1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/mm.h> 26 #include <linux/proc_fs.h> 27 #include <linux/tty.h> 28 #include <linux/binfmts.h> 29 #include <linux/coredump.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/ptrace.h> 33 #include <linux/signal.h> 34 #include <linux/signalfd.h> 35 #include <linux/ratelimit.h> 36 #include <linux/task_work.h> 37 #include <linux/capability.h> 38 #include <linux/freezer.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/nsproxy.h> 41 #include <linux/user_namespace.h> 42 #include <linux/uprobes.h> 43 #include <linux/compat.h> 44 #include <linux/cn_proc.h> 45 #include <linux/compiler.h> 46 #include <linux/posix-timers.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 #include <linux/sysctl.h> 50 #include <uapi/linux/pidfd.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/signal.h> 54 55 #include <asm/param.h> 56 #include <linux/uaccess.h> 57 #include <asm/unistd.h> 58 #include <asm/siginfo.h> 59 #include <asm/cacheflush.h> 60 #include <asm/syscall.h> /* for syscall_get_* */ 61 62 #include "time/posix-timers.h" 63 64 /* 65 * SLAB caches for signal bits. 66 */ 67 68 static struct kmem_cache *sigqueue_cachep; 69 70 int print_fatal_signals __read_mostly; 71 72 static void __user *sig_handler(struct task_struct *t, int sig) 73 { 74 return t->sighand->action[sig - 1].sa.sa_handler; 75 } 76 77 static inline bool sig_handler_ignored(void __user *handler, int sig) 78 { 79 /* Is it explicitly or implicitly ignored? */ 80 return handler == SIG_IGN || 81 (handler == SIG_DFL && sig_kernel_ignore(sig)); 82 } 83 84 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 85 { 86 void __user *handler; 87 88 handler = sig_handler(t, sig); 89 90 /* SIGKILL and SIGSTOP may not be sent to the global init */ 91 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 92 return true; 93 94 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 95 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 96 return true; 97 98 /* Only allow kernel generated signals to this kthread */ 99 if (unlikely((t->flags & PF_KTHREAD) && 100 (handler == SIG_KTHREAD_KERNEL) && !force)) 101 return true; 102 103 return sig_handler_ignored(handler, sig); 104 } 105 106 static bool sig_ignored(struct task_struct *t, int sig, bool force) 107 { 108 /* 109 * Blocked signals are never ignored, since the 110 * signal handler may change by the time it is 111 * unblocked. 112 */ 113 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 114 return false; 115 116 /* 117 * Tracers may want to know about even ignored signal unless it 118 * is SIGKILL which can't be reported anyway but can be ignored 119 * by SIGNAL_UNKILLABLE task. 120 */ 121 if (t->ptrace && sig != SIGKILL) 122 return false; 123 124 return sig_task_ignored(t, sig, force); 125 } 126 127 /* 128 * Re-calculate pending state from the set of locally pending 129 * signals, globally pending signals, and blocked signals. 130 */ 131 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 132 { 133 unsigned long ready; 134 long i; 135 136 switch (_NSIG_WORDS) { 137 default: 138 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 139 ready |= signal->sig[i] &~ blocked->sig[i]; 140 break; 141 142 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 143 ready |= signal->sig[2] &~ blocked->sig[2]; 144 ready |= signal->sig[1] &~ blocked->sig[1]; 145 ready |= signal->sig[0] &~ blocked->sig[0]; 146 break; 147 148 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 149 ready |= signal->sig[0] &~ blocked->sig[0]; 150 break; 151 152 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 153 } 154 return ready != 0; 155 } 156 157 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 158 159 static bool recalc_sigpending_tsk(struct task_struct *t) 160 { 161 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 162 PENDING(&t->pending, &t->blocked) || 163 PENDING(&t->signal->shared_pending, &t->blocked) || 164 cgroup_task_frozen(t)) { 165 set_tsk_thread_flag(t, TIF_SIGPENDING); 166 return true; 167 } 168 169 /* 170 * We must never clear the flag in another thread, or in current 171 * when it's possible the current syscall is returning -ERESTART*. 172 * So we don't clear it here, and only callers who know they should do. 173 */ 174 return false; 175 } 176 177 void recalc_sigpending(void) 178 { 179 if (!recalc_sigpending_tsk(current) && !freezing(current)) { 180 if (unlikely(test_thread_flag(TIF_SIGPENDING))) 181 clear_thread_flag(TIF_SIGPENDING); 182 } 183 } 184 EXPORT_SYMBOL(recalc_sigpending); 185 186 void calculate_sigpending(void) 187 { 188 /* Have any signals or users of TIF_SIGPENDING been delayed 189 * until after fork? 190 */ 191 spin_lock_irq(¤t->sighand->siglock); 192 set_tsk_thread_flag(current, TIF_SIGPENDING); 193 recalc_sigpending(); 194 spin_unlock_irq(¤t->sighand->siglock); 195 } 196 197 /* Given the mask, find the first available signal that should be serviced. */ 198 199 #define SYNCHRONOUS_MASK \ 200 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 201 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 202 203 int next_signal(struct sigpending *pending, sigset_t *mask) 204 { 205 unsigned long i, *s, *m, x; 206 int sig = 0; 207 208 s = pending->signal.sig; 209 m = mask->sig; 210 211 /* 212 * Handle the first word specially: it contains the 213 * synchronous signals that need to be dequeued first. 214 */ 215 x = *s &~ *m; 216 if (x) { 217 if (x & SYNCHRONOUS_MASK) 218 x &= SYNCHRONOUS_MASK; 219 sig = ffz(~x) + 1; 220 return sig; 221 } 222 223 switch (_NSIG_WORDS) { 224 default: 225 for (i = 1; i < _NSIG_WORDS; ++i) { 226 x = *++s &~ *++m; 227 if (!x) 228 continue; 229 sig = ffz(~x) + i*_NSIG_BPW + 1; 230 break; 231 } 232 break; 233 234 case 2: 235 x = s[1] &~ m[1]; 236 if (!x) 237 break; 238 sig = ffz(~x) + _NSIG_BPW + 1; 239 break; 240 241 case 1: 242 /* Nothing to do */ 243 break; 244 } 245 246 return sig; 247 } 248 249 static inline void print_dropped_signal(int sig) 250 { 251 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 252 253 if (!print_fatal_signals) 254 return; 255 256 if (!__ratelimit(&ratelimit_state)) 257 return; 258 259 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 260 current->comm, current->pid, sig); 261 } 262 263 /** 264 * task_set_jobctl_pending - set jobctl pending bits 265 * @task: target task 266 * @mask: pending bits to set 267 * 268 * Clear @mask from @task->jobctl. @mask must be subset of 269 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 270 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 271 * cleared. If @task is already being killed or exiting, this function 272 * becomes noop. 273 * 274 * CONTEXT: 275 * Must be called with @task->sighand->siglock held. 276 * 277 * RETURNS: 278 * %true if @mask is set, %false if made noop because @task was dying. 279 */ 280 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 281 { 282 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 283 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 284 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 285 286 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 287 return false; 288 289 if (mask & JOBCTL_STOP_SIGMASK) 290 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 291 292 task->jobctl |= mask; 293 return true; 294 } 295 296 /** 297 * task_clear_jobctl_trapping - clear jobctl trapping bit 298 * @task: target task 299 * 300 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 301 * Clear it and wake up the ptracer. Note that we don't need any further 302 * locking. @task->siglock guarantees that @task->parent points to the 303 * ptracer. 304 * 305 * CONTEXT: 306 * Must be called with @task->sighand->siglock held. 307 */ 308 void task_clear_jobctl_trapping(struct task_struct *task) 309 { 310 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 311 task->jobctl &= ~JOBCTL_TRAPPING; 312 smp_mb(); /* advised by wake_up_bit() */ 313 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 314 } 315 } 316 317 /** 318 * task_clear_jobctl_pending - clear jobctl pending bits 319 * @task: target task 320 * @mask: pending bits to clear 321 * 322 * Clear @mask from @task->jobctl. @mask must be subset of 323 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 324 * STOP bits are cleared together. 325 * 326 * If clearing of @mask leaves no stop or trap pending, this function calls 327 * task_clear_jobctl_trapping(). 328 * 329 * CONTEXT: 330 * Must be called with @task->sighand->siglock held. 331 */ 332 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 333 { 334 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 335 336 if (mask & JOBCTL_STOP_PENDING) 337 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 338 339 task->jobctl &= ~mask; 340 341 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 342 task_clear_jobctl_trapping(task); 343 } 344 345 /** 346 * task_participate_group_stop - participate in a group stop 347 * @task: task participating in a group stop 348 * 349 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 350 * Group stop states are cleared and the group stop count is consumed if 351 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 352 * stop, the appropriate `SIGNAL_*` flags are set. 353 * 354 * CONTEXT: 355 * Must be called with @task->sighand->siglock held. 356 * 357 * RETURNS: 358 * %true if group stop completion should be notified to the parent, %false 359 * otherwise. 360 */ 361 static bool task_participate_group_stop(struct task_struct *task) 362 { 363 struct signal_struct *sig = task->signal; 364 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 365 366 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 367 368 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 369 370 if (!consume) 371 return false; 372 373 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 374 sig->group_stop_count--; 375 376 /* 377 * Tell the caller to notify completion iff we are entering into a 378 * fresh group stop. Read comment in do_signal_stop() for details. 379 */ 380 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 381 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 382 return true; 383 } 384 return false; 385 } 386 387 void task_join_group_stop(struct task_struct *task) 388 { 389 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 390 struct signal_struct *sig = current->signal; 391 392 if (sig->group_stop_count) { 393 sig->group_stop_count++; 394 mask |= JOBCTL_STOP_CONSUME; 395 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 396 return; 397 398 /* Have the new thread join an on-going signal group stop */ 399 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 400 } 401 402 static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig, 403 int override_rlimit) 404 { 405 struct ucounts *ucounts; 406 long sigpending; 407 408 /* 409 * Protect access to @t credentials. This can go away when all 410 * callers hold rcu read lock. 411 * 412 * NOTE! A pending signal will hold on to the user refcount, 413 * and we get/put the refcount only when the sigpending count 414 * changes from/to zero. 415 */ 416 rcu_read_lock(); 417 ucounts = task_ucounts(t); 418 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 419 override_rlimit); 420 rcu_read_unlock(); 421 if (!sigpending) 422 return NULL; 423 424 if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) { 425 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 426 print_dropped_signal(sig); 427 return NULL; 428 } 429 430 return ucounts; 431 } 432 433 static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts, 434 const unsigned int sigqueue_flags) 435 { 436 INIT_LIST_HEAD(&q->list); 437 q->flags = sigqueue_flags; 438 q->ucounts = ucounts; 439 } 440 441 /* 442 * allocate a new signal queue record 443 * - this may be called without locks if and only if t == current, otherwise an 444 * appropriate lock must be held to stop the target task from exiting 445 */ 446 static struct sigqueue *sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 447 int override_rlimit) 448 { 449 struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit); 450 struct sigqueue *q; 451 452 if (!ucounts) 453 return NULL; 454 455 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 456 if (!q) { 457 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 458 return NULL; 459 } 460 461 __sigqueue_init(q, ucounts, 0); 462 return q; 463 } 464 465 static void __sigqueue_free(struct sigqueue *q) 466 { 467 if (q->flags & SIGQUEUE_PREALLOC) { 468 posixtimer_sigqueue_putref(q); 469 return; 470 } 471 if (q->ucounts) { 472 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 473 q->ucounts = NULL; 474 } 475 kmem_cache_free(sigqueue_cachep, q); 476 } 477 478 void flush_sigqueue(struct sigpending *queue) 479 { 480 struct sigqueue *q; 481 482 sigemptyset(&queue->signal); 483 while (!list_empty(&queue->list)) { 484 q = list_entry(queue->list.next, struct sigqueue , list); 485 list_del_init(&q->list); 486 __sigqueue_free(q); 487 } 488 } 489 490 /* 491 * Flush all pending signals for this kthread. 492 */ 493 void flush_signals(struct task_struct *t) 494 { 495 unsigned long flags; 496 497 spin_lock_irqsave(&t->sighand->siglock, flags); 498 clear_tsk_thread_flag(t, TIF_SIGPENDING); 499 flush_sigqueue(&t->pending); 500 flush_sigqueue(&t->signal->shared_pending); 501 spin_unlock_irqrestore(&t->sighand->siglock, flags); 502 } 503 EXPORT_SYMBOL(flush_signals); 504 505 void ignore_signals(struct task_struct *t) 506 { 507 int i; 508 509 for (i = 0; i < _NSIG; ++i) 510 t->sighand->action[i].sa.sa_handler = SIG_IGN; 511 512 flush_signals(t); 513 } 514 515 /* 516 * Flush all handlers for a task. 517 */ 518 519 void 520 flush_signal_handlers(struct task_struct *t, int force_default) 521 { 522 int i; 523 struct k_sigaction *ka = &t->sighand->action[0]; 524 for (i = _NSIG ; i != 0 ; i--) { 525 if (force_default || ka->sa.sa_handler != SIG_IGN) 526 ka->sa.sa_handler = SIG_DFL; 527 ka->sa.sa_flags = 0; 528 #ifdef __ARCH_HAS_SA_RESTORER 529 ka->sa.sa_restorer = NULL; 530 #endif 531 sigemptyset(&ka->sa.sa_mask); 532 ka++; 533 } 534 } 535 536 bool unhandled_signal(struct task_struct *tsk, int sig) 537 { 538 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 539 if (is_global_init(tsk)) 540 return true; 541 542 if (handler != SIG_IGN && handler != SIG_DFL) 543 return false; 544 545 /* If dying, we handle all new signals by ignoring them */ 546 if (fatal_signal_pending(tsk)) 547 return false; 548 549 /* if ptraced, let the tracer determine */ 550 return !tsk->ptrace; 551 } 552 553 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 554 struct sigqueue **timer_sigq) 555 { 556 struct sigqueue *q, *first = NULL; 557 558 /* 559 * Collect the siginfo appropriate to this signal. Check if 560 * there is another siginfo for the same signal. 561 */ 562 list_for_each_entry(q, &list->list, list) { 563 if (q->info.si_signo == sig) { 564 if (first) 565 goto still_pending; 566 first = q; 567 } 568 } 569 570 sigdelset(&list->signal, sig); 571 572 if (first) { 573 still_pending: 574 list_del_init(&first->list); 575 copy_siginfo(info, &first->info); 576 577 /* 578 * posix-timer signals are preallocated and freed when the last 579 * reference count is dropped in posixtimer_deliver_signal() or 580 * immediately on timer deletion when the signal is not pending. 581 * Spare the extra round through __sigqueue_free() which is 582 * ignoring preallocated signals. 583 */ 584 if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER))) 585 *timer_sigq = first; 586 else 587 __sigqueue_free(first); 588 } else { 589 /* 590 * Ok, it wasn't in the queue. This must be 591 * a fast-pathed signal or we must have been 592 * out of queue space. So zero out the info. 593 */ 594 clear_siginfo(info); 595 info->si_signo = sig; 596 info->si_errno = 0; 597 info->si_code = SI_USER; 598 info->si_pid = 0; 599 info->si_uid = 0; 600 } 601 } 602 603 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 604 kernel_siginfo_t *info, struct sigqueue **timer_sigq) 605 { 606 int sig = next_signal(pending, mask); 607 608 if (sig) 609 collect_signal(sig, pending, info, timer_sigq); 610 return sig; 611 } 612 613 /* 614 * Try to dequeue a signal. If a deliverable signal is found fill in the 615 * caller provided siginfo and return the signal number. Otherwise return 616 * 0. 617 */ 618 int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type) 619 { 620 struct task_struct *tsk = current; 621 struct sigqueue *timer_sigq; 622 int signr; 623 624 lockdep_assert_held(&tsk->sighand->siglock); 625 626 again: 627 *type = PIDTYPE_PID; 628 timer_sigq = NULL; 629 signr = __dequeue_signal(&tsk->pending, mask, info, &timer_sigq); 630 if (!signr) { 631 *type = PIDTYPE_TGID; 632 signr = __dequeue_signal(&tsk->signal->shared_pending, 633 mask, info, &timer_sigq); 634 635 if (unlikely(signr == SIGALRM)) 636 posixtimer_rearm_itimer(tsk); 637 } 638 639 recalc_sigpending(); 640 if (!signr) 641 return 0; 642 643 if (unlikely(sig_kernel_stop(signr))) { 644 /* 645 * Set a marker that we have dequeued a stop signal. Our 646 * caller might release the siglock and then the pending 647 * stop signal it is about to process is no longer in the 648 * pending bitmasks, but must still be cleared by a SIGCONT 649 * (and overruled by a SIGKILL). So those cases clear this 650 * shared flag after we've set it. Note that this flag may 651 * remain set after the signal we return is ignored or 652 * handled. That doesn't matter because its only purpose 653 * is to alert stop-signal processing code when another 654 * processor has come along and cleared the flag. 655 */ 656 current->jobctl |= JOBCTL_STOP_DEQUEUED; 657 } 658 659 if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(timer_sigq)) { 660 if (!posixtimer_deliver_signal(info, timer_sigq)) 661 goto again; 662 } 663 664 return signr; 665 } 666 EXPORT_SYMBOL_GPL(dequeue_signal); 667 668 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 669 { 670 struct task_struct *tsk = current; 671 struct sigpending *pending = &tsk->pending; 672 struct sigqueue *q, *sync = NULL; 673 674 /* 675 * Might a synchronous signal be in the queue? 676 */ 677 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 678 return 0; 679 680 /* 681 * Return the first synchronous signal in the queue. 682 */ 683 list_for_each_entry(q, &pending->list, list) { 684 /* Synchronous signals have a positive si_code */ 685 if ((q->info.si_code > SI_USER) && 686 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 687 sync = q; 688 goto next; 689 } 690 } 691 return 0; 692 next: 693 /* 694 * Check if there is another siginfo for the same signal. 695 */ 696 list_for_each_entry_continue(q, &pending->list, list) { 697 if (q->info.si_signo == sync->info.si_signo) 698 goto still_pending; 699 } 700 701 sigdelset(&pending->signal, sync->info.si_signo); 702 recalc_sigpending(); 703 still_pending: 704 list_del_init(&sync->list); 705 copy_siginfo(info, &sync->info); 706 __sigqueue_free(sync); 707 return info->si_signo; 708 } 709 710 /* 711 * Tell a process that it has a new active signal.. 712 * 713 * NOTE! we rely on the previous spin_lock to 714 * lock interrupts for us! We can only be called with 715 * "siglock" held, and the local interrupt must 716 * have been disabled when that got acquired! 717 * 718 * No need to set need_resched since signal event passing 719 * goes through ->blocked 720 */ 721 void signal_wake_up_state(struct task_struct *t, unsigned int state) 722 { 723 lockdep_assert_held(&t->sighand->siglock); 724 725 set_tsk_thread_flag(t, TIF_SIGPENDING); 726 727 /* 728 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 729 * case. We don't check t->state here because there is a race with it 730 * executing another processor and just now entering stopped state. 731 * By using wake_up_state, we ensure the process will wake up and 732 * handle its death signal. 733 */ 734 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 735 kick_process(t); 736 } 737 738 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q); 739 740 static void sigqueue_free_ignored(struct task_struct *tsk, struct sigqueue *q) 741 { 742 if (likely(!(q->flags & SIGQUEUE_PREALLOC) || q->info.si_code != SI_TIMER)) 743 __sigqueue_free(q); 744 else 745 posixtimer_sig_ignore(tsk, q); 746 } 747 748 /* Remove signals in mask from the pending set and queue. */ 749 static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s) 750 { 751 struct sigqueue *q, *n; 752 sigset_t m; 753 754 lockdep_assert_held(&p->sighand->siglock); 755 756 sigandsets(&m, mask, &s->signal); 757 if (sigisemptyset(&m)) 758 return; 759 760 sigandnsets(&s->signal, &s->signal, mask); 761 list_for_each_entry_safe(q, n, &s->list, list) { 762 if (sigismember(mask, q->info.si_signo)) { 763 list_del_init(&q->list); 764 sigqueue_free_ignored(p, q); 765 } 766 } 767 } 768 769 static inline int is_si_special(const struct kernel_siginfo *info) 770 { 771 return info <= SEND_SIG_PRIV; 772 } 773 774 static inline bool si_fromuser(const struct kernel_siginfo *info) 775 { 776 return info == SEND_SIG_NOINFO || 777 (!is_si_special(info) && SI_FROMUSER(info)); 778 } 779 780 /* 781 * called with RCU read lock from check_kill_permission() 782 */ 783 static bool kill_ok_by_cred(struct task_struct *t) 784 { 785 const struct cred *cred = current_cred(); 786 const struct cred *tcred = __task_cred(t); 787 788 return uid_eq(cred->euid, tcred->suid) || 789 uid_eq(cred->euid, tcred->uid) || 790 uid_eq(cred->uid, tcred->suid) || 791 uid_eq(cred->uid, tcred->uid) || 792 ns_capable(tcred->user_ns, CAP_KILL); 793 } 794 795 /* 796 * Bad permissions for sending the signal 797 * - the caller must hold the RCU read lock 798 */ 799 static int check_kill_permission(int sig, struct kernel_siginfo *info, 800 struct task_struct *t) 801 { 802 struct pid *sid; 803 int error; 804 805 if (!valid_signal(sig)) 806 return -EINVAL; 807 808 if (!si_fromuser(info)) 809 return 0; 810 811 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 812 if (error) 813 return error; 814 815 if (!same_thread_group(current, t) && 816 !kill_ok_by_cred(t)) { 817 switch (sig) { 818 case SIGCONT: 819 sid = task_session(t); 820 /* 821 * We don't return the error if sid == NULL. The 822 * task was unhashed, the caller must notice this. 823 */ 824 if (!sid || sid == task_session(current)) 825 break; 826 fallthrough; 827 default: 828 return -EPERM; 829 } 830 } 831 832 return security_task_kill(t, info, sig, NULL); 833 } 834 835 /** 836 * ptrace_trap_notify - schedule trap to notify ptracer 837 * @t: tracee wanting to notify tracer 838 * 839 * This function schedules sticky ptrace trap which is cleared on the next 840 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 841 * ptracer. 842 * 843 * If @t is running, STOP trap will be taken. If trapped for STOP and 844 * ptracer is listening for events, tracee is woken up so that it can 845 * re-trap for the new event. If trapped otherwise, STOP trap will be 846 * eventually taken without returning to userland after the existing traps 847 * are finished by PTRACE_CONT. 848 * 849 * CONTEXT: 850 * Must be called with @task->sighand->siglock held. 851 */ 852 static void ptrace_trap_notify(struct task_struct *t) 853 { 854 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 855 lockdep_assert_held(&t->sighand->siglock); 856 857 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 858 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 859 } 860 861 /* 862 * Handle magic process-wide effects of stop/continue signals. Unlike 863 * the signal actions, these happen immediately at signal-generation 864 * time regardless of blocking, ignoring, or handling. This does the 865 * actual continuing for SIGCONT, but not the actual stopping for stop 866 * signals. The process stop is done as a signal action for SIG_DFL. 867 * 868 * Returns true if the signal should be actually delivered, otherwise 869 * it should be dropped. 870 */ 871 static bool prepare_signal(int sig, struct task_struct *p, bool force) 872 { 873 struct signal_struct *signal = p->signal; 874 struct task_struct *t; 875 sigset_t flush; 876 877 if (signal->flags & SIGNAL_GROUP_EXIT) { 878 if (signal->core_state) 879 return sig == SIGKILL; 880 /* 881 * The process is in the middle of dying, drop the signal. 882 */ 883 return false; 884 } else if (sig_kernel_stop(sig)) { 885 /* 886 * This is a stop signal. Remove SIGCONT from all queues. 887 */ 888 siginitset(&flush, sigmask(SIGCONT)); 889 flush_sigqueue_mask(p, &flush, &signal->shared_pending); 890 for_each_thread(p, t) 891 flush_sigqueue_mask(p, &flush, &t->pending); 892 } else if (sig == SIGCONT) { 893 unsigned int why; 894 /* 895 * Remove all stop signals from all queues, wake all threads. 896 */ 897 siginitset(&flush, SIG_KERNEL_STOP_MASK); 898 flush_sigqueue_mask(p, &flush, &signal->shared_pending); 899 for_each_thread(p, t) { 900 flush_sigqueue_mask(p, &flush, &t->pending); 901 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 902 if (likely(!(t->ptrace & PT_SEIZED))) { 903 t->jobctl &= ~JOBCTL_STOPPED; 904 wake_up_state(t, __TASK_STOPPED); 905 } else 906 ptrace_trap_notify(t); 907 } 908 909 /* 910 * Notify the parent with CLD_CONTINUED if we were stopped. 911 * 912 * If we were in the middle of a group stop, we pretend it 913 * was already finished, and then continued. Since SIGCHLD 914 * doesn't queue we report only CLD_STOPPED, as if the next 915 * CLD_CONTINUED was dropped. 916 */ 917 why = 0; 918 if (signal->flags & SIGNAL_STOP_STOPPED) 919 why |= SIGNAL_CLD_CONTINUED; 920 else if (signal->group_stop_count) 921 why |= SIGNAL_CLD_STOPPED; 922 923 if (why) { 924 /* 925 * The first thread which returns from do_signal_stop() 926 * will take ->siglock, notice SIGNAL_CLD_MASK, and 927 * notify its parent. See get_signal(). 928 */ 929 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 930 signal->group_stop_count = 0; 931 signal->group_exit_code = 0; 932 } 933 } 934 935 return !sig_ignored(p, sig, force); 936 } 937 938 /* 939 * Test if P wants to take SIG. After we've checked all threads with this, 940 * it's equivalent to finding no threads not blocking SIG. Any threads not 941 * blocking SIG were ruled out because they are not running and already 942 * have pending signals. Such threads will dequeue from the shared queue 943 * as soon as they're available, so putting the signal on the shared queue 944 * will be equivalent to sending it to one such thread. 945 */ 946 static inline bool wants_signal(int sig, struct task_struct *p) 947 { 948 if (sigismember(&p->blocked, sig)) 949 return false; 950 951 if (p->flags & PF_EXITING) 952 return false; 953 954 if (sig == SIGKILL) 955 return true; 956 957 if (task_is_stopped_or_traced(p)) 958 return false; 959 960 return task_curr(p) || !task_sigpending(p); 961 } 962 963 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 964 { 965 struct signal_struct *signal = p->signal; 966 struct task_struct *t; 967 968 /* 969 * Now find a thread we can wake up to take the signal off the queue. 970 * 971 * Try the suggested task first (may or may not be the main thread). 972 */ 973 if (wants_signal(sig, p)) 974 t = p; 975 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 976 /* 977 * There is just one thread and it does not need to be woken. 978 * It will dequeue unblocked signals before it runs again. 979 */ 980 return; 981 else { 982 /* 983 * Otherwise try to find a suitable thread. 984 */ 985 t = signal->curr_target; 986 while (!wants_signal(sig, t)) { 987 t = next_thread(t); 988 if (t == signal->curr_target) 989 /* 990 * No thread needs to be woken. 991 * Any eligible threads will see 992 * the signal in the queue soon. 993 */ 994 return; 995 } 996 signal->curr_target = t; 997 } 998 999 /* 1000 * Found a killable thread. If the signal will be fatal, 1001 * then start taking the whole group down immediately. 1002 */ 1003 if (sig_fatal(p, sig) && 1004 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1005 !sigismember(&t->real_blocked, sig) && 1006 (sig == SIGKILL || !p->ptrace)) { 1007 /* 1008 * This signal will be fatal to the whole group. 1009 */ 1010 if (!sig_kernel_coredump(sig)) { 1011 /* 1012 * Start a group exit and wake everybody up. 1013 * This way we don't have other threads 1014 * running and doing things after a slower 1015 * thread has the fatal signal pending. 1016 */ 1017 signal->flags = SIGNAL_GROUP_EXIT; 1018 signal->group_exit_code = sig; 1019 signal->group_stop_count = 0; 1020 __for_each_thread(signal, t) { 1021 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1022 sigaddset(&t->pending.signal, SIGKILL); 1023 signal_wake_up(t, 1); 1024 } 1025 return; 1026 } 1027 } 1028 1029 /* 1030 * The signal is already in the shared-pending queue. 1031 * Tell the chosen thread to wake up and dequeue it. 1032 */ 1033 signal_wake_up(t, sig == SIGKILL); 1034 return; 1035 } 1036 1037 static inline bool legacy_queue(struct sigpending *signals, int sig) 1038 { 1039 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1040 } 1041 1042 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1043 struct task_struct *t, enum pid_type type, bool force) 1044 { 1045 struct sigpending *pending; 1046 struct sigqueue *q; 1047 int override_rlimit; 1048 int ret = 0, result; 1049 1050 lockdep_assert_held(&t->sighand->siglock); 1051 1052 result = TRACE_SIGNAL_IGNORED; 1053 if (!prepare_signal(sig, t, force)) 1054 goto ret; 1055 1056 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1057 /* 1058 * Short-circuit ignored signals and support queuing 1059 * exactly one non-rt signal, so that we can get more 1060 * detailed information about the cause of the signal. 1061 */ 1062 result = TRACE_SIGNAL_ALREADY_PENDING; 1063 if (legacy_queue(pending, sig)) 1064 goto ret; 1065 1066 result = TRACE_SIGNAL_DELIVERED; 1067 /* 1068 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1069 */ 1070 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1071 goto out_set; 1072 1073 /* 1074 * Real-time signals must be queued if sent by sigqueue, or 1075 * some other real-time mechanism. It is implementation 1076 * defined whether kill() does so. We attempt to do so, on 1077 * the principle of least surprise, but since kill is not 1078 * allowed to fail with EAGAIN when low on memory we just 1079 * make sure at least one signal gets delivered and don't 1080 * pass on the info struct. 1081 */ 1082 if (sig < SIGRTMIN) 1083 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1084 else 1085 override_rlimit = 0; 1086 1087 q = sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1088 1089 if (q) { 1090 list_add_tail(&q->list, &pending->list); 1091 switch ((unsigned long) info) { 1092 case (unsigned long) SEND_SIG_NOINFO: 1093 clear_siginfo(&q->info); 1094 q->info.si_signo = sig; 1095 q->info.si_errno = 0; 1096 q->info.si_code = SI_USER; 1097 q->info.si_pid = task_tgid_nr_ns(current, 1098 task_active_pid_ns(t)); 1099 rcu_read_lock(); 1100 q->info.si_uid = 1101 from_kuid_munged(task_cred_xxx(t, user_ns), 1102 current_uid()); 1103 rcu_read_unlock(); 1104 break; 1105 case (unsigned long) SEND_SIG_PRIV: 1106 clear_siginfo(&q->info); 1107 q->info.si_signo = sig; 1108 q->info.si_errno = 0; 1109 q->info.si_code = SI_KERNEL; 1110 q->info.si_pid = 0; 1111 q->info.si_uid = 0; 1112 break; 1113 default: 1114 copy_siginfo(&q->info, info); 1115 break; 1116 } 1117 } else if (!is_si_special(info) && 1118 sig >= SIGRTMIN && info->si_code != SI_USER) { 1119 /* 1120 * Queue overflow, abort. We may abort if the 1121 * signal was rt and sent by user using something 1122 * other than kill(). 1123 */ 1124 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1125 ret = -EAGAIN; 1126 goto ret; 1127 } else { 1128 /* 1129 * This is a silent loss of information. We still 1130 * send the signal, but the *info bits are lost. 1131 */ 1132 result = TRACE_SIGNAL_LOSE_INFO; 1133 } 1134 1135 out_set: 1136 signalfd_notify(t, sig); 1137 sigaddset(&pending->signal, sig); 1138 1139 /* Let multiprocess signals appear after on-going forks */ 1140 if (type > PIDTYPE_TGID) { 1141 struct multiprocess_signals *delayed; 1142 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1143 sigset_t *signal = &delayed->signal; 1144 /* Can't queue both a stop and a continue signal */ 1145 if (sig == SIGCONT) 1146 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1147 else if (sig_kernel_stop(sig)) 1148 sigdelset(signal, SIGCONT); 1149 sigaddset(signal, sig); 1150 } 1151 } 1152 1153 complete_signal(sig, t, type); 1154 ret: 1155 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1156 return ret; 1157 } 1158 1159 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1160 { 1161 bool ret = false; 1162 switch (siginfo_layout(info->si_signo, info->si_code)) { 1163 case SIL_KILL: 1164 case SIL_CHLD: 1165 case SIL_RT: 1166 ret = true; 1167 break; 1168 case SIL_TIMER: 1169 case SIL_POLL: 1170 case SIL_FAULT: 1171 case SIL_FAULT_TRAPNO: 1172 case SIL_FAULT_MCEERR: 1173 case SIL_FAULT_BNDERR: 1174 case SIL_FAULT_PKUERR: 1175 case SIL_FAULT_PERF_EVENT: 1176 case SIL_SYS: 1177 ret = false; 1178 break; 1179 } 1180 return ret; 1181 } 1182 1183 int send_signal_locked(int sig, struct kernel_siginfo *info, 1184 struct task_struct *t, enum pid_type type) 1185 { 1186 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1187 bool force = false; 1188 1189 if (info == SEND_SIG_NOINFO) { 1190 /* Force if sent from an ancestor pid namespace */ 1191 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1192 } else if (info == SEND_SIG_PRIV) { 1193 /* Don't ignore kernel generated signals */ 1194 force = true; 1195 } else if (has_si_pid_and_uid(info)) { 1196 /* SIGKILL and SIGSTOP is special or has ids */ 1197 struct user_namespace *t_user_ns; 1198 1199 rcu_read_lock(); 1200 t_user_ns = task_cred_xxx(t, user_ns); 1201 if (current_user_ns() != t_user_ns) { 1202 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1203 info->si_uid = from_kuid_munged(t_user_ns, uid); 1204 } 1205 rcu_read_unlock(); 1206 1207 /* A kernel generated signal? */ 1208 force = (info->si_code == SI_KERNEL); 1209 1210 /* From an ancestor pid namespace? */ 1211 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1212 info->si_pid = 0; 1213 force = true; 1214 } 1215 } 1216 return __send_signal_locked(sig, info, t, type, force); 1217 } 1218 1219 static void print_fatal_signal(int signr) 1220 { 1221 struct pt_regs *regs = task_pt_regs(current); 1222 struct file *exe_file; 1223 1224 exe_file = get_task_exe_file(current); 1225 if (exe_file) { 1226 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n", 1227 exe_file, current->comm, signr); 1228 fput(exe_file); 1229 } else { 1230 pr_info("%s: potentially unexpected fatal signal %d.\n", 1231 current->comm, signr); 1232 } 1233 1234 #if defined(__i386__) && !defined(__arch_um__) 1235 pr_info("code at %08lx: ", regs->ip); 1236 { 1237 int i; 1238 for (i = 0; i < 16; i++) { 1239 unsigned char insn; 1240 1241 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1242 break; 1243 pr_cont("%02x ", insn); 1244 } 1245 } 1246 pr_cont("\n"); 1247 #endif 1248 preempt_disable(); 1249 show_regs(regs); 1250 preempt_enable(); 1251 } 1252 1253 static int __init setup_print_fatal_signals(char *str) 1254 { 1255 get_option (&str, &print_fatal_signals); 1256 1257 return 1; 1258 } 1259 1260 __setup("print-fatal-signals=", setup_print_fatal_signals); 1261 1262 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1263 enum pid_type type) 1264 { 1265 unsigned long flags; 1266 int ret = -ESRCH; 1267 1268 if (lock_task_sighand(p, &flags)) { 1269 ret = send_signal_locked(sig, info, p, type); 1270 unlock_task_sighand(p, &flags); 1271 } 1272 1273 return ret; 1274 } 1275 1276 enum sig_handler { 1277 HANDLER_CURRENT, /* If reachable use the current handler */ 1278 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1279 HANDLER_EXIT, /* Only visible as the process exit code */ 1280 }; 1281 1282 /* 1283 * Force a signal that the process can't ignore: if necessary 1284 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1285 * 1286 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1287 * since we do not want to have a signal handler that was blocked 1288 * be invoked when user space had explicitly blocked it. 1289 * 1290 * We don't want to have recursive SIGSEGV's etc, for example, 1291 * that is why we also clear SIGNAL_UNKILLABLE. 1292 */ 1293 static int 1294 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1295 enum sig_handler handler) 1296 { 1297 unsigned long int flags; 1298 int ret, blocked, ignored; 1299 struct k_sigaction *action; 1300 int sig = info->si_signo; 1301 1302 spin_lock_irqsave(&t->sighand->siglock, flags); 1303 action = &t->sighand->action[sig-1]; 1304 ignored = action->sa.sa_handler == SIG_IGN; 1305 blocked = sigismember(&t->blocked, sig); 1306 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1307 action->sa.sa_handler = SIG_DFL; 1308 if (handler == HANDLER_EXIT) 1309 action->sa.sa_flags |= SA_IMMUTABLE; 1310 if (blocked) 1311 sigdelset(&t->blocked, sig); 1312 } 1313 /* 1314 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1315 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1316 */ 1317 if (action->sa.sa_handler == SIG_DFL && 1318 (!t->ptrace || (handler == HANDLER_EXIT))) 1319 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1320 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1321 /* This can happen if the signal was already pending and blocked */ 1322 if (!task_sigpending(t)) 1323 signal_wake_up(t, 0); 1324 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1325 1326 return ret; 1327 } 1328 1329 int force_sig_info(struct kernel_siginfo *info) 1330 { 1331 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1332 } 1333 1334 /* 1335 * Nuke all other threads in the group. 1336 */ 1337 int zap_other_threads(struct task_struct *p) 1338 { 1339 struct task_struct *t; 1340 int count = 0; 1341 1342 p->signal->group_stop_count = 0; 1343 1344 for_other_threads(p, t) { 1345 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1346 count++; 1347 1348 /* Don't bother with already dead threads */ 1349 if (t->exit_state) 1350 continue; 1351 sigaddset(&t->pending.signal, SIGKILL); 1352 signal_wake_up(t, 1); 1353 } 1354 1355 return count; 1356 } 1357 1358 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1359 unsigned long *flags) 1360 { 1361 struct sighand_struct *sighand; 1362 1363 rcu_read_lock(); 1364 for (;;) { 1365 sighand = rcu_dereference(tsk->sighand); 1366 if (unlikely(sighand == NULL)) 1367 break; 1368 1369 /* 1370 * This sighand can be already freed and even reused, but 1371 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1372 * initializes ->siglock: this slab can't go away, it has 1373 * the same object type, ->siglock can't be reinitialized. 1374 * 1375 * We need to ensure that tsk->sighand is still the same 1376 * after we take the lock, we can race with de_thread() or 1377 * __exit_signal(). In the latter case the next iteration 1378 * must see ->sighand == NULL. 1379 */ 1380 spin_lock_irqsave(&sighand->siglock, *flags); 1381 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1382 break; 1383 spin_unlock_irqrestore(&sighand->siglock, *flags); 1384 } 1385 rcu_read_unlock(); 1386 1387 return sighand; 1388 } 1389 1390 #ifdef CONFIG_LOCKDEP 1391 void lockdep_assert_task_sighand_held(struct task_struct *task) 1392 { 1393 struct sighand_struct *sighand; 1394 1395 rcu_read_lock(); 1396 sighand = rcu_dereference(task->sighand); 1397 if (sighand) 1398 lockdep_assert_held(&sighand->siglock); 1399 else 1400 WARN_ON_ONCE(1); 1401 rcu_read_unlock(); 1402 } 1403 #endif 1404 1405 /* 1406 * send signal info to all the members of a thread group or to the 1407 * individual thread if type == PIDTYPE_PID. 1408 */ 1409 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1410 struct task_struct *p, enum pid_type type) 1411 { 1412 int ret; 1413 1414 rcu_read_lock(); 1415 ret = check_kill_permission(sig, info, p); 1416 rcu_read_unlock(); 1417 1418 if (!ret && sig) 1419 ret = do_send_sig_info(sig, info, p, type); 1420 1421 return ret; 1422 } 1423 1424 /* 1425 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1426 * control characters do (^C, ^Z etc) 1427 * - the caller must hold at least a readlock on tasklist_lock 1428 */ 1429 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1430 { 1431 struct task_struct *p = NULL; 1432 int ret = -ESRCH; 1433 1434 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1435 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1436 /* 1437 * If group_send_sig_info() succeeds at least once ret 1438 * becomes 0 and after that the code below has no effect. 1439 * Otherwise we return the last err or -ESRCH if this 1440 * process group is empty. 1441 */ 1442 if (ret) 1443 ret = err; 1444 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1445 1446 return ret; 1447 } 1448 1449 static int kill_pid_info_type(int sig, struct kernel_siginfo *info, 1450 struct pid *pid, enum pid_type type) 1451 { 1452 int error = -ESRCH; 1453 struct task_struct *p; 1454 1455 for (;;) { 1456 rcu_read_lock(); 1457 p = pid_task(pid, PIDTYPE_PID); 1458 if (p) 1459 error = group_send_sig_info(sig, info, p, type); 1460 rcu_read_unlock(); 1461 if (likely(!p || error != -ESRCH)) 1462 return error; 1463 /* 1464 * The task was unhashed in between, try again. If it 1465 * is dead, pid_task() will return NULL, if we race with 1466 * de_thread() it will find the new leader. 1467 */ 1468 } 1469 } 1470 1471 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1472 { 1473 return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID); 1474 } 1475 1476 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1477 { 1478 int error; 1479 rcu_read_lock(); 1480 error = kill_pid_info(sig, info, find_vpid(pid)); 1481 rcu_read_unlock(); 1482 return error; 1483 } 1484 1485 static inline bool kill_as_cred_perm(const struct cred *cred, 1486 struct task_struct *target) 1487 { 1488 const struct cred *pcred = __task_cred(target); 1489 1490 return uid_eq(cred->euid, pcred->suid) || 1491 uid_eq(cred->euid, pcred->uid) || 1492 uid_eq(cred->uid, pcred->suid) || 1493 uid_eq(cred->uid, pcred->uid); 1494 } 1495 1496 /* 1497 * The usb asyncio usage of siginfo is wrong. The glibc support 1498 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1499 * AKA after the generic fields: 1500 * kernel_pid_t si_pid; 1501 * kernel_uid32_t si_uid; 1502 * sigval_t si_value; 1503 * 1504 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1505 * after the generic fields is: 1506 * void __user *si_addr; 1507 * 1508 * This is a practical problem when there is a 64bit big endian kernel 1509 * and a 32bit userspace. As the 32bit address will encoded in the low 1510 * 32bits of the pointer. Those low 32bits will be stored at higher 1511 * address than appear in a 32 bit pointer. So userspace will not 1512 * see the address it was expecting for it's completions. 1513 * 1514 * There is nothing in the encoding that can allow 1515 * copy_siginfo_to_user32 to detect this confusion of formats, so 1516 * handle this by requiring the caller of kill_pid_usb_asyncio to 1517 * notice when this situration takes place and to store the 32bit 1518 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1519 * parameter. 1520 */ 1521 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1522 struct pid *pid, const struct cred *cred) 1523 { 1524 struct kernel_siginfo info; 1525 struct task_struct *p; 1526 unsigned long flags; 1527 int ret = -EINVAL; 1528 1529 if (!valid_signal(sig)) 1530 return ret; 1531 1532 clear_siginfo(&info); 1533 info.si_signo = sig; 1534 info.si_errno = errno; 1535 info.si_code = SI_ASYNCIO; 1536 *((sigval_t *)&info.si_pid) = addr; 1537 1538 rcu_read_lock(); 1539 p = pid_task(pid, PIDTYPE_PID); 1540 if (!p) { 1541 ret = -ESRCH; 1542 goto out_unlock; 1543 } 1544 if (!kill_as_cred_perm(cred, p)) { 1545 ret = -EPERM; 1546 goto out_unlock; 1547 } 1548 ret = security_task_kill(p, &info, sig, cred); 1549 if (ret) 1550 goto out_unlock; 1551 1552 if (sig) { 1553 if (lock_task_sighand(p, &flags)) { 1554 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1555 unlock_task_sighand(p, &flags); 1556 } else 1557 ret = -ESRCH; 1558 } 1559 out_unlock: 1560 rcu_read_unlock(); 1561 return ret; 1562 } 1563 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1564 1565 /* 1566 * kill_something_info() interprets pid in interesting ways just like kill(2). 1567 * 1568 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1569 * is probably wrong. Should make it like BSD or SYSV. 1570 */ 1571 1572 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1573 { 1574 int ret; 1575 1576 if (pid > 0) 1577 return kill_proc_info(sig, info, pid); 1578 1579 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1580 if (pid == INT_MIN) 1581 return -ESRCH; 1582 1583 read_lock(&tasklist_lock); 1584 if (pid != -1) { 1585 ret = __kill_pgrp_info(sig, info, 1586 pid ? find_vpid(-pid) : task_pgrp(current)); 1587 } else { 1588 int retval = 0, count = 0; 1589 struct task_struct * p; 1590 1591 for_each_process(p) { 1592 if (task_pid_vnr(p) > 1 && 1593 !same_thread_group(p, current)) { 1594 int err = group_send_sig_info(sig, info, p, 1595 PIDTYPE_MAX); 1596 ++count; 1597 if (err != -EPERM) 1598 retval = err; 1599 } 1600 } 1601 ret = count ? retval : -ESRCH; 1602 } 1603 read_unlock(&tasklist_lock); 1604 1605 return ret; 1606 } 1607 1608 /* 1609 * These are for backward compatibility with the rest of the kernel source. 1610 */ 1611 1612 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1613 { 1614 /* 1615 * Make sure legacy kernel users don't send in bad values 1616 * (normal paths check this in check_kill_permission). 1617 */ 1618 if (!valid_signal(sig)) 1619 return -EINVAL; 1620 1621 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1622 } 1623 EXPORT_SYMBOL(send_sig_info); 1624 1625 #define __si_special(priv) \ 1626 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1627 1628 int 1629 send_sig(int sig, struct task_struct *p, int priv) 1630 { 1631 return send_sig_info(sig, __si_special(priv), p); 1632 } 1633 EXPORT_SYMBOL(send_sig); 1634 1635 void force_sig(int sig) 1636 { 1637 struct kernel_siginfo info; 1638 1639 clear_siginfo(&info); 1640 info.si_signo = sig; 1641 info.si_errno = 0; 1642 info.si_code = SI_KERNEL; 1643 info.si_pid = 0; 1644 info.si_uid = 0; 1645 force_sig_info(&info); 1646 } 1647 EXPORT_SYMBOL(force_sig); 1648 1649 void force_fatal_sig(int sig) 1650 { 1651 struct kernel_siginfo info; 1652 1653 clear_siginfo(&info); 1654 info.si_signo = sig; 1655 info.si_errno = 0; 1656 info.si_code = SI_KERNEL; 1657 info.si_pid = 0; 1658 info.si_uid = 0; 1659 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1660 } 1661 1662 void force_exit_sig(int sig) 1663 { 1664 struct kernel_siginfo info; 1665 1666 clear_siginfo(&info); 1667 info.si_signo = sig; 1668 info.si_errno = 0; 1669 info.si_code = SI_KERNEL; 1670 info.si_pid = 0; 1671 info.si_uid = 0; 1672 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1673 } 1674 1675 /* 1676 * When things go south during signal handling, we 1677 * will force a SIGSEGV. And if the signal that caused 1678 * the problem was already a SIGSEGV, we'll want to 1679 * make sure we don't even try to deliver the signal.. 1680 */ 1681 void force_sigsegv(int sig) 1682 { 1683 if (sig == SIGSEGV) 1684 force_fatal_sig(SIGSEGV); 1685 else 1686 force_sig(SIGSEGV); 1687 } 1688 1689 int force_sig_fault_to_task(int sig, int code, void __user *addr, 1690 struct task_struct *t) 1691 { 1692 struct kernel_siginfo info; 1693 1694 clear_siginfo(&info); 1695 info.si_signo = sig; 1696 info.si_errno = 0; 1697 info.si_code = code; 1698 info.si_addr = addr; 1699 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1700 } 1701 1702 int force_sig_fault(int sig, int code, void __user *addr) 1703 { 1704 return force_sig_fault_to_task(sig, code, addr, current); 1705 } 1706 1707 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t) 1708 { 1709 struct kernel_siginfo info; 1710 1711 clear_siginfo(&info); 1712 info.si_signo = sig; 1713 info.si_errno = 0; 1714 info.si_code = code; 1715 info.si_addr = addr; 1716 return send_sig_info(info.si_signo, &info, t); 1717 } 1718 1719 int force_sig_mceerr(int code, void __user *addr, short lsb) 1720 { 1721 struct kernel_siginfo info; 1722 1723 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1724 clear_siginfo(&info); 1725 info.si_signo = SIGBUS; 1726 info.si_errno = 0; 1727 info.si_code = code; 1728 info.si_addr = addr; 1729 info.si_addr_lsb = lsb; 1730 return force_sig_info(&info); 1731 } 1732 1733 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1734 { 1735 struct kernel_siginfo info; 1736 1737 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1738 clear_siginfo(&info); 1739 info.si_signo = SIGBUS; 1740 info.si_errno = 0; 1741 info.si_code = code; 1742 info.si_addr = addr; 1743 info.si_addr_lsb = lsb; 1744 return send_sig_info(info.si_signo, &info, t); 1745 } 1746 EXPORT_SYMBOL(send_sig_mceerr); 1747 1748 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1749 { 1750 struct kernel_siginfo info; 1751 1752 clear_siginfo(&info); 1753 info.si_signo = SIGSEGV; 1754 info.si_errno = 0; 1755 info.si_code = SEGV_BNDERR; 1756 info.si_addr = addr; 1757 info.si_lower = lower; 1758 info.si_upper = upper; 1759 return force_sig_info(&info); 1760 } 1761 1762 #ifdef SEGV_PKUERR 1763 int force_sig_pkuerr(void __user *addr, u32 pkey) 1764 { 1765 struct kernel_siginfo info; 1766 1767 clear_siginfo(&info); 1768 info.si_signo = SIGSEGV; 1769 info.si_errno = 0; 1770 info.si_code = SEGV_PKUERR; 1771 info.si_addr = addr; 1772 info.si_pkey = pkey; 1773 return force_sig_info(&info); 1774 } 1775 #endif 1776 1777 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1778 { 1779 struct kernel_siginfo info; 1780 1781 clear_siginfo(&info); 1782 info.si_signo = SIGTRAP; 1783 info.si_errno = 0; 1784 info.si_code = TRAP_PERF; 1785 info.si_addr = addr; 1786 info.si_perf_data = sig_data; 1787 info.si_perf_type = type; 1788 1789 /* 1790 * Signals generated by perf events should not terminate the whole 1791 * process if SIGTRAP is blocked, however, delivering the signal 1792 * asynchronously is better than not delivering at all. But tell user 1793 * space if the signal was asynchronous, so it can clearly be 1794 * distinguished from normal synchronous ones. 1795 */ 1796 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1797 TRAP_PERF_FLAG_ASYNC : 1798 0; 1799 1800 return send_sig_info(info.si_signo, &info, current); 1801 } 1802 1803 /** 1804 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1805 * @syscall: syscall number to send to userland 1806 * @reason: filter-supplied reason code to send to userland (via si_errno) 1807 * @force_coredump: true to trigger a coredump 1808 * 1809 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1810 */ 1811 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1812 { 1813 struct kernel_siginfo info; 1814 1815 clear_siginfo(&info); 1816 info.si_signo = SIGSYS; 1817 info.si_code = SYS_SECCOMP; 1818 info.si_call_addr = (void __user *)KSTK_EIP(current); 1819 info.si_errno = reason; 1820 info.si_arch = syscall_get_arch(current); 1821 info.si_syscall = syscall; 1822 return force_sig_info_to_task(&info, current, 1823 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1824 } 1825 1826 /* For the crazy architectures that include trap information in 1827 * the errno field, instead of an actual errno value. 1828 */ 1829 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1830 { 1831 struct kernel_siginfo info; 1832 1833 clear_siginfo(&info); 1834 info.si_signo = SIGTRAP; 1835 info.si_errno = errno; 1836 info.si_code = TRAP_HWBKPT; 1837 info.si_addr = addr; 1838 return force_sig_info(&info); 1839 } 1840 1841 /* For the rare architectures that include trap information using 1842 * si_trapno. 1843 */ 1844 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1845 { 1846 struct kernel_siginfo info; 1847 1848 clear_siginfo(&info); 1849 info.si_signo = sig; 1850 info.si_errno = 0; 1851 info.si_code = code; 1852 info.si_addr = addr; 1853 info.si_trapno = trapno; 1854 return force_sig_info(&info); 1855 } 1856 1857 /* For the rare architectures that include trap information using 1858 * si_trapno. 1859 */ 1860 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1861 struct task_struct *t) 1862 { 1863 struct kernel_siginfo info; 1864 1865 clear_siginfo(&info); 1866 info.si_signo = sig; 1867 info.si_errno = 0; 1868 info.si_code = code; 1869 info.si_addr = addr; 1870 info.si_trapno = trapno; 1871 return send_sig_info(info.si_signo, &info, t); 1872 } 1873 1874 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1875 { 1876 int ret; 1877 read_lock(&tasklist_lock); 1878 ret = __kill_pgrp_info(sig, info, pgrp); 1879 read_unlock(&tasklist_lock); 1880 return ret; 1881 } 1882 1883 int kill_pgrp(struct pid *pid, int sig, int priv) 1884 { 1885 return kill_pgrp_info(sig, __si_special(priv), pid); 1886 } 1887 EXPORT_SYMBOL(kill_pgrp); 1888 1889 int kill_pid(struct pid *pid, int sig, int priv) 1890 { 1891 return kill_pid_info(sig, __si_special(priv), pid); 1892 } 1893 EXPORT_SYMBOL(kill_pid); 1894 1895 #ifdef CONFIG_POSIX_TIMERS 1896 /* 1897 * These functions handle POSIX timer signals. POSIX timers use 1898 * preallocated sigqueue structs for sending signals. 1899 */ 1900 static void __flush_itimer_signals(struct sigpending *pending) 1901 { 1902 sigset_t signal, retain; 1903 struct sigqueue *q, *n; 1904 1905 signal = pending->signal; 1906 sigemptyset(&retain); 1907 1908 list_for_each_entry_safe(q, n, &pending->list, list) { 1909 int sig = q->info.si_signo; 1910 1911 if (likely(q->info.si_code != SI_TIMER)) { 1912 sigaddset(&retain, sig); 1913 } else { 1914 sigdelset(&signal, sig); 1915 list_del_init(&q->list); 1916 __sigqueue_free(q); 1917 } 1918 } 1919 1920 sigorsets(&pending->signal, &signal, &retain); 1921 } 1922 1923 void flush_itimer_signals(void) 1924 { 1925 struct task_struct *tsk = current; 1926 1927 guard(spinlock_irqsave)(&tsk->sighand->siglock); 1928 __flush_itimer_signals(&tsk->pending); 1929 __flush_itimer_signals(&tsk->signal->shared_pending); 1930 } 1931 1932 bool posixtimer_init_sigqueue(struct sigqueue *q) 1933 { 1934 struct ucounts *ucounts = sig_get_ucounts(current, -1, 0); 1935 1936 if (!ucounts) 1937 return false; 1938 clear_siginfo(&q->info); 1939 __sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC); 1940 return true; 1941 } 1942 1943 static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type) 1944 { 1945 struct sigpending *pending; 1946 int sig = q->info.si_signo; 1947 1948 signalfd_notify(t, sig); 1949 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1950 list_add_tail(&q->list, &pending->list); 1951 sigaddset(&pending->signal, sig); 1952 complete_signal(sig, t, type); 1953 } 1954 1955 /* 1956 * This function is used by POSIX timers to deliver a timer signal. 1957 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1958 * set), the signal must be delivered to the specific thread (queues 1959 * into t->pending). 1960 * 1961 * Where type is not PIDTYPE_PID, signals must be delivered to the 1962 * process. In this case, prefer to deliver to current if it is in 1963 * the same thread group as the target process and its sighand is 1964 * stable, which avoids unnecessarily waking up a potentially idle task. 1965 */ 1966 static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr) 1967 { 1968 struct task_struct *t = pid_task(tmr->it_pid, tmr->it_pid_type); 1969 1970 if (t && tmr->it_pid_type != PIDTYPE_PID && 1971 same_thread_group(t, current) && !current->exit_state) 1972 t = current; 1973 return t; 1974 } 1975 1976 void posixtimer_send_sigqueue(struct k_itimer *tmr) 1977 { 1978 struct sigqueue *q = &tmr->sigq; 1979 int sig = q->info.si_signo; 1980 struct task_struct *t; 1981 unsigned long flags; 1982 int result; 1983 1984 guard(rcu)(); 1985 1986 t = posixtimer_get_target(tmr); 1987 if (!t) 1988 return; 1989 1990 if (!likely(lock_task_sighand(t, &flags))) 1991 return; 1992 1993 /* 1994 * Update @tmr::sigqueue_seq for posix timer signals with sighand 1995 * locked to prevent a race against dequeue_signal(). 1996 */ 1997 tmr->it_sigqueue_seq = tmr->it_signal_seq; 1998 1999 /* 2000 * Set the signal delivery status under sighand lock, so that the 2001 * ignored signal handling can distinguish between a periodic and a 2002 * non-periodic timer. 2003 */ 2004 tmr->it_sig_periodic = tmr->it_status == POSIX_TIMER_REQUEUE_PENDING; 2005 2006 if (!prepare_signal(sig, t, false)) { 2007 result = TRACE_SIGNAL_IGNORED; 2008 2009 if (!list_empty(&q->list)) { 2010 /* 2011 * The signal was ignored and blocked. The timer 2012 * expiry queued it because blocked signals are 2013 * queued independent of the ignored state. 2014 * 2015 * The unblocking set SIGPENDING, but the signal 2016 * was not yet dequeued from the pending list. 2017 * So prepare_signal() sees unblocked and ignored, 2018 * which ends up here. Leave it queued like a 2019 * regular signal. 2020 * 2021 * The same happens when the task group is exiting 2022 * and the signal is already queued. 2023 * prepare_signal() treats SIGNAL_GROUP_EXIT as 2024 * ignored independent of its queued state. This 2025 * gets cleaned up in __exit_signal(). 2026 */ 2027 goto out; 2028 } 2029 2030 /* Periodic timers with SIG_IGN are queued on the ignored list */ 2031 if (tmr->it_sig_periodic) { 2032 /* 2033 * Already queued means the timer was rearmed after 2034 * the previous expiry got it on the ignore list. 2035 * Nothing to do for that case. 2036 */ 2037 if (hlist_unhashed(&tmr->ignored_list)) { 2038 /* 2039 * Take a signal reference and queue it on 2040 * the ignored list. 2041 */ 2042 posixtimer_sigqueue_getref(q); 2043 posixtimer_sig_ignore(t, q); 2044 } 2045 } else if (!hlist_unhashed(&tmr->ignored_list)) { 2046 /* 2047 * Covers the case where a timer was periodic and 2048 * then the signal was ignored. Later it was rearmed 2049 * as oneshot timer. The previous signal is invalid 2050 * now, and this oneshot signal has to be dropped. 2051 * Remove it from the ignored list and drop the 2052 * reference count as the signal is not longer 2053 * queued. 2054 */ 2055 hlist_del_init(&tmr->ignored_list); 2056 posixtimer_putref(tmr); 2057 } 2058 goto out; 2059 } 2060 2061 if (unlikely(!list_empty(&q->list))) { 2062 /* This holds a reference count already */ 2063 result = TRACE_SIGNAL_ALREADY_PENDING; 2064 goto out; 2065 } 2066 2067 /* 2068 * If the signal is on the ignore list, it got blocked after it was 2069 * ignored earlier. But nothing lifted the ignore. Move it back to 2070 * the pending list to be consistent with the regular signal 2071 * handling. This already holds a reference count. 2072 * 2073 * If it's not on the ignore list acquire a reference count. 2074 */ 2075 if (likely(hlist_unhashed(&tmr->ignored_list))) 2076 posixtimer_sigqueue_getref(q); 2077 else 2078 hlist_del_init(&tmr->ignored_list); 2079 2080 posixtimer_queue_sigqueue(q, t, tmr->it_pid_type); 2081 result = TRACE_SIGNAL_DELIVERED; 2082 out: 2083 trace_signal_generate(sig, &q->info, t, tmr->it_pid_type != PIDTYPE_PID, result); 2084 unlock_task_sighand(t, &flags); 2085 } 2086 2087 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) 2088 { 2089 struct k_itimer *tmr = container_of(q, struct k_itimer, sigq); 2090 2091 /* 2092 * If the timer is marked deleted already or the signal originates 2093 * from a non-periodic timer, then just drop the reference 2094 * count. Otherwise queue it on the ignored list. 2095 */ 2096 if (posixtimer_valid(tmr) && tmr->it_sig_periodic) 2097 hlist_add_head(&tmr->ignored_list, &tsk->signal->ignored_posix_timers); 2098 else 2099 posixtimer_putref(tmr); 2100 } 2101 2102 static void posixtimer_sig_unignore(struct task_struct *tsk, int sig) 2103 { 2104 struct hlist_head *head = &tsk->signal->ignored_posix_timers; 2105 struct hlist_node *tmp; 2106 struct k_itimer *tmr; 2107 2108 if (likely(hlist_empty(head))) 2109 return; 2110 2111 /* 2112 * Rearming a timer with sighand lock held is not possible due to 2113 * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and 2114 * let the signal delivery path deal with it whether it needs to be 2115 * rearmed or not. This cannot be decided here w/o dropping sighand 2116 * lock and creating a loop retry horror show. 2117 */ 2118 hlist_for_each_entry_safe(tmr, tmp , head, ignored_list) { 2119 struct task_struct *target; 2120 2121 /* 2122 * tmr::sigq.info.si_signo is immutable, so accessing it 2123 * without holding tmr::it_lock is safe. 2124 */ 2125 if (tmr->sigq.info.si_signo != sig) 2126 continue; 2127 2128 hlist_del_init(&tmr->ignored_list); 2129 2130 /* This should never happen and leaks a reference count */ 2131 if (WARN_ON_ONCE(!list_empty(&tmr->sigq.list))) 2132 continue; 2133 2134 /* 2135 * Get the target for the signal. If target is a thread and 2136 * has exited by now, drop the reference count. 2137 */ 2138 guard(rcu)(); 2139 target = posixtimer_get_target(tmr); 2140 if (target) 2141 posixtimer_queue_sigqueue(&tmr->sigq, target, tmr->it_pid_type); 2142 else 2143 posixtimer_putref(tmr); 2144 } 2145 } 2146 #else /* CONFIG_POSIX_TIMERS */ 2147 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) { } 2148 static inline void posixtimer_sig_unignore(struct task_struct *tsk, int sig) { } 2149 #endif /* !CONFIG_POSIX_TIMERS */ 2150 2151 void do_notify_pidfd(struct task_struct *task) 2152 { 2153 struct pid *pid = task_pid(task); 2154 2155 WARN_ON(task->exit_state == 0); 2156 2157 __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0, 2158 poll_to_key(EPOLLIN | EPOLLRDNORM)); 2159 } 2160 2161 /* 2162 * Let a parent know about the death of a child. 2163 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2164 * 2165 * Returns true if our parent ignored us and so we've switched to 2166 * self-reaping. 2167 */ 2168 bool do_notify_parent(struct task_struct *tsk, int sig) 2169 { 2170 struct kernel_siginfo info; 2171 unsigned long flags; 2172 struct sighand_struct *psig; 2173 bool autoreap = false; 2174 u64 utime, stime; 2175 2176 WARN_ON_ONCE(sig == -1); 2177 2178 /* do_notify_parent_cldstop should have been called instead. */ 2179 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2180 2181 WARN_ON_ONCE(!tsk->ptrace && 2182 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2183 2184 /* ptraced, or group-leader without sub-threads */ 2185 do_notify_pidfd(tsk); 2186 2187 if (sig != SIGCHLD) { 2188 /* 2189 * This is only possible if parent == real_parent. 2190 * Check if it has changed security domain. 2191 */ 2192 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2193 sig = SIGCHLD; 2194 } 2195 2196 clear_siginfo(&info); 2197 info.si_signo = sig; 2198 info.si_errno = 0; 2199 /* 2200 * We are under tasklist_lock here so our parent is tied to 2201 * us and cannot change. 2202 * 2203 * task_active_pid_ns will always return the same pid namespace 2204 * until a task passes through release_task. 2205 * 2206 * write_lock() currently calls preempt_disable() which is the 2207 * same as rcu_read_lock(), but according to Oleg, this is not 2208 * correct to rely on this 2209 */ 2210 rcu_read_lock(); 2211 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2212 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2213 task_uid(tsk)); 2214 rcu_read_unlock(); 2215 2216 task_cputime(tsk, &utime, &stime); 2217 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2218 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2219 2220 info.si_status = tsk->exit_code & 0x7f; 2221 if (tsk->exit_code & 0x80) 2222 info.si_code = CLD_DUMPED; 2223 else if (tsk->exit_code & 0x7f) 2224 info.si_code = CLD_KILLED; 2225 else { 2226 info.si_code = CLD_EXITED; 2227 info.si_status = tsk->exit_code >> 8; 2228 } 2229 2230 psig = tsk->parent->sighand; 2231 spin_lock_irqsave(&psig->siglock, flags); 2232 if (!tsk->ptrace && sig == SIGCHLD && 2233 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2234 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2235 /* 2236 * We are exiting and our parent doesn't care. POSIX.1 2237 * defines special semantics for setting SIGCHLD to SIG_IGN 2238 * or setting the SA_NOCLDWAIT flag: we should be reaped 2239 * automatically and not left for our parent's wait4 call. 2240 * Rather than having the parent do it as a magic kind of 2241 * signal handler, we just set this to tell do_exit that we 2242 * can be cleaned up without becoming a zombie. Note that 2243 * we still call __wake_up_parent in this case, because a 2244 * blocked sys_wait4 might now return -ECHILD. 2245 * 2246 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2247 * is implementation-defined: we do (if you don't want 2248 * it, just use SIG_IGN instead). 2249 */ 2250 autoreap = true; 2251 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2252 sig = 0; 2253 } 2254 /* 2255 * Send with __send_signal as si_pid and si_uid are in the 2256 * parent's namespaces. 2257 */ 2258 if (valid_signal(sig) && sig) 2259 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2260 __wake_up_parent(tsk, tsk->parent); 2261 spin_unlock_irqrestore(&psig->siglock, flags); 2262 2263 return autoreap; 2264 } 2265 2266 /** 2267 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2268 * @tsk: task reporting the state change 2269 * @for_ptracer: the notification is for ptracer 2270 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2271 * 2272 * Notify @tsk's parent that the stopped/continued state has changed. If 2273 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2274 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2275 * 2276 * CONTEXT: 2277 * Must be called with tasklist_lock at least read locked. 2278 */ 2279 static void do_notify_parent_cldstop(struct task_struct *tsk, 2280 bool for_ptracer, int why) 2281 { 2282 struct kernel_siginfo info; 2283 unsigned long flags; 2284 struct task_struct *parent; 2285 struct sighand_struct *sighand; 2286 u64 utime, stime; 2287 2288 if (for_ptracer) { 2289 parent = tsk->parent; 2290 } else { 2291 tsk = tsk->group_leader; 2292 parent = tsk->real_parent; 2293 } 2294 2295 clear_siginfo(&info); 2296 info.si_signo = SIGCHLD; 2297 info.si_errno = 0; 2298 /* 2299 * see comment in do_notify_parent() about the following 4 lines 2300 */ 2301 rcu_read_lock(); 2302 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2303 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2304 rcu_read_unlock(); 2305 2306 task_cputime(tsk, &utime, &stime); 2307 info.si_utime = nsec_to_clock_t(utime); 2308 info.si_stime = nsec_to_clock_t(stime); 2309 2310 info.si_code = why; 2311 switch (why) { 2312 case CLD_CONTINUED: 2313 info.si_status = SIGCONT; 2314 break; 2315 case CLD_STOPPED: 2316 info.si_status = tsk->signal->group_exit_code & 0x7f; 2317 break; 2318 case CLD_TRAPPED: 2319 info.si_status = tsk->exit_code & 0x7f; 2320 break; 2321 default: 2322 BUG(); 2323 } 2324 2325 sighand = parent->sighand; 2326 spin_lock_irqsave(&sighand->siglock, flags); 2327 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2328 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2329 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2330 /* 2331 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2332 */ 2333 __wake_up_parent(tsk, parent); 2334 spin_unlock_irqrestore(&sighand->siglock, flags); 2335 } 2336 2337 /* 2338 * This must be called with current->sighand->siglock held. 2339 * 2340 * This should be the path for all ptrace stops. 2341 * We always set current->last_siginfo while stopped here. 2342 * That makes it a way to test a stopped process for 2343 * being ptrace-stopped vs being job-control-stopped. 2344 * 2345 * Returns the signal the ptracer requested the code resume 2346 * with. If the code did not stop because the tracer is gone, 2347 * the stop signal remains unchanged unless clear_code. 2348 */ 2349 static int ptrace_stop(int exit_code, int why, unsigned long message, 2350 kernel_siginfo_t *info) 2351 __releases(¤t->sighand->siglock) 2352 __acquires(¤t->sighand->siglock) 2353 { 2354 bool gstop_done = false; 2355 2356 if (arch_ptrace_stop_needed()) { 2357 /* 2358 * The arch code has something special to do before a 2359 * ptrace stop. This is allowed to block, e.g. for faults 2360 * on user stack pages. We can't keep the siglock while 2361 * calling arch_ptrace_stop, so we must release it now. 2362 * To preserve proper semantics, we must do this before 2363 * any signal bookkeeping like checking group_stop_count. 2364 */ 2365 spin_unlock_irq(¤t->sighand->siglock); 2366 arch_ptrace_stop(); 2367 spin_lock_irq(¤t->sighand->siglock); 2368 } 2369 2370 /* 2371 * After this point ptrace_signal_wake_up or signal_wake_up 2372 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2373 * signal comes in. Handle previous ptrace_unlinks and fatal 2374 * signals here to prevent ptrace_stop sleeping in schedule. 2375 */ 2376 if (!current->ptrace || __fatal_signal_pending(current)) 2377 return exit_code; 2378 2379 set_special_state(TASK_TRACED); 2380 current->jobctl |= JOBCTL_TRACED; 2381 2382 /* 2383 * We're committing to trapping. TRACED should be visible before 2384 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2385 * Also, transition to TRACED and updates to ->jobctl should be 2386 * atomic with respect to siglock and should be done after the arch 2387 * hook as siglock is released and regrabbed across it. 2388 * 2389 * TRACER TRACEE 2390 * 2391 * ptrace_attach() 2392 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2393 * do_wait() 2394 * set_current_state() smp_wmb(); 2395 * ptrace_do_wait() 2396 * wait_task_stopped() 2397 * task_stopped_code() 2398 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2399 */ 2400 smp_wmb(); 2401 2402 current->ptrace_message = message; 2403 current->last_siginfo = info; 2404 current->exit_code = exit_code; 2405 2406 /* 2407 * If @why is CLD_STOPPED, we're trapping to participate in a group 2408 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2409 * across siglock relocks since INTERRUPT was scheduled, PENDING 2410 * could be clear now. We act as if SIGCONT is received after 2411 * TASK_TRACED is entered - ignore it. 2412 */ 2413 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2414 gstop_done = task_participate_group_stop(current); 2415 2416 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2417 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2418 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2419 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2420 2421 /* entering a trap, clear TRAPPING */ 2422 task_clear_jobctl_trapping(current); 2423 2424 spin_unlock_irq(¤t->sighand->siglock); 2425 read_lock(&tasklist_lock); 2426 /* 2427 * Notify parents of the stop. 2428 * 2429 * While ptraced, there are two parents - the ptracer and 2430 * the real_parent of the group_leader. The ptracer should 2431 * know about every stop while the real parent is only 2432 * interested in the completion of group stop. The states 2433 * for the two don't interact with each other. Notify 2434 * separately unless they're gonna be duplicates. 2435 */ 2436 if (current->ptrace) 2437 do_notify_parent_cldstop(current, true, why); 2438 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2439 do_notify_parent_cldstop(current, false, why); 2440 2441 /* 2442 * The previous do_notify_parent_cldstop() invocation woke ptracer. 2443 * One a PREEMPTION kernel this can result in preemption requirement 2444 * which will be fulfilled after read_unlock() and the ptracer will be 2445 * put on the CPU. 2446 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for 2447 * this task wait in schedule(). If this task gets preempted then it 2448 * remains enqueued on the runqueue. The ptracer will observe this and 2449 * then sleep for a delay of one HZ tick. In the meantime this task 2450 * gets scheduled, enters schedule() and will wait for the ptracer. 2451 * 2452 * This preemption point is not bad from a correctness point of 2453 * view but extends the runtime by one HZ tick time due to the 2454 * ptracer's sleep. The preempt-disable section ensures that there 2455 * will be no preemption between unlock and schedule() and so 2456 * improving the performance since the ptracer will observe that 2457 * the tracee is scheduled out once it gets on the CPU. 2458 * 2459 * On PREEMPT_RT locking tasklist_lock does not disable preemption. 2460 * Therefore the task can be preempted after do_notify_parent_cldstop() 2461 * before unlocking tasklist_lock so there is no benefit in doing this. 2462 * 2463 * In fact disabling preemption is harmful on PREEMPT_RT because 2464 * the spinlock_t in cgroup_enter_frozen() must not be acquired 2465 * with preemption disabled due to the 'sleeping' spinlock 2466 * substitution of RT. 2467 */ 2468 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2469 preempt_disable(); 2470 read_unlock(&tasklist_lock); 2471 cgroup_enter_frozen(); 2472 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2473 preempt_enable_no_resched(); 2474 schedule(); 2475 cgroup_leave_frozen(true); 2476 2477 /* 2478 * We are back. Now reacquire the siglock before touching 2479 * last_siginfo, so that we are sure to have synchronized with 2480 * any signal-sending on another CPU that wants to examine it. 2481 */ 2482 spin_lock_irq(¤t->sighand->siglock); 2483 exit_code = current->exit_code; 2484 current->last_siginfo = NULL; 2485 current->ptrace_message = 0; 2486 current->exit_code = 0; 2487 2488 /* LISTENING can be set only during STOP traps, clear it */ 2489 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2490 2491 /* 2492 * Queued signals ignored us while we were stopped for tracing. 2493 * So check for any that we should take before resuming user mode. 2494 * This sets TIF_SIGPENDING, but never clears it. 2495 */ 2496 recalc_sigpending_tsk(current); 2497 return exit_code; 2498 } 2499 2500 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2501 { 2502 kernel_siginfo_t info; 2503 2504 clear_siginfo(&info); 2505 info.si_signo = signr; 2506 info.si_code = exit_code; 2507 info.si_pid = task_pid_vnr(current); 2508 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2509 2510 /* Let the debugger run. */ 2511 return ptrace_stop(exit_code, why, message, &info); 2512 } 2513 2514 int ptrace_notify(int exit_code, unsigned long message) 2515 { 2516 int signr; 2517 2518 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2519 if (unlikely(task_work_pending(current))) 2520 task_work_run(); 2521 2522 spin_lock_irq(¤t->sighand->siglock); 2523 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2524 spin_unlock_irq(¤t->sighand->siglock); 2525 return signr; 2526 } 2527 2528 /** 2529 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2530 * @signr: signr causing group stop if initiating 2531 * 2532 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2533 * and participate in it. If already set, participate in the existing 2534 * group stop. If participated in a group stop (and thus slept), %true is 2535 * returned with siglock released. 2536 * 2537 * If ptraced, this function doesn't handle stop itself. Instead, 2538 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2539 * untouched. The caller must ensure that INTERRUPT trap handling takes 2540 * places afterwards. 2541 * 2542 * CONTEXT: 2543 * Must be called with @current->sighand->siglock held, which is released 2544 * on %true return. 2545 * 2546 * RETURNS: 2547 * %false if group stop is already cancelled or ptrace trap is scheduled. 2548 * %true if participated in group stop. 2549 */ 2550 static bool do_signal_stop(int signr) 2551 __releases(¤t->sighand->siglock) 2552 { 2553 struct signal_struct *sig = current->signal; 2554 2555 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2556 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2557 struct task_struct *t; 2558 2559 /* signr will be recorded in task->jobctl for retries */ 2560 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2561 2562 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2563 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2564 unlikely(sig->group_exec_task)) 2565 return false; 2566 /* 2567 * There is no group stop already in progress. We must 2568 * initiate one now. 2569 * 2570 * While ptraced, a task may be resumed while group stop is 2571 * still in effect and then receive a stop signal and 2572 * initiate another group stop. This deviates from the 2573 * usual behavior as two consecutive stop signals can't 2574 * cause two group stops when !ptraced. That is why we 2575 * also check !task_is_stopped(t) below. 2576 * 2577 * The condition can be distinguished by testing whether 2578 * SIGNAL_STOP_STOPPED is already set. Don't generate 2579 * group_exit_code in such case. 2580 * 2581 * This is not necessary for SIGNAL_STOP_CONTINUED because 2582 * an intervening stop signal is required to cause two 2583 * continued events regardless of ptrace. 2584 */ 2585 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2586 sig->group_exit_code = signr; 2587 2588 sig->group_stop_count = 0; 2589 if (task_set_jobctl_pending(current, signr | gstop)) 2590 sig->group_stop_count++; 2591 2592 for_other_threads(current, t) { 2593 /* 2594 * Setting state to TASK_STOPPED for a group 2595 * stop is always done with the siglock held, 2596 * so this check has no races. 2597 */ 2598 if (!task_is_stopped(t) && 2599 task_set_jobctl_pending(t, signr | gstop)) { 2600 sig->group_stop_count++; 2601 if (likely(!(t->ptrace & PT_SEIZED))) 2602 signal_wake_up(t, 0); 2603 else 2604 ptrace_trap_notify(t); 2605 } 2606 } 2607 } 2608 2609 if (likely(!current->ptrace)) { 2610 int notify = 0; 2611 2612 /* 2613 * If there are no other threads in the group, or if there 2614 * is a group stop in progress and we are the last to stop, 2615 * report to the parent. 2616 */ 2617 if (task_participate_group_stop(current)) 2618 notify = CLD_STOPPED; 2619 2620 current->jobctl |= JOBCTL_STOPPED; 2621 set_special_state(TASK_STOPPED); 2622 spin_unlock_irq(¤t->sighand->siglock); 2623 2624 /* 2625 * Notify the parent of the group stop completion. Because 2626 * we're not holding either the siglock or tasklist_lock 2627 * here, ptracer may attach inbetween; however, this is for 2628 * group stop and should always be delivered to the real 2629 * parent of the group leader. The new ptracer will get 2630 * its notification when this task transitions into 2631 * TASK_TRACED. 2632 */ 2633 if (notify) { 2634 read_lock(&tasklist_lock); 2635 do_notify_parent_cldstop(current, false, notify); 2636 read_unlock(&tasklist_lock); 2637 } 2638 2639 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2640 cgroup_enter_frozen(); 2641 schedule(); 2642 return true; 2643 } else { 2644 /* 2645 * While ptraced, group stop is handled by STOP trap. 2646 * Schedule it and let the caller deal with it. 2647 */ 2648 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2649 return false; 2650 } 2651 } 2652 2653 /** 2654 * do_jobctl_trap - take care of ptrace jobctl traps 2655 * 2656 * When PT_SEIZED, it's used for both group stop and explicit 2657 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2658 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2659 * the stop signal; otherwise, %SIGTRAP. 2660 * 2661 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2662 * number as exit_code and no siginfo. 2663 * 2664 * CONTEXT: 2665 * Must be called with @current->sighand->siglock held, which may be 2666 * released and re-acquired before returning with intervening sleep. 2667 */ 2668 static void do_jobctl_trap(void) 2669 { 2670 struct signal_struct *signal = current->signal; 2671 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2672 2673 if (current->ptrace & PT_SEIZED) { 2674 if (!signal->group_stop_count && 2675 !(signal->flags & SIGNAL_STOP_STOPPED)) 2676 signr = SIGTRAP; 2677 WARN_ON_ONCE(!signr); 2678 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2679 CLD_STOPPED, 0); 2680 } else { 2681 WARN_ON_ONCE(!signr); 2682 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2683 } 2684 } 2685 2686 /** 2687 * do_freezer_trap - handle the freezer jobctl trap 2688 * 2689 * Puts the task into frozen state, if only the task is not about to quit. 2690 * In this case it drops JOBCTL_TRAP_FREEZE. 2691 * 2692 * CONTEXT: 2693 * Must be called with @current->sighand->siglock held, 2694 * which is always released before returning. 2695 */ 2696 static void do_freezer_trap(void) 2697 __releases(¤t->sighand->siglock) 2698 { 2699 /* 2700 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2701 * let's make another loop to give it a chance to be handled. 2702 * In any case, we'll return back. 2703 */ 2704 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2705 JOBCTL_TRAP_FREEZE) { 2706 spin_unlock_irq(¤t->sighand->siglock); 2707 return; 2708 } 2709 2710 /* 2711 * Now we're sure that there is no pending fatal signal and no 2712 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2713 * immediately (if there is a non-fatal signal pending), and 2714 * put the task into sleep. 2715 */ 2716 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2717 clear_thread_flag(TIF_SIGPENDING); 2718 spin_unlock_irq(¤t->sighand->siglock); 2719 cgroup_enter_frozen(); 2720 schedule(); 2721 2722 /* 2723 * We could've been woken by task_work, run it to clear 2724 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary. 2725 */ 2726 clear_notify_signal(); 2727 if (unlikely(task_work_pending(current))) 2728 task_work_run(); 2729 } 2730 2731 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2732 { 2733 /* 2734 * We do not check sig_kernel_stop(signr) but set this marker 2735 * unconditionally because we do not know whether debugger will 2736 * change signr. This flag has no meaning unless we are going 2737 * to stop after return from ptrace_stop(). In this case it will 2738 * be checked in do_signal_stop(), we should only stop if it was 2739 * not cleared by SIGCONT while we were sleeping. See also the 2740 * comment in dequeue_signal(). 2741 */ 2742 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2743 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2744 2745 /* We're back. Did the debugger cancel the sig? */ 2746 if (signr == 0) 2747 return signr; 2748 2749 /* 2750 * Update the siginfo structure if the signal has 2751 * changed. If the debugger wanted something 2752 * specific in the siginfo structure then it should 2753 * have updated *info via PTRACE_SETSIGINFO. 2754 */ 2755 if (signr != info->si_signo) { 2756 clear_siginfo(info); 2757 info->si_signo = signr; 2758 info->si_errno = 0; 2759 info->si_code = SI_USER; 2760 rcu_read_lock(); 2761 info->si_pid = task_pid_vnr(current->parent); 2762 info->si_uid = from_kuid_munged(current_user_ns(), 2763 task_uid(current->parent)); 2764 rcu_read_unlock(); 2765 } 2766 2767 /* If the (new) signal is now blocked, requeue it. */ 2768 if (sigismember(¤t->blocked, signr) || 2769 fatal_signal_pending(current)) { 2770 send_signal_locked(signr, info, current, type); 2771 signr = 0; 2772 } 2773 2774 return signr; 2775 } 2776 2777 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2778 { 2779 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2780 case SIL_FAULT: 2781 case SIL_FAULT_TRAPNO: 2782 case SIL_FAULT_MCEERR: 2783 case SIL_FAULT_BNDERR: 2784 case SIL_FAULT_PKUERR: 2785 case SIL_FAULT_PERF_EVENT: 2786 ksig->info.si_addr = arch_untagged_si_addr( 2787 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2788 break; 2789 case SIL_KILL: 2790 case SIL_TIMER: 2791 case SIL_POLL: 2792 case SIL_CHLD: 2793 case SIL_RT: 2794 case SIL_SYS: 2795 break; 2796 } 2797 } 2798 2799 bool get_signal(struct ksignal *ksig) 2800 { 2801 struct sighand_struct *sighand = current->sighand; 2802 struct signal_struct *signal = current->signal; 2803 int signr; 2804 2805 clear_notify_signal(); 2806 if (unlikely(task_work_pending(current))) 2807 task_work_run(); 2808 2809 if (!task_sigpending(current)) 2810 return false; 2811 2812 if (unlikely(uprobe_deny_signal())) 2813 return false; 2814 2815 /* 2816 * Do this once, we can't return to user-mode if freezing() == T. 2817 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2818 * thus do not need another check after return. 2819 */ 2820 try_to_freeze(); 2821 2822 relock: 2823 spin_lock_irq(&sighand->siglock); 2824 2825 /* 2826 * Every stopped thread goes here after wakeup. Check to see if 2827 * we should notify the parent, prepare_signal(SIGCONT) encodes 2828 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2829 */ 2830 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2831 int why; 2832 2833 if (signal->flags & SIGNAL_CLD_CONTINUED) 2834 why = CLD_CONTINUED; 2835 else 2836 why = CLD_STOPPED; 2837 2838 signal->flags &= ~SIGNAL_CLD_MASK; 2839 2840 spin_unlock_irq(&sighand->siglock); 2841 2842 /* 2843 * Notify the parent that we're continuing. This event is 2844 * always per-process and doesn't make whole lot of sense 2845 * for ptracers, who shouldn't consume the state via 2846 * wait(2) either, but, for backward compatibility, notify 2847 * the ptracer of the group leader too unless it's gonna be 2848 * a duplicate. 2849 */ 2850 read_lock(&tasklist_lock); 2851 do_notify_parent_cldstop(current, false, why); 2852 2853 if (ptrace_reparented(current->group_leader)) 2854 do_notify_parent_cldstop(current->group_leader, 2855 true, why); 2856 read_unlock(&tasklist_lock); 2857 2858 goto relock; 2859 } 2860 2861 for (;;) { 2862 struct k_sigaction *ka; 2863 enum pid_type type; 2864 2865 /* Has this task already been marked for death? */ 2866 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2867 signal->group_exec_task) { 2868 signr = SIGKILL; 2869 sigdelset(¤t->pending.signal, SIGKILL); 2870 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2871 &sighand->action[SIGKILL-1]); 2872 recalc_sigpending(); 2873 /* 2874 * implies do_group_exit() or return to PF_USER_WORKER, 2875 * no need to initialize ksig->info/etc. 2876 */ 2877 goto fatal; 2878 } 2879 2880 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2881 do_signal_stop(0)) 2882 goto relock; 2883 2884 if (unlikely(current->jobctl & 2885 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2886 if (current->jobctl & JOBCTL_TRAP_MASK) { 2887 do_jobctl_trap(); 2888 spin_unlock_irq(&sighand->siglock); 2889 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2890 do_freezer_trap(); 2891 2892 goto relock; 2893 } 2894 2895 /* 2896 * If the task is leaving the frozen state, let's update 2897 * cgroup counters and reset the frozen bit. 2898 */ 2899 if (unlikely(cgroup_task_frozen(current))) { 2900 spin_unlock_irq(&sighand->siglock); 2901 cgroup_leave_frozen(false); 2902 goto relock; 2903 } 2904 2905 /* 2906 * Signals generated by the execution of an instruction 2907 * need to be delivered before any other pending signals 2908 * so that the instruction pointer in the signal stack 2909 * frame points to the faulting instruction. 2910 */ 2911 type = PIDTYPE_PID; 2912 signr = dequeue_synchronous_signal(&ksig->info); 2913 if (!signr) 2914 signr = dequeue_signal(¤t->blocked, &ksig->info, &type); 2915 2916 if (!signr) 2917 break; /* will return 0 */ 2918 2919 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2920 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2921 signr = ptrace_signal(signr, &ksig->info, type); 2922 if (!signr) 2923 continue; 2924 } 2925 2926 ka = &sighand->action[signr-1]; 2927 2928 /* Trace actually delivered signals. */ 2929 trace_signal_deliver(signr, &ksig->info, ka); 2930 2931 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2932 continue; 2933 if (ka->sa.sa_handler != SIG_DFL) { 2934 /* Run the handler. */ 2935 ksig->ka = *ka; 2936 2937 if (ka->sa.sa_flags & SA_ONESHOT) 2938 ka->sa.sa_handler = SIG_DFL; 2939 2940 break; /* will return non-zero "signr" value */ 2941 } 2942 2943 /* 2944 * Now we are doing the default action for this signal. 2945 */ 2946 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2947 continue; 2948 2949 /* 2950 * Global init gets no signals it doesn't want. 2951 * Container-init gets no signals it doesn't want from same 2952 * container. 2953 * 2954 * Note that if global/container-init sees a sig_kernel_only() 2955 * signal here, the signal must have been generated internally 2956 * or must have come from an ancestor namespace. In either 2957 * case, the signal cannot be dropped. 2958 */ 2959 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2960 !sig_kernel_only(signr)) 2961 continue; 2962 2963 if (sig_kernel_stop(signr)) { 2964 /* 2965 * The default action is to stop all threads in 2966 * the thread group. The job control signals 2967 * do nothing in an orphaned pgrp, but SIGSTOP 2968 * always works. Note that siglock needs to be 2969 * dropped during the call to is_orphaned_pgrp() 2970 * because of lock ordering with tasklist_lock. 2971 * This allows an intervening SIGCONT to be posted. 2972 * We need to check for that and bail out if necessary. 2973 */ 2974 if (signr != SIGSTOP) { 2975 spin_unlock_irq(&sighand->siglock); 2976 2977 /* signals can be posted during this window */ 2978 2979 if (is_current_pgrp_orphaned()) 2980 goto relock; 2981 2982 spin_lock_irq(&sighand->siglock); 2983 } 2984 2985 if (likely(do_signal_stop(signr))) { 2986 /* It released the siglock. */ 2987 goto relock; 2988 } 2989 2990 /* 2991 * We didn't actually stop, due to a race 2992 * with SIGCONT or something like that. 2993 */ 2994 continue; 2995 } 2996 2997 fatal: 2998 spin_unlock_irq(&sighand->siglock); 2999 if (unlikely(cgroup_task_frozen(current))) 3000 cgroup_leave_frozen(true); 3001 3002 /* 3003 * Anything else is fatal, maybe with a core dump. 3004 */ 3005 current->flags |= PF_SIGNALED; 3006 3007 if (sig_kernel_coredump(signr)) { 3008 if (print_fatal_signals) 3009 print_fatal_signal(signr); 3010 proc_coredump_connector(current); 3011 /* 3012 * If it was able to dump core, this kills all 3013 * other threads in the group and synchronizes with 3014 * their demise. If we lost the race with another 3015 * thread getting here, it set group_exit_code 3016 * first and our do_group_exit call below will use 3017 * that value and ignore the one we pass it. 3018 */ 3019 vfs_coredump(&ksig->info); 3020 } 3021 3022 /* 3023 * PF_USER_WORKER threads will catch and exit on fatal signals 3024 * themselves. They have cleanup that must be performed, so we 3025 * cannot call do_exit() on their behalf. Note that ksig won't 3026 * be properly initialized, PF_USER_WORKER's shouldn't use it. 3027 */ 3028 if (current->flags & PF_USER_WORKER) 3029 goto out; 3030 3031 /* 3032 * Death signals, no core dump. 3033 */ 3034 do_group_exit(signr); 3035 /* NOTREACHED */ 3036 } 3037 spin_unlock_irq(&sighand->siglock); 3038 3039 ksig->sig = signr; 3040 3041 if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 3042 hide_si_addr_tag_bits(ksig); 3043 out: 3044 return signr > 0; 3045 } 3046 3047 /** 3048 * signal_delivered - called after signal delivery to update blocked signals 3049 * @ksig: kernel signal struct 3050 * @stepping: nonzero if debugger single-step or block-step in use 3051 * 3052 * This function should be called when a signal has successfully been 3053 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 3054 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 3055 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 3056 */ 3057 static void signal_delivered(struct ksignal *ksig, int stepping) 3058 { 3059 sigset_t blocked; 3060 3061 /* A signal was successfully delivered, and the 3062 saved sigmask was stored on the signal frame, 3063 and will be restored by sigreturn. So we can 3064 simply clear the restore sigmask flag. */ 3065 clear_restore_sigmask(); 3066 3067 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 3068 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 3069 sigaddset(&blocked, ksig->sig); 3070 set_current_blocked(&blocked); 3071 if (current->sas_ss_flags & SS_AUTODISARM) 3072 sas_ss_reset(current); 3073 if (stepping) 3074 ptrace_notify(SIGTRAP, 0); 3075 } 3076 3077 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 3078 { 3079 if (failed) 3080 force_sigsegv(ksig->sig); 3081 else 3082 signal_delivered(ksig, stepping); 3083 } 3084 3085 /* 3086 * It could be that complete_signal() picked us to notify about the 3087 * group-wide signal. Other threads should be notified now to take 3088 * the shared signals in @which since we will not. 3089 */ 3090 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 3091 { 3092 sigset_t retarget; 3093 struct task_struct *t; 3094 3095 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 3096 if (sigisemptyset(&retarget)) 3097 return; 3098 3099 for_other_threads(tsk, t) { 3100 if (t->flags & PF_EXITING) 3101 continue; 3102 3103 if (!has_pending_signals(&retarget, &t->blocked)) 3104 continue; 3105 /* Remove the signals this thread can handle. */ 3106 sigandsets(&retarget, &retarget, &t->blocked); 3107 3108 if (!task_sigpending(t)) 3109 signal_wake_up(t, 0); 3110 3111 if (sigisemptyset(&retarget)) 3112 break; 3113 } 3114 } 3115 3116 void exit_signals(struct task_struct *tsk) 3117 { 3118 int group_stop = 0; 3119 sigset_t unblocked; 3120 3121 /* 3122 * @tsk is about to have PF_EXITING set - lock out users which 3123 * expect stable threadgroup. 3124 */ 3125 cgroup_threadgroup_change_begin(tsk); 3126 3127 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 3128 sched_mm_cid_exit_signals(tsk); 3129 tsk->flags |= PF_EXITING; 3130 cgroup_threadgroup_change_end(tsk); 3131 return; 3132 } 3133 3134 spin_lock_irq(&tsk->sighand->siglock); 3135 /* 3136 * From now this task is not visible for group-wide signals, 3137 * see wants_signal(), do_signal_stop(). 3138 */ 3139 sched_mm_cid_exit_signals(tsk); 3140 tsk->flags |= PF_EXITING; 3141 3142 cgroup_threadgroup_change_end(tsk); 3143 3144 if (!task_sigpending(tsk)) 3145 goto out; 3146 3147 unblocked = tsk->blocked; 3148 signotset(&unblocked); 3149 retarget_shared_pending(tsk, &unblocked); 3150 3151 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3152 task_participate_group_stop(tsk)) 3153 group_stop = CLD_STOPPED; 3154 out: 3155 spin_unlock_irq(&tsk->sighand->siglock); 3156 3157 /* 3158 * If group stop has completed, deliver the notification. This 3159 * should always go to the real parent of the group leader. 3160 */ 3161 if (unlikely(group_stop)) { 3162 read_lock(&tasklist_lock); 3163 do_notify_parent_cldstop(tsk, false, group_stop); 3164 read_unlock(&tasklist_lock); 3165 } 3166 } 3167 3168 /* 3169 * System call entry points. 3170 */ 3171 3172 /** 3173 * sys_restart_syscall - restart a system call 3174 */ 3175 SYSCALL_DEFINE0(restart_syscall) 3176 { 3177 struct restart_block *restart = ¤t->restart_block; 3178 return restart->fn(restart); 3179 } 3180 3181 long do_no_restart_syscall(struct restart_block *param) 3182 { 3183 return -EINTR; 3184 } 3185 3186 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3187 { 3188 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3189 sigset_t newblocked; 3190 /* A set of now blocked but previously unblocked signals. */ 3191 sigandnsets(&newblocked, newset, ¤t->blocked); 3192 retarget_shared_pending(tsk, &newblocked); 3193 } 3194 tsk->blocked = *newset; 3195 recalc_sigpending(); 3196 } 3197 3198 /** 3199 * set_current_blocked - change current->blocked mask 3200 * @newset: new mask 3201 * 3202 * It is wrong to change ->blocked directly, this helper should be used 3203 * to ensure the process can't miss a shared signal we are going to block. 3204 */ 3205 void set_current_blocked(sigset_t *newset) 3206 { 3207 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3208 __set_current_blocked(newset); 3209 } 3210 3211 void __set_current_blocked(const sigset_t *newset) 3212 { 3213 struct task_struct *tsk = current; 3214 3215 /* 3216 * In case the signal mask hasn't changed, there is nothing we need 3217 * to do. The current->blocked shouldn't be modified by other task. 3218 */ 3219 if (sigequalsets(&tsk->blocked, newset)) 3220 return; 3221 3222 spin_lock_irq(&tsk->sighand->siglock); 3223 __set_task_blocked(tsk, newset); 3224 spin_unlock_irq(&tsk->sighand->siglock); 3225 } 3226 3227 /* 3228 * This is also useful for kernel threads that want to temporarily 3229 * (or permanently) block certain signals. 3230 * 3231 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3232 * interface happily blocks "unblockable" signals like SIGKILL 3233 * and friends. 3234 */ 3235 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3236 { 3237 struct task_struct *tsk = current; 3238 sigset_t newset; 3239 3240 /* Lockless, only current can change ->blocked, never from irq */ 3241 if (oldset) 3242 *oldset = tsk->blocked; 3243 3244 switch (how) { 3245 case SIG_BLOCK: 3246 sigorsets(&newset, &tsk->blocked, set); 3247 break; 3248 case SIG_UNBLOCK: 3249 sigandnsets(&newset, &tsk->blocked, set); 3250 break; 3251 case SIG_SETMASK: 3252 newset = *set; 3253 break; 3254 default: 3255 return -EINVAL; 3256 } 3257 3258 __set_current_blocked(&newset); 3259 return 0; 3260 } 3261 EXPORT_SYMBOL(sigprocmask); 3262 3263 /* 3264 * The api helps set app-provided sigmasks. 3265 * 3266 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3267 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3268 * 3269 * Note that it does set_restore_sigmask() in advance, so it must be always 3270 * paired with restore_saved_sigmask_unless() before return from syscall. 3271 */ 3272 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3273 { 3274 sigset_t kmask; 3275 3276 if (!umask) 3277 return 0; 3278 if (sigsetsize != sizeof(sigset_t)) 3279 return -EINVAL; 3280 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3281 return -EFAULT; 3282 3283 set_restore_sigmask(); 3284 current->saved_sigmask = current->blocked; 3285 set_current_blocked(&kmask); 3286 3287 return 0; 3288 } 3289 3290 #ifdef CONFIG_COMPAT 3291 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3292 size_t sigsetsize) 3293 { 3294 sigset_t kmask; 3295 3296 if (!umask) 3297 return 0; 3298 if (sigsetsize != sizeof(compat_sigset_t)) 3299 return -EINVAL; 3300 if (get_compat_sigset(&kmask, umask)) 3301 return -EFAULT; 3302 3303 set_restore_sigmask(); 3304 current->saved_sigmask = current->blocked; 3305 set_current_blocked(&kmask); 3306 3307 return 0; 3308 } 3309 #endif 3310 3311 /** 3312 * sys_rt_sigprocmask - change the list of currently blocked signals 3313 * @how: whether to add, remove, or set signals 3314 * @nset: stores pending signals 3315 * @oset: previous value of signal mask if non-null 3316 * @sigsetsize: size of sigset_t type 3317 */ 3318 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3319 sigset_t __user *, oset, size_t, sigsetsize) 3320 { 3321 sigset_t old_set, new_set; 3322 int error; 3323 3324 /* XXX: Don't preclude handling different sized sigset_t's. */ 3325 if (sigsetsize != sizeof(sigset_t)) 3326 return -EINVAL; 3327 3328 old_set = current->blocked; 3329 3330 if (nset) { 3331 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3332 return -EFAULT; 3333 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3334 3335 error = sigprocmask(how, &new_set, NULL); 3336 if (error) 3337 return error; 3338 } 3339 3340 if (oset) { 3341 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3342 return -EFAULT; 3343 } 3344 3345 return 0; 3346 } 3347 3348 #ifdef CONFIG_COMPAT 3349 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3350 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3351 { 3352 sigset_t old_set = current->blocked; 3353 3354 /* XXX: Don't preclude handling different sized sigset_t's. */ 3355 if (sigsetsize != sizeof(sigset_t)) 3356 return -EINVAL; 3357 3358 if (nset) { 3359 sigset_t new_set; 3360 int error; 3361 if (get_compat_sigset(&new_set, nset)) 3362 return -EFAULT; 3363 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3364 3365 error = sigprocmask(how, &new_set, NULL); 3366 if (error) 3367 return error; 3368 } 3369 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3370 } 3371 #endif 3372 3373 static void do_sigpending(sigset_t *set) 3374 { 3375 spin_lock_irq(¤t->sighand->siglock); 3376 sigorsets(set, ¤t->pending.signal, 3377 ¤t->signal->shared_pending.signal); 3378 spin_unlock_irq(¤t->sighand->siglock); 3379 3380 /* Outside the lock because only this thread touches it. */ 3381 sigandsets(set, ¤t->blocked, set); 3382 } 3383 3384 /** 3385 * sys_rt_sigpending - examine a pending signal that has been raised 3386 * while blocked 3387 * @uset: stores pending signals 3388 * @sigsetsize: size of sigset_t type or larger 3389 */ 3390 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3391 { 3392 sigset_t set; 3393 3394 if (sigsetsize > sizeof(*uset)) 3395 return -EINVAL; 3396 3397 do_sigpending(&set); 3398 3399 if (copy_to_user(uset, &set, sigsetsize)) 3400 return -EFAULT; 3401 3402 return 0; 3403 } 3404 3405 #ifdef CONFIG_COMPAT 3406 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3407 compat_size_t, sigsetsize) 3408 { 3409 sigset_t set; 3410 3411 if (sigsetsize > sizeof(*uset)) 3412 return -EINVAL; 3413 3414 do_sigpending(&set); 3415 3416 return put_compat_sigset(uset, &set, sigsetsize); 3417 } 3418 #endif 3419 3420 static const struct { 3421 unsigned char limit, layout; 3422 } sig_sicodes[] = { 3423 [SIGILL] = { NSIGILL, SIL_FAULT }, 3424 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3425 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3426 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3427 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3428 #if defined(SIGEMT) 3429 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3430 #endif 3431 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3432 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3433 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3434 }; 3435 3436 static bool known_siginfo_layout(unsigned sig, int si_code) 3437 { 3438 if (si_code == SI_KERNEL) 3439 return true; 3440 else if ((si_code > SI_USER)) { 3441 if (sig_specific_sicodes(sig)) { 3442 if (si_code <= sig_sicodes[sig].limit) 3443 return true; 3444 } 3445 else if (si_code <= NSIGPOLL) 3446 return true; 3447 } 3448 else if (si_code >= SI_DETHREAD) 3449 return true; 3450 else if (si_code == SI_ASYNCNL) 3451 return true; 3452 return false; 3453 } 3454 3455 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3456 { 3457 enum siginfo_layout layout = SIL_KILL; 3458 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3459 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3460 (si_code <= sig_sicodes[sig].limit)) { 3461 layout = sig_sicodes[sig].layout; 3462 /* Handle the exceptions */ 3463 if ((sig == SIGBUS) && 3464 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3465 layout = SIL_FAULT_MCEERR; 3466 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3467 layout = SIL_FAULT_BNDERR; 3468 #ifdef SEGV_PKUERR 3469 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3470 layout = SIL_FAULT_PKUERR; 3471 #endif 3472 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3473 layout = SIL_FAULT_PERF_EVENT; 3474 else if (IS_ENABLED(CONFIG_SPARC) && 3475 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3476 layout = SIL_FAULT_TRAPNO; 3477 else if (IS_ENABLED(CONFIG_ALPHA) && 3478 ((sig == SIGFPE) || 3479 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3480 layout = SIL_FAULT_TRAPNO; 3481 } 3482 else if (si_code <= NSIGPOLL) 3483 layout = SIL_POLL; 3484 } else { 3485 if (si_code == SI_TIMER) 3486 layout = SIL_TIMER; 3487 else if (si_code == SI_SIGIO) 3488 layout = SIL_POLL; 3489 else if (si_code < 0) 3490 layout = SIL_RT; 3491 } 3492 return layout; 3493 } 3494 3495 static inline char __user *si_expansion(const siginfo_t __user *info) 3496 { 3497 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3498 } 3499 3500 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3501 { 3502 char __user *expansion = si_expansion(to); 3503 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3504 return -EFAULT; 3505 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3506 return -EFAULT; 3507 return 0; 3508 } 3509 3510 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3511 const siginfo_t __user *from) 3512 { 3513 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3514 char __user *expansion = si_expansion(from); 3515 char buf[SI_EXPANSION_SIZE]; 3516 int i; 3517 /* 3518 * An unknown si_code might need more than 3519 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3520 * extra bytes are 0. This guarantees copy_siginfo_to_user 3521 * will return this data to userspace exactly. 3522 */ 3523 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3524 return -EFAULT; 3525 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3526 if (buf[i] != 0) 3527 return -E2BIG; 3528 } 3529 } 3530 return 0; 3531 } 3532 3533 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3534 const siginfo_t __user *from) 3535 { 3536 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3537 return -EFAULT; 3538 to->si_signo = signo; 3539 return post_copy_siginfo_from_user(to, from); 3540 } 3541 3542 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3543 { 3544 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3545 return -EFAULT; 3546 return post_copy_siginfo_from_user(to, from); 3547 } 3548 3549 #ifdef CONFIG_COMPAT 3550 /** 3551 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3552 * @to: compat siginfo destination 3553 * @from: kernel siginfo source 3554 * 3555 * Note: This function does not work properly for the SIGCHLD on x32, but 3556 * fortunately it doesn't have to. The only valid callers for this function are 3557 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3558 * The latter does not care because SIGCHLD will never cause a coredump. 3559 */ 3560 void copy_siginfo_to_external32(struct compat_siginfo *to, 3561 const struct kernel_siginfo *from) 3562 { 3563 memset(to, 0, sizeof(*to)); 3564 3565 to->si_signo = from->si_signo; 3566 to->si_errno = from->si_errno; 3567 to->si_code = from->si_code; 3568 switch(siginfo_layout(from->si_signo, from->si_code)) { 3569 case SIL_KILL: 3570 to->si_pid = from->si_pid; 3571 to->si_uid = from->si_uid; 3572 break; 3573 case SIL_TIMER: 3574 to->si_tid = from->si_tid; 3575 to->si_overrun = from->si_overrun; 3576 to->si_int = from->si_int; 3577 break; 3578 case SIL_POLL: 3579 to->si_band = from->si_band; 3580 to->si_fd = from->si_fd; 3581 break; 3582 case SIL_FAULT: 3583 to->si_addr = ptr_to_compat(from->si_addr); 3584 break; 3585 case SIL_FAULT_TRAPNO: 3586 to->si_addr = ptr_to_compat(from->si_addr); 3587 to->si_trapno = from->si_trapno; 3588 break; 3589 case SIL_FAULT_MCEERR: 3590 to->si_addr = ptr_to_compat(from->si_addr); 3591 to->si_addr_lsb = from->si_addr_lsb; 3592 break; 3593 case SIL_FAULT_BNDERR: 3594 to->si_addr = ptr_to_compat(from->si_addr); 3595 to->si_lower = ptr_to_compat(from->si_lower); 3596 to->si_upper = ptr_to_compat(from->si_upper); 3597 break; 3598 case SIL_FAULT_PKUERR: 3599 to->si_addr = ptr_to_compat(from->si_addr); 3600 to->si_pkey = from->si_pkey; 3601 break; 3602 case SIL_FAULT_PERF_EVENT: 3603 to->si_addr = ptr_to_compat(from->si_addr); 3604 to->si_perf_data = from->si_perf_data; 3605 to->si_perf_type = from->si_perf_type; 3606 to->si_perf_flags = from->si_perf_flags; 3607 break; 3608 case SIL_CHLD: 3609 to->si_pid = from->si_pid; 3610 to->si_uid = from->si_uid; 3611 to->si_status = from->si_status; 3612 to->si_utime = from->si_utime; 3613 to->si_stime = from->si_stime; 3614 break; 3615 case SIL_RT: 3616 to->si_pid = from->si_pid; 3617 to->si_uid = from->si_uid; 3618 to->si_int = from->si_int; 3619 break; 3620 case SIL_SYS: 3621 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3622 to->si_syscall = from->si_syscall; 3623 to->si_arch = from->si_arch; 3624 break; 3625 } 3626 } 3627 3628 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3629 const struct kernel_siginfo *from) 3630 { 3631 struct compat_siginfo new; 3632 3633 copy_siginfo_to_external32(&new, from); 3634 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3635 return -EFAULT; 3636 return 0; 3637 } 3638 3639 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3640 const struct compat_siginfo *from) 3641 { 3642 clear_siginfo(to); 3643 to->si_signo = from->si_signo; 3644 to->si_errno = from->si_errno; 3645 to->si_code = from->si_code; 3646 switch(siginfo_layout(from->si_signo, from->si_code)) { 3647 case SIL_KILL: 3648 to->si_pid = from->si_pid; 3649 to->si_uid = from->si_uid; 3650 break; 3651 case SIL_TIMER: 3652 to->si_tid = from->si_tid; 3653 to->si_overrun = from->si_overrun; 3654 to->si_int = from->si_int; 3655 break; 3656 case SIL_POLL: 3657 to->si_band = from->si_band; 3658 to->si_fd = from->si_fd; 3659 break; 3660 case SIL_FAULT: 3661 to->si_addr = compat_ptr(from->si_addr); 3662 break; 3663 case SIL_FAULT_TRAPNO: 3664 to->si_addr = compat_ptr(from->si_addr); 3665 to->si_trapno = from->si_trapno; 3666 break; 3667 case SIL_FAULT_MCEERR: 3668 to->si_addr = compat_ptr(from->si_addr); 3669 to->si_addr_lsb = from->si_addr_lsb; 3670 break; 3671 case SIL_FAULT_BNDERR: 3672 to->si_addr = compat_ptr(from->si_addr); 3673 to->si_lower = compat_ptr(from->si_lower); 3674 to->si_upper = compat_ptr(from->si_upper); 3675 break; 3676 case SIL_FAULT_PKUERR: 3677 to->si_addr = compat_ptr(from->si_addr); 3678 to->si_pkey = from->si_pkey; 3679 break; 3680 case SIL_FAULT_PERF_EVENT: 3681 to->si_addr = compat_ptr(from->si_addr); 3682 to->si_perf_data = from->si_perf_data; 3683 to->si_perf_type = from->si_perf_type; 3684 to->si_perf_flags = from->si_perf_flags; 3685 break; 3686 case SIL_CHLD: 3687 to->si_pid = from->si_pid; 3688 to->si_uid = from->si_uid; 3689 to->si_status = from->si_status; 3690 #ifdef CONFIG_X86_X32_ABI 3691 if (in_x32_syscall()) { 3692 to->si_utime = from->_sifields._sigchld_x32._utime; 3693 to->si_stime = from->_sifields._sigchld_x32._stime; 3694 } else 3695 #endif 3696 { 3697 to->si_utime = from->si_utime; 3698 to->si_stime = from->si_stime; 3699 } 3700 break; 3701 case SIL_RT: 3702 to->si_pid = from->si_pid; 3703 to->si_uid = from->si_uid; 3704 to->si_int = from->si_int; 3705 break; 3706 case SIL_SYS: 3707 to->si_call_addr = compat_ptr(from->si_call_addr); 3708 to->si_syscall = from->si_syscall; 3709 to->si_arch = from->si_arch; 3710 break; 3711 } 3712 return 0; 3713 } 3714 3715 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3716 const struct compat_siginfo __user *ufrom) 3717 { 3718 struct compat_siginfo from; 3719 3720 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3721 return -EFAULT; 3722 3723 from.si_signo = signo; 3724 return post_copy_siginfo_from_user32(to, &from); 3725 } 3726 3727 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3728 const struct compat_siginfo __user *ufrom) 3729 { 3730 struct compat_siginfo from; 3731 3732 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3733 return -EFAULT; 3734 3735 return post_copy_siginfo_from_user32(to, &from); 3736 } 3737 #endif /* CONFIG_COMPAT */ 3738 3739 /** 3740 * do_sigtimedwait - wait for queued signals specified in @which 3741 * @which: queued signals to wait for 3742 * @info: if non-null, the signal's siginfo is returned here 3743 * @ts: upper bound on process time suspension 3744 */ 3745 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3746 const struct timespec64 *ts) 3747 { 3748 ktime_t *to = NULL, timeout = KTIME_MAX; 3749 struct task_struct *tsk = current; 3750 sigset_t mask = *which; 3751 enum pid_type type; 3752 int sig, ret = 0; 3753 3754 if (ts) { 3755 if (!timespec64_valid(ts)) 3756 return -EINVAL; 3757 timeout = timespec64_to_ktime(*ts); 3758 to = &timeout; 3759 } 3760 3761 /* 3762 * Invert the set of allowed signals to get those we want to block. 3763 */ 3764 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3765 signotset(&mask); 3766 3767 spin_lock_irq(&tsk->sighand->siglock); 3768 sig = dequeue_signal(&mask, info, &type); 3769 if (!sig && timeout) { 3770 /* 3771 * None ready, temporarily unblock those we're interested 3772 * while we are sleeping in so that we'll be awakened when 3773 * they arrive. Unblocking is always fine, we can avoid 3774 * set_current_blocked(). 3775 */ 3776 tsk->real_blocked = tsk->blocked; 3777 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3778 recalc_sigpending(); 3779 spin_unlock_irq(&tsk->sighand->siglock); 3780 3781 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3782 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3783 HRTIMER_MODE_REL); 3784 spin_lock_irq(&tsk->sighand->siglock); 3785 __set_task_blocked(tsk, &tsk->real_blocked); 3786 sigemptyset(&tsk->real_blocked); 3787 sig = dequeue_signal(&mask, info, &type); 3788 } 3789 spin_unlock_irq(&tsk->sighand->siglock); 3790 3791 if (sig) 3792 return sig; 3793 return ret ? -EINTR : -EAGAIN; 3794 } 3795 3796 /** 3797 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3798 * in @uthese 3799 * @uthese: queued signals to wait for 3800 * @uinfo: if non-null, the signal's siginfo is returned here 3801 * @uts: upper bound on process time suspension 3802 * @sigsetsize: size of sigset_t type 3803 */ 3804 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3805 siginfo_t __user *, uinfo, 3806 const struct __kernel_timespec __user *, uts, 3807 size_t, sigsetsize) 3808 { 3809 sigset_t these; 3810 struct timespec64 ts; 3811 kernel_siginfo_t info; 3812 int ret; 3813 3814 /* XXX: Don't preclude handling different sized sigset_t's. */ 3815 if (sigsetsize != sizeof(sigset_t)) 3816 return -EINVAL; 3817 3818 if (copy_from_user(&these, uthese, sizeof(these))) 3819 return -EFAULT; 3820 3821 if (uts) { 3822 if (get_timespec64(&ts, uts)) 3823 return -EFAULT; 3824 } 3825 3826 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3827 3828 if (ret > 0 && uinfo) { 3829 if (copy_siginfo_to_user(uinfo, &info)) 3830 ret = -EFAULT; 3831 } 3832 3833 return ret; 3834 } 3835 3836 #ifdef CONFIG_COMPAT_32BIT_TIME 3837 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3838 siginfo_t __user *, uinfo, 3839 const struct old_timespec32 __user *, uts, 3840 size_t, sigsetsize) 3841 { 3842 sigset_t these; 3843 struct timespec64 ts; 3844 kernel_siginfo_t info; 3845 int ret; 3846 3847 if (sigsetsize != sizeof(sigset_t)) 3848 return -EINVAL; 3849 3850 if (copy_from_user(&these, uthese, sizeof(these))) 3851 return -EFAULT; 3852 3853 if (uts) { 3854 if (get_old_timespec32(&ts, uts)) 3855 return -EFAULT; 3856 } 3857 3858 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3859 3860 if (ret > 0 && uinfo) { 3861 if (copy_siginfo_to_user(uinfo, &info)) 3862 ret = -EFAULT; 3863 } 3864 3865 return ret; 3866 } 3867 #endif 3868 3869 #ifdef CONFIG_COMPAT 3870 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3871 struct compat_siginfo __user *, uinfo, 3872 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3873 { 3874 sigset_t s; 3875 struct timespec64 t; 3876 kernel_siginfo_t info; 3877 long ret; 3878 3879 if (sigsetsize != sizeof(sigset_t)) 3880 return -EINVAL; 3881 3882 if (get_compat_sigset(&s, uthese)) 3883 return -EFAULT; 3884 3885 if (uts) { 3886 if (get_timespec64(&t, uts)) 3887 return -EFAULT; 3888 } 3889 3890 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3891 3892 if (ret > 0 && uinfo) { 3893 if (copy_siginfo_to_user32(uinfo, &info)) 3894 ret = -EFAULT; 3895 } 3896 3897 return ret; 3898 } 3899 3900 #ifdef CONFIG_COMPAT_32BIT_TIME 3901 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3902 struct compat_siginfo __user *, uinfo, 3903 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3904 { 3905 sigset_t s; 3906 struct timespec64 t; 3907 kernel_siginfo_t info; 3908 long ret; 3909 3910 if (sigsetsize != sizeof(sigset_t)) 3911 return -EINVAL; 3912 3913 if (get_compat_sigset(&s, uthese)) 3914 return -EFAULT; 3915 3916 if (uts) { 3917 if (get_old_timespec32(&t, uts)) 3918 return -EFAULT; 3919 } 3920 3921 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3922 3923 if (ret > 0 && uinfo) { 3924 if (copy_siginfo_to_user32(uinfo, &info)) 3925 ret = -EFAULT; 3926 } 3927 3928 return ret; 3929 } 3930 #endif 3931 #endif 3932 3933 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info, 3934 enum pid_type type) 3935 { 3936 clear_siginfo(info); 3937 info->si_signo = sig; 3938 info->si_errno = 0; 3939 info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER; 3940 info->si_pid = task_tgid_vnr(current); 3941 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3942 } 3943 3944 /** 3945 * sys_kill - send a signal to a process 3946 * @pid: the PID of the process 3947 * @sig: signal to be sent 3948 */ 3949 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3950 { 3951 struct kernel_siginfo info; 3952 3953 prepare_kill_siginfo(sig, &info, PIDTYPE_TGID); 3954 3955 return kill_something_info(sig, &info, pid); 3956 } 3957 3958 /* 3959 * Verify that the signaler and signalee either are in the same pid namespace 3960 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3961 * namespace. 3962 */ 3963 static bool access_pidfd_pidns(struct pid *pid) 3964 { 3965 struct pid_namespace *active = task_active_pid_ns(current); 3966 struct pid_namespace *p = ns_of_pid(pid); 3967 3968 for (;;) { 3969 if (!p) 3970 return false; 3971 if (p == active) 3972 break; 3973 p = p->parent; 3974 } 3975 3976 return true; 3977 } 3978 3979 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3980 siginfo_t __user *info) 3981 { 3982 #ifdef CONFIG_COMPAT 3983 /* 3984 * Avoid hooking up compat syscalls and instead handle necessary 3985 * conversions here. Note, this is a stop-gap measure and should not be 3986 * considered a generic solution. 3987 */ 3988 if (in_compat_syscall()) 3989 return copy_siginfo_from_user32( 3990 kinfo, (struct compat_siginfo __user *)info); 3991 #endif 3992 return copy_siginfo_from_user(kinfo, info); 3993 } 3994 3995 static struct pid *pidfd_to_pid(const struct file *file) 3996 { 3997 struct pid *pid; 3998 3999 pid = pidfd_pid(file); 4000 if (!IS_ERR(pid)) 4001 return pid; 4002 4003 return tgid_pidfd_to_pid(file); 4004 } 4005 4006 #define PIDFD_SEND_SIGNAL_FLAGS \ 4007 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \ 4008 PIDFD_SIGNAL_PROCESS_GROUP) 4009 4010 static int do_pidfd_send_signal(struct pid *pid, int sig, enum pid_type type, 4011 siginfo_t __user *info, unsigned int flags) 4012 { 4013 kernel_siginfo_t kinfo; 4014 4015 switch (flags) { 4016 case PIDFD_SIGNAL_THREAD: 4017 type = PIDTYPE_PID; 4018 break; 4019 case PIDFD_SIGNAL_THREAD_GROUP: 4020 type = PIDTYPE_TGID; 4021 break; 4022 case PIDFD_SIGNAL_PROCESS_GROUP: 4023 type = PIDTYPE_PGID; 4024 break; 4025 } 4026 4027 if (info) { 4028 int ret; 4029 4030 ret = copy_siginfo_from_user_any(&kinfo, info); 4031 if (unlikely(ret)) 4032 return ret; 4033 4034 if (unlikely(sig != kinfo.si_signo)) 4035 return -EINVAL; 4036 4037 /* Only allow sending arbitrary signals to yourself. */ 4038 if ((task_pid(current) != pid || type > PIDTYPE_TGID) && 4039 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 4040 return -EPERM; 4041 } else { 4042 prepare_kill_siginfo(sig, &kinfo, type); 4043 } 4044 4045 if (type == PIDTYPE_PGID) 4046 return kill_pgrp_info(sig, &kinfo, pid); 4047 4048 return kill_pid_info_type(sig, &kinfo, pid, type); 4049 } 4050 4051 /** 4052 * sys_pidfd_send_signal - Signal a process through a pidfd 4053 * @pidfd: file descriptor of the process 4054 * @sig: signal to send 4055 * @info: signal info 4056 * @flags: future flags 4057 * 4058 * Send the signal to the thread group or to the individual thread depending 4059 * on PIDFD_THREAD. 4060 * In the future extension to @flags may be used to override the default scope 4061 * of @pidfd. 4062 * 4063 * Return: 0 on success, negative errno on failure 4064 */ 4065 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 4066 siginfo_t __user *, info, unsigned int, flags) 4067 { 4068 struct pid *pid; 4069 enum pid_type type; 4070 int ret; 4071 4072 /* Enforce flags be set to 0 until we add an extension. */ 4073 if (flags & ~PIDFD_SEND_SIGNAL_FLAGS) 4074 return -EINVAL; 4075 4076 /* Ensure that only a single signal scope determining flag is set. */ 4077 if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1) 4078 return -EINVAL; 4079 4080 switch (pidfd) { 4081 case PIDFD_SELF_THREAD: 4082 pid = get_task_pid(current, PIDTYPE_PID); 4083 type = PIDTYPE_PID; 4084 break; 4085 case PIDFD_SELF_THREAD_GROUP: 4086 pid = get_task_pid(current, PIDTYPE_TGID); 4087 type = PIDTYPE_TGID; 4088 break; 4089 default: { 4090 CLASS(fd, f)(pidfd); 4091 if (fd_empty(f)) 4092 return -EBADF; 4093 4094 /* Is this a pidfd? */ 4095 pid = pidfd_to_pid(fd_file(f)); 4096 if (IS_ERR(pid)) 4097 return PTR_ERR(pid); 4098 4099 if (!access_pidfd_pidns(pid)) 4100 return -EINVAL; 4101 4102 /* Infer scope from the type of pidfd. */ 4103 if (fd_file(f)->f_flags & PIDFD_THREAD) 4104 type = PIDTYPE_PID; 4105 else 4106 type = PIDTYPE_TGID; 4107 4108 return do_pidfd_send_signal(pid, sig, type, info, flags); 4109 } 4110 } 4111 4112 ret = do_pidfd_send_signal(pid, sig, type, info, flags); 4113 put_pid(pid); 4114 4115 return ret; 4116 } 4117 4118 static int 4119 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 4120 { 4121 struct task_struct *p; 4122 int error = -ESRCH; 4123 4124 rcu_read_lock(); 4125 p = find_task_by_vpid(pid); 4126 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 4127 error = check_kill_permission(sig, info, p); 4128 /* 4129 * The null signal is a permissions and process existence 4130 * probe. No signal is actually delivered. 4131 */ 4132 if (!error && sig) { 4133 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 4134 /* 4135 * If lock_task_sighand() failed we pretend the task 4136 * dies after receiving the signal. The window is tiny, 4137 * and the signal is private anyway. 4138 */ 4139 if (unlikely(error == -ESRCH)) 4140 error = 0; 4141 } 4142 } 4143 rcu_read_unlock(); 4144 4145 return error; 4146 } 4147 4148 static int do_tkill(pid_t tgid, pid_t pid, int sig) 4149 { 4150 struct kernel_siginfo info; 4151 4152 prepare_kill_siginfo(sig, &info, PIDTYPE_PID); 4153 4154 return do_send_specific(tgid, pid, sig, &info); 4155 } 4156 4157 /** 4158 * sys_tgkill - send signal to one specific thread 4159 * @tgid: the thread group ID of the thread 4160 * @pid: the PID of the thread 4161 * @sig: signal to be sent 4162 * 4163 * This syscall also checks the @tgid and returns -ESRCH even if the PID 4164 * exists but it's not belonging to the target process anymore. This 4165 * method solves the problem of threads exiting and PIDs getting reused. 4166 */ 4167 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 4168 { 4169 /* This is only valid for single tasks */ 4170 if (pid <= 0 || tgid <= 0) 4171 return -EINVAL; 4172 4173 return do_tkill(tgid, pid, sig); 4174 } 4175 4176 /** 4177 * sys_tkill - send signal to one specific task 4178 * @pid: the PID of the task 4179 * @sig: signal to be sent 4180 * 4181 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4182 */ 4183 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4184 { 4185 /* This is only valid for single tasks */ 4186 if (pid <= 0) 4187 return -EINVAL; 4188 4189 return do_tkill(0, pid, sig); 4190 } 4191 4192 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4193 { 4194 /* Not even root can pretend to send signals from the kernel. 4195 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4196 */ 4197 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4198 (task_pid_vnr(current) != pid)) 4199 return -EPERM; 4200 4201 /* POSIX.1b doesn't mention process groups. */ 4202 return kill_proc_info(sig, info, pid); 4203 } 4204 4205 /** 4206 * sys_rt_sigqueueinfo - send signal information to a signal 4207 * @pid: the PID of the thread 4208 * @sig: signal to be sent 4209 * @uinfo: signal info to be sent 4210 */ 4211 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4212 siginfo_t __user *, uinfo) 4213 { 4214 kernel_siginfo_t info; 4215 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4216 if (unlikely(ret)) 4217 return ret; 4218 return do_rt_sigqueueinfo(pid, sig, &info); 4219 } 4220 4221 #ifdef CONFIG_COMPAT 4222 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4223 compat_pid_t, pid, 4224 int, sig, 4225 struct compat_siginfo __user *, uinfo) 4226 { 4227 kernel_siginfo_t info; 4228 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4229 if (unlikely(ret)) 4230 return ret; 4231 return do_rt_sigqueueinfo(pid, sig, &info); 4232 } 4233 #endif 4234 4235 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4236 { 4237 /* This is only valid for single tasks */ 4238 if (pid <= 0 || tgid <= 0) 4239 return -EINVAL; 4240 4241 /* Not even root can pretend to send signals from the kernel. 4242 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4243 */ 4244 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4245 (task_pid_vnr(current) != pid)) 4246 return -EPERM; 4247 4248 return do_send_specific(tgid, pid, sig, info); 4249 } 4250 4251 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4252 siginfo_t __user *, uinfo) 4253 { 4254 kernel_siginfo_t info; 4255 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4256 if (unlikely(ret)) 4257 return ret; 4258 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4259 } 4260 4261 #ifdef CONFIG_COMPAT 4262 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4263 compat_pid_t, tgid, 4264 compat_pid_t, pid, 4265 int, sig, 4266 struct compat_siginfo __user *, uinfo) 4267 { 4268 kernel_siginfo_t info; 4269 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4270 if (unlikely(ret)) 4271 return ret; 4272 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4273 } 4274 #endif 4275 4276 /* 4277 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4278 */ 4279 void kernel_sigaction(int sig, __sighandler_t action) 4280 { 4281 spin_lock_irq(¤t->sighand->siglock); 4282 current->sighand->action[sig - 1].sa.sa_handler = action; 4283 if (action == SIG_IGN) { 4284 sigset_t mask; 4285 4286 sigemptyset(&mask); 4287 sigaddset(&mask, sig); 4288 4289 flush_sigqueue_mask(current, &mask, ¤t->signal->shared_pending); 4290 flush_sigqueue_mask(current, &mask, ¤t->pending); 4291 recalc_sigpending(); 4292 } 4293 spin_unlock_irq(¤t->sighand->siglock); 4294 } 4295 EXPORT_SYMBOL(kernel_sigaction); 4296 4297 void __weak sigaction_compat_abi(struct k_sigaction *act, 4298 struct k_sigaction *oact) 4299 { 4300 } 4301 4302 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4303 { 4304 struct task_struct *p = current, *t; 4305 struct k_sigaction *k; 4306 sigset_t mask; 4307 4308 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4309 return -EINVAL; 4310 4311 k = &p->sighand->action[sig-1]; 4312 4313 spin_lock_irq(&p->sighand->siglock); 4314 if (k->sa.sa_flags & SA_IMMUTABLE) { 4315 spin_unlock_irq(&p->sighand->siglock); 4316 return -EINVAL; 4317 } 4318 if (oact) 4319 *oact = *k; 4320 4321 /* 4322 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4323 * e.g. by having an architecture use the bit in their uapi. 4324 */ 4325 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4326 4327 /* 4328 * Clear unknown flag bits in order to allow userspace to detect missing 4329 * support for flag bits and to allow the kernel to use non-uapi bits 4330 * internally. 4331 */ 4332 if (act) 4333 act->sa.sa_flags &= UAPI_SA_FLAGS; 4334 if (oact) 4335 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4336 4337 sigaction_compat_abi(act, oact); 4338 4339 if (act) { 4340 bool was_ignored = k->sa.sa_handler == SIG_IGN; 4341 4342 sigdelsetmask(&act->sa.sa_mask, 4343 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4344 *k = *act; 4345 /* 4346 * POSIX 3.3.1.3: 4347 * "Setting a signal action to SIG_IGN for a signal that is 4348 * pending shall cause the pending signal to be discarded, 4349 * whether or not it is blocked." 4350 * 4351 * "Setting a signal action to SIG_DFL for a signal that is 4352 * pending and whose default action is to ignore the signal 4353 * (for example, SIGCHLD), shall cause the pending signal to 4354 * be discarded, whether or not it is blocked" 4355 */ 4356 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4357 sigemptyset(&mask); 4358 sigaddset(&mask, sig); 4359 flush_sigqueue_mask(p, &mask, &p->signal->shared_pending); 4360 for_each_thread(p, t) 4361 flush_sigqueue_mask(p, &mask, &t->pending); 4362 } else if (was_ignored) { 4363 posixtimer_sig_unignore(p, sig); 4364 } 4365 } 4366 4367 spin_unlock_irq(&p->sighand->siglock); 4368 return 0; 4369 } 4370 4371 #ifdef CONFIG_DYNAMIC_SIGFRAME 4372 static inline void sigaltstack_lock(void) 4373 __acquires(¤t->sighand->siglock) 4374 { 4375 spin_lock_irq(¤t->sighand->siglock); 4376 } 4377 4378 static inline void sigaltstack_unlock(void) 4379 __releases(¤t->sighand->siglock) 4380 { 4381 spin_unlock_irq(¤t->sighand->siglock); 4382 } 4383 #else 4384 static inline void sigaltstack_lock(void) { } 4385 static inline void sigaltstack_unlock(void) { } 4386 #endif 4387 4388 static int 4389 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4390 size_t min_ss_size) 4391 { 4392 struct task_struct *t = current; 4393 int ret = 0; 4394 4395 if (oss) { 4396 memset(oss, 0, sizeof(stack_t)); 4397 oss->ss_sp = (void __user *) t->sas_ss_sp; 4398 oss->ss_size = t->sas_ss_size; 4399 oss->ss_flags = sas_ss_flags(sp) | 4400 (current->sas_ss_flags & SS_FLAG_BITS); 4401 } 4402 4403 if (ss) { 4404 void __user *ss_sp = ss->ss_sp; 4405 size_t ss_size = ss->ss_size; 4406 unsigned ss_flags = ss->ss_flags; 4407 int ss_mode; 4408 4409 if (unlikely(on_sig_stack(sp))) 4410 return -EPERM; 4411 4412 ss_mode = ss_flags & ~SS_FLAG_BITS; 4413 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4414 ss_mode != 0)) 4415 return -EINVAL; 4416 4417 /* 4418 * Return before taking any locks if no actual 4419 * sigaltstack changes were requested. 4420 */ 4421 if (t->sas_ss_sp == (unsigned long)ss_sp && 4422 t->sas_ss_size == ss_size && 4423 t->sas_ss_flags == ss_flags) 4424 return 0; 4425 4426 sigaltstack_lock(); 4427 if (ss_mode == SS_DISABLE) { 4428 ss_size = 0; 4429 ss_sp = NULL; 4430 } else { 4431 if (unlikely(ss_size < min_ss_size)) 4432 ret = -ENOMEM; 4433 if (!sigaltstack_size_valid(ss_size)) 4434 ret = -ENOMEM; 4435 } 4436 if (!ret) { 4437 t->sas_ss_sp = (unsigned long) ss_sp; 4438 t->sas_ss_size = ss_size; 4439 t->sas_ss_flags = ss_flags; 4440 } 4441 sigaltstack_unlock(); 4442 } 4443 return ret; 4444 } 4445 4446 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4447 { 4448 stack_t new, old; 4449 int err; 4450 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4451 return -EFAULT; 4452 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4453 current_user_stack_pointer(), 4454 MINSIGSTKSZ); 4455 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4456 err = -EFAULT; 4457 return err; 4458 } 4459 4460 int restore_altstack(const stack_t __user *uss) 4461 { 4462 stack_t new; 4463 if (copy_from_user(&new, uss, sizeof(stack_t))) 4464 return -EFAULT; 4465 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4466 MINSIGSTKSZ); 4467 /* squash all but EFAULT for now */ 4468 return 0; 4469 } 4470 4471 int __save_altstack(stack_t __user *uss, unsigned long sp) 4472 { 4473 struct task_struct *t = current; 4474 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4475 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4476 __put_user(t->sas_ss_size, &uss->ss_size); 4477 return err; 4478 } 4479 4480 #ifdef CONFIG_COMPAT 4481 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4482 compat_stack_t __user *uoss_ptr) 4483 { 4484 stack_t uss, uoss; 4485 int ret; 4486 4487 if (uss_ptr) { 4488 compat_stack_t uss32; 4489 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4490 return -EFAULT; 4491 uss.ss_sp = compat_ptr(uss32.ss_sp); 4492 uss.ss_flags = uss32.ss_flags; 4493 uss.ss_size = uss32.ss_size; 4494 } 4495 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4496 compat_user_stack_pointer(), 4497 COMPAT_MINSIGSTKSZ); 4498 if (ret >= 0 && uoss_ptr) { 4499 compat_stack_t old; 4500 memset(&old, 0, sizeof(old)); 4501 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4502 old.ss_flags = uoss.ss_flags; 4503 old.ss_size = uoss.ss_size; 4504 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4505 ret = -EFAULT; 4506 } 4507 return ret; 4508 } 4509 4510 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4511 const compat_stack_t __user *, uss_ptr, 4512 compat_stack_t __user *, uoss_ptr) 4513 { 4514 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4515 } 4516 4517 int compat_restore_altstack(const compat_stack_t __user *uss) 4518 { 4519 int err = do_compat_sigaltstack(uss, NULL); 4520 /* squash all but -EFAULT for now */ 4521 return err == -EFAULT ? err : 0; 4522 } 4523 4524 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4525 { 4526 int err; 4527 struct task_struct *t = current; 4528 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4529 &uss->ss_sp) | 4530 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4531 __put_user(t->sas_ss_size, &uss->ss_size); 4532 return err; 4533 } 4534 #endif 4535 4536 #ifdef __ARCH_WANT_SYS_SIGPENDING 4537 4538 /** 4539 * sys_sigpending - examine pending signals 4540 * @uset: where mask of pending signal is returned 4541 */ 4542 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4543 { 4544 sigset_t set; 4545 4546 if (sizeof(old_sigset_t) > sizeof(*uset)) 4547 return -EINVAL; 4548 4549 do_sigpending(&set); 4550 4551 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4552 return -EFAULT; 4553 4554 return 0; 4555 } 4556 4557 #ifdef CONFIG_COMPAT 4558 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4559 { 4560 sigset_t set; 4561 4562 do_sigpending(&set); 4563 4564 return put_user(set.sig[0], set32); 4565 } 4566 #endif 4567 4568 #endif 4569 4570 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4571 /** 4572 * sys_sigprocmask - examine and change blocked signals 4573 * @how: whether to add, remove, or set signals 4574 * @nset: signals to add or remove (if non-null) 4575 * @oset: previous value of signal mask if non-null 4576 * 4577 * Some platforms have their own version with special arguments; 4578 * others support only sys_rt_sigprocmask. 4579 */ 4580 4581 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4582 old_sigset_t __user *, oset) 4583 { 4584 old_sigset_t old_set, new_set; 4585 sigset_t new_blocked; 4586 4587 old_set = current->blocked.sig[0]; 4588 4589 if (nset) { 4590 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4591 return -EFAULT; 4592 4593 new_blocked = current->blocked; 4594 4595 switch (how) { 4596 case SIG_BLOCK: 4597 sigaddsetmask(&new_blocked, new_set); 4598 break; 4599 case SIG_UNBLOCK: 4600 sigdelsetmask(&new_blocked, new_set); 4601 break; 4602 case SIG_SETMASK: 4603 new_blocked.sig[0] = new_set; 4604 break; 4605 default: 4606 return -EINVAL; 4607 } 4608 4609 set_current_blocked(&new_blocked); 4610 } 4611 4612 if (oset) { 4613 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4614 return -EFAULT; 4615 } 4616 4617 return 0; 4618 } 4619 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4620 4621 #ifndef CONFIG_ODD_RT_SIGACTION 4622 /** 4623 * sys_rt_sigaction - alter an action taken by a process 4624 * @sig: signal to be sent 4625 * @act: new sigaction 4626 * @oact: used to save the previous sigaction 4627 * @sigsetsize: size of sigset_t type 4628 */ 4629 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4630 const struct sigaction __user *, act, 4631 struct sigaction __user *, oact, 4632 size_t, sigsetsize) 4633 { 4634 struct k_sigaction new_sa, old_sa; 4635 int ret; 4636 4637 /* XXX: Don't preclude handling different sized sigset_t's. */ 4638 if (sigsetsize != sizeof(sigset_t)) 4639 return -EINVAL; 4640 4641 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4642 return -EFAULT; 4643 4644 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4645 if (ret) 4646 return ret; 4647 4648 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4649 return -EFAULT; 4650 4651 return 0; 4652 } 4653 #ifdef CONFIG_COMPAT 4654 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4655 const struct compat_sigaction __user *, act, 4656 struct compat_sigaction __user *, oact, 4657 compat_size_t, sigsetsize) 4658 { 4659 struct k_sigaction new_ka, old_ka; 4660 #ifdef __ARCH_HAS_SA_RESTORER 4661 compat_uptr_t restorer; 4662 #endif 4663 int ret; 4664 4665 /* XXX: Don't preclude handling different sized sigset_t's. */ 4666 if (sigsetsize != sizeof(compat_sigset_t)) 4667 return -EINVAL; 4668 4669 if (act) { 4670 compat_uptr_t handler; 4671 ret = get_user(handler, &act->sa_handler); 4672 new_ka.sa.sa_handler = compat_ptr(handler); 4673 #ifdef __ARCH_HAS_SA_RESTORER 4674 ret |= get_user(restorer, &act->sa_restorer); 4675 new_ka.sa.sa_restorer = compat_ptr(restorer); 4676 #endif 4677 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4678 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4679 if (ret) 4680 return -EFAULT; 4681 } 4682 4683 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4684 if (!ret && oact) { 4685 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4686 &oact->sa_handler); 4687 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4688 sizeof(oact->sa_mask)); 4689 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4690 #ifdef __ARCH_HAS_SA_RESTORER 4691 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4692 &oact->sa_restorer); 4693 #endif 4694 } 4695 return ret; 4696 } 4697 #endif 4698 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4699 4700 #ifdef CONFIG_OLD_SIGACTION 4701 SYSCALL_DEFINE3(sigaction, int, sig, 4702 const struct old_sigaction __user *, act, 4703 struct old_sigaction __user *, oact) 4704 { 4705 struct k_sigaction new_ka, old_ka; 4706 int ret; 4707 4708 if (act) { 4709 old_sigset_t mask; 4710 if (!access_ok(act, sizeof(*act)) || 4711 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4712 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4713 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4714 __get_user(mask, &act->sa_mask)) 4715 return -EFAULT; 4716 #ifdef __ARCH_HAS_KA_RESTORER 4717 new_ka.ka_restorer = NULL; 4718 #endif 4719 siginitset(&new_ka.sa.sa_mask, mask); 4720 } 4721 4722 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4723 4724 if (!ret && oact) { 4725 if (!access_ok(oact, sizeof(*oact)) || 4726 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4727 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4728 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4729 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4730 return -EFAULT; 4731 } 4732 4733 return ret; 4734 } 4735 #endif 4736 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4737 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4738 const struct compat_old_sigaction __user *, act, 4739 struct compat_old_sigaction __user *, oact) 4740 { 4741 struct k_sigaction new_ka, old_ka; 4742 int ret; 4743 compat_old_sigset_t mask; 4744 compat_uptr_t handler, restorer; 4745 4746 if (act) { 4747 if (!access_ok(act, sizeof(*act)) || 4748 __get_user(handler, &act->sa_handler) || 4749 __get_user(restorer, &act->sa_restorer) || 4750 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4751 __get_user(mask, &act->sa_mask)) 4752 return -EFAULT; 4753 4754 #ifdef __ARCH_HAS_KA_RESTORER 4755 new_ka.ka_restorer = NULL; 4756 #endif 4757 new_ka.sa.sa_handler = compat_ptr(handler); 4758 new_ka.sa.sa_restorer = compat_ptr(restorer); 4759 siginitset(&new_ka.sa.sa_mask, mask); 4760 } 4761 4762 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4763 4764 if (!ret && oact) { 4765 if (!access_ok(oact, sizeof(*oact)) || 4766 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4767 &oact->sa_handler) || 4768 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4769 &oact->sa_restorer) || 4770 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4771 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4772 return -EFAULT; 4773 } 4774 return ret; 4775 } 4776 #endif 4777 4778 #ifdef CONFIG_SGETMASK_SYSCALL 4779 4780 /* 4781 * For backwards compatibility. Functionality superseded by sigprocmask. 4782 */ 4783 SYSCALL_DEFINE0(sgetmask) 4784 { 4785 /* SMP safe */ 4786 return current->blocked.sig[0]; 4787 } 4788 4789 SYSCALL_DEFINE1(ssetmask, int, newmask) 4790 { 4791 int old = current->blocked.sig[0]; 4792 sigset_t newset; 4793 4794 siginitset(&newset, newmask); 4795 set_current_blocked(&newset); 4796 4797 return old; 4798 } 4799 #endif /* CONFIG_SGETMASK_SYSCALL */ 4800 4801 #ifdef __ARCH_WANT_SYS_SIGNAL 4802 /* 4803 * For backwards compatibility. Functionality superseded by sigaction. 4804 */ 4805 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4806 { 4807 struct k_sigaction new_sa, old_sa; 4808 int ret; 4809 4810 new_sa.sa.sa_handler = handler; 4811 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4812 sigemptyset(&new_sa.sa.sa_mask); 4813 4814 ret = do_sigaction(sig, &new_sa, &old_sa); 4815 4816 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4817 } 4818 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4819 4820 #ifdef __ARCH_WANT_SYS_PAUSE 4821 4822 SYSCALL_DEFINE0(pause) 4823 { 4824 while (!signal_pending(current)) { 4825 __set_current_state(TASK_INTERRUPTIBLE); 4826 schedule(); 4827 } 4828 return -ERESTARTNOHAND; 4829 } 4830 4831 #endif 4832 4833 static int sigsuspend(sigset_t *set) 4834 { 4835 current->saved_sigmask = current->blocked; 4836 set_current_blocked(set); 4837 4838 while (!signal_pending(current)) { 4839 __set_current_state(TASK_INTERRUPTIBLE); 4840 schedule(); 4841 } 4842 set_restore_sigmask(); 4843 return -ERESTARTNOHAND; 4844 } 4845 4846 /** 4847 * sys_rt_sigsuspend - replace the signal mask for a value with the 4848 * @unewset value until a signal is received 4849 * @unewset: new signal mask value 4850 * @sigsetsize: size of sigset_t type 4851 */ 4852 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4853 { 4854 sigset_t newset; 4855 4856 /* XXX: Don't preclude handling different sized sigset_t's. */ 4857 if (sigsetsize != sizeof(sigset_t)) 4858 return -EINVAL; 4859 4860 if (copy_from_user(&newset, unewset, sizeof(newset))) 4861 return -EFAULT; 4862 return sigsuspend(&newset); 4863 } 4864 4865 #ifdef CONFIG_COMPAT 4866 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4867 { 4868 sigset_t newset; 4869 4870 /* XXX: Don't preclude handling different sized sigset_t's. */ 4871 if (sigsetsize != sizeof(sigset_t)) 4872 return -EINVAL; 4873 4874 if (get_compat_sigset(&newset, unewset)) 4875 return -EFAULT; 4876 return sigsuspend(&newset); 4877 } 4878 #endif 4879 4880 #ifdef CONFIG_OLD_SIGSUSPEND 4881 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4882 { 4883 sigset_t blocked; 4884 siginitset(&blocked, mask); 4885 return sigsuspend(&blocked); 4886 } 4887 #endif 4888 #ifdef CONFIG_OLD_SIGSUSPEND3 4889 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4890 { 4891 sigset_t blocked; 4892 siginitset(&blocked, mask); 4893 return sigsuspend(&blocked); 4894 } 4895 #endif 4896 4897 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4898 { 4899 return NULL; 4900 } 4901 4902 static inline void siginfo_buildtime_checks(void) 4903 { 4904 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4905 4906 /* Verify the offsets in the two siginfos match */ 4907 #define CHECK_OFFSET(field) \ 4908 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4909 4910 /* kill */ 4911 CHECK_OFFSET(si_pid); 4912 CHECK_OFFSET(si_uid); 4913 4914 /* timer */ 4915 CHECK_OFFSET(si_tid); 4916 CHECK_OFFSET(si_overrun); 4917 CHECK_OFFSET(si_value); 4918 4919 /* rt */ 4920 CHECK_OFFSET(si_pid); 4921 CHECK_OFFSET(si_uid); 4922 CHECK_OFFSET(si_value); 4923 4924 /* sigchld */ 4925 CHECK_OFFSET(si_pid); 4926 CHECK_OFFSET(si_uid); 4927 CHECK_OFFSET(si_status); 4928 CHECK_OFFSET(si_utime); 4929 CHECK_OFFSET(si_stime); 4930 4931 /* sigfault */ 4932 CHECK_OFFSET(si_addr); 4933 CHECK_OFFSET(si_trapno); 4934 CHECK_OFFSET(si_addr_lsb); 4935 CHECK_OFFSET(si_lower); 4936 CHECK_OFFSET(si_upper); 4937 CHECK_OFFSET(si_pkey); 4938 CHECK_OFFSET(si_perf_data); 4939 CHECK_OFFSET(si_perf_type); 4940 CHECK_OFFSET(si_perf_flags); 4941 4942 /* sigpoll */ 4943 CHECK_OFFSET(si_band); 4944 CHECK_OFFSET(si_fd); 4945 4946 /* sigsys */ 4947 CHECK_OFFSET(si_call_addr); 4948 CHECK_OFFSET(si_syscall); 4949 CHECK_OFFSET(si_arch); 4950 #undef CHECK_OFFSET 4951 4952 /* usb asyncio */ 4953 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4954 offsetof(struct siginfo, si_addr)); 4955 if (sizeof(int) == sizeof(void __user *)) { 4956 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4957 sizeof(void __user *)); 4958 } else { 4959 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4960 sizeof_field(struct siginfo, si_uid)) != 4961 sizeof(void __user *)); 4962 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4963 offsetof(struct siginfo, si_uid)); 4964 } 4965 #ifdef CONFIG_COMPAT 4966 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4967 offsetof(struct compat_siginfo, si_addr)); 4968 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4969 sizeof(compat_uptr_t)); 4970 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4971 sizeof_field(struct siginfo, si_pid)); 4972 #endif 4973 } 4974 4975 #if defined(CONFIG_SYSCTL) 4976 static const struct ctl_table signal_debug_table[] = { 4977 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE 4978 { 4979 .procname = "exception-trace", 4980 .data = &show_unhandled_signals, 4981 .maxlen = sizeof(int), 4982 .mode = 0644, 4983 .proc_handler = proc_dointvec 4984 }, 4985 #endif 4986 }; 4987 4988 static const struct ctl_table signal_table[] = { 4989 { 4990 .procname = "print-fatal-signals", 4991 .data = &print_fatal_signals, 4992 .maxlen = sizeof(int), 4993 .mode = 0644, 4994 .proc_handler = proc_dointvec, 4995 }, 4996 }; 4997 4998 static int __init init_signal_sysctls(void) 4999 { 5000 register_sysctl_init("debug", signal_debug_table); 5001 register_sysctl_init("kernel", signal_table); 5002 return 0; 5003 } 5004 early_initcall(init_signal_sysctls); 5005 #endif /* CONFIG_SYSCTL */ 5006 5007 void __init signals_init(void) 5008 { 5009 siginfo_buildtime_checks(); 5010 5011 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 5012 } 5013 5014 #ifdef CONFIG_KGDB_KDB 5015 #include <linux/kdb.h> 5016 /* 5017 * kdb_send_sig - Allows kdb to send signals without exposing 5018 * signal internals. This function checks if the required locks are 5019 * available before calling the main signal code, to avoid kdb 5020 * deadlocks. 5021 */ 5022 void kdb_send_sig(struct task_struct *t, int sig) 5023 { 5024 static struct task_struct *kdb_prev_t; 5025 int new_t, ret; 5026 if (!spin_trylock(&t->sighand->siglock)) { 5027 kdb_printf("Can't do kill command now.\n" 5028 "The sigmask lock is held somewhere else in " 5029 "kernel, try again later\n"); 5030 return; 5031 } 5032 new_t = kdb_prev_t != t; 5033 kdb_prev_t = t; 5034 if (!task_is_running(t) && new_t) { 5035 spin_unlock(&t->sighand->siglock); 5036 kdb_printf("Process is not RUNNING, sending a signal from " 5037 "kdb risks deadlock\n" 5038 "on the run queue locks. " 5039 "The signal has _not_ been sent.\n" 5040 "Reissue the kill command if you want to risk " 5041 "the deadlock.\n"); 5042 return; 5043 } 5044 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 5045 spin_unlock(&t->sighand->siglock); 5046 if (ret) 5047 kdb_printf("Fail to deliver Signal %d to process %d.\n", 5048 sig, t->pid); 5049 else 5050 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 5051 } 5052 #endif /* CONFIG_KGDB_KDB */ 5053