1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/user.h> 18 #include <linux/sched/debug.h> 19 #include <linux/sched/task.h> 20 #include <linux/sched/task_stack.h> 21 #include <linux/sched/cputime.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/proc_fs.h> 25 #include <linux/tty.h> 26 #include <linux/binfmts.h> 27 #include <linux/coredump.h> 28 #include <linux/security.h> 29 #include <linux/syscalls.h> 30 #include <linux/ptrace.h> 31 #include <linux/signal.h> 32 #include <linux/signalfd.h> 33 #include <linux/ratelimit.h> 34 #include <linux/tracehook.h> 35 #include <linux/capability.h> 36 #include <linux/freezer.h> 37 #include <linux/pid_namespace.h> 38 #include <linux/nsproxy.h> 39 #include <linux/user_namespace.h> 40 #include <linux/uprobes.h> 41 #include <linux/compat.h> 42 #include <linux/cn_proc.h> 43 #include <linux/compiler.h> 44 #include <linux/posix-timers.h> 45 #include <linux/livepatch.h> 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/signal.h> 49 50 #include <asm/param.h> 51 #include <linux/uaccess.h> 52 #include <asm/unistd.h> 53 #include <asm/siginfo.h> 54 #include <asm/cacheflush.h> 55 #include "audit.h" /* audit_signal_info() */ 56 57 /* 58 * SLAB caches for signal bits. 59 */ 60 61 static struct kmem_cache *sigqueue_cachep; 62 63 int print_fatal_signals __read_mostly; 64 65 static void __user *sig_handler(struct task_struct *t, int sig) 66 { 67 return t->sighand->action[sig - 1].sa.sa_handler; 68 } 69 70 static inline bool sig_handler_ignored(void __user *handler, int sig) 71 { 72 /* Is it explicitly or implicitly ignored? */ 73 return handler == SIG_IGN || 74 (handler == SIG_DFL && sig_kernel_ignore(sig)); 75 } 76 77 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 78 { 79 void __user *handler; 80 81 handler = sig_handler(t, sig); 82 83 /* SIGKILL and SIGSTOP may not be sent to the global init */ 84 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 85 return true; 86 87 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 88 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 89 return true; 90 91 return sig_handler_ignored(handler, sig); 92 } 93 94 static bool sig_ignored(struct task_struct *t, int sig, bool force) 95 { 96 /* 97 * Blocked signals are never ignored, since the 98 * signal handler may change by the time it is 99 * unblocked. 100 */ 101 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 102 return false; 103 104 /* 105 * Tracers may want to know about even ignored signal unless it 106 * is SIGKILL which can't be reported anyway but can be ignored 107 * by SIGNAL_UNKILLABLE task. 108 */ 109 if (t->ptrace && sig != SIGKILL) 110 return false; 111 112 return sig_task_ignored(t, sig, force); 113 } 114 115 /* 116 * Re-calculate pending state from the set of locally pending 117 * signals, globally pending signals, and blocked signals. 118 */ 119 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 120 { 121 unsigned long ready; 122 long i; 123 124 switch (_NSIG_WORDS) { 125 default: 126 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 127 ready |= signal->sig[i] &~ blocked->sig[i]; 128 break; 129 130 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 131 ready |= signal->sig[2] &~ blocked->sig[2]; 132 ready |= signal->sig[1] &~ blocked->sig[1]; 133 ready |= signal->sig[0] &~ blocked->sig[0]; 134 break; 135 136 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 137 ready |= signal->sig[0] &~ blocked->sig[0]; 138 break; 139 140 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 141 } 142 return ready != 0; 143 } 144 145 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 146 147 static bool recalc_sigpending_tsk(struct task_struct *t) 148 { 149 if ((t->jobctl & JOBCTL_PENDING_MASK) || 150 PENDING(&t->pending, &t->blocked) || 151 PENDING(&t->signal->shared_pending, &t->blocked)) { 152 set_tsk_thread_flag(t, TIF_SIGPENDING); 153 return true; 154 } 155 156 /* 157 * We must never clear the flag in another thread, or in current 158 * when it's possible the current syscall is returning -ERESTART*. 159 * So we don't clear it here, and only callers who know they should do. 160 */ 161 return false; 162 } 163 164 /* 165 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 166 * This is superfluous when called on current, the wakeup is a harmless no-op. 167 */ 168 void recalc_sigpending_and_wake(struct task_struct *t) 169 { 170 if (recalc_sigpending_tsk(t)) 171 signal_wake_up(t, 0); 172 } 173 174 void recalc_sigpending(void) 175 { 176 if (!recalc_sigpending_tsk(current) && !freezing(current) && 177 !klp_patch_pending(current)) 178 clear_thread_flag(TIF_SIGPENDING); 179 180 } 181 EXPORT_SYMBOL(recalc_sigpending); 182 183 void calculate_sigpending(void) 184 { 185 /* Have any signals or users of TIF_SIGPENDING been delayed 186 * until after fork? 187 */ 188 spin_lock_irq(¤t->sighand->siglock); 189 set_tsk_thread_flag(current, TIF_SIGPENDING); 190 recalc_sigpending(); 191 spin_unlock_irq(¤t->sighand->siglock); 192 } 193 194 /* Given the mask, find the first available signal that should be serviced. */ 195 196 #define SYNCHRONOUS_MASK \ 197 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 198 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 199 200 int next_signal(struct sigpending *pending, sigset_t *mask) 201 { 202 unsigned long i, *s, *m, x; 203 int sig = 0; 204 205 s = pending->signal.sig; 206 m = mask->sig; 207 208 /* 209 * Handle the first word specially: it contains the 210 * synchronous signals that need to be dequeued first. 211 */ 212 x = *s &~ *m; 213 if (x) { 214 if (x & SYNCHRONOUS_MASK) 215 x &= SYNCHRONOUS_MASK; 216 sig = ffz(~x) + 1; 217 return sig; 218 } 219 220 switch (_NSIG_WORDS) { 221 default: 222 for (i = 1; i < _NSIG_WORDS; ++i) { 223 x = *++s &~ *++m; 224 if (!x) 225 continue; 226 sig = ffz(~x) + i*_NSIG_BPW + 1; 227 break; 228 } 229 break; 230 231 case 2: 232 x = s[1] &~ m[1]; 233 if (!x) 234 break; 235 sig = ffz(~x) + _NSIG_BPW + 1; 236 break; 237 238 case 1: 239 /* Nothing to do */ 240 break; 241 } 242 243 return sig; 244 } 245 246 static inline void print_dropped_signal(int sig) 247 { 248 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 249 250 if (!print_fatal_signals) 251 return; 252 253 if (!__ratelimit(&ratelimit_state)) 254 return; 255 256 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 257 current->comm, current->pid, sig); 258 } 259 260 /** 261 * task_set_jobctl_pending - set jobctl pending bits 262 * @task: target task 263 * @mask: pending bits to set 264 * 265 * Clear @mask from @task->jobctl. @mask must be subset of 266 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 267 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 268 * cleared. If @task is already being killed or exiting, this function 269 * becomes noop. 270 * 271 * CONTEXT: 272 * Must be called with @task->sighand->siglock held. 273 * 274 * RETURNS: 275 * %true if @mask is set, %false if made noop because @task was dying. 276 */ 277 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 278 { 279 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 280 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 281 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 282 283 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 284 return false; 285 286 if (mask & JOBCTL_STOP_SIGMASK) 287 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 288 289 task->jobctl |= mask; 290 return true; 291 } 292 293 /** 294 * task_clear_jobctl_trapping - clear jobctl trapping bit 295 * @task: target task 296 * 297 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 298 * Clear it and wake up the ptracer. Note that we don't need any further 299 * locking. @task->siglock guarantees that @task->parent points to the 300 * ptracer. 301 * 302 * CONTEXT: 303 * Must be called with @task->sighand->siglock held. 304 */ 305 void task_clear_jobctl_trapping(struct task_struct *task) 306 { 307 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 308 task->jobctl &= ~JOBCTL_TRAPPING; 309 smp_mb(); /* advised by wake_up_bit() */ 310 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 311 } 312 } 313 314 /** 315 * task_clear_jobctl_pending - clear jobctl pending bits 316 * @task: target task 317 * @mask: pending bits to clear 318 * 319 * Clear @mask from @task->jobctl. @mask must be subset of 320 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 321 * STOP bits are cleared together. 322 * 323 * If clearing of @mask leaves no stop or trap pending, this function calls 324 * task_clear_jobctl_trapping(). 325 * 326 * CONTEXT: 327 * Must be called with @task->sighand->siglock held. 328 */ 329 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 330 { 331 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 332 333 if (mask & JOBCTL_STOP_PENDING) 334 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 335 336 task->jobctl &= ~mask; 337 338 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 339 task_clear_jobctl_trapping(task); 340 } 341 342 /** 343 * task_participate_group_stop - participate in a group stop 344 * @task: task participating in a group stop 345 * 346 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 347 * Group stop states are cleared and the group stop count is consumed if 348 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 349 * stop, the appropriate %SIGNAL_* flags are set. 350 * 351 * CONTEXT: 352 * Must be called with @task->sighand->siglock held. 353 * 354 * RETURNS: 355 * %true if group stop completion should be notified to the parent, %false 356 * otherwise. 357 */ 358 static bool task_participate_group_stop(struct task_struct *task) 359 { 360 struct signal_struct *sig = task->signal; 361 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 362 363 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 364 365 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 366 367 if (!consume) 368 return false; 369 370 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 371 sig->group_stop_count--; 372 373 /* 374 * Tell the caller to notify completion iff we are entering into a 375 * fresh group stop. Read comment in do_signal_stop() for details. 376 */ 377 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 378 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 379 return true; 380 } 381 return false; 382 } 383 384 void task_join_group_stop(struct task_struct *task) 385 { 386 /* Have the new thread join an on-going signal group stop */ 387 unsigned long jobctl = current->jobctl; 388 if (jobctl & JOBCTL_STOP_PENDING) { 389 struct signal_struct *sig = current->signal; 390 unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK; 391 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 392 if (task_set_jobctl_pending(task, signr | gstop)) { 393 sig->group_stop_count++; 394 } 395 } 396 } 397 398 /* 399 * allocate a new signal queue record 400 * - this may be called without locks if and only if t == current, otherwise an 401 * appropriate lock must be held to stop the target task from exiting 402 */ 403 static struct sigqueue * 404 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 405 { 406 struct sigqueue *q = NULL; 407 struct user_struct *user; 408 409 /* 410 * Protect access to @t credentials. This can go away when all 411 * callers hold rcu read lock. 412 */ 413 rcu_read_lock(); 414 user = get_uid(__task_cred(t)->user); 415 atomic_inc(&user->sigpending); 416 rcu_read_unlock(); 417 418 if (override_rlimit || 419 atomic_read(&user->sigpending) <= 420 task_rlimit(t, RLIMIT_SIGPENDING)) { 421 q = kmem_cache_alloc(sigqueue_cachep, flags); 422 } else { 423 print_dropped_signal(sig); 424 } 425 426 if (unlikely(q == NULL)) { 427 atomic_dec(&user->sigpending); 428 free_uid(user); 429 } else { 430 INIT_LIST_HEAD(&q->list); 431 q->flags = 0; 432 q->user = user; 433 } 434 435 return q; 436 } 437 438 static void __sigqueue_free(struct sigqueue *q) 439 { 440 if (q->flags & SIGQUEUE_PREALLOC) 441 return; 442 atomic_dec(&q->user->sigpending); 443 free_uid(q->user); 444 kmem_cache_free(sigqueue_cachep, q); 445 } 446 447 void flush_sigqueue(struct sigpending *queue) 448 { 449 struct sigqueue *q; 450 451 sigemptyset(&queue->signal); 452 while (!list_empty(&queue->list)) { 453 q = list_entry(queue->list.next, struct sigqueue , list); 454 list_del_init(&q->list); 455 __sigqueue_free(q); 456 } 457 } 458 459 /* 460 * Flush all pending signals for this kthread. 461 */ 462 void flush_signals(struct task_struct *t) 463 { 464 unsigned long flags; 465 466 spin_lock_irqsave(&t->sighand->siglock, flags); 467 clear_tsk_thread_flag(t, TIF_SIGPENDING); 468 flush_sigqueue(&t->pending); 469 flush_sigqueue(&t->signal->shared_pending); 470 spin_unlock_irqrestore(&t->sighand->siglock, flags); 471 } 472 EXPORT_SYMBOL(flush_signals); 473 474 #ifdef CONFIG_POSIX_TIMERS 475 static void __flush_itimer_signals(struct sigpending *pending) 476 { 477 sigset_t signal, retain; 478 struct sigqueue *q, *n; 479 480 signal = pending->signal; 481 sigemptyset(&retain); 482 483 list_for_each_entry_safe(q, n, &pending->list, list) { 484 int sig = q->info.si_signo; 485 486 if (likely(q->info.si_code != SI_TIMER)) { 487 sigaddset(&retain, sig); 488 } else { 489 sigdelset(&signal, sig); 490 list_del_init(&q->list); 491 __sigqueue_free(q); 492 } 493 } 494 495 sigorsets(&pending->signal, &signal, &retain); 496 } 497 498 void flush_itimer_signals(void) 499 { 500 struct task_struct *tsk = current; 501 unsigned long flags; 502 503 spin_lock_irqsave(&tsk->sighand->siglock, flags); 504 __flush_itimer_signals(&tsk->pending); 505 __flush_itimer_signals(&tsk->signal->shared_pending); 506 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 507 } 508 #endif 509 510 void ignore_signals(struct task_struct *t) 511 { 512 int i; 513 514 for (i = 0; i < _NSIG; ++i) 515 t->sighand->action[i].sa.sa_handler = SIG_IGN; 516 517 flush_signals(t); 518 } 519 520 /* 521 * Flush all handlers for a task. 522 */ 523 524 void 525 flush_signal_handlers(struct task_struct *t, int force_default) 526 { 527 int i; 528 struct k_sigaction *ka = &t->sighand->action[0]; 529 for (i = _NSIG ; i != 0 ; i--) { 530 if (force_default || ka->sa.sa_handler != SIG_IGN) 531 ka->sa.sa_handler = SIG_DFL; 532 ka->sa.sa_flags = 0; 533 #ifdef __ARCH_HAS_SA_RESTORER 534 ka->sa.sa_restorer = NULL; 535 #endif 536 sigemptyset(&ka->sa.sa_mask); 537 ka++; 538 } 539 } 540 541 bool unhandled_signal(struct task_struct *tsk, int sig) 542 { 543 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 544 if (is_global_init(tsk)) 545 return true; 546 547 if (handler != SIG_IGN && handler != SIG_DFL) 548 return false; 549 550 /* if ptraced, let the tracer determine */ 551 return !tsk->ptrace; 552 } 553 554 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 555 bool *resched_timer) 556 { 557 struct sigqueue *q, *first = NULL; 558 559 /* 560 * Collect the siginfo appropriate to this signal. Check if 561 * there is another siginfo for the same signal. 562 */ 563 list_for_each_entry(q, &list->list, list) { 564 if (q->info.si_signo == sig) { 565 if (first) 566 goto still_pending; 567 first = q; 568 } 569 } 570 571 sigdelset(&list->signal, sig); 572 573 if (first) { 574 still_pending: 575 list_del_init(&first->list); 576 copy_siginfo(info, &first->info); 577 578 *resched_timer = 579 (first->flags & SIGQUEUE_PREALLOC) && 580 (info->si_code == SI_TIMER) && 581 (info->si_sys_private); 582 583 __sigqueue_free(first); 584 } else { 585 /* 586 * Ok, it wasn't in the queue. This must be 587 * a fast-pathed signal or we must have been 588 * out of queue space. So zero out the info. 589 */ 590 clear_siginfo(info); 591 info->si_signo = sig; 592 info->si_errno = 0; 593 info->si_code = SI_USER; 594 info->si_pid = 0; 595 info->si_uid = 0; 596 } 597 } 598 599 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 600 kernel_siginfo_t *info, bool *resched_timer) 601 { 602 int sig = next_signal(pending, mask); 603 604 if (sig) 605 collect_signal(sig, pending, info, resched_timer); 606 return sig; 607 } 608 609 /* 610 * Dequeue a signal and return the element to the caller, which is 611 * expected to free it. 612 * 613 * All callers have to hold the siglock. 614 */ 615 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info) 616 { 617 bool resched_timer = false; 618 int signr; 619 620 /* We only dequeue private signals from ourselves, we don't let 621 * signalfd steal them 622 */ 623 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 624 if (!signr) { 625 signr = __dequeue_signal(&tsk->signal->shared_pending, 626 mask, info, &resched_timer); 627 #ifdef CONFIG_POSIX_TIMERS 628 /* 629 * itimer signal ? 630 * 631 * itimers are process shared and we restart periodic 632 * itimers in the signal delivery path to prevent DoS 633 * attacks in the high resolution timer case. This is 634 * compliant with the old way of self-restarting 635 * itimers, as the SIGALRM is a legacy signal and only 636 * queued once. Changing the restart behaviour to 637 * restart the timer in the signal dequeue path is 638 * reducing the timer noise on heavy loaded !highres 639 * systems too. 640 */ 641 if (unlikely(signr == SIGALRM)) { 642 struct hrtimer *tmr = &tsk->signal->real_timer; 643 644 if (!hrtimer_is_queued(tmr) && 645 tsk->signal->it_real_incr != 0) { 646 hrtimer_forward(tmr, tmr->base->get_time(), 647 tsk->signal->it_real_incr); 648 hrtimer_restart(tmr); 649 } 650 } 651 #endif 652 } 653 654 recalc_sigpending(); 655 if (!signr) 656 return 0; 657 658 if (unlikely(sig_kernel_stop(signr))) { 659 /* 660 * Set a marker that we have dequeued a stop signal. Our 661 * caller might release the siglock and then the pending 662 * stop signal it is about to process is no longer in the 663 * pending bitmasks, but must still be cleared by a SIGCONT 664 * (and overruled by a SIGKILL). So those cases clear this 665 * shared flag after we've set it. Note that this flag may 666 * remain set after the signal we return is ignored or 667 * handled. That doesn't matter because its only purpose 668 * is to alert stop-signal processing code when another 669 * processor has come along and cleared the flag. 670 */ 671 current->jobctl |= JOBCTL_STOP_DEQUEUED; 672 } 673 #ifdef CONFIG_POSIX_TIMERS 674 if (resched_timer) { 675 /* 676 * Release the siglock to ensure proper locking order 677 * of timer locks outside of siglocks. Note, we leave 678 * irqs disabled here, since the posix-timers code is 679 * about to disable them again anyway. 680 */ 681 spin_unlock(&tsk->sighand->siglock); 682 posixtimer_rearm(info); 683 spin_lock(&tsk->sighand->siglock); 684 685 /* Don't expose the si_sys_private value to userspace */ 686 info->si_sys_private = 0; 687 } 688 #endif 689 return signr; 690 } 691 EXPORT_SYMBOL_GPL(dequeue_signal); 692 693 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 694 { 695 struct task_struct *tsk = current; 696 struct sigpending *pending = &tsk->pending; 697 struct sigqueue *q, *sync = NULL; 698 699 /* 700 * Might a synchronous signal be in the queue? 701 */ 702 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 703 return 0; 704 705 /* 706 * Return the first synchronous signal in the queue. 707 */ 708 list_for_each_entry(q, &pending->list, list) { 709 /* Synchronous signals have a postive si_code */ 710 if ((q->info.si_code > SI_USER) && 711 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 712 sync = q; 713 goto next; 714 } 715 } 716 return 0; 717 next: 718 /* 719 * Check if there is another siginfo for the same signal. 720 */ 721 list_for_each_entry_continue(q, &pending->list, list) { 722 if (q->info.si_signo == sync->info.si_signo) 723 goto still_pending; 724 } 725 726 sigdelset(&pending->signal, sync->info.si_signo); 727 recalc_sigpending(); 728 still_pending: 729 list_del_init(&sync->list); 730 copy_siginfo(info, &sync->info); 731 __sigqueue_free(sync); 732 return info->si_signo; 733 } 734 735 /* 736 * Tell a process that it has a new active signal.. 737 * 738 * NOTE! we rely on the previous spin_lock to 739 * lock interrupts for us! We can only be called with 740 * "siglock" held, and the local interrupt must 741 * have been disabled when that got acquired! 742 * 743 * No need to set need_resched since signal event passing 744 * goes through ->blocked 745 */ 746 void signal_wake_up_state(struct task_struct *t, unsigned int state) 747 { 748 set_tsk_thread_flag(t, TIF_SIGPENDING); 749 /* 750 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 751 * case. We don't check t->state here because there is a race with it 752 * executing another processor and just now entering stopped state. 753 * By using wake_up_state, we ensure the process will wake up and 754 * handle its death signal. 755 */ 756 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 757 kick_process(t); 758 } 759 760 /* 761 * Remove signals in mask from the pending set and queue. 762 * Returns 1 if any signals were found. 763 * 764 * All callers must be holding the siglock. 765 */ 766 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 767 { 768 struct sigqueue *q, *n; 769 sigset_t m; 770 771 sigandsets(&m, mask, &s->signal); 772 if (sigisemptyset(&m)) 773 return; 774 775 sigandnsets(&s->signal, &s->signal, mask); 776 list_for_each_entry_safe(q, n, &s->list, list) { 777 if (sigismember(mask, q->info.si_signo)) { 778 list_del_init(&q->list); 779 __sigqueue_free(q); 780 } 781 } 782 } 783 784 static inline int is_si_special(const struct kernel_siginfo *info) 785 { 786 return info <= SEND_SIG_PRIV; 787 } 788 789 static inline bool si_fromuser(const struct kernel_siginfo *info) 790 { 791 return info == SEND_SIG_NOINFO || 792 (!is_si_special(info) && SI_FROMUSER(info)); 793 } 794 795 /* 796 * called with RCU read lock from check_kill_permission() 797 */ 798 static bool kill_ok_by_cred(struct task_struct *t) 799 { 800 const struct cred *cred = current_cred(); 801 const struct cred *tcred = __task_cred(t); 802 803 return uid_eq(cred->euid, tcred->suid) || 804 uid_eq(cred->euid, tcred->uid) || 805 uid_eq(cred->uid, tcred->suid) || 806 uid_eq(cred->uid, tcred->uid) || 807 ns_capable(tcred->user_ns, CAP_KILL); 808 } 809 810 /* 811 * Bad permissions for sending the signal 812 * - the caller must hold the RCU read lock 813 */ 814 static int check_kill_permission(int sig, struct kernel_siginfo *info, 815 struct task_struct *t) 816 { 817 struct pid *sid; 818 int error; 819 820 if (!valid_signal(sig)) 821 return -EINVAL; 822 823 if (!si_fromuser(info)) 824 return 0; 825 826 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 827 if (error) 828 return error; 829 830 if (!same_thread_group(current, t) && 831 !kill_ok_by_cred(t)) { 832 switch (sig) { 833 case SIGCONT: 834 sid = task_session(t); 835 /* 836 * We don't return the error if sid == NULL. The 837 * task was unhashed, the caller must notice this. 838 */ 839 if (!sid || sid == task_session(current)) 840 break; 841 default: 842 return -EPERM; 843 } 844 } 845 846 return security_task_kill(t, info, sig, NULL); 847 } 848 849 /** 850 * ptrace_trap_notify - schedule trap to notify ptracer 851 * @t: tracee wanting to notify tracer 852 * 853 * This function schedules sticky ptrace trap which is cleared on the next 854 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 855 * ptracer. 856 * 857 * If @t is running, STOP trap will be taken. If trapped for STOP and 858 * ptracer is listening for events, tracee is woken up so that it can 859 * re-trap for the new event. If trapped otherwise, STOP trap will be 860 * eventually taken without returning to userland after the existing traps 861 * are finished by PTRACE_CONT. 862 * 863 * CONTEXT: 864 * Must be called with @task->sighand->siglock held. 865 */ 866 static void ptrace_trap_notify(struct task_struct *t) 867 { 868 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 869 assert_spin_locked(&t->sighand->siglock); 870 871 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 872 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 873 } 874 875 /* 876 * Handle magic process-wide effects of stop/continue signals. Unlike 877 * the signal actions, these happen immediately at signal-generation 878 * time regardless of blocking, ignoring, or handling. This does the 879 * actual continuing for SIGCONT, but not the actual stopping for stop 880 * signals. The process stop is done as a signal action for SIG_DFL. 881 * 882 * Returns true if the signal should be actually delivered, otherwise 883 * it should be dropped. 884 */ 885 static bool prepare_signal(int sig, struct task_struct *p, bool force) 886 { 887 struct signal_struct *signal = p->signal; 888 struct task_struct *t; 889 sigset_t flush; 890 891 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 892 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 893 return sig == SIGKILL; 894 /* 895 * The process is in the middle of dying, nothing to do. 896 */ 897 } else if (sig_kernel_stop(sig)) { 898 /* 899 * This is a stop signal. Remove SIGCONT from all queues. 900 */ 901 siginitset(&flush, sigmask(SIGCONT)); 902 flush_sigqueue_mask(&flush, &signal->shared_pending); 903 for_each_thread(p, t) 904 flush_sigqueue_mask(&flush, &t->pending); 905 } else if (sig == SIGCONT) { 906 unsigned int why; 907 /* 908 * Remove all stop signals from all queues, wake all threads. 909 */ 910 siginitset(&flush, SIG_KERNEL_STOP_MASK); 911 flush_sigqueue_mask(&flush, &signal->shared_pending); 912 for_each_thread(p, t) { 913 flush_sigqueue_mask(&flush, &t->pending); 914 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 915 if (likely(!(t->ptrace & PT_SEIZED))) 916 wake_up_state(t, __TASK_STOPPED); 917 else 918 ptrace_trap_notify(t); 919 } 920 921 /* 922 * Notify the parent with CLD_CONTINUED if we were stopped. 923 * 924 * If we were in the middle of a group stop, we pretend it 925 * was already finished, and then continued. Since SIGCHLD 926 * doesn't queue we report only CLD_STOPPED, as if the next 927 * CLD_CONTINUED was dropped. 928 */ 929 why = 0; 930 if (signal->flags & SIGNAL_STOP_STOPPED) 931 why |= SIGNAL_CLD_CONTINUED; 932 else if (signal->group_stop_count) 933 why |= SIGNAL_CLD_STOPPED; 934 935 if (why) { 936 /* 937 * The first thread which returns from do_signal_stop() 938 * will take ->siglock, notice SIGNAL_CLD_MASK, and 939 * notify its parent. See get_signal(). 940 */ 941 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 942 signal->group_stop_count = 0; 943 signal->group_exit_code = 0; 944 } 945 } 946 947 return !sig_ignored(p, sig, force); 948 } 949 950 /* 951 * Test if P wants to take SIG. After we've checked all threads with this, 952 * it's equivalent to finding no threads not blocking SIG. Any threads not 953 * blocking SIG were ruled out because they are not running and already 954 * have pending signals. Such threads will dequeue from the shared queue 955 * as soon as they're available, so putting the signal on the shared queue 956 * will be equivalent to sending it to one such thread. 957 */ 958 static inline bool wants_signal(int sig, struct task_struct *p) 959 { 960 if (sigismember(&p->blocked, sig)) 961 return false; 962 963 if (p->flags & PF_EXITING) 964 return false; 965 966 if (sig == SIGKILL) 967 return true; 968 969 if (task_is_stopped_or_traced(p)) 970 return false; 971 972 return task_curr(p) || !signal_pending(p); 973 } 974 975 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 976 { 977 struct signal_struct *signal = p->signal; 978 struct task_struct *t; 979 980 /* 981 * Now find a thread we can wake up to take the signal off the queue. 982 * 983 * If the main thread wants the signal, it gets first crack. 984 * Probably the least surprising to the average bear. 985 */ 986 if (wants_signal(sig, p)) 987 t = p; 988 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 989 /* 990 * There is just one thread and it does not need to be woken. 991 * It will dequeue unblocked signals before it runs again. 992 */ 993 return; 994 else { 995 /* 996 * Otherwise try to find a suitable thread. 997 */ 998 t = signal->curr_target; 999 while (!wants_signal(sig, t)) { 1000 t = next_thread(t); 1001 if (t == signal->curr_target) 1002 /* 1003 * No thread needs to be woken. 1004 * Any eligible threads will see 1005 * the signal in the queue soon. 1006 */ 1007 return; 1008 } 1009 signal->curr_target = t; 1010 } 1011 1012 /* 1013 * Found a killable thread. If the signal will be fatal, 1014 * then start taking the whole group down immediately. 1015 */ 1016 if (sig_fatal(p, sig) && 1017 !(signal->flags & SIGNAL_GROUP_EXIT) && 1018 !sigismember(&t->real_blocked, sig) && 1019 (sig == SIGKILL || !p->ptrace)) { 1020 /* 1021 * This signal will be fatal to the whole group. 1022 */ 1023 if (!sig_kernel_coredump(sig)) { 1024 /* 1025 * Start a group exit and wake everybody up. 1026 * This way we don't have other threads 1027 * running and doing things after a slower 1028 * thread has the fatal signal pending. 1029 */ 1030 signal->flags = SIGNAL_GROUP_EXIT; 1031 signal->group_exit_code = sig; 1032 signal->group_stop_count = 0; 1033 t = p; 1034 do { 1035 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1036 sigaddset(&t->pending.signal, SIGKILL); 1037 signal_wake_up(t, 1); 1038 } while_each_thread(p, t); 1039 return; 1040 } 1041 } 1042 1043 /* 1044 * The signal is already in the shared-pending queue. 1045 * Tell the chosen thread to wake up and dequeue it. 1046 */ 1047 signal_wake_up(t, sig == SIGKILL); 1048 return; 1049 } 1050 1051 static inline bool legacy_queue(struct sigpending *signals, int sig) 1052 { 1053 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1054 } 1055 1056 #ifdef CONFIG_USER_NS 1057 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t) 1058 { 1059 if (current_user_ns() == task_cred_xxx(t, user_ns)) 1060 return; 1061 1062 if (SI_FROMKERNEL(info)) 1063 return; 1064 1065 rcu_read_lock(); 1066 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 1067 make_kuid(current_user_ns(), info->si_uid)); 1068 rcu_read_unlock(); 1069 } 1070 #else 1071 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t) 1072 { 1073 return; 1074 } 1075 #endif 1076 1077 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1078 enum pid_type type, int from_ancestor_ns) 1079 { 1080 struct sigpending *pending; 1081 struct sigqueue *q; 1082 int override_rlimit; 1083 int ret = 0, result; 1084 1085 assert_spin_locked(&t->sighand->siglock); 1086 1087 result = TRACE_SIGNAL_IGNORED; 1088 if (!prepare_signal(sig, t, 1089 from_ancestor_ns || (info == SEND_SIG_PRIV))) 1090 goto ret; 1091 1092 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1093 /* 1094 * Short-circuit ignored signals and support queuing 1095 * exactly one non-rt signal, so that we can get more 1096 * detailed information about the cause of the signal. 1097 */ 1098 result = TRACE_SIGNAL_ALREADY_PENDING; 1099 if (legacy_queue(pending, sig)) 1100 goto ret; 1101 1102 result = TRACE_SIGNAL_DELIVERED; 1103 /* 1104 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1105 */ 1106 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1107 goto out_set; 1108 1109 /* 1110 * Real-time signals must be queued if sent by sigqueue, or 1111 * some other real-time mechanism. It is implementation 1112 * defined whether kill() does so. We attempt to do so, on 1113 * the principle of least surprise, but since kill is not 1114 * allowed to fail with EAGAIN when low on memory we just 1115 * make sure at least one signal gets delivered and don't 1116 * pass on the info struct. 1117 */ 1118 if (sig < SIGRTMIN) 1119 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1120 else 1121 override_rlimit = 0; 1122 1123 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1124 if (q) { 1125 list_add_tail(&q->list, &pending->list); 1126 switch ((unsigned long) info) { 1127 case (unsigned long) SEND_SIG_NOINFO: 1128 clear_siginfo(&q->info); 1129 q->info.si_signo = sig; 1130 q->info.si_errno = 0; 1131 q->info.si_code = SI_USER; 1132 q->info.si_pid = task_tgid_nr_ns(current, 1133 task_active_pid_ns(t)); 1134 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1135 break; 1136 case (unsigned long) SEND_SIG_PRIV: 1137 clear_siginfo(&q->info); 1138 q->info.si_signo = sig; 1139 q->info.si_errno = 0; 1140 q->info.si_code = SI_KERNEL; 1141 q->info.si_pid = 0; 1142 q->info.si_uid = 0; 1143 break; 1144 default: 1145 copy_siginfo(&q->info, info); 1146 if (from_ancestor_ns) 1147 q->info.si_pid = 0; 1148 break; 1149 } 1150 1151 userns_fixup_signal_uid(&q->info, t); 1152 1153 } else if (!is_si_special(info)) { 1154 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1155 /* 1156 * Queue overflow, abort. We may abort if the 1157 * signal was rt and sent by user using something 1158 * other than kill(). 1159 */ 1160 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1161 ret = -EAGAIN; 1162 goto ret; 1163 } else { 1164 /* 1165 * This is a silent loss of information. We still 1166 * send the signal, but the *info bits are lost. 1167 */ 1168 result = TRACE_SIGNAL_LOSE_INFO; 1169 } 1170 } 1171 1172 out_set: 1173 signalfd_notify(t, sig); 1174 sigaddset(&pending->signal, sig); 1175 1176 /* Let multiprocess signals appear after on-going forks */ 1177 if (type > PIDTYPE_TGID) { 1178 struct multiprocess_signals *delayed; 1179 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1180 sigset_t *signal = &delayed->signal; 1181 /* Can't queue both a stop and a continue signal */ 1182 if (sig == SIGCONT) 1183 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1184 else if (sig_kernel_stop(sig)) 1185 sigdelset(signal, SIGCONT); 1186 sigaddset(signal, sig); 1187 } 1188 } 1189 1190 complete_signal(sig, t, type); 1191 ret: 1192 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1193 return ret; 1194 } 1195 1196 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1197 enum pid_type type) 1198 { 1199 int from_ancestor_ns = 0; 1200 1201 #ifdef CONFIG_PID_NS 1202 from_ancestor_ns = si_fromuser(info) && 1203 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1204 #endif 1205 1206 return __send_signal(sig, info, t, type, from_ancestor_ns); 1207 } 1208 1209 static void print_fatal_signal(int signr) 1210 { 1211 struct pt_regs *regs = signal_pt_regs(); 1212 pr_info("potentially unexpected fatal signal %d.\n", signr); 1213 1214 #if defined(__i386__) && !defined(__arch_um__) 1215 pr_info("code at %08lx: ", regs->ip); 1216 { 1217 int i; 1218 for (i = 0; i < 16; i++) { 1219 unsigned char insn; 1220 1221 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1222 break; 1223 pr_cont("%02x ", insn); 1224 } 1225 } 1226 pr_cont("\n"); 1227 #endif 1228 preempt_disable(); 1229 show_regs(regs); 1230 preempt_enable(); 1231 } 1232 1233 static int __init setup_print_fatal_signals(char *str) 1234 { 1235 get_option (&str, &print_fatal_signals); 1236 1237 return 1; 1238 } 1239 1240 __setup("print-fatal-signals=", setup_print_fatal_signals); 1241 1242 int 1243 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1244 { 1245 return send_signal(sig, info, p, PIDTYPE_TGID); 1246 } 1247 1248 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1249 enum pid_type type) 1250 { 1251 unsigned long flags; 1252 int ret = -ESRCH; 1253 1254 if (lock_task_sighand(p, &flags)) { 1255 ret = send_signal(sig, info, p, type); 1256 unlock_task_sighand(p, &flags); 1257 } 1258 1259 return ret; 1260 } 1261 1262 /* 1263 * Force a signal that the process can't ignore: if necessary 1264 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1265 * 1266 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1267 * since we do not want to have a signal handler that was blocked 1268 * be invoked when user space had explicitly blocked it. 1269 * 1270 * We don't want to have recursive SIGSEGV's etc, for example, 1271 * that is why we also clear SIGNAL_UNKILLABLE. 1272 */ 1273 int 1274 force_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *t) 1275 { 1276 unsigned long int flags; 1277 int ret, blocked, ignored; 1278 struct k_sigaction *action; 1279 1280 spin_lock_irqsave(&t->sighand->siglock, flags); 1281 action = &t->sighand->action[sig-1]; 1282 ignored = action->sa.sa_handler == SIG_IGN; 1283 blocked = sigismember(&t->blocked, sig); 1284 if (blocked || ignored) { 1285 action->sa.sa_handler = SIG_DFL; 1286 if (blocked) { 1287 sigdelset(&t->blocked, sig); 1288 recalc_sigpending_and_wake(t); 1289 } 1290 } 1291 /* 1292 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1293 * debugging to leave init killable. 1294 */ 1295 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1296 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1297 ret = send_signal(sig, info, t, PIDTYPE_PID); 1298 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1299 1300 return ret; 1301 } 1302 1303 /* 1304 * Nuke all other threads in the group. 1305 */ 1306 int zap_other_threads(struct task_struct *p) 1307 { 1308 struct task_struct *t = p; 1309 int count = 0; 1310 1311 p->signal->group_stop_count = 0; 1312 1313 while_each_thread(p, t) { 1314 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1315 count++; 1316 1317 /* Don't bother with already dead threads */ 1318 if (t->exit_state) 1319 continue; 1320 sigaddset(&t->pending.signal, SIGKILL); 1321 signal_wake_up(t, 1); 1322 } 1323 1324 return count; 1325 } 1326 1327 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1328 unsigned long *flags) 1329 { 1330 struct sighand_struct *sighand; 1331 1332 rcu_read_lock(); 1333 for (;;) { 1334 sighand = rcu_dereference(tsk->sighand); 1335 if (unlikely(sighand == NULL)) 1336 break; 1337 1338 /* 1339 * This sighand can be already freed and even reused, but 1340 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1341 * initializes ->siglock: this slab can't go away, it has 1342 * the same object type, ->siglock can't be reinitialized. 1343 * 1344 * We need to ensure that tsk->sighand is still the same 1345 * after we take the lock, we can race with de_thread() or 1346 * __exit_signal(). In the latter case the next iteration 1347 * must see ->sighand == NULL. 1348 */ 1349 spin_lock_irqsave(&sighand->siglock, *flags); 1350 if (likely(sighand == tsk->sighand)) 1351 break; 1352 spin_unlock_irqrestore(&sighand->siglock, *flags); 1353 } 1354 rcu_read_unlock(); 1355 1356 return sighand; 1357 } 1358 1359 /* 1360 * send signal info to all the members of a group 1361 */ 1362 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1363 struct task_struct *p, enum pid_type type) 1364 { 1365 int ret; 1366 1367 rcu_read_lock(); 1368 ret = check_kill_permission(sig, info, p); 1369 rcu_read_unlock(); 1370 1371 if (!ret && sig) 1372 ret = do_send_sig_info(sig, info, p, type); 1373 1374 return ret; 1375 } 1376 1377 /* 1378 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1379 * control characters do (^C, ^Z etc) 1380 * - the caller must hold at least a readlock on tasklist_lock 1381 */ 1382 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1383 { 1384 struct task_struct *p = NULL; 1385 int retval, success; 1386 1387 success = 0; 1388 retval = -ESRCH; 1389 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1390 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1391 success |= !err; 1392 retval = err; 1393 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1394 return success ? 0 : retval; 1395 } 1396 1397 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1398 { 1399 int error = -ESRCH; 1400 struct task_struct *p; 1401 1402 for (;;) { 1403 rcu_read_lock(); 1404 p = pid_task(pid, PIDTYPE_PID); 1405 if (p) 1406 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1407 rcu_read_unlock(); 1408 if (likely(!p || error != -ESRCH)) 1409 return error; 1410 1411 /* 1412 * The task was unhashed in between, try again. If it 1413 * is dead, pid_task() will return NULL, if we race with 1414 * de_thread() it will find the new leader. 1415 */ 1416 } 1417 } 1418 1419 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1420 { 1421 int error; 1422 rcu_read_lock(); 1423 error = kill_pid_info(sig, info, find_vpid(pid)); 1424 rcu_read_unlock(); 1425 return error; 1426 } 1427 1428 static inline bool kill_as_cred_perm(const struct cred *cred, 1429 struct task_struct *target) 1430 { 1431 const struct cred *pcred = __task_cred(target); 1432 1433 return uid_eq(cred->euid, pcred->suid) || 1434 uid_eq(cred->euid, pcred->uid) || 1435 uid_eq(cred->uid, pcred->suid) || 1436 uid_eq(cred->uid, pcred->uid); 1437 } 1438 1439 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1440 int kill_pid_info_as_cred(int sig, struct kernel_siginfo *info, struct pid *pid, 1441 const struct cred *cred) 1442 { 1443 int ret = -EINVAL; 1444 struct task_struct *p; 1445 unsigned long flags; 1446 1447 if (!valid_signal(sig)) 1448 return ret; 1449 1450 rcu_read_lock(); 1451 p = pid_task(pid, PIDTYPE_PID); 1452 if (!p) { 1453 ret = -ESRCH; 1454 goto out_unlock; 1455 } 1456 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1457 ret = -EPERM; 1458 goto out_unlock; 1459 } 1460 ret = security_task_kill(p, info, sig, cred); 1461 if (ret) 1462 goto out_unlock; 1463 1464 if (sig) { 1465 if (lock_task_sighand(p, &flags)) { 1466 ret = __send_signal(sig, info, p, PIDTYPE_TGID, 0); 1467 unlock_task_sighand(p, &flags); 1468 } else 1469 ret = -ESRCH; 1470 } 1471 out_unlock: 1472 rcu_read_unlock(); 1473 return ret; 1474 } 1475 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1476 1477 /* 1478 * kill_something_info() interprets pid in interesting ways just like kill(2). 1479 * 1480 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1481 * is probably wrong. Should make it like BSD or SYSV. 1482 */ 1483 1484 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1485 { 1486 int ret; 1487 1488 if (pid > 0) { 1489 rcu_read_lock(); 1490 ret = kill_pid_info(sig, info, find_vpid(pid)); 1491 rcu_read_unlock(); 1492 return ret; 1493 } 1494 1495 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1496 if (pid == INT_MIN) 1497 return -ESRCH; 1498 1499 read_lock(&tasklist_lock); 1500 if (pid != -1) { 1501 ret = __kill_pgrp_info(sig, info, 1502 pid ? find_vpid(-pid) : task_pgrp(current)); 1503 } else { 1504 int retval = 0, count = 0; 1505 struct task_struct * p; 1506 1507 for_each_process(p) { 1508 if (task_pid_vnr(p) > 1 && 1509 !same_thread_group(p, current)) { 1510 int err = group_send_sig_info(sig, info, p, 1511 PIDTYPE_MAX); 1512 ++count; 1513 if (err != -EPERM) 1514 retval = err; 1515 } 1516 } 1517 ret = count ? retval : -ESRCH; 1518 } 1519 read_unlock(&tasklist_lock); 1520 1521 return ret; 1522 } 1523 1524 /* 1525 * These are for backward compatibility with the rest of the kernel source. 1526 */ 1527 1528 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1529 { 1530 /* 1531 * Make sure legacy kernel users don't send in bad values 1532 * (normal paths check this in check_kill_permission). 1533 */ 1534 if (!valid_signal(sig)) 1535 return -EINVAL; 1536 1537 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1538 } 1539 EXPORT_SYMBOL(send_sig_info); 1540 1541 #define __si_special(priv) \ 1542 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1543 1544 int 1545 send_sig(int sig, struct task_struct *p, int priv) 1546 { 1547 return send_sig_info(sig, __si_special(priv), p); 1548 } 1549 EXPORT_SYMBOL(send_sig); 1550 1551 void force_sig(int sig, struct task_struct *p) 1552 { 1553 force_sig_info(sig, SEND_SIG_PRIV, p); 1554 } 1555 EXPORT_SYMBOL(force_sig); 1556 1557 /* 1558 * When things go south during signal handling, we 1559 * will force a SIGSEGV. And if the signal that caused 1560 * the problem was already a SIGSEGV, we'll want to 1561 * make sure we don't even try to deliver the signal.. 1562 */ 1563 void force_sigsegv(int sig, struct task_struct *p) 1564 { 1565 if (sig == SIGSEGV) { 1566 unsigned long flags; 1567 spin_lock_irqsave(&p->sighand->siglock, flags); 1568 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1569 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1570 } 1571 force_sig(SIGSEGV, p); 1572 } 1573 1574 int force_sig_fault(int sig, int code, void __user *addr 1575 ___ARCH_SI_TRAPNO(int trapno) 1576 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1577 , struct task_struct *t) 1578 { 1579 struct kernel_siginfo info; 1580 1581 clear_siginfo(&info); 1582 info.si_signo = sig; 1583 info.si_errno = 0; 1584 info.si_code = code; 1585 info.si_addr = addr; 1586 #ifdef __ARCH_SI_TRAPNO 1587 info.si_trapno = trapno; 1588 #endif 1589 #ifdef __ia64__ 1590 info.si_imm = imm; 1591 info.si_flags = flags; 1592 info.si_isr = isr; 1593 #endif 1594 return force_sig_info(info.si_signo, &info, t); 1595 } 1596 1597 int send_sig_fault(int sig, int code, void __user *addr 1598 ___ARCH_SI_TRAPNO(int trapno) 1599 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1600 , struct task_struct *t) 1601 { 1602 struct kernel_siginfo info; 1603 1604 clear_siginfo(&info); 1605 info.si_signo = sig; 1606 info.si_errno = 0; 1607 info.si_code = code; 1608 info.si_addr = addr; 1609 #ifdef __ARCH_SI_TRAPNO 1610 info.si_trapno = trapno; 1611 #endif 1612 #ifdef __ia64__ 1613 info.si_imm = imm; 1614 info.si_flags = flags; 1615 info.si_isr = isr; 1616 #endif 1617 return send_sig_info(info.si_signo, &info, t); 1618 } 1619 1620 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1621 { 1622 struct kernel_siginfo info; 1623 1624 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1625 clear_siginfo(&info); 1626 info.si_signo = SIGBUS; 1627 info.si_errno = 0; 1628 info.si_code = code; 1629 info.si_addr = addr; 1630 info.si_addr_lsb = lsb; 1631 return force_sig_info(info.si_signo, &info, t); 1632 } 1633 1634 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1635 { 1636 struct kernel_siginfo info; 1637 1638 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1639 clear_siginfo(&info); 1640 info.si_signo = SIGBUS; 1641 info.si_errno = 0; 1642 info.si_code = code; 1643 info.si_addr = addr; 1644 info.si_addr_lsb = lsb; 1645 return send_sig_info(info.si_signo, &info, t); 1646 } 1647 EXPORT_SYMBOL(send_sig_mceerr); 1648 1649 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1650 { 1651 struct kernel_siginfo info; 1652 1653 clear_siginfo(&info); 1654 info.si_signo = SIGSEGV; 1655 info.si_errno = 0; 1656 info.si_code = SEGV_BNDERR; 1657 info.si_addr = addr; 1658 info.si_lower = lower; 1659 info.si_upper = upper; 1660 return force_sig_info(info.si_signo, &info, current); 1661 } 1662 1663 #ifdef SEGV_PKUERR 1664 int force_sig_pkuerr(void __user *addr, u32 pkey) 1665 { 1666 struct kernel_siginfo info; 1667 1668 clear_siginfo(&info); 1669 info.si_signo = SIGSEGV; 1670 info.si_errno = 0; 1671 info.si_code = SEGV_PKUERR; 1672 info.si_addr = addr; 1673 info.si_pkey = pkey; 1674 return force_sig_info(info.si_signo, &info, current); 1675 } 1676 #endif 1677 1678 /* For the crazy architectures that include trap information in 1679 * the errno field, instead of an actual errno value. 1680 */ 1681 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1682 { 1683 struct kernel_siginfo info; 1684 1685 clear_siginfo(&info); 1686 info.si_signo = SIGTRAP; 1687 info.si_errno = errno; 1688 info.si_code = TRAP_HWBKPT; 1689 info.si_addr = addr; 1690 return force_sig_info(info.si_signo, &info, current); 1691 } 1692 1693 int kill_pgrp(struct pid *pid, int sig, int priv) 1694 { 1695 int ret; 1696 1697 read_lock(&tasklist_lock); 1698 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1699 read_unlock(&tasklist_lock); 1700 1701 return ret; 1702 } 1703 EXPORT_SYMBOL(kill_pgrp); 1704 1705 int kill_pid(struct pid *pid, int sig, int priv) 1706 { 1707 return kill_pid_info(sig, __si_special(priv), pid); 1708 } 1709 EXPORT_SYMBOL(kill_pid); 1710 1711 /* 1712 * These functions support sending signals using preallocated sigqueue 1713 * structures. This is needed "because realtime applications cannot 1714 * afford to lose notifications of asynchronous events, like timer 1715 * expirations or I/O completions". In the case of POSIX Timers 1716 * we allocate the sigqueue structure from the timer_create. If this 1717 * allocation fails we are able to report the failure to the application 1718 * with an EAGAIN error. 1719 */ 1720 struct sigqueue *sigqueue_alloc(void) 1721 { 1722 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1723 1724 if (q) 1725 q->flags |= SIGQUEUE_PREALLOC; 1726 1727 return q; 1728 } 1729 1730 void sigqueue_free(struct sigqueue *q) 1731 { 1732 unsigned long flags; 1733 spinlock_t *lock = ¤t->sighand->siglock; 1734 1735 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1736 /* 1737 * We must hold ->siglock while testing q->list 1738 * to serialize with collect_signal() or with 1739 * __exit_signal()->flush_sigqueue(). 1740 */ 1741 spin_lock_irqsave(lock, flags); 1742 q->flags &= ~SIGQUEUE_PREALLOC; 1743 /* 1744 * If it is queued it will be freed when dequeued, 1745 * like the "regular" sigqueue. 1746 */ 1747 if (!list_empty(&q->list)) 1748 q = NULL; 1749 spin_unlock_irqrestore(lock, flags); 1750 1751 if (q) 1752 __sigqueue_free(q); 1753 } 1754 1755 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1756 { 1757 int sig = q->info.si_signo; 1758 struct sigpending *pending; 1759 struct task_struct *t; 1760 unsigned long flags; 1761 int ret, result; 1762 1763 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1764 1765 ret = -1; 1766 rcu_read_lock(); 1767 t = pid_task(pid, type); 1768 if (!t || !likely(lock_task_sighand(t, &flags))) 1769 goto ret; 1770 1771 ret = 1; /* the signal is ignored */ 1772 result = TRACE_SIGNAL_IGNORED; 1773 if (!prepare_signal(sig, t, false)) 1774 goto out; 1775 1776 ret = 0; 1777 if (unlikely(!list_empty(&q->list))) { 1778 /* 1779 * If an SI_TIMER entry is already queue just increment 1780 * the overrun count. 1781 */ 1782 BUG_ON(q->info.si_code != SI_TIMER); 1783 q->info.si_overrun++; 1784 result = TRACE_SIGNAL_ALREADY_PENDING; 1785 goto out; 1786 } 1787 q->info.si_overrun = 0; 1788 1789 signalfd_notify(t, sig); 1790 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1791 list_add_tail(&q->list, &pending->list); 1792 sigaddset(&pending->signal, sig); 1793 complete_signal(sig, t, type); 1794 result = TRACE_SIGNAL_DELIVERED; 1795 out: 1796 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1797 unlock_task_sighand(t, &flags); 1798 ret: 1799 rcu_read_unlock(); 1800 return ret; 1801 } 1802 1803 /* 1804 * Let a parent know about the death of a child. 1805 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1806 * 1807 * Returns true if our parent ignored us and so we've switched to 1808 * self-reaping. 1809 */ 1810 bool do_notify_parent(struct task_struct *tsk, int sig) 1811 { 1812 struct kernel_siginfo info; 1813 unsigned long flags; 1814 struct sighand_struct *psig; 1815 bool autoreap = false; 1816 u64 utime, stime; 1817 1818 BUG_ON(sig == -1); 1819 1820 /* do_notify_parent_cldstop should have been called instead. */ 1821 BUG_ON(task_is_stopped_or_traced(tsk)); 1822 1823 BUG_ON(!tsk->ptrace && 1824 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1825 1826 if (sig != SIGCHLD) { 1827 /* 1828 * This is only possible if parent == real_parent. 1829 * Check if it has changed security domain. 1830 */ 1831 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1832 sig = SIGCHLD; 1833 } 1834 1835 clear_siginfo(&info); 1836 info.si_signo = sig; 1837 info.si_errno = 0; 1838 /* 1839 * We are under tasklist_lock here so our parent is tied to 1840 * us and cannot change. 1841 * 1842 * task_active_pid_ns will always return the same pid namespace 1843 * until a task passes through release_task. 1844 * 1845 * write_lock() currently calls preempt_disable() which is the 1846 * same as rcu_read_lock(), but according to Oleg, this is not 1847 * correct to rely on this 1848 */ 1849 rcu_read_lock(); 1850 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1851 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1852 task_uid(tsk)); 1853 rcu_read_unlock(); 1854 1855 task_cputime(tsk, &utime, &stime); 1856 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1857 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1858 1859 info.si_status = tsk->exit_code & 0x7f; 1860 if (tsk->exit_code & 0x80) 1861 info.si_code = CLD_DUMPED; 1862 else if (tsk->exit_code & 0x7f) 1863 info.si_code = CLD_KILLED; 1864 else { 1865 info.si_code = CLD_EXITED; 1866 info.si_status = tsk->exit_code >> 8; 1867 } 1868 1869 psig = tsk->parent->sighand; 1870 spin_lock_irqsave(&psig->siglock, flags); 1871 if (!tsk->ptrace && sig == SIGCHLD && 1872 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1873 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1874 /* 1875 * We are exiting and our parent doesn't care. POSIX.1 1876 * defines special semantics for setting SIGCHLD to SIG_IGN 1877 * or setting the SA_NOCLDWAIT flag: we should be reaped 1878 * automatically and not left for our parent's wait4 call. 1879 * Rather than having the parent do it as a magic kind of 1880 * signal handler, we just set this to tell do_exit that we 1881 * can be cleaned up without becoming a zombie. Note that 1882 * we still call __wake_up_parent in this case, because a 1883 * blocked sys_wait4 might now return -ECHILD. 1884 * 1885 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1886 * is implementation-defined: we do (if you don't want 1887 * it, just use SIG_IGN instead). 1888 */ 1889 autoreap = true; 1890 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1891 sig = 0; 1892 } 1893 if (valid_signal(sig) && sig) 1894 __group_send_sig_info(sig, &info, tsk->parent); 1895 __wake_up_parent(tsk, tsk->parent); 1896 spin_unlock_irqrestore(&psig->siglock, flags); 1897 1898 return autoreap; 1899 } 1900 1901 /** 1902 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1903 * @tsk: task reporting the state change 1904 * @for_ptracer: the notification is for ptracer 1905 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1906 * 1907 * Notify @tsk's parent that the stopped/continued state has changed. If 1908 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1909 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1910 * 1911 * CONTEXT: 1912 * Must be called with tasklist_lock at least read locked. 1913 */ 1914 static void do_notify_parent_cldstop(struct task_struct *tsk, 1915 bool for_ptracer, int why) 1916 { 1917 struct kernel_siginfo info; 1918 unsigned long flags; 1919 struct task_struct *parent; 1920 struct sighand_struct *sighand; 1921 u64 utime, stime; 1922 1923 if (for_ptracer) { 1924 parent = tsk->parent; 1925 } else { 1926 tsk = tsk->group_leader; 1927 parent = tsk->real_parent; 1928 } 1929 1930 clear_siginfo(&info); 1931 info.si_signo = SIGCHLD; 1932 info.si_errno = 0; 1933 /* 1934 * see comment in do_notify_parent() about the following 4 lines 1935 */ 1936 rcu_read_lock(); 1937 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1938 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1939 rcu_read_unlock(); 1940 1941 task_cputime(tsk, &utime, &stime); 1942 info.si_utime = nsec_to_clock_t(utime); 1943 info.si_stime = nsec_to_clock_t(stime); 1944 1945 info.si_code = why; 1946 switch (why) { 1947 case CLD_CONTINUED: 1948 info.si_status = SIGCONT; 1949 break; 1950 case CLD_STOPPED: 1951 info.si_status = tsk->signal->group_exit_code & 0x7f; 1952 break; 1953 case CLD_TRAPPED: 1954 info.si_status = tsk->exit_code & 0x7f; 1955 break; 1956 default: 1957 BUG(); 1958 } 1959 1960 sighand = parent->sighand; 1961 spin_lock_irqsave(&sighand->siglock, flags); 1962 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1963 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1964 __group_send_sig_info(SIGCHLD, &info, parent); 1965 /* 1966 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1967 */ 1968 __wake_up_parent(tsk, parent); 1969 spin_unlock_irqrestore(&sighand->siglock, flags); 1970 } 1971 1972 static inline bool may_ptrace_stop(void) 1973 { 1974 if (!likely(current->ptrace)) 1975 return false; 1976 /* 1977 * Are we in the middle of do_coredump? 1978 * If so and our tracer is also part of the coredump stopping 1979 * is a deadlock situation, and pointless because our tracer 1980 * is dead so don't allow us to stop. 1981 * If SIGKILL was already sent before the caller unlocked 1982 * ->siglock we must see ->core_state != NULL. Otherwise it 1983 * is safe to enter schedule(). 1984 * 1985 * This is almost outdated, a task with the pending SIGKILL can't 1986 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1987 * after SIGKILL was already dequeued. 1988 */ 1989 if (unlikely(current->mm->core_state) && 1990 unlikely(current->mm == current->parent->mm)) 1991 return false; 1992 1993 return true; 1994 } 1995 1996 /* 1997 * Return non-zero if there is a SIGKILL that should be waking us up. 1998 * Called with the siglock held. 1999 */ 2000 static bool sigkill_pending(struct task_struct *tsk) 2001 { 2002 return sigismember(&tsk->pending.signal, SIGKILL) || 2003 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 2004 } 2005 2006 /* 2007 * This must be called with current->sighand->siglock held. 2008 * 2009 * This should be the path for all ptrace stops. 2010 * We always set current->last_siginfo while stopped here. 2011 * That makes it a way to test a stopped process for 2012 * being ptrace-stopped vs being job-control-stopped. 2013 * 2014 * If we actually decide not to stop at all because the tracer 2015 * is gone, we keep current->exit_code unless clear_code. 2016 */ 2017 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 2018 __releases(¤t->sighand->siglock) 2019 __acquires(¤t->sighand->siglock) 2020 { 2021 bool gstop_done = false; 2022 2023 if (arch_ptrace_stop_needed(exit_code, info)) { 2024 /* 2025 * The arch code has something special to do before a 2026 * ptrace stop. This is allowed to block, e.g. for faults 2027 * on user stack pages. We can't keep the siglock while 2028 * calling arch_ptrace_stop, so we must release it now. 2029 * To preserve proper semantics, we must do this before 2030 * any signal bookkeeping like checking group_stop_count. 2031 * Meanwhile, a SIGKILL could come in before we retake the 2032 * siglock. That must prevent us from sleeping in TASK_TRACED. 2033 * So after regaining the lock, we must check for SIGKILL. 2034 */ 2035 spin_unlock_irq(¤t->sighand->siglock); 2036 arch_ptrace_stop(exit_code, info); 2037 spin_lock_irq(¤t->sighand->siglock); 2038 if (sigkill_pending(current)) 2039 return; 2040 } 2041 2042 set_special_state(TASK_TRACED); 2043 2044 /* 2045 * We're committing to trapping. TRACED should be visible before 2046 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2047 * Also, transition to TRACED and updates to ->jobctl should be 2048 * atomic with respect to siglock and should be done after the arch 2049 * hook as siglock is released and regrabbed across it. 2050 * 2051 * TRACER TRACEE 2052 * 2053 * ptrace_attach() 2054 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2055 * do_wait() 2056 * set_current_state() smp_wmb(); 2057 * ptrace_do_wait() 2058 * wait_task_stopped() 2059 * task_stopped_code() 2060 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2061 */ 2062 smp_wmb(); 2063 2064 current->last_siginfo = info; 2065 current->exit_code = exit_code; 2066 2067 /* 2068 * If @why is CLD_STOPPED, we're trapping to participate in a group 2069 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2070 * across siglock relocks since INTERRUPT was scheduled, PENDING 2071 * could be clear now. We act as if SIGCONT is received after 2072 * TASK_TRACED is entered - ignore it. 2073 */ 2074 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2075 gstop_done = task_participate_group_stop(current); 2076 2077 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2078 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2079 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2080 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2081 2082 /* entering a trap, clear TRAPPING */ 2083 task_clear_jobctl_trapping(current); 2084 2085 spin_unlock_irq(¤t->sighand->siglock); 2086 read_lock(&tasklist_lock); 2087 if (may_ptrace_stop()) { 2088 /* 2089 * Notify parents of the stop. 2090 * 2091 * While ptraced, there are two parents - the ptracer and 2092 * the real_parent of the group_leader. The ptracer should 2093 * know about every stop while the real parent is only 2094 * interested in the completion of group stop. The states 2095 * for the two don't interact with each other. Notify 2096 * separately unless they're gonna be duplicates. 2097 */ 2098 do_notify_parent_cldstop(current, true, why); 2099 if (gstop_done && ptrace_reparented(current)) 2100 do_notify_parent_cldstop(current, false, why); 2101 2102 /* 2103 * Don't want to allow preemption here, because 2104 * sys_ptrace() needs this task to be inactive. 2105 * 2106 * XXX: implement read_unlock_no_resched(). 2107 */ 2108 preempt_disable(); 2109 read_unlock(&tasklist_lock); 2110 preempt_enable_no_resched(); 2111 freezable_schedule(); 2112 } else { 2113 /* 2114 * By the time we got the lock, our tracer went away. 2115 * Don't drop the lock yet, another tracer may come. 2116 * 2117 * If @gstop_done, the ptracer went away between group stop 2118 * completion and here. During detach, it would have set 2119 * JOBCTL_STOP_PENDING on us and we'll re-enter 2120 * TASK_STOPPED in do_signal_stop() on return, so notifying 2121 * the real parent of the group stop completion is enough. 2122 */ 2123 if (gstop_done) 2124 do_notify_parent_cldstop(current, false, why); 2125 2126 /* tasklist protects us from ptrace_freeze_traced() */ 2127 __set_current_state(TASK_RUNNING); 2128 if (clear_code) 2129 current->exit_code = 0; 2130 read_unlock(&tasklist_lock); 2131 } 2132 2133 /* 2134 * We are back. Now reacquire the siglock before touching 2135 * last_siginfo, so that we are sure to have synchronized with 2136 * any signal-sending on another CPU that wants to examine it. 2137 */ 2138 spin_lock_irq(¤t->sighand->siglock); 2139 current->last_siginfo = NULL; 2140 2141 /* LISTENING can be set only during STOP traps, clear it */ 2142 current->jobctl &= ~JOBCTL_LISTENING; 2143 2144 /* 2145 * Queued signals ignored us while we were stopped for tracing. 2146 * So check for any that we should take before resuming user mode. 2147 * This sets TIF_SIGPENDING, but never clears it. 2148 */ 2149 recalc_sigpending_tsk(current); 2150 } 2151 2152 static void ptrace_do_notify(int signr, int exit_code, int why) 2153 { 2154 kernel_siginfo_t info; 2155 2156 clear_siginfo(&info); 2157 info.si_signo = signr; 2158 info.si_code = exit_code; 2159 info.si_pid = task_pid_vnr(current); 2160 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2161 2162 /* Let the debugger run. */ 2163 ptrace_stop(exit_code, why, 1, &info); 2164 } 2165 2166 void ptrace_notify(int exit_code) 2167 { 2168 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2169 if (unlikely(current->task_works)) 2170 task_work_run(); 2171 2172 spin_lock_irq(¤t->sighand->siglock); 2173 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2174 spin_unlock_irq(¤t->sighand->siglock); 2175 } 2176 2177 /** 2178 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2179 * @signr: signr causing group stop if initiating 2180 * 2181 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2182 * and participate in it. If already set, participate in the existing 2183 * group stop. If participated in a group stop (and thus slept), %true is 2184 * returned with siglock released. 2185 * 2186 * If ptraced, this function doesn't handle stop itself. Instead, 2187 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2188 * untouched. The caller must ensure that INTERRUPT trap handling takes 2189 * places afterwards. 2190 * 2191 * CONTEXT: 2192 * Must be called with @current->sighand->siglock held, which is released 2193 * on %true return. 2194 * 2195 * RETURNS: 2196 * %false if group stop is already cancelled or ptrace trap is scheduled. 2197 * %true if participated in group stop. 2198 */ 2199 static bool do_signal_stop(int signr) 2200 __releases(¤t->sighand->siglock) 2201 { 2202 struct signal_struct *sig = current->signal; 2203 2204 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2205 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2206 struct task_struct *t; 2207 2208 /* signr will be recorded in task->jobctl for retries */ 2209 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2210 2211 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2212 unlikely(signal_group_exit(sig))) 2213 return false; 2214 /* 2215 * There is no group stop already in progress. We must 2216 * initiate one now. 2217 * 2218 * While ptraced, a task may be resumed while group stop is 2219 * still in effect and then receive a stop signal and 2220 * initiate another group stop. This deviates from the 2221 * usual behavior as two consecutive stop signals can't 2222 * cause two group stops when !ptraced. That is why we 2223 * also check !task_is_stopped(t) below. 2224 * 2225 * The condition can be distinguished by testing whether 2226 * SIGNAL_STOP_STOPPED is already set. Don't generate 2227 * group_exit_code in such case. 2228 * 2229 * This is not necessary for SIGNAL_STOP_CONTINUED because 2230 * an intervening stop signal is required to cause two 2231 * continued events regardless of ptrace. 2232 */ 2233 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2234 sig->group_exit_code = signr; 2235 2236 sig->group_stop_count = 0; 2237 2238 if (task_set_jobctl_pending(current, signr | gstop)) 2239 sig->group_stop_count++; 2240 2241 t = current; 2242 while_each_thread(current, t) { 2243 /* 2244 * Setting state to TASK_STOPPED for a group 2245 * stop is always done with the siglock held, 2246 * so this check has no races. 2247 */ 2248 if (!task_is_stopped(t) && 2249 task_set_jobctl_pending(t, signr | gstop)) { 2250 sig->group_stop_count++; 2251 if (likely(!(t->ptrace & PT_SEIZED))) 2252 signal_wake_up(t, 0); 2253 else 2254 ptrace_trap_notify(t); 2255 } 2256 } 2257 } 2258 2259 if (likely(!current->ptrace)) { 2260 int notify = 0; 2261 2262 /* 2263 * If there are no other threads in the group, or if there 2264 * is a group stop in progress and we are the last to stop, 2265 * report to the parent. 2266 */ 2267 if (task_participate_group_stop(current)) 2268 notify = CLD_STOPPED; 2269 2270 set_special_state(TASK_STOPPED); 2271 spin_unlock_irq(¤t->sighand->siglock); 2272 2273 /* 2274 * Notify the parent of the group stop completion. Because 2275 * we're not holding either the siglock or tasklist_lock 2276 * here, ptracer may attach inbetween; however, this is for 2277 * group stop and should always be delivered to the real 2278 * parent of the group leader. The new ptracer will get 2279 * its notification when this task transitions into 2280 * TASK_TRACED. 2281 */ 2282 if (notify) { 2283 read_lock(&tasklist_lock); 2284 do_notify_parent_cldstop(current, false, notify); 2285 read_unlock(&tasklist_lock); 2286 } 2287 2288 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2289 freezable_schedule(); 2290 return true; 2291 } else { 2292 /* 2293 * While ptraced, group stop is handled by STOP trap. 2294 * Schedule it and let the caller deal with it. 2295 */ 2296 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2297 return false; 2298 } 2299 } 2300 2301 /** 2302 * do_jobctl_trap - take care of ptrace jobctl traps 2303 * 2304 * When PT_SEIZED, it's used for both group stop and explicit 2305 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2306 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2307 * the stop signal; otherwise, %SIGTRAP. 2308 * 2309 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2310 * number as exit_code and no siginfo. 2311 * 2312 * CONTEXT: 2313 * Must be called with @current->sighand->siglock held, which may be 2314 * released and re-acquired before returning with intervening sleep. 2315 */ 2316 static void do_jobctl_trap(void) 2317 { 2318 struct signal_struct *signal = current->signal; 2319 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2320 2321 if (current->ptrace & PT_SEIZED) { 2322 if (!signal->group_stop_count && 2323 !(signal->flags & SIGNAL_STOP_STOPPED)) 2324 signr = SIGTRAP; 2325 WARN_ON_ONCE(!signr); 2326 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2327 CLD_STOPPED); 2328 } else { 2329 WARN_ON_ONCE(!signr); 2330 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2331 current->exit_code = 0; 2332 } 2333 } 2334 2335 static int ptrace_signal(int signr, kernel_siginfo_t *info) 2336 { 2337 /* 2338 * We do not check sig_kernel_stop(signr) but set this marker 2339 * unconditionally because we do not know whether debugger will 2340 * change signr. This flag has no meaning unless we are going 2341 * to stop after return from ptrace_stop(). In this case it will 2342 * be checked in do_signal_stop(), we should only stop if it was 2343 * not cleared by SIGCONT while we were sleeping. See also the 2344 * comment in dequeue_signal(). 2345 */ 2346 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2347 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2348 2349 /* We're back. Did the debugger cancel the sig? */ 2350 signr = current->exit_code; 2351 if (signr == 0) 2352 return signr; 2353 2354 current->exit_code = 0; 2355 2356 /* 2357 * Update the siginfo structure if the signal has 2358 * changed. If the debugger wanted something 2359 * specific in the siginfo structure then it should 2360 * have updated *info via PTRACE_SETSIGINFO. 2361 */ 2362 if (signr != info->si_signo) { 2363 clear_siginfo(info); 2364 info->si_signo = signr; 2365 info->si_errno = 0; 2366 info->si_code = SI_USER; 2367 rcu_read_lock(); 2368 info->si_pid = task_pid_vnr(current->parent); 2369 info->si_uid = from_kuid_munged(current_user_ns(), 2370 task_uid(current->parent)); 2371 rcu_read_unlock(); 2372 } 2373 2374 /* If the (new) signal is now blocked, requeue it. */ 2375 if (sigismember(¤t->blocked, signr)) { 2376 send_signal(signr, info, current, PIDTYPE_PID); 2377 signr = 0; 2378 } 2379 2380 return signr; 2381 } 2382 2383 bool get_signal(struct ksignal *ksig) 2384 { 2385 struct sighand_struct *sighand = current->sighand; 2386 struct signal_struct *signal = current->signal; 2387 int signr; 2388 2389 if (unlikely(current->task_works)) 2390 task_work_run(); 2391 2392 if (unlikely(uprobe_deny_signal())) 2393 return false; 2394 2395 /* 2396 * Do this once, we can't return to user-mode if freezing() == T. 2397 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2398 * thus do not need another check after return. 2399 */ 2400 try_to_freeze(); 2401 2402 relock: 2403 spin_lock_irq(&sighand->siglock); 2404 /* 2405 * Every stopped thread goes here after wakeup. Check to see if 2406 * we should notify the parent, prepare_signal(SIGCONT) encodes 2407 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2408 */ 2409 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2410 int why; 2411 2412 if (signal->flags & SIGNAL_CLD_CONTINUED) 2413 why = CLD_CONTINUED; 2414 else 2415 why = CLD_STOPPED; 2416 2417 signal->flags &= ~SIGNAL_CLD_MASK; 2418 2419 spin_unlock_irq(&sighand->siglock); 2420 2421 /* 2422 * Notify the parent that we're continuing. This event is 2423 * always per-process and doesn't make whole lot of sense 2424 * for ptracers, who shouldn't consume the state via 2425 * wait(2) either, but, for backward compatibility, notify 2426 * the ptracer of the group leader too unless it's gonna be 2427 * a duplicate. 2428 */ 2429 read_lock(&tasklist_lock); 2430 do_notify_parent_cldstop(current, false, why); 2431 2432 if (ptrace_reparented(current->group_leader)) 2433 do_notify_parent_cldstop(current->group_leader, 2434 true, why); 2435 read_unlock(&tasklist_lock); 2436 2437 goto relock; 2438 } 2439 2440 /* Has this task already been marked for death? */ 2441 if (signal_group_exit(signal)) { 2442 ksig->info.si_signo = signr = SIGKILL; 2443 sigdelset(¤t->pending.signal, SIGKILL); 2444 recalc_sigpending(); 2445 goto fatal; 2446 } 2447 2448 for (;;) { 2449 struct k_sigaction *ka; 2450 2451 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2452 do_signal_stop(0)) 2453 goto relock; 2454 2455 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2456 do_jobctl_trap(); 2457 spin_unlock_irq(&sighand->siglock); 2458 goto relock; 2459 } 2460 2461 /* 2462 * Signals generated by the execution of an instruction 2463 * need to be delivered before any other pending signals 2464 * so that the instruction pointer in the signal stack 2465 * frame points to the faulting instruction. 2466 */ 2467 signr = dequeue_synchronous_signal(&ksig->info); 2468 if (!signr) 2469 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2470 2471 if (!signr) 2472 break; /* will return 0 */ 2473 2474 if (unlikely(current->ptrace) && signr != SIGKILL) { 2475 signr = ptrace_signal(signr, &ksig->info); 2476 if (!signr) 2477 continue; 2478 } 2479 2480 ka = &sighand->action[signr-1]; 2481 2482 /* Trace actually delivered signals. */ 2483 trace_signal_deliver(signr, &ksig->info, ka); 2484 2485 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2486 continue; 2487 if (ka->sa.sa_handler != SIG_DFL) { 2488 /* Run the handler. */ 2489 ksig->ka = *ka; 2490 2491 if (ka->sa.sa_flags & SA_ONESHOT) 2492 ka->sa.sa_handler = SIG_DFL; 2493 2494 break; /* will return non-zero "signr" value */ 2495 } 2496 2497 /* 2498 * Now we are doing the default action for this signal. 2499 */ 2500 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2501 continue; 2502 2503 /* 2504 * Global init gets no signals it doesn't want. 2505 * Container-init gets no signals it doesn't want from same 2506 * container. 2507 * 2508 * Note that if global/container-init sees a sig_kernel_only() 2509 * signal here, the signal must have been generated internally 2510 * or must have come from an ancestor namespace. In either 2511 * case, the signal cannot be dropped. 2512 */ 2513 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2514 !sig_kernel_only(signr)) 2515 continue; 2516 2517 if (sig_kernel_stop(signr)) { 2518 /* 2519 * The default action is to stop all threads in 2520 * the thread group. The job control signals 2521 * do nothing in an orphaned pgrp, but SIGSTOP 2522 * always works. Note that siglock needs to be 2523 * dropped during the call to is_orphaned_pgrp() 2524 * because of lock ordering with tasklist_lock. 2525 * This allows an intervening SIGCONT to be posted. 2526 * We need to check for that and bail out if necessary. 2527 */ 2528 if (signr != SIGSTOP) { 2529 spin_unlock_irq(&sighand->siglock); 2530 2531 /* signals can be posted during this window */ 2532 2533 if (is_current_pgrp_orphaned()) 2534 goto relock; 2535 2536 spin_lock_irq(&sighand->siglock); 2537 } 2538 2539 if (likely(do_signal_stop(ksig->info.si_signo))) { 2540 /* It released the siglock. */ 2541 goto relock; 2542 } 2543 2544 /* 2545 * We didn't actually stop, due to a race 2546 * with SIGCONT or something like that. 2547 */ 2548 continue; 2549 } 2550 2551 fatal: 2552 spin_unlock_irq(&sighand->siglock); 2553 2554 /* 2555 * Anything else is fatal, maybe with a core dump. 2556 */ 2557 current->flags |= PF_SIGNALED; 2558 2559 if (sig_kernel_coredump(signr)) { 2560 if (print_fatal_signals) 2561 print_fatal_signal(ksig->info.si_signo); 2562 proc_coredump_connector(current); 2563 /* 2564 * If it was able to dump core, this kills all 2565 * other threads in the group and synchronizes with 2566 * their demise. If we lost the race with another 2567 * thread getting here, it set group_exit_code 2568 * first and our do_group_exit call below will use 2569 * that value and ignore the one we pass it. 2570 */ 2571 do_coredump(&ksig->info); 2572 } 2573 2574 /* 2575 * Death signals, no core dump. 2576 */ 2577 do_group_exit(ksig->info.si_signo); 2578 /* NOTREACHED */ 2579 } 2580 spin_unlock_irq(&sighand->siglock); 2581 2582 ksig->sig = signr; 2583 return ksig->sig > 0; 2584 } 2585 2586 /** 2587 * signal_delivered - 2588 * @ksig: kernel signal struct 2589 * @stepping: nonzero if debugger single-step or block-step in use 2590 * 2591 * This function should be called when a signal has successfully been 2592 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2593 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2594 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2595 */ 2596 static void signal_delivered(struct ksignal *ksig, int stepping) 2597 { 2598 sigset_t blocked; 2599 2600 /* A signal was successfully delivered, and the 2601 saved sigmask was stored on the signal frame, 2602 and will be restored by sigreturn. So we can 2603 simply clear the restore sigmask flag. */ 2604 clear_restore_sigmask(); 2605 2606 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2607 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2608 sigaddset(&blocked, ksig->sig); 2609 set_current_blocked(&blocked); 2610 tracehook_signal_handler(stepping); 2611 } 2612 2613 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2614 { 2615 if (failed) 2616 force_sigsegv(ksig->sig, current); 2617 else 2618 signal_delivered(ksig, stepping); 2619 } 2620 2621 /* 2622 * It could be that complete_signal() picked us to notify about the 2623 * group-wide signal. Other threads should be notified now to take 2624 * the shared signals in @which since we will not. 2625 */ 2626 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2627 { 2628 sigset_t retarget; 2629 struct task_struct *t; 2630 2631 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2632 if (sigisemptyset(&retarget)) 2633 return; 2634 2635 t = tsk; 2636 while_each_thread(tsk, t) { 2637 if (t->flags & PF_EXITING) 2638 continue; 2639 2640 if (!has_pending_signals(&retarget, &t->blocked)) 2641 continue; 2642 /* Remove the signals this thread can handle. */ 2643 sigandsets(&retarget, &retarget, &t->blocked); 2644 2645 if (!signal_pending(t)) 2646 signal_wake_up(t, 0); 2647 2648 if (sigisemptyset(&retarget)) 2649 break; 2650 } 2651 } 2652 2653 void exit_signals(struct task_struct *tsk) 2654 { 2655 int group_stop = 0; 2656 sigset_t unblocked; 2657 2658 /* 2659 * @tsk is about to have PF_EXITING set - lock out users which 2660 * expect stable threadgroup. 2661 */ 2662 cgroup_threadgroup_change_begin(tsk); 2663 2664 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2665 tsk->flags |= PF_EXITING; 2666 cgroup_threadgroup_change_end(tsk); 2667 return; 2668 } 2669 2670 spin_lock_irq(&tsk->sighand->siglock); 2671 /* 2672 * From now this task is not visible for group-wide signals, 2673 * see wants_signal(), do_signal_stop(). 2674 */ 2675 tsk->flags |= PF_EXITING; 2676 2677 cgroup_threadgroup_change_end(tsk); 2678 2679 if (!signal_pending(tsk)) 2680 goto out; 2681 2682 unblocked = tsk->blocked; 2683 signotset(&unblocked); 2684 retarget_shared_pending(tsk, &unblocked); 2685 2686 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2687 task_participate_group_stop(tsk)) 2688 group_stop = CLD_STOPPED; 2689 out: 2690 spin_unlock_irq(&tsk->sighand->siglock); 2691 2692 /* 2693 * If group stop has completed, deliver the notification. This 2694 * should always go to the real parent of the group leader. 2695 */ 2696 if (unlikely(group_stop)) { 2697 read_lock(&tasklist_lock); 2698 do_notify_parent_cldstop(tsk, false, group_stop); 2699 read_unlock(&tasklist_lock); 2700 } 2701 } 2702 2703 /* 2704 * System call entry points. 2705 */ 2706 2707 /** 2708 * sys_restart_syscall - restart a system call 2709 */ 2710 SYSCALL_DEFINE0(restart_syscall) 2711 { 2712 struct restart_block *restart = ¤t->restart_block; 2713 return restart->fn(restart); 2714 } 2715 2716 long do_no_restart_syscall(struct restart_block *param) 2717 { 2718 return -EINTR; 2719 } 2720 2721 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2722 { 2723 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2724 sigset_t newblocked; 2725 /* A set of now blocked but previously unblocked signals. */ 2726 sigandnsets(&newblocked, newset, ¤t->blocked); 2727 retarget_shared_pending(tsk, &newblocked); 2728 } 2729 tsk->blocked = *newset; 2730 recalc_sigpending(); 2731 } 2732 2733 /** 2734 * set_current_blocked - change current->blocked mask 2735 * @newset: new mask 2736 * 2737 * It is wrong to change ->blocked directly, this helper should be used 2738 * to ensure the process can't miss a shared signal we are going to block. 2739 */ 2740 void set_current_blocked(sigset_t *newset) 2741 { 2742 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2743 __set_current_blocked(newset); 2744 } 2745 2746 void __set_current_blocked(const sigset_t *newset) 2747 { 2748 struct task_struct *tsk = current; 2749 2750 /* 2751 * In case the signal mask hasn't changed, there is nothing we need 2752 * to do. The current->blocked shouldn't be modified by other task. 2753 */ 2754 if (sigequalsets(&tsk->blocked, newset)) 2755 return; 2756 2757 spin_lock_irq(&tsk->sighand->siglock); 2758 __set_task_blocked(tsk, newset); 2759 spin_unlock_irq(&tsk->sighand->siglock); 2760 } 2761 2762 /* 2763 * This is also useful for kernel threads that want to temporarily 2764 * (or permanently) block certain signals. 2765 * 2766 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2767 * interface happily blocks "unblockable" signals like SIGKILL 2768 * and friends. 2769 */ 2770 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2771 { 2772 struct task_struct *tsk = current; 2773 sigset_t newset; 2774 2775 /* Lockless, only current can change ->blocked, never from irq */ 2776 if (oldset) 2777 *oldset = tsk->blocked; 2778 2779 switch (how) { 2780 case SIG_BLOCK: 2781 sigorsets(&newset, &tsk->blocked, set); 2782 break; 2783 case SIG_UNBLOCK: 2784 sigandnsets(&newset, &tsk->blocked, set); 2785 break; 2786 case SIG_SETMASK: 2787 newset = *set; 2788 break; 2789 default: 2790 return -EINVAL; 2791 } 2792 2793 __set_current_blocked(&newset); 2794 return 0; 2795 } 2796 EXPORT_SYMBOL(sigprocmask); 2797 2798 /* 2799 * The api helps set app-provided sigmasks. 2800 * 2801 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 2802 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 2803 */ 2804 int set_user_sigmask(const sigset_t __user *usigmask, sigset_t *set, 2805 sigset_t *oldset, size_t sigsetsize) 2806 { 2807 if (!usigmask) 2808 return 0; 2809 2810 if (sigsetsize != sizeof(sigset_t)) 2811 return -EINVAL; 2812 if (copy_from_user(set, usigmask, sizeof(sigset_t))) 2813 return -EFAULT; 2814 2815 *oldset = current->blocked; 2816 set_current_blocked(set); 2817 2818 return 0; 2819 } 2820 EXPORT_SYMBOL(set_user_sigmask); 2821 2822 #ifdef CONFIG_COMPAT 2823 int set_compat_user_sigmask(const compat_sigset_t __user *usigmask, 2824 sigset_t *set, sigset_t *oldset, 2825 size_t sigsetsize) 2826 { 2827 if (!usigmask) 2828 return 0; 2829 2830 if (sigsetsize != sizeof(compat_sigset_t)) 2831 return -EINVAL; 2832 if (get_compat_sigset(set, usigmask)) 2833 return -EFAULT; 2834 2835 *oldset = current->blocked; 2836 set_current_blocked(set); 2837 2838 return 0; 2839 } 2840 EXPORT_SYMBOL(set_compat_user_sigmask); 2841 #endif 2842 2843 /* 2844 * restore_user_sigmask: 2845 * usigmask: sigmask passed in from userland. 2846 * sigsaved: saved sigmask when the syscall started and changed the sigmask to 2847 * usigmask. 2848 * 2849 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 2850 * epoll_pwait where a new sigmask is passed in from userland for the syscalls. 2851 */ 2852 void restore_user_sigmask(const void __user *usigmask, sigset_t *sigsaved) 2853 { 2854 2855 if (!usigmask) 2856 return; 2857 /* 2858 * When signals are pending, do not restore them here. 2859 * Restoring sigmask here can lead to delivering signals that the above 2860 * syscalls are intended to block because of the sigmask passed in. 2861 */ 2862 if (signal_pending(current)) { 2863 current->saved_sigmask = *sigsaved; 2864 set_restore_sigmask(); 2865 return; 2866 } 2867 2868 /* 2869 * This is needed because the fast syscall return path does not restore 2870 * saved_sigmask when signals are not pending. 2871 */ 2872 set_current_blocked(sigsaved); 2873 } 2874 EXPORT_SYMBOL(restore_user_sigmask); 2875 2876 /** 2877 * sys_rt_sigprocmask - change the list of currently blocked signals 2878 * @how: whether to add, remove, or set signals 2879 * @nset: stores pending signals 2880 * @oset: previous value of signal mask if non-null 2881 * @sigsetsize: size of sigset_t type 2882 */ 2883 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2884 sigset_t __user *, oset, size_t, sigsetsize) 2885 { 2886 sigset_t old_set, new_set; 2887 int error; 2888 2889 /* XXX: Don't preclude handling different sized sigset_t's. */ 2890 if (sigsetsize != sizeof(sigset_t)) 2891 return -EINVAL; 2892 2893 old_set = current->blocked; 2894 2895 if (nset) { 2896 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2897 return -EFAULT; 2898 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2899 2900 error = sigprocmask(how, &new_set, NULL); 2901 if (error) 2902 return error; 2903 } 2904 2905 if (oset) { 2906 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2907 return -EFAULT; 2908 } 2909 2910 return 0; 2911 } 2912 2913 #ifdef CONFIG_COMPAT 2914 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2915 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2916 { 2917 sigset_t old_set = current->blocked; 2918 2919 /* XXX: Don't preclude handling different sized sigset_t's. */ 2920 if (sigsetsize != sizeof(sigset_t)) 2921 return -EINVAL; 2922 2923 if (nset) { 2924 sigset_t new_set; 2925 int error; 2926 if (get_compat_sigset(&new_set, nset)) 2927 return -EFAULT; 2928 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2929 2930 error = sigprocmask(how, &new_set, NULL); 2931 if (error) 2932 return error; 2933 } 2934 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 2935 } 2936 #endif 2937 2938 static void do_sigpending(sigset_t *set) 2939 { 2940 spin_lock_irq(¤t->sighand->siglock); 2941 sigorsets(set, ¤t->pending.signal, 2942 ¤t->signal->shared_pending.signal); 2943 spin_unlock_irq(¤t->sighand->siglock); 2944 2945 /* Outside the lock because only this thread touches it. */ 2946 sigandsets(set, ¤t->blocked, set); 2947 } 2948 2949 /** 2950 * sys_rt_sigpending - examine a pending signal that has been raised 2951 * while blocked 2952 * @uset: stores pending signals 2953 * @sigsetsize: size of sigset_t type or larger 2954 */ 2955 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2956 { 2957 sigset_t set; 2958 2959 if (sigsetsize > sizeof(*uset)) 2960 return -EINVAL; 2961 2962 do_sigpending(&set); 2963 2964 if (copy_to_user(uset, &set, sigsetsize)) 2965 return -EFAULT; 2966 2967 return 0; 2968 } 2969 2970 #ifdef CONFIG_COMPAT 2971 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2972 compat_size_t, sigsetsize) 2973 { 2974 sigset_t set; 2975 2976 if (sigsetsize > sizeof(*uset)) 2977 return -EINVAL; 2978 2979 do_sigpending(&set); 2980 2981 return put_compat_sigset(uset, &set, sigsetsize); 2982 } 2983 #endif 2984 2985 static const struct { 2986 unsigned char limit, layout; 2987 } sig_sicodes[] = { 2988 [SIGILL] = { NSIGILL, SIL_FAULT }, 2989 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 2990 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 2991 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 2992 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 2993 #if defined(SIGEMT) 2994 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 2995 #endif 2996 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 2997 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 2998 [SIGSYS] = { NSIGSYS, SIL_SYS }, 2999 }; 3000 3001 static bool known_siginfo_layout(unsigned sig, int si_code) 3002 { 3003 if (si_code == SI_KERNEL) 3004 return true; 3005 else if ((si_code > SI_USER)) { 3006 if (sig_specific_sicodes(sig)) { 3007 if (si_code <= sig_sicodes[sig].limit) 3008 return true; 3009 } 3010 else if (si_code <= NSIGPOLL) 3011 return true; 3012 } 3013 else if (si_code >= SI_DETHREAD) 3014 return true; 3015 else if (si_code == SI_ASYNCNL) 3016 return true; 3017 return false; 3018 } 3019 3020 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3021 { 3022 enum siginfo_layout layout = SIL_KILL; 3023 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3024 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3025 (si_code <= sig_sicodes[sig].limit)) { 3026 layout = sig_sicodes[sig].layout; 3027 /* Handle the exceptions */ 3028 if ((sig == SIGBUS) && 3029 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3030 layout = SIL_FAULT_MCEERR; 3031 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3032 layout = SIL_FAULT_BNDERR; 3033 #ifdef SEGV_PKUERR 3034 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3035 layout = SIL_FAULT_PKUERR; 3036 #endif 3037 } 3038 else if (si_code <= NSIGPOLL) 3039 layout = SIL_POLL; 3040 } else { 3041 if (si_code == SI_TIMER) 3042 layout = SIL_TIMER; 3043 else if (si_code == SI_SIGIO) 3044 layout = SIL_POLL; 3045 else if (si_code < 0) 3046 layout = SIL_RT; 3047 } 3048 return layout; 3049 } 3050 3051 static inline char __user *si_expansion(const siginfo_t __user *info) 3052 { 3053 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3054 } 3055 3056 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3057 { 3058 char __user *expansion = si_expansion(to); 3059 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3060 return -EFAULT; 3061 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3062 return -EFAULT; 3063 return 0; 3064 } 3065 3066 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3067 const siginfo_t __user *from) 3068 { 3069 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3070 char __user *expansion = si_expansion(from); 3071 char buf[SI_EXPANSION_SIZE]; 3072 int i; 3073 /* 3074 * An unknown si_code might need more than 3075 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3076 * extra bytes are 0. This guarantees copy_siginfo_to_user 3077 * will return this data to userspace exactly. 3078 */ 3079 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3080 return -EFAULT; 3081 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3082 if (buf[i] != 0) 3083 return -E2BIG; 3084 } 3085 } 3086 return 0; 3087 } 3088 3089 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3090 const siginfo_t __user *from) 3091 { 3092 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3093 return -EFAULT; 3094 to->si_signo = signo; 3095 return post_copy_siginfo_from_user(to, from); 3096 } 3097 3098 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3099 { 3100 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3101 return -EFAULT; 3102 return post_copy_siginfo_from_user(to, from); 3103 } 3104 3105 #ifdef CONFIG_COMPAT 3106 int copy_siginfo_to_user32(struct compat_siginfo __user *to, 3107 const struct kernel_siginfo *from) 3108 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION) 3109 { 3110 return __copy_siginfo_to_user32(to, from, in_x32_syscall()); 3111 } 3112 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3113 const struct kernel_siginfo *from, bool x32_ABI) 3114 #endif 3115 { 3116 struct compat_siginfo new; 3117 memset(&new, 0, sizeof(new)); 3118 3119 new.si_signo = from->si_signo; 3120 new.si_errno = from->si_errno; 3121 new.si_code = from->si_code; 3122 switch(siginfo_layout(from->si_signo, from->si_code)) { 3123 case SIL_KILL: 3124 new.si_pid = from->si_pid; 3125 new.si_uid = from->si_uid; 3126 break; 3127 case SIL_TIMER: 3128 new.si_tid = from->si_tid; 3129 new.si_overrun = from->si_overrun; 3130 new.si_int = from->si_int; 3131 break; 3132 case SIL_POLL: 3133 new.si_band = from->si_band; 3134 new.si_fd = from->si_fd; 3135 break; 3136 case SIL_FAULT: 3137 new.si_addr = ptr_to_compat(from->si_addr); 3138 #ifdef __ARCH_SI_TRAPNO 3139 new.si_trapno = from->si_trapno; 3140 #endif 3141 break; 3142 case SIL_FAULT_MCEERR: 3143 new.si_addr = ptr_to_compat(from->si_addr); 3144 #ifdef __ARCH_SI_TRAPNO 3145 new.si_trapno = from->si_trapno; 3146 #endif 3147 new.si_addr_lsb = from->si_addr_lsb; 3148 break; 3149 case SIL_FAULT_BNDERR: 3150 new.si_addr = ptr_to_compat(from->si_addr); 3151 #ifdef __ARCH_SI_TRAPNO 3152 new.si_trapno = from->si_trapno; 3153 #endif 3154 new.si_lower = ptr_to_compat(from->si_lower); 3155 new.si_upper = ptr_to_compat(from->si_upper); 3156 break; 3157 case SIL_FAULT_PKUERR: 3158 new.si_addr = ptr_to_compat(from->si_addr); 3159 #ifdef __ARCH_SI_TRAPNO 3160 new.si_trapno = from->si_trapno; 3161 #endif 3162 new.si_pkey = from->si_pkey; 3163 break; 3164 case SIL_CHLD: 3165 new.si_pid = from->si_pid; 3166 new.si_uid = from->si_uid; 3167 new.si_status = from->si_status; 3168 #ifdef CONFIG_X86_X32_ABI 3169 if (x32_ABI) { 3170 new._sifields._sigchld_x32._utime = from->si_utime; 3171 new._sifields._sigchld_x32._stime = from->si_stime; 3172 } else 3173 #endif 3174 { 3175 new.si_utime = from->si_utime; 3176 new.si_stime = from->si_stime; 3177 } 3178 break; 3179 case SIL_RT: 3180 new.si_pid = from->si_pid; 3181 new.si_uid = from->si_uid; 3182 new.si_int = from->si_int; 3183 break; 3184 case SIL_SYS: 3185 new.si_call_addr = ptr_to_compat(from->si_call_addr); 3186 new.si_syscall = from->si_syscall; 3187 new.si_arch = from->si_arch; 3188 break; 3189 } 3190 3191 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3192 return -EFAULT; 3193 3194 return 0; 3195 } 3196 3197 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3198 const struct compat_siginfo *from) 3199 { 3200 clear_siginfo(to); 3201 to->si_signo = from->si_signo; 3202 to->si_errno = from->si_errno; 3203 to->si_code = from->si_code; 3204 switch(siginfo_layout(from->si_signo, from->si_code)) { 3205 case SIL_KILL: 3206 to->si_pid = from->si_pid; 3207 to->si_uid = from->si_uid; 3208 break; 3209 case SIL_TIMER: 3210 to->si_tid = from->si_tid; 3211 to->si_overrun = from->si_overrun; 3212 to->si_int = from->si_int; 3213 break; 3214 case SIL_POLL: 3215 to->si_band = from->si_band; 3216 to->si_fd = from->si_fd; 3217 break; 3218 case SIL_FAULT: 3219 to->si_addr = compat_ptr(from->si_addr); 3220 #ifdef __ARCH_SI_TRAPNO 3221 to->si_trapno = from->si_trapno; 3222 #endif 3223 break; 3224 case SIL_FAULT_MCEERR: 3225 to->si_addr = compat_ptr(from->si_addr); 3226 #ifdef __ARCH_SI_TRAPNO 3227 to->si_trapno = from->si_trapno; 3228 #endif 3229 to->si_addr_lsb = from->si_addr_lsb; 3230 break; 3231 case SIL_FAULT_BNDERR: 3232 to->si_addr = compat_ptr(from->si_addr); 3233 #ifdef __ARCH_SI_TRAPNO 3234 to->si_trapno = from->si_trapno; 3235 #endif 3236 to->si_lower = compat_ptr(from->si_lower); 3237 to->si_upper = compat_ptr(from->si_upper); 3238 break; 3239 case SIL_FAULT_PKUERR: 3240 to->si_addr = compat_ptr(from->si_addr); 3241 #ifdef __ARCH_SI_TRAPNO 3242 to->si_trapno = from->si_trapno; 3243 #endif 3244 to->si_pkey = from->si_pkey; 3245 break; 3246 case SIL_CHLD: 3247 to->si_pid = from->si_pid; 3248 to->si_uid = from->si_uid; 3249 to->si_status = from->si_status; 3250 #ifdef CONFIG_X86_X32_ABI 3251 if (in_x32_syscall()) { 3252 to->si_utime = from->_sifields._sigchld_x32._utime; 3253 to->si_stime = from->_sifields._sigchld_x32._stime; 3254 } else 3255 #endif 3256 { 3257 to->si_utime = from->si_utime; 3258 to->si_stime = from->si_stime; 3259 } 3260 break; 3261 case SIL_RT: 3262 to->si_pid = from->si_pid; 3263 to->si_uid = from->si_uid; 3264 to->si_int = from->si_int; 3265 break; 3266 case SIL_SYS: 3267 to->si_call_addr = compat_ptr(from->si_call_addr); 3268 to->si_syscall = from->si_syscall; 3269 to->si_arch = from->si_arch; 3270 break; 3271 } 3272 return 0; 3273 } 3274 3275 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3276 const struct compat_siginfo __user *ufrom) 3277 { 3278 struct compat_siginfo from; 3279 3280 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3281 return -EFAULT; 3282 3283 from.si_signo = signo; 3284 return post_copy_siginfo_from_user32(to, &from); 3285 } 3286 3287 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3288 const struct compat_siginfo __user *ufrom) 3289 { 3290 struct compat_siginfo from; 3291 3292 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3293 return -EFAULT; 3294 3295 return post_copy_siginfo_from_user32(to, &from); 3296 } 3297 #endif /* CONFIG_COMPAT */ 3298 3299 /** 3300 * do_sigtimedwait - wait for queued signals specified in @which 3301 * @which: queued signals to wait for 3302 * @info: if non-null, the signal's siginfo is returned here 3303 * @ts: upper bound on process time suspension 3304 */ 3305 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3306 const struct timespec64 *ts) 3307 { 3308 ktime_t *to = NULL, timeout = KTIME_MAX; 3309 struct task_struct *tsk = current; 3310 sigset_t mask = *which; 3311 int sig, ret = 0; 3312 3313 if (ts) { 3314 if (!timespec64_valid(ts)) 3315 return -EINVAL; 3316 timeout = timespec64_to_ktime(*ts); 3317 to = &timeout; 3318 } 3319 3320 /* 3321 * Invert the set of allowed signals to get those we want to block. 3322 */ 3323 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3324 signotset(&mask); 3325 3326 spin_lock_irq(&tsk->sighand->siglock); 3327 sig = dequeue_signal(tsk, &mask, info); 3328 if (!sig && timeout) { 3329 /* 3330 * None ready, temporarily unblock those we're interested 3331 * while we are sleeping in so that we'll be awakened when 3332 * they arrive. Unblocking is always fine, we can avoid 3333 * set_current_blocked(). 3334 */ 3335 tsk->real_blocked = tsk->blocked; 3336 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3337 recalc_sigpending(); 3338 spin_unlock_irq(&tsk->sighand->siglock); 3339 3340 __set_current_state(TASK_INTERRUPTIBLE); 3341 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3342 HRTIMER_MODE_REL); 3343 spin_lock_irq(&tsk->sighand->siglock); 3344 __set_task_blocked(tsk, &tsk->real_blocked); 3345 sigemptyset(&tsk->real_blocked); 3346 sig = dequeue_signal(tsk, &mask, info); 3347 } 3348 spin_unlock_irq(&tsk->sighand->siglock); 3349 3350 if (sig) 3351 return sig; 3352 return ret ? -EINTR : -EAGAIN; 3353 } 3354 3355 /** 3356 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3357 * in @uthese 3358 * @uthese: queued signals to wait for 3359 * @uinfo: if non-null, the signal's siginfo is returned here 3360 * @uts: upper bound on process time suspension 3361 * @sigsetsize: size of sigset_t type 3362 */ 3363 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3364 siginfo_t __user *, uinfo, 3365 const struct __kernel_timespec __user *, uts, 3366 size_t, sigsetsize) 3367 { 3368 sigset_t these; 3369 struct timespec64 ts; 3370 kernel_siginfo_t info; 3371 int ret; 3372 3373 /* XXX: Don't preclude handling different sized sigset_t's. */ 3374 if (sigsetsize != sizeof(sigset_t)) 3375 return -EINVAL; 3376 3377 if (copy_from_user(&these, uthese, sizeof(these))) 3378 return -EFAULT; 3379 3380 if (uts) { 3381 if (get_timespec64(&ts, uts)) 3382 return -EFAULT; 3383 } 3384 3385 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3386 3387 if (ret > 0 && uinfo) { 3388 if (copy_siginfo_to_user(uinfo, &info)) 3389 ret = -EFAULT; 3390 } 3391 3392 return ret; 3393 } 3394 3395 #ifdef CONFIG_COMPAT_32BIT_TIME 3396 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3397 siginfo_t __user *, uinfo, 3398 const struct old_timespec32 __user *, uts, 3399 size_t, sigsetsize) 3400 { 3401 sigset_t these; 3402 struct timespec64 ts; 3403 kernel_siginfo_t info; 3404 int ret; 3405 3406 if (sigsetsize != sizeof(sigset_t)) 3407 return -EINVAL; 3408 3409 if (copy_from_user(&these, uthese, sizeof(these))) 3410 return -EFAULT; 3411 3412 if (uts) { 3413 if (get_old_timespec32(&ts, uts)) 3414 return -EFAULT; 3415 } 3416 3417 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3418 3419 if (ret > 0 && uinfo) { 3420 if (copy_siginfo_to_user(uinfo, &info)) 3421 ret = -EFAULT; 3422 } 3423 3424 return ret; 3425 } 3426 #endif 3427 3428 #ifdef CONFIG_COMPAT 3429 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3430 struct compat_siginfo __user *, uinfo, 3431 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3432 { 3433 sigset_t s; 3434 struct timespec64 t; 3435 kernel_siginfo_t info; 3436 long ret; 3437 3438 if (sigsetsize != sizeof(sigset_t)) 3439 return -EINVAL; 3440 3441 if (get_compat_sigset(&s, uthese)) 3442 return -EFAULT; 3443 3444 if (uts) { 3445 if (get_timespec64(&t, uts)) 3446 return -EFAULT; 3447 } 3448 3449 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3450 3451 if (ret > 0 && uinfo) { 3452 if (copy_siginfo_to_user32(uinfo, &info)) 3453 ret = -EFAULT; 3454 } 3455 3456 return ret; 3457 } 3458 3459 #ifdef CONFIG_COMPAT_32BIT_TIME 3460 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3461 struct compat_siginfo __user *, uinfo, 3462 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3463 { 3464 sigset_t s; 3465 struct timespec64 t; 3466 kernel_siginfo_t info; 3467 long ret; 3468 3469 if (sigsetsize != sizeof(sigset_t)) 3470 return -EINVAL; 3471 3472 if (get_compat_sigset(&s, uthese)) 3473 return -EFAULT; 3474 3475 if (uts) { 3476 if (get_old_timespec32(&t, uts)) 3477 return -EFAULT; 3478 } 3479 3480 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3481 3482 if (ret > 0 && uinfo) { 3483 if (copy_siginfo_to_user32(uinfo, &info)) 3484 ret = -EFAULT; 3485 } 3486 3487 return ret; 3488 } 3489 #endif 3490 #endif 3491 3492 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3493 { 3494 clear_siginfo(info); 3495 info->si_signo = sig; 3496 info->si_errno = 0; 3497 info->si_code = SI_USER; 3498 info->si_pid = task_tgid_vnr(current); 3499 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3500 } 3501 3502 /** 3503 * sys_kill - send a signal to a process 3504 * @pid: the PID of the process 3505 * @sig: signal to be sent 3506 */ 3507 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3508 { 3509 struct kernel_siginfo info; 3510 3511 prepare_kill_siginfo(sig, &info); 3512 3513 return kill_something_info(sig, &info, pid); 3514 } 3515 3516 #ifdef CONFIG_PROC_FS 3517 /* 3518 * Verify that the signaler and signalee either are in the same pid namespace 3519 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3520 * namespace. 3521 */ 3522 static bool access_pidfd_pidns(struct pid *pid) 3523 { 3524 struct pid_namespace *active = task_active_pid_ns(current); 3525 struct pid_namespace *p = ns_of_pid(pid); 3526 3527 for (;;) { 3528 if (!p) 3529 return false; 3530 if (p == active) 3531 break; 3532 p = p->parent; 3533 } 3534 3535 return true; 3536 } 3537 3538 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info) 3539 { 3540 #ifdef CONFIG_COMPAT 3541 /* 3542 * Avoid hooking up compat syscalls and instead handle necessary 3543 * conversions here. Note, this is a stop-gap measure and should not be 3544 * considered a generic solution. 3545 */ 3546 if (in_compat_syscall()) 3547 return copy_siginfo_from_user32( 3548 kinfo, (struct compat_siginfo __user *)info); 3549 #endif 3550 return copy_siginfo_from_user(kinfo, info); 3551 } 3552 3553 /** 3554 * sys_pidfd_send_signal - send a signal to a process through a task file 3555 * descriptor 3556 * @pidfd: the file descriptor of the process 3557 * @sig: signal to be sent 3558 * @info: the signal info 3559 * @flags: future flags to be passed 3560 * 3561 * The syscall currently only signals via PIDTYPE_PID which covers 3562 * kill(<positive-pid>, <signal>. It does not signal threads or process 3563 * groups. 3564 * In order to extend the syscall to threads and process groups the @flags 3565 * argument should be used. In essence, the @flags argument will determine 3566 * what is signaled and not the file descriptor itself. Put in other words, 3567 * grouping is a property of the flags argument not a property of the file 3568 * descriptor. 3569 * 3570 * Return: 0 on success, negative errno on failure 3571 */ 3572 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3573 siginfo_t __user *, info, unsigned int, flags) 3574 { 3575 int ret; 3576 struct fd f; 3577 struct pid *pid; 3578 kernel_siginfo_t kinfo; 3579 3580 /* Enforce flags be set to 0 until we add an extension. */ 3581 if (flags) 3582 return -EINVAL; 3583 3584 f = fdget_raw(pidfd); 3585 if (!f.file) 3586 return -EBADF; 3587 3588 /* Is this a pidfd? */ 3589 pid = tgid_pidfd_to_pid(f.file); 3590 if (IS_ERR(pid)) { 3591 ret = PTR_ERR(pid); 3592 goto err; 3593 } 3594 3595 ret = -EINVAL; 3596 if (!access_pidfd_pidns(pid)) 3597 goto err; 3598 3599 if (info) { 3600 ret = copy_siginfo_from_user_any(&kinfo, info); 3601 if (unlikely(ret)) 3602 goto err; 3603 3604 ret = -EINVAL; 3605 if (unlikely(sig != kinfo.si_signo)) 3606 goto err; 3607 3608 if ((task_pid(current) != pid) && 3609 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) { 3610 /* Only allow sending arbitrary signals to yourself. */ 3611 ret = -EPERM; 3612 if (kinfo.si_code != SI_USER) 3613 goto err; 3614 3615 /* Turn this into a regular kill signal. */ 3616 prepare_kill_siginfo(sig, &kinfo); 3617 } 3618 } else { 3619 prepare_kill_siginfo(sig, &kinfo); 3620 } 3621 3622 ret = kill_pid_info(sig, &kinfo, pid); 3623 3624 err: 3625 fdput(f); 3626 return ret; 3627 } 3628 #endif /* CONFIG_PROC_FS */ 3629 3630 static int 3631 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3632 { 3633 struct task_struct *p; 3634 int error = -ESRCH; 3635 3636 rcu_read_lock(); 3637 p = find_task_by_vpid(pid); 3638 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3639 error = check_kill_permission(sig, info, p); 3640 /* 3641 * The null signal is a permissions and process existence 3642 * probe. No signal is actually delivered. 3643 */ 3644 if (!error && sig) { 3645 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3646 /* 3647 * If lock_task_sighand() failed we pretend the task 3648 * dies after receiving the signal. The window is tiny, 3649 * and the signal is private anyway. 3650 */ 3651 if (unlikely(error == -ESRCH)) 3652 error = 0; 3653 } 3654 } 3655 rcu_read_unlock(); 3656 3657 return error; 3658 } 3659 3660 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3661 { 3662 struct kernel_siginfo info; 3663 3664 clear_siginfo(&info); 3665 info.si_signo = sig; 3666 info.si_errno = 0; 3667 info.si_code = SI_TKILL; 3668 info.si_pid = task_tgid_vnr(current); 3669 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3670 3671 return do_send_specific(tgid, pid, sig, &info); 3672 } 3673 3674 /** 3675 * sys_tgkill - send signal to one specific thread 3676 * @tgid: the thread group ID of the thread 3677 * @pid: the PID of the thread 3678 * @sig: signal to be sent 3679 * 3680 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3681 * exists but it's not belonging to the target process anymore. This 3682 * method solves the problem of threads exiting and PIDs getting reused. 3683 */ 3684 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3685 { 3686 /* This is only valid for single tasks */ 3687 if (pid <= 0 || tgid <= 0) 3688 return -EINVAL; 3689 3690 return do_tkill(tgid, pid, sig); 3691 } 3692 3693 /** 3694 * sys_tkill - send signal to one specific task 3695 * @pid: the PID of the task 3696 * @sig: signal to be sent 3697 * 3698 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3699 */ 3700 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3701 { 3702 /* This is only valid for single tasks */ 3703 if (pid <= 0) 3704 return -EINVAL; 3705 3706 return do_tkill(0, pid, sig); 3707 } 3708 3709 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3710 { 3711 /* Not even root can pretend to send signals from the kernel. 3712 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3713 */ 3714 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3715 (task_pid_vnr(current) != pid)) 3716 return -EPERM; 3717 3718 /* POSIX.1b doesn't mention process groups. */ 3719 return kill_proc_info(sig, info, pid); 3720 } 3721 3722 /** 3723 * sys_rt_sigqueueinfo - send signal information to a signal 3724 * @pid: the PID of the thread 3725 * @sig: signal to be sent 3726 * @uinfo: signal info to be sent 3727 */ 3728 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3729 siginfo_t __user *, uinfo) 3730 { 3731 kernel_siginfo_t info; 3732 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3733 if (unlikely(ret)) 3734 return ret; 3735 return do_rt_sigqueueinfo(pid, sig, &info); 3736 } 3737 3738 #ifdef CONFIG_COMPAT 3739 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3740 compat_pid_t, pid, 3741 int, sig, 3742 struct compat_siginfo __user *, uinfo) 3743 { 3744 kernel_siginfo_t info; 3745 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3746 if (unlikely(ret)) 3747 return ret; 3748 return do_rt_sigqueueinfo(pid, sig, &info); 3749 } 3750 #endif 3751 3752 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 3753 { 3754 /* This is only valid for single tasks */ 3755 if (pid <= 0 || tgid <= 0) 3756 return -EINVAL; 3757 3758 /* Not even root can pretend to send signals from the kernel. 3759 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3760 */ 3761 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3762 (task_pid_vnr(current) != pid)) 3763 return -EPERM; 3764 3765 return do_send_specific(tgid, pid, sig, info); 3766 } 3767 3768 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3769 siginfo_t __user *, uinfo) 3770 { 3771 kernel_siginfo_t info; 3772 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3773 if (unlikely(ret)) 3774 return ret; 3775 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3776 } 3777 3778 #ifdef CONFIG_COMPAT 3779 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3780 compat_pid_t, tgid, 3781 compat_pid_t, pid, 3782 int, sig, 3783 struct compat_siginfo __user *, uinfo) 3784 { 3785 kernel_siginfo_t info; 3786 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3787 if (unlikely(ret)) 3788 return ret; 3789 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3790 } 3791 #endif 3792 3793 /* 3794 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3795 */ 3796 void kernel_sigaction(int sig, __sighandler_t action) 3797 { 3798 spin_lock_irq(¤t->sighand->siglock); 3799 current->sighand->action[sig - 1].sa.sa_handler = action; 3800 if (action == SIG_IGN) { 3801 sigset_t mask; 3802 3803 sigemptyset(&mask); 3804 sigaddset(&mask, sig); 3805 3806 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3807 flush_sigqueue_mask(&mask, ¤t->pending); 3808 recalc_sigpending(); 3809 } 3810 spin_unlock_irq(¤t->sighand->siglock); 3811 } 3812 EXPORT_SYMBOL(kernel_sigaction); 3813 3814 void __weak sigaction_compat_abi(struct k_sigaction *act, 3815 struct k_sigaction *oact) 3816 { 3817 } 3818 3819 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3820 { 3821 struct task_struct *p = current, *t; 3822 struct k_sigaction *k; 3823 sigset_t mask; 3824 3825 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3826 return -EINVAL; 3827 3828 k = &p->sighand->action[sig-1]; 3829 3830 spin_lock_irq(&p->sighand->siglock); 3831 if (oact) 3832 *oact = *k; 3833 3834 sigaction_compat_abi(act, oact); 3835 3836 if (act) { 3837 sigdelsetmask(&act->sa.sa_mask, 3838 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3839 *k = *act; 3840 /* 3841 * POSIX 3.3.1.3: 3842 * "Setting a signal action to SIG_IGN for a signal that is 3843 * pending shall cause the pending signal to be discarded, 3844 * whether or not it is blocked." 3845 * 3846 * "Setting a signal action to SIG_DFL for a signal that is 3847 * pending and whose default action is to ignore the signal 3848 * (for example, SIGCHLD), shall cause the pending signal to 3849 * be discarded, whether or not it is blocked" 3850 */ 3851 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3852 sigemptyset(&mask); 3853 sigaddset(&mask, sig); 3854 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3855 for_each_thread(p, t) 3856 flush_sigqueue_mask(&mask, &t->pending); 3857 } 3858 } 3859 3860 spin_unlock_irq(&p->sighand->siglock); 3861 return 0; 3862 } 3863 3864 static int 3865 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 3866 size_t min_ss_size) 3867 { 3868 struct task_struct *t = current; 3869 3870 if (oss) { 3871 memset(oss, 0, sizeof(stack_t)); 3872 oss->ss_sp = (void __user *) t->sas_ss_sp; 3873 oss->ss_size = t->sas_ss_size; 3874 oss->ss_flags = sas_ss_flags(sp) | 3875 (current->sas_ss_flags & SS_FLAG_BITS); 3876 } 3877 3878 if (ss) { 3879 void __user *ss_sp = ss->ss_sp; 3880 size_t ss_size = ss->ss_size; 3881 unsigned ss_flags = ss->ss_flags; 3882 int ss_mode; 3883 3884 if (unlikely(on_sig_stack(sp))) 3885 return -EPERM; 3886 3887 ss_mode = ss_flags & ~SS_FLAG_BITS; 3888 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 3889 ss_mode != 0)) 3890 return -EINVAL; 3891 3892 if (ss_mode == SS_DISABLE) { 3893 ss_size = 0; 3894 ss_sp = NULL; 3895 } else { 3896 if (unlikely(ss_size < min_ss_size)) 3897 return -ENOMEM; 3898 } 3899 3900 t->sas_ss_sp = (unsigned long) ss_sp; 3901 t->sas_ss_size = ss_size; 3902 t->sas_ss_flags = ss_flags; 3903 } 3904 return 0; 3905 } 3906 3907 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3908 { 3909 stack_t new, old; 3910 int err; 3911 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 3912 return -EFAULT; 3913 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 3914 current_user_stack_pointer(), 3915 MINSIGSTKSZ); 3916 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 3917 err = -EFAULT; 3918 return err; 3919 } 3920 3921 int restore_altstack(const stack_t __user *uss) 3922 { 3923 stack_t new; 3924 if (copy_from_user(&new, uss, sizeof(stack_t))) 3925 return -EFAULT; 3926 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 3927 MINSIGSTKSZ); 3928 /* squash all but EFAULT for now */ 3929 return 0; 3930 } 3931 3932 int __save_altstack(stack_t __user *uss, unsigned long sp) 3933 { 3934 struct task_struct *t = current; 3935 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3936 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3937 __put_user(t->sas_ss_size, &uss->ss_size); 3938 if (err) 3939 return err; 3940 if (t->sas_ss_flags & SS_AUTODISARM) 3941 sas_ss_reset(t); 3942 return 0; 3943 } 3944 3945 #ifdef CONFIG_COMPAT 3946 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 3947 compat_stack_t __user *uoss_ptr) 3948 { 3949 stack_t uss, uoss; 3950 int ret; 3951 3952 if (uss_ptr) { 3953 compat_stack_t uss32; 3954 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3955 return -EFAULT; 3956 uss.ss_sp = compat_ptr(uss32.ss_sp); 3957 uss.ss_flags = uss32.ss_flags; 3958 uss.ss_size = uss32.ss_size; 3959 } 3960 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 3961 compat_user_stack_pointer(), 3962 COMPAT_MINSIGSTKSZ); 3963 if (ret >= 0 && uoss_ptr) { 3964 compat_stack_t old; 3965 memset(&old, 0, sizeof(old)); 3966 old.ss_sp = ptr_to_compat(uoss.ss_sp); 3967 old.ss_flags = uoss.ss_flags; 3968 old.ss_size = uoss.ss_size; 3969 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 3970 ret = -EFAULT; 3971 } 3972 return ret; 3973 } 3974 3975 COMPAT_SYSCALL_DEFINE2(sigaltstack, 3976 const compat_stack_t __user *, uss_ptr, 3977 compat_stack_t __user *, uoss_ptr) 3978 { 3979 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 3980 } 3981 3982 int compat_restore_altstack(const compat_stack_t __user *uss) 3983 { 3984 int err = do_compat_sigaltstack(uss, NULL); 3985 /* squash all but -EFAULT for now */ 3986 return err == -EFAULT ? err : 0; 3987 } 3988 3989 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3990 { 3991 int err; 3992 struct task_struct *t = current; 3993 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 3994 &uss->ss_sp) | 3995 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3996 __put_user(t->sas_ss_size, &uss->ss_size); 3997 if (err) 3998 return err; 3999 if (t->sas_ss_flags & SS_AUTODISARM) 4000 sas_ss_reset(t); 4001 return 0; 4002 } 4003 #endif 4004 4005 #ifdef __ARCH_WANT_SYS_SIGPENDING 4006 4007 /** 4008 * sys_sigpending - examine pending signals 4009 * @uset: where mask of pending signal is returned 4010 */ 4011 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4012 { 4013 sigset_t set; 4014 4015 if (sizeof(old_sigset_t) > sizeof(*uset)) 4016 return -EINVAL; 4017 4018 do_sigpending(&set); 4019 4020 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4021 return -EFAULT; 4022 4023 return 0; 4024 } 4025 4026 #ifdef CONFIG_COMPAT 4027 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4028 { 4029 sigset_t set; 4030 4031 do_sigpending(&set); 4032 4033 return put_user(set.sig[0], set32); 4034 } 4035 #endif 4036 4037 #endif 4038 4039 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4040 /** 4041 * sys_sigprocmask - examine and change blocked signals 4042 * @how: whether to add, remove, or set signals 4043 * @nset: signals to add or remove (if non-null) 4044 * @oset: previous value of signal mask if non-null 4045 * 4046 * Some platforms have their own version with special arguments; 4047 * others support only sys_rt_sigprocmask. 4048 */ 4049 4050 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4051 old_sigset_t __user *, oset) 4052 { 4053 old_sigset_t old_set, new_set; 4054 sigset_t new_blocked; 4055 4056 old_set = current->blocked.sig[0]; 4057 4058 if (nset) { 4059 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4060 return -EFAULT; 4061 4062 new_blocked = current->blocked; 4063 4064 switch (how) { 4065 case SIG_BLOCK: 4066 sigaddsetmask(&new_blocked, new_set); 4067 break; 4068 case SIG_UNBLOCK: 4069 sigdelsetmask(&new_blocked, new_set); 4070 break; 4071 case SIG_SETMASK: 4072 new_blocked.sig[0] = new_set; 4073 break; 4074 default: 4075 return -EINVAL; 4076 } 4077 4078 set_current_blocked(&new_blocked); 4079 } 4080 4081 if (oset) { 4082 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4083 return -EFAULT; 4084 } 4085 4086 return 0; 4087 } 4088 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4089 4090 #ifndef CONFIG_ODD_RT_SIGACTION 4091 /** 4092 * sys_rt_sigaction - alter an action taken by a process 4093 * @sig: signal to be sent 4094 * @act: new sigaction 4095 * @oact: used to save the previous sigaction 4096 * @sigsetsize: size of sigset_t type 4097 */ 4098 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4099 const struct sigaction __user *, act, 4100 struct sigaction __user *, oact, 4101 size_t, sigsetsize) 4102 { 4103 struct k_sigaction new_sa, old_sa; 4104 int ret; 4105 4106 /* XXX: Don't preclude handling different sized sigset_t's. */ 4107 if (sigsetsize != sizeof(sigset_t)) 4108 return -EINVAL; 4109 4110 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4111 return -EFAULT; 4112 4113 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4114 if (ret) 4115 return ret; 4116 4117 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4118 return -EFAULT; 4119 4120 return 0; 4121 } 4122 #ifdef CONFIG_COMPAT 4123 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4124 const struct compat_sigaction __user *, act, 4125 struct compat_sigaction __user *, oact, 4126 compat_size_t, sigsetsize) 4127 { 4128 struct k_sigaction new_ka, old_ka; 4129 #ifdef __ARCH_HAS_SA_RESTORER 4130 compat_uptr_t restorer; 4131 #endif 4132 int ret; 4133 4134 /* XXX: Don't preclude handling different sized sigset_t's. */ 4135 if (sigsetsize != sizeof(compat_sigset_t)) 4136 return -EINVAL; 4137 4138 if (act) { 4139 compat_uptr_t handler; 4140 ret = get_user(handler, &act->sa_handler); 4141 new_ka.sa.sa_handler = compat_ptr(handler); 4142 #ifdef __ARCH_HAS_SA_RESTORER 4143 ret |= get_user(restorer, &act->sa_restorer); 4144 new_ka.sa.sa_restorer = compat_ptr(restorer); 4145 #endif 4146 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4147 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4148 if (ret) 4149 return -EFAULT; 4150 } 4151 4152 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4153 if (!ret && oact) { 4154 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4155 &oact->sa_handler); 4156 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4157 sizeof(oact->sa_mask)); 4158 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4159 #ifdef __ARCH_HAS_SA_RESTORER 4160 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4161 &oact->sa_restorer); 4162 #endif 4163 } 4164 return ret; 4165 } 4166 #endif 4167 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4168 4169 #ifdef CONFIG_OLD_SIGACTION 4170 SYSCALL_DEFINE3(sigaction, int, sig, 4171 const struct old_sigaction __user *, act, 4172 struct old_sigaction __user *, oact) 4173 { 4174 struct k_sigaction new_ka, old_ka; 4175 int ret; 4176 4177 if (act) { 4178 old_sigset_t mask; 4179 if (!access_ok(act, sizeof(*act)) || 4180 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4181 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4182 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4183 __get_user(mask, &act->sa_mask)) 4184 return -EFAULT; 4185 #ifdef __ARCH_HAS_KA_RESTORER 4186 new_ka.ka_restorer = NULL; 4187 #endif 4188 siginitset(&new_ka.sa.sa_mask, mask); 4189 } 4190 4191 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4192 4193 if (!ret && oact) { 4194 if (!access_ok(oact, sizeof(*oact)) || 4195 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4196 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4197 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4198 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4199 return -EFAULT; 4200 } 4201 4202 return ret; 4203 } 4204 #endif 4205 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4206 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4207 const struct compat_old_sigaction __user *, act, 4208 struct compat_old_sigaction __user *, oact) 4209 { 4210 struct k_sigaction new_ka, old_ka; 4211 int ret; 4212 compat_old_sigset_t mask; 4213 compat_uptr_t handler, restorer; 4214 4215 if (act) { 4216 if (!access_ok(act, sizeof(*act)) || 4217 __get_user(handler, &act->sa_handler) || 4218 __get_user(restorer, &act->sa_restorer) || 4219 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4220 __get_user(mask, &act->sa_mask)) 4221 return -EFAULT; 4222 4223 #ifdef __ARCH_HAS_KA_RESTORER 4224 new_ka.ka_restorer = NULL; 4225 #endif 4226 new_ka.sa.sa_handler = compat_ptr(handler); 4227 new_ka.sa.sa_restorer = compat_ptr(restorer); 4228 siginitset(&new_ka.sa.sa_mask, mask); 4229 } 4230 4231 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4232 4233 if (!ret && oact) { 4234 if (!access_ok(oact, sizeof(*oact)) || 4235 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4236 &oact->sa_handler) || 4237 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4238 &oact->sa_restorer) || 4239 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4240 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4241 return -EFAULT; 4242 } 4243 return ret; 4244 } 4245 #endif 4246 4247 #ifdef CONFIG_SGETMASK_SYSCALL 4248 4249 /* 4250 * For backwards compatibility. Functionality superseded by sigprocmask. 4251 */ 4252 SYSCALL_DEFINE0(sgetmask) 4253 { 4254 /* SMP safe */ 4255 return current->blocked.sig[0]; 4256 } 4257 4258 SYSCALL_DEFINE1(ssetmask, int, newmask) 4259 { 4260 int old = current->blocked.sig[0]; 4261 sigset_t newset; 4262 4263 siginitset(&newset, newmask); 4264 set_current_blocked(&newset); 4265 4266 return old; 4267 } 4268 #endif /* CONFIG_SGETMASK_SYSCALL */ 4269 4270 #ifdef __ARCH_WANT_SYS_SIGNAL 4271 /* 4272 * For backwards compatibility. Functionality superseded by sigaction. 4273 */ 4274 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4275 { 4276 struct k_sigaction new_sa, old_sa; 4277 int ret; 4278 4279 new_sa.sa.sa_handler = handler; 4280 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4281 sigemptyset(&new_sa.sa.sa_mask); 4282 4283 ret = do_sigaction(sig, &new_sa, &old_sa); 4284 4285 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4286 } 4287 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4288 4289 #ifdef __ARCH_WANT_SYS_PAUSE 4290 4291 SYSCALL_DEFINE0(pause) 4292 { 4293 while (!signal_pending(current)) { 4294 __set_current_state(TASK_INTERRUPTIBLE); 4295 schedule(); 4296 } 4297 return -ERESTARTNOHAND; 4298 } 4299 4300 #endif 4301 4302 static int sigsuspend(sigset_t *set) 4303 { 4304 current->saved_sigmask = current->blocked; 4305 set_current_blocked(set); 4306 4307 while (!signal_pending(current)) { 4308 __set_current_state(TASK_INTERRUPTIBLE); 4309 schedule(); 4310 } 4311 set_restore_sigmask(); 4312 return -ERESTARTNOHAND; 4313 } 4314 4315 /** 4316 * sys_rt_sigsuspend - replace the signal mask for a value with the 4317 * @unewset value until a signal is received 4318 * @unewset: new signal mask value 4319 * @sigsetsize: size of sigset_t type 4320 */ 4321 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4322 { 4323 sigset_t newset; 4324 4325 /* XXX: Don't preclude handling different sized sigset_t's. */ 4326 if (sigsetsize != sizeof(sigset_t)) 4327 return -EINVAL; 4328 4329 if (copy_from_user(&newset, unewset, sizeof(newset))) 4330 return -EFAULT; 4331 return sigsuspend(&newset); 4332 } 4333 4334 #ifdef CONFIG_COMPAT 4335 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4336 { 4337 sigset_t newset; 4338 4339 /* XXX: Don't preclude handling different sized sigset_t's. */ 4340 if (sigsetsize != sizeof(sigset_t)) 4341 return -EINVAL; 4342 4343 if (get_compat_sigset(&newset, unewset)) 4344 return -EFAULT; 4345 return sigsuspend(&newset); 4346 } 4347 #endif 4348 4349 #ifdef CONFIG_OLD_SIGSUSPEND 4350 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4351 { 4352 sigset_t blocked; 4353 siginitset(&blocked, mask); 4354 return sigsuspend(&blocked); 4355 } 4356 #endif 4357 #ifdef CONFIG_OLD_SIGSUSPEND3 4358 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4359 { 4360 sigset_t blocked; 4361 siginitset(&blocked, mask); 4362 return sigsuspend(&blocked); 4363 } 4364 #endif 4365 4366 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4367 { 4368 return NULL; 4369 } 4370 4371 static inline void siginfo_buildtime_checks(void) 4372 { 4373 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4374 4375 /* Verify the offsets in the two siginfos match */ 4376 #define CHECK_OFFSET(field) \ 4377 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4378 4379 /* kill */ 4380 CHECK_OFFSET(si_pid); 4381 CHECK_OFFSET(si_uid); 4382 4383 /* timer */ 4384 CHECK_OFFSET(si_tid); 4385 CHECK_OFFSET(si_overrun); 4386 CHECK_OFFSET(si_value); 4387 4388 /* rt */ 4389 CHECK_OFFSET(si_pid); 4390 CHECK_OFFSET(si_uid); 4391 CHECK_OFFSET(si_value); 4392 4393 /* sigchld */ 4394 CHECK_OFFSET(si_pid); 4395 CHECK_OFFSET(si_uid); 4396 CHECK_OFFSET(si_status); 4397 CHECK_OFFSET(si_utime); 4398 CHECK_OFFSET(si_stime); 4399 4400 /* sigfault */ 4401 CHECK_OFFSET(si_addr); 4402 CHECK_OFFSET(si_addr_lsb); 4403 CHECK_OFFSET(si_lower); 4404 CHECK_OFFSET(si_upper); 4405 CHECK_OFFSET(si_pkey); 4406 4407 /* sigpoll */ 4408 CHECK_OFFSET(si_band); 4409 CHECK_OFFSET(si_fd); 4410 4411 /* sigsys */ 4412 CHECK_OFFSET(si_call_addr); 4413 CHECK_OFFSET(si_syscall); 4414 CHECK_OFFSET(si_arch); 4415 #undef CHECK_OFFSET 4416 } 4417 4418 void __init signals_init(void) 4419 { 4420 siginfo_buildtime_checks(); 4421 4422 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 4423 } 4424 4425 #ifdef CONFIG_KGDB_KDB 4426 #include <linux/kdb.h> 4427 /* 4428 * kdb_send_sig - Allows kdb to send signals without exposing 4429 * signal internals. This function checks if the required locks are 4430 * available before calling the main signal code, to avoid kdb 4431 * deadlocks. 4432 */ 4433 void kdb_send_sig(struct task_struct *t, int sig) 4434 { 4435 static struct task_struct *kdb_prev_t; 4436 int new_t, ret; 4437 if (!spin_trylock(&t->sighand->siglock)) { 4438 kdb_printf("Can't do kill command now.\n" 4439 "The sigmask lock is held somewhere else in " 4440 "kernel, try again later\n"); 4441 return; 4442 } 4443 new_t = kdb_prev_t != t; 4444 kdb_prev_t = t; 4445 if (t->state != TASK_RUNNING && new_t) { 4446 spin_unlock(&t->sighand->siglock); 4447 kdb_printf("Process is not RUNNING, sending a signal from " 4448 "kdb risks deadlock\n" 4449 "on the run queue locks. " 4450 "The signal has _not_ been sent.\n" 4451 "Reissue the kill command if you want to risk " 4452 "the deadlock.\n"); 4453 return; 4454 } 4455 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4456 spin_unlock(&t->sighand->siglock); 4457 if (ret) 4458 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4459 sig, t->pid); 4460 else 4461 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4462 } 4463 #endif /* CONFIG_KGDB_KDB */ 4464