1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/task_work.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/cgroup.h> 47 #include <linux/audit.h> 48 #include <linux/sysctl.h> 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/signal.h> 52 53 #include <asm/param.h> 54 #include <linux/uaccess.h> 55 #include <asm/unistd.h> 56 #include <asm/siginfo.h> 57 #include <asm/cacheflush.h> 58 #include <asm/syscall.h> /* for syscall_get_* */ 59 60 /* 61 * SLAB caches for signal bits. 62 */ 63 64 static struct kmem_cache *sigqueue_cachep; 65 66 int print_fatal_signals __read_mostly; 67 68 static void __user *sig_handler(struct task_struct *t, int sig) 69 { 70 return t->sighand->action[sig - 1].sa.sa_handler; 71 } 72 73 static inline bool sig_handler_ignored(void __user *handler, int sig) 74 { 75 /* Is it explicitly or implicitly ignored? */ 76 return handler == SIG_IGN || 77 (handler == SIG_DFL && sig_kernel_ignore(sig)); 78 } 79 80 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 81 { 82 void __user *handler; 83 84 handler = sig_handler(t, sig); 85 86 /* SIGKILL and SIGSTOP may not be sent to the global init */ 87 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 88 return true; 89 90 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 91 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 92 return true; 93 94 /* Only allow kernel generated signals to this kthread */ 95 if (unlikely((t->flags & PF_KTHREAD) && 96 (handler == SIG_KTHREAD_KERNEL) && !force)) 97 return true; 98 99 return sig_handler_ignored(handler, sig); 100 } 101 102 static bool sig_ignored(struct task_struct *t, int sig, bool force) 103 { 104 /* 105 * Blocked signals are never ignored, since the 106 * signal handler may change by the time it is 107 * unblocked. 108 */ 109 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 110 return false; 111 112 /* 113 * Tracers may want to know about even ignored signal unless it 114 * is SIGKILL which can't be reported anyway but can be ignored 115 * by SIGNAL_UNKILLABLE task. 116 */ 117 if (t->ptrace && sig != SIGKILL) 118 return false; 119 120 return sig_task_ignored(t, sig, force); 121 } 122 123 /* 124 * Re-calculate pending state from the set of locally pending 125 * signals, globally pending signals, and blocked signals. 126 */ 127 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 128 { 129 unsigned long ready; 130 long i; 131 132 switch (_NSIG_WORDS) { 133 default: 134 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 135 ready |= signal->sig[i] &~ blocked->sig[i]; 136 break; 137 138 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 139 ready |= signal->sig[2] &~ blocked->sig[2]; 140 ready |= signal->sig[1] &~ blocked->sig[1]; 141 ready |= signal->sig[0] &~ blocked->sig[0]; 142 break; 143 144 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 145 ready |= signal->sig[0] &~ blocked->sig[0]; 146 break; 147 148 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 149 } 150 return ready != 0; 151 } 152 153 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 154 155 static bool recalc_sigpending_tsk(struct task_struct *t) 156 { 157 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 158 PENDING(&t->pending, &t->blocked) || 159 PENDING(&t->signal->shared_pending, &t->blocked) || 160 cgroup_task_frozen(t)) { 161 set_tsk_thread_flag(t, TIF_SIGPENDING); 162 return true; 163 } 164 165 /* 166 * We must never clear the flag in another thread, or in current 167 * when it's possible the current syscall is returning -ERESTART*. 168 * So we don't clear it here, and only callers who know they should do. 169 */ 170 return false; 171 } 172 173 /* 174 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 175 * This is superfluous when called on current, the wakeup is a harmless no-op. 176 */ 177 void recalc_sigpending_and_wake(struct task_struct *t) 178 { 179 if (recalc_sigpending_tsk(t)) 180 signal_wake_up(t, 0); 181 } 182 183 void recalc_sigpending(void) 184 { 185 if (!recalc_sigpending_tsk(current) && !freezing(current)) 186 clear_thread_flag(TIF_SIGPENDING); 187 188 } 189 EXPORT_SYMBOL(recalc_sigpending); 190 191 void calculate_sigpending(void) 192 { 193 /* Have any signals or users of TIF_SIGPENDING been delayed 194 * until after fork? 195 */ 196 spin_lock_irq(¤t->sighand->siglock); 197 set_tsk_thread_flag(current, TIF_SIGPENDING); 198 recalc_sigpending(); 199 spin_unlock_irq(¤t->sighand->siglock); 200 } 201 202 /* Given the mask, find the first available signal that should be serviced. */ 203 204 #define SYNCHRONOUS_MASK \ 205 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 206 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 207 208 int next_signal(struct sigpending *pending, sigset_t *mask) 209 { 210 unsigned long i, *s, *m, x; 211 int sig = 0; 212 213 s = pending->signal.sig; 214 m = mask->sig; 215 216 /* 217 * Handle the first word specially: it contains the 218 * synchronous signals that need to be dequeued first. 219 */ 220 x = *s &~ *m; 221 if (x) { 222 if (x & SYNCHRONOUS_MASK) 223 x &= SYNCHRONOUS_MASK; 224 sig = ffz(~x) + 1; 225 return sig; 226 } 227 228 switch (_NSIG_WORDS) { 229 default: 230 for (i = 1; i < _NSIG_WORDS; ++i) { 231 x = *++s &~ *++m; 232 if (!x) 233 continue; 234 sig = ffz(~x) + i*_NSIG_BPW + 1; 235 break; 236 } 237 break; 238 239 case 2: 240 x = s[1] &~ m[1]; 241 if (!x) 242 break; 243 sig = ffz(~x) + _NSIG_BPW + 1; 244 break; 245 246 case 1: 247 /* Nothing to do */ 248 break; 249 } 250 251 return sig; 252 } 253 254 static inline void print_dropped_signal(int sig) 255 { 256 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 257 258 if (!print_fatal_signals) 259 return; 260 261 if (!__ratelimit(&ratelimit_state)) 262 return; 263 264 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 265 current->comm, current->pid, sig); 266 } 267 268 /** 269 * task_set_jobctl_pending - set jobctl pending bits 270 * @task: target task 271 * @mask: pending bits to set 272 * 273 * Clear @mask from @task->jobctl. @mask must be subset of 274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 275 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 276 * cleared. If @task is already being killed or exiting, this function 277 * becomes noop. 278 * 279 * CONTEXT: 280 * Must be called with @task->sighand->siglock held. 281 * 282 * RETURNS: 283 * %true if @mask is set, %false if made noop because @task was dying. 284 */ 285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 286 { 287 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 288 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 289 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 290 291 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 292 return false; 293 294 if (mask & JOBCTL_STOP_SIGMASK) 295 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 296 297 task->jobctl |= mask; 298 return true; 299 } 300 301 /** 302 * task_clear_jobctl_trapping - clear jobctl trapping bit 303 * @task: target task 304 * 305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 306 * Clear it and wake up the ptracer. Note that we don't need any further 307 * locking. @task->siglock guarantees that @task->parent points to the 308 * ptracer. 309 * 310 * CONTEXT: 311 * Must be called with @task->sighand->siglock held. 312 */ 313 void task_clear_jobctl_trapping(struct task_struct *task) 314 { 315 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 316 task->jobctl &= ~JOBCTL_TRAPPING; 317 smp_mb(); /* advised by wake_up_bit() */ 318 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 319 } 320 } 321 322 /** 323 * task_clear_jobctl_pending - clear jobctl pending bits 324 * @task: target task 325 * @mask: pending bits to clear 326 * 327 * Clear @mask from @task->jobctl. @mask must be subset of 328 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 329 * STOP bits are cleared together. 330 * 331 * If clearing of @mask leaves no stop or trap pending, this function calls 332 * task_clear_jobctl_trapping(). 333 * 334 * CONTEXT: 335 * Must be called with @task->sighand->siglock held. 336 */ 337 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 338 { 339 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 340 341 if (mask & JOBCTL_STOP_PENDING) 342 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 343 344 task->jobctl &= ~mask; 345 346 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 347 task_clear_jobctl_trapping(task); 348 } 349 350 /** 351 * task_participate_group_stop - participate in a group stop 352 * @task: task participating in a group stop 353 * 354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 355 * Group stop states are cleared and the group stop count is consumed if 356 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 357 * stop, the appropriate `SIGNAL_*` flags are set. 358 * 359 * CONTEXT: 360 * Must be called with @task->sighand->siglock held. 361 * 362 * RETURNS: 363 * %true if group stop completion should be notified to the parent, %false 364 * otherwise. 365 */ 366 static bool task_participate_group_stop(struct task_struct *task) 367 { 368 struct signal_struct *sig = task->signal; 369 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 370 371 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 372 373 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 374 375 if (!consume) 376 return false; 377 378 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 379 sig->group_stop_count--; 380 381 /* 382 * Tell the caller to notify completion iff we are entering into a 383 * fresh group stop. Read comment in do_signal_stop() for details. 384 */ 385 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 386 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 387 return true; 388 } 389 return false; 390 } 391 392 void task_join_group_stop(struct task_struct *task) 393 { 394 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 395 struct signal_struct *sig = current->signal; 396 397 if (sig->group_stop_count) { 398 sig->group_stop_count++; 399 mask |= JOBCTL_STOP_CONSUME; 400 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 401 return; 402 403 /* Have the new thread join an on-going signal group stop */ 404 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 405 } 406 407 /* 408 * allocate a new signal queue record 409 * - this may be called without locks if and only if t == current, otherwise an 410 * appropriate lock must be held to stop the target task from exiting 411 */ 412 static struct sigqueue * 413 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 414 int override_rlimit, const unsigned int sigqueue_flags) 415 { 416 struct sigqueue *q = NULL; 417 struct ucounts *ucounts = NULL; 418 long sigpending; 419 420 /* 421 * Protect access to @t credentials. This can go away when all 422 * callers hold rcu read lock. 423 * 424 * NOTE! A pending signal will hold on to the user refcount, 425 * and we get/put the refcount only when the sigpending count 426 * changes from/to zero. 427 */ 428 rcu_read_lock(); 429 ucounts = task_ucounts(t); 430 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 431 rcu_read_unlock(); 432 if (!sigpending) 433 return NULL; 434 435 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 436 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 437 } else { 438 print_dropped_signal(sig); 439 } 440 441 if (unlikely(q == NULL)) { 442 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 443 } else { 444 INIT_LIST_HEAD(&q->list); 445 q->flags = sigqueue_flags; 446 q->ucounts = ucounts; 447 } 448 return q; 449 } 450 451 static void __sigqueue_free(struct sigqueue *q) 452 { 453 if (q->flags & SIGQUEUE_PREALLOC) 454 return; 455 if (q->ucounts) { 456 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 457 q->ucounts = NULL; 458 } 459 kmem_cache_free(sigqueue_cachep, q); 460 } 461 462 void flush_sigqueue(struct sigpending *queue) 463 { 464 struct sigqueue *q; 465 466 sigemptyset(&queue->signal); 467 while (!list_empty(&queue->list)) { 468 q = list_entry(queue->list.next, struct sigqueue , list); 469 list_del_init(&q->list); 470 __sigqueue_free(q); 471 } 472 } 473 474 /* 475 * Flush all pending signals for this kthread. 476 */ 477 void flush_signals(struct task_struct *t) 478 { 479 unsigned long flags; 480 481 spin_lock_irqsave(&t->sighand->siglock, flags); 482 clear_tsk_thread_flag(t, TIF_SIGPENDING); 483 flush_sigqueue(&t->pending); 484 flush_sigqueue(&t->signal->shared_pending); 485 spin_unlock_irqrestore(&t->sighand->siglock, flags); 486 } 487 EXPORT_SYMBOL(flush_signals); 488 489 #ifdef CONFIG_POSIX_TIMERS 490 static void __flush_itimer_signals(struct sigpending *pending) 491 { 492 sigset_t signal, retain; 493 struct sigqueue *q, *n; 494 495 signal = pending->signal; 496 sigemptyset(&retain); 497 498 list_for_each_entry_safe(q, n, &pending->list, list) { 499 int sig = q->info.si_signo; 500 501 if (likely(q->info.si_code != SI_TIMER)) { 502 sigaddset(&retain, sig); 503 } else { 504 sigdelset(&signal, sig); 505 list_del_init(&q->list); 506 __sigqueue_free(q); 507 } 508 } 509 510 sigorsets(&pending->signal, &signal, &retain); 511 } 512 513 void flush_itimer_signals(void) 514 { 515 struct task_struct *tsk = current; 516 unsigned long flags; 517 518 spin_lock_irqsave(&tsk->sighand->siglock, flags); 519 __flush_itimer_signals(&tsk->pending); 520 __flush_itimer_signals(&tsk->signal->shared_pending); 521 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 522 } 523 #endif 524 525 void ignore_signals(struct task_struct *t) 526 { 527 int i; 528 529 for (i = 0; i < _NSIG; ++i) 530 t->sighand->action[i].sa.sa_handler = SIG_IGN; 531 532 flush_signals(t); 533 } 534 535 /* 536 * Flush all handlers for a task. 537 */ 538 539 void 540 flush_signal_handlers(struct task_struct *t, int force_default) 541 { 542 int i; 543 struct k_sigaction *ka = &t->sighand->action[0]; 544 for (i = _NSIG ; i != 0 ; i--) { 545 if (force_default || ka->sa.sa_handler != SIG_IGN) 546 ka->sa.sa_handler = SIG_DFL; 547 ka->sa.sa_flags = 0; 548 #ifdef __ARCH_HAS_SA_RESTORER 549 ka->sa.sa_restorer = NULL; 550 #endif 551 sigemptyset(&ka->sa.sa_mask); 552 ka++; 553 } 554 } 555 556 bool unhandled_signal(struct task_struct *tsk, int sig) 557 { 558 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 559 if (is_global_init(tsk)) 560 return true; 561 562 if (handler != SIG_IGN && handler != SIG_DFL) 563 return false; 564 565 /* If dying, we handle all new signals by ignoring them */ 566 if (fatal_signal_pending(tsk)) 567 return false; 568 569 /* if ptraced, let the tracer determine */ 570 return !tsk->ptrace; 571 } 572 573 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 574 bool *resched_timer) 575 { 576 struct sigqueue *q, *first = NULL; 577 578 /* 579 * Collect the siginfo appropriate to this signal. Check if 580 * there is another siginfo for the same signal. 581 */ 582 list_for_each_entry(q, &list->list, list) { 583 if (q->info.si_signo == sig) { 584 if (first) 585 goto still_pending; 586 first = q; 587 } 588 } 589 590 sigdelset(&list->signal, sig); 591 592 if (first) { 593 still_pending: 594 list_del_init(&first->list); 595 copy_siginfo(info, &first->info); 596 597 *resched_timer = 598 (first->flags & SIGQUEUE_PREALLOC) && 599 (info->si_code == SI_TIMER) && 600 (info->si_sys_private); 601 602 __sigqueue_free(first); 603 } else { 604 /* 605 * Ok, it wasn't in the queue. This must be 606 * a fast-pathed signal or we must have been 607 * out of queue space. So zero out the info. 608 */ 609 clear_siginfo(info); 610 info->si_signo = sig; 611 info->si_errno = 0; 612 info->si_code = SI_USER; 613 info->si_pid = 0; 614 info->si_uid = 0; 615 } 616 } 617 618 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 619 kernel_siginfo_t *info, bool *resched_timer) 620 { 621 int sig = next_signal(pending, mask); 622 623 if (sig) 624 collect_signal(sig, pending, info, resched_timer); 625 return sig; 626 } 627 628 /* 629 * Dequeue a signal and return the element to the caller, which is 630 * expected to free it. 631 * 632 * All callers have to hold the siglock. 633 */ 634 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 635 kernel_siginfo_t *info, enum pid_type *type) 636 { 637 bool resched_timer = false; 638 int signr; 639 640 /* We only dequeue private signals from ourselves, we don't let 641 * signalfd steal them 642 */ 643 *type = PIDTYPE_PID; 644 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 645 if (!signr) { 646 *type = PIDTYPE_TGID; 647 signr = __dequeue_signal(&tsk->signal->shared_pending, 648 mask, info, &resched_timer); 649 #ifdef CONFIG_POSIX_TIMERS 650 /* 651 * itimer signal ? 652 * 653 * itimers are process shared and we restart periodic 654 * itimers in the signal delivery path to prevent DoS 655 * attacks in the high resolution timer case. This is 656 * compliant with the old way of self-restarting 657 * itimers, as the SIGALRM is a legacy signal and only 658 * queued once. Changing the restart behaviour to 659 * restart the timer in the signal dequeue path is 660 * reducing the timer noise on heavy loaded !highres 661 * systems too. 662 */ 663 if (unlikely(signr == SIGALRM)) { 664 struct hrtimer *tmr = &tsk->signal->real_timer; 665 666 if (!hrtimer_is_queued(tmr) && 667 tsk->signal->it_real_incr != 0) { 668 hrtimer_forward(tmr, tmr->base->get_time(), 669 tsk->signal->it_real_incr); 670 hrtimer_restart(tmr); 671 } 672 } 673 #endif 674 } 675 676 recalc_sigpending(); 677 if (!signr) 678 return 0; 679 680 if (unlikely(sig_kernel_stop(signr))) { 681 /* 682 * Set a marker that we have dequeued a stop signal. Our 683 * caller might release the siglock and then the pending 684 * stop signal it is about to process is no longer in the 685 * pending bitmasks, but must still be cleared by a SIGCONT 686 * (and overruled by a SIGKILL). So those cases clear this 687 * shared flag after we've set it. Note that this flag may 688 * remain set after the signal we return is ignored or 689 * handled. That doesn't matter because its only purpose 690 * is to alert stop-signal processing code when another 691 * processor has come along and cleared the flag. 692 */ 693 current->jobctl |= JOBCTL_STOP_DEQUEUED; 694 } 695 #ifdef CONFIG_POSIX_TIMERS 696 if (resched_timer) { 697 /* 698 * Release the siglock to ensure proper locking order 699 * of timer locks outside of siglocks. Note, we leave 700 * irqs disabled here, since the posix-timers code is 701 * about to disable them again anyway. 702 */ 703 spin_unlock(&tsk->sighand->siglock); 704 posixtimer_rearm(info); 705 spin_lock(&tsk->sighand->siglock); 706 707 /* Don't expose the si_sys_private value to userspace */ 708 info->si_sys_private = 0; 709 } 710 #endif 711 return signr; 712 } 713 EXPORT_SYMBOL_GPL(dequeue_signal); 714 715 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 716 { 717 struct task_struct *tsk = current; 718 struct sigpending *pending = &tsk->pending; 719 struct sigqueue *q, *sync = NULL; 720 721 /* 722 * Might a synchronous signal be in the queue? 723 */ 724 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 725 return 0; 726 727 /* 728 * Return the first synchronous signal in the queue. 729 */ 730 list_for_each_entry(q, &pending->list, list) { 731 /* Synchronous signals have a positive si_code */ 732 if ((q->info.si_code > SI_USER) && 733 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 734 sync = q; 735 goto next; 736 } 737 } 738 return 0; 739 next: 740 /* 741 * Check if there is another siginfo for the same signal. 742 */ 743 list_for_each_entry_continue(q, &pending->list, list) { 744 if (q->info.si_signo == sync->info.si_signo) 745 goto still_pending; 746 } 747 748 sigdelset(&pending->signal, sync->info.si_signo); 749 recalc_sigpending(); 750 still_pending: 751 list_del_init(&sync->list); 752 copy_siginfo(info, &sync->info); 753 __sigqueue_free(sync); 754 return info->si_signo; 755 } 756 757 /* 758 * Tell a process that it has a new active signal.. 759 * 760 * NOTE! we rely on the previous spin_lock to 761 * lock interrupts for us! We can only be called with 762 * "siglock" held, and the local interrupt must 763 * have been disabled when that got acquired! 764 * 765 * No need to set need_resched since signal event passing 766 * goes through ->blocked 767 */ 768 void signal_wake_up_state(struct task_struct *t, unsigned int state) 769 { 770 lockdep_assert_held(&t->sighand->siglock); 771 772 set_tsk_thread_flag(t, TIF_SIGPENDING); 773 774 /* 775 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 776 * case. We don't check t->state here because there is a race with it 777 * executing another processor and just now entering stopped state. 778 * By using wake_up_state, we ensure the process will wake up and 779 * handle its death signal. 780 */ 781 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 782 kick_process(t); 783 } 784 785 /* 786 * Remove signals in mask from the pending set and queue. 787 * Returns 1 if any signals were found. 788 * 789 * All callers must be holding the siglock. 790 */ 791 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 792 { 793 struct sigqueue *q, *n; 794 sigset_t m; 795 796 sigandsets(&m, mask, &s->signal); 797 if (sigisemptyset(&m)) 798 return; 799 800 sigandnsets(&s->signal, &s->signal, mask); 801 list_for_each_entry_safe(q, n, &s->list, list) { 802 if (sigismember(mask, q->info.si_signo)) { 803 list_del_init(&q->list); 804 __sigqueue_free(q); 805 } 806 } 807 } 808 809 static inline int is_si_special(const struct kernel_siginfo *info) 810 { 811 return info <= SEND_SIG_PRIV; 812 } 813 814 static inline bool si_fromuser(const struct kernel_siginfo *info) 815 { 816 return info == SEND_SIG_NOINFO || 817 (!is_si_special(info) && SI_FROMUSER(info)); 818 } 819 820 /* 821 * called with RCU read lock from check_kill_permission() 822 */ 823 static bool kill_ok_by_cred(struct task_struct *t) 824 { 825 const struct cred *cred = current_cred(); 826 const struct cred *tcred = __task_cred(t); 827 828 return uid_eq(cred->euid, tcred->suid) || 829 uid_eq(cred->euid, tcred->uid) || 830 uid_eq(cred->uid, tcred->suid) || 831 uid_eq(cred->uid, tcred->uid) || 832 ns_capable(tcred->user_ns, CAP_KILL); 833 } 834 835 /* 836 * Bad permissions for sending the signal 837 * - the caller must hold the RCU read lock 838 */ 839 static int check_kill_permission(int sig, struct kernel_siginfo *info, 840 struct task_struct *t) 841 { 842 struct pid *sid; 843 int error; 844 845 if (!valid_signal(sig)) 846 return -EINVAL; 847 848 if (!si_fromuser(info)) 849 return 0; 850 851 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 852 if (error) 853 return error; 854 855 if (!same_thread_group(current, t) && 856 !kill_ok_by_cred(t)) { 857 switch (sig) { 858 case SIGCONT: 859 sid = task_session(t); 860 /* 861 * We don't return the error if sid == NULL. The 862 * task was unhashed, the caller must notice this. 863 */ 864 if (!sid || sid == task_session(current)) 865 break; 866 fallthrough; 867 default: 868 return -EPERM; 869 } 870 } 871 872 return security_task_kill(t, info, sig, NULL); 873 } 874 875 /** 876 * ptrace_trap_notify - schedule trap to notify ptracer 877 * @t: tracee wanting to notify tracer 878 * 879 * This function schedules sticky ptrace trap which is cleared on the next 880 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 881 * ptracer. 882 * 883 * If @t is running, STOP trap will be taken. If trapped for STOP and 884 * ptracer is listening for events, tracee is woken up so that it can 885 * re-trap for the new event. If trapped otherwise, STOP trap will be 886 * eventually taken without returning to userland after the existing traps 887 * are finished by PTRACE_CONT. 888 * 889 * CONTEXT: 890 * Must be called with @task->sighand->siglock held. 891 */ 892 static void ptrace_trap_notify(struct task_struct *t) 893 { 894 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 895 lockdep_assert_held(&t->sighand->siglock); 896 897 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 898 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 899 } 900 901 /* 902 * Handle magic process-wide effects of stop/continue signals. Unlike 903 * the signal actions, these happen immediately at signal-generation 904 * time regardless of blocking, ignoring, or handling. This does the 905 * actual continuing for SIGCONT, but not the actual stopping for stop 906 * signals. The process stop is done as a signal action for SIG_DFL. 907 * 908 * Returns true if the signal should be actually delivered, otherwise 909 * it should be dropped. 910 */ 911 static bool prepare_signal(int sig, struct task_struct *p, bool force) 912 { 913 struct signal_struct *signal = p->signal; 914 struct task_struct *t; 915 sigset_t flush; 916 917 if (signal->flags & SIGNAL_GROUP_EXIT) { 918 if (signal->core_state) 919 return sig == SIGKILL; 920 /* 921 * The process is in the middle of dying, drop the signal. 922 */ 923 return false; 924 } else if (sig_kernel_stop(sig)) { 925 /* 926 * This is a stop signal. Remove SIGCONT from all queues. 927 */ 928 siginitset(&flush, sigmask(SIGCONT)); 929 flush_sigqueue_mask(&flush, &signal->shared_pending); 930 for_each_thread(p, t) 931 flush_sigqueue_mask(&flush, &t->pending); 932 } else if (sig == SIGCONT) { 933 unsigned int why; 934 /* 935 * Remove all stop signals from all queues, wake all threads. 936 */ 937 siginitset(&flush, SIG_KERNEL_STOP_MASK); 938 flush_sigqueue_mask(&flush, &signal->shared_pending); 939 for_each_thread(p, t) { 940 flush_sigqueue_mask(&flush, &t->pending); 941 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 942 if (likely(!(t->ptrace & PT_SEIZED))) { 943 t->jobctl &= ~JOBCTL_STOPPED; 944 wake_up_state(t, __TASK_STOPPED); 945 } else 946 ptrace_trap_notify(t); 947 } 948 949 /* 950 * Notify the parent with CLD_CONTINUED if we were stopped. 951 * 952 * If we were in the middle of a group stop, we pretend it 953 * was already finished, and then continued. Since SIGCHLD 954 * doesn't queue we report only CLD_STOPPED, as if the next 955 * CLD_CONTINUED was dropped. 956 */ 957 why = 0; 958 if (signal->flags & SIGNAL_STOP_STOPPED) 959 why |= SIGNAL_CLD_CONTINUED; 960 else if (signal->group_stop_count) 961 why |= SIGNAL_CLD_STOPPED; 962 963 if (why) { 964 /* 965 * The first thread which returns from do_signal_stop() 966 * will take ->siglock, notice SIGNAL_CLD_MASK, and 967 * notify its parent. See get_signal(). 968 */ 969 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 970 signal->group_stop_count = 0; 971 signal->group_exit_code = 0; 972 } 973 } 974 975 return !sig_ignored(p, sig, force); 976 } 977 978 /* 979 * Test if P wants to take SIG. After we've checked all threads with this, 980 * it's equivalent to finding no threads not blocking SIG. Any threads not 981 * blocking SIG were ruled out because they are not running and already 982 * have pending signals. Such threads will dequeue from the shared queue 983 * as soon as they're available, so putting the signal on the shared queue 984 * will be equivalent to sending it to one such thread. 985 */ 986 static inline bool wants_signal(int sig, struct task_struct *p) 987 { 988 if (sigismember(&p->blocked, sig)) 989 return false; 990 991 if (p->flags & PF_EXITING) 992 return false; 993 994 if (sig == SIGKILL) 995 return true; 996 997 if (task_is_stopped_or_traced(p)) 998 return false; 999 1000 return task_curr(p) || !task_sigpending(p); 1001 } 1002 1003 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 1004 { 1005 struct signal_struct *signal = p->signal; 1006 struct task_struct *t; 1007 1008 /* 1009 * Now find a thread we can wake up to take the signal off the queue. 1010 * 1011 * Try the suggested task first (may or may not be the main thread). 1012 */ 1013 if (wants_signal(sig, p)) 1014 t = p; 1015 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1016 /* 1017 * There is just one thread and it does not need to be woken. 1018 * It will dequeue unblocked signals before it runs again. 1019 */ 1020 return; 1021 else { 1022 /* 1023 * Otherwise try to find a suitable thread. 1024 */ 1025 t = signal->curr_target; 1026 while (!wants_signal(sig, t)) { 1027 t = next_thread(t); 1028 if (t == signal->curr_target) 1029 /* 1030 * No thread needs to be woken. 1031 * Any eligible threads will see 1032 * the signal in the queue soon. 1033 */ 1034 return; 1035 } 1036 signal->curr_target = t; 1037 } 1038 1039 /* 1040 * Found a killable thread. If the signal will be fatal, 1041 * then start taking the whole group down immediately. 1042 */ 1043 if (sig_fatal(p, sig) && 1044 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1045 !sigismember(&t->real_blocked, sig) && 1046 (sig == SIGKILL || !p->ptrace)) { 1047 /* 1048 * This signal will be fatal to the whole group. 1049 */ 1050 if (!sig_kernel_coredump(sig)) { 1051 /* 1052 * Start a group exit and wake everybody up. 1053 * This way we don't have other threads 1054 * running and doing things after a slower 1055 * thread has the fatal signal pending. 1056 */ 1057 signal->flags = SIGNAL_GROUP_EXIT; 1058 signal->group_exit_code = sig; 1059 signal->group_stop_count = 0; 1060 t = p; 1061 do { 1062 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1063 sigaddset(&t->pending.signal, SIGKILL); 1064 signal_wake_up(t, 1); 1065 } while_each_thread(p, t); 1066 return; 1067 } 1068 } 1069 1070 /* 1071 * The signal is already in the shared-pending queue. 1072 * Tell the chosen thread to wake up and dequeue it. 1073 */ 1074 signal_wake_up(t, sig == SIGKILL); 1075 return; 1076 } 1077 1078 static inline bool legacy_queue(struct sigpending *signals, int sig) 1079 { 1080 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1081 } 1082 1083 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1084 struct task_struct *t, enum pid_type type, bool force) 1085 { 1086 struct sigpending *pending; 1087 struct sigqueue *q; 1088 int override_rlimit; 1089 int ret = 0, result; 1090 1091 lockdep_assert_held(&t->sighand->siglock); 1092 1093 result = TRACE_SIGNAL_IGNORED; 1094 if (!prepare_signal(sig, t, force)) 1095 goto ret; 1096 1097 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1098 /* 1099 * Short-circuit ignored signals and support queuing 1100 * exactly one non-rt signal, so that we can get more 1101 * detailed information about the cause of the signal. 1102 */ 1103 result = TRACE_SIGNAL_ALREADY_PENDING; 1104 if (legacy_queue(pending, sig)) 1105 goto ret; 1106 1107 result = TRACE_SIGNAL_DELIVERED; 1108 /* 1109 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1110 */ 1111 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1112 goto out_set; 1113 1114 /* 1115 * Real-time signals must be queued if sent by sigqueue, or 1116 * some other real-time mechanism. It is implementation 1117 * defined whether kill() does so. We attempt to do so, on 1118 * the principle of least surprise, but since kill is not 1119 * allowed to fail with EAGAIN when low on memory we just 1120 * make sure at least one signal gets delivered and don't 1121 * pass on the info struct. 1122 */ 1123 if (sig < SIGRTMIN) 1124 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1125 else 1126 override_rlimit = 0; 1127 1128 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1129 1130 if (q) { 1131 list_add_tail(&q->list, &pending->list); 1132 switch ((unsigned long) info) { 1133 case (unsigned long) SEND_SIG_NOINFO: 1134 clear_siginfo(&q->info); 1135 q->info.si_signo = sig; 1136 q->info.si_errno = 0; 1137 q->info.si_code = SI_USER; 1138 q->info.si_pid = task_tgid_nr_ns(current, 1139 task_active_pid_ns(t)); 1140 rcu_read_lock(); 1141 q->info.si_uid = 1142 from_kuid_munged(task_cred_xxx(t, user_ns), 1143 current_uid()); 1144 rcu_read_unlock(); 1145 break; 1146 case (unsigned long) SEND_SIG_PRIV: 1147 clear_siginfo(&q->info); 1148 q->info.si_signo = sig; 1149 q->info.si_errno = 0; 1150 q->info.si_code = SI_KERNEL; 1151 q->info.si_pid = 0; 1152 q->info.si_uid = 0; 1153 break; 1154 default: 1155 copy_siginfo(&q->info, info); 1156 break; 1157 } 1158 } else if (!is_si_special(info) && 1159 sig >= SIGRTMIN && info->si_code != SI_USER) { 1160 /* 1161 * Queue overflow, abort. We may abort if the 1162 * signal was rt and sent by user using something 1163 * other than kill(). 1164 */ 1165 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1166 ret = -EAGAIN; 1167 goto ret; 1168 } else { 1169 /* 1170 * This is a silent loss of information. We still 1171 * send the signal, but the *info bits are lost. 1172 */ 1173 result = TRACE_SIGNAL_LOSE_INFO; 1174 } 1175 1176 out_set: 1177 signalfd_notify(t, sig); 1178 sigaddset(&pending->signal, sig); 1179 1180 /* Let multiprocess signals appear after on-going forks */ 1181 if (type > PIDTYPE_TGID) { 1182 struct multiprocess_signals *delayed; 1183 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1184 sigset_t *signal = &delayed->signal; 1185 /* Can't queue both a stop and a continue signal */ 1186 if (sig == SIGCONT) 1187 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1188 else if (sig_kernel_stop(sig)) 1189 sigdelset(signal, SIGCONT); 1190 sigaddset(signal, sig); 1191 } 1192 } 1193 1194 complete_signal(sig, t, type); 1195 ret: 1196 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1197 return ret; 1198 } 1199 1200 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1201 { 1202 bool ret = false; 1203 switch (siginfo_layout(info->si_signo, info->si_code)) { 1204 case SIL_KILL: 1205 case SIL_CHLD: 1206 case SIL_RT: 1207 ret = true; 1208 break; 1209 case SIL_TIMER: 1210 case SIL_POLL: 1211 case SIL_FAULT: 1212 case SIL_FAULT_TRAPNO: 1213 case SIL_FAULT_MCEERR: 1214 case SIL_FAULT_BNDERR: 1215 case SIL_FAULT_PKUERR: 1216 case SIL_FAULT_PERF_EVENT: 1217 case SIL_SYS: 1218 ret = false; 1219 break; 1220 } 1221 return ret; 1222 } 1223 1224 int send_signal_locked(int sig, struct kernel_siginfo *info, 1225 struct task_struct *t, enum pid_type type) 1226 { 1227 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1228 bool force = false; 1229 1230 if (info == SEND_SIG_NOINFO) { 1231 /* Force if sent from an ancestor pid namespace */ 1232 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1233 } else if (info == SEND_SIG_PRIV) { 1234 /* Don't ignore kernel generated signals */ 1235 force = true; 1236 } else if (has_si_pid_and_uid(info)) { 1237 /* SIGKILL and SIGSTOP is special or has ids */ 1238 struct user_namespace *t_user_ns; 1239 1240 rcu_read_lock(); 1241 t_user_ns = task_cred_xxx(t, user_ns); 1242 if (current_user_ns() != t_user_ns) { 1243 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1244 info->si_uid = from_kuid_munged(t_user_ns, uid); 1245 } 1246 rcu_read_unlock(); 1247 1248 /* A kernel generated signal? */ 1249 force = (info->si_code == SI_KERNEL); 1250 1251 /* From an ancestor pid namespace? */ 1252 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1253 info->si_pid = 0; 1254 force = true; 1255 } 1256 } 1257 return __send_signal_locked(sig, info, t, type, force); 1258 } 1259 1260 static void print_fatal_signal(int signr) 1261 { 1262 struct pt_regs *regs = task_pt_regs(current); 1263 pr_info("potentially unexpected fatal signal %d.\n", signr); 1264 1265 #if defined(__i386__) && !defined(__arch_um__) 1266 pr_info("code at %08lx: ", regs->ip); 1267 { 1268 int i; 1269 for (i = 0; i < 16; i++) { 1270 unsigned char insn; 1271 1272 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1273 break; 1274 pr_cont("%02x ", insn); 1275 } 1276 } 1277 pr_cont("\n"); 1278 #endif 1279 preempt_disable(); 1280 show_regs(regs); 1281 preempt_enable(); 1282 } 1283 1284 static int __init setup_print_fatal_signals(char *str) 1285 { 1286 get_option (&str, &print_fatal_signals); 1287 1288 return 1; 1289 } 1290 1291 __setup("print-fatal-signals=", setup_print_fatal_signals); 1292 1293 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1294 enum pid_type type) 1295 { 1296 unsigned long flags; 1297 int ret = -ESRCH; 1298 1299 if (lock_task_sighand(p, &flags)) { 1300 ret = send_signal_locked(sig, info, p, type); 1301 unlock_task_sighand(p, &flags); 1302 } 1303 1304 return ret; 1305 } 1306 1307 enum sig_handler { 1308 HANDLER_CURRENT, /* If reachable use the current handler */ 1309 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1310 HANDLER_EXIT, /* Only visible as the process exit code */ 1311 }; 1312 1313 /* 1314 * Force a signal that the process can't ignore: if necessary 1315 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1316 * 1317 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1318 * since we do not want to have a signal handler that was blocked 1319 * be invoked when user space had explicitly blocked it. 1320 * 1321 * We don't want to have recursive SIGSEGV's etc, for example, 1322 * that is why we also clear SIGNAL_UNKILLABLE. 1323 */ 1324 static int 1325 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1326 enum sig_handler handler) 1327 { 1328 unsigned long int flags; 1329 int ret, blocked, ignored; 1330 struct k_sigaction *action; 1331 int sig = info->si_signo; 1332 1333 spin_lock_irqsave(&t->sighand->siglock, flags); 1334 action = &t->sighand->action[sig-1]; 1335 ignored = action->sa.sa_handler == SIG_IGN; 1336 blocked = sigismember(&t->blocked, sig); 1337 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1338 action->sa.sa_handler = SIG_DFL; 1339 if (handler == HANDLER_EXIT) 1340 action->sa.sa_flags |= SA_IMMUTABLE; 1341 if (blocked) { 1342 sigdelset(&t->blocked, sig); 1343 recalc_sigpending_and_wake(t); 1344 } 1345 } 1346 /* 1347 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1348 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1349 */ 1350 if (action->sa.sa_handler == SIG_DFL && 1351 (!t->ptrace || (handler == HANDLER_EXIT))) 1352 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1353 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1354 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1355 1356 return ret; 1357 } 1358 1359 int force_sig_info(struct kernel_siginfo *info) 1360 { 1361 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1362 } 1363 1364 /* 1365 * Nuke all other threads in the group. 1366 */ 1367 int zap_other_threads(struct task_struct *p) 1368 { 1369 struct task_struct *t = p; 1370 int count = 0; 1371 1372 p->signal->group_stop_count = 0; 1373 1374 while_each_thread(p, t) { 1375 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1376 /* Don't require de_thread to wait for the vhost_worker */ 1377 if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER) 1378 count++; 1379 1380 /* Don't bother with already dead threads */ 1381 if (t->exit_state) 1382 continue; 1383 sigaddset(&t->pending.signal, SIGKILL); 1384 signal_wake_up(t, 1); 1385 } 1386 1387 return count; 1388 } 1389 1390 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1391 unsigned long *flags) 1392 { 1393 struct sighand_struct *sighand; 1394 1395 rcu_read_lock(); 1396 for (;;) { 1397 sighand = rcu_dereference(tsk->sighand); 1398 if (unlikely(sighand == NULL)) 1399 break; 1400 1401 /* 1402 * This sighand can be already freed and even reused, but 1403 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1404 * initializes ->siglock: this slab can't go away, it has 1405 * the same object type, ->siglock can't be reinitialized. 1406 * 1407 * We need to ensure that tsk->sighand is still the same 1408 * after we take the lock, we can race with de_thread() or 1409 * __exit_signal(). In the latter case the next iteration 1410 * must see ->sighand == NULL. 1411 */ 1412 spin_lock_irqsave(&sighand->siglock, *flags); 1413 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1414 break; 1415 spin_unlock_irqrestore(&sighand->siglock, *flags); 1416 } 1417 rcu_read_unlock(); 1418 1419 return sighand; 1420 } 1421 1422 #ifdef CONFIG_LOCKDEP 1423 void lockdep_assert_task_sighand_held(struct task_struct *task) 1424 { 1425 struct sighand_struct *sighand; 1426 1427 rcu_read_lock(); 1428 sighand = rcu_dereference(task->sighand); 1429 if (sighand) 1430 lockdep_assert_held(&sighand->siglock); 1431 else 1432 WARN_ON_ONCE(1); 1433 rcu_read_unlock(); 1434 } 1435 #endif 1436 1437 /* 1438 * send signal info to all the members of a group 1439 */ 1440 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1441 struct task_struct *p, enum pid_type type) 1442 { 1443 int ret; 1444 1445 rcu_read_lock(); 1446 ret = check_kill_permission(sig, info, p); 1447 rcu_read_unlock(); 1448 1449 if (!ret && sig) 1450 ret = do_send_sig_info(sig, info, p, type); 1451 1452 return ret; 1453 } 1454 1455 /* 1456 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1457 * control characters do (^C, ^Z etc) 1458 * - the caller must hold at least a readlock on tasklist_lock 1459 */ 1460 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1461 { 1462 struct task_struct *p = NULL; 1463 int retval, success; 1464 1465 success = 0; 1466 retval = -ESRCH; 1467 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1468 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1469 success |= !err; 1470 retval = err; 1471 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1472 return success ? 0 : retval; 1473 } 1474 1475 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1476 { 1477 int error = -ESRCH; 1478 struct task_struct *p; 1479 1480 for (;;) { 1481 rcu_read_lock(); 1482 p = pid_task(pid, PIDTYPE_PID); 1483 if (p) 1484 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1485 rcu_read_unlock(); 1486 if (likely(!p || error != -ESRCH)) 1487 return error; 1488 1489 /* 1490 * The task was unhashed in between, try again. If it 1491 * is dead, pid_task() will return NULL, if we race with 1492 * de_thread() it will find the new leader. 1493 */ 1494 } 1495 } 1496 1497 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1498 { 1499 int error; 1500 rcu_read_lock(); 1501 error = kill_pid_info(sig, info, find_vpid(pid)); 1502 rcu_read_unlock(); 1503 return error; 1504 } 1505 1506 static inline bool kill_as_cred_perm(const struct cred *cred, 1507 struct task_struct *target) 1508 { 1509 const struct cred *pcred = __task_cred(target); 1510 1511 return uid_eq(cred->euid, pcred->suid) || 1512 uid_eq(cred->euid, pcred->uid) || 1513 uid_eq(cred->uid, pcred->suid) || 1514 uid_eq(cred->uid, pcred->uid); 1515 } 1516 1517 /* 1518 * The usb asyncio usage of siginfo is wrong. The glibc support 1519 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1520 * AKA after the generic fields: 1521 * kernel_pid_t si_pid; 1522 * kernel_uid32_t si_uid; 1523 * sigval_t si_value; 1524 * 1525 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1526 * after the generic fields is: 1527 * void __user *si_addr; 1528 * 1529 * This is a practical problem when there is a 64bit big endian kernel 1530 * and a 32bit userspace. As the 32bit address will encoded in the low 1531 * 32bits of the pointer. Those low 32bits will be stored at higher 1532 * address than appear in a 32 bit pointer. So userspace will not 1533 * see the address it was expecting for it's completions. 1534 * 1535 * There is nothing in the encoding that can allow 1536 * copy_siginfo_to_user32 to detect this confusion of formats, so 1537 * handle this by requiring the caller of kill_pid_usb_asyncio to 1538 * notice when this situration takes place and to store the 32bit 1539 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1540 * parameter. 1541 */ 1542 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1543 struct pid *pid, const struct cred *cred) 1544 { 1545 struct kernel_siginfo info; 1546 struct task_struct *p; 1547 unsigned long flags; 1548 int ret = -EINVAL; 1549 1550 if (!valid_signal(sig)) 1551 return ret; 1552 1553 clear_siginfo(&info); 1554 info.si_signo = sig; 1555 info.si_errno = errno; 1556 info.si_code = SI_ASYNCIO; 1557 *((sigval_t *)&info.si_pid) = addr; 1558 1559 rcu_read_lock(); 1560 p = pid_task(pid, PIDTYPE_PID); 1561 if (!p) { 1562 ret = -ESRCH; 1563 goto out_unlock; 1564 } 1565 if (!kill_as_cred_perm(cred, p)) { 1566 ret = -EPERM; 1567 goto out_unlock; 1568 } 1569 ret = security_task_kill(p, &info, sig, cred); 1570 if (ret) 1571 goto out_unlock; 1572 1573 if (sig) { 1574 if (lock_task_sighand(p, &flags)) { 1575 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1576 unlock_task_sighand(p, &flags); 1577 } else 1578 ret = -ESRCH; 1579 } 1580 out_unlock: 1581 rcu_read_unlock(); 1582 return ret; 1583 } 1584 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1585 1586 /* 1587 * kill_something_info() interprets pid in interesting ways just like kill(2). 1588 * 1589 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1590 * is probably wrong. Should make it like BSD or SYSV. 1591 */ 1592 1593 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1594 { 1595 int ret; 1596 1597 if (pid > 0) 1598 return kill_proc_info(sig, info, pid); 1599 1600 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1601 if (pid == INT_MIN) 1602 return -ESRCH; 1603 1604 read_lock(&tasklist_lock); 1605 if (pid != -1) { 1606 ret = __kill_pgrp_info(sig, info, 1607 pid ? find_vpid(-pid) : task_pgrp(current)); 1608 } else { 1609 int retval = 0, count = 0; 1610 struct task_struct * p; 1611 1612 for_each_process(p) { 1613 if (task_pid_vnr(p) > 1 && 1614 !same_thread_group(p, current)) { 1615 int err = group_send_sig_info(sig, info, p, 1616 PIDTYPE_MAX); 1617 ++count; 1618 if (err != -EPERM) 1619 retval = err; 1620 } 1621 } 1622 ret = count ? retval : -ESRCH; 1623 } 1624 read_unlock(&tasklist_lock); 1625 1626 return ret; 1627 } 1628 1629 /* 1630 * These are for backward compatibility with the rest of the kernel source. 1631 */ 1632 1633 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1634 { 1635 /* 1636 * Make sure legacy kernel users don't send in bad values 1637 * (normal paths check this in check_kill_permission). 1638 */ 1639 if (!valid_signal(sig)) 1640 return -EINVAL; 1641 1642 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1643 } 1644 EXPORT_SYMBOL(send_sig_info); 1645 1646 #define __si_special(priv) \ 1647 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1648 1649 int 1650 send_sig(int sig, struct task_struct *p, int priv) 1651 { 1652 return send_sig_info(sig, __si_special(priv), p); 1653 } 1654 EXPORT_SYMBOL(send_sig); 1655 1656 void force_sig(int sig) 1657 { 1658 struct kernel_siginfo info; 1659 1660 clear_siginfo(&info); 1661 info.si_signo = sig; 1662 info.si_errno = 0; 1663 info.si_code = SI_KERNEL; 1664 info.si_pid = 0; 1665 info.si_uid = 0; 1666 force_sig_info(&info); 1667 } 1668 EXPORT_SYMBOL(force_sig); 1669 1670 void force_fatal_sig(int sig) 1671 { 1672 struct kernel_siginfo info; 1673 1674 clear_siginfo(&info); 1675 info.si_signo = sig; 1676 info.si_errno = 0; 1677 info.si_code = SI_KERNEL; 1678 info.si_pid = 0; 1679 info.si_uid = 0; 1680 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1681 } 1682 1683 void force_exit_sig(int sig) 1684 { 1685 struct kernel_siginfo info; 1686 1687 clear_siginfo(&info); 1688 info.si_signo = sig; 1689 info.si_errno = 0; 1690 info.si_code = SI_KERNEL; 1691 info.si_pid = 0; 1692 info.si_uid = 0; 1693 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1694 } 1695 1696 /* 1697 * When things go south during signal handling, we 1698 * will force a SIGSEGV. And if the signal that caused 1699 * the problem was already a SIGSEGV, we'll want to 1700 * make sure we don't even try to deliver the signal.. 1701 */ 1702 void force_sigsegv(int sig) 1703 { 1704 if (sig == SIGSEGV) 1705 force_fatal_sig(SIGSEGV); 1706 else 1707 force_sig(SIGSEGV); 1708 } 1709 1710 int force_sig_fault_to_task(int sig, int code, void __user *addr 1711 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1712 , struct task_struct *t) 1713 { 1714 struct kernel_siginfo info; 1715 1716 clear_siginfo(&info); 1717 info.si_signo = sig; 1718 info.si_errno = 0; 1719 info.si_code = code; 1720 info.si_addr = addr; 1721 #ifdef __ia64__ 1722 info.si_imm = imm; 1723 info.si_flags = flags; 1724 info.si_isr = isr; 1725 #endif 1726 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1727 } 1728 1729 int force_sig_fault(int sig, int code, void __user *addr 1730 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1731 { 1732 return force_sig_fault_to_task(sig, code, addr 1733 ___ARCH_SI_IA64(imm, flags, isr), current); 1734 } 1735 1736 int send_sig_fault(int sig, int code, void __user *addr 1737 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1738 , struct task_struct *t) 1739 { 1740 struct kernel_siginfo info; 1741 1742 clear_siginfo(&info); 1743 info.si_signo = sig; 1744 info.si_errno = 0; 1745 info.si_code = code; 1746 info.si_addr = addr; 1747 #ifdef __ia64__ 1748 info.si_imm = imm; 1749 info.si_flags = flags; 1750 info.si_isr = isr; 1751 #endif 1752 return send_sig_info(info.si_signo, &info, t); 1753 } 1754 1755 int force_sig_mceerr(int code, void __user *addr, short lsb) 1756 { 1757 struct kernel_siginfo info; 1758 1759 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1760 clear_siginfo(&info); 1761 info.si_signo = SIGBUS; 1762 info.si_errno = 0; 1763 info.si_code = code; 1764 info.si_addr = addr; 1765 info.si_addr_lsb = lsb; 1766 return force_sig_info(&info); 1767 } 1768 1769 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1770 { 1771 struct kernel_siginfo info; 1772 1773 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1774 clear_siginfo(&info); 1775 info.si_signo = SIGBUS; 1776 info.si_errno = 0; 1777 info.si_code = code; 1778 info.si_addr = addr; 1779 info.si_addr_lsb = lsb; 1780 return send_sig_info(info.si_signo, &info, t); 1781 } 1782 EXPORT_SYMBOL(send_sig_mceerr); 1783 1784 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1785 { 1786 struct kernel_siginfo info; 1787 1788 clear_siginfo(&info); 1789 info.si_signo = SIGSEGV; 1790 info.si_errno = 0; 1791 info.si_code = SEGV_BNDERR; 1792 info.si_addr = addr; 1793 info.si_lower = lower; 1794 info.si_upper = upper; 1795 return force_sig_info(&info); 1796 } 1797 1798 #ifdef SEGV_PKUERR 1799 int force_sig_pkuerr(void __user *addr, u32 pkey) 1800 { 1801 struct kernel_siginfo info; 1802 1803 clear_siginfo(&info); 1804 info.si_signo = SIGSEGV; 1805 info.si_errno = 0; 1806 info.si_code = SEGV_PKUERR; 1807 info.si_addr = addr; 1808 info.si_pkey = pkey; 1809 return force_sig_info(&info); 1810 } 1811 #endif 1812 1813 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1814 { 1815 struct kernel_siginfo info; 1816 1817 clear_siginfo(&info); 1818 info.si_signo = SIGTRAP; 1819 info.si_errno = 0; 1820 info.si_code = TRAP_PERF; 1821 info.si_addr = addr; 1822 info.si_perf_data = sig_data; 1823 info.si_perf_type = type; 1824 1825 /* 1826 * Signals generated by perf events should not terminate the whole 1827 * process if SIGTRAP is blocked, however, delivering the signal 1828 * asynchronously is better than not delivering at all. But tell user 1829 * space if the signal was asynchronous, so it can clearly be 1830 * distinguished from normal synchronous ones. 1831 */ 1832 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1833 TRAP_PERF_FLAG_ASYNC : 1834 0; 1835 1836 return send_sig_info(info.si_signo, &info, current); 1837 } 1838 1839 /** 1840 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1841 * @syscall: syscall number to send to userland 1842 * @reason: filter-supplied reason code to send to userland (via si_errno) 1843 * @force_coredump: true to trigger a coredump 1844 * 1845 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1846 */ 1847 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1848 { 1849 struct kernel_siginfo info; 1850 1851 clear_siginfo(&info); 1852 info.si_signo = SIGSYS; 1853 info.si_code = SYS_SECCOMP; 1854 info.si_call_addr = (void __user *)KSTK_EIP(current); 1855 info.si_errno = reason; 1856 info.si_arch = syscall_get_arch(current); 1857 info.si_syscall = syscall; 1858 return force_sig_info_to_task(&info, current, 1859 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1860 } 1861 1862 /* For the crazy architectures that include trap information in 1863 * the errno field, instead of an actual errno value. 1864 */ 1865 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1866 { 1867 struct kernel_siginfo info; 1868 1869 clear_siginfo(&info); 1870 info.si_signo = SIGTRAP; 1871 info.si_errno = errno; 1872 info.si_code = TRAP_HWBKPT; 1873 info.si_addr = addr; 1874 return force_sig_info(&info); 1875 } 1876 1877 /* For the rare architectures that include trap information using 1878 * si_trapno. 1879 */ 1880 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1881 { 1882 struct kernel_siginfo info; 1883 1884 clear_siginfo(&info); 1885 info.si_signo = sig; 1886 info.si_errno = 0; 1887 info.si_code = code; 1888 info.si_addr = addr; 1889 info.si_trapno = trapno; 1890 return force_sig_info(&info); 1891 } 1892 1893 /* For the rare architectures that include trap information using 1894 * si_trapno. 1895 */ 1896 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1897 struct task_struct *t) 1898 { 1899 struct kernel_siginfo info; 1900 1901 clear_siginfo(&info); 1902 info.si_signo = sig; 1903 info.si_errno = 0; 1904 info.si_code = code; 1905 info.si_addr = addr; 1906 info.si_trapno = trapno; 1907 return send_sig_info(info.si_signo, &info, t); 1908 } 1909 1910 int kill_pgrp(struct pid *pid, int sig, int priv) 1911 { 1912 int ret; 1913 1914 read_lock(&tasklist_lock); 1915 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1916 read_unlock(&tasklist_lock); 1917 1918 return ret; 1919 } 1920 EXPORT_SYMBOL(kill_pgrp); 1921 1922 int kill_pid(struct pid *pid, int sig, int priv) 1923 { 1924 return kill_pid_info(sig, __si_special(priv), pid); 1925 } 1926 EXPORT_SYMBOL(kill_pid); 1927 1928 /* 1929 * These functions support sending signals using preallocated sigqueue 1930 * structures. This is needed "because realtime applications cannot 1931 * afford to lose notifications of asynchronous events, like timer 1932 * expirations or I/O completions". In the case of POSIX Timers 1933 * we allocate the sigqueue structure from the timer_create. If this 1934 * allocation fails we are able to report the failure to the application 1935 * with an EAGAIN error. 1936 */ 1937 struct sigqueue *sigqueue_alloc(void) 1938 { 1939 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1940 } 1941 1942 void sigqueue_free(struct sigqueue *q) 1943 { 1944 unsigned long flags; 1945 spinlock_t *lock = ¤t->sighand->siglock; 1946 1947 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1948 /* 1949 * We must hold ->siglock while testing q->list 1950 * to serialize with collect_signal() or with 1951 * __exit_signal()->flush_sigqueue(). 1952 */ 1953 spin_lock_irqsave(lock, flags); 1954 q->flags &= ~SIGQUEUE_PREALLOC; 1955 /* 1956 * If it is queued it will be freed when dequeued, 1957 * like the "regular" sigqueue. 1958 */ 1959 if (!list_empty(&q->list)) 1960 q = NULL; 1961 spin_unlock_irqrestore(lock, flags); 1962 1963 if (q) 1964 __sigqueue_free(q); 1965 } 1966 1967 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1968 { 1969 int sig = q->info.si_signo; 1970 struct sigpending *pending; 1971 struct task_struct *t; 1972 unsigned long flags; 1973 int ret, result; 1974 1975 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1976 1977 ret = -1; 1978 rcu_read_lock(); 1979 1980 /* 1981 * This function is used by POSIX timers to deliver a timer signal. 1982 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1983 * set), the signal must be delivered to the specific thread (queues 1984 * into t->pending). 1985 * 1986 * Where type is not PIDTYPE_PID, signals must be delivered to the 1987 * process. In this case, prefer to deliver to current if it is in 1988 * the same thread group as the target process, which avoids 1989 * unnecessarily waking up a potentially idle task. 1990 */ 1991 t = pid_task(pid, type); 1992 if (!t) 1993 goto ret; 1994 if (type != PIDTYPE_PID && same_thread_group(t, current)) 1995 t = current; 1996 if (!likely(lock_task_sighand(t, &flags))) 1997 goto ret; 1998 1999 ret = 1; /* the signal is ignored */ 2000 result = TRACE_SIGNAL_IGNORED; 2001 if (!prepare_signal(sig, t, false)) 2002 goto out; 2003 2004 ret = 0; 2005 if (unlikely(!list_empty(&q->list))) { 2006 /* 2007 * If an SI_TIMER entry is already queue just increment 2008 * the overrun count. 2009 */ 2010 BUG_ON(q->info.si_code != SI_TIMER); 2011 q->info.si_overrun++; 2012 result = TRACE_SIGNAL_ALREADY_PENDING; 2013 goto out; 2014 } 2015 q->info.si_overrun = 0; 2016 2017 signalfd_notify(t, sig); 2018 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 2019 list_add_tail(&q->list, &pending->list); 2020 sigaddset(&pending->signal, sig); 2021 complete_signal(sig, t, type); 2022 result = TRACE_SIGNAL_DELIVERED; 2023 out: 2024 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2025 unlock_task_sighand(t, &flags); 2026 ret: 2027 rcu_read_unlock(); 2028 return ret; 2029 } 2030 2031 static void do_notify_pidfd(struct task_struct *task) 2032 { 2033 struct pid *pid; 2034 2035 WARN_ON(task->exit_state == 0); 2036 pid = task_pid(task); 2037 wake_up_all(&pid->wait_pidfd); 2038 } 2039 2040 /* 2041 * Let a parent know about the death of a child. 2042 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2043 * 2044 * Returns true if our parent ignored us and so we've switched to 2045 * self-reaping. 2046 */ 2047 bool do_notify_parent(struct task_struct *tsk, int sig) 2048 { 2049 struct kernel_siginfo info; 2050 unsigned long flags; 2051 struct sighand_struct *psig; 2052 bool autoreap = false; 2053 u64 utime, stime; 2054 2055 WARN_ON_ONCE(sig == -1); 2056 2057 /* do_notify_parent_cldstop should have been called instead. */ 2058 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2059 2060 WARN_ON_ONCE(!tsk->ptrace && 2061 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2062 2063 /* Wake up all pidfd waiters */ 2064 do_notify_pidfd(tsk); 2065 2066 if (sig != SIGCHLD) { 2067 /* 2068 * This is only possible if parent == real_parent. 2069 * Check if it has changed security domain. 2070 */ 2071 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2072 sig = SIGCHLD; 2073 } 2074 2075 clear_siginfo(&info); 2076 info.si_signo = sig; 2077 info.si_errno = 0; 2078 /* 2079 * We are under tasklist_lock here so our parent is tied to 2080 * us and cannot change. 2081 * 2082 * task_active_pid_ns will always return the same pid namespace 2083 * until a task passes through release_task. 2084 * 2085 * write_lock() currently calls preempt_disable() which is the 2086 * same as rcu_read_lock(), but according to Oleg, this is not 2087 * correct to rely on this 2088 */ 2089 rcu_read_lock(); 2090 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2091 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2092 task_uid(tsk)); 2093 rcu_read_unlock(); 2094 2095 task_cputime(tsk, &utime, &stime); 2096 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2097 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2098 2099 info.si_status = tsk->exit_code & 0x7f; 2100 if (tsk->exit_code & 0x80) 2101 info.si_code = CLD_DUMPED; 2102 else if (tsk->exit_code & 0x7f) 2103 info.si_code = CLD_KILLED; 2104 else { 2105 info.si_code = CLD_EXITED; 2106 info.si_status = tsk->exit_code >> 8; 2107 } 2108 2109 psig = tsk->parent->sighand; 2110 spin_lock_irqsave(&psig->siglock, flags); 2111 if (!tsk->ptrace && sig == SIGCHLD && 2112 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2113 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2114 /* 2115 * We are exiting and our parent doesn't care. POSIX.1 2116 * defines special semantics for setting SIGCHLD to SIG_IGN 2117 * or setting the SA_NOCLDWAIT flag: we should be reaped 2118 * automatically and not left for our parent's wait4 call. 2119 * Rather than having the parent do it as a magic kind of 2120 * signal handler, we just set this to tell do_exit that we 2121 * can be cleaned up without becoming a zombie. Note that 2122 * we still call __wake_up_parent in this case, because a 2123 * blocked sys_wait4 might now return -ECHILD. 2124 * 2125 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2126 * is implementation-defined: we do (if you don't want 2127 * it, just use SIG_IGN instead). 2128 */ 2129 autoreap = true; 2130 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2131 sig = 0; 2132 } 2133 /* 2134 * Send with __send_signal as si_pid and si_uid are in the 2135 * parent's namespaces. 2136 */ 2137 if (valid_signal(sig) && sig) 2138 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2139 __wake_up_parent(tsk, tsk->parent); 2140 spin_unlock_irqrestore(&psig->siglock, flags); 2141 2142 return autoreap; 2143 } 2144 2145 /** 2146 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2147 * @tsk: task reporting the state change 2148 * @for_ptracer: the notification is for ptracer 2149 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2150 * 2151 * Notify @tsk's parent that the stopped/continued state has changed. If 2152 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2153 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2154 * 2155 * CONTEXT: 2156 * Must be called with tasklist_lock at least read locked. 2157 */ 2158 static void do_notify_parent_cldstop(struct task_struct *tsk, 2159 bool for_ptracer, int why) 2160 { 2161 struct kernel_siginfo info; 2162 unsigned long flags; 2163 struct task_struct *parent; 2164 struct sighand_struct *sighand; 2165 u64 utime, stime; 2166 2167 if (for_ptracer) { 2168 parent = tsk->parent; 2169 } else { 2170 tsk = tsk->group_leader; 2171 parent = tsk->real_parent; 2172 } 2173 2174 clear_siginfo(&info); 2175 info.si_signo = SIGCHLD; 2176 info.si_errno = 0; 2177 /* 2178 * see comment in do_notify_parent() about the following 4 lines 2179 */ 2180 rcu_read_lock(); 2181 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2182 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2183 rcu_read_unlock(); 2184 2185 task_cputime(tsk, &utime, &stime); 2186 info.si_utime = nsec_to_clock_t(utime); 2187 info.si_stime = nsec_to_clock_t(stime); 2188 2189 info.si_code = why; 2190 switch (why) { 2191 case CLD_CONTINUED: 2192 info.si_status = SIGCONT; 2193 break; 2194 case CLD_STOPPED: 2195 info.si_status = tsk->signal->group_exit_code & 0x7f; 2196 break; 2197 case CLD_TRAPPED: 2198 info.si_status = tsk->exit_code & 0x7f; 2199 break; 2200 default: 2201 BUG(); 2202 } 2203 2204 sighand = parent->sighand; 2205 spin_lock_irqsave(&sighand->siglock, flags); 2206 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2207 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2208 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2209 /* 2210 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2211 */ 2212 __wake_up_parent(tsk, parent); 2213 spin_unlock_irqrestore(&sighand->siglock, flags); 2214 } 2215 2216 /* 2217 * This must be called with current->sighand->siglock held. 2218 * 2219 * This should be the path for all ptrace stops. 2220 * We always set current->last_siginfo while stopped here. 2221 * That makes it a way to test a stopped process for 2222 * being ptrace-stopped vs being job-control-stopped. 2223 * 2224 * Returns the signal the ptracer requested the code resume 2225 * with. If the code did not stop because the tracer is gone, 2226 * the stop signal remains unchanged unless clear_code. 2227 */ 2228 static int ptrace_stop(int exit_code, int why, unsigned long message, 2229 kernel_siginfo_t *info) 2230 __releases(¤t->sighand->siglock) 2231 __acquires(¤t->sighand->siglock) 2232 { 2233 bool gstop_done = false; 2234 2235 if (arch_ptrace_stop_needed()) { 2236 /* 2237 * The arch code has something special to do before a 2238 * ptrace stop. This is allowed to block, e.g. for faults 2239 * on user stack pages. We can't keep the siglock while 2240 * calling arch_ptrace_stop, so we must release it now. 2241 * To preserve proper semantics, we must do this before 2242 * any signal bookkeeping like checking group_stop_count. 2243 */ 2244 spin_unlock_irq(¤t->sighand->siglock); 2245 arch_ptrace_stop(); 2246 spin_lock_irq(¤t->sighand->siglock); 2247 } 2248 2249 /* 2250 * After this point ptrace_signal_wake_up or signal_wake_up 2251 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2252 * signal comes in. Handle previous ptrace_unlinks and fatal 2253 * signals here to prevent ptrace_stop sleeping in schedule. 2254 */ 2255 if (!current->ptrace || __fatal_signal_pending(current)) 2256 return exit_code; 2257 2258 set_special_state(TASK_TRACED); 2259 current->jobctl |= JOBCTL_TRACED; 2260 2261 /* 2262 * We're committing to trapping. TRACED should be visible before 2263 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2264 * Also, transition to TRACED and updates to ->jobctl should be 2265 * atomic with respect to siglock and should be done after the arch 2266 * hook as siglock is released and regrabbed across it. 2267 * 2268 * TRACER TRACEE 2269 * 2270 * ptrace_attach() 2271 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2272 * do_wait() 2273 * set_current_state() smp_wmb(); 2274 * ptrace_do_wait() 2275 * wait_task_stopped() 2276 * task_stopped_code() 2277 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2278 */ 2279 smp_wmb(); 2280 2281 current->ptrace_message = message; 2282 current->last_siginfo = info; 2283 current->exit_code = exit_code; 2284 2285 /* 2286 * If @why is CLD_STOPPED, we're trapping to participate in a group 2287 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2288 * across siglock relocks since INTERRUPT was scheduled, PENDING 2289 * could be clear now. We act as if SIGCONT is received after 2290 * TASK_TRACED is entered - ignore it. 2291 */ 2292 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2293 gstop_done = task_participate_group_stop(current); 2294 2295 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2296 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2297 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2298 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2299 2300 /* entering a trap, clear TRAPPING */ 2301 task_clear_jobctl_trapping(current); 2302 2303 spin_unlock_irq(¤t->sighand->siglock); 2304 read_lock(&tasklist_lock); 2305 /* 2306 * Notify parents of the stop. 2307 * 2308 * While ptraced, there are two parents - the ptracer and 2309 * the real_parent of the group_leader. The ptracer should 2310 * know about every stop while the real parent is only 2311 * interested in the completion of group stop. The states 2312 * for the two don't interact with each other. Notify 2313 * separately unless they're gonna be duplicates. 2314 */ 2315 if (current->ptrace) 2316 do_notify_parent_cldstop(current, true, why); 2317 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2318 do_notify_parent_cldstop(current, false, why); 2319 2320 /* 2321 * Don't want to allow preemption here, because 2322 * sys_ptrace() needs this task to be inactive. 2323 * 2324 * XXX: implement read_unlock_no_resched(). 2325 */ 2326 preempt_disable(); 2327 read_unlock(&tasklist_lock); 2328 cgroup_enter_frozen(); 2329 preempt_enable_no_resched(); 2330 schedule(); 2331 cgroup_leave_frozen(true); 2332 2333 /* 2334 * We are back. Now reacquire the siglock before touching 2335 * last_siginfo, so that we are sure to have synchronized with 2336 * any signal-sending on another CPU that wants to examine it. 2337 */ 2338 spin_lock_irq(¤t->sighand->siglock); 2339 exit_code = current->exit_code; 2340 current->last_siginfo = NULL; 2341 current->ptrace_message = 0; 2342 current->exit_code = 0; 2343 2344 /* LISTENING can be set only during STOP traps, clear it */ 2345 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2346 2347 /* 2348 * Queued signals ignored us while we were stopped for tracing. 2349 * So check for any that we should take before resuming user mode. 2350 * This sets TIF_SIGPENDING, but never clears it. 2351 */ 2352 recalc_sigpending_tsk(current); 2353 return exit_code; 2354 } 2355 2356 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2357 { 2358 kernel_siginfo_t info; 2359 2360 clear_siginfo(&info); 2361 info.si_signo = signr; 2362 info.si_code = exit_code; 2363 info.si_pid = task_pid_vnr(current); 2364 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2365 2366 /* Let the debugger run. */ 2367 return ptrace_stop(exit_code, why, message, &info); 2368 } 2369 2370 int ptrace_notify(int exit_code, unsigned long message) 2371 { 2372 int signr; 2373 2374 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2375 if (unlikely(task_work_pending(current))) 2376 task_work_run(); 2377 2378 spin_lock_irq(¤t->sighand->siglock); 2379 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2380 spin_unlock_irq(¤t->sighand->siglock); 2381 return signr; 2382 } 2383 2384 /** 2385 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2386 * @signr: signr causing group stop if initiating 2387 * 2388 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2389 * and participate in it. If already set, participate in the existing 2390 * group stop. If participated in a group stop (and thus slept), %true is 2391 * returned with siglock released. 2392 * 2393 * If ptraced, this function doesn't handle stop itself. Instead, 2394 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2395 * untouched. The caller must ensure that INTERRUPT trap handling takes 2396 * places afterwards. 2397 * 2398 * CONTEXT: 2399 * Must be called with @current->sighand->siglock held, which is released 2400 * on %true return. 2401 * 2402 * RETURNS: 2403 * %false if group stop is already cancelled or ptrace trap is scheduled. 2404 * %true if participated in group stop. 2405 */ 2406 static bool do_signal_stop(int signr) 2407 __releases(¤t->sighand->siglock) 2408 { 2409 struct signal_struct *sig = current->signal; 2410 2411 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2412 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2413 struct task_struct *t; 2414 2415 /* signr will be recorded in task->jobctl for retries */ 2416 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2417 2418 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2419 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2420 unlikely(sig->group_exec_task)) 2421 return false; 2422 /* 2423 * There is no group stop already in progress. We must 2424 * initiate one now. 2425 * 2426 * While ptraced, a task may be resumed while group stop is 2427 * still in effect and then receive a stop signal and 2428 * initiate another group stop. This deviates from the 2429 * usual behavior as two consecutive stop signals can't 2430 * cause two group stops when !ptraced. That is why we 2431 * also check !task_is_stopped(t) below. 2432 * 2433 * The condition can be distinguished by testing whether 2434 * SIGNAL_STOP_STOPPED is already set. Don't generate 2435 * group_exit_code in such case. 2436 * 2437 * This is not necessary for SIGNAL_STOP_CONTINUED because 2438 * an intervening stop signal is required to cause two 2439 * continued events regardless of ptrace. 2440 */ 2441 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2442 sig->group_exit_code = signr; 2443 2444 sig->group_stop_count = 0; 2445 2446 if (task_set_jobctl_pending(current, signr | gstop)) 2447 sig->group_stop_count++; 2448 2449 t = current; 2450 while_each_thread(current, t) { 2451 /* 2452 * Setting state to TASK_STOPPED for a group 2453 * stop is always done with the siglock held, 2454 * so this check has no races. 2455 */ 2456 if (!task_is_stopped(t) && 2457 task_set_jobctl_pending(t, signr | gstop)) { 2458 sig->group_stop_count++; 2459 if (likely(!(t->ptrace & PT_SEIZED))) 2460 signal_wake_up(t, 0); 2461 else 2462 ptrace_trap_notify(t); 2463 } 2464 } 2465 } 2466 2467 if (likely(!current->ptrace)) { 2468 int notify = 0; 2469 2470 /* 2471 * If there are no other threads in the group, or if there 2472 * is a group stop in progress and we are the last to stop, 2473 * report to the parent. 2474 */ 2475 if (task_participate_group_stop(current)) 2476 notify = CLD_STOPPED; 2477 2478 current->jobctl |= JOBCTL_STOPPED; 2479 set_special_state(TASK_STOPPED); 2480 spin_unlock_irq(¤t->sighand->siglock); 2481 2482 /* 2483 * Notify the parent of the group stop completion. Because 2484 * we're not holding either the siglock or tasklist_lock 2485 * here, ptracer may attach inbetween; however, this is for 2486 * group stop and should always be delivered to the real 2487 * parent of the group leader. The new ptracer will get 2488 * its notification when this task transitions into 2489 * TASK_TRACED. 2490 */ 2491 if (notify) { 2492 read_lock(&tasklist_lock); 2493 do_notify_parent_cldstop(current, false, notify); 2494 read_unlock(&tasklist_lock); 2495 } 2496 2497 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2498 cgroup_enter_frozen(); 2499 schedule(); 2500 return true; 2501 } else { 2502 /* 2503 * While ptraced, group stop is handled by STOP trap. 2504 * Schedule it and let the caller deal with it. 2505 */ 2506 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2507 return false; 2508 } 2509 } 2510 2511 /** 2512 * do_jobctl_trap - take care of ptrace jobctl traps 2513 * 2514 * When PT_SEIZED, it's used for both group stop and explicit 2515 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2516 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2517 * the stop signal; otherwise, %SIGTRAP. 2518 * 2519 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2520 * number as exit_code and no siginfo. 2521 * 2522 * CONTEXT: 2523 * Must be called with @current->sighand->siglock held, which may be 2524 * released and re-acquired before returning with intervening sleep. 2525 */ 2526 static void do_jobctl_trap(void) 2527 { 2528 struct signal_struct *signal = current->signal; 2529 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2530 2531 if (current->ptrace & PT_SEIZED) { 2532 if (!signal->group_stop_count && 2533 !(signal->flags & SIGNAL_STOP_STOPPED)) 2534 signr = SIGTRAP; 2535 WARN_ON_ONCE(!signr); 2536 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2537 CLD_STOPPED, 0); 2538 } else { 2539 WARN_ON_ONCE(!signr); 2540 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2541 } 2542 } 2543 2544 /** 2545 * do_freezer_trap - handle the freezer jobctl trap 2546 * 2547 * Puts the task into frozen state, if only the task is not about to quit. 2548 * In this case it drops JOBCTL_TRAP_FREEZE. 2549 * 2550 * CONTEXT: 2551 * Must be called with @current->sighand->siglock held, 2552 * which is always released before returning. 2553 */ 2554 static void do_freezer_trap(void) 2555 __releases(¤t->sighand->siglock) 2556 { 2557 /* 2558 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2559 * let's make another loop to give it a chance to be handled. 2560 * In any case, we'll return back. 2561 */ 2562 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2563 JOBCTL_TRAP_FREEZE) { 2564 spin_unlock_irq(¤t->sighand->siglock); 2565 return; 2566 } 2567 2568 /* 2569 * Now we're sure that there is no pending fatal signal and no 2570 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2571 * immediately (if there is a non-fatal signal pending), and 2572 * put the task into sleep. 2573 */ 2574 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2575 clear_thread_flag(TIF_SIGPENDING); 2576 spin_unlock_irq(¤t->sighand->siglock); 2577 cgroup_enter_frozen(); 2578 schedule(); 2579 } 2580 2581 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2582 { 2583 /* 2584 * We do not check sig_kernel_stop(signr) but set this marker 2585 * unconditionally because we do not know whether debugger will 2586 * change signr. This flag has no meaning unless we are going 2587 * to stop after return from ptrace_stop(). In this case it will 2588 * be checked in do_signal_stop(), we should only stop if it was 2589 * not cleared by SIGCONT while we were sleeping. See also the 2590 * comment in dequeue_signal(). 2591 */ 2592 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2593 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2594 2595 /* We're back. Did the debugger cancel the sig? */ 2596 if (signr == 0) 2597 return signr; 2598 2599 /* 2600 * Update the siginfo structure if the signal has 2601 * changed. If the debugger wanted something 2602 * specific in the siginfo structure then it should 2603 * have updated *info via PTRACE_SETSIGINFO. 2604 */ 2605 if (signr != info->si_signo) { 2606 clear_siginfo(info); 2607 info->si_signo = signr; 2608 info->si_errno = 0; 2609 info->si_code = SI_USER; 2610 rcu_read_lock(); 2611 info->si_pid = task_pid_vnr(current->parent); 2612 info->si_uid = from_kuid_munged(current_user_ns(), 2613 task_uid(current->parent)); 2614 rcu_read_unlock(); 2615 } 2616 2617 /* If the (new) signal is now blocked, requeue it. */ 2618 if (sigismember(¤t->blocked, signr) || 2619 fatal_signal_pending(current)) { 2620 send_signal_locked(signr, info, current, type); 2621 signr = 0; 2622 } 2623 2624 return signr; 2625 } 2626 2627 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2628 { 2629 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2630 case SIL_FAULT: 2631 case SIL_FAULT_TRAPNO: 2632 case SIL_FAULT_MCEERR: 2633 case SIL_FAULT_BNDERR: 2634 case SIL_FAULT_PKUERR: 2635 case SIL_FAULT_PERF_EVENT: 2636 ksig->info.si_addr = arch_untagged_si_addr( 2637 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2638 break; 2639 case SIL_KILL: 2640 case SIL_TIMER: 2641 case SIL_POLL: 2642 case SIL_CHLD: 2643 case SIL_RT: 2644 case SIL_SYS: 2645 break; 2646 } 2647 } 2648 2649 bool get_signal(struct ksignal *ksig) 2650 { 2651 struct sighand_struct *sighand = current->sighand; 2652 struct signal_struct *signal = current->signal; 2653 int signr; 2654 2655 clear_notify_signal(); 2656 if (unlikely(task_work_pending(current))) 2657 task_work_run(); 2658 2659 if (!task_sigpending(current)) 2660 return false; 2661 2662 if (unlikely(uprobe_deny_signal())) 2663 return false; 2664 2665 /* 2666 * Do this once, we can't return to user-mode if freezing() == T. 2667 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2668 * thus do not need another check after return. 2669 */ 2670 try_to_freeze(); 2671 2672 relock: 2673 spin_lock_irq(&sighand->siglock); 2674 2675 /* 2676 * Every stopped thread goes here after wakeup. Check to see if 2677 * we should notify the parent, prepare_signal(SIGCONT) encodes 2678 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2679 */ 2680 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2681 int why; 2682 2683 if (signal->flags & SIGNAL_CLD_CONTINUED) 2684 why = CLD_CONTINUED; 2685 else 2686 why = CLD_STOPPED; 2687 2688 signal->flags &= ~SIGNAL_CLD_MASK; 2689 2690 spin_unlock_irq(&sighand->siglock); 2691 2692 /* 2693 * Notify the parent that we're continuing. This event is 2694 * always per-process and doesn't make whole lot of sense 2695 * for ptracers, who shouldn't consume the state via 2696 * wait(2) either, but, for backward compatibility, notify 2697 * the ptracer of the group leader too unless it's gonna be 2698 * a duplicate. 2699 */ 2700 read_lock(&tasklist_lock); 2701 do_notify_parent_cldstop(current, false, why); 2702 2703 if (ptrace_reparented(current->group_leader)) 2704 do_notify_parent_cldstop(current->group_leader, 2705 true, why); 2706 read_unlock(&tasklist_lock); 2707 2708 goto relock; 2709 } 2710 2711 for (;;) { 2712 struct k_sigaction *ka; 2713 enum pid_type type; 2714 2715 /* Has this task already been marked for death? */ 2716 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2717 signal->group_exec_task) { 2718 clear_siginfo(&ksig->info); 2719 ksig->info.si_signo = signr = SIGKILL; 2720 sigdelset(¤t->pending.signal, SIGKILL); 2721 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2722 &sighand->action[SIGKILL - 1]); 2723 recalc_sigpending(); 2724 goto fatal; 2725 } 2726 2727 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2728 do_signal_stop(0)) 2729 goto relock; 2730 2731 if (unlikely(current->jobctl & 2732 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2733 if (current->jobctl & JOBCTL_TRAP_MASK) { 2734 do_jobctl_trap(); 2735 spin_unlock_irq(&sighand->siglock); 2736 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2737 do_freezer_trap(); 2738 2739 goto relock; 2740 } 2741 2742 /* 2743 * If the task is leaving the frozen state, let's update 2744 * cgroup counters and reset the frozen bit. 2745 */ 2746 if (unlikely(cgroup_task_frozen(current))) { 2747 spin_unlock_irq(&sighand->siglock); 2748 cgroup_leave_frozen(false); 2749 goto relock; 2750 } 2751 2752 /* 2753 * Signals generated by the execution of an instruction 2754 * need to be delivered before any other pending signals 2755 * so that the instruction pointer in the signal stack 2756 * frame points to the faulting instruction. 2757 */ 2758 type = PIDTYPE_PID; 2759 signr = dequeue_synchronous_signal(&ksig->info); 2760 if (!signr) 2761 signr = dequeue_signal(current, ¤t->blocked, 2762 &ksig->info, &type); 2763 2764 if (!signr) 2765 break; /* will return 0 */ 2766 2767 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2768 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2769 signr = ptrace_signal(signr, &ksig->info, type); 2770 if (!signr) 2771 continue; 2772 } 2773 2774 ka = &sighand->action[signr-1]; 2775 2776 /* Trace actually delivered signals. */ 2777 trace_signal_deliver(signr, &ksig->info, ka); 2778 2779 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2780 continue; 2781 if (ka->sa.sa_handler != SIG_DFL) { 2782 /* Run the handler. */ 2783 ksig->ka = *ka; 2784 2785 if (ka->sa.sa_flags & SA_ONESHOT) 2786 ka->sa.sa_handler = SIG_DFL; 2787 2788 break; /* will return non-zero "signr" value */ 2789 } 2790 2791 /* 2792 * Now we are doing the default action for this signal. 2793 */ 2794 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2795 continue; 2796 2797 /* 2798 * Global init gets no signals it doesn't want. 2799 * Container-init gets no signals it doesn't want from same 2800 * container. 2801 * 2802 * Note that if global/container-init sees a sig_kernel_only() 2803 * signal here, the signal must have been generated internally 2804 * or must have come from an ancestor namespace. In either 2805 * case, the signal cannot be dropped. 2806 */ 2807 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2808 !sig_kernel_only(signr)) 2809 continue; 2810 2811 if (sig_kernel_stop(signr)) { 2812 /* 2813 * The default action is to stop all threads in 2814 * the thread group. The job control signals 2815 * do nothing in an orphaned pgrp, but SIGSTOP 2816 * always works. Note that siglock needs to be 2817 * dropped during the call to is_orphaned_pgrp() 2818 * because of lock ordering with tasklist_lock. 2819 * This allows an intervening SIGCONT to be posted. 2820 * We need to check for that and bail out if necessary. 2821 */ 2822 if (signr != SIGSTOP) { 2823 spin_unlock_irq(&sighand->siglock); 2824 2825 /* signals can be posted during this window */ 2826 2827 if (is_current_pgrp_orphaned()) 2828 goto relock; 2829 2830 spin_lock_irq(&sighand->siglock); 2831 } 2832 2833 if (likely(do_signal_stop(ksig->info.si_signo))) { 2834 /* It released the siglock. */ 2835 goto relock; 2836 } 2837 2838 /* 2839 * We didn't actually stop, due to a race 2840 * with SIGCONT or something like that. 2841 */ 2842 continue; 2843 } 2844 2845 fatal: 2846 spin_unlock_irq(&sighand->siglock); 2847 if (unlikely(cgroup_task_frozen(current))) 2848 cgroup_leave_frozen(true); 2849 2850 /* 2851 * Anything else is fatal, maybe with a core dump. 2852 */ 2853 current->flags |= PF_SIGNALED; 2854 2855 if (sig_kernel_coredump(signr)) { 2856 if (print_fatal_signals) 2857 print_fatal_signal(ksig->info.si_signo); 2858 proc_coredump_connector(current); 2859 /* 2860 * If it was able to dump core, this kills all 2861 * other threads in the group and synchronizes with 2862 * their demise. If we lost the race with another 2863 * thread getting here, it set group_exit_code 2864 * first and our do_group_exit call below will use 2865 * that value and ignore the one we pass it. 2866 */ 2867 do_coredump(&ksig->info); 2868 } 2869 2870 /* 2871 * PF_USER_WORKER threads will catch and exit on fatal signals 2872 * themselves. They have cleanup that must be performed, so 2873 * we cannot call do_exit() on their behalf. 2874 */ 2875 if (current->flags & PF_USER_WORKER) 2876 goto out; 2877 2878 /* 2879 * Death signals, no core dump. 2880 */ 2881 do_group_exit(ksig->info.si_signo); 2882 /* NOTREACHED */ 2883 } 2884 spin_unlock_irq(&sighand->siglock); 2885 out: 2886 ksig->sig = signr; 2887 2888 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2889 hide_si_addr_tag_bits(ksig); 2890 2891 return ksig->sig > 0; 2892 } 2893 2894 /** 2895 * signal_delivered - called after signal delivery to update blocked signals 2896 * @ksig: kernel signal struct 2897 * @stepping: nonzero if debugger single-step or block-step in use 2898 * 2899 * This function should be called when a signal has successfully been 2900 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2901 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2902 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2903 */ 2904 static void signal_delivered(struct ksignal *ksig, int stepping) 2905 { 2906 sigset_t blocked; 2907 2908 /* A signal was successfully delivered, and the 2909 saved sigmask was stored on the signal frame, 2910 and will be restored by sigreturn. So we can 2911 simply clear the restore sigmask flag. */ 2912 clear_restore_sigmask(); 2913 2914 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2915 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2916 sigaddset(&blocked, ksig->sig); 2917 set_current_blocked(&blocked); 2918 if (current->sas_ss_flags & SS_AUTODISARM) 2919 sas_ss_reset(current); 2920 if (stepping) 2921 ptrace_notify(SIGTRAP, 0); 2922 } 2923 2924 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2925 { 2926 if (failed) 2927 force_sigsegv(ksig->sig); 2928 else 2929 signal_delivered(ksig, stepping); 2930 } 2931 2932 /* 2933 * It could be that complete_signal() picked us to notify about the 2934 * group-wide signal. Other threads should be notified now to take 2935 * the shared signals in @which since we will not. 2936 */ 2937 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2938 { 2939 sigset_t retarget; 2940 struct task_struct *t; 2941 2942 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2943 if (sigisemptyset(&retarget)) 2944 return; 2945 2946 t = tsk; 2947 while_each_thread(tsk, t) { 2948 if (t->flags & PF_EXITING) 2949 continue; 2950 2951 if (!has_pending_signals(&retarget, &t->blocked)) 2952 continue; 2953 /* Remove the signals this thread can handle. */ 2954 sigandsets(&retarget, &retarget, &t->blocked); 2955 2956 if (!task_sigpending(t)) 2957 signal_wake_up(t, 0); 2958 2959 if (sigisemptyset(&retarget)) 2960 break; 2961 } 2962 } 2963 2964 void exit_signals(struct task_struct *tsk) 2965 { 2966 int group_stop = 0; 2967 sigset_t unblocked; 2968 2969 /* 2970 * @tsk is about to have PF_EXITING set - lock out users which 2971 * expect stable threadgroup. 2972 */ 2973 cgroup_threadgroup_change_begin(tsk); 2974 2975 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 2976 sched_mm_cid_exit_signals(tsk); 2977 tsk->flags |= PF_EXITING; 2978 cgroup_threadgroup_change_end(tsk); 2979 return; 2980 } 2981 2982 spin_lock_irq(&tsk->sighand->siglock); 2983 /* 2984 * From now this task is not visible for group-wide signals, 2985 * see wants_signal(), do_signal_stop(). 2986 */ 2987 sched_mm_cid_exit_signals(tsk); 2988 tsk->flags |= PF_EXITING; 2989 2990 cgroup_threadgroup_change_end(tsk); 2991 2992 if (!task_sigpending(tsk)) 2993 goto out; 2994 2995 unblocked = tsk->blocked; 2996 signotset(&unblocked); 2997 retarget_shared_pending(tsk, &unblocked); 2998 2999 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3000 task_participate_group_stop(tsk)) 3001 group_stop = CLD_STOPPED; 3002 out: 3003 spin_unlock_irq(&tsk->sighand->siglock); 3004 3005 /* 3006 * If group stop has completed, deliver the notification. This 3007 * should always go to the real parent of the group leader. 3008 */ 3009 if (unlikely(group_stop)) { 3010 read_lock(&tasklist_lock); 3011 do_notify_parent_cldstop(tsk, false, group_stop); 3012 read_unlock(&tasklist_lock); 3013 } 3014 } 3015 3016 /* 3017 * System call entry points. 3018 */ 3019 3020 /** 3021 * sys_restart_syscall - restart a system call 3022 */ 3023 SYSCALL_DEFINE0(restart_syscall) 3024 { 3025 struct restart_block *restart = ¤t->restart_block; 3026 return restart->fn(restart); 3027 } 3028 3029 long do_no_restart_syscall(struct restart_block *param) 3030 { 3031 return -EINTR; 3032 } 3033 3034 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3035 { 3036 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3037 sigset_t newblocked; 3038 /* A set of now blocked but previously unblocked signals. */ 3039 sigandnsets(&newblocked, newset, ¤t->blocked); 3040 retarget_shared_pending(tsk, &newblocked); 3041 } 3042 tsk->blocked = *newset; 3043 recalc_sigpending(); 3044 } 3045 3046 /** 3047 * set_current_blocked - change current->blocked mask 3048 * @newset: new mask 3049 * 3050 * It is wrong to change ->blocked directly, this helper should be used 3051 * to ensure the process can't miss a shared signal we are going to block. 3052 */ 3053 void set_current_blocked(sigset_t *newset) 3054 { 3055 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3056 __set_current_blocked(newset); 3057 } 3058 3059 void __set_current_blocked(const sigset_t *newset) 3060 { 3061 struct task_struct *tsk = current; 3062 3063 /* 3064 * In case the signal mask hasn't changed, there is nothing we need 3065 * to do. The current->blocked shouldn't be modified by other task. 3066 */ 3067 if (sigequalsets(&tsk->blocked, newset)) 3068 return; 3069 3070 spin_lock_irq(&tsk->sighand->siglock); 3071 __set_task_blocked(tsk, newset); 3072 spin_unlock_irq(&tsk->sighand->siglock); 3073 } 3074 3075 /* 3076 * This is also useful for kernel threads that want to temporarily 3077 * (or permanently) block certain signals. 3078 * 3079 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3080 * interface happily blocks "unblockable" signals like SIGKILL 3081 * and friends. 3082 */ 3083 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3084 { 3085 struct task_struct *tsk = current; 3086 sigset_t newset; 3087 3088 /* Lockless, only current can change ->blocked, never from irq */ 3089 if (oldset) 3090 *oldset = tsk->blocked; 3091 3092 switch (how) { 3093 case SIG_BLOCK: 3094 sigorsets(&newset, &tsk->blocked, set); 3095 break; 3096 case SIG_UNBLOCK: 3097 sigandnsets(&newset, &tsk->blocked, set); 3098 break; 3099 case SIG_SETMASK: 3100 newset = *set; 3101 break; 3102 default: 3103 return -EINVAL; 3104 } 3105 3106 __set_current_blocked(&newset); 3107 return 0; 3108 } 3109 EXPORT_SYMBOL(sigprocmask); 3110 3111 /* 3112 * The api helps set app-provided sigmasks. 3113 * 3114 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3115 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3116 * 3117 * Note that it does set_restore_sigmask() in advance, so it must be always 3118 * paired with restore_saved_sigmask_unless() before return from syscall. 3119 */ 3120 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3121 { 3122 sigset_t kmask; 3123 3124 if (!umask) 3125 return 0; 3126 if (sigsetsize != sizeof(sigset_t)) 3127 return -EINVAL; 3128 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3129 return -EFAULT; 3130 3131 set_restore_sigmask(); 3132 current->saved_sigmask = current->blocked; 3133 set_current_blocked(&kmask); 3134 3135 return 0; 3136 } 3137 3138 #ifdef CONFIG_COMPAT 3139 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3140 size_t sigsetsize) 3141 { 3142 sigset_t kmask; 3143 3144 if (!umask) 3145 return 0; 3146 if (sigsetsize != sizeof(compat_sigset_t)) 3147 return -EINVAL; 3148 if (get_compat_sigset(&kmask, umask)) 3149 return -EFAULT; 3150 3151 set_restore_sigmask(); 3152 current->saved_sigmask = current->blocked; 3153 set_current_blocked(&kmask); 3154 3155 return 0; 3156 } 3157 #endif 3158 3159 /** 3160 * sys_rt_sigprocmask - change the list of currently blocked signals 3161 * @how: whether to add, remove, or set signals 3162 * @nset: stores pending signals 3163 * @oset: previous value of signal mask if non-null 3164 * @sigsetsize: size of sigset_t type 3165 */ 3166 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3167 sigset_t __user *, oset, size_t, sigsetsize) 3168 { 3169 sigset_t old_set, new_set; 3170 int error; 3171 3172 /* XXX: Don't preclude handling different sized sigset_t's. */ 3173 if (sigsetsize != sizeof(sigset_t)) 3174 return -EINVAL; 3175 3176 old_set = current->blocked; 3177 3178 if (nset) { 3179 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3180 return -EFAULT; 3181 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3182 3183 error = sigprocmask(how, &new_set, NULL); 3184 if (error) 3185 return error; 3186 } 3187 3188 if (oset) { 3189 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3190 return -EFAULT; 3191 } 3192 3193 return 0; 3194 } 3195 3196 #ifdef CONFIG_COMPAT 3197 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3198 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3199 { 3200 sigset_t old_set = current->blocked; 3201 3202 /* XXX: Don't preclude handling different sized sigset_t's. */ 3203 if (sigsetsize != sizeof(sigset_t)) 3204 return -EINVAL; 3205 3206 if (nset) { 3207 sigset_t new_set; 3208 int error; 3209 if (get_compat_sigset(&new_set, nset)) 3210 return -EFAULT; 3211 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3212 3213 error = sigprocmask(how, &new_set, NULL); 3214 if (error) 3215 return error; 3216 } 3217 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3218 } 3219 #endif 3220 3221 static void do_sigpending(sigset_t *set) 3222 { 3223 spin_lock_irq(¤t->sighand->siglock); 3224 sigorsets(set, ¤t->pending.signal, 3225 ¤t->signal->shared_pending.signal); 3226 spin_unlock_irq(¤t->sighand->siglock); 3227 3228 /* Outside the lock because only this thread touches it. */ 3229 sigandsets(set, ¤t->blocked, set); 3230 } 3231 3232 /** 3233 * sys_rt_sigpending - examine a pending signal that has been raised 3234 * while blocked 3235 * @uset: stores pending signals 3236 * @sigsetsize: size of sigset_t type or larger 3237 */ 3238 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3239 { 3240 sigset_t set; 3241 3242 if (sigsetsize > sizeof(*uset)) 3243 return -EINVAL; 3244 3245 do_sigpending(&set); 3246 3247 if (copy_to_user(uset, &set, sigsetsize)) 3248 return -EFAULT; 3249 3250 return 0; 3251 } 3252 3253 #ifdef CONFIG_COMPAT 3254 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3255 compat_size_t, sigsetsize) 3256 { 3257 sigset_t set; 3258 3259 if (sigsetsize > sizeof(*uset)) 3260 return -EINVAL; 3261 3262 do_sigpending(&set); 3263 3264 return put_compat_sigset(uset, &set, sigsetsize); 3265 } 3266 #endif 3267 3268 static const struct { 3269 unsigned char limit, layout; 3270 } sig_sicodes[] = { 3271 [SIGILL] = { NSIGILL, SIL_FAULT }, 3272 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3273 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3274 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3275 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3276 #if defined(SIGEMT) 3277 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3278 #endif 3279 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3280 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3281 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3282 }; 3283 3284 static bool known_siginfo_layout(unsigned sig, int si_code) 3285 { 3286 if (si_code == SI_KERNEL) 3287 return true; 3288 else if ((si_code > SI_USER)) { 3289 if (sig_specific_sicodes(sig)) { 3290 if (si_code <= sig_sicodes[sig].limit) 3291 return true; 3292 } 3293 else if (si_code <= NSIGPOLL) 3294 return true; 3295 } 3296 else if (si_code >= SI_DETHREAD) 3297 return true; 3298 else if (si_code == SI_ASYNCNL) 3299 return true; 3300 return false; 3301 } 3302 3303 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3304 { 3305 enum siginfo_layout layout = SIL_KILL; 3306 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3307 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3308 (si_code <= sig_sicodes[sig].limit)) { 3309 layout = sig_sicodes[sig].layout; 3310 /* Handle the exceptions */ 3311 if ((sig == SIGBUS) && 3312 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3313 layout = SIL_FAULT_MCEERR; 3314 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3315 layout = SIL_FAULT_BNDERR; 3316 #ifdef SEGV_PKUERR 3317 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3318 layout = SIL_FAULT_PKUERR; 3319 #endif 3320 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3321 layout = SIL_FAULT_PERF_EVENT; 3322 else if (IS_ENABLED(CONFIG_SPARC) && 3323 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3324 layout = SIL_FAULT_TRAPNO; 3325 else if (IS_ENABLED(CONFIG_ALPHA) && 3326 ((sig == SIGFPE) || 3327 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3328 layout = SIL_FAULT_TRAPNO; 3329 } 3330 else if (si_code <= NSIGPOLL) 3331 layout = SIL_POLL; 3332 } else { 3333 if (si_code == SI_TIMER) 3334 layout = SIL_TIMER; 3335 else if (si_code == SI_SIGIO) 3336 layout = SIL_POLL; 3337 else if (si_code < 0) 3338 layout = SIL_RT; 3339 } 3340 return layout; 3341 } 3342 3343 static inline char __user *si_expansion(const siginfo_t __user *info) 3344 { 3345 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3346 } 3347 3348 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3349 { 3350 char __user *expansion = si_expansion(to); 3351 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3352 return -EFAULT; 3353 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3354 return -EFAULT; 3355 return 0; 3356 } 3357 3358 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3359 const siginfo_t __user *from) 3360 { 3361 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3362 char __user *expansion = si_expansion(from); 3363 char buf[SI_EXPANSION_SIZE]; 3364 int i; 3365 /* 3366 * An unknown si_code might need more than 3367 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3368 * extra bytes are 0. This guarantees copy_siginfo_to_user 3369 * will return this data to userspace exactly. 3370 */ 3371 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3372 return -EFAULT; 3373 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3374 if (buf[i] != 0) 3375 return -E2BIG; 3376 } 3377 } 3378 return 0; 3379 } 3380 3381 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3382 const siginfo_t __user *from) 3383 { 3384 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3385 return -EFAULT; 3386 to->si_signo = signo; 3387 return post_copy_siginfo_from_user(to, from); 3388 } 3389 3390 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3391 { 3392 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3393 return -EFAULT; 3394 return post_copy_siginfo_from_user(to, from); 3395 } 3396 3397 #ifdef CONFIG_COMPAT 3398 /** 3399 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3400 * @to: compat siginfo destination 3401 * @from: kernel siginfo source 3402 * 3403 * Note: This function does not work properly for the SIGCHLD on x32, but 3404 * fortunately it doesn't have to. The only valid callers for this function are 3405 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3406 * The latter does not care because SIGCHLD will never cause a coredump. 3407 */ 3408 void copy_siginfo_to_external32(struct compat_siginfo *to, 3409 const struct kernel_siginfo *from) 3410 { 3411 memset(to, 0, sizeof(*to)); 3412 3413 to->si_signo = from->si_signo; 3414 to->si_errno = from->si_errno; 3415 to->si_code = from->si_code; 3416 switch(siginfo_layout(from->si_signo, from->si_code)) { 3417 case SIL_KILL: 3418 to->si_pid = from->si_pid; 3419 to->si_uid = from->si_uid; 3420 break; 3421 case SIL_TIMER: 3422 to->si_tid = from->si_tid; 3423 to->si_overrun = from->si_overrun; 3424 to->si_int = from->si_int; 3425 break; 3426 case SIL_POLL: 3427 to->si_band = from->si_band; 3428 to->si_fd = from->si_fd; 3429 break; 3430 case SIL_FAULT: 3431 to->si_addr = ptr_to_compat(from->si_addr); 3432 break; 3433 case SIL_FAULT_TRAPNO: 3434 to->si_addr = ptr_to_compat(from->si_addr); 3435 to->si_trapno = from->si_trapno; 3436 break; 3437 case SIL_FAULT_MCEERR: 3438 to->si_addr = ptr_to_compat(from->si_addr); 3439 to->si_addr_lsb = from->si_addr_lsb; 3440 break; 3441 case SIL_FAULT_BNDERR: 3442 to->si_addr = ptr_to_compat(from->si_addr); 3443 to->si_lower = ptr_to_compat(from->si_lower); 3444 to->si_upper = ptr_to_compat(from->si_upper); 3445 break; 3446 case SIL_FAULT_PKUERR: 3447 to->si_addr = ptr_to_compat(from->si_addr); 3448 to->si_pkey = from->si_pkey; 3449 break; 3450 case SIL_FAULT_PERF_EVENT: 3451 to->si_addr = ptr_to_compat(from->si_addr); 3452 to->si_perf_data = from->si_perf_data; 3453 to->si_perf_type = from->si_perf_type; 3454 to->si_perf_flags = from->si_perf_flags; 3455 break; 3456 case SIL_CHLD: 3457 to->si_pid = from->si_pid; 3458 to->si_uid = from->si_uid; 3459 to->si_status = from->si_status; 3460 to->si_utime = from->si_utime; 3461 to->si_stime = from->si_stime; 3462 break; 3463 case SIL_RT: 3464 to->si_pid = from->si_pid; 3465 to->si_uid = from->si_uid; 3466 to->si_int = from->si_int; 3467 break; 3468 case SIL_SYS: 3469 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3470 to->si_syscall = from->si_syscall; 3471 to->si_arch = from->si_arch; 3472 break; 3473 } 3474 } 3475 3476 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3477 const struct kernel_siginfo *from) 3478 { 3479 struct compat_siginfo new; 3480 3481 copy_siginfo_to_external32(&new, from); 3482 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3483 return -EFAULT; 3484 return 0; 3485 } 3486 3487 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3488 const struct compat_siginfo *from) 3489 { 3490 clear_siginfo(to); 3491 to->si_signo = from->si_signo; 3492 to->si_errno = from->si_errno; 3493 to->si_code = from->si_code; 3494 switch(siginfo_layout(from->si_signo, from->si_code)) { 3495 case SIL_KILL: 3496 to->si_pid = from->si_pid; 3497 to->si_uid = from->si_uid; 3498 break; 3499 case SIL_TIMER: 3500 to->si_tid = from->si_tid; 3501 to->si_overrun = from->si_overrun; 3502 to->si_int = from->si_int; 3503 break; 3504 case SIL_POLL: 3505 to->si_band = from->si_band; 3506 to->si_fd = from->si_fd; 3507 break; 3508 case SIL_FAULT: 3509 to->si_addr = compat_ptr(from->si_addr); 3510 break; 3511 case SIL_FAULT_TRAPNO: 3512 to->si_addr = compat_ptr(from->si_addr); 3513 to->si_trapno = from->si_trapno; 3514 break; 3515 case SIL_FAULT_MCEERR: 3516 to->si_addr = compat_ptr(from->si_addr); 3517 to->si_addr_lsb = from->si_addr_lsb; 3518 break; 3519 case SIL_FAULT_BNDERR: 3520 to->si_addr = compat_ptr(from->si_addr); 3521 to->si_lower = compat_ptr(from->si_lower); 3522 to->si_upper = compat_ptr(from->si_upper); 3523 break; 3524 case SIL_FAULT_PKUERR: 3525 to->si_addr = compat_ptr(from->si_addr); 3526 to->si_pkey = from->si_pkey; 3527 break; 3528 case SIL_FAULT_PERF_EVENT: 3529 to->si_addr = compat_ptr(from->si_addr); 3530 to->si_perf_data = from->si_perf_data; 3531 to->si_perf_type = from->si_perf_type; 3532 to->si_perf_flags = from->si_perf_flags; 3533 break; 3534 case SIL_CHLD: 3535 to->si_pid = from->si_pid; 3536 to->si_uid = from->si_uid; 3537 to->si_status = from->si_status; 3538 #ifdef CONFIG_X86_X32_ABI 3539 if (in_x32_syscall()) { 3540 to->si_utime = from->_sifields._sigchld_x32._utime; 3541 to->si_stime = from->_sifields._sigchld_x32._stime; 3542 } else 3543 #endif 3544 { 3545 to->si_utime = from->si_utime; 3546 to->si_stime = from->si_stime; 3547 } 3548 break; 3549 case SIL_RT: 3550 to->si_pid = from->si_pid; 3551 to->si_uid = from->si_uid; 3552 to->si_int = from->si_int; 3553 break; 3554 case SIL_SYS: 3555 to->si_call_addr = compat_ptr(from->si_call_addr); 3556 to->si_syscall = from->si_syscall; 3557 to->si_arch = from->si_arch; 3558 break; 3559 } 3560 return 0; 3561 } 3562 3563 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3564 const struct compat_siginfo __user *ufrom) 3565 { 3566 struct compat_siginfo from; 3567 3568 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3569 return -EFAULT; 3570 3571 from.si_signo = signo; 3572 return post_copy_siginfo_from_user32(to, &from); 3573 } 3574 3575 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3576 const struct compat_siginfo __user *ufrom) 3577 { 3578 struct compat_siginfo from; 3579 3580 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3581 return -EFAULT; 3582 3583 return post_copy_siginfo_from_user32(to, &from); 3584 } 3585 #endif /* CONFIG_COMPAT */ 3586 3587 /** 3588 * do_sigtimedwait - wait for queued signals specified in @which 3589 * @which: queued signals to wait for 3590 * @info: if non-null, the signal's siginfo is returned here 3591 * @ts: upper bound on process time suspension 3592 */ 3593 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3594 const struct timespec64 *ts) 3595 { 3596 ktime_t *to = NULL, timeout = KTIME_MAX; 3597 struct task_struct *tsk = current; 3598 sigset_t mask = *which; 3599 enum pid_type type; 3600 int sig, ret = 0; 3601 3602 if (ts) { 3603 if (!timespec64_valid(ts)) 3604 return -EINVAL; 3605 timeout = timespec64_to_ktime(*ts); 3606 to = &timeout; 3607 } 3608 3609 /* 3610 * Invert the set of allowed signals to get those we want to block. 3611 */ 3612 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3613 signotset(&mask); 3614 3615 spin_lock_irq(&tsk->sighand->siglock); 3616 sig = dequeue_signal(tsk, &mask, info, &type); 3617 if (!sig && timeout) { 3618 /* 3619 * None ready, temporarily unblock those we're interested 3620 * while we are sleeping in so that we'll be awakened when 3621 * they arrive. Unblocking is always fine, we can avoid 3622 * set_current_blocked(). 3623 */ 3624 tsk->real_blocked = tsk->blocked; 3625 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3626 recalc_sigpending(); 3627 spin_unlock_irq(&tsk->sighand->siglock); 3628 3629 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3630 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3631 HRTIMER_MODE_REL); 3632 spin_lock_irq(&tsk->sighand->siglock); 3633 __set_task_blocked(tsk, &tsk->real_blocked); 3634 sigemptyset(&tsk->real_blocked); 3635 sig = dequeue_signal(tsk, &mask, info, &type); 3636 } 3637 spin_unlock_irq(&tsk->sighand->siglock); 3638 3639 if (sig) 3640 return sig; 3641 return ret ? -EINTR : -EAGAIN; 3642 } 3643 3644 /** 3645 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3646 * in @uthese 3647 * @uthese: queued signals to wait for 3648 * @uinfo: if non-null, the signal's siginfo is returned here 3649 * @uts: upper bound on process time suspension 3650 * @sigsetsize: size of sigset_t type 3651 */ 3652 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3653 siginfo_t __user *, uinfo, 3654 const struct __kernel_timespec __user *, uts, 3655 size_t, sigsetsize) 3656 { 3657 sigset_t these; 3658 struct timespec64 ts; 3659 kernel_siginfo_t info; 3660 int ret; 3661 3662 /* XXX: Don't preclude handling different sized sigset_t's. */ 3663 if (sigsetsize != sizeof(sigset_t)) 3664 return -EINVAL; 3665 3666 if (copy_from_user(&these, uthese, sizeof(these))) 3667 return -EFAULT; 3668 3669 if (uts) { 3670 if (get_timespec64(&ts, uts)) 3671 return -EFAULT; 3672 } 3673 3674 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3675 3676 if (ret > 0 && uinfo) { 3677 if (copy_siginfo_to_user(uinfo, &info)) 3678 ret = -EFAULT; 3679 } 3680 3681 return ret; 3682 } 3683 3684 #ifdef CONFIG_COMPAT_32BIT_TIME 3685 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3686 siginfo_t __user *, uinfo, 3687 const struct old_timespec32 __user *, uts, 3688 size_t, sigsetsize) 3689 { 3690 sigset_t these; 3691 struct timespec64 ts; 3692 kernel_siginfo_t info; 3693 int ret; 3694 3695 if (sigsetsize != sizeof(sigset_t)) 3696 return -EINVAL; 3697 3698 if (copy_from_user(&these, uthese, sizeof(these))) 3699 return -EFAULT; 3700 3701 if (uts) { 3702 if (get_old_timespec32(&ts, uts)) 3703 return -EFAULT; 3704 } 3705 3706 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3707 3708 if (ret > 0 && uinfo) { 3709 if (copy_siginfo_to_user(uinfo, &info)) 3710 ret = -EFAULT; 3711 } 3712 3713 return ret; 3714 } 3715 #endif 3716 3717 #ifdef CONFIG_COMPAT 3718 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3719 struct compat_siginfo __user *, uinfo, 3720 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3721 { 3722 sigset_t s; 3723 struct timespec64 t; 3724 kernel_siginfo_t info; 3725 long ret; 3726 3727 if (sigsetsize != sizeof(sigset_t)) 3728 return -EINVAL; 3729 3730 if (get_compat_sigset(&s, uthese)) 3731 return -EFAULT; 3732 3733 if (uts) { 3734 if (get_timespec64(&t, uts)) 3735 return -EFAULT; 3736 } 3737 3738 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3739 3740 if (ret > 0 && uinfo) { 3741 if (copy_siginfo_to_user32(uinfo, &info)) 3742 ret = -EFAULT; 3743 } 3744 3745 return ret; 3746 } 3747 3748 #ifdef CONFIG_COMPAT_32BIT_TIME 3749 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3750 struct compat_siginfo __user *, uinfo, 3751 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3752 { 3753 sigset_t s; 3754 struct timespec64 t; 3755 kernel_siginfo_t info; 3756 long ret; 3757 3758 if (sigsetsize != sizeof(sigset_t)) 3759 return -EINVAL; 3760 3761 if (get_compat_sigset(&s, uthese)) 3762 return -EFAULT; 3763 3764 if (uts) { 3765 if (get_old_timespec32(&t, uts)) 3766 return -EFAULT; 3767 } 3768 3769 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3770 3771 if (ret > 0 && uinfo) { 3772 if (copy_siginfo_to_user32(uinfo, &info)) 3773 ret = -EFAULT; 3774 } 3775 3776 return ret; 3777 } 3778 #endif 3779 #endif 3780 3781 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3782 { 3783 clear_siginfo(info); 3784 info->si_signo = sig; 3785 info->si_errno = 0; 3786 info->si_code = SI_USER; 3787 info->si_pid = task_tgid_vnr(current); 3788 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3789 } 3790 3791 /** 3792 * sys_kill - send a signal to a process 3793 * @pid: the PID of the process 3794 * @sig: signal to be sent 3795 */ 3796 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3797 { 3798 struct kernel_siginfo info; 3799 3800 prepare_kill_siginfo(sig, &info); 3801 3802 return kill_something_info(sig, &info, pid); 3803 } 3804 3805 /* 3806 * Verify that the signaler and signalee either are in the same pid namespace 3807 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3808 * namespace. 3809 */ 3810 static bool access_pidfd_pidns(struct pid *pid) 3811 { 3812 struct pid_namespace *active = task_active_pid_ns(current); 3813 struct pid_namespace *p = ns_of_pid(pid); 3814 3815 for (;;) { 3816 if (!p) 3817 return false; 3818 if (p == active) 3819 break; 3820 p = p->parent; 3821 } 3822 3823 return true; 3824 } 3825 3826 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3827 siginfo_t __user *info) 3828 { 3829 #ifdef CONFIG_COMPAT 3830 /* 3831 * Avoid hooking up compat syscalls and instead handle necessary 3832 * conversions here. Note, this is a stop-gap measure and should not be 3833 * considered a generic solution. 3834 */ 3835 if (in_compat_syscall()) 3836 return copy_siginfo_from_user32( 3837 kinfo, (struct compat_siginfo __user *)info); 3838 #endif 3839 return copy_siginfo_from_user(kinfo, info); 3840 } 3841 3842 static struct pid *pidfd_to_pid(const struct file *file) 3843 { 3844 struct pid *pid; 3845 3846 pid = pidfd_pid(file); 3847 if (!IS_ERR(pid)) 3848 return pid; 3849 3850 return tgid_pidfd_to_pid(file); 3851 } 3852 3853 /** 3854 * sys_pidfd_send_signal - Signal a process through a pidfd 3855 * @pidfd: file descriptor of the process 3856 * @sig: signal to send 3857 * @info: signal info 3858 * @flags: future flags 3859 * 3860 * The syscall currently only signals via PIDTYPE_PID which covers 3861 * kill(<positive-pid>, <signal>. It does not signal threads or process 3862 * groups. 3863 * In order to extend the syscall to threads and process groups the @flags 3864 * argument should be used. In essence, the @flags argument will determine 3865 * what is signaled and not the file descriptor itself. Put in other words, 3866 * grouping is a property of the flags argument not a property of the file 3867 * descriptor. 3868 * 3869 * Return: 0 on success, negative errno on failure 3870 */ 3871 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3872 siginfo_t __user *, info, unsigned int, flags) 3873 { 3874 int ret; 3875 struct fd f; 3876 struct pid *pid; 3877 kernel_siginfo_t kinfo; 3878 3879 /* Enforce flags be set to 0 until we add an extension. */ 3880 if (flags) 3881 return -EINVAL; 3882 3883 f = fdget(pidfd); 3884 if (!f.file) 3885 return -EBADF; 3886 3887 /* Is this a pidfd? */ 3888 pid = pidfd_to_pid(f.file); 3889 if (IS_ERR(pid)) { 3890 ret = PTR_ERR(pid); 3891 goto err; 3892 } 3893 3894 ret = -EINVAL; 3895 if (!access_pidfd_pidns(pid)) 3896 goto err; 3897 3898 if (info) { 3899 ret = copy_siginfo_from_user_any(&kinfo, info); 3900 if (unlikely(ret)) 3901 goto err; 3902 3903 ret = -EINVAL; 3904 if (unlikely(sig != kinfo.si_signo)) 3905 goto err; 3906 3907 /* Only allow sending arbitrary signals to yourself. */ 3908 ret = -EPERM; 3909 if ((task_pid(current) != pid) && 3910 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3911 goto err; 3912 } else { 3913 prepare_kill_siginfo(sig, &kinfo); 3914 } 3915 3916 ret = kill_pid_info(sig, &kinfo, pid); 3917 3918 err: 3919 fdput(f); 3920 return ret; 3921 } 3922 3923 static int 3924 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3925 { 3926 struct task_struct *p; 3927 int error = -ESRCH; 3928 3929 rcu_read_lock(); 3930 p = find_task_by_vpid(pid); 3931 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3932 error = check_kill_permission(sig, info, p); 3933 /* 3934 * The null signal is a permissions and process existence 3935 * probe. No signal is actually delivered. 3936 */ 3937 if (!error && sig) { 3938 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3939 /* 3940 * If lock_task_sighand() failed we pretend the task 3941 * dies after receiving the signal. The window is tiny, 3942 * and the signal is private anyway. 3943 */ 3944 if (unlikely(error == -ESRCH)) 3945 error = 0; 3946 } 3947 } 3948 rcu_read_unlock(); 3949 3950 return error; 3951 } 3952 3953 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3954 { 3955 struct kernel_siginfo info; 3956 3957 clear_siginfo(&info); 3958 info.si_signo = sig; 3959 info.si_errno = 0; 3960 info.si_code = SI_TKILL; 3961 info.si_pid = task_tgid_vnr(current); 3962 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3963 3964 return do_send_specific(tgid, pid, sig, &info); 3965 } 3966 3967 /** 3968 * sys_tgkill - send signal to one specific thread 3969 * @tgid: the thread group ID of the thread 3970 * @pid: the PID of the thread 3971 * @sig: signal to be sent 3972 * 3973 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3974 * exists but it's not belonging to the target process anymore. This 3975 * method solves the problem of threads exiting and PIDs getting reused. 3976 */ 3977 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3978 { 3979 /* This is only valid for single tasks */ 3980 if (pid <= 0 || tgid <= 0) 3981 return -EINVAL; 3982 3983 return do_tkill(tgid, pid, sig); 3984 } 3985 3986 /** 3987 * sys_tkill - send signal to one specific task 3988 * @pid: the PID of the task 3989 * @sig: signal to be sent 3990 * 3991 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3992 */ 3993 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3994 { 3995 /* This is only valid for single tasks */ 3996 if (pid <= 0) 3997 return -EINVAL; 3998 3999 return do_tkill(0, pid, sig); 4000 } 4001 4002 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4003 { 4004 /* Not even root can pretend to send signals from the kernel. 4005 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4006 */ 4007 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4008 (task_pid_vnr(current) != pid)) 4009 return -EPERM; 4010 4011 /* POSIX.1b doesn't mention process groups. */ 4012 return kill_proc_info(sig, info, pid); 4013 } 4014 4015 /** 4016 * sys_rt_sigqueueinfo - send signal information to a signal 4017 * @pid: the PID of the thread 4018 * @sig: signal to be sent 4019 * @uinfo: signal info to be sent 4020 */ 4021 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4022 siginfo_t __user *, uinfo) 4023 { 4024 kernel_siginfo_t info; 4025 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4026 if (unlikely(ret)) 4027 return ret; 4028 return do_rt_sigqueueinfo(pid, sig, &info); 4029 } 4030 4031 #ifdef CONFIG_COMPAT 4032 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4033 compat_pid_t, pid, 4034 int, sig, 4035 struct compat_siginfo __user *, uinfo) 4036 { 4037 kernel_siginfo_t info; 4038 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4039 if (unlikely(ret)) 4040 return ret; 4041 return do_rt_sigqueueinfo(pid, sig, &info); 4042 } 4043 #endif 4044 4045 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4046 { 4047 /* This is only valid for single tasks */ 4048 if (pid <= 0 || tgid <= 0) 4049 return -EINVAL; 4050 4051 /* Not even root can pretend to send signals from the kernel. 4052 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4053 */ 4054 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4055 (task_pid_vnr(current) != pid)) 4056 return -EPERM; 4057 4058 return do_send_specific(tgid, pid, sig, info); 4059 } 4060 4061 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4062 siginfo_t __user *, uinfo) 4063 { 4064 kernel_siginfo_t info; 4065 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4066 if (unlikely(ret)) 4067 return ret; 4068 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4069 } 4070 4071 #ifdef CONFIG_COMPAT 4072 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4073 compat_pid_t, tgid, 4074 compat_pid_t, pid, 4075 int, sig, 4076 struct compat_siginfo __user *, uinfo) 4077 { 4078 kernel_siginfo_t info; 4079 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4080 if (unlikely(ret)) 4081 return ret; 4082 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4083 } 4084 #endif 4085 4086 /* 4087 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4088 */ 4089 void kernel_sigaction(int sig, __sighandler_t action) 4090 { 4091 spin_lock_irq(¤t->sighand->siglock); 4092 current->sighand->action[sig - 1].sa.sa_handler = action; 4093 if (action == SIG_IGN) { 4094 sigset_t mask; 4095 4096 sigemptyset(&mask); 4097 sigaddset(&mask, sig); 4098 4099 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4100 flush_sigqueue_mask(&mask, ¤t->pending); 4101 recalc_sigpending(); 4102 } 4103 spin_unlock_irq(¤t->sighand->siglock); 4104 } 4105 EXPORT_SYMBOL(kernel_sigaction); 4106 4107 void __weak sigaction_compat_abi(struct k_sigaction *act, 4108 struct k_sigaction *oact) 4109 { 4110 } 4111 4112 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4113 { 4114 struct task_struct *p = current, *t; 4115 struct k_sigaction *k; 4116 sigset_t mask; 4117 4118 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4119 return -EINVAL; 4120 4121 k = &p->sighand->action[sig-1]; 4122 4123 spin_lock_irq(&p->sighand->siglock); 4124 if (k->sa.sa_flags & SA_IMMUTABLE) { 4125 spin_unlock_irq(&p->sighand->siglock); 4126 return -EINVAL; 4127 } 4128 if (oact) 4129 *oact = *k; 4130 4131 /* 4132 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4133 * e.g. by having an architecture use the bit in their uapi. 4134 */ 4135 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4136 4137 /* 4138 * Clear unknown flag bits in order to allow userspace to detect missing 4139 * support for flag bits and to allow the kernel to use non-uapi bits 4140 * internally. 4141 */ 4142 if (act) 4143 act->sa.sa_flags &= UAPI_SA_FLAGS; 4144 if (oact) 4145 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4146 4147 sigaction_compat_abi(act, oact); 4148 4149 if (act) { 4150 sigdelsetmask(&act->sa.sa_mask, 4151 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4152 *k = *act; 4153 /* 4154 * POSIX 3.3.1.3: 4155 * "Setting a signal action to SIG_IGN for a signal that is 4156 * pending shall cause the pending signal to be discarded, 4157 * whether or not it is blocked." 4158 * 4159 * "Setting a signal action to SIG_DFL for a signal that is 4160 * pending and whose default action is to ignore the signal 4161 * (for example, SIGCHLD), shall cause the pending signal to 4162 * be discarded, whether or not it is blocked" 4163 */ 4164 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4165 sigemptyset(&mask); 4166 sigaddset(&mask, sig); 4167 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4168 for_each_thread(p, t) 4169 flush_sigqueue_mask(&mask, &t->pending); 4170 } 4171 } 4172 4173 spin_unlock_irq(&p->sighand->siglock); 4174 return 0; 4175 } 4176 4177 #ifdef CONFIG_DYNAMIC_SIGFRAME 4178 static inline void sigaltstack_lock(void) 4179 __acquires(¤t->sighand->siglock) 4180 { 4181 spin_lock_irq(¤t->sighand->siglock); 4182 } 4183 4184 static inline void sigaltstack_unlock(void) 4185 __releases(¤t->sighand->siglock) 4186 { 4187 spin_unlock_irq(¤t->sighand->siglock); 4188 } 4189 #else 4190 static inline void sigaltstack_lock(void) { } 4191 static inline void sigaltstack_unlock(void) { } 4192 #endif 4193 4194 static int 4195 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4196 size_t min_ss_size) 4197 { 4198 struct task_struct *t = current; 4199 int ret = 0; 4200 4201 if (oss) { 4202 memset(oss, 0, sizeof(stack_t)); 4203 oss->ss_sp = (void __user *) t->sas_ss_sp; 4204 oss->ss_size = t->sas_ss_size; 4205 oss->ss_flags = sas_ss_flags(sp) | 4206 (current->sas_ss_flags & SS_FLAG_BITS); 4207 } 4208 4209 if (ss) { 4210 void __user *ss_sp = ss->ss_sp; 4211 size_t ss_size = ss->ss_size; 4212 unsigned ss_flags = ss->ss_flags; 4213 int ss_mode; 4214 4215 if (unlikely(on_sig_stack(sp))) 4216 return -EPERM; 4217 4218 ss_mode = ss_flags & ~SS_FLAG_BITS; 4219 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4220 ss_mode != 0)) 4221 return -EINVAL; 4222 4223 /* 4224 * Return before taking any locks if no actual 4225 * sigaltstack changes were requested. 4226 */ 4227 if (t->sas_ss_sp == (unsigned long)ss_sp && 4228 t->sas_ss_size == ss_size && 4229 t->sas_ss_flags == ss_flags) 4230 return 0; 4231 4232 sigaltstack_lock(); 4233 if (ss_mode == SS_DISABLE) { 4234 ss_size = 0; 4235 ss_sp = NULL; 4236 } else { 4237 if (unlikely(ss_size < min_ss_size)) 4238 ret = -ENOMEM; 4239 if (!sigaltstack_size_valid(ss_size)) 4240 ret = -ENOMEM; 4241 } 4242 if (!ret) { 4243 t->sas_ss_sp = (unsigned long) ss_sp; 4244 t->sas_ss_size = ss_size; 4245 t->sas_ss_flags = ss_flags; 4246 } 4247 sigaltstack_unlock(); 4248 } 4249 return ret; 4250 } 4251 4252 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4253 { 4254 stack_t new, old; 4255 int err; 4256 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4257 return -EFAULT; 4258 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4259 current_user_stack_pointer(), 4260 MINSIGSTKSZ); 4261 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4262 err = -EFAULT; 4263 return err; 4264 } 4265 4266 int restore_altstack(const stack_t __user *uss) 4267 { 4268 stack_t new; 4269 if (copy_from_user(&new, uss, sizeof(stack_t))) 4270 return -EFAULT; 4271 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4272 MINSIGSTKSZ); 4273 /* squash all but EFAULT for now */ 4274 return 0; 4275 } 4276 4277 int __save_altstack(stack_t __user *uss, unsigned long sp) 4278 { 4279 struct task_struct *t = current; 4280 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4281 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4282 __put_user(t->sas_ss_size, &uss->ss_size); 4283 return err; 4284 } 4285 4286 #ifdef CONFIG_COMPAT 4287 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4288 compat_stack_t __user *uoss_ptr) 4289 { 4290 stack_t uss, uoss; 4291 int ret; 4292 4293 if (uss_ptr) { 4294 compat_stack_t uss32; 4295 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4296 return -EFAULT; 4297 uss.ss_sp = compat_ptr(uss32.ss_sp); 4298 uss.ss_flags = uss32.ss_flags; 4299 uss.ss_size = uss32.ss_size; 4300 } 4301 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4302 compat_user_stack_pointer(), 4303 COMPAT_MINSIGSTKSZ); 4304 if (ret >= 0 && uoss_ptr) { 4305 compat_stack_t old; 4306 memset(&old, 0, sizeof(old)); 4307 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4308 old.ss_flags = uoss.ss_flags; 4309 old.ss_size = uoss.ss_size; 4310 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4311 ret = -EFAULT; 4312 } 4313 return ret; 4314 } 4315 4316 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4317 const compat_stack_t __user *, uss_ptr, 4318 compat_stack_t __user *, uoss_ptr) 4319 { 4320 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4321 } 4322 4323 int compat_restore_altstack(const compat_stack_t __user *uss) 4324 { 4325 int err = do_compat_sigaltstack(uss, NULL); 4326 /* squash all but -EFAULT for now */ 4327 return err == -EFAULT ? err : 0; 4328 } 4329 4330 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4331 { 4332 int err; 4333 struct task_struct *t = current; 4334 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4335 &uss->ss_sp) | 4336 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4337 __put_user(t->sas_ss_size, &uss->ss_size); 4338 return err; 4339 } 4340 #endif 4341 4342 #ifdef __ARCH_WANT_SYS_SIGPENDING 4343 4344 /** 4345 * sys_sigpending - examine pending signals 4346 * @uset: where mask of pending signal is returned 4347 */ 4348 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4349 { 4350 sigset_t set; 4351 4352 if (sizeof(old_sigset_t) > sizeof(*uset)) 4353 return -EINVAL; 4354 4355 do_sigpending(&set); 4356 4357 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4358 return -EFAULT; 4359 4360 return 0; 4361 } 4362 4363 #ifdef CONFIG_COMPAT 4364 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4365 { 4366 sigset_t set; 4367 4368 do_sigpending(&set); 4369 4370 return put_user(set.sig[0], set32); 4371 } 4372 #endif 4373 4374 #endif 4375 4376 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4377 /** 4378 * sys_sigprocmask - examine and change blocked signals 4379 * @how: whether to add, remove, or set signals 4380 * @nset: signals to add or remove (if non-null) 4381 * @oset: previous value of signal mask if non-null 4382 * 4383 * Some platforms have their own version with special arguments; 4384 * others support only sys_rt_sigprocmask. 4385 */ 4386 4387 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4388 old_sigset_t __user *, oset) 4389 { 4390 old_sigset_t old_set, new_set; 4391 sigset_t new_blocked; 4392 4393 old_set = current->blocked.sig[0]; 4394 4395 if (nset) { 4396 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4397 return -EFAULT; 4398 4399 new_blocked = current->blocked; 4400 4401 switch (how) { 4402 case SIG_BLOCK: 4403 sigaddsetmask(&new_blocked, new_set); 4404 break; 4405 case SIG_UNBLOCK: 4406 sigdelsetmask(&new_blocked, new_set); 4407 break; 4408 case SIG_SETMASK: 4409 new_blocked.sig[0] = new_set; 4410 break; 4411 default: 4412 return -EINVAL; 4413 } 4414 4415 set_current_blocked(&new_blocked); 4416 } 4417 4418 if (oset) { 4419 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4420 return -EFAULT; 4421 } 4422 4423 return 0; 4424 } 4425 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4426 4427 #ifndef CONFIG_ODD_RT_SIGACTION 4428 /** 4429 * sys_rt_sigaction - alter an action taken by a process 4430 * @sig: signal to be sent 4431 * @act: new sigaction 4432 * @oact: used to save the previous sigaction 4433 * @sigsetsize: size of sigset_t type 4434 */ 4435 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4436 const struct sigaction __user *, act, 4437 struct sigaction __user *, oact, 4438 size_t, sigsetsize) 4439 { 4440 struct k_sigaction new_sa, old_sa; 4441 int ret; 4442 4443 /* XXX: Don't preclude handling different sized sigset_t's. */ 4444 if (sigsetsize != sizeof(sigset_t)) 4445 return -EINVAL; 4446 4447 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4448 return -EFAULT; 4449 4450 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4451 if (ret) 4452 return ret; 4453 4454 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4455 return -EFAULT; 4456 4457 return 0; 4458 } 4459 #ifdef CONFIG_COMPAT 4460 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4461 const struct compat_sigaction __user *, act, 4462 struct compat_sigaction __user *, oact, 4463 compat_size_t, sigsetsize) 4464 { 4465 struct k_sigaction new_ka, old_ka; 4466 #ifdef __ARCH_HAS_SA_RESTORER 4467 compat_uptr_t restorer; 4468 #endif 4469 int ret; 4470 4471 /* XXX: Don't preclude handling different sized sigset_t's. */ 4472 if (sigsetsize != sizeof(compat_sigset_t)) 4473 return -EINVAL; 4474 4475 if (act) { 4476 compat_uptr_t handler; 4477 ret = get_user(handler, &act->sa_handler); 4478 new_ka.sa.sa_handler = compat_ptr(handler); 4479 #ifdef __ARCH_HAS_SA_RESTORER 4480 ret |= get_user(restorer, &act->sa_restorer); 4481 new_ka.sa.sa_restorer = compat_ptr(restorer); 4482 #endif 4483 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4484 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4485 if (ret) 4486 return -EFAULT; 4487 } 4488 4489 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4490 if (!ret && oact) { 4491 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4492 &oact->sa_handler); 4493 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4494 sizeof(oact->sa_mask)); 4495 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4496 #ifdef __ARCH_HAS_SA_RESTORER 4497 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4498 &oact->sa_restorer); 4499 #endif 4500 } 4501 return ret; 4502 } 4503 #endif 4504 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4505 4506 #ifdef CONFIG_OLD_SIGACTION 4507 SYSCALL_DEFINE3(sigaction, int, sig, 4508 const struct old_sigaction __user *, act, 4509 struct old_sigaction __user *, oact) 4510 { 4511 struct k_sigaction new_ka, old_ka; 4512 int ret; 4513 4514 if (act) { 4515 old_sigset_t mask; 4516 if (!access_ok(act, sizeof(*act)) || 4517 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4518 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4519 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4520 __get_user(mask, &act->sa_mask)) 4521 return -EFAULT; 4522 #ifdef __ARCH_HAS_KA_RESTORER 4523 new_ka.ka_restorer = NULL; 4524 #endif 4525 siginitset(&new_ka.sa.sa_mask, mask); 4526 } 4527 4528 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4529 4530 if (!ret && oact) { 4531 if (!access_ok(oact, sizeof(*oact)) || 4532 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4533 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4534 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4535 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4536 return -EFAULT; 4537 } 4538 4539 return ret; 4540 } 4541 #endif 4542 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4543 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4544 const struct compat_old_sigaction __user *, act, 4545 struct compat_old_sigaction __user *, oact) 4546 { 4547 struct k_sigaction new_ka, old_ka; 4548 int ret; 4549 compat_old_sigset_t mask; 4550 compat_uptr_t handler, restorer; 4551 4552 if (act) { 4553 if (!access_ok(act, sizeof(*act)) || 4554 __get_user(handler, &act->sa_handler) || 4555 __get_user(restorer, &act->sa_restorer) || 4556 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4557 __get_user(mask, &act->sa_mask)) 4558 return -EFAULT; 4559 4560 #ifdef __ARCH_HAS_KA_RESTORER 4561 new_ka.ka_restorer = NULL; 4562 #endif 4563 new_ka.sa.sa_handler = compat_ptr(handler); 4564 new_ka.sa.sa_restorer = compat_ptr(restorer); 4565 siginitset(&new_ka.sa.sa_mask, mask); 4566 } 4567 4568 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4569 4570 if (!ret && oact) { 4571 if (!access_ok(oact, sizeof(*oact)) || 4572 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4573 &oact->sa_handler) || 4574 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4575 &oact->sa_restorer) || 4576 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4577 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4578 return -EFAULT; 4579 } 4580 return ret; 4581 } 4582 #endif 4583 4584 #ifdef CONFIG_SGETMASK_SYSCALL 4585 4586 /* 4587 * For backwards compatibility. Functionality superseded by sigprocmask. 4588 */ 4589 SYSCALL_DEFINE0(sgetmask) 4590 { 4591 /* SMP safe */ 4592 return current->blocked.sig[0]; 4593 } 4594 4595 SYSCALL_DEFINE1(ssetmask, int, newmask) 4596 { 4597 int old = current->blocked.sig[0]; 4598 sigset_t newset; 4599 4600 siginitset(&newset, newmask); 4601 set_current_blocked(&newset); 4602 4603 return old; 4604 } 4605 #endif /* CONFIG_SGETMASK_SYSCALL */ 4606 4607 #ifdef __ARCH_WANT_SYS_SIGNAL 4608 /* 4609 * For backwards compatibility. Functionality superseded by sigaction. 4610 */ 4611 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4612 { 4613 struct k_sigaction new_sa, old_sa; 4614 int ret; 4615 4616 new_sa.sa.sa_handler = handler; 4617 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4618 sigemptyset(&new_sa.sa.sa_mask); 4619 4620 ret = do_sigaction(sig, &new_sa, &old_sa); 4621 4622 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4623 } 4624 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4625 4626 #ifdef __ARCH_WANT_SYS_PAUSE 4627 4628 SYSCALL_DEFINE0(pause) 4629 { 4630 while (!signal_pending(current)) { 4631 __set_current_state(TASK_INTERRUPTIBLE); 4632 schedule(); 4633 } 4634 return -ERESTARTNOHAND; 4635 } 4636 4637 #endif 4638 4639 static int sigsuspend(sigset_t *set) 4640 { 4641 current->saved_sigmask = current->blocked; 4642 set_current_blocked(set); 4643 4644 while (!signal_pending(current)) { 4645 __set_current_state(TASK_INTERRUPTIBLE); 4646 schedule(); 4647 } 4648 set_restore_sigmask(); 4649 return -ERESTARTNOHAND; 4650 } 4651 4652 /** 4653 * sys_rt_sigsuspend - replace the signal mask for a value with the 4654 * @unewset value until a signal is received 4655 * @unewset: new signal mask value 4656 * @sigsetsize: size of sigset_t type 4657 */ 4658 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4659 { 4660 sigset_t newset; 4661 4662 /* XXX: Don't preclude handling different sized sigset_t's. */ 4663 if (sigsetsize != sizeof(sigset_t)) 4664 return -EINVAL; 4665 4666 if (copy_from_user(&newset, unewset, sizeof(newset))) 4667 return -EFAULT; 4668 return sigsuspend(&newset); 4669 } 4670 4671 #ifdef CONFIG_COMPAT 4672 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4673 { 4674 sigset_t newset; 4675 4676 /* XXX: Don't preclude handling different sized sigset_t's. */ 4677 if (sigsetsize != sizeof(sigset_t)) 4678 return -EINVAL; 4679 4680 if (get_compat_sigset(&newset, unewset)) 4681 return -EFAULT; 4682 return sigsuspend(&newset); 4683 } 4684 #endif 4685 4686 #ifdef CONFIG_OLD_SIGSUSPEND 4687 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4688 { 4689 sigset_t blocked; 4690 siginitset(&blocked, mask); 4691 return sigsuspend(&blocked); 4692 } 4693 #endif 4694 #ifdef CONFIG_OLD_SIGSUSPEND3 4695 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4696 { 4697 sigset_t blocked; 4698 siginitset(&blocked, mask); 4699 return sigsuspend(&blocked); 4700 } 4701 #endif 4702 4703 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4704 { 4705 return NULL; 4706 } 4707 4708 static inline void siginfo_buildtime_checks(void) 4709 { 4710 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4711 4712 /* Verify the offsets in the two siginfos match */ 4713 #define CHECK_OFFSET(field) \ 4714 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4715 4716 /* kill */ 4717 CHECK_OFFSET(si_pid); 4718 CHECK_OFFSET(si_uid); 4719 4720 /* timer */ 4721 CHECK_OFFSET(si_tid); 4722 CHECK_OFFSET(si_overrun); 4723 CHECK_OFFSET(si_value); 4724 4725 /* rt */ 4726 CHECK_OFFSET(si_pid); 4727 CHECK_OFFSET(si_uid); 4728 CHECK_OFFSET(si_value); 4729 4730 /* sigchld */ 4731 CHECK_OFFSET(si_pid); 4732 CHECK_OFFSET(si_uid); 4733 CHECK_OFFSET(si_status); 4734 CHECK_OFFSET(si_utime); 4735 CHECK_OFFSET(si_stime); 4736 4737 /* sigfault */ 4738 CHECK_OFFSET(si_addr); 4739 CHECK_OFFSET(si_trapno); 4740 CHECK_OFFSET(si_addr_lsb); 4741 CHECK_OFFSET(si_lower); 4742 CHECK_OFFSET(si_upper); 4743 CHECK_OFFSET(si_pkey); 4744 CHECK_OFFSET(si_perf_data); 4745 CHECK_OFFSET(si_perf_type); 4746 CHECK_OFFSET(si_perf_flags); 4747 4748 /* sigpoll */ 4749 CHECK_OFFSET(si_band); 4750 CHECK_OFFSET(si_fd); 4751 4752 /* sigsys */ 4753 CHECK_OFFSET(si_call_addr); 4754 CHECK_OFFSET(si_syscall); 4755 CHECK_OFFSET(si_arch); 4756 #undef CHECK_OFFSET 4757 4758 /* usb asyncio */ 4759 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4760 offsetof(struct siginfo, si_addr)); 4761 if (sizeof(int) == sizeof(void __user *)) { 4762 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4763 sizeof(void __user *)); 4764 } else { 4765 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4766 sizeof_field(struct siginfo, si_uid)) != 4767 sizeof(void __user *)); 4768 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4769 offsetof(struct siginfo, si_uid)); 4770 } 4771 #ifdef CONFIG_COMPAT 4772 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4773 offsetof(struct compat_siginfo, si_addr)); 4774 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4775 sizeof(compat_uptr_t)); 4776 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4777 sizeof_field(struct siginfo, si_pid)); 4778 #endif 4779 } 4780 4781 #if defined(CONFIG_SYSCTL) 4782 static struct ctl_table signal_debug_table[] = { 4783 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE 4784 { 4785 .procname = "exception-trace", 4786 .data = &show_unhandled_signals, 4787 .maxlen = sizeof(int), 4788 .mode = 0644, 4789 .proc_handler = proc_dointvec 4790 }, 4791 #endif 4792 { } 4793 }; 4794 4795 static int __init init_signal_sysctls(void) 4796 { 4797 register_sysctl_init("debug", signal_debug_table); 4798 return 0; 4799 } 4800 early_initcall(init_signal_sysctls); 4801 #endif /* CONFIG_SYSCTL */ 4802 4803 void __init signals_init(void) 4804 { 4805 siginfo_buildtime_checks(); 4806 4807 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4808 } 4809 4810 #ifdef CONFIG_KGDB_KDB 4811 #include <linux/kdb.h> 4812 /* 4813 * kdb_send_sig - Allows kdb to send signals without exposing 4814 * signal internals. This function checks if the required locks are 4815 * available before calling the main signal code, to avoid kdb 4816 * deadlocks. 4817 */ 4818 void kdb_send_sig(struct task_struct *t, int sig) 4819 { 4820 static struct task_struct *kdb_prev_t; 4821 int new_t, ret; 4822 if (!spin_trylock(&t->sighand->siglock)) { 4823 kdb_printf("Can't do kill command now.\n" 4824 "The sigmask lock is held somewhere else in " 4825 "kernel, try again later\n"); 4826 return; 4827 } 4828 new_t = kdb_prev_t != t; 4829 kdb_prev_t = t; 4830 if (!task_is_running(t) && new_t) { 4831 spin_unlock(&t->sighand->siglock); 4832 kdb_printf("Process is not RUNNING, sending a signal from " 4833 "kdb risks deadlock\n" 4834 "on the run queue locks. " 4835 "The signal has _not_ been sent.\n" 4836 "Reissue the kill command if you want to risk " 4837 "the deadlock.\n"); 4838 return; 4839 } 4840 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4841 spin_unlock(&t->sighand->siglock); 4842 if (ret) 4843 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4844 sig, t->pid); 4845 else 4846 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4847 } 4848 #endif /* CONFIG_KGDB_KDB */ 4849