1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/capability.h> 26 #include <linux/freezer.h> 27 #include <linux/pid_namespace.h> 28 #include <linux/nsproxy.h> 29 30 #include <asm/param.h> 31 #include <asm/uaccess.h> 32 #include <asm/unistd.h> 33 #include <asm/siginfo.h> 34 #include "audit.h" /* audit_signal_info() */ 35 36 /* 37 * SLAB caches for signal bits. 38 */ 39 40 static struct kmem_cache *sigqueue_cachep; 41 42 43 static int sig_ignored(struct task_struct *t, int sig) 44 { 45 void __user * handler; 46 47 /* 48 * Tracers always want to know about signals.. 49 */ 50 if (t->ptrace & PT_PTRACED) 51 return 0; 52 53 /* 54 * Blocked signals are never ignored, since the 55 * signal handler may change by the time it is 56 * unblocked. 57 */ 58 if (sigismember(&t->blocked, sig)) 59 return 0; 60 61 /* Is it explicitly or implicitly ignored? */ 62 handler = t->sighand->action[sig-1].sa.sa_handler; 63 return handler == SIG_IGN || 64 (handler == SIG_DFL && sig_kernel_ignore(sig)); 65 } 66 67 /* 68 * Re-calculate pending state from the set of locally pending 69 * signals, globally pending signals, and blocked signals. 70 */ 71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 72 { 73 unsigned long ready; 74 long i; 75 76 switch (_NSIG_WORDS) { 77 default: 78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 79 ready |= signal->sig[i] &~ blocked->sig[i]; 80 break; 81 82 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 83 ready |= signal->sig[2] &~ blocked->sig[2]; 84 ready |= signal->sig[1] &~ blocked->sig[1]; 85 ready |= signal->sig[0] &~ blocked->sig[0]; 86 break; 87 88 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 89 ready |= signal->sig[0] &~ blocked->sig[0]; 90 break; 91 92 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 93 } 94 return ready != 0; 95 } 96 97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 98 99 static int recalc_sigpending_tsk(struct task_struct *t) 100 { 101 if (t->signal->group_stop_count > 0 || 102 (freezing(t)) || 103 PENDING(&t->pending, &t->blocked) || 104 PENDING(&t->signal->shared_pending, &t->blocked)) { 105 set_tsk_thread_flag(t, TIF_SIGPENDING); 106 return 1; 107 } 108 /* 109 * We must never clear the flag in another thread, or in current 110 * when it's possible the current syscall is returning -ERESTART*. 111 * So we don't clear it here, and only callers who know they should do. 112 */ 113 return 0; 114 } 115 116 /* 117 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 118 * This is superfluous when called on current, the wakeup is a harmless no-op. 119 */ 120 void recalc_sigpending_and_wake(struct task_struct *t) 121 { 122 if (recalc_sigpending_tsk(t)) 123 signal_wake_up(t, 0); 124 } 125 126 void recalc_sigpending(void) 127 { 128 if (!recalc_sigpending_tsk(current)) 129 clear_thread_flag(TIF_SIGPENDING); 130 131 } 132 133 /* Given the mask, find the first available signal that should be serviced. */ 134 135 int next_signal(struct sigpending *pending, sigset_t *mask) 136 { 137 unsigned long i, *s, *m, x; 138 int sig = 0; 139 140 s = pending->signal.sig; 141 m = mask->sig; 142 switch (_NSIG_WORDS) { 143 default: 144 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 145 if ((x = *s &~ *m) != 0) { 146 sig = ffz(~x) + i*_NSIG_BPW + 1; 147 break; 148 } 149 break; 150 151 case 2: if ((x = s[0] &~ m[0]) != 0) 152 sig = 1; 153 else if ((x = s[1] &~ m[1]) != 0) 154 sig = _NSIG_BPW + 1; 155 else 156 break; 157 sig += ffz(~x); 158 break; 159 160 case 1: if ((x = *s &~ *m) != 0) 161 sig = ffz(~x) + 1; 162 break; 163 } 164 165 return sig; 166 } 167 168 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 169 int override_rlimit) 170 { 171 struct sigqueue *q = NULL; 172 struct user_struct *user; 173 174 /* 175 * In order to avoid problems with "switch_user()", we want to make 176 * sure that the compiler doesn't re-load "t->user" 177 */ 178 user = t->user; 179 barrier(); 180 atomic_inc(&user->sigpending); 181 if (override_rlimit || 182 atomic_read(&user->sigpending) <= 183 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 184 q = kmem_cache_alloc(sigqueue_cachep, flags); 185 if (unlikely(q == NULL)) { 186 atomic_dec(&user->sigpending); 187 } else { 188 INIT_LIST_HEAD(&q->list); 189 q->flags = 0; 190 q->user = get_uid(user); 191 } 192 return(q); 193 } 194 195 static void __sigqueue_free(struct sigqueue *q) 196 { 197 if (q->flags & SIGQUEUE_PREALLOC) 198 return; 199 atomic_dec(&q->user->sigpending); 200 free_uid(q->user); 201 kmem_cache_free(sigqueue_cachep, q); 202 } 203 204 void flush_sigqueue(struct sigpending *queue) 205 { 206 struct sigqueue *q; 207 208 sigemptyset(&queue->signal); 209 while (!list_empty(&queue->list)) { 210 q = list_entry(queue->list.next, struct sigqueue , list); 211 list_del_init(&q->list); 212 __sigqueue_free(q); 213 } 214 } 215 216 /* 217 * Flush all pending signals for a task. 218 */ 219 void flush_signals(struct task_struct *t) 220 { 221 unsigned long flags; 222 223 spin_lock_irqsave(&t->sighand->siglock, flags); 224 clear_tsk_thread_flag(t,TIF_SIGPENDING); 225 flush_sigqueue(&t->pending); 226 flush_sigqueue(&t->signal->shared_pending); 227 spin_unlock_irqrestore(&t->sighand->siglock, flags); 228 } 229 230 void ignore_signals(struct task_struct *t) 231 { 232 int i; 233 234 for (i = 0; i < _NSIG; ++i) 235 t->sighand->action[i].sa.sa_handler = SIG_IGN; 236 237 flush_signals(t); 238 } 239 240 /* 241 * Flush all handlers for a task. 242 */ 243 244 void 245 flush_signal_handlers(struct task_struct *t, int force_default) 246 { 247 int i; 248 struct k_sigaction *ka = &t->sighand->action[0]; 249 for (i = _NSIG ; i != 0 ; i--) { 250 if (force_default || ka->sa.sa_handler != SIG_IGN) 251 ka->sa.sa_handler = SIG_DFL; 252 ka->sa.sa_flags = 0; 253 sigemptyset(&ka->sa.sa_mask); 254 ka++; 255 } 256 } 257 258 int unhandled_signal(struct task_struct *tsk, int sig) 259 { 260 if (is_init(tsk)) 261 return 1; 262 if (tsk->ptrace & PT_PTRACED) 263 return 0; 264 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) || 265 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL); 266 } 267 268 269 /* Notify the system that a driver wants to block all signals for this 270 * process, and wants to be notified if any signals at all were to be 271 * sent/acted upon. If the notifier routine returns non-zero, then the 272 * signal will be acted upon after all. If the notifier routine returns 0, 273 * then then signal will be blocked. Only one block per process is 274 * allowed. priv is a pointer to private data that the notifier routine 275 * can use to determine if the signal should be blocked or not. */ 276 277 void 278 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 279 { 280 unsigned long flags; 281 282 spin_lock_irqsave(¤t->sighand->siglock, flags); 283 current->notifier_mask = mask; 284 current->notifier_data = priv; 285 current->notifier = notifier; 286 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 287 } 288 289 /* Notify the system that blocking has ended. */ 290 291 void 292 unblock_all_signals(void) 293 { 294 unsigned long flags; 295 296 spin_lock_irqsave(¤t->sighand->siglock, flags); 297 current->notifier = NULL; 298 current->notifier_data = NULL; 299 recalc_sigpending(); 300 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 301 } 302 303 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info) 304 { 305 struct sigqueue *q, *first = NULL; 306 int still_pending = 0; 307 308 if (unlikely(!sigismember(&list->signal, sig))) 309 return 0; 310 311 /* 312 * Collect the siginfo appropriate to this signal. Check if 313 * there is another siginfo for the same signal. 314 */ 315 list_for_each_entry(q, &list->list, list) { 316 if (q->info.si_signo == sig) { 317 if (first) { 318 still_pending = 1; 319 break; 320 } 321 first = q; 322 } 323 } 324 if (first) { 325 list_del_init(&first->list); 326 copy_siginfo(info, &first->info); 327 __sigqueue_free(first); 328 if (!still_pending) 329 sigdelset(&list->signal, sig); 330 } else { 331 332 /* Ok, it wasn't in the queue. This must be 333 a fast-pathed signal or we must have been 334 out of queue space. So zero out the info. 335 */ 336 sigdelset(&list->signal, sig); 337 info->si_signo = sig; 338 info->si_errno = 0; 339 info->si_code = 0; 340 info->si_pid = 0; 341 info->si_uid = 0; 342 } 343 return 1; 344 } 345 346 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 347 siginfo_t *info) 348 { 349 int sig = next_signal(pending, mask); 350 351 if (sig) { 352 if (current->notifier) { 353 if (sigismember(current->notifier_mask, sig)) { 354 if (!(current->notifier)(current->notifier_data)) { 355 clear_thread_flag(TIF_SIGPENDING); 356 return 0; 357 } 358 } 359 } 360 361 if (!collect_signal(sig, pending, info)) 362 sig = 0; 363 } 364 365 return sig; 366 } 367 368 /* 369 * Dequeue a signal and return the element to the caller, which is 370 * expected to free it. 371 * 372 * All callers have to hold the siglock. 373 */ 374 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 375 { 376 int signr = 0; 377 378 /* We only dequeue private signals from ourselves, we don't let 379 * signalfd steal them 380 */ 381 signr = __dequeue_signal(&tsk->pending, mask, info); 382 if (!signr) { 383 signr = __dequeue_signal(&tsk->signal->shared_pending, 384 mask, info); 385 /* 386 * itimer signal ? 387 * 388 * itimers are process shared and we restart periodic 389 * itimers in the signal delivery path to prevent DoS 390 * attacks in the high resolution timer case. This is 391 * compliant with the old way of self restarting 392 * itimers, as the SIGALRM is a legacy signal and only 393 * queued once. Changing the restart behaviour to 394 * restart the timer in the signal dequeue path is 395 * reducing the timer noise on heavy loaded !highres 396 * systems too. 397 */ 398 if (unlikely(signr == SIGALRM)) { 399 struct hrtimer *tmr = &tsk->signal->real_timer; 400 401 if (!hrtimer_is_queued(tmr) && 402 tsk->signal->it_real_incr.tv64 != 0) { 403 hrtimer_forward(tmr, tmr->base->get_time(), 404 tsk->signal->it_real_incr); 405 hrtimer_restart(tmr); 406 } 407 } 408 } 409 recalc_sigpending(); 410 if (signr && unlikely(sig_kernel_stop(signr))) { 411 /* 412 * Set a marker that we have dequeued a stop signal. Our 413 * caller might release the siglock and then the pending 414 * stop signal it is about to process is no longer in the 415 * pending bitmasks, but must still be cleared by a SIGCONT 416 * (and overruled by a SIGKILL). So those cases clear this 417 * shared flag after we've set it. Note that this flag may 418 * remain set after the signal we return is ignored or 419 * handled. That doesn't matter because its only purpose 420 * is to alert stop-signal processing code when another 421 * processor has come along and cleared the flag. 422 */ 423 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) 424 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 425 } 426 if (signr && 427 ((info->si_code & __SI_MASK) == __SI_TIMER) && 428 info->si_sys_private){ 429 /* 430 * Release the siglock to ensure proper locking order 431 * of timer locks outside of siglocks. Note, we leave 432 * irqs disabled here, since the posix-timers code is 433 * about to disable them again anyway. 434 */ 435 spin_unlock(&tsk->sighand->siglock); 436 do_schedule_next_timer(info); 437 spin_lock(&tsk->sighand->siglock); 438 } 439 return signr; 440 } 441 442 /* 443 * Tell a process that it has a new active signal.. 444 * 445 * NOTE! we rely on the previous spin_lock to 446 * lock interrupts for us! We can only be called with 447 * "siglock" held, and the local interrupt must 448 * have been disabled when that got acquired! 449 * 450 * No need to set need_resched since signal event passing 451 * goes through ->blocked 452 */ 453 void signal_wake_up(struct task_struct *t, int resume) 454 { 455 unsigned int mask; 456 457 set_tsk_thread_flag(t, TIF_SIGPENDING); 458 459 /* 460 * For SIGKILL, we want to wake it up in the stopped/traced case. 461 * We don't check t->state here because there is a race with it 462 * executing another processor and just now entering stopped state. 463 * By using wake_up_state, we ensure the process will wake up and 464 * handle its death signal. 465 */ 466 mask = TASK_INTERRUPTIBLE; 467 if (resume) 468 mask |= TASK_STOPPED | TASK_TRACED; 469 if (!wake_up_state(t, mask)) 470 kick_process(t); 471 } 472 473 /* 474 * Remove signals in mask from the pending set and queue. 475 * Returns 1 if any signals were found. 476 * 477 * All callers must be holding the siglock. 478 * 479 * This version takes a sigset mask and looks at all signals, 480 * not just those in the first mask word. 481 */ 482 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 483 { 484 struct sigqueue *q, *n; 485 sigset_t m; 486 487 sigandsets(&m, mask, &s->signal); 488 if (sigisemptyset(&m)) 489 return 0; 490 491 signandsets(&s->signal, &s->signal, mask); 492 list_for_each_entry_safe(q, n, &s->list, list) { 493 if (sigismember(mask, q->info.si_signo)) { 494 list_del_init(&q->list); 495 __sigqueue_free(q); 496 } 497 } 498 return 1; 499 } 500 /* 501 * Remove signals in mask from the pending set and queue. 502 * Returns 1 if any signals were found. 503 * 504 * All callers must be holding the siglock. 505 */ 506 static int rm_from_queue(unsigned long mask, struct sigpending *s) 507 { 508 struct sigqueue *q, *n; 509 510 if (!sigtestsetmask(&s->signal, mask)) 511 return 0; 512 513 sigdelsetmask(&s->signal, mask); 514 list_for_each_entry_safe(q, n, &s->list, list) { 515 if (q->info.si_signo < SIGRTMIN && 516 (mask & sigmask(q->info.si_signo))) { 517 list_del_init(&q->list); 518 __sigqueue_free(q); 519 } 520 } 521 return 1; 522 } 523 524 /* 525 * Bad permissions for sending the signal 526 */ 527 static int check_kill_permission(int sig, struct siginfo *info, 528 struct task_struct *t) 529 { 530 int error = -EINVAL; 531 if (!valid_signal(sig)) 532 return error; 533 534 if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) { 535 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 536 if (error) 537 return error; 538 error = -EPERM; 539 if (((sig != SIGCONT) || 540 (process_session(current) != process_session(t))) 541 && (current->euid ^ t->suid) && (current->euid ^ t->uid) 542 && (current->uid ^ t->suid) && (current->uid ^ t->uid) 543 && !capable(CAP_KILL)) 544 return error; 545 } 546 547 return security_task_kill(t, info, sig, 0); 548 } 549 550 /* forward decl */ 551 static void do_notify_parent_cldstop(struct task_struct *tsk, int why); 552 553 /* 554 * Handle magic process-wide effects of stop/continue signals. 555 * Unlike the signal actions, these happen immediately at signal-generation 556 * time regardless of blocking, ignoring, or handling. This does the 557 * actual continuing for SIGCONT, but not the actual stopping for stop 558 * signals. The process stop is done as a signal action for SIG_DFL. 559 */ 560 static void handle_stop_signal(int sig, struct task_struct *p) 561 { 562 struct task_struct *t; 563 564 if (p->signal->flags & SIGNAL_GROUP_EXIT) 565 /* 566 * The process is in the middle of dying already. 567 */ 568 return; 569 570 if (sig_kernel_stop(sig)) { 571 /* 572 * This is a stop signal. Remove SIGCONT from all queues. 573 */ 574 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); 575 t = p; 576 do { 577 rm_from_queue(sigmask(SIGCONT), &t->pending); 578 t = next_thread(t); 579 } while (t != p); 580 } else if (sig == SIGCONT) { 581 /* 582 * Remove all stop signals from all queues, 583 * and wake all threads. 584 */ 585 if (unlikely(p->signal->group_stop_count > 0)) { 586 /* 587 * There was a group stop in progress. We'll 588 * pretend it finished before we got here. We are 589 * obliged to report it to the parent: if the 590 * SIGSTOP happened "after" this SIGCONT, then it 591 * would have cleared this pending SIGCONT. If it 592 * happened "before" this SIGCONT, then the parent 593 * got the SIGCHLD about the stop finishing before 594 * the continue happened. We do the notification 595 * now, and it's as if the stop had finished and 596 * the SIGCHLD was pending on entry to this kill. 597 */ 598 p->signal->group_stop_count = 0; 599 p->signal->flags = SIGNAL_STOP_CONTINUED; 600 spin_unlock(&p->sighand->siglock); 601 do_notify_parent_cldstop(p, CLD_STOPPED); 602 spin_lock(&p->sighand->siglock); 603 } 604 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 605 t = p; 606 do { 607 unsigned int state; 608 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 609 610 /* 611 * If there is a handler for SIGCONT, we must make 612 * sure that no thread returns to user mode before 613 * we post the signal, in case it was the only 614 * thread eligible to run the signal handler--then 615 * it must not do anything between resuming and 616 * running the handler. With the TIF_SIGPENDING 617 * flag set, the thread will pause and acquire the 618 * siglock that we hold now and until we've queued 619 * the pending signal. 620 * 621 * Wake up the stopped thread _after_ setting 622 * TIF_SIGPENDING 623 */ 624 state = TASK_STOPPED; 625 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 626 set_tsk_thread_flag(t, TIF_SIGPENDING); 627 state |= TASK_INTERRUPTIBLE; 628 } 629 wake_up_state(t, state); 630 631 t = next_thread(t); 632 } while (t != p); 633 634 if (p->signal->flags & SIGNAL_STOP_STOPPED) { 635 /* 636 * We were in fact stopped, and are now continued. 637 * Notify the parent with CLD_CONTINUED. 638 */ 639 p->signal->flags = SIGNAL_STOP_CONTINUED; 640 p->signal->group_exit_code = 0; 641 spin_unlock(&p->sighand->siglock); 642 do_notify_parent_cldstop(p, CLD_CONTINUED); 643 spin_lock(&p->sighand->siglock); 644 } else { 645 /* 646 * We are not stopped, but there could be a stop 647 * signal in the middle of being processed after 648 * being removed from the queue. Clear that too. 649 */ 650 p->signal->flags = 0; 651 } 652 } else if (sig == SIGKILL) { 653 /* 654 * Make sure that any pending stop signal already dequeued 655 * is undone by the wakeup for SIGKILL. 656 */ 657 p->signal->flags = 0; 658 } 659 } 660 661 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 662 struct sigpending *signals) 663 { 664 struct sigqueue * q = NULL; 665 int ret = 0; 666 667 /* 668 * Deliver the signal to listening signalfds. This must be called 669 * with the sighand lock held. 670 */ 671 signalfd_notify(t, sig); 672 673 /* 674 * fast-pathed signals for kernel-internal things like SIGSTOP 675 * or SIGKILL. 676 */ 677 if (info == SEND_SIG_FORCED) 678 goto out_set; 679 680 /* Real-time signals must be queued if sent by sigqueue, or 681 some other real-time mechanism. It is implementation 682 defined whether kill() does so. We attempt to do so, on 683 the principle of least surprise, but since kill is not 684 allowed to fail with EAGAIN when low on memory we just 685 make sure at least one signal gets delivered and don't 686 pass on the info struct. */ 687 688 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 689 (is_si_special(info) || 690 info->si_code >= 0))); 691 if (q) { 692 list_add_tail(&q->list, &signals->list); 693 switch ((unsigned long) info) { 694 case (unsigned long) SEND_SIG_NOINFO: 695 q->info.si_signo = sig; 696 q->info.si_errno = 0; 697 q->info.si_code = SI_USER; 698 q->info.si_pid = current->pid; 699 q->info.si_uid = current->uid; 700 break; 701 case (unsigned long) SEND_SIG_PRIV: 702 q->info.si_signo = sig; 703 q->info.si_errno = 0; 704 q->info.si_code = SI_KERNEL; 705 q->info.si_pid = 0; 706 q->info.si_uid = 0; 707 break; 708 default: 709 copy_siginfo(&q->info, info); 710 break; 711 } 712 } else if (!is_si_special(info)) { 713 if (sig >= SIGRTMIN && info->si_code != SI_USER) 714 /* 715 * Queue overflow, abort. We may abort if the signal was rt 716 * and sent by user using something other than kill(). 717 */ 718 return -EAGAIN; 719 } 720 721 out_set: 722 sigaddset(&signals->signal, sig); 723 return ret; 724 } 725 726 #define LEGACY_QUEUE(sigptr, sig) \ 727 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) 728 729 int print_fatal_signals; 730 731 static void print_fatal_signal(struct pt_regs *regs, int signr) 732 { 733 printk("%s/%d: potentially unexpected fatal signal %d.\n", 734 current->comm, current->pid, signr); 735 736 #ifdef __i386__ 737 printk("code at %08lx: ", regs->eip); 738 { 739 int i; 740 for (i = 0; i < 16; i++) { 741 unsigned char insn; 742 743 __get_user(insn, (unsigned char *)(regs->eip + i)); 744 printk("%02x ", insn); 745 } 746 } 747 #endif 748 printk("\n"); 749 show_regs(regs); 750 } 751 752 static int __init setup_print_fatal_signals(char *str) 753 { 754 get_option (&str, &print_fatal_signals); 755 756 return 1; 757 } 758 759 __setup("print-fatal-signals=", setup_print_fatal_signals); 760 761 static int 762 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 763 { 764 int ret = 0; 765 766 BUG_ON(!irqs_disabled()); 767 assert_spin_locked(&t->sighand->siglock); 768 769 /* Short-circuit ignored signals. */ 770 if (sig_ignored(t, sig)) 771 goto out; 772 773 /* Support queueing exactly one non-rt signal, so that we 774 can get more detailed information about the cause of 775 the signal. */ 776 if (LEGACY_QUEUE(&t->pending, sig)) 777 goto out; 778 779 ret = send_signal(sig, info, t, &t->pending); 780 if (!ret && !sigismember(&t->blocked, sig)) 781 signal_wake_up(t, sig == SIGKILL); 782 out: 783 return ret; 784 } 785 786 /* 787 * Force a signal that the process can't ignore: if necessary 788 * we unblock the signal and change any SIG_IGN to SIG_DFL. 789 * 790 * Note: If we unblock the signal, we always reset it to SIG_DFL, 791 * since we do not want to have a signal handler that was blocked 792 * be invoked when user space had explicitly blocked it. 793 * 794 * We don't want to have recursive SIGSEGV's etc, for example. 795 */ 796 int 797 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 798 { 799 unsigned long int flags; 800 int ret, blocked, ignored; 801 struct k_sigaction *action; 802 803 spin_lock_irqsave(&t->sighand->siglock, flags); 804 action = &t->sighand->action[sig-1]; 805 ignored = action->sa.sa_handler == SIG_IGN; 806 blocked = sigismember(&t->blocked, sig); 807 if (blocked || ignored) { 808 action->sa.sa_handler = SIG_DFL; 809 if (blocked) { 810 sigdelset(&t->blocked, sig); 811 recalc_sigpending_and_wake(t); 812 } 813 } 814 ret = specific_send_sig_info(sig, info, t); 815 spin_unlock_irqrestore(&t->sighand->siglock, flags); 816 817 return ret; 818 } 819 820 void 821 force_sig_specific(int sig, struct task_struct *t) 822 { 823 force_sig_info(sig, SEND_SIG_FORCED, t); 824 } 825 826 /* 827 * Test if P wants to take SIG. After we've checked all threads with this, 828 * it's equivalent to finding no threads not blocking SIG. Any threads not 829 * blocking SIG were ruled out because they are not running and already 830 * have pending signals. Such threads will dequeue from the shared queue 831 * as soon as they're available, so putting the signal on the shared queue 832 * will be equivalent to sending it to one such thread. 833 */ 834 static inline int wants_signal(int sig, struct task_struct *p) 835 { 836 if (sigismember(&p->blocked, sig)) 837 return 0; 838 if (p->flags & PF_EXITING) 839 return 0; 840 if (sig == SIGKILL) 841 return 1; 842 if (p->state & (TASK_STOPPED | TASK_TRACED)) 843 return 0; 844 return task_curr(p) || !signal_pending(p); 845 } 846 847 static void 848 __group_complete_signal(int sig, struct task_struct *p) 849 { 850 struct task_struct *t; 851 852 /* 853 * Now find a thread we can wake up to take the signal off the queue. 854 * 855 * If the main thread wants the signal, it gets first crack. 856 * Probably the least surprising to the average bear. 857 */ 858 if (wants_signal(sig, p)) 859 t = p; 860 else if (thread_group_empty(p)) 861 /* 862 * There is just one thread and it does not need to be woken. 863 * It will dequeue unblocked signals before it runs again. 864 */ 865 return; 866 else { 867 /* 868 * Otherwise try to find a suitable thread. 869 */ 870 t = p->signal->curr_target; 871 if (t == NULL) 872 /* restart balancing at this thread */ 873 t = p->signal->curr_target = p; 874 875 while (!wants_signal(sig, t)) { 876 t = next_thread(t); 877 if (t == p->signal->curr_target) 878 /* 879 * No thread needs to be woken. 880 * Any eligible threads will see 881 * the signal in the queue soon. 882 */ 883 return; 884 } 885 p->signal->curr_target = t; 886 } 887 888 /* 889 * Found a killable thread. If the signal will be fatal, 890 * then start taking the whole group down immediately. 891 */ 892 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && 893 !sigismember(&t->real_blocked, sig) && 894 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { 895 /* 896 * This signal will be fatal to the whole group. 897 */ 898 if (!sig_kernel_coredump(sig)) { 899 /* 900 * Start a group exit and wake everybody up. 901 * This way we don't have other threads 902 * running and doing things after a slower 903 * thread has the fatal signal pending. 904 */ 905 p->signal->flags = SIGNAL_GROUP_EXIT; 906 p->signal->group_exit_code = sig; 907 p->signal->group_stop_count = 0; 908 t = p; 909 do { 910 sigaddset(&t->pending.signal, SIGKILL); 911 signal_wake_up(t, 1); 912 t = next_thread(t); 913 } while (t != p); 914 return; 915 } 916 917 /* 918 * There will be a core dump. We make all threads other 919 * than the chosen one go into a group stop so that nothing 920 * happens until it gets scheduled, takes the signal off 921 * the shared queue, and does the core dump. This is a 922 * little more complicated than strictly necessary, but it 923 * keeps the signal state that winds up in the core dump 924 * unchanged from the death state, e.g. which thread had 925 * the core-dump signal unblocked. 926 */ 927 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 928 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 929 p->signal->group_stop_count = 0; 930 p->signal->group_exit_task = t; 931 t = p; 932 do { 933 p->signal->group_stop_count++; 934 signal_wake_up(t, 0); 935 t = next_thread(t); 936 } while (t != p); 937 wake_up_process(p->signal->group_exit_task); 938 return; 939 } 940 941 /* 942 * The signal is already in the shared-pending queue. 943 * Tell the chosen thread to wake up and dequeue it. 944 */ 945 signal_wake_up(t, sig == SIGKILL); 946 return; 947 } 948 949 int 950 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 951 { 952 int ret = 0; 953 954 assert_spin_locked(&p->sighand->siglock); 955 handle_stop_signal(sig, p); 956 957 /* Short-circuit ignored signals. */ 958 if (sig_ignored(p, sig)) 959 return ret; 960 961 if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) 962 /* This is a non-RT signal and we already have one queued. */ 963 return ret; 964 965 /* 966 * Put this signal on the shared-pending queue, or fail with EAGAIN. 967 * We always use the shared queue for process-wide signals, 968 * to avoid several races. 969 */ 970 ret = send_signal(sig, info, p, &p->signal->shared_pending); 971 if (unlikely(ret)) 972 return ret; 973 974 __group_complete_signal(sig, p); 975 return 0; 976 } 977 978 /* 979 * Nuke all other threads in the group. 980 */ 981 void zap_other_threads(struct task_struct *p) 982 { 983 struct task_struct *t; 984 985 p->signal->flags = SIGNAL_GROUP_EXIT; 986 p->signal->group_stop_count = 0; 987 988 if (thread_group_empty(p)) 989 return; 990 991 for (t = next_thread(p); t != p; t = next_thread(t)) { 992 /* 993 * Don't bother with already dead threads 994 */ 995 if (t->exit_state) 996 continue; 997 998 /* SIGKILL will be handled before any pending SIGSTOP */ 999 sigaddset(&t->pending.signal, SIGKILL); 1000 signal_wake_up(t, 1); 1001 } 1002 } 1003 1004 /* 1005 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 1006 */ 1007 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 1008 { 1009 struct sighand_struct *sighand; 1010 1011 for (;;) { 1012 sighand = rcu_dereference(tsk->sighand); 1013 if (unlikely(sighand == NULL)) 1014 break; 1015 1016 spin_lock_irqsave(&sighand->siglock, *flags); 1017 if (likely(sighand == tsk->sighand)) 1018 break; 1019 spin_unlock_irqrestore(&sighand->siglock, *flags); 1020 } 1021 1022 return sighand; 1023 } 1024 1025 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1026 { 1027 unsigned long flags; 1028 int ret; 1029 1030 ret = check_kill_permission(sig, info, p); 1031 1032 if (!ret && sig) { 1033 ret = -ESRCH; 1034 if (lock_task_sighand(p, &flags)) { 1035 ret = __group_send_sig_info(sig, info, p); 1036 unlock_task_sighand(p, &flags); 1037 } 1038 } 1039 1040 return ret; 1041 } 1042 1043 /* 1044 * kill_pgrp_info() sends a signal to a process group: this is what the tty 1045 * control characters do (^C, ^Z etc) 1046 */ 1047 1048 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1049 { 1050 struct task_struct *p = NULL; 1051 int retval, success; 1052 1053 success = 0; 1054 retval = -ESRCH; 1055 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1056 int err = group_send_sig_info(sig, info, p); 1057 success |= !err; 1058 retval = err; 1059 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1060 return success ? 0 : retval; 1061 } 1062 1063 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1064 { 1065 int retval; 1066 1067 read_lock(&tasklist_lock); 1068 retval = __kill_pgrp_info(sig, info, pgrp); 1069 read_unlock(&tasklist_lock); 1070 1071 return retval; 1072 } 1073 1074 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1075 { 1076 int error; 1077 struct task_struct *p; 1078 1079 rcu_read_lock(); 1080 if (unlikely(sig_needs_tasklist(sig))) 1081 read_lock(&tasklist_lock); 1082 1083 p = pid_task(pid, PIDTYPE_PID); 1084 error = -ESRCH; 1085 if (p) 1086 error = group_send_sig_info(sig, info, p); 1087 1088 if (unlikely(sig_needs_tasklist(sig))) 1089 read_unlock(&tasklist_lock); 1090 rcu_read_unlock(); 1091 return error; 1092 } 1093 1094 int 1095 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1096 { 1097 int error; 1098 rcu_read_lock(); 1099 error = kill_pid_info(sig, info, find_pid(pid)); 1100 rcu_read_unlock(); 1101 return error; 1102 } 1103 1104 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1105 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, 1106 uid_t uid, uid_t euid, u32 secid) 1107 { 1108 int ret = -EINVAL; 1109 struct task_struct *p; 1110 1111 if (!valid_signal(sig)) 1112 return ret; 1113 1114 read_lock(&tasklist_lock); 1115 p = pid_task(pid, PIDTYPE_PID); 1116 if (!p) { 1117 ret = -ESRCH; 1118 goto out_unlock; 1119 } 1120 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 1121 && (euid != p->suid) && (euid != p->uid) 1122 && (uid != p->suid) && (uid != p->uid)) { 1123 ret = -EPERM; 1124 goto out_unlock; 1125 } 1126 ret = security_task_kill(p, info, sig, secid); 1127 if (ret) 1128 goto out_unlock; 1129 if (sig && p->sighand) { 1130 unsigned long flags; 1131 spin_lock_irqsave(&p->sighand->siglock, flags); 1132 ret = __group_send_sig_info(sig, info, p); 1133 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1134 } 1135 out_unlock: 1136 read_unlock(&tasklist_lock); 1137 return ret; 1138 } 1139 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); 1140 1141 /* 1142 * kill_something_info() interprets pid in interesting ways just like kill(2). 1143 * 1144 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1145 * is probably wrong. Should make it like BSD or SYSV. 1146 */ 1147 1148 static int kill_something_info(int sig, struct siginfo *info, int pid) 1149 { 1150 int ret; 1151 rcu_read_lock(); 1152 if (!pid) { 1153 ret = kill_pgrp_info(sig, info, task_pgrp(current)); 1154 } else if (pid == -1) { 1155 int retval = 0, count = 0; 1156 struct task_struct * p; 1157 1158 read_lock(&tasklist_lock); 1159 for_each_process(p) { 1160 if (p->pid > 1 && p->tgid != current->tgid) { 1161 int err = group_send_sig_info(sig, info, p); 1162 ++count; 1163 if (err != -EPERM) 1164 retval = err; 1165 } 1166 } 1167 read_unlock(&tasklist_lock); 1168 ret = count ? retval : -ESRCH; 1169 } else if (pid < 0) { 1170 ret = kill_pgrp_info(sig, info, find_pid(-pid)); 1171 } else { 1172 ret = kill_pid_info(sig, info, find_pid(pid)); 1173 } 1174 rcu_read_unlock(); 1175 return ret; 1176 } 1177 1178 /* 1179 * These are for backward compatibility with the rest of the kernel source. 1180 */ 1181 1182 /* 1183 * These two are the most common entry points. They send a signal 1184 * just to the specific thread. 1185 */ 1186 int 1187 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1188 { 1189 int ret; 1190 unsigned long flags; 1191 1192 /* 1193 * Make sure legacy kernel users don't send in bad values 1194 * (normal paths check this in check_kill_permission). 1195 */ 1196 if (!valid_signal(sig)) 1197 return -EINVAL; 1198 1199 /* 1200 * We need the tasklist lock even for the specific 1201 * thread case (when we don't need to follow the group 1202 * lists) in order to avoid races with "p->sighand" 1203 * going away or changing from under us. 1204 */ 1205 read_lock(&tasklist_lock); 1206 spin_lock_irqsave(&p->sighand->siglock, flags); 1207 ret = specific_send_sig_info(sig, info, p); 1208 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1209 read_unlock(&tasklist_lock); 1210 return ret; 1211 } 1212 1213 #define __si_special(priv) \ 1214 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1215 1216 int 1217 send_sig(int sig, struct task_struct *p, int priv) 1218 { 1219 return send_sig_info(sig, __si_special(priv), p); 1220 } 1221 1222 /* 1223 * This is the entry point for "process-wide" signals. 1224 * They will go to an appropriate thread in the thread group. 1225 */ 1226 int 1227 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1228 { 1229 int ret; 1230 read_lock(&tasklist_lock); 1231 ret = group_send_sig_info(sig, info, p); 1232 read_unlock(&tasklist_lock); 1233 return ret; 1234 } 1235 1236 void 1237 force_sig(int sig, struct task_struct *p) 1238 { 1239 force_sig_info(sig, SEND_SIG_PRIV, p); 1240 } 1241 1242 /* 1243 * When things go south during signal handling, we 1244 * will force a SIGSEGV. And if the signal that caused 1245 * the problem was already a SIGSEGV, we'll want to 1246 * make sure we don't even try to deliver the signal.. 1247 */ 1248 int 1249 force_sigsegv(int sig, struct task_struct *p) 1250 { 1251 if (sig == SIGSEGV) { 1252 unsigned long flags; 1253 spin_lock_irqsave(&p->sighand->siglock, flags); 1254 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1255 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1256 } 1257 force_sig(SIGSEGV, p); 1258 return 0; 1259 } 1260 1261 int kill_pgrp(struct pid *pid, int sig, int priv) 1262 { 1263 return kill_pgrp_info(sig, __si_special(priv), pid); 1264 } 1265 EXPORT_SYMBOL(kill_pgrp); 1266 1267 int kill_pid(struct pid *pid, int sig, int priv) 1268 { 1269 return kill_pid_info(sig, __si_special(priv), pid); 1270 } 1271 EXPORT_SYMBOL(kill_pid); 1272 1273 int 1274 kill_proc(pid_t pid, int sig, int priv) 1275 { 1276 return kill_proc_info(sig, __si_special(priv), pid); 1277 } 1278 1279 /* 1280 * These functions support sending signals using preallocated sigqueue 1281 * structures. This is needed "because realtime applications cannot 1282 * afford to lose notifications of asynchronous events, like timer 1283 * expirations or I/O completions". In the case of Posix Timers 1284 * we allocate the sigqueue structure from the timer_create. If this 1285 * allocation fails we are able to report the failure to the application 1286 * with an EAGAIN error. 1287 */ 1288 1289 struct sigqueue *sigqueue_alloc(void) 1290 { 1291 struct sigqueue *q; 1292 1293 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1294 q->flags |= SIGQUEUE_PREALLOC; 1295 return(q); 1296 } 1297 1298 void sigqueue_free(struct sigqueue *q) 1299 { 1300 unsigned long flags; 1301 spinlock_t *lock = ¤t->sighand->siglock; 1302 1303 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1304 /* 1305 * If the signal is still pending remove it from the 1306 * pending queue. We must hold ->siglock while testing 1307 * q->list to serialize with collect_signal(). 1308 */ 1309 spin_lock_irqsave(lock, flags); 1310 if (!list_empty(&q->list)) 1311 list_del_init(&q->list); 1312 spin_unlock_irqrestore(lock, flags); 1313 1314 q->flags &= ~SIGQUEUE_PREALLOC; 1315 __sigqueue_free(q); 1316 } 1317 1318 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1319 { 1320 unsigned long flags; 1321 int ret = 0; 1322 1323 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1324 1325 /* 1326 * The rcu based delayed sighand destroy makes it possible to 1327 * run this without tasklist lock held. The task struct itself 1328 * cannot go away as create_timer did get_task_struct(). 1329 * 1330 * We return -1, when the task is marked exiting, so 1331 * posix_timer_event can redirect it to the group leader 1332 */ 1333 rcu_read_lock(); 1334 1335 if (!likely(lock_task_sighand(p, &flags))) { 1336 ret = -1; 1337 goto out_err; 1338 } 1339 1340 if (unlikely(!list_empty(&q->list))) { 1341 /* 1342 * If an SI_TIMER entry is already queue just increment 1343 * the overrun count. 1344 */ 1345 BUG_ON(q->info.si_code != SI_TIMER); 1346 q->info.si_overrun++; 1347 goto out; 1348 } 1349 /* Short-circuit ignored signals. */ 1350 if (sig_ignored(p, sig)) { 1351 ret = 1; 1352 goto out; 1353 } 1354 /* 1355 * Deliver the signal to listening signalfds. This must be called 1356 * with the sighand lock held. 1357 */ 1358 signalfd_notify(p, sig); 1359 1360 list_add_tail(&q->list, &p->pending.list); 1361 sigaddset(&p->pending.signal, sig); 1362 if (!sigismember(&p->blocked, sig)) 1363 signal_wake_up(p, sig == SIGKILL); 1364 1365 out: 1366 unlock_task_sighand(p, &flags); 1367 out_err: 1368 rcu_read_unlock(); 1369 1370 return ret; 1371 } 1372 1373 int 1374 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1375 { 1376 unsigned long flags; 1377 int ret = 0; 1378 1379 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1380 1381 read_lock(&tasklist_lock); 1382 /* Since it_lock is held, p->sighand cannot be NULL. */ 1383 spin_lock_irqsave(&p->sighand->siglock, flags); 1384 handle_stop_signal(sig, p); 1385 1386 /* Short-circuit ignored signals. */ 1387 if (sig_ignored(p, sig)) { 1388 ret = 1; 1389 goto out; 1390 } 1391 1392 if (unlikely(!list_empty(&q->list))) { 1393 /* 1394 * If an SI_TIMER entry is already queue just increment 1395 * the overrun count. Other uses should not try to 1396 * send the signal multiple times. 1397 */ 1398 BUG_ON(q->info.si_code != SI_TIMER); 1399 q->info.si_overrun++; 1400 goto out; 1401 } 1402 /* 1403 * Deliver the signal to listening signalfds. This must be called 1404 * with the sighand lock held. 1405 */ 1406 signalfd_notify(p, sig); 1407 1408 /* 1409 * Put this signal on the shared-pending queue. 1410 * We always use the shared queue for process-wide signals, 1411 * to avoid several races. 1412 */ 1413 list_add_tail(&q->list, &p->signal->shared_pending.list); 1414 sigaddset(&p->signal->shared_pending.signal, sig); 1415 1416 __group_complete_signal(sig, p); 1417 out: 1418 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1419 read_unlock(&tasklist_lock); 1420 return ret; 1421 } 1422 1423 /* 1424 * Wake up any threads in the parent blocked in wait* syscalls. 1425 */ 1426 static inline void __wake_up_parent(struct task_struct *p, 1427 struct task_struct *parent) 1428 { 1429 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1430 } 1431 1432 /* 1433 * Let a parent know about the death of a child. 1434 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1435 */ 1436 1437 void do_notify_parent(struct task_struct *tsk, int sig) 1438 { 1439 struct siginfo info; 1440 unsigned long flags; 1441 struct sighand_struct *psig; 1442 1443 BUG_ON(sig == -1); 1444 1445 /* do_notify_parent_cldstop should have been called instead. */ 1446 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); 1447 1448 BUG_ON(!tsk->ptrace && 1449 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1450 1451 info.si_signo = sig; 1452 info.si_errno = 0; 1453 info.si_pid = tsk->pid; 1454 info.si_uid = tsk->uid; 1455 1456 /* FIXME: find out whether or not this is supposed to be c*time. */ 1457 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, 1458 tsk->signal->utime)); 1459 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, 1460 tsk->signal->stime)); 1461 1462 info.si_status = tsk->exit_code & 0x7f; 1463 if (tsk->exit_code & 0x80) 1464 info.si_code = CLD_DUMPED; 1465 else if (tsk->exit_code & 0x7f) 1466 info.si_code = CLD_KILLED; 1467 else { 1468 info.si_code = CLD_EXITED; 1469 info.si_status = tsk->exit_code >> 8; 1470 } 1471 1472 psig = tsk->parent->sighand; 1473 spin_lock_irqsave(&psig->siglock, flags); 1474 if (!tsk->ptrace && sig == SIGCHLD && 1475 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1476 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1477 /* 1478 * We are exiting and our parent doesn't care. POSIX.1 1479 * defines special semantics for setting SIGCHLD to SIG_IGN 1480 * or setting the SA_NOCLDWAIT flag: we should be reaped 1481 * automatically and not left for our parent's wait4 call. 1482 * Rather than having the parent do it as a magic kind of 1483 * signal handler, we just set this to tell do_exit that we 1484 * can be cleaned up without becoming a zombie. Note that 1485 * we still call __wake_up_parent in this case, because a 1486 * blocked sys_wait4 might now return -ECHILD. 1487 * 1488 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1489 * is implementation-defined: we do (if you don't want 1490 * it, just use SIG_IGN instead). 1491 */ 1492 tsk->exit_signal = -1; 1493 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1494 sig = 0; 1495 } 1496 if (valid_signal(sig) && sig > 0) 1497 __group_send_sig_info(sig, &info, tsk->parent); 1498 __wake_up_parent(tsk, tsk->parent); 1499 spin_unlock_irqrestore(&psig->siglock, flags); 1500 } 1501 1502 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1503 { 1504 struct siginfo info; 1505 unsigned long flags; 1506 struct task_struct *parent; 1507 struct sighand_struct *sighand; 1508 1509 if (tsk->ptrace & PT_PTRACED) 1510 parent = tsk->parent; 1511 else { 1512 tsk = tsk->group_leader; 1513 parent = tsk->real_parent; 1514 } 1515 1516 info.si_signo = SIGCHLD; 1517 info.si_errno = 0; 1518 info.si_pid = tsk->pid; 1519 info.si_uid = tsk->uid; 1520 1521 /* FIXME: find out whether or not this is supposed to be c*time. */ 1522 info.si_utime = cputime_to_jiffies(tsk->utime); 1523 info.si_stime = cputime_to_jiffies(tsk->stime); 1524 1525 info.si_code = why; 1526 switch (why) { 1527 case CLD_CONTINUED: 1528 info.si_status = SIGCONT; 1529 break; 1530 case CLD_STOPPED: 1531 info.si_status = tsk->signal->group_exit_code & 0x7f; 1532 break; 1533 case CLD_TRAPPED: 1534 info.si_status = tsk->exit_code & 0x7f; 1535 break; 1536 default: 1537 BUG(); 1538 } 1539 1540 sighand = parent->sighand; 1541 spin_lock_irqsave(&sighand->siglock, flags); 1542 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1543 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1544 __group_send_sig_info(SIGCHLD, &info, parent); 1545 /* 1546 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1547 */ 1548 __wake_up_parent(tsk, parent); 1549 spin_unlock_irqrestore(&sighand->siglock, flags); 1550 } 1551 1552 static inline int may_ptrace_stop(void) 1553 { 1554 if (!likely(current->ptrace & PT_PTRACED)) 1555 return 0; 1556 1557 if (unlikely(current->parent == current->real_parent && 1558 (current->ptrace & PT_ATTACHED))) 1559 return 0; 1560 1561 /* 1562 * Are we in the middle of do_coredump? 1563 * If so and our tracer is also part of the coredump stopping 1564 * is a deadlock situation, and pointless because our tracer 1565 * is dead so don't allow us to stop. 1566 * If SIGKILL was already sent before the caller unlocked 1567 * ->siglock we must see ->core_waiters != 0. Otherwise it 1568 * is safe to enter schedule(). 1569 */ 1570 if (unlikely(current->mm->core_waiters) && 1571 unlikely(current->mm == current->parent->mm)) 1572 return 0; 1573 1574 return 1; 1575 } 1576 1577 /* 1578 * This must be called with current->sighand->siglock held. 1579 * 1580 * This should be the path for all ptrace stops. 1581 * We always set current->last_siginfo while stopped here. 1582 * That makes it a way to test a stopped process for 1583 * being ptrace-stopped vs being job-control-stopped. 1584 * 1585 * If we actually decide not to stop at all because the tracer is gone, 1586 * we leave nostop_code in current->exit_code. 1587 */ 1588 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) 1589 { 1590 /* 1591 * If there is a group stop in progress, 1592 * we must participate in the bookkeeping. 1593 */ 1594 if (current->signal->group_stop_count > 0) 1595 --current->signal->group_stop_count; 1596 1597 current->last_siginfo = info; 1598 current->exit_code = exit_code; 1599 1600 /* Let the debugger run. */ 1601 set_current_state(TASK_TRACED); 1602 spin_unlock_irq(¤t->sighand->siglock); 1603 try_to_freeze(); 1604 read_lock(&tasklist_lock); 1605 if (may_ptrace_stop()) { 1606 do_notify_parent_cldstop(current, CLD_TRAPPED); 1607 read_unlock(&tasklist_lock); 1608 schedule(); 1609 } else { 1610 /* 1611 * By the time we got the lock, our tracer went away. 1612 * Don't stop here. 1613 */ 1614 read_unlock(&tasklist_lock); 1615 set_current_state(TASK_RUNNING); 1616 current->exit_code = nostop_code; 1617 } 1618 1619 /* 1620 * We are back. Now reacquire the siglock before touching 1621 * last_siginfo, so that we are sure to have synchronized with 1622 * any signal-sending on another CPU that wants to examine it. 1623 */ 1624 spin_lock_irq(¤t->sighand->siglock); 1625 current->last_siginfo = NULL; 1626 1627 /* 1628 * Queued signals ignored us while we were stopped for tracing. 1629 * So check for any that we should take before resuming user mode. 1630 * This sets TIF_SIGPENDING, but never clears it. 1631 */ 1632 recalc_sigpending_tsk(current); 1633 } 1634 1635 void ptrace_notify(int exit_code) 1636 { 1637 siginfo_t info; 1638 1639 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1640 1641 memset(&info, 0, sizeof info); 1642 info.si_signo = SIGTRAP; 1643 info.si_code = exit_code; 1644 info.si_pid = current->pid; 1645 info.si_uid = current->uid; 1646 1647 /* Let the debugger run. */ 1648 spin_lock_irq(¤t->sighand->siglock); 1649 ptrace_stop(exit_code, 0, &info); 1650 spin_unlock_irq(¤t->sighand->siglock); 1651 } 1652 1653 static void 1654 finish_stop(int stop_count) 1655 { 1656 /* 1657 * If there are no other threads in the group, or if there is 1658 * a group stop in progress and we are the last to stop, 1659 * report to the parent. When ptraced, every thread reports itself. 1660 */ 1661 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) { 1662 read_lock(&tasklist_lock); 1663 do_notify_parent_cldstop(current, CLD_STOPPED); 1664 read_unlock(&tasklist_lock); 1665 } 1666 1667 do { 1668 schedule(); 1669 } while (try_to_freeze()); 1670 /* 1671 * Now we don't run again until continued. 1672 */ 1673 current->exit_code = 0; 1674 } 1675 1676 /* 1677 * This performs the stopping for SIGSTOP and other stop signals. 1678 * We have to stop all threads in the thread group. 1679 * Returns nonzero if we've actually stopped and released the siglock. 1680 * Returns zero if we didn't stop and still hold the siglock. 1681 */ 1682 static int do_signal_stop(int signr) 1683 { 1684 struct signal_struct *sig = current->signal; 1685 int stop_count; 1686 1687 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) 1688 return 0; 1689 1690 if (sig->group_stop_count > 0) { 1691 /* 1692 * There is a group stop in progress. We don't need to 1693 * start another one. 1694 */ 1695 stop_count = --sig->group_stop_count; 1696 } else { 1697 /* 1698 * There is no group stop already in progress. 1699 * We must initiate one now. 1700 */ 1701 struct task_struct *t; 1702 1703 sig->group_exit_code = signr; 1704 1705 stop_count = 0; 1706 for (t = next_thread(current); t != current; t = next_thread(t)) 1707 /* 1708 * Setting state to TASK_STOPPED for a group 1709 * stop is always done with the siglock held, 1710 * so this check has no races. 1711 */ 1712 if (!t->exit_state && 1713 !(t->state & (TASK_STOPPED|TASK_TRACED))) { 1714 stop_count++; 1715 signal_wake_up(t, 0); 1716 } 1717 sig->group_stop_count = stop_count; 1718 } 1719 1720 if (stop_count == 0) 1721 sig->flags = SIGNAL_STOP_STOPPED; 1722 current->exit_code = sig->group_exit_code; 1723 __set_current_state(TASK_STOPPED); 1724 1725 spin_unlock_irq(¤t->sighand->siglock); 1726 finish_stop(stop_count); 1727 return 1; 1728 } 1729 1730 /* 1731 * Do appropriate magic when group_stop_count > 0. 1732 * We return nonzero if we stopped, after releasing the siglock. 1733 * We return zero if we still hold the siglock and should look 1734 * for another signal without checking group_stop_count again. 1735 */ 1736 static int handle_group_stop(void) 1737 { 1738 int stop_count; 1739 1740 if (current->signal->group_exit_task == current) { 1741 /* 1742 * Group stop is so we can do a core dump, 1743 * We are the initiating thread, so get on with it. 1744 */ 1745 current->signal->group_exit_task = NULL; 1746 return 0; 1747 } 1748 1749 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1750 /* 1751 * Group stop is so another thread can do a core dump, 1752 * or else we are racing against a death signal. 1753 * Just punt the stop so we can get the next signal. 1754 */ 1755 return 0; 1756 1757 /* 1758 * There is a group stop in progress. We stop 1759 * without any associated signal being in our queue. 1760 */ 1761 stop_count = --current->signal->group_stop_count; 1762 if (stop_count == 0) 1763 current->signal->flags = SIGNAL_STOP_STOPPED; 1764 current->exit_code = current->signal->group_exit_code; 1765 set_current_state(TASK_STOPPED); 1766 spin_unlock_irq(¤t->sighand->siglock); 1767 finish_stop(stop_count); 1768 return 1; 1769 } 1770 1771 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1772 struct pt_regs *regs, void *cookie) 1773 { 1774 sigset_t *mask = ¤t->blocked; 1775 int signr = 0; 1776 1777 try_to_freeze(); 1778 1779 relock: 1780 spin_lock_irq(¤t->sighand->siglock); 1781 for (;;) { 1782 struct k_sigaction *ka; 1783 1784 if (unlikely(current->signal->group_stop_count > 0) && 1785 handle_group_stop()) 1786 goto relock; 1787 1788 signr = dequeue_signal(current, mask, info); 1789 1790 if (!signr) 1791 break; /* will return 0 */ 1792 1793 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { 1794 ptrace_signal_deliver(regs, cookie); 1795 1796 /* Let the debugger run. */ 1797 ptrace_stop(signr, signr, info); 1798 1799 /* We're back. Did the debugger cancel the sig? */ 1800 signr = current->exit_code; 1801 if (signr == 0) 1802 continue; 1803 1804 current->exit_code = 0; 1805 1806 /* Update the siginfo structure if the signal has 1807 changed. If the debugger wanted something 1808 specific in the siginfo structure then it should 1809 have updated *info via PTRACE_SETSIGINFO. */ 1810 if (signr != info->si_signo) { 1811 info->si_signo = signr; 1812 info->si_errno = 0; 1813 info->si_code = SI_USER; 1814 info->si_pid = current->parent->pid; 1815 info->si_uid = current->parent->uid; 1816 } 1817 1818 /* If the (new) signal is now blocked, requeue it. */ 1819 if (sigismember(¤t->blocked, signr)) { 1820 specific_send_sig_info(signr, info, current); 1821 continue; 1822 } 1823 } 1824 1825 ka = ¤t->sighand->action[signr-1]; 1826 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1827 continue; 1828 if (ka->sa.sa_handler != SIG_DFL) { 1829 /* Run the handler. */ 1830 *return_ka = *ka; 1831 1832 if (ka->sa.sa_flags & SA_ONESHOT) 1833 ka->sa.sa_handler = SIG_DFL; 1834 1835 break; /* will return non-zero "signr" value */ 1836 } 1837 1838 /* 1839 * Now we are doing the default action for this signal. 1840 */ 1841 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1842 continue; 1843 1844 /* 1845 * Init of a pid space gets no signals it doesn't want from 1846 * within that pid space. It can of course get signals from 1847 * its parent pid space. 1848 */ 1849 if (current == child_reaper(current)) 1850 continue; 1851 1852 if (sig_kernel_stop(signr)) { 1853 /* 1854 * The default action is to stop all threads in 1855 * the thread group. The job control signals 1856 * do nothing in an orphaned pgrp, but SIGSTOP 1857 * always works. Note that siglock needs to be 1858 * dropped during the call to is_orphaned_pgrp() 1859 * because of lock ordering with tasklist_lock. 1860 * This allows an intervening SIGCONT to be posted. 1861 * We need to check for that and bail out if necessary. 1862 */ 1863 if (signr != SIGSTOP) { 1864 spin_unlock_irq(¤t->sighand->siglock); 1865 1866 /* signals can be posted during this window */ 1867 1868 if (is_current_pgrp_orphaned()) 1869 goto relock; 1870 1871 spin_lock_irq(¤t->sighand->siglock); 1872 } 1873 1874 if (likely(do_signal_stop(signr))) { 1875 /* It released the siglock. */ 1876 goto relock; 1877 } 1878 1879 /* 1880 * We didn't actually stop, due to a race 1881 * with SIGCONT or something like that. 1882 */ 1883 continue; 1884 } 1885 1886 spin_unlock_irq(¤t->sighand->siglock); 1887 1888 /* 1889 * Anything else is fatal, maybe with a core dump. 1890 */ 1891 current->flags |= PF_SIGNALED; 1892 if ((signr != SIGKILL) && print_fatal_signals) 1893 print_fatal_signal(regs, signr); 1894 if (sig_kernel_coredump(signr)) { 1895 /* 1896 * If it was able to dump core, this kills all 1897 * other threads in the group and synchronizes with 1898 * their demise. If we lost the race with another 1899 * thread getting here, it set group_exit_code 1900 * first and our do_group_exit call below will use 1901 * that value and ignore the one we pass it. 1902 */ 1903 do_coredump((long)signr, signr, regs); 1904 } 1905 1906 /* 1907 * Death signals, no core dump. 1908 */ 1909 do_group_exit(signr); 1910 /* NOTREACHED */ 1911 } 1912 spin_unlock_irq(¤t->sighand->siglock); 1913 return signr; 1914 } 1915 1916 EXPORT_SYMBOL(recalc_sigpending); 1917 EXPORT_SYMBOL_GPL(dequeue_signal); 1918 EXPORT_SYMBOL(flush_signals); 1919 EXPORT_SYMBOL(force_sig); 1920 EXPORT_SYMBOL(kill_proc); 1921 EXPORT_SYMBOL(ptrace_notify); 1922 EXPORT_SYMBOL(send_sig); 1923 EXPORT_SYMBOL(send_sig_info); 1924 EXPORT_SYMBOL(sigprocmask); 1925 EXPORT_SYMBOL(block_all_signals); 1926 EXPORT_SYMBOL(unblock_all_signals); 1927 1928 1929 /* 1930 * System call entry points. 1931 */ 1932 1933 asmlinkage long sys_restart_syscall(void) 1934 { 1935 struct restart_block *restart = ¤t_thread_info()->restart_block; 1936 return restart->fn(restart); 1937 } 1938 1939 long do_no_restart_syscall(struct restart_block *param) 1940 { 1941 return -EINTR; 1942 } 1943 1944 /* 1945 * We don't need to get the kernel lock - this is all local to this 1946 * particular thread.. (and that's good, because this is _heavily_ 1947 * used by various programs) 1948 */ 1949 1950 /* 1951 * This is also useful for kernel threads that want to temporarily 1952 * (or permanently) block certain signals. 1953 * 1954 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 1955 * interface happily blocks "unblockable" signals like SIGKILL 1956 * and friends. 1957 */ 1958 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 1959 { 1960 int error; 1961 1962 spin_lock_irq(¤t->sighand->siglock); 1963 if (oldset) 1964 *oldset = current->blocked; 1965 1966 error = 0; 1967 switch (how) { 1968 case SIG_BLOCK: 1969 sigorsets(¤t->blocked, ¤t->blocked, set); 1970 break; 1971 case SIG_UNBLOCK: 1972 signandsets(¤t->blocked, ¤t->blocked, set); 1973 break; 1974 case SIG_SETMASK: 1975 current->blocked = *set; 1976 break; 1977 default: 1978 error = -EINVAL; 1979 } 1980 recalc_sigpending(); 1981 spin_unlock_irq(¤t->sighand->siglock); 1982 1983 return error; 1984 } 1985 1986 asmlinkage long 1987 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 1988 { 1989 int error = -EINVAL; 1990 sigset_t old_set, new_set; 1991 1992 /* XXX: Don't preclude handling different sized sigset_t's. */ 1993 if (sigsetsize != sizeof(sigset_t)) 1994 goto out; 1995 1996 if (set) { 1997 error = -EFAULT; 1998 if (copy_from_user(&new_set, set, sizeof(*set))) 1999 goto out; 2000 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2001 2002 error = sigprocmask(how, &new_set, &old_set); 2003 if (error) 2004 goto out; 2005 if (oset) 2006 goto set_old; 2007 } else if (oset) { 2008 spin_lock_irq(¤t->sighand->siglock); 2009 old_set = current->blocked; 2010 spin_unlock_irq(¤t->sighand->siglock); 2011 2012 set_old: 2013 error = -EFAULT; 2014 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2015 goto out; 2016 } 2017 error = 0; 2018 out: 2019 return error; 2020 } 2021 2022 long do_sigpending(void __user *set, unsigned long sigsetsize) 2023 { 2024 long error = -EINVAL; 2025 sigset_t pending; 2026 2027 if (sigsetsize > sizeof(sigset_t)) 2028 goto out; 2029 2030 spin_lock_irq(¤t->sighand->siglock); 2031 sigorsets(&pending, ¤t->pending.signal, 2032 ¤t->signal->shared_pending.signal); 2033 spin_unlock_irq(¤t->sighand->siglock); 2034 2035 /* Outside the lock because only this thread touches it. */ 2036 sigandsets(&pending, ¤t->blocked, &pending); 2037 2038 error = -EFAULT; 2039 if (!copy_to_user(set, &pending, sigsetsize)) 2040 error = 0; 2041 2042 out: 2043 return error; 2044 } 2045 2046 asmlinkage long 2047 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2048 { 2049 return do_sigpending(set, sigsetsize); 2050 } 2051 2052 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2053 2054 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2055 { 2056 int err; 2057 2058 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2059 return -EFAULT; 2060 if (from->si_code < 0) 2061 return __copy_to_user(to, from, sizeof(siginfo_t)) 2062 ? -EFAULT : 0; 2063 /* 2064 * If you change siginfo_t structure, please be sure 2065 * this code is fixed accordingly. 2066 * Please remember to update the signalfd_copyinfo() function 2067 * inside fs/signalfd.c too, in case siginfo_t changes. 2068 * It should never copy any pad contained in the structure 2069 * to avoid security leaks, but must copy the generic 2070 * 3 ints plus the relevant union member. 2071 */ 2072 err = __put_user(from->si_signo, &to->si_signo); 2073 err |= __put_user(from->si_errno, &to->si_errno); 2074 err |= __put_user((short)from->si_code, &to->si_code); 2075 switch (from->si_code & __SI_MASK) { 2076 case __SI_KILL: 2077 err |= __put_user(from->si_pid, &to->si_pid); 2078 err |= __put_user(from->si_uid, &to->si_uid); 2079 break; 2080 case __SI_TIMER: 2081 err |= __put_user(from->si_tid, &to->si_tid); 2082 err |= __put_user(from->si_overrun, &to->si_overrun); 2083 err |= __put_user(from->si_ptr, &to->si_ptr); 2084 break; 2085 case __SI_POLL: 2086 err |= __put_user(from->si_band, &to->si_band); 2087 err |= __put_user(from->si_fd, &to->si_fd); 2088 break; 2089 case __SI_FAULT: 2090 err |= __put_user(from->si_addr, &to->si_addr); 2091 #ifdef __ARCH_SI_TRAPNO 2092 err |= __put_user(from->si_trapno, &to->si_trapno); 2093 #endif 2094 break; 2095 case __SI_CHLD: 2096 err |= __put_user(from->si_pid, &to->si_pid); 2097 err |= __put_user(from->si_uid, &to->si_uid); 2098 err |= __put_user(from->si_status, &to->si_status); 2099 err |= __put_user(from->si_utime, &to->si_utime); 2100 err |= __put_user(from->si_stime, &to->si_stime); 2101 break; 2102 case __SI_RT: /* This is not generated by the kernel as of now. */ 2103 case __SI_MESGQ: /* But this is */ 2104 err |= __put_user(from->si_pid, &to->si_pid); 2105 err |= __put_user(from->si_uid, &to->si_uid); 2106 err |= __put_user(from->si_ptr, &to->si_ptr); 2107 break; 2108 default: /* this is just in case for now ... */ 2109 err |= __put_user(from->si_pid, &to->si_pid); 2110 err |= __put_user(from->si_uid, &to->si_uid); 2111 break; 2112 } 2113 return err; 2114 } 2115 2116 #endif 2117 2118 asmlinkage long 2119 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2120 siginfo_t __user *uinfo, 2121 const struct timespec __user *uts, 2122 size_t sigsetsize) 2123 { 2124 int ret, sig; 2125 sigset_t these; 2126 struct timespec ts; 2127 siginfo_t info; 2128 long timeout = 0; 2129 2130 /* XXX: Don't preclude handling different sized sigset_t's. */ 2131 if (sigsetsize != sizeof(sigset_t)) 2132 return -EINVAL; 2133 2134 if (copy_from_user(&these, uthese, sizeof(these))) 2135 return -EFAULT; 2136 2137 /* 2138 * Invert the set of allowed signals to get those we 2139 * want to block. 2140 */ 2141 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2142 signotset(&these); 2143 2144 if (uts) { 2145 if (copy_from_user(&ts, uts, sizeof(ts))) 2146 return -EFAULT; 2147 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2148 || ts.tv_sec < 0) 2149 return -EINVAL; 2150 } 2151 2152 spin_lock_irq(¤t->sighand->siglock); 2153 sig = dequeue_signal(current, &these, &info); 2154 if (!sig) { 2155 timeout = MAX_SCHEDULE_TIMEOUT; 2156 if (uts) 2157 timeout = (timespec_to_jiffies(&ts) 2158 + (ts.tv_sec || ts.tv_nsec)); 2159 2160 if (timeout) { 2161 /* None ready -- temporarily unblock those we're 2162 * interested while we are sleeping in so that we'll 2163 * be awakened when they arrive. */ 2164 current->real_blocked = current->blocked; 2165 sigandsets(¤t->blocked, ¤t->blocked, &these); 2166 recalc_sigpending(); 2167 spin_unlock_irq(¤t->sighand->siglock); 2168 2169 timeout = schedule_timeout_interruptible(timeout); 2170 2171 spin_lock_irq(¤t->sighand->siglock); 2172 sig = dequeue_signal(current, &these, &info); 2173 current->blocked = current->real_blocked; 2174 siginitset(¤t->real_blocked, 0); 2175 recalc_sigpending(); 2176 } 2177 } 2178 spin_unlock_irq(¤t->sighand->siglock); 2179 2180 if (sig) { 2181 ret = sig; 2182 if (uinfo) { 2183 if (copy_siginfo_to_user(uinfo, &info)) 2184 ret = -EFAULT; 2185 } 2186 } else { 2187 ret = -EAGAIN; 2188 if (timeout) 2189 ret = -EINTR; 2190 } 2191 2192 return ret; 2193 } 2194 2195 asmlinkage long 2196 sys_kill(int pid, int sig) 2197 { 2198 struct siginfo info; 2199 2200 info.si_signo = sig; 2201 info.si_errno = 0; 2202 info.si_code = SI_USER; 2203 info.si_pid = current->tgid; 2204 info.si_uid = current->uid; 2205 2206 return kill_something_info(sig, &info, pid); 2207 } 2208 2209 static int do_tkill(int tgid, int pid, int sig) 2210 { 2211 int error; 2212 struct siginfo info; 2213 struct task_struct *p; 2214 2215 error = -ESRCH; 2216 info.si_signo = sig; 2217 info.si_errno = 0; 2218 info.si_code = SI_TKILL; 2219 info.si_pid = current->tgid; 2220 info.si_uid = current->uid; 2221 2222 read_lock(&tasklist_lock); 2223 p = find_task_by_pid(pid); 2224 if (p && (tgid <= 0 || p->tgid == tgid)) { 2225 error = check_kill_permission(sig, &info, p); 2226 /* 2227 * The null signal is a permissions and process existence 2228 * probe. No signal is actually delivered. 2229 */ 2230 if (!error && sig && p->sighand) { 2231 spin_lock_irq(&p->sighand->siglock); 2232 handle_stop_signal(sig, p); 2233 error = specific_send_sig_info(sig, &info, p); 2234 spin_unlock_irq(&p->sighand->siglock); 2235 } 2236 } 2237 read_unlock(&tasklist_lock); 2238 2239 return error; 2240 } 2241 2242 /** 2243 * sys_tgkill - send signal to one specific thread 2244 * @tgid: the thread group ID of the thread 2245 * @pid: the PID of the thread 2246 * @sig: signal to be sent 2247 * 2248 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2249 * exists but it's not belonging to the target process anymore. This 2250 * method solves the problem of threads exiting and PIDs getting reused. 2251 */ 2252 asmlinkage long sys_tgkill(int tgid, int pid, int sig) 2253 { 2254 /* This is only valid for single tasks */ 2255 if (pid <= 0 || tgid <= 0) 2256 return -EINVAL; 2257 2258 return do_tkill(tgid, pid, sig); 2259 } 2260 2261 /* 2262 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2263 */ 2264 asmlinkage long 2265 sys_tkill(int pid, int sig) 2266 { 2267 /* This is only valid for single tasks */ 2268 if (pid <= 0) 2269 return -EINVAL; 2270 2271 return do_tkill(0, pid, sig); 2272 } 2273 2274 asmlinkage long 2275 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) 2276 { 2277 siginfo_t info; 2278 2279 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2280 return -EFAULT; 2281 2282 /* Not even root can pretend to send signals from the kernel. 2283 Nor can they impersonate a kill(), which adds source info. */ 2284 if (info.si_code >= 0) 2285 return -EPERM; 2286 info.si_signo = sig; 2287 2288 /* POSIX.1b doesn't mention process groups. */ 2289 return kill_proc_info(sig, &info, pid); 2290 } 2291 2292 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2293 { 2294 struct k_sigaction *k; 2295 sigset_t mask; 2296 2297 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2298 return -EINVAL; 2299 2300 k = ¤t->sighand->action[sig-1]; 2301 2302 spin_lock_irq(¤t->sighand->siglock); 2303 if (signal_pending(current)) { 2304 /* 2305 * If there might be a fatal signal pending on multiple 2306 * threads, make sure we take it before changing the action. 2307 */ 2308 spin_unlock_irq(¤t->sighand->siglock); 2309 return -ERESTARTNOINTR; 2310 } 2311 2312 if (oact) 2313 *oact = *k; 2314 2315 if (act) { 2316 sigdelsetmask(&act->sa.sa_mask, 2317 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2318 *k = *act; 2319 /* 2320 * POSIX 3.3.1.3: 2321 * "Setting a signal action to SIG_IGN for a signal that is 2322 * pending shall cause the pending signal to be discarded, 2323 * whether or not it is blocked." 2324 * 2325 * "Setting a signal action to SIG_DFL for a signal that is 2326 * pending and whose default action is to ignore the signal 2327 * (for example, SIGCHLD), shall cause the pending signal to 2328 * be discarded, whether or not it is blocked" 2329 */ 2330 if (act->sa.sa_handler == SIG_IGN || 2331 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) { 2332 struct task_struct *t = current; 2333 sigemptyset(&mask); 2334 sigaddset(&mask, sig); 2335 rm_from_queue_full(&mask, &t->signal->shared_pending); 2336 do { 2337 rm_from_queue_full(&mask, &t->pending); 2338 recalc_sigpending_and_wake(t); 2339 t = next_thread(t); 2340 } while (t != current); 2341 } 2342 } 2343 2344 spin_unlock_irq(¤t->sighand->siglock); 2345 return 0; 2346 } 2347 2348 int 2349 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2350 { 2351 stack_t oss; 2352 int error; 2353 2354 if (uoss) { 2355 oss.ss_sp = (void __user *) current->sas_ss_sp; 2356 oss.ss_size = current->sas_ss_size; 2357 oss.ss_flags = sas_ss_flags(sp); 2358 } 2359 2360 if (uss) { 2361 void __user *ss_sp; 2362 size_t ss_size; 2363 int ss_flags; 2364 2365 error = -EFAULT; 2366 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2367 || __get_user(ss_sp, &uss->ss_sp) 2368 || __get_user(ss_flags, &uss->ss_flags) 2369 || __get_user(ss_size, &uss->ss_size)) 2370 goto out; 2371 2372 error = -EPERM; 2373 if (on_sig_stack(sp)) 2374 goto out; 2375 2376 error = -EINVAL; 2377 /* 2378 * 2379 * Note - this code used to test ss_flags incorrectly 2380 * old code may have been written using ss_flags==0 2381 * to mean ss_flags==SS_ONSTACK (as this was the only 2382 * way that worked) - this fix preserves that older 2383 * mechanism 2384 */ 2385 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2386 goto out; 2387 2388 if (ss_flags == SS_DISABLE) { 2389 ss_size = 0; 2390 ss_sp = NULL; 2391 } else { 2392 error = -ENOMEM; 2393 if (ss_size < MINSIGSTKSZ) 2394 goto out; 2395 } 2396 2397 current->sas_ss_sp = (unsigned long) ss_sp; 2398 current->sas_ss_size = ss_size; 2399 } 2400 2401 if (uoss) { 2402 error = -EFAULT; 2403 if (copy_to_user(uoss, &oss, sizeof(oss))) 2404 goto out; 2405 } 2406 2407 error = 0; 2408 out: 2409 return error; 2410 } 2411 2412 #ifdef __ARCH_WANT_SYS_SIGPENDING 2413 2414 asmlinkage long 2415 sys_sigpending(old_sigset_t __user *set) 2416 { 2417 return do_sigpending(set, sizeof(*set)); 2418 } 2419 2420 #endif 2421 2422 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2423 /* Some platforms have their own version with special arguments others 2424 support only sys_rt_sigprocmask. */ 2425 2426 asmlinkage long 2427 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2428 { 2429 int error; 2430 old_sigset_t old_set, new_set; 2431 2432 if (set) { 2433 error = -EFAULT; 2434 if (copy_from_user(&new_set, set, sizeof(*set))) 2435 goto out; 2436 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2437 2438 spin_lock_irq(¤t->sighand->siglock); 2439 old_set = current->blocked.sig[0]; 2440 2441 error = 0; 2442 switch (how) { 2443 default: 2444 error = -EINVAL; 2445 break; 2446 case SIG_BLOCK: 2447 sigaddsetmask(¤t->blocked, new_set); 2448 break; 2449 case SIG_UNBLOCK: 2450 sigdelsetmask(¤t->blocked, new_set); 2451 break; 2452 case SIG_SETMASK: 2453 current->blocked.sig[0] = new_set; 2454 break; 2455 } 2456 2457 recalc_sigpending(); 2458 spin_unlock_irq(¤t->sighand->siglock); 2459 if (error) 2460 goto out; 2461 if (oset) 2462 goto set_old; 2463 } else if (oset) { 2464 old_set = current->blocked.sig[0]; 2465 set_old: 2466 error = -EFAULT; 2467 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2468 goto out; 2469 } 2470 error = 0; 2471 out: 2472 return error; 2473 } 2474 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2475 2476 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2477 asmlinkage long 2478 sys_rt_sigaction(int sig, 2479 const struct sigaction __user *act, 2480 struct sigaction __user *oact, 2481 size_t sigsetsize) 2482 { 2483 struct k_sigaction new_sa, old_sa; 2484 int ret = -EINVAL; 2485 2486 /* XXX: Don't preclude handling different sized sigset_t's. */ 2487 if (sigsetsize != sizeof(sigset_t)) 2488 goto out; 2489 2490 if (act) { 2491 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2492 return -EFAULT; 2493 } 2494 2495 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2496 2497 if (!ret && oact) { 2498 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2499 return -EFAULT; 2500 } 2501 out: 2502 return ret; 2503 } 2504 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2505 2506 #ifdef __ARCH_WANT_SYS_SGETMASK 2507 2508 /* 2509 * For backwards compatibility. Functionality superseded by sigprocmask. 2510 */ 2511 asmlinkage long 2512 sys_sgetmask(void) 2513 { 2514 /* SMP safe */ 2515 return current->blocked.sig[0]; 2516 } 2517 2518 asmlinkage long 2519 sys_ssetmask(int newmask) 2520 { 2521 int old; 2522 2523 spin_lock_irq(¤t->sighand->siglock); 2524 old = current->blocked.sig[0]; 2525 2526 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2527 sigmask(SIGSTOP))); 2528 recalc_sigpending(); 2529 spin_unlock_irq(¤t->sighand->siglock); 2530 2531 return old; 2532 } 2533 #endif /* __ARCH_WANT_SGETMASK */ 2534 2535 #ifdef __ARCH_WANT_SYS_SIGNAL 2536 /* 2537 * For backwards compatibility. Functionality superseded by sigaction. 2538 */ 2539 asmlinkage unsigned long 2540 sys_signal(int sig, __sighandler_t handler) 2541 { 2542 struct k_sigaction new_sa, old_sa; 2543 int ret; 2544 2545 new_sa.sa.sa_handler = handler; 2546 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2547 sigemptyset(&new_sa.sa.sa_mask); 2548 2549 ret = do_sigaction(sig, &new_sa, &old_sa); 2550 2551 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2552 } 2553 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2554 2555 #ifdef __ARCH_WANT_SYS_PAUSE 2556 2557 asmlinkage long 2558 sys_pause(void) 2559 { 2560 current->state = TASK_INTERRUPTIBLE; 2561 schedule(); 2562 return -ERESTARTNOHAND; 2563 } 2564 2565 #endif 2566 2567 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2568 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) 2569 { 2570 sigset_t newset; 2571 2572 /* XXX: Don't preclude handling different sized sigset_t's. */ 2573 if (sigsetsize != sizeof(sigset_t)) 2574 return -EINVAL; 2575 2576 if (copy_from_user(&newset, unewset, sizeof(newset))) 2577 return -EFAULT; 2578 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2579 2580 spin_lock_irq(¤t->sighand->siglock); 2581 current->saved_sigmask = current->blocked; 2582 current->blocked = newset; 2583 recalc_sigpending(); 2584 spin_unlock_irq(¤t->sighand->siglock); 2585 2586 current->state = TASK_INTERRUPTIBLE; 2587 schedule(); 2588 set_thread_flag(TIF_RESTORE_SIGMASK); 2589 return -ERESTARTNOHAND; 2590 } 2591 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2592 2593 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 2594 { 2595 return NULL; 2596 } 2597 2598 void __init signals_init(void) 2599 { 2600 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 2601 } 2602