *k;
4059 	sigset_t mask;
4060 
4061 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4062 		return -EINVAL;
4063 
4064 	k = &p->sighand->action[sig-1];
4065 
4066 	spin_lock_irq(&p->sighand->siglock);
4067 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4068 		spin_unlock_irq(&p->sighand->siglock);
4069 		return -EINVAL;
4070 	}
4071 	if (oact)
4072 		*oact = *k;
4073 
4074 	/*
4075 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4076 	 * e.g. by having an architecture use the bit in their uapi.
4077 	 */
4078 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4079 
4080 	/*
4081 	 * Clear unknown flag bits in order to allow userspace to detect missing
4082 	 * support for flag bits and to allow the kernel to use non-uapi bits
4083 	 * internally.
4084 	 */
4085 	if (act)
4086 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4087 	if (oact)
4088 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4089 
4090 	sigaction_compat_abi(act, oact);
4091 
4092 	if (act) {
4093 		sigdelsetmask(&act->sa.sa_mask,
4094 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4095 		*k = *act;
4096 		/*
4097 		 * POSIX 3.3.1.3:
4098 		 *  "Setting a signal action to SIG_IGN for a signal that is
4099 		 *   pending shall cause the pending signal to be discarded,
4100 		 *   whether or not it is blocked."
4101 		 *
4102 		 *  "Setting a signal action to SIG_DFL for a signal that is
4103 		 *   pending and whose default action is to ignore the signal
4104 		 *   (for example, SIGCHLD), shall cause the pending signal to
4105 		 *   be discarded, whether or not it is blocked"
4106 		 */
4107 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4108 			sigemptyset(&mask);
4109 			sigaddset(&mask, sig);
4110 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4111 			for_each_thread(p, t)
4112 				flush_sigqueue_mask(&mask, &t->pending);
4113 		}
4114 	}
4115 
4116 	spin_unlock_irq(&p->sighand->siglock);
4117 	return 0;
4118 }
4119 
4120 #ifdef CONFIG_DYNAMIC_SIGFRAME
4121 static inline void sigaltstack_lock(void)
4122 	__acquires(&current->sighand->siglock)
4123 {
4124 	spin_lock_irq(&current->sighand->siglock);
4125 }
4126 
4127 static inline void sigaltstack_unlock(void)
4128 	__releases(&current->sighand->siglock)
4129 {
4130 	spin_unlock_irq(&current->sighand->siglock);
4131 }
4132 #else
4133 static inline void sigaltstack_lock(void) { }
4134 static inline void sigaltstack_unlock(void) { }
4135 #endif
4136 
4137 static int
4138 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4139 		size_t min_ss_size)
4140 {
4141 	struct task_struct *t = current;
4142 	int ret = 0;
4143 
4144 	if (oss) {
4145 		memset(oss, 0, sizeof(stack_t));
4146 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4147 		oss->ss_size = t->sas_ss_size;
4148 		oss->ss_flags = sas_ss_flags(sp) |
4149 			(current->sas_ss_flags & SS_FLAG_BITS);
4150 	}
4151 
4152 	if (ss) {
4153 		void __user *ss_sp = ss->ss_sp;
4154 		size_t ss_size = ss->ss_size;
4155 		unsigned ss_flags = ss->ss_flags;
4156 		int ss_mode;
4157 
4158 		if (unlikely(on_sig_stack(sp)))
4159 			return -EPERM;
4160 
4161 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4162 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4163 				ss_mode != 0))
4164 			return -EINVAL;
4165 
4166 		sigaltstack_lock();
4167 		if (ss_mode == SS_DISABLE) {
4168 			ss_size = 0;
4169 			ss_sp = NULL;
4170 		} else {
4171 			if (unlikely(ss_size < min_ss_size))
4172 				ret = -ENOMEM;
4173 			if (!sigaltstack_size_valid(ss_size))
4174 				ret = -ENOMEM;
4175 		}
4176 		if (!ret) {
4177 			t->sas_ss_sp = (unsigned long) ss_sp;
4178 			t->sas_ss_size = ss_size;
4179 			t->sas_ss_flags = ss_flags;
4180 		}
4181 		sigaltstack_unlock();
4182 	}
4183 	return ret;
4184 }
4185 
4186 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4187 {
4188 	stack_t new, old;
4189 	int err;
4190 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4191 		return -EFAULT;
4192 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4193 			      current_user_stack_pointer(),
4194 			      MINSIGSTKSZ);
4195 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4196 		err = -EFAULT;
4197 	return err;
4198 }
4199 
4200 int restore_altstack(const stack_t __user *uss)
4201 {
4202 	stack_t new;
4203 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4204 		return -EFAULT;
4205 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4206 			     MINSIGSTKSZ);
4207 	/* squash all but EFAULT for now */
4208 	return 0;
4209 }
4210 
4211 int __save_altstack(stack_t __user *uss, unsigned long sp)
4212 {
4213 	struct task_struct *t = current;
4214 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4215 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4216 		__put_user(t->sas_ss_size, &uss->ss_size);
4217 	return err;
4218 }
4219 
4220 #ifdef CONFIG_COMPAT
4221 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4222 				 compat_stack_t __user *uoss_ptr)
4223 {
4224 	stack_t uss, uoss;
4225 	int ret;
4226 
4227 	if (uss_ptr) {
4228 		compat_stack_t uss32;
4229 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4230 			return -EFAULT;
4231 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4232 		uss.ss_flags = uss32.ss_flags;
4233 		uss.ss_size = uss32.ss_size;
4234 	}
4235 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4236 			     compat_user_stack_pointer(),
4237 			     COMPAT_MINSIGSTKSZ);
4238 	if (ret >= 0 && uoss_ptr)  {
4239 		compat_stack_t old;
4240 		memset(&old, 0, sizeof(old));
4241 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4242 		old.ss_flags = uoss.ss_flags;
4243 		old.ss_size = uoss.ss_size;
4244 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4245 			ret = -EFAULT;
4246 	}
4247 	return ret;
4248 }
4249 
4250 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4251 			const compat_stack_t __user *, uss_ptr,
4252 			compat_stack_t __user *, uoss_ptr)
4253 {
4254 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4255 }
4256 
4257 int compat_restore_altstack(const compat_stack_t __user *uss)
4258 {
4259 	int err = do_compat_sigaltstack(uss, NULL);
4260 	/* squash all but -EFAULT for now */
4261 	return err == -EFAULT ? err : 0;
4262 }
4263 
4264 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4265 {
4266 	int err;
4267 	struct task_struct *t = current;
4268 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4269 			 &uss->ss_sp) |
4270 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4271 		__put_user(t->sas_ss_size, &uss->ss_size);
4272 	return err;
4273 }
4274 #endif
4275 
4276 #ifdef __ARCH_WANT_SYS_SIGPENDING
4277 
4278 /**
4279  *  sys_sigpending - examine pending signals
4280  *  @uset: where mask of pending signal is returned
4281  */
4282 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4283 {
4284 	sigset_t set;
4285 
4286 	if (sizeof(old_sigset_t) > sizeof(*uset))
4287 		return -EINVAL;
4288 
4289 	do_sigpending(&set);
4290 
4291 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4292 		return -EFAULT;
4293 
4294 	return 0;
4295 }
4296 
4297 #ifdef CONFIG_COMPAT
4298 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4299 {
4300 	sigset_t set;
4301 
4302 	do_sigpending(&set);
4303 
4304 	return put_user(set.sig[0], set32);
4305 }
4306 #endif
4307 
4308 #endif
4309 
4310 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4311 /**
4312  *  sys_sigprocmask - examine and change blocked signals
4313  *  @how: whether to add, remove, or set signals
4314  *  @nset: signals to add or remove (if non-null)
4315  *  @oset: previous value of signal mask if non-null
4316  *
4317  * Some platforms have their own version with special arguments;
4318  * others support only sys_rt_sigprocmask.
4319  */
4320 
4321 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4322 		old_sigset_t __user *, oset)
4323 {
4324 	old_sigset_t old_set, new_set;
4325 	sigset_t new_blocked;
4326 
4327 	old_set = current->blocked.sig[0];
4328 
4329 	if (nset) {
4330 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4331 			return -EFAULT;
4332 
4333 		new_blocked = current->blocked;
4334 
4335 		switch (how) {
4336 		case SIG_BLOCK:
4337 			sigaddsetmask(&new_blocked, new_set);
4338 			break;
4339 		case SIG_UNBLOCK:
4340 			sigdelsetmask(&new_blocked, new_set);
4341 			break;
4342 		case SIG_SETMASK:
4343 			new_blocked.sig[0] = new_set;
4344 			break;
4345 		default:
4346 			return -EINVAL;
4347 		}
4348 
4349 		set_current_blocked(&new_blocked);
4350 	}
4351 
4352 	if (oset) {
4353 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4354 			return -EFAULT;
4355 	}
4356 
4357 	return 0;
4358 }
4359 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4360 
4361 #ifndef CONFIG_ODD_RT_SIGACTION
4362 /**
4363  *  sys_rt_sigaction - alter an action taken by a process
4364  *  @sig: signal to be sent
4365  *  @act: new sigaction
4366  *  @oact: used to save the previous sigaction
4367  *  @sigsetsize: size of sigset_t type
4368  */
4369 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4370 		const struct sigaction __user *, act,
4371 		struct sigaction __user *, oact,
4372 		size_t, sigsetsize)
4373 {
4374 	struct k_sigaction new_sa, old_sa;
4375 	int ret;
4376 
4377 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4378 	if (sigsetsize != sizeof(sigset_t))
4379 		return -EINVAL;
4380 
4381 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4382 		return -EFAULT;
4383 
4384 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4385 	if (ret)
4386 		return ret;
4387 
4388 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4389 		return -EFAULT;
4390 
4391 	return 0;
4392 }
4393 #ifdef CONFIG_COMPAT
4394 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4395 		const struct compat_sigaction __user *, act,
4396 		struct compat_sigaction __user *, oact,
4397 		compat_size_t, sigsetsize)
4398 {
4399 	struct k_sigaction new_ka, old_ka;
4400 #ifdef __ARCH_HAS_SA_RESTORER
4401 	compat_uptr_t restorer;
4402 #endif
4403 	int ret;
4404 
4405 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4406 	if (sigsetsize != sizeof(compat_sigset_t))
4407 		return -EINVAL;
4408 
4409 	if (act) {
4410 		compat_uptr_t handler;
4411 		ret = get_user(handler, &act->sa_handler);
4412 		new_ka.sa.sa_handler = compat_ptr(handler);
4413 #ifdef __ARCH_HAS_SA_RESTORER
4414 		ret |= get_user(restorer, &act->sa_restorer);
4415 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4416 #endif
4417 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4418 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4419 		if (ret)
4420 			return -EFAULT;
4421 	}
4422 
4423 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4424 	if (!ret && oact) {
4425 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4426 			       &oact->sa_handler);
4427 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4428 					 sizeof(oact->sa_mask));
4429 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4430 #ifdef __ARCH_HAS_SA_RESTORER
4431 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4432 				&oact->sa_restorer);
4433 #endif
4434 	}
4435 	return ret;
4436 }
4437 #endif
4438 #endif /* !CONFIG_ODD_RT_SIGACTION */
4439 
4440 #ifdef CONFIG_OLD_SIGACTION
4441 SYSCALL_DEFINE3(sigaction, int, sig,
4442 		const struct old_sigaction __user *, act,
4443 	        struct old_sigaction __user *, oact)
4444 {
4445 	struct k_sigaction new_ka, old_ka;
4446 	int ret;
4447 
4448 	if (act) {
4449 		old_sigset_t mask;
4450 		if (!access_ok(act, sizeof(*act)) ||
4451 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4452 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4453 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4454 		    __get_user(mask, &act->sa_mask))
4455 			return -EFAULT;
4456 #ifdef __ARCH_HAS_KA_RESTORER
4457 		new_ka.ka_restorer = NULL;
4458 #endif
4459 		siginitset(&new_ka.sa.sa_mask, mask);
4460 	}
4461 
4462 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4463 
4464 	if (!ret && oact) {
4465 		if (!access_ok(oact, sizeof(*oact)) ||
4466 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4467 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4468 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4469 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4470 			return -EFAULT;
4471 	}
4472 
4473 	return ret;
4474 }
4475 #endif
4476 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4477 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4478 		const struct compat_old_sigaction __user *, act,
4479 	        struct compat_old_sigaction __user *, oact)
4480 {
4481 	struct k_sigaction new_ka, old_ka;
4482 	int ret;
4483 	compat_old_sigset_t mask;
4484 	compat_uptr_t handler, restorer;
4485 
4486 	if (act) {
4487 		if (!access_ok(act, sizeof(*act)) ||
4488 		    __get_user(handler, &act->sa_handler) ||
4489 		    __get_user(restorer, &act->sa_restorer) ||
4490 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4491 		    __get_user(mask, &act->sa_mask))
4492 			return -EFAULT;
4493 
4494 #ifdef __ARCH_HAS_KA_RESTORER
4495 		new_ka.ka_restorer = NULL;
4496 #endif
4497 		new_ka.sa.sa_handler = compat_ptr(handler);
4498 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4499 		siginitset(&new_ka.sa.sa_mask, mask);
4500 	}
4501 
4502 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4503 
4504 	if (!ret && oact) {
4505 		if (!access_ok(oact, sizeof(*oact)) ||
4506 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4507 			       &oact->sa_handler) ||
4508 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4509 			       &oact->sa_restorer) ||
4510 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4511 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4512 			return -EFAULT;
4513 	}
4514 	return ret;
4515 }
4516 #endif
4517 
4518 #ifdef CONFIG_SGETMASK_SYSCALL
4519 
4520 /*
4521  * For backwards compatibility.  Functionality superseded by sigprocmask.
4522  */
4523 SYSCALL_DEFINE0(sgetmask)
4524 {
4525 	/* SMP safe */
4526 	return current->blocked.sig[0];
4527 }
4528 
4529 SYSCALL_DEFINE1(ssetmask, int, newmask)
4530 {
4531 	int old = current->blocked.sig[0];
4532 	sigset_t newset;
4533 
4534 	siginitset(&newset, newmask);
4535 	set_current_blocked(&newset);
4536 
4537 	return old;
4538 }
4539 #endif /* CONFIG_SGETMASK_SYSCALL */
4540 
4541 #ifdef __ARCH_WANT_SYS_SIGNAL
4542 /*
4543  * For backwards compatibility.  Functionality superseded by sigaction.
4544  */
4545 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4546 {
4547 	struct k_sigaction new_sa, old_sa;
4548 	int ret;
4549 
4550 	new_sa.sa.sa_handler = handler;
4551 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4552 	sigemptyset(&new_sa.sa.sa_mask);
4553 
4554 	ret = do_sigaction(sig, &new_sa, &old_sa);
4555 
4556 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4557 }
4558 #endif /* __ARCH_WANT_SYS_SIGNAL */
4559 
4560 #ifdef __ARCH_WANT_SYS_PAUSE
4561 
4562 SYSCALL_DEFINE0(pause)
4563 {
4564 	while (!signal_pending(current)) {
4565 		__set_current_state(TASK_INTERRUPTIBLE);
4566 		schedule();
4567 	}
4568 	return -ERESTARTNOHAND;
4569 }
4570 
4571 #endif
4572 
4573 static int sigsuspend(sigset_t *set)
4574 {
4575 	current->saved_sigmask = current->blocked;
4576 	set_current_blocked(set);
4577 
4578 	while (!signal_pending(current)) {
4579 		__set_current_state(TASK_INTERRUPTIBLE);
4580 		schedule();
4581 	}
4582 	set_restore_sigmask();
4583 	return -ERESTARTNOHAND;
4584 }
4585 
4586 /**
4587  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4588  *	@unewset value until a signal is received
4589  *  @unewset: new signal mask value
4590  *  @sigsetsize: size of sigset_t type
4591  */
4592 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4593 {
4594 	sigset_t newset;
4595 
4596 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4597 	if (sigsetsize != sizeof(sigset_t))
4598 		return -EINVAL;
4599 
4600 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4601 		return -EFAULT;
4602 	return sigsuspend(&newset);
4603 }
4604 
4605 #ifdef CONFIG_COMPAT
4606 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4607 {
4608 	sigset_t newset;
4609 
4610 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4611 	if (sigsetsize != sizeof(sigset_t))
4612 		return -EINVAL;
4613 
4614 	if (get_compat_sigset(&newset, unewset))
4615 		return -EFAULT;
4616 	return sigsuspend(&newset);
4617 }
4618 #endif
4619 
4620 #ifdef CONFIG_OLD_SIGSUSPEND
4621 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4622 {
4623 	sigset_t blocked;
4624 	siginitset(&blocked, mask);
4625 	return sigsuspend(&blocked);
4626 }
4627 #endif
4628 #ifdef CONFIG_OLD_SIGSUSPEND3
4629 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4630 {
4631 	sigset_t blocked;
4632 	siginitset(&blocked, mask);
4633 	return sigsuspend(&blocked);
4634 }
4635 #endif
4636 
4637 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4638 {
4639 	return NULL;
4640 }
4641 
4642 static inline void siginfo_buildtime_checks(void)
4643 {
4644 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4645 
4646 	/* Verify the offsets in the two siginfos match */
4647 #define CHECK_OFFSET(field) \
4648 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4649 
4650 	/* kill */
4651 	CHECK_OFFSET(si_pid);
4652 	CHECK_OFFSET(si_uid);
4653 
4654 	/* timer */
4655 	CHECK_OFFSET(si_tid);
4656 	CHECK_OFFSET(si_overrun);
4657 	CHECK_OFFSET(si_value);
4658 
4659 	/* rt */
4660 	CHECK_OFFSET(si_pid);
4661 	CHECK_OFFSET(si_uid);
4662 	CHECK_OFFSET(si_value);
4663 
4664 	/* sigchld */
4665 	CHECK_OFFSET(si_pid);
4666 	CHECK_OFFSET(si_uid);
4667 	CHECK_OFFSET(si_status);
4668 	CHECK_OFFSET(si_utime);
4669 	CHECK_OFFSET(si_stime);
4670 
4671 	/* sigfault */
4672 	CHECK_OFFSET(si_addr);
4673 	CHECK_OFFSET(si_trapno);
4674 	CHECK_OFFSET(si_addr_lsb);
4675 	CHECK_OFFSET(si_lower);
4676 	CHECK_OFFSET(si_upper);
4677 	CHECK_OFFSET(si_pkey);
4678 	CHECK_OFFSET(si_perf_data);
4679 	CHECK_OFFSET(si_perf_type);
4680 
4681 	/* sigpoll */
4682 	CHECK_OFFSET(si_band);
4683 	CHECK_OFFSET(si_fd);
4684 
4685 	/* sigsys */
4686 	CHECK_OFFSET(si_call_addr);
4687 	CHECK_OFFSET(si_syscall);
4688 	CHECK_OFFSET(si_arch);
4689 #undef CHECK_OFFSET
4690 
4691 	/* usb asyncio */
4692 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4693 		     offsetof(struct siginfo, si_addr));
4694 	if (sizeof(int) == sizeof(void __user *)) {
4695 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4696 			     sizeof(void __user *));
4697 	} else {
4698 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4699 			      sizeof_field(struct siginfo, si_uid)) !=
4700 			     sizeof(void __user *));
4701 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4702 			     offsetof(struct siginfo, si_uid));
4703 	}
4704 #ifdef CONFIG_COMPAT
4705 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4706 		     offsetof(struct compat_siginfo, si_addr));
4707 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4708 		     sizeof(compat_uptr_t));
4709 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4710 		     sizeof_field(struct siginfo, si_pid));
4711 #endif
4712 }
4713 
4714 void __init signals_init(void)
4715 {
4716 	siginfo_buildtime_checks();
4717 
4718 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4719 }
4720 
4721 #ifdef CONFIG_KGDB_KDB
4722 #include <linux/kdb.h>
4723 /*
4724  * kdb_send_sig - Allows kdb to send signals without exposing
4725  * signal internals.  This function checks if the required locks are
4726  * available before calling the main signal code, to avoid kdb
4727  * deadlocks.
4728  */
4729 void kdb_send_sig(struct task_struct *t, int sig)
4730 {
4731 	static struct task_struct *kdb_prev_t;
4732 	int new_t, ret;
4733 	if (!spin_trylock(&t->sighand->siglock)) {
4734 		kdb_printf("Can't do kill command now.\n"
4735 			   "The sigmask lock is held somewhere else in "
4736 			   "kernel, try again later\n");
4737 		return;
4738 	}
4739 	new_t = kdb_prev_t != t;
4740 	kdb_prev_t = t;
4741 	if (!task_is_running(t) && new_t) {
4742 		spin_unlock(&t->sighand->siglock);
4743 		kdb_printf("Process is not RUNNING, sending a signal from "
4744 			   "kdb risks deadlock\n"
4745 			   "on the run queue locks. "
4746 			   "The signal has _not_ been sent.\n"
4747 			   "Reissue the kill command if you want to risk "
4748 			   "the deadlock.\n");
4749 		return;
4750 	}
4751 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4752 	spin_unlock(&t->sighand->siglock);
4753 	if (ret)
4754 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4755 			   sig, t->pid);
4756 	else
4757 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4758 }
4759 #endif	/* CONFIG_KGDB_KDB */
4760