1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/ratelimit.h> 26 #include <linux/tracehook.h> 27 #include <linux/capability.h> 28 #include <linux/freezer.h> 29 #include <linux/pid_namespace.h> 30 #include <linux/nsproxy.h> 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/signal.h> 33 34 #include <asm/param.h> 35 #include <asm/uaccess.h> 36 #include <asm/unistd.h> 37 #include <asm/siginfo.h> 38 #include "audit.h" /* audit_signal_info() */ 39 40 /* 41 * SLAB caches for signal bits. 42 */ 43 44 static struct kmem_cache *sigqueue_cachep; 45 46 int print_fatal_signals __read_mostly; 47 48 static void __user *sig_handler(struct task_struct *t, int sig) 49 { 50 return t->sighand->action[sig - 1].sa.sa_handler; 51 } 52 53 static int sig_handler_ignored(void __user *handler, int sig) 54 { 55 /* Is it explicitly or implicitly ignored? */ 56 return handler == SIG_IGN || 57 (handler == SIG_DFL && sig_kernel_ignore(sig)); 58 } 59 60 static int sig_task_ignored(struct task_struct *t, int sig, 61 int from_ancestor_ns) 62 { 63 void __user *handler; 64 65 handler = sig_handler(t, sig); 66 67 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 68 handler == SIG_DFL && !from_ancestor_ns) 69 return 1; 70 71 return sig_handler_ignored(handler, sig); 72 } 73 74 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns) 75 { 76 /* 77 * Blocked signals are never ignored, since the 78 * signal handler may change by the time it is 79 * unblocked. 80 */ 81 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 82 return 0; 83 84 if (!sig_task_ignored(t, sig, from_ancestor_ns)) 85 return 0; 86 87 /* 88 * Tracers may want to know about even ignored signals. 89 */ 90 return !tracehook_consider_ignored_signal(t, sig); 91 } 92 93 /* 94 * Re-calculate pending state from the set of locally pending 95 * signals, globally pending signals, and blocked signals. 96 */ 97 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 98 { 99 unsigned long ready; 100 long i; 101 102 switch (_NSIG_WORDS) { 103 default: 104 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 105 ready |= signal->sig[i] &~ blocked->sig[i]; 106 break; 107 108 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 109 ready |= signal->sig[2] &~ blocked->sig[2]; 110 ready |= signal->sig[1] &~ blocked->sig[1]; 111 ready |= signal->sig[0] &~ blocked->sig[0]; 112 break; 113 114 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 115 ready |= signal->sig[0] &~ blocked->sig[0]; 116 break; 117 118 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 119 } 120 return ready != 0; 121 } 122 123 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 124 125 static int recalc_sigpending_tsk(struct task_struct *t) 126 { 127 if (t->signal->group_stop_count > 0 || 128 PENDING(&t->pending, &t->blocked) || 129 PENDING(&t->signal->shared_pending, &t->blocked)) { 130 set_tsk_thread_flag(t, TIF_SIGPENDING); 131 return 1; 132 } 133 /* 134 * We must never clear the flag in another thread, or in current 135 * when it's possible the current syscall is returning -ERESTART*. 136 * So we don't clear it here, and only callers who know they should do. 137 */ 138 return 0; 139 } 140 141 /* 142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 143 * This is superfluous when called on current, the wakeup is a harmless no-op. 144 */ 145 void recalc_sigpending_and_wake(struct task_struct *t) 146 { 147 if (recalc_sigpending_tsk(t)) 148 signal_wake_up(t, 0); 149 } 150 151 void recalc_sigpending(void) 152 { 153 if (unlikely(tracehook_force_sigpending())) 154 set_thread_flag(TIF_SIGPENDING); 155 else if (!recalc_sigpending_tsk(current) && !freezing(current)) 156 clear_thread_flag(TIF_SIGPENDING); 157 158 } 159 160 /* Given the mask, find the first available signal that should be serviced. */ 161 162 int next_signal(struct sigpending *pending, sigset_t *mask) 163 { 164 unsigned long i, *s, *m, x; 165 int sig = 0; 166 167 s = pending->signal.sig; 168 m = mask->sig; 169 switch (_NSIG_WORDS) { 170 default: 171 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 172 if ((x = *s &~ *m) != 0) { 173 sig = ffz(~x) + i*_NSIG_BPW + 1; 174 break; 175 } 176 break; 177 178 case 2: if ((x = s[0] &~ m[0]) != 0) 179 sig = 1; 180 else if ((x = s[1] &~ m[1]) != 0) 181 sig = _NSIG_BPW + 1; 182 else 183 break; 184 sig += ffz(~x); 185 break; 186 187 case 1: if ((x = *s &~ *m) != 0) 188 sig = ffz(~x) + 1; 189 break; 190 } 191 192 return sig; 193 } 194 195 static inline void print_dropped_signal(int sig) 196 { 197 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 198 199 if (!print_fatal_signals) 200 return; 201 202 if (!__ratelimit(&ratelimit_state)) 203 return; 204 205 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 206 current->comm, current->pid, sig); 207 } 208 209 /* 210 * allocate a new signal queue record 211 * - this may be called without locks if and only if t == current, otherwise an 212 * appopriate lock must be held to stop the target task from exiting 213 */ 214 static struct sigqueue * 215 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 216 { 217 struct sigqueue *q = NULL; 218 struct user_struct *user; 219 220 /* 221 * We won't get problems with the target's UID changing under us 222 * because changing it requires RCU be used, and if t != current, the 223 * caller must be holding the RCU readlock (by way of a spinlock) and 224 * we use RCU protection here 225 */ 226 user = get_uid(__task_cred(t)->user); 227 atomic_inc(&user->sigpending); 228 229 if (override_rlimit || 230 atomic_read(&user->sigpending) <= 231 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) { 232 q = kmem_cache_alloc(sigqueue_cachep, flags); 233 } else { 234 print_dropped_signal(sig); 235 } 236 237 if (unlikely(q == NULL)) { 238 atomic_dec(&user->sigpending); 239 free_uid(user); 240 } else { 241 INIT_LIST_HEAD(&q->list); 242 q->flags = 0; 243 q->user = user; 244 } 245 246 return q; 247 } 248 249 static void __sigqueue_free(struct sigqueue *q) 250 { 251 if (q->flags & SIGQUEUE_PREALLOC) 252 return; 253 atomic_dec(&q->user->sigpending); 254 free_uid(q->user); 255 kmem_cache_free(sigqueue_cachep, q); 256 } 257 258 void flush_sigqueue(struct sigpending *queue) 259 { 260 struct sigqueue *q; 261 262 sigemptyset(&queue->signal); 263 while (!list_empty(&queue->list)) { 264 q = list_entry(queue->list.next, struct sigqueue , list); 265 list_del_init(&q->list); 266 __sigqueue_free(q); 267 } 268 } 269 270 /* 271 * Flush all pending signals for a task. 272 */ 273 void __flush_signals(struct task_struct *t) 274 { 275 clear_tsk_thread_flag(t, TIF_SIGPENDING); 276 flush_sigqueue(&t->pending); 277 flush_sigqueue(&t->signal->shared_pending); 278 } 279 280 void flush_signals(struct task_struct *t) 281 { 282 unsigned long flags; 283 284 spin_lock_irqsave(&t->sighand->siglock, flags); 285 __flush_signals(t); 286 spin_unlock_irqrestore(&t->sighand->siglock, flags); 287 } 288 289 static void __flush_itimer_signals(struct sigpending *pending) 290 { 291 sigset_t signal, retain; 292 struct sigqueue *q, *n; 293 294 signal = pending->signal; 295 sigemptyset(&retain); 296 297 list_for_each_entry_safe(q, n, &pending->list, list) { 298 int sig = q->info.si_signo; 299 300 if (likely(q->info.si_code != SI_TIMER)) { 301 sigaddset(&retain, sig); 302 } else { 303 sigdelset(&signal, sig); 304 list_del_init(&q->list); 305 __sigqueue_free(q); 306 } 307 } 308 309 sigorsets(&pending->signal, &signal, &retain); 310 } 311 312 void flush_itimer_signals(void) 313 { 314 struct task_struct *tsk = current; 315 unsigned long flags; 316 317 spin_lock_irqsave(&tsk->sighand->siglock, flags); 318 __flush_itimer_signals(&tsk->pending); 319 __flush_itimer_signals(&tsk->signal->shared_pending); 320 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 321 } 322 323 void ignore_signals(struct task_struct *t) 324 { 325 int i; 326 327 for (i = 0; i < _NSIG; ++i) 328 t->sighand->action[i].sa.sa_handler = SIG_IGN; 329 330 flush_signals(t); 331 } 332 333 /* 334 * Flush all handlers for a task. 335 */ 336 337 void 338 flush_signal_handlers(struct task_struct *t, int force_default) 339 { 340 int i; 341 struct k_sigaction *ka = &t->sighand->action[0]; 342 for (i = _NSIG ; i != 0 ; i--) { 343 if (force_default || ka->sa.sa_handler != SIG_IGN) 344 ka->sa.sa_handler = SIG_DFL; 345 ka->sa.sa_flags = 0; 346 sigemptyset(&ka->sa.sa_mask); 347 ka++; 348 } 349 } 350 351 int unhandled_signal(struct task_struct *tsk, int sig) 352 { 353 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 354 if (is_global_init(tsk)) 355 return 1; 356 if (handler != SIG_IGN && handler != SIG_DFL) 357 return 0; 358 return !tracehook_consider_fatal_signal(tsk, sig); 359 } 360 361 362 /* Notify the system that a driver wants to block all signals for this 363 * process, and wants to be notified if any signals at all were to be 364 * sent/acted upon. If the notifier routine returns non-zero, then the 365 * signal will be acted upon after all. If the notifier routine returns 0, 366 * then then signal will be blocked. Only one block per process is 367 * allowed. priv is a pointer to private data that the notifier routine 368 * can use to determine if the signal should be blocked or not. */ 369 370 void 371 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 372 { 373 unsigned long flags; 374 375 spin_lock_irqsave(¤t->sighand->siglock, flags); 376 current->notifier_mask = mask; 377 current->notifier_data = priv; 378 current->notifier = notifier; 379 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 380 } 381 382 /* Notify the system that blocking has ended. */ 383 384 void 385 unblock_all_signals(void) 386 { 387 unsigned long flags; 388 389 spin_lock_irqsave(¤t->sighand->siglock, flags); 390 current->notifier = NULL; 391 current->notifier_data = NULL; 392 recalc_sigpending(); 393 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 394 } 395 396 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 397 { 398 struct sigqueue *q, *first = NULL; 399 400 /* 401 * Collect the siginfo appropriate to this signal. Check if 402 * there is another siginfo for the same signal. 403 */ 404 list_for_each_entry(q, &list->list, list) { 405 if (q->info.si_signo == sig) { 406 if (first) 407 goto still_pending; 408 first = q; 409 } 410 } 411 412 sigdelset(&list->signal, sig); 413 414 if (first) { 415 still_pending: 416 list_del_init(&first->list); 417 copy_siginfo(info, &first->info); 418 __sigqueue_free(first); 419 } else { 420 /* Ok, it wasn't in the queue. This must be 421 a fast-pathed signal or we must have been 422 out of queue space. So zero out the info. 423 */ 424 info->si_signo = sig; 425 info->si_errno = 0; 426 info->si_code = 0; 427 info->si_pid = 0; 428 info->si_uid = 0; 429 } 430 } 431 432 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 433 siginfo_t *info) 434 { 435 int sig = next_signal(pending, mask); 436 437 if (sig) { 438 if (current->notifier) { 439 if (sigismember(current->notifier_mask, sig)) { 440 if (!(current->notifier)(current->notifier_data)) { 441 clear_thread_flag(TIF_SIGPENDING); 442 return 0; 443 } 444 } 445 } 446 447 collect_signal(sig, pending, info); 448 } 449 450 return sig; 451 } 452 453 /* 454 * Dequeue a signal and return the element to the caller, which is 455 * expected to free it. 456 * 457 * All callers have to hold the siglock. 458 */ 459 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 460 { 461 int signr; 462 463 /* We only dequeue private signals from ourselves, we don't let 464 * signalfd steal them 465 */ 466 signr = __dequeue_signal(&tsk->pending, mask, info); 467 if (!signr) { 468 signr = __dequeue_signal(&tsk->signal->shared_pending, 469 mask, info); 470 /* 471 * itimer signal ? 472 * 473 * itimers are process shared and we restart periodic 474 * itimers in the signal delivery path to prevent DoS 475 * attacks in the high resolution timer case. This is 476 * compliant with the old way of self restarting 477 * itimers, as the SIGALRM is a legacy signal and only 478 * queued once. Changing the restart behaviour to 479 * restart the timer in the signal dequeue path is 480 * reducing the timer noise on heavy loaded !highres 481 * systems too. 482 */ 483 if (unlikely(signr == SIGALRM)) { 484 struct hrtimer *tmr = &tsk->signal->real_timer; 485 486 if (!hrtimer_is_queued(tmr) && 487 tsk->signal->it_real_incr.tv64 != 0) { 488 hrtimer_forward(tmr, tmr->base->get_time(), 489 tsk->signal->it_real_incr); 490 hrtimer_restart(tmr); 491 } 492 } 493 } 494 495 recalc_sigpending(); 496 if (!signr) 497 return 0; 498 499 if (unlikely(sig_kernel_stop(signr))) { 500 /* 501 * Set a marker that we have dequeued a stop signal. Our 502 * caller might release the siglock and then the pending 503 * stop signal it is about to process is no longer in the 504 * pending bitmasks, but must still be cleared by a SIGCONT 505 * (and overruled by a SIGKILL). So those cases clear this 506 * shared flag after we've set it. Note that this flag may 507 * remain set after the signal we return is ignored or 508 * handled. That doesn't matter because its only purpose 509 * is to alert stop-signal processing code when another 510 * processor has come along and cleared the flag. 511 */ 512 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 513 } 514 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 515 /* 516 * Release the siglock to ensure proper locking order 517 * of timer locks outside of siglocks. Note, we leave 518 * irqs disabled here, since the posix-timers code is 519 * about to disable them again anyway. 520 */ 521 spin_unlock(&tsk->sighand->siglock); 522 do_schedule_next_timer(info); 523 spin_lock(&tsk->sighand->siglock); 524 } 525 return signr; 526 } 527 528 /* 529 * Tell a process that it has a new active signal.. 530 * 531 * NOTE! we rely on the previous spin_lock to 532 * lock interrupts for us! We can only be called with 533 * "siglock" held, and the local interrupt must 534 * have been disabled when that got acquired! 535 * 536 * No need to set need_resched since signal event passing 537 * goes through ->blocked 538 */ 539 void signal_wake_up(struct task_struct *t, int resume) 540 { 541 unsigned int mask; 542 543 set_tsk_thread_flag(t, TIF_SIGPENDING); 544 545 /* 546 * For SIGKILL, we want to wake it up in the stopped/traced/killable 547 * case. We don't check t->state here because there is a race with it 548 * executing another processor and just now entering stopped state. 549 * By using wake_up_state, we ensure the process will wake up and 550 * handle its death signal. 551 */ 552 mask = TASK_INTERRUPTIBLE; 553 if (resume) 554 mask |= TASK_WAKEKILL; 555 if (!wake_up_state(t, mask)) 556 kick_process(t); 557 } 558 559 /* 560 * Remove signals in mask from the pending set and queue. 561 * Returns 1 if any signals were found. 562 * 563 * All callers must be holding the siglock. 564 * 565 * This version takes a sigset mask and looks at all signals, 566 * not just those in the first mask word. 567 */ 568 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 569 { 570 struct sigqueue *q, *n; 571 sigset_t m; 572 573 sigandsets(&m, mask, &s->signal); 574 if (sigisemptyset(&m)) 575 return 0; 576 577 signandsets(&s->signal, &s->signal, mask); 578 list_for_each_entry_safe(q, n, &s->list, list) { 579 if (sigismember(mask, q->info.si_signo)) { 580 list_del_init(&q->list); 581 __sigqueue_free(q); 582 } 583 } 584 return 1; 585 } 586 /* 587 * Remove signals in mask from the pending set and queue. 588 * Returns 1 if any signals were found. 589 * 590 * All callers must be holding the siglock. 591 */ 592 static int rm_from_queue(unsigned long mask, struct sigpending *s) 593 { 594 struct sigqueue *q, *n; 595 596 if (!sigtestsetmask(&s->signal, mask)) 597 return 0; 598 599 sigdelsetmask(&s->signal, mask); 600 list_for_each_entry_safe(q, n, &s->list, list) { 601 if (q->info.si_signo < SIGRTMIN && 602 (mask & sigmask(q->info.si_signo))) { 603 list_del_init(&q->list); 604 __sigqueue_free(q); 605 } 606 } 607 return 1; 608 } 609 610 /* 611 * Bad permissions for sending the signal 612 * - the caller must hold at least the RCU read lock 613 */ 614 static int check_kill_permission(int sig, struct siginfo *info, 615 struct task_struct *t) 616 { 617 const struct cred *cred = current_cred(), *tcred; 618 struct pid *sid; 619 int error; 620 621 if (!valid_signal(sig)) 622 return -EINVAL; 623 624 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info))) 625 return 0; 626 627 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 628 if (error) 629 return error; 630 631 tcred = __task_cred(t); 632 if ((cred->euid ^ tcred->suid) && 633 (cred->euid ^ tcred->uid) && 634 (cred->uid ^ tcred->suid) && 635 (cred->uid ^ tcred->uid) && 636 !capable(CAP_KILL)) { 637 switch (sig) { 638 case SIGCONT: 639 sid = task_session(t); 640 /* 641 * We don't return the error if sid == NULL. The 642 * task was unhashed, the caller must notice this. 643 */ 644 if (!sid || sid == task_session(current)) 645 break; 646 default: 647 return -EPERM; 648 } 649 } 650 651 return security_task_kill(t, info, sig, 0); 652 } 653 654 /* 655 * Handle magic process-wide effects of stop/continue signals. Unlike 656 * the signal actions, these happen immediately at signal-generation 657 * time regardless of blocking, ignoring, or handling. This does the 658 * actual continuing for SIGCONT, but not the actual stopping for stop 659 * signals. The process stop is done as a signal action for SIG_DFL. 660 * 661 * Returns true if the signal should be actually delivered, otherwise 662 * it should be dropped. 663 */ 664 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns) 665 { 666 struct signal_struct *signal = p->signal; 667 struct task_struct *t; 668 669 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { 670 /* 671 * The process is in the middle of dying, nothing to do. 672 */ 673 } else if (sig_kernel_stop(sig)) { 674 /* 675 * This is a stop signal. Remove SIGCONT from all queues. 676 */ 677 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); 678 t = p; 679 do { 680 rm_from_queue(sigmask(SIGCONT), &t->pending); 681 } while_each_thread(p, t); 682 } else if (sig == SIGCONT) { 683 unsigned int why; 684 /* 685 * Remove all stop signals from all queues, 686 * and wake all threads. 687 */ 688 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); 689 t = p; 690 do { 691 unsigned int state; 692 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 693 /* 694 * If there is a handler for SIGCONT, we must make 695 * sure that no thread returns to user mode before 696 * we post the signal, in case it was the only 697 * thread eligible to run the signal handler--then 698 * it must not do anything between resuming and 699 * running the handler. With the TIF_SIGPENDING 700 * flag set, the thread will pause and acquire the 701 * siglock that we hold now and until we've queued 702 * the pending signal. 703 * 704 * Wake up the stopped thread _after_ setting 705 * TIF_SIGPENDING 706 */ 707 state = __TASK_STOPPED; 708 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 709 set_tsk_thread_flag(t, TIF_SIGPENDING); 710 state |= TASK_INTERRUPTIBLE; 711 } 712 wake_up_state(t, state); 713 } while_each_thread(p, t); 714 715 /* 716 * Notify the parent with CLD_CONTINUED if we were stopped. 717 * 718 * If we were in the middle of a group stop, we pretend it 719 * was already finished, and then continued. Since SIGCHLD 720 * doesn't queue we report only CLD_STOPPED, as if the next 721 * CLD_CONTINUED was dropped. 722 */ 723 why = 0; 724 if (signal->flags & SIGNAL_STOP_STOPPED) 725 why |= SIGNAL_CLD_CONTINUED; 726 else if (signal->group_stop_count) 727 why |= SIGNAL_CLD_STOPPED; 728 729 if (why) { 730 /* 731 * The first thread which returns from do_signal_stop() 732 * will take ->siglock, notice SIGNAL_CLD_MASK, and 733 * notify its parent. See get_signal_to_deliver(). 734 */ 735 signal->flags = why | SIGNAL_STOP_CONTINUED; 736 signal->group_stop_count = 0; 737 signal->group_exit_code = 0; 738 } else { 739 /* 740 * We are not stopped, but there could be a stop 741 * signal in the middle of being processed after 742 * being removed from the queue. Clear that too. 743 */ 744 signal->flags &= ~SIGNAL_STOP_DEQUEUED; 745 } 746 } 747 748 return !sig_ignored(p, sig, from_ancestor_ns); 749 } 750 751 /* 752 * Test if P wants to take SIG. After we've checked all threads with this, 753 * it's equivalent to finding no threads not blocking SIG. Any threads not 754 * blocking SIG were ruled out because they are not running and already 755 * have pending signals. Such threads will dequeue from the shared queue 756 * as soon as they're available, so putting the signal on the shared queue 757 * will be equivalent to sending it to one such thread. 758 */ 759 static inline int wants_signal(int sig, struct task_struct *p) 760 { 761 if (sigismember(&p->blocked, sig)) 762 return 0; 763 if (p->flags & PF_EXITING) 764 return 0; 765 if (sig == SIGKILL) 766 return 1; 767 if (task_is_stopped_or_traced(p)) 768 return 0; 769 return task_curr(p) || !signal_pending(p); 770 } 771 772 static void complete_signal(int sig, struct task_struct *p, int group) 773 { 774 struct signal_struct *signal = p->signal; 775 struct task_struct *t; 776 777 /* 778 * Now find a thread we can wake up to take the signal off the queue. 779 * 780 * If the main thread wants the signal, it gets first crack. 781 * Probably the least surprising to the average bear. 782 */ 783 if (wants_signal(sig, p)) 784 t = p; 785 else if (!group || thread_group_empty(p)) 786 /* 787 * There is just one thread and it does not need to be woken. 788 * It will dequeue unblocked signals before it runs again. 789 */ 790 return; 791 else { 792 /* 793 * Otherwise try to find a suitable thread. 794 */ 795 t = signal->curr_target; 796 while (!wants_signal(sig, t)) { 797 t = next_thread(t); 798 if (t == signal->curr_target) 799 /* 800 * No thread needs to be woken. 801 * Any eligible threads will see 802 * the signal in the queue soon. 803 */ 804 return; 805 } 806 signal->curr_target = t; 807 } 808 809 /* 810 * Found a killable thread. If the signal will be fatal, 811 * then start taking the whole group down immediately. 812 */ 813 if (sig_fatal(p, sig) && 814 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 815 !sigismember(&t->real_blocked, sig) && 816 (sig == SIGKILL || 817 !tracehook_consider_fatal_signal(t, sig))) { 818 /* 819 * This signal will be fatal to the whole group. 820 */ 821 if (!sig_kernel_coredump(sig)) { 822 /* 823 * Start a group exit and wake everybody up. 824 * This way we don't have other threads 825 * running and doing things after a slower 826 * thread has the fatal signal pending. 827 */ 828 signal->flags = SIGNAL_GROUP_EXIT; 829 signal->group_exit_code = sig; 830 signal->group_stop_count = 0; 831 t = p; 832 do { 833 sigaddset(&t->pending.signal, SIGKILL); 834 signal_wake_up(t, 1); 835 } while_each_thread(p, t); 836 return; 837 } 838 } 839 840 /* 841 * The signal is already in the shared-pending queue. 842 * Tell the chosen thread to wake up and dequeue it. 843 */ 844 signal_wake_up(t, sig == SIGKILL); 845 return; 846 } 847 848 static inline int legacy_queue(struct sigpending *signals, int sig) 849 { 850 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 851 } 852 853 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 854 int group, int from_ancestor_ns) 855 { 856 struct sigpending *pending; 857 struct sigqueue *q; 858 int override_rlimit; 859 860 trace_signal_generate(sig, info, t); 861 862 assert_spin_locked(&t->sighand->siglock); 863 864 if (!prepare_signal(sig, t, from_ancestor_ns)) 865 return 0; 866 867 pending = group ? &t->signal->shared_pending : &t->pending; 868 /* 869 * Short-circuit ignored signals and support queuing 870 * exactly one non-rt signal, so that we can get more 871 * detailed information about the cause of the signal. 872 */ 873 if (legacy_queue(pending, sig)) 874 return 0; 875 /* 876 * fast-pathed signals for kernel-internal things like SIGSTOP 877 * or SIGKILL. 878 */ 879 if (info == SEND_SIG_FORCED) 880 goto out_set; 881 882 /* Real-time signals must be queued if sent by sigqueue, or 883 some other real-time mechanism. It is implementation 884 defined whether kill() does so. We attempt to do so, on 885 the principle of least surprise, but since kill is not 886 allowed to fail with EAGAIN when low on memory we just 887 make sure at least one signal gets delivered and don't 888 pass on the info struct. */ 889 890 if (sig < SIGRTMIN) 891 override_rlimit = (is_si_special(info) || info->si_code >= 0); 892 else 893 override_rlimit = 0; 894 895 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 896 override_rlimit); 897 if (q) { 898 list_add_tail(&q->list, &pending->list); 899 switch ((unsigned long) info) { 900 case (unsigned long) SEND_SIG_NOINFO: 901 q->info.si_signo = sig; 902 q->info.si_errno = 0; 903 q->info.si_code = SI_USER; 904 q->info.si_pid = task_tgid_nr_ns(current, 905 task_active_pid_ns(t)); 906 q->info.si_uid = current_uid(); 907 break; 908 case (unsigned long) SEND_SIG_PRIV: 909 q->info.si_signo = sig; 910 q->info.si_errno = 0; 911 q->info.si_code = SI_KERNEL; 912 q->info.si_pid = 0; 913 q->info.si_uid = 0; 914 break; 915 default: 916 copy_siginfo(&q->info, info); 917 if (from_ancestor_ns) 918 q->info.si_pid = 0; 919 break; 920 } 921 } else if (!is_si_special(info)) { 922 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 923 /* 924 * Queue overflow, abort. We may abort if the 925 * signal was rt and sent by user using something 926 * other than kill(). 927 */ 928 trace_signal_overflow_fail(sig, group, info); 929 return -EAGAIN; 930 } else { 931 /* 932 * This is a silent loss of information. We still 933 * send the signal, but the *info bits are lost. 934 */ 935 trace_signal_lose_info(sig, group, info); 936 } 937 } 938 939 out_set: 940 signalfd_notify(t, sig); 941 sigaddset(&pending->signal, sig); 942 complete_signal(sig, t, group); 943 return 0; 944 } 945 946 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 947 int group) 948 { 949 int from_ancestor_ns = 0; 950 951 #ifdef CONFIG_PID_NS 952 if (!is_si_special(info) && SI_FROMUSER(info) && 953 task_pid_nr_ns(current, task_active_pid_ns(t)) <= 0) 954 from_ancestor_ns = 1; 955 #endif 956 957 return __send_signal(sig, info, t, group, from_ancestor_ns); 958 } 959 960 static void print_fatal_signal(struct pt_regs *regs, int signr) 961 { 962 printk("%s/%d: potentially unexpected fatal signal %d.\n", 963 current->comm, task_pid_nr(current), signr); 964 965 #if defined(__i386__) && !defined(__arch_um__) 966 printk("code at %08lx: ", regs->ip); 967 { 968 int i; 969 for (i = 0; i < 16; i++) { 970 unsigned char insn; 971 972 __get_user(insn, (unsigned char *)(regs->ip + i)); 973 printk("%02x ", insn); 974 } 975 } 976 #endif 977 printk("\n"); 978 preempt_disable(); 979 show_regs(regs); 980 preempt_enable(); 981 } 982 983 static int __init setup_print_fatal_signals(char *str) 984 { 985 get_option (&str, &print_fatal_signals); 986 987 return 1; 988 } 989 990 __setup("print-fatal-signals=", setup_print_fatal_signals); 991 992 int 993 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 994 { 995 return send_signal(sig, info, p, 1); 996 } 997 998 static int 999 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1000 { 1001 return send_signal(sig, info, t, 0); 1002 } 1003 1004 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1005 bool group) 1006 { 1007 unsigned long flags; 1008 int ret = -ESRCH; 1009 1010 if (lock_task_sighand(p, &flags)) { 1011 ret = send_signal(sig, info, p, group); 1012 unlock_task_sighand(p, &flags); 1013 } 1014 1015 return ret; 1016 } 1017 1018 /* 1019 * Force a signal that the process can't ignore: if necessary 1020 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1021 * 1022 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1023 * since we do not want to have a signal handler that was blocked 1024 * be invoked when user space had explicitly blocked it. 1025 * 1026 * We don't want to have recursive SIGSEGV's etc, for example, 1027 * that is why we also clear SIGNAL_UNKILLABLE. 1028 */ 1029 int 1030 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1031 { 1032 unsigned long int flags; 1033 int ret, blocked, ignored; 1034 struct k_sigaction *action; 1035 1036 spin_lock_irqsave(&t->sighand->siglock, flags); 1037 action = &t->sighand->action[sig-1]; 1038 ignored = action->sa.sa_handler == SIG_IGN; 1039 blocked = sigismember(&t->blocked, sig); 1040 if (blocked || ignored) { 1041 action->sa.sa_handler = SIG_DFL; 1042 if (blocked) { 1043 sigdelset(&t->blocked, sig); 1044 recalc_sigpending_and_wake(t); 1045 } 1046 } 1047 if (action->sa.sa_handler == SIG_DFL) 1048 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1049 ret = specific_send_sig_info(sig, info, t); 1050 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1051 1052 return ret; 1053 } 1054 1055 void 1056 force_sig_specific(int sig, struct task_struct *t) 1057 { 1058 force_sig_info(sig, SEND_SIG_FORCED, t); 1059 } 1060 1061 /* 1062 * Nuke all other threads in the group. 1063 */ 1064 void zap_other_threads(struct task_struct *p) 1065 { 1066 struct task_struct *t; 1067 1068 p->signal->group_stop_count = 0; 1069 1070 for (t = next_thread(p); t != p; t = next_thread(t)) { 1071 /* 1072 * Don't bother with already dead threads 1073 */ 1074 if (t->exit_state) 1075 continue; 1076 1077 /* SIGKILL will be handled before any pending SIGSTOP */ 1078 sigaddset(&t->pending.signal, SIGKILL); 1079 signal_wake_up(t, 1); 1080 } 1081 } 1082 1083 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 1084 { 1085 struct sighand_struct *sighand; 1086 1087 rcu_read_lock(); 1088 for (;;) { 1089 sighand = rcu_dereference(tsk->sighand); 1090 if (unlikely(sighand == NULL)) 1091 break; 1092 1093 spin_lock_irqsave(&sighand->siglock, *flags); 1094 if (likely(sighand == tsk->sighand)) 1095 break; 1096 spin_unlock_irqrestore(&sighand->siglock, *flags); 1097 } 1098 rcu_read_unlock(); 1099 1100 return sighand; 1101 } 1102 1103 /* 1104 * send signal info to all the members of a group 1105 * - the caller must hold the RCU read lock at least 1106 */ 1107 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1108 { 1109 int ret = check_kill_permission(sig, info, p); 1110 1111 if (!ret && sig) 1112 ret = do_send_sig_info(sig, info, p, true); 1113 1114 return ret; 1115 } 1116 1117 /* 1118 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1119 * control characters do (^C, ^Z etc) 1120 * - the caller must hold at least a readlock on tasklist_lock 1121 */ 1122 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1123 { 1124 struct task_struct *p = NULL; 1125 int retval, success; 1126 1127 success = 0; 1128 retval = -ESRCH; 1129 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1130 int err = group_send_sig_info(sig, info, p); 1131 success |= !err; 1132 retval = err; 1133 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1134 return success ? 0 : retval; 1135 } 1136 1137 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1138 { 1139 int error = -ESRCH; 1140 struct task_struct *p; 1141 1142 rcu_read_lock(); 1143 retry: 1144 p = pid_task(pid, PIDTYPE_PID); 1145 if (p) { 1146 error = group_send_sig_info(sig, info, p); 1147 if (unlikely(error == -ESRCH)) 1148 /* 1149 * The task was unhashed in between, try again. 1150 * If it is dead, pid_task() will return NULL, 1151 * if we race with de_thread() it will find the 1152 * new leader. 1153 */ 1154 goto retry; 1155 } 1156 rcu_read_unlock(); 1157 1158 return error; 1159 } 1160 1161 int 1162 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1163 { 1164 int error; 1165 rcu_read_lock(); 1166 error = kill_pid_info(sig, info, find_vpid(pid)); 1167 rcu_read_unlock(); 1168 return error; 1169 } 1170 1171 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1172 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, 1173 uid_t uid, uid_t euid, u32 secid) 1174 { 1175 int ret = -EINVAL; 1176 struct task_struct *p; 1177 const struct cred *pcred; 1178 1179 if (!valid_signal(sig)) 1180 return ret; 1181 1182 read_lock(&tasklist_lock); 1183 p = pid_task(pid, PIDTYPE_PID); 1184 if (!p) { 1185 ret = -ESRCH; 1186 goto out_unlock; 1187 } 1188 pcred = __task_cred(p); 1189 if ((info == SEND_SIG_NOINFO || 1190 (!is_si_special(info) && SI_FROMUSER(info))) && 1191 euid != pcred->suid && euid != pcred->uid && 1192 uid != pcred->suid && uid != pcred->uid) { 1193 ret = -EPERM; 1194 goto out_unlock; 1195 } 1196 ret = security_task_kill(p, info, sig, secid); 1197 if (ret) 1198 goto out_unlock; 1199 if (sig && p->sighand) { 1200 unsigned long flags; 1201 spin_lock_irqsave(&p->sighand->siglock, flags); 1202 ret = __send_signal(sig, info, p, 1, 0); 1203 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1204 } 1205 out_unlock: 1206 read_unlock(&tasklist_lock); 1207 return ret; 1208 } 1209 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); 1210 1211 /* 1212 * kill_something_info() interprets pid in interesting ways just like kill(2). 1213 * 1214 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1215 * is probably wrong. Should make it like BSD or SYSV. 1216 */ 1217 1218 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1219 { 1220 int ret; 1221 1222 if (pid > 0) { 1223 rcu_read_lock(); 1224 ret = kill_pid_info(sig, info, find_vpid(pid)); 1225 rcu_read_unlock(); 1226 return ret; 1227 } 1228 1229 read_lock(&tasklist_lock); 1230 if (pid != -1) { 1231 ret = __kill_pgrp_info(sig, info, 1232 pid ? find_vpid(-pid) : task_pgrp(current)); 1233 } else { 1234 int retval = 0, count = 0; 1235 struct task_struct * p; 1236 1237 for_each_process(p) { 1238 if (task_pid_vnr(p) > 1 && 1239 !same_thread_group(p, current)) { 1240 int err = group_send_sig_info(sig, info, p); 1241 ++count; 1242 if (err != -EPERM) 1243 retval = err; 1244 } 1245 } 1246 ret = count ? retval : -ESRCH; 1247 } 1248 read_unlock(&tasklist_lock); 1249 1250 return ret; 1251 } 1252 1253 /* 1254 * These are for backward compatibility with the rest of the kernel source. 1255 */ 1256 1257 int 1258 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1259 { 1260 /* 1261 * Make sure legacy kernel users don't send in bad values 1262 * (normal paths check this in check_kill_permission). 1263 */ 1264 if (!valid_signal(sig)) 1265 return -EINVAL; 1266 1267 return do_send_sig_info(sig, info, p, false); 1268 } 1269 1270 #define __si_special(priv) \ 1271 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1272 1273 int 1274 send_sig(int sig, struct task_struct *p, int priv) 1275 { 1276 return send_sig_info(sig, __si_special(priv), p); 1277 } 1278 1279 void 1280 force_sig(int sig, struct task_struct *p) 1281 { 1282 force_sig_info(sig, SEND_SIG_PRIV, p); 1283 } 1284 1285 /* 1286 * When things go south during signal handling, we 1287 * will force a SIGSEGV. And if the signal that caused 1288 * the problem was already a SIGSEGV, we'll want to 1289 * make sure we don't even try to deliver the signal.. 1290 */ 1291 int 1292 force_sigsegv(int sig, struct task_struct *p) 1293 { 1294 if (sig == SIGSEGV) { 1295 unsigned long flags; 1296 spin_lock_irqsave(&p->sighand->siglock, flags); 1297 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1298 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1299 } 1300 force_sig(SIGSEGV, p); 1301 return 0; 1302 } 1303 1304 int kill_pgrp(struct pid *pid, int sig, int priv) 1305 { 1306 int ret; 1307 1308 read_lock(&tasklist_lock); 1309 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1310 read_unlock(&tasklist_lock); 1311 1312 return ret; 1313 } 1314 EXPORT_SYMBOL(kill_pgrp); 1315 1316 int kill_pid(struct pid *pid, int sig, int priv) 1317 { 1318 return kill_pid_info(sig, __si_special(priv), pid); 1319 } 1320 EXPORT_SYMBOL(kill_pid); 1321 1322 /* 1323 * These functions support sending signals using preallocated sigqueue 1324 * structures. This is needed "because realtime applications cannot 1325 * afford to lose notifications of asynchronous events, like timer 1326 * expirations or I/O completions". In the case of Posix Timers 1327 * we allocate the sigqueue structure from the timer_create. If this 1328 * allocation fails we are able to report the failure to the application 1329 * with an EAGAIN error. 1330 */ 1331 struct sigqueue *sigqueue_alloc(void) 1332 { 1333 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1334 1335 if (q) 1336 q->flags |= SIGQUEUE_PREALLOC; 1337 1338 return q; 1339 } 1340 1341 void sigqueue_free(struct sigqueue *q) 1342 { 1343 unsigned long flags; 1344 spinlock_t *lock = ¤t->sighand->siglock; 1345 1346 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1347 /* 1348 * We must hold ->siglock while testing q->list 1349 * to serialize with collect_signal() or with 1350 * __exit_signal()->flush_sigqueue(). 1351 */ 1352 spin_lock_irqsave(lock, flags); 1353 q->flags &= ~SIGQUEUE_PREALLOC; 1354 /* 1355 * If it is queued it will be freed when dequeued, 1356 * like the "regular" sigqueue. 1357 */ 1358 if (!list_empty(&q->list)) 1359 q = NULL; 1360 spin_unlock_irqrestore(lock, flags); 1361 1362 if (q) 1363 __sigqueue_free(q); 1364 } 1365 1366 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1367 { 1368 int sig = q->info.si_signo; 1369 struct sigpending *pending; 1370 unsigned long flags; 1371 int ret; 1372 1373 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1374 1375 ret = -1; 1376 if (!likely(lock_task_sighand(t, &flags))) 1377 goto ret; 1378 1379 ret = 1; /* the signal is ignored */ 1380 if (!prepare_signal(sig, t, 0)) 1381 goto out; 1382 1383 ret = 0; 1384 if (unlikely(!list_empty(&q->list))) { 1385 /* 1386 * If an SI_TIMER entry is already queue just increment 1387 * the overrun count. 1388 */ 1389 BUG_ON(q->info.si_code != SI_TIMER); 1390 q->info.si_overrun++; 1391 goto out; 1392 } 1393 q->info.si_overrun = 0; 1394 1395 signalfd_notify(t, sig); 1396 pending = group ? &t->signal->shared_pending : &t->pending; 1397 list_add_tail(&q->list, &pending->list); 1398 sigaddset(&pending->signal, sig); 1399 complete_signal(sig, t, group); 1400 out: 1401 unlock_task_sighand(t, &flags); 1402 ret: 1403 return ret; 1404 } 1405 1406 /* 1407 * Let a parent know about the death of a child. 1408 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1409 * 1410 * Returns -1 if our parent ignored us and so we've switched to 1411 * self-reaping, or else @sig. 1412 */ 1413 int do_notify_parent(struct task_struct *tsk, int sig) 1414 { 1415 struct siginfo info; 1416 unsigned long flags; 1417 struct sighand_struct *psig; 1418 int ret = sig; 1419 1420 BUG_ON(sig == -1); 1421 1422 /* do_notify_parent_cldstop should have been called instead. */ 1423 BUG_ON(task_is_stopped_or_traced(tsk)); 1424 1425 BUG_ON(!task_ptrace(tsk) && 1426 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1427 1428 info.si_signo = sig; 1429 info.si_errno = 0; 1430 /* 1431 * we are under tasklist_lock here so our parent is tied to 1432 * us and cannot exit and release its namespace. 1433 * 1434 * the only it can is to switch its nsproxy with sys_unshare, 1435 * bu uncharing pid namespaces is not allowed, so we'll always 1436 * see relevant namespace 1437 * 1438 * write_lock() currently calls preempt_disable() which is the 1439 * same as rcu_read_lock(), but according to Oleg, this is not 1440 * correct to rely on this 1441 */ 1442 rcu_read_lock(); 1443 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); 1444 info.si_uid = __task_cred(tsk)->uid; 1445 rcu_read_unlock(); 1446 1447 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime, 1448 tsk->signal->utime)); 1449 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime, 1450 tsk->signal->stime)); 1451 1452 info.si_status = tsk->exit_code & 0x7f; 1453 if (tsk->exit_code & 0x80) 1454 info.si_code = CLD_DUMPED; 1455 else if (tsk->exit_code & 0x7f) 1456 info.si_code = CLD_KILLED; 1457 else { 1458 info.si_code = CLD_EXITED; 1459 info.si_status = tsk->exit_code >> 8; 1460 } 1461 1462 psig = tsk->parent->sighand; 1463 spin_lock_irqsave(&psig->siglock, flags); 1464 if (!task_ptrace(tsk) && sig == SIGCHLD && 1465 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1466 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1467 /* 1468 * We are exiting and our parent doesn't care. POSIX.1 1469 * defines special semantics for setting SIGCHLD to SIG_IGN 1470 * or setting the SA_NOCLDWAIT flag: we should be reaped 1471 * automatically and not left for our parent's wait4 call. 1472 * Rather than having the parent do it as a magic kind of 1473 * signal handler, we just set this to tell do_exit that we 1474 * can be cleaned up without becoming a zombie. Note that 1475 * we still call __wake_up_parent in this case, because a 1476 * blocked sys_wait4 might now return -ECHILD. 1477 * 1478 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1479 * is implementation-defined: we do (if you don't want 1480 * it, just use SIG_IGN instead). 1481 */ 1482 ret = tsk->exit_signal = -1; 1483 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1484 sig = -1; 1485 } 1486 if (valid_signal(sig) && sig > 0) 1487 __group_send_sig_info(sig, &info, tsk->parent); 1488 __wake_up_parent(tsk, tsk->parent); 1489 spin_unlock_irqrestore(&psig->siglock, flags); 1490 1491 return ret; 1492 } 1493 1494 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1495 { 1496 struct siginfo info; 1497 unsigned long flags; 1498 struct task_struct *parent; 1499 struct sighand_struct *sighand; 1500 1501 if (task_ptrace(tsk)) 1502 parent = tsk->parent; 1503 else { 1504 tsk = tsk->group_leader; 1505 parent = tsk->real_parent; 1506 } 1507 1508 info.si_signo = SIGCHLD; 1509 info.si_errno = 0; 1510 /* 1511 * see comment in do_notify_parent() abot the following 3 lines 1512 */ 1513 rcu_read_lock(); 1514 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns); 1515 info.si_uid = __task_cred(tsk)->uid; 1516 rcu_read_unlock(); 1517 1518 info.si_utime = cputime_to_clock_t(tsk->utime); 1519 info.si_stime = cputime_to_clock_t(tsk->stime); 1520 1521 info.si_code = why; 1522 switch (why) { 1523 case CLD_CONTINUED: 1524 info.si_status = SIGCONT; 1525 break; 1526 case CLD_STOPPED: 1527 info.si_status = tsk->signal->group_exit_code & 0x7f; 1528 break; 1529 case CLD_TRAPPED: 1530 info.si_status = tsk->exit_code & 0x7f; 1531 break; 1532 default: 1533 BUG(); 1534 } 1535 1536 sighand = parent->sighand; 1537 spin_lock_irqsave(&sighand->siglock, flags); 1538 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1539 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1540 __group_send_sig_info(SIGCHLD, &info, parent); 1541 /* 1542 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1543 */ 1544 __wake_up_parent(tsk, parent); 1545 spin_unlock_irqrestore(&sighand->siglock, flags); 1546 } 1547 1548 static inline int may_ptrace_stop(void) 1549 { 1550 if (!likely(task_ptrace(current))) 1551 return 0; 1552 /* 1553 * Are we in the middle of do_coredump? 1554 * If so and our tracer is also part of the coredump stopping 1555 * is a deadlock situation, and pointless because our tracer 1556 * is dead so don't allow us to stop. 1557 * If SIGKILL was already sent before the caller unlocked 1558 * ->siglock we must see ->core_state != NULL. Otherwise it 1559 * is safe to enter schedule(). 1560 */ 1561 if (unlikely(current->mm->core_state) && 1562 unlikely(current->mm == current->parent->mm)) 1563 return 0; 1564 1565 return 1; 1566 } 1567 1568 /* 1569 * Return nonzero if there is a SIGKILL that should be waking us up. 1570 * Called with the siglock held. 1571 */ 1572 static int sigkill_pending(struct task_struct *tsk) 1573 { 1574 return sigismember(&tsk->pending.signal, SIGKILL) || 1575 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1576 } 1577 1578 /* 1579 * This must be called with current->sighand->siglock held. 1580 * 1581 * This should be the path for all ptrace stops. 1582 * We always set current->last_siginfo while stopped here. 1583 * That makes it a way to test a stopped process for 1584 * being ptrace-stopped vs being job-control-stopped. 1585 * 1586 * If we actually decide not to stop at all because the tracer 1587 * is gone, we keep current->exit_code unless clear_code. 1588 */ 1589 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info) 1590 { 1591 if (arch_ptrace_stop_needed(exit_code, info)) { 1592 /* 1593 * The arch code has something special to do before a 1594 * ptrace stop. This is allowed to block, e.g. for faults 1595 * on user stack pages. We can't keep the siglock while 1596 * calling arch_ptrace_stop, so we must release it now. 1597 * To preserve proper semantics, we must do this before 1598 * any signal bookkeeping like checking group_stop_count. 1599 * Meanwhile, a SIGKILL could come in before we retake the 1600 * siglock. That must prevent us from sleeping in TASK_TRACED. 1601 * So after regaining the lock, we must check for SIGKILL. 1602 */ 1603 spin_unlock_irq(¤t->sighand->siglock); 1604 arch_ptrace_stop(exit_code, info); 1605 spin_lock_irq(¤t->sighand->siglock); 1606 if (sigkill_pending(current)) 1607 return; 1608 } 1609 1610 /* 1611 * If there is a group stop in progress, 1612 * we must participate in the bookkeeping. 1613 */ 1614 if (current->signal->group_stop_count > 0) 1615 --current->signal->group_stop_count; 1616 1617 current->last_siginfo = info; 1618 current->exit_code = exit_code; 1619 1620 /* Let the debugger run. */ 1621 __set_current_state(TASK_TRACED); 1622 spin_unlock_irq(¤t->sighand->siglock); 1623 read_lock(&tasklist_lock); 1624 if (may_ptrace_stop()) { 1625 do_notify_parent_cldstop(current, CLD_TRAPPED); 1626 /* 1627 * Don't want to allow preemption here, because 1628 * sys_ptrace() needs this task to be inactive. 1629 * 1630 * XXX: implement read_unlock_no_resched(). 1631 */ 1632 preempt_disable(); 1633 read_unlock(&tasklist_lock); 1634 preempt_enable_no_resched(); 1635 schedule(); 1636 } else { 1637 /* 1638 * By the time we got the lock, our tracer went away. 1639 * Don't drop the lock yet, another tracer may come. 1640 */ 1641 __set_current_state(TASK_RUNNING); 1642 if (clear_code) 1643 current->exit_code = 0; 1644 read_unlock(&tasklist_lock); 1645 } 1646 1647 /* 1648 * While in TASK_TRACED, we were considered "frozen enough". 1649 * Now that we woke up, it's crucial if we're supposed to be 1650 * frozen that we freeze now before running anything substantial. 1651 */ 1652 try_to_freeze(); 1653 1654 /* 1655 * We are back. Now reacquire the siglock before touching 1656 * last_siginfo, so that we are sure to have synchronized with 1657 * any signal-sending on another CPU that wants to examine it. 1658 */ 1659 spin_lock_irq(¤t->sighand->siglock); 1660 current->last_siginfo = NULL; 1661 1662 /* 1663 * Queued signals ignored us while we were stopped for tracing. 1664 * So check for any that we should take before resuming user mode. 1665 * This sets TIF_SIGPENDING, but never clears it. 1666 */ 1667 recalc_sigpending_tsk(current); 1668 } 1669 1670 void ptrace_notify(int exit_code) 1671 { 1672 siginfo_t info; 1673 1674 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1675 1676 memset(&info, 0, sizeof info); 1677 info.si_signo = SIGTRAP; 1678 info.si_code = exit_code; 1679 info.si_pid = task_pid_vnr(current); 1680 info.si_uid = current_uid(); 1681 1682 /* Let the debugger run. */ 1683 spin_lock_irq(¤t->sighand->siglock); 1684 ptrace_stop(exit_code, 1, &info); 1685 spin_unlock_irq(¤t->sighand->siglock); 1686 } 1687 1688 /* 1689 * This performs the stopping for SIGSTOP and other stop signals. 1690 * We have to stop all threads in the thread group. 1691 * Returns nonzero if we've actually stopped and released the siglock. 1692 * Returns zero if we didn't stop and still hold the siglock. 1693 */ 1694 static int do_signal_stop(int signr) 1695 { 1696 struct signal_struct *sig = current->signal; 1697 int notify; 1698 1699 if (!sig->group_stop_count) { 1700 struct task_struct *t; 1701 1702 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || 1703 unlikely(signal_group_exit(sig))) 1704 return 0; 1705 /* 1706 * There is no group stop already in progress. 1707 * We must initiate one now. 1708 */ 1709 sig->group_exit_code = signr; 1710 1711 sig->group_stop_count = 1; 1712 for (t = next_thread(current); t != current; t = next_thread(t)) 1713 /* 1714 * Setting state to TASK_STOPPED for a group 1715 * stop is always done with the siglock held, 1716 * so this check has no races. 1717 */ 1718 if (!(t->flags & PF_EXITING) && 1719 !task_is_stopped_or_traced(t)) { 1720 sig->group_stop_count++; 1721 signal_wake_up(t, 0); 1722 } 1723 } 1724 /* 1725 * If there are no other threads in the group, or if there is 1726 * a group stop in progress and we are the last to stop, report 1727 * to the parent. When ptraced, every thread reports itself. 1728 */ 1729 notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0; 1730 notify = tracehook_notify_jctl(notify, CLD_STOPPED); 1731 /* 1732 * tracehook_notify_jctl() can drop and reacquire siglock, so 1733 * we keep ->group_stop_count != 0 before the call. If SIGCONT 1734 * or SIGKILL comes in between ->group_stop_count == 0. 1735 */ 1736 if (sig->group_stop_count) { 1737 if (!--sig->group_stop_count) 1738 sig->flags = SIGNAL_STOP_STOPPED; 1739 current->exit_code = sig->group_exit_code; 1740 __set_current_state(TASK_STOPPED); 1741 } 1742 spin_unlock_irq(¤t->sighand->siglock); 1743 1744 if (notify) { 1745 read_lock(&tasklist_lock); 1746 do_notify_parent_cldstop(current, notify); 1747 read_unlock(&tasklist_lock); 1748 } 1749 1750 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 1751 do { 1752 schedule(); 1753 } while (try_to_freeze()); 1754 1755 tracehook_finish_jctl(); 1756 current->exit_code = 0; 1757 1758 return 1; 1759 } 1760 1761 static int ptrace_signal(int signr, siginfo_t *info, 1762 struct pt_regs *regs, void *cookie) 1763 { 1764 if (!task_ptrace(current)) 1765 return signr; 1766 1767 ptrace_signal_deliver(regs, cookie); 1768 1769 /* Let the debugger run. */ 1770 ptrace_stop(signr, 0, info); 1771 1772 /* We're back. Did the debugger cancel the sig? */ 1773 signr = current->exit_code; 1774 if (signr == 0) 1775 return signr; 1776 1777 current->exit_code = 0; 1778 1779 /* Update the siginfo structure if the signal has 1780 changed. If the debugger wanted something 1781 specific in the siginfo structure then it should 1782 have updated *info via PTRACE_SETSIGINFO. */ 1783 if (signr != info->si_signo) { 1784 info->si_signo = signr; 1785 info->si_errno = 0; 1786 info->si_code = SI_USER; 1787 info->si_pid = task_pid_vnr(current->parent); 1788 info->si_uid = task_uid(current->parent); 1789 } 1790 1791 /* If the (new) signal is now blocked, requeue it. */ 1792 if (sigismember(¤t->blocked, signr)) { 1793 specific_send_sig_info(signr, info, current); 1794 signr = 0; 1795 } 1796 1797 return signr; 1798 } 1799 1800 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1801 struct pt_regs *regs, void *cookie) 1802 { 1803 struct sighand_struct *sighand = current->sighand; 1804 struct signal_struct *signal = current->signal; 1805 int signr; 1806 1807 relock: 1808 /* 1809 * We'll jump back here after any time we were stopped in TASK_STOPPED. 1810 * While in TASK_STOPPED, we were considered "frozen enough". 1811 * Now that we woke up, it's crucial if we're supposed to be 1812 * frozen that we freeze now before running anything substantial. 1813 */ 1814 try_to_freeze(); 1815 1816 spin_lock_irq(&sighand->siglock); 1817 /* 1818 * Every stopped thread goes here after wakeup. Check to see if 1819 * we should notify the parent, prepare_signal(SIGCONT) encodes 1820 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 1821 */ 1822 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 1823 int why = (signal->flags & SIGNAL_STOP_CONTINUED) 1824 ? CLD_CONTINUED : CLD_STOPPED; 1825 signal->flags &= ~SIGNAL_CLD_MASK; 1826 1827 why = tracehook_notify_jctl(why, CLD_CONTINUED); 1828 spin_unlock_irq(&sighand->siglock); 1829 1830 if (why) { 1831 read_lock(&tasklist_lock); 1832 do_notify_parent_cldstop(current->group_leader, why); 1833 read_unlock(&tasklist_lock); 1834 } 1835 goto relock; 1836 } 1837 1838 for (;;) { 1839 struct k_sigaction *ka; 1840 1841 if (unlikely(signal->group_stop_count > 0) && 1842 do_signal_stop(0)) 1843 goto relock; 1844 1845 /* 1846 * Tracing can induce an artifical signal and choose sigaction. 1847 * The return value in @signr determines the default action, 1848 * but @info->si_signo is the signal number we will report. 1849 */ 1850 signr = tracehook_get_signal(current, regs, info, return_ka); 1851 if (unlikely(signr < 0)) 1852 goto relock; 1853 if (unlikely(signr != 0)) 1854 ka = return_ka; 1855 else { 1856 signr = dequeue_signal(current, ¤t->blocked, 1857 info); 1858 1859 if (!signr) 1860 break; /* will return 0 */ 1861 1862 if (signr != SIGKILL) { 1863 signr = ptrace_signal(signr, info, 1864 regs, cookie); 1865 if (!signr) 1866 continue; 1867 } 1868 1869 ka = &sighand->action[signr-1]; 1870 } 1871 1872 /* Trace actually delivered signals. */ 1873 trace_signal_deliver(signr, info, ka); 1874 1875 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1876 continue; 1877 if (ka->sa.sa_handler != SIG_DFL) { 1878 /* Run the handler. */ 1879 *return_ka = *ka; 1880 1881 if (ka->sa.sa_flags & SA_ONESHOT) 1882 ka->sa.sa_handler = SIG_DFL; 1883 1884 break; /* will return non-zero "signr" value */ 1885 } 1886 1887 /* 1888 * Now we are doing the default action for this signal. 1889 */ 1890 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1891 continue; 1892 1893 /* 1894 * Global init gets no signals it doesn't want. 1895 * Container-init gets no signals it doesn't want from same 1896 * container. 1897 * 1898 * Note that if global/container-init sees a sig_kernel_only() 1899 * signal here, the signal must have been generated internally 1900 * or must have come from an ancestor namespace. In either 1901 * case, the signal cannot be dropped. 1902 */ 1903 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 1904 !sig_kernel_only(signr)) 1905 continue; 1906 1907 if (sig_kernel_stop(signr)) { 1908 /* 1909 * The default action is to stop all threads in 1910 * the thread group. The job control signals 1911 * do nothing in an orphaned pgrp, but SIGSTOP 1912 * always works. Note that siglock needs to be 1913 * dropped during the call to is_orphaned_pgrp() 1914 * because of lock ordering with tasklist_lock. 1915 * This allows an intervening SIGCONT to be posted. 1916 * We need to check for that and bail out if necessary. 1917 */ 1918 if (signr != SIGSTOP) { 1919 spin_unlock_irq(&sighand->siglock); 1920 1921 /* signals can be posted during this window */ 1922 1923 if (is_current_pgrp_orphaned()) 1924 goto relock; 1925 1926 spin_lock_irq(&sighand->siglock); 1927 } 1928 1929 if (likely(do_signal_stop(info->si_signo))) { 1930 /* It released the siglock. */ 1931 goto relock; 1932 } 1933 1934 /* 1935 * We didn't actually stop, due to a race 1936 * with SIGCONT or something like that. 1937 */ 1938 continue; 1939 } 1940 1941 spin_unlock_irq(&sighand->siglock); 1942 1943 /* 1944 * Anything else is fatal, maybe with a core dump. 1945 */ 1946 current->flags |= PF_SIGNALED; 1947 1948 if (sig_kernel_coredump(signr)) { 1949 if (print_fatal_signals) 1950 print_fatal_signal(regs, info->si_signo); 1951 /* 1952 * If it was able to dump core, this kills all 1953 * other threads in the group and synchronizes with 1954 * their demise. If we lost the race with another 1955 * thread getting here, it set group_exit_code 1956 * first and our do_group_exit call below will use 1957 * that value and ignore the one we pass it. 1958 */ 1959 do_coredump(info->si_signo, info->si_signo, regs); 1960 } 1961 1962 /* 1963 * Death signals, no core dump. 1964 */ 1965 do_group_exit(info->si_signo); 1966 /* NOTREACHED */ 1967 } 1968 spin_unlock_irq(&sighand->siglock); 1969 return signr; 1970 } 1971 1972 void exit_signals(struct task_struct *tsk) 1973 { 1974 int group_stop = 0; 1975 struct task_struct *t; 1976 1977 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 1978 tsk->flags |= PF_EXITING; 1979 return; 1980 } 1981 1982 spin_lock_irq(&tsk->sighand->siglock); 1983 /* 1984 * From now this task is not visible for group-wide signals, 1985 * see wants_signal(), do_signal_stop(). 1986 */ 1987 tsk->flags |= PF_EXITING; 1988 if (!signal_pending(tsk)) 1989 goto out; 1990 1991 /* It could be that __group_complete_signal() choose us to 1992 * notify about group-wide signal. Another thread should be 1993 * woken now to take the signal since we will not. 1994 */ 1995 for (t = tsk; (t = next_thread(t)) != tsk; ) 1996 if (!signal_pending(t) && !(t->flags & PF_EXITING)) 1997 recalc_sigpending_and_wake(t); 1998 1999 if (unlikely(tsk->signal->group_stop_count) && 2000 !--tsk->signal->group_stop_count) { 2001 tsk->signal->flags = SIGNAL_STOP_STOPPED; 2002 group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED); 2003 } 2004 out: 2005 spin_unlock_irq(&tsk->sighand->siglock); 2006 2007 if (unlikely(group_stop)) { 2008 read_lock(&tasklist_lock); 2009 do_notify_parent_cldstop(tsk, group_stop); 2010 read_unlock(&tasklist_lock); 2011 } 2012 } 2013 2014 EXPORT_SYMBOL(recalc_sigpending); 2015 EXPORT_SYMBOL_GPL(dequeue_signal); 2016 EXPORT_SYMBOL(flush_signals); 2017 EXPORT_SYMBOL(force_sig); 2018 EXPORT_SYMBOL(send_sig); 2019 EXPORT_SYMBOL(send_sig_info); 2020 EXPORT_SYMBOL(sigprocmask); 2021 EXPORT_SYMBOL(block_all_signals); 2022 EXPORT_SYMBOL(unblock_all_signals); 2023 2024 2025 /* 2026 * System call entry points. 2027 */ 2028 2029 SYSCALL_DEFINE0(restart_syscall) 2030 { 2031 struct restart_block *restart = ¤t_thread_info()->restart_block; 2032 return restart->fn(restart); 2033 } 2034 2035 long do_no_restart_syscall(struct restart_block *param) 2036 { 2037 return -EINTR; 2038 } 2039 2040 /* 2041 * We don't need to get the kernel lock - this is all local to this 2042 * particular thread.. (and that's good, because this is _heavily_ 2043 * used by various programs) 2044 */ 2045 2046 /* 2047 * This is also useful for kernel threads that want to temporarily 2048 * (or permanently) block certain signals. 2049 * 2050 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2051 * interface happily blocks "unblockable" signals like SIGKILL 2052 * and friends. 2053 */ 2054 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2055 { 2056 int error; 2057 2058 spin_lock_irq(¤t->sighand->siglock); 2059 if (oldset) 2060 *oldset = current->blocked; 2061 2062 error = 0; 2063 switch (how) { 2064 case SIG_BLOCK: 2065 sigorsets(¤t->blocked, ¤t->blocked, set); 2066 break; 2067 case SIG_UNBLOCK: 2068 signandsets(¤t->blocked, ¤t->blocked, set); 2069 break; 2070 case SIG_SETMASK: 2071 current->blocked = *set; 2072 break; 2073 default: 2074 error = -EINVAL; 2075 } 2076 recalc_sigpending(); 2077 spin_unlock_irq(¤t->sighand->siglock); 2078 2079 return error; 2080 } 2081 2082 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set, 2083 sigset_t __user *, oset, size_t, sigsetsize) 2084 { 2085 int error = -EINVAL; 2086 sigset_t old_set, new_set; 2087 2088 /* XXX: Don't preclude handling different sized sigset_t's. */ 2089 if (sigsetsize != sizeof(sigset_t)) 2090 goto out; 2091 2092 if (set) { 2093 error = -EFAULT; 2094 if (copy_from_user(&new_set, set, sizeof(*set))) 2095 goto out; 2096 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2097 2098 error = sigprocmask(how, &new_set, &old_set); 2099 if (error) 2100 goto out; 2101 if (oset) 2102 goto set_old; 2103 } else if (oset) { 2104 spin_lock_irq(¤t->sighand->siglock); 2105 old_set = current->blocked; 2106 spin_unlock_irq(¤t->sighand->siglock); 2107 2108 set_old: 2109 error = -EFAULT; 2110 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2111 goto out; 2112 } 2113 error = 0; 2114 out: 2115 return error; 2116 } 2117 2118 long do_sigpending(void __user *set, unsigned long sigsetsize) 2119 { 2120 long error = -EINVAL; 2121 sigset_t pending; 2122 2123 if (sigsetsize > sizeof(sigset_t)) 2124 goto out; 2125 2126 spin_lock_irq(¤t->sighand->siglock); 2127 sigorsets(&pending, ¤t->pending.signal, 2128 ¤t->signal->shared_pending.signal); 2129 spin_unlock_irq(¤t->sighand->siglock); 2130 2131 /* Outside the lock because only this thread touches it. */ 2132 sigandsets(&pending, ¤t->blocked, &pending); 2133 2134 error = -EFAULT; 2135 if (!copy_to_user(set, &pending, sigsetsize)) 2136 error = 0; 2137 2138 out: 2139 return error; 2140 } 2141 2142 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize) 2143 { 2144 return do_sigpending(set, sigsetsize); 2145 } 2146 2147 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2148 2149 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2150 { 2151 int err; 2152 2153 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2154 return -EFAULT; 2155 if (from->si_code < 0) 2156 return __copy_to_user(to, from, sizeof(siginfo_t)) 2157 ? -EFAULT : 0; 2158 /* 2159 * If you change siginfo_t structure, please be sure 2160 * this code is fixed accordingly. 2161 * Please remember to update the signalfd_copyinfo() function 2162 * inside fs/signalfd.c too, in case siginfo_t changes. 2163 * It should never copy any pad contained in the structure 2164 * to avoid security leaks, but must copy the generic 2165 * 3 ints plus the relevant union member. 2166 */ 2167 err = __put_user(from->si_signo, &to->si_signo); 2168 err |= __put_user(from->si_errno, &to->si_errno); 2169 err |= __put_user((short)from->si_code, &to->si_code); 2170 switch (from->si_code & __SI_MASK) { 2171 case __SI_KILL: 2172 err |= __put_user(from->si_pid, &to->si_pid); 2173 err |= __put_user(from->si_uid, &to->si_uid); 2174 break; 2175 case __SI_TIMER: 2176 err |= __put_user(from->si_tid, &to->si_tid); 2177 err |= __put_user(from->si_overrun, &to->si_overrun); 2178 err |= __put_user(from->si_ptr, &to->si_ptr); 2179 break; 2180 case __SI_POLL: 2181 err |= __put_user(from->si_band, &to->si_band); 2182 err |= __put_user(from->si_fd, &to->si_fd); 2183 break; 2184 case __SI_FAULT: 2185 err |= __put_user(from->si_addr, &to->si_addr); 2186 #ifdef __ARCH_SI_TRAPNO 2187 err |= __put_user(from->si_trapno, &to->si_trapno); 2188 #endif 2189 break; 2190 case __SI_CHLD: 2191 err |= __put_user(from->si_pid, &to->si_pid); 2192 err |= __put_user(from->si_uid, &to->si_uid); 2193 err |= __put_user(from->si_status, &to->si_status); 2194 err |= __put_user(from->si_utime, &to->si_utime); 2195 err |= __put_user(from->si_stime, &to->si_stime); 2196 break; 2197 case __SI_RT: /* This is not generated by the kernel as of now. */ 2198 case __SI_MESGQ: /* But this is */ 2199 err |= __put_user(from->si_pid, &to->si_pid); 2200 err |= __put_user(from->si_uid, &to->si_uid); 2201 err |= __put_user(from->si_ptr, &to->si_ptr); 2202 break; 2203 default: /* this is just in case for now ... */ 2204 err |= __put_user(from->si_pid, &to->si_pid); 2205 err |= __put_user(from->si_uid, &to->si_uid); 2206 break; 2207 } 2208 return err; 2209 } 2210 2211 #endif 2212 2213 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2214 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2215 size_t, sigsetsize) 2216 { 2217 int ret, sig; 2218 sigset_t these; 2219 struct timespec ts; 2220 siginfo_t info; 2221 long timeout = 0; 2222 2223 /* XXX: Don't preclude handling different sized sigset_t's. */ 2224 if (sigsetsize != sizeof(sigset_t)) 2225 return -EINVAL; 2226 2227 if (copy_from_user(&these, uthese, sizeof(these))) 2228 return -EFAULT; 2229 2230 /* 2231 * Invert the set of allowed signals to get those we 2232 * want to block. 2233 */ 2234 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2235 signotset(&these); 2236 2237 if (uts) { 2238 if (copy_from_user(&ts, uts, sizeof(ts))) 2239 return -EFAULT; 2240 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2241 || ts.tv_sec < 0) 2242 return -EINVAL; 2243 } 2244 2245 spin_lock_irq(¤t->sighand->siglock); 2246 sig = dequeue_signal(current, &these, &info); 2247 if (!sig) { 2248 timeout = MAX_SCHEDULE_TIMEOUT; 2249 if (uts) 2250 timeout = (timespec_to_jiffies(&ts) 2251 + (ts.tv_sec || ts.tv_nsec)); 2252 2253 if (timeout) { 2254 /* None ready -- temporarily unblock those we're 2255 * interested while we are sleeping in so that we'll 2256 * be awakened when they arrive. */ 2257 current->real_blocked = current->blocked; 2258 sigandsets(¤t->blocked, ¤t->blocked, &these); 2259 recalc_sigpending(); 2260 spin_unlock_irq(¤t->sighand->siglock); 2261 2262 timeout = schedule_timeout_interruptible(timeout); 2263 2264 spin_lock_irq(¤t->sighand->siglock); 2265 sig = dequeue_signal(current, &these, &info); 2266 current->blocked = current->real_blocked; 2267 siginitset(¤t->real_blocked, 0); 2268 recalc_sigpending(); 2269 } 2270 } 2271 spin_unlock_irq(¤t->sighand->siglock); 2272 2273 if (sig) { 2274 ret = sig; 2275 if (uinfo) { 2276 if (copy_siginfo_to_user(uinfo, &info)) 2277 ret = -EFAULT; 2278 } 2279 } else { 2280 ret = -EAGAIN; 2281 if (timeout) 2282 ret = -EINTR; 2283 } 2284 2285 return ret; 2286 } 2287 2288 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2289 { 2290 struct siginfo info; 2291 2292 info.si_signo = sig; 2293 info.si_errno = 0; 2294 info.si_code = SI_USER; 2295 info.si_pid = task_tgid_vnr(current); 2296 info.si_uid = current_uid(); 2297 2298 return kill_something_info(sig, &info, pid); 2299 } 2300 2301 static int 2302 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2303 { 2304 struct task_struct *p; 2305 int error = -ESRCH; 2306 2307 rcu_read_lock(); 2308 p = find_task_by_vpid(pid); 2309 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2310 error = check_kill_permission(sig, info, p); 2311 /* 2312 * The null signal is a permissions and process existence 2313 * probe. No signal is actually delivered. 2314 */ 2315 if (!error && sig) { 2316 error = do_send_sig_info(sig, info, p, false); 2317 /* 2318 * If lock_task_sighand() failed we pretend the task 2319 * dies after receiving the signal. The window is tiny, 2320 * and the signal is private anyway. 2321 */ 2322 if (unlikely(error == -ESRCH)) 2323 error = 0; 2324 } 2325 } 2326 rcu_read_unlock(); 2327 2328 return error; 2329 } 2330 2331 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2332 { 2333 struct siginfo info; 2334 2335 info.si_signo = sig; 2336 info.si_errno = 0; 2337 info.si_code = SI_TKILL; 2338 info.si_pid = task_tgid_vnr(current); 2339 info.si_uid = current_uid(); 2340 2341 return do_send_specific(tgid, pid, sig, &info); 2342 } 2343 2344 /** 2345 * sys_tgkill - send signal to one specific thread 2346 * @tgid: the thread group ID of the thread 2347 * @pid: the PID of the thread 2348 * @sig: signal to be sent 2349 * 2350 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2351 * exists but it's not belonging to the target process anymore. This 2352 * method solves the problem of threads exiting and PIDs getting reused. 2353 */ 2354 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2355 { 2356 /* This is only valid for single tasks */ 2357 if (pid <= 0 || tgid <= 0) 2358 return -EINVAL; 2359 2360 return do_tkill(tgid, pid, sig); 2361 } 2362 2363 /* 2364 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2365 */ 2366 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2367 { 2368 /* This is only valid for single tasks */ 2369 if (pid <= 0) 2370 return -EINVAL; 2371 2372 return do_tkill(0, pid, sig); 2373 } 2374 2375 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 2376 siginfo_t __user *, uinfo) 2377 { 2378 siginfo_t info; 2379 2380 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2381 return -EFAULT; 2382 2383 /* Not even root can pretend to send signals from the kernel. 2384 Nor can they impersonate a kill(), which adds source info. */ 2385 if (info.si_code >= 0) 2386 return -EPERM; 2387 info.si_signo = sig; 2388 2389 /* POSIX.1b doesn't mention process groups. */ 2390 return kill_proc_info(sig, &info, pid); 2391 } 2392 2393 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 2394 { 2395 /* This is only valid for single tasks */ 2396 if (pid <= 0 || tgid <= 0) 2397 return -EINVAL; 2398 2399 /* Not even root can pretend to send signals from the kernel. 2400 Nor can they impersonate a kill(), which adds source info. */ 2401 if (info->si_code >= 0) 2402 return -EPERM; 2403 info->si_signo = sig; 2404 2405 return do_send_specific(tgid, pid, sig, info); 2406 } 2407 2408 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 2409 siginfo_t __user *, uinfo) 2410 { 2411 siginfo_t info; 2412 2413 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2414 return -EFAULT; 2415 2416 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 2417 } 2418 2419 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2420 { 2421 struct task_struct *t = current; 2422 struct k_sigaction *k; 2423 sigset_t mask; 2424 2425 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2426 return -EINVAL; 2427 2428 k = &t->sighand->action[sig-1]; 2429 2430 spin_lock_irq(¤t->sighand->siglock); 2431 if (oact) 2432 *oact = *k; 2433 2434 if (act) { 2435 sigdelsetmask(&act->sa.sa_mask, 2436 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2437 *k = *act; 2438 /* 2439 * POSIX 3.3.1.3: 2440 * "Setting a signal action to SIG_IGN for a signal that is 2441 * pending shall cause the pending signal to be discarded, 2442 * whether or not it is blocked." 2443 * 2444 * "Setting a signal action to SIG_DFL for a signal that is 2445 * pending and whose default action is to ignore the signal 2446 * (for example, SIGCHLD), shall cause the pending signal to 2447 * be discarded, whether or not it is blocked" 2448 */ 2449 if (sig_handler_ignored(sig_handler(t, sig), sig)) { 2450 sigemptyset(&mask); 2451 sigaddset(&mask, sig); 2452 rm_from_queue_full(&mask, &t->signal->shared_pending); 2453 do { 2454 rm_from_queue_full(&mask, &t->pending); 2455 t = next_thread(t); 2456 } while (t != current); 2457 } 2458 } 2459 2460 spin_unlock_irq(¤t->sighand->siglock); 2461 return 0; 2462 } 2463 2464 int 2465 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2466 { 2467 stack_t oss; 2468 int error; 2469 2470 oss.ss_sp = (void __user *) current->sas_ss_sp; 2471 oss.ss_size = current->sas_ss_size; 2472 oss.ss_flags = sas_ss_flags(sp); 2473 2474 if (uss) { 2475 void __user *ss_sp; 2476 size_t ss_size; 2477 int ss_flags; 2478 2479 error = -EFAULT; 2480 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 2481 goto out; 2482 error = __get_user(ss_sp, &uss->ss_sp) | 2483 __get_user(ss_flags, &uss->ss_flags) | 2484 __get_user(ss_size, &uss->ss_size); 2485 if (error) 2486 goto out; 2487 2488 error = -EPERM; 2489 if (on_sig_stack(sp)) 2490 goto out; 2491 2492 error = -EINVAL; 2493 /* 2494 * 2495 * Note - this code used to test ss_flags incorrectly 2496 * old code may have been written using ss_flags==0 2497 * to mean ss_flags==SS_ONSTACK (as this was the only 2498 * way that worked) - this fix preserves that older 2499 * mechanism 2500 */ 2501 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2502 goto out; 2503 2504 if (ss_flags == SS_DISABLE) { 2505 ss_size = 0; 2506 ss_sp = NULL; 2507 } else { 2508 error = -ENOMEM; 2509 if (ss_size < MINSIGSTKSZ) 2510 goto out; 2511 } 2512 2513 current->sas_ss_sp = (unsigned long) ss_sp; 2514 current->sas_ss_size = ss_size; 2515 } 2516 2517 error = 0; 2518 if (uoss) { 2519 error = -EFAULT; 2520 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 2521 goto out; 2522 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 2523 __put_user(oss.ss_size, &uoss->ss_size) | 2524 __put_user(oss.ss_flags, &uoss->ss_flags); 2525 } 2526 2527 out: 2528 return error; 2529 } 2530 2531 #ifdef __ARCH_WANT_SYS_SIGPENDING 2532 2533 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 2534 { 2535 return do_sigpending(set, sizeof(*set)); 2536 } 2537 2538 #endif 2539 2540 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2541 /* Some platforms have their own version with special arguments others 2542 support only sys_rt_sigprocmask. */ 2543 2544 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set, 2545 old_sigset_t __user *, oset) 2546 { 2547 int error; 2548 old_sigset_t old_set, new_set; 2549 2550 if (set) { 2551 error = -EFAULT; 2552 if (copy_from_user(&new_set, set, sizeof(*set))) 2553 goto out; 2554 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2555 2556 spin_lock_irq(¤t->sighand->siglock); 2557 old_set = current->blocked.sig[0]; 2558 2559 error = 0; 2560 switch (how) { 2561 default: 2562 error = -EINVAL; 2563 break; 2564 case SIG_BLOCK: 2565 sigaddsetmask(¤t->blocked, new_set); 2566 break; 2567 case SIG_UNBLOCK: 2568 sigdelsetmask(¤t->blocked, new_set); 2569 break; 2570 case SIG_SETMASK: 2571 current->blocked.sig[0] = new_set; 2572 break; 2573 } 2574 2575 recalc_sigpending(); 2576 spin_unlock_irq(¤t->sighand->siglock); 2577 if (error) 2578 goto out; 2579 if (oset) 2580 goto set_old; 2581 } else if (oset) { 2582 old_set = current->blocked.sig[0]; 2583 set_old: 2584 error = -EFAULT; 2585 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2586 goto out; 2587 } 2588 error = 0; 2589 out: 2590 return error; 2591 } 2592 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2593 2594 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2595 SYSCALL_DEFINE4(rt_sigaction, int, sig, 2596 const struct sigaction __user *, act, 2597 struct sigaction __user *, oact, 2598 size_t, sigsetsize) 2599 { 2600 struct k_sigaction new_sa, old_sa; 2601 int ret = -EINVAL; 2602 2603 /* XXX: Don't preclude handling different sized sigset_t's. */ 2604 if (sigsetsize != sizeof(sigset_t)) 2605 goto out; 2606 2607 if (act) { 2608 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2609 return -EFAULT; 2610 } 2611 2612 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2613 2614 if (!ret && oact) { 2615 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2616 return -EFAULT; 2617 } 2618 out: 2619 return ret; 2620 } 2621 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2622 2623 #ifdef __ARCH_WANT_SYS_SGETMASK 2624 2625 /* 2626 * For backwards compatibility. Functionality superseded by sigprocmask. 2627 */ 2628 SYSCALL_DEFINE0(sgetmask) 2629 { 2630 /* SMP safe */ 2631 return current->blocked.sig[0]; 2632 } 2633 2634 SYSCALL_DEFINE1(ssetmask, int, newmask) 2635 { 2636 int old; 2637 2638 spin_lock_irq(¤t->sighand->siglock); 2639 old = current->blocked.sig[0]; 2640 2641 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2642 sigmask(SIGSTOP))); 2643 recalc_sigpending(); 2644 spin_unlock_irq(¤t->sighand->siglock); 2645 2646 return old; 2647 } 2648 #endif /* __ARCH_WANT_SGETMASK */ 2649 2650 #ifdef __ARCH_WANT_SYS_SIGNAL 2651 /* 2652 * For backwards compatibility. Functionality superseded by sigaction. 2653 */ 2654 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 2655 { 2656 struct k_sigaction new_sa, old_sa; 2657 int ret; 2658 2659 new_sa.sa.sa_handler = handler; 2660 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2661 sigemptyset(&new_sa.sa.sa_mask); 2662 2663 ret = do_sigaction(sig, &new_sa, &old_sa); 2664 2665 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2666 } 2667 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2668 2669 #ifdef __ARCH_WANT_SYS_PAUSE 2670 2671 SYSCALL_DEFINE0(pause) 2672 { 2673 current->state = TASK_INTERRUPTIBLE; 2674 schedule(); 2675 return -ERESTARTNOHAND; 2676 } 2677 2678 #endif 2679 2680 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2681 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 2682 { 2683 sigset_t newset; 2684 2685 /* XXX: Don't preclude handling different sized sigset_t's. */ 2686 if (sigsetsize != sizeof(sigset_t)) 2687 return -EINVAL; 2688 2689 if (copy_from_user(&newset, unewset, sizeof(newset))) 2690 return -EFAULT; 2691 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2692 2693 spin_lock_irq(¤t->sighand->siglock); 2694 current->saved_sigmask = current->blocked; 2695 current->blocked = newset; 2696 recalc_sigpending(); 2697 spin_unlock_irq(¤t->sighand->siglock); 2698 2699 current->state = TASK_INTERRUPTIBLE; 2700 schedule(); 2701 set_restore_sigmask(); 2702 return -ERESTARTNOHAND; 2703 } 2704 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2705 2706 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 2707 { 2708 return NULL; 2709 } 2710 2711 void __init signals_init(void) 2712 { 2713 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 2714 } 2715