1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/mm.h> 26 #include <linux/proc_fs.h> 27 #include <linux/tty.h> 28 #include <linux/binfmts.h> 29 #include <linux/coredump.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/ptrace.h> 33 #include <linux/signal.h> 34 #include <linux/signalfd.h> 35 #include <linux/ratelimit.h> 36 #include <linux/task_work.h> 37 #include <linux/capability.h> 38 #include <linux/freezer.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/nsproxy.h> 41 #include <linux/user_namespace.h> 42 #include <linux/uprobes.h> 43 #include <linux/compat.h> 44 #include <linux/cn_proc.h> 45 #include <linux/compiler.h> 46 #include <linux/posix-timers.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 #include <linux/sysctl.h> 50 #include <uapi/linux/pidfd.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/signal.h> 54 55 #include <asm/param.h> 56 #include <linux/uaccess.h> 57 #include <asm/unistd.h> 58 #include <asm/siginfo.h> 59 #include <asm/cacheflush.h> 60 #include <asm/syscall.h> /* for syscall_get_* */ 61 62 #include "time/posix-timers.h" 63 64 /* 65 * SLAB caches for signal bits. 66 */ 67 68 static struct kmem_cache *sigqueue_cachep; 69 70 int print_fatal_signals __read_mostly; 71 72 static void __user *sig_handler(struct task_struct *t, int sig) 73 { 74 return t->sighand->action[sig - 1].sa.sa_handler; 75 } 76 77 static inline bool sig_handler_ignored(void __user *handler, int sig) 78 { 79 /* Is it explicitly or implicitly ignored? */ 80 return handler == SIG_IGN || 81 (handler == SIG_DFL && sig_kernel_ignore(sig)); 82 } 83 84 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 85 { 86 void __user *handler; 87 88 handler = sig_handler(t, sig); 89 90 /* SIGKILL and SIGSTOP may not be sent to the global init */ 91 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 92 return true; 93 94 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 95 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 96 return true; 97 98 /* Only allow kernel generated signals to this kthread */ 99 if (unlikely((t->flags & PF_KTHREAD) && 100 (handler == SIG_KTHREAD_KERNEL) && !force)) 101 return true; 102 103 return sig_handler_ignored(handler, sig); 104 } 105 106 static bool sig_ignored(struct task_struct *t, int sig, bool force) 107 { 108 /* 109 * Blocked signals are never ignored, since the 110 * signal handler may change by the time it is 111 * unblocked. 112 */ 113 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 114 return false; 115 116 /* 117 * Tracers may want to know about even ignored signal unless it 118 * is SIGKILL which can't be reported anyway but can be ignored 119 * by SIGNAL_UNKILLABLE task. 120 */ 121 if (t->ptrace && sig != SIGKILL) 122 return false; 123 124 return sig_task_ignored(t, sig, force); 125 } 126 127 /* 128 * Re-calculate pending state from the set of locally pending 129 * signals, globally pending signals, and blocked signals. 130 */ 131 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 132 { 133 unsigned long ready; 134 long i; 135 136 switch (_NSIG_WORDS) { 137 default: 138 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 139 ready |= signal->sig[i] &~ blocked->sig[i]; 140 break; 141 142 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 143 ready |= signal->sig[2] &~ blocked->sig[2]; 144 ready |= signal->sig[1] &~ blocked->sig[1]; 145 ready |= signal->sig[0] &~ blocked->sig[0]; 146 break; 147 148 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 149 ready |= signal->sig[0] &~ blocked->sig[0]; 150 break; 151 152 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 153 } 154 return ready != 0; 155 } 156 157 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 158 159 static bool recalc_sigpending_tsk(struct task_struct *t) 160 { 161 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 162 PENDING(&t->pending, &t->blocked) || 163 PENDING(&t->signal->shared_pending, &t->blocked) || 164 cgroup_task_frozen(t)) { 165 set_tsk_thread_flag(t, TIF_SIGPENDING); 166 return true; 167 } 168 169 /* 170 * We must never clear the flag in another thread, or in current 171 * when it's possible the current syscall is returning -ERESTART*. 172 * So we don't clear it here, and only callers who know they should do. 173 */ 174 return false; 175 } 176 177 void recalc_sigpending(void) 178 { 179 if (!recalc_sigpending_tsk(current) && !freezing(current)) 180 clear_thread_flag(TIF_SIGPENDING); 181 182 } 183 EXPORT_SYMBOL(recalc_sigpending); 184 185 void calculate_sigpending(void) 186 { 187 /* Have any signals or users of TIF_SIGPENDING been delayed 188 * until after fork? 189 */ 190 spin_lock_irq(¤t->sighand->siglock); 191 set_tsk_thread_flag(current, TIF_SIGPENDING); 192 recalc_sigpending(); 193 spin_unlock_irq(¤t->sighand->siglock); 194 } 195 196 /* Given the mask, find the first available signal that should be serviced. */ 197 198 #define SYNCHRONOUS_MASK \ 199 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 200 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 201 202 int next_signal(struct sigpending *pending, sigset_t *mask) 203 { 204 unsigned long i, *s, *m, x; 205 int sig = 0; 206 207 s = pending->signal.sig; 208 m = mask->sig; 209 210 /* 211 * Handle the first word specially: it contains the 212 * synchronous signals that need to be dequeued first. 213 */ 214 x = *s &~ *m; 215 if (x) { 216 if (x & SYNCHRONOUS_MASK) 217 x &= SYNCHRONOUS_MASK; 218 sig = ffz(~x) + 1; 219 return sig; 220 } 221 222 switch (_NSIG_WORDS) { 223 default: 224 for (i = 1; i < _NSIG_WORDS; ++i) { 225 x = *++s &~ *++m; 226 if (!x) 227 continue; 228 sig = ffz(~x) + i*_NSIG_BPW + 1; 229 break; 230 } 231 break; 232 233 case 2: 234 x = s[1] &~ m[1]; 235 if (!x) 236 break; 237 sig = ffz(~x) + _NSIG_BPW + 1; 238 break; 239 240 case 1: 241 /* Nothing to do */ 242 break; 243 } 244 245 return sig; 246 } 247 248 static inline void print_dropped_signal(int sig) 249 { 250 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 251 252 if (!print_fatal_signals) 253 return; 254 255 if (!__ratelimit(&ratelimit_state)) 256 return; 257 258 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 259 current->comm, current->pid, sig); 260 } 261 262 /** 263 * task_set_jobctl_pending - set jobctl pending bits 264 * @task: target task 265 * @mask: pending bits to set 266 * 267 * Clear @mask from @task->jobctl. @mask must be subset of 268 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 269 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 270 * cleared. If @task is already being killed or exiting, this function 271 * becomes noop. 272 * 273 * CONTEXT: 274 * Must be called with @task->sighand->siglock held. 275 * 276 * RETURNS: 277 * %true if @mask is set, %false if made noop because @task was dying. 278 */ 279 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 280 { 281 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 282 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 283 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 284 285 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 286 return false; 287 288 if (mask & JOBCTL_STOP_SIGMASK) 289 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 290 291 task->jobctl |= mask; 292 return true; 293 } 294 295 /** 296 * task_clear_jobctl_trapping - clear jobctl trapping bit 297 * @task: target task 298 * 299 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 300 * Clear it and wake up the ptracer. Note that we don't need any further 301 * locking. @task->siglock guarantees that @task->parent points to the 302 * ptracer. 303 * 304 * CONTEXT: 305 * Must be called with @task->sighand->siglock held. 306 */ 307 void task_clear_jobctl_trapping(struct task_struct *task) 308 { 309 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 310 task->jobctl &= ~JOBCTL_TRAPPING; 311 smp_mb(); /* advised by wake_up_bit() */ 312 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 313 } 314 } 315 316 /** 317 * task_clear_jobctl_pending - clear jobctl pending bits 318 * @task: target task 319 * @mask: pending bits to clear 320 * 321 * Clear @mask from @task->jobctl. @mask must be subset of 322 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 323 * STOP bits are cleared together. 324 * 325 * If clearing of @mask leaves no stop or trap pending, this function calls 326 * task_clear_jobctl_trapping(). 327 * 328 * CONTEXT: 329 * Must be called with @task->sighand->siglock held. 330 */ 331 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 332 { 333 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 334 335 if (mask & JOBCTL_STOP_PENDING) 336 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 337 338 task->jobctl &= ~mask; 339 340 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 341 task_clear_jobctl_trapping(task); 342 } 343 344 /** 345 * task_participate_group_stop - participate in a group stop 346 * @task: task participating in a group stop 347 * 348 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 349 * Group stop states are cleared and the group stop count is consumed if 350 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 351 * stop, the appropriate `SIGNAL_*` flags are set. 352 * 353 * CONTEXT: 354 * Must be called with @task->sighand->siglock held. 355 * 356 * RETURNS: 357 * %true if group stop completion should be notified to the parent, %false 358 * otherwise. 359 */ 360 static bool task_participate_group_stop(struct task_struct *task) 361 { 362 struct signal_struct *sig = task->signal; 363 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 364 365 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 366 367 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 368 369 if (!consume) 370 return false; 371 372 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 373 sig->group_stop_count--; 374 375 /* 376 * Tell the caller to notify completion iff we are entering into a 377 * fresh group stop. Read comment in do_signal_stop() for details. 378 */ 379 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 380 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 381 return true; 382 } 383 return false; 384 } 385 386 void task_join_group_stop(struct task_struct *task) 387 { 388 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 389 struct signal_struct *sig = current->signal; 390 391 if (sig->group_stop_count) { 392 sig->group_stop_count++; 393 mask |= JOBCTL_STOP_CONSUME; 394 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 395 return; 396 397 /* Have the new thread join an on-going signal group stop */ 398 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 399 } 400 401 static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig, 402 int override_rlimit) 403 { 404 struct ucounts *ucounts; 405 long sigpending; 406 407 /* 408 * Protect access to @t credentials. This can go away when all 409 * callers hold rcu read lock. 410 * 411 * NOTE! A pending signal will hold on to the user refcount, 412 * and we get/put the refcount only when the sigpending count 413 * changes from/to zero. 414 */ 415 rcu_read_lock(); 416 ucounts = task_ucounts(t); 417 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 418 override_rlimit); 419 rcu_read_unlock(); 420 if (!sigpending) 421 return NULL; 422 423 if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) { 424 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 425 print_dropped_signal(sig); 426 return NULL; 427 } 428 429 return ucounts; 430 } 431 432 static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts, 433 const unsigned int sigqueue_flags) 434 { 435 INIT_LIST_HEAD(&q->list); 436 q->flags = sigqueue_flags; 437 q->ucounts = ucounts; 438 } 439 440 /* 441 * allocate a new signal queue record 442 * - this may be called without locks if and only if t == current, otherwise an 443 * appropriate lock must be held to stop the target task from exiting 444 */ 445 static struct sigqueue *sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 446 int override_rlimit) 447 { 448 struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit); 449 struct sigqueue *q; 450 451 if (!ucounts) 452 return NULL; 453 454 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 455 if (!q) { 456 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 457 return NULL; 458 } 459 460 __sigqueue_init(q, ucounts, 0); 461 return q; 462 } 463 464 static void __sigqueue_free(struct sigqueue *q) 465 { 466 if (q->flags & SIGQUEUE_PREALLOC) { 467 posixtimer_sigqueue_putref(q); 468 return; 469 } 470 if (q->ucounts) { 471 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 472 q->ucounts = NULL; 473 } 474 kmem_cache_free(sigqueue_cachep, q); 475 } 476 477 void flush_sigqueue(struct sigpending *queue) 478 { 479 struct sigqueue *q; 480 481 sigemptyset(&queue->signal); 482 while (!list_empty(&queue->list)) { 483 q = list_entry(queue->list.next, struct sigqueue , list); 484 list_del_init(&q->list); 485 __sigqueue_free(q); 486 } 487 } 488 489 /* 490 * Flush all pending signals for this kthread. 491 */ 492 void flush_signals(struct task_struct *t) 493 { 494 unsigned long flags; 495 496 spin_lock_irqsave(&t->sighand->siglock, flags); 497 clear_tsk_thread_flag(t, TIF_SIGPENDING); 498 flush_sigqueue(&t->pending); 499 flush_sigqueue(&t->signal->shared_pending); 500 spin_unlock_irqrestore(&t->sighand->siglock, flags); 501 } 502 EXPORT_SYMBOL(flush_signals); 503 504 void ignore_signals(struct task_struct *t) 505 { 506 int i; 507 508 for (i = 0; i < _NSIG; ++i) 509 t->sighand->action[i].sa.sa_handler = SIG_IGN; 510 511 flush_signals(t); 512 } 513 514 /* 515 * Flush all handlers for a task. 516 */ 517 518 void 519 flush_signal_handlers(struct task_struct *t, int force_default) 520 { 521 int i; 522 struct k_sigaction *ka = &t->sighand->action[0]; 523 for (i = _NSIG ; i != 0 ; i--) { 524 if (force_default || ka->sa.sa_handler != SIG_IGN) 525 ka->sa.sa_handler = SIG_DFL; 526 ka->sa.sa_flags = 0; 527 #ifdef __ARCH_HAS_SA_RESTORER 528 ka->sa.sa_restorer = NULL; 529 #endif 530 sigemptyset(&ka->sa.sa_mask); 531 ka++; 532 } 533 } 534 535 bool unhandled_signal(struct task_struct *tsk, int sig) 536 { 537 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 538 if (is_global_init(tsk)) 539 return true; 540 541 if (handler != SIG_IGN && handler != SIG_DFL) 542 return false; 543 544 /* If dying, we handle all new signals by ignoring them */ 545 if (fatal_signal_pending(tsk)) 546 return false; 547 548 /* if ptraced, let the tracer determine */ 549 return !tsk->ptrace; 550 } 551 552 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 553 struct sigqueue **timer_sigq) 554 { 555 struct sigqueue *q, *first = NULL; 556 557 /* 558 * Collect the siginfo appropriate to this signal. Check if 559 * there is another siginfo for the same signal. 560 */ 561 list_for_each_entry(q, &list->list, list) { 562 if (q->info.si_signo == sig) { 563 if (first) 564 goto still_pending; 565 first = q; 566 } 567 } 568 569 sigdelset(&list->signal, sig); 570 571 if (first) { 572 still_pending: 573 list_del_init(&first->list); 574 copy_siginfo(info, &first->info); 575 576 /* 577 * posix-timer signals are preallocated and freed when the last 578 * reference count is dropped in posixtimer_deliver_signal() or 579 * immediately on timer deletion when the signal is not pending. 580 * Spare the extra round through __sigqueue_free() which is 581 * ignoring preallocated signals. 582 */ 583 if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER))) 584 *timer_sigq = first; 585 else 586 __sigqueue_free(first); 587 } else { 588 /* 589 * Ok, it wasn't in the queue. This must be 590 * a fast-pathed signal or we must have been 591 * out of queue space. So zero out the info. 592 */ 593 clear_siginfo(info); 594 info->si_signo = sig; 595 info->si_errno = 0; 596 info->si_code = SI_USER; 597 info->si_pid = 0; 598 info->si_uid = 0; 599 } 600 } 601 602 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 603 kernel_siginfo_t *info, struct sigqueue **timer_sigq) 604 { 605 int sig = next_signal(pending, mask); 606 607 if (sig) 608 collect_signal(sig, pending, info, timer_sigq); 609 return sig; 610 } 611 612 /* 613 * Try to dequeue a signal. If a deliverable signal is found fill in the 614 * caller provided siginfo and return the signal number. Otherwise return 615 * 0. 616 */ 617 int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type) 618 { 619 struct task_struct *tsk = current; 620 struct sigqueue *timer_sigq; 621 int signr; 622 623 lockdep_assert_held(&tsk->sighand->siglock); 624 625 again: 626 *type = PIDTYPE_PID; 627 timer_sigq = NULL; 628 signr = __dequeue_signal(&tsk->pending, mask, info, &timer_sigq); 629 if (!signr) { 630 *type = PIDTYPE_TGID; 631 signr = __dequeue_signal(&tsk->signal->shared_pending, 632 mask, info, &timer_sigq); 633 634 if (unlikely(signr == SIGALRM)) 635 posixtimer_rearm_itimer(tsk); 636 } 637 638 recalc_sigpending(); 639 if (!signr) 640 return 0; 641 642 if (unlikely(sig_kernel_stop(signr))) { 643 /* 644 * Set a marker that we have dequeued a stop signal. Our 645 * caller might release the siglock and then the pending 646 * stop signal it is about to process is no longer in the 647 * pending bitmasks, but must still be cleared by a SIGCONT 648 * (and overruled by a SIGKILL). So those cases clear this 649 * shared flag after we've set it. Note that this flag may 650 * remain set after the signal we return is ignored or 651 * handled. That doesn't matter because its only purpose 652 * is to alert stop-signal processing code when another 653 * processor has come along and cleared the flag. 654 */ 655 current->jobctl |= JOBCTL_STOP_DEQUEUED; 656 } 657 658 if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(timer_sigq)) { 659 if (!posixtimer_deliver_signal(info, timer_sigq)) 660 goto again; 661 } 662 663 return signr; 664 } 665 EXPORT_SYMBOL_GPL(dequeue_signal); 666 667 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 668 { 669 struct task_struct *tsk = current; 670 struct sigpending *pending = &tsk->pending; 671 struct sigqueue *q, *sync = NULL; 672 673 /* 674 * Might a synchronous signal be in the queue? 675 */ 676 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 677 return 0; 678 679 /* 680 * Return the first synchronous signal in the queue. 681 */ 682 list_for_each_entry(q, &pending->list, list) { 683 /* Synchronous signals have a positive si_code */ 684 if ((q->info.si_code > SI_USER) && 685 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 686 sync = q; 687 goto next; 688 } 689 } 690 return 0; 691 next: 692 /* 693 * Check if there is another siginfo for the same signal. 694 */ 695 list_for_each_entry_continue(q, &pending->list, list) { 696 if (q->info.si_signo == sync->info.si_signo) 697 goto still_pending; 698 } 699 700 sigdelset(&pending->signal, sync->info.si_signo); 701 recalc_sigpending(); 702 still_pending: 703 list_del_init(&sync->list); 704 copy_siginfo(info, &sync->info); 705 __sigqueue_free(sync); 706 return info->si_signo; 707 } 708 709 /* 710 * Tell a process that it has a new active signal.. 711 * 712 * NOTE! we rely on the previous spin_lock to 713 * lock interrupts for us! We can only be called with 714 * "siglock" held, and the local interrupt must 715 * have been disabled when that got acquired! 716 * 717 * No need to set need_resched since signal event passing 718 * goes through ->blocked 719 */ 720 void signal_wake_up_state(struct task_struct *t, unsigned int state) 721 { 722 lockdep_assert_held(&t->sighand->siglock); 723 724 set_tsk_thread_flag(t, TIF_SIGPENDING); 725 726 /* 727 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 728 * case. We don't check t->state here because there is a race with it 729 * executing another processor and just now entering stopped state. 730 * By using wake_up_state, we ensure the process will wake up and 731 * handle its death signal. 732 */ 733 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 734 kick_process(t); 735 } 736 737 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q); 738 739 static void sigqueue_free_ignored(struct task_struct *tsk, struct sigqueue *q) 740 { 741 if (likely(!(q->flags & SIGQUEUE_PREALLOC) || q->info.si_code != SI_TIMER)) 742 __sigqueue_free(q); 743 else 744 posixtimer_sig_ignore(tsk, q); 745 } 746 747 /* Remove signals in mask from the pending set and queue. */ 748 static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s) 749 { 750 struct sigqueue *q, *n; 751 sigset_t m; 752 753 lockdep_assert_held(&p->sighand->siglock); 754 755 sigandsets(&m, mask, &s->signal); 756 if (sigisemptyset(&m)) 757 return; 758 759 sigandnsets(&s->signal, &s->signal, mask); 760 list_for_each_entry_safe(q, n, &s->list, list) { 761 if (sigismember(mask, q->info.si_signo)) { 762 list_del_init(&q->list); 763 sigqueue_free_ignored(p, q); 764 } 765 } 766 } 767 768 static inline int is_si_special(const struct kernel_siginfo *info) 769 { 770 return info <= SEND_SIG_PRIV; 771 } 772 773 static inline bool si_fromuser(const struct kernel_siginfo *info) 774 { 775 return info == SEND_SIG_NOINFO || 776 (!is_si_special(info) && SI_FROMUSER(info)); 777 } 778 779 /* 780 * called with RCU read lock from check_kill_permission() 781 */ 782 static bool kill_ok_by_cred(struct task_struct *t) 783 { 784 const struct cred *cred = current_cred(); 785 const struct cred *tcred = __task_cred(t); 786 787 return uid_eq(cred->euid, tcred->suid) || 788 uid_eq(cred->euid, tcred->uid) || 789 uid_eq(cred->uid, tcred->suid) || 790 uid_eq(cred->uid, tcred->uid) || 791 ns_capable(tcred->user_ns, CAP_KILL); 792 } 793 794 /* 795 * Bad permissions for sending the signal 796 * - the caller must hold the RCU read lock 797 */ 798 static int check_kill_permission(int sig, struct kernel_siginfo *info, 799 struct task_struct *t) 800 { 801 struct pid *sid; 802 int error; 803 804 if (!valid_signal(sig)) 805 return -EINVAL; 806 807 if (!si_fromuser(info)) 808 return 0; 809 810 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 811 if (error) 812 return error; 813 814 if (!same_thread_group(current, t) && 815 !kill_ok_by_cred(t)) { 816 switch (sig) { 817 case SIGCONT: 818 sid = task_session(t); 819 /* 820 * We don't return the error if sid == NULL. The 821 * task was unhashed, the caller must notice this. 822 */ 823 if (!sid || sid == task_session(current)) 824 break; 825 fallthrough; 826 default: 827 return -EPERM; 828 } 829 } 830 831 return security_task_kill(t, info, sig, NULL); 832 } 833 834 /** 835 * ptrace_trap_notify - schedule trap to notify ptracer 836 * @t: tracee wanting to notify tracer 837 * 838 * This function schedules sticky ptrace trap which is cleared on the next 839 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 840 * ptracer. 841 * 842 * If @t is running, STOP trap will be taken. If trapped for STOP and 843 * ptracer is listening for events, tracee is woken up so that it can 844 * re-trap for the new event. If trapped otherwise, STOP trap will be 845 * eventually taken without returning to userland after the existing traps 846 * are finished by PTRACE_CONT. 847 * 848 * CONTEXT: 849 * Must be called with @task->sighand->siglock held. 850 */ 851 static void ptrace_trap_notify(struct task_struct *t) 852 { 853 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 854 lockdep_assert_held(&t->sighand->siglock); 855 856 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 857 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 858 } 859 860 /* 861 * Handle magic process-wide effects of stop/continue signals. Unlike 862 * the signal actions, these happen immediately at signal-generation 863 * time regardless of blocking, ignoring, or handling. This does the 864 * actual continuing for SIGCONT, but not the actual stopping for stop 865 * signals. The process stop is done as a signal action for SIG_DFL. 866 * 867 * Returns true if the signal should be actually delivered, otherwise 868 * it should be dropped. 869 */ 870 static bool prepare_signal(int sig, struct task_struct *p, bool force) 871 { 872 struct signal_struct *signal = p->signal; 873 struct task_struct *t; 874 sigset_t flush; 875 876 if (signal->flags & SIGNAL_GROUP_EXIT) { 877 if (signal->core_state) 878 return sig == SIGKILL; 879 /* 880 * The process is in the middle of dying, drop the signal. 881 */ 882 return false; 883 } else if (sig_kernel_stop(sig)) { 884 /* 885 * This is a stop signal. Remove SIGCONT from all queues. 886 */ 887 siginitset(&flush, sigmask(SIGCONT)); 888 flush_sigqueue_mask(p, &flush, &signal->shared_pending); 889 for_each_thread(p, t) 890 flush_sigqueue_mask(p, &flush, &t->pending); 891 } else if (sig == SIGCONT) { 892 unsigned int why; 893 /* 894 * Remove all stop signals from all queues, wake all threads. 895 */ 896 siginitset(&flush, SIG_KERNEL_STOP_MASK); 897 flush_sigqueue_mask(p, &flush, &signal->shared_pending); 898 for_each_thread(p, t) { 899 flush_sigqueue_mask(p, &flush, &t->pending); 900 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 901 if (likely(!(t->ptrace & PT_SEIZED))) { 902 t->jobctl &= ~JOBCTL_STOPPED; 903 wake_up_state(t, __TASK_STOPPED); 904 } else 905 ptrace_trap_notify(t); 906 } 907 908 /* 909 * Notify the parent with CLD_CONTINUED if we were stopped. 910 * 911 * If we were in the middle of a group stop, we pretend it 912 * was already finished, and then continued. Since SIGCHLD 913 * doesn't queue we report only CLD_STOPPED, as if the next 914 * CLD_CONTINUED was dropped. 915 */ 916 why = 0; 917 if (signal->flags & SIGNAL_STOP_STOPPED) 918 why |= SIGNAL_CLD_CONTINUED; 919 else if (signal->group_stop_count) 920 why |= SIGNAL_CLD_STOPPED; 921 922 if (why) { 923 /* 924 * The first thread which returns from do_signal_stop() 925 * will take ->siglock, notice SIGNAL_CLD_MASK, and 926 * notify its parent. See get_signal(). 927 */ 928 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 929 signal->group_stop_count = 0; 930 signal->group_exit_code = 0; 931 } 932 } 933 934 return !sig_ignored(p, sig, force); 935 } 936 937 /* 938 * Test if P wants to take SIG. After we've checked all threads with this, 939 * it's equivalent to finding no threads not blocking SIG. Any threads not 940 * blocking SIG were ruled out because they are not running and already 941 * have pending signals. Such threads will dequeue from the shared queue 942 * as soon as they're available, so putting the signal on the shared queue 943 * will be equivalent to sending it to one such thread. 944 */ 945 static inline bool wants_signal(int sig, struct task_struct *p) 946 { 947 if (sigismember(&p->blocked, sig)) 948 return false; 949 950 if (p->flags & PF_EXITING) 951 return false; 952 953 if (sig == SIGKILL) 954 return true; 955 956 if (task_is_stopped_or_traced(p)) 957 return false; 958 959 return task_curr(p) || !task_sigpending(p); 960 } 961 962 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 963 { 964 struct signal_struct *signal = p->signal; 965 struct task_struct *t; 966 967 /* 968 * Now find a thread we can wake up to take the signal off the queue. 969 * 970 * Try the suggested task first (may or may not be the main thread). 971 */ 972 if (wants_signal(sig, p)) 973 t = p; 974 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 975 /* 976 * There is just one thread and it does not need to be woken. 977 * It will dequeue unblocked signals before it runs again. 978 */ 979 return; 980 else { 981 /* 982 * Otherwise try to find a suitable thread. 983 */ 984 t = signal->curr_target; 985 while (!wants_signal(sig, t)) { 986 t = next_thread(t); 987 if (t == signal->curr_target) 988 /* 989 * No thread needs to be woken. 990 * Any eligible threads will see 991 * the signal in the queue soon. 992 */ 993 return; 994 } 995 signal->curr_target = t; 996 } 997 998 /* 999 * Found a killable thread. If the signal will be fatal, 1000 * then start taking the whole group down immediately. 1001 */ 1002 if (sig_fatal(p, sig) && 1003 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1004 !sigismember(&t->real_blocked, sig) && 1005 (sig == SIGKILL || !p->ptrace)) { 1006 /* 1007 * This signal will be fatal to the whole group. 1008 */ 1009 if (!sig_kernel_coredump(sig)) { 1010 /* 1011 * Start a group exit and wake everybody up. 1012 * This way we don't have other threads 1013 * running and doing things after a slower 1014 * thread has the fatal signal pending. 1015 */ 1016 signal->flags = SIGNAL_GROUP_EXIT; 1017 signal->group_exit_code = sig; 1018 signal->group_stop_count = 0; 1019 __for_each_thread(signal, t) { 1020 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1021 sigaddset(&t->pending.signal, SIGKILL); 1022 signal_wake_up(t, 1); 1023 } 1024 return; 1025 } 1026 } 1027 1028 /* 1029 * The signal is already in the shared-pending queue. 1030 * Tell the chosen thread to wake up and dequeue it. 1031 */ 1032 signal_wake_up(t, sig == SIGKILL); 1033 return; 1034 } 1035 1036 static inline bool legacy_queue(struct sigpending *signals, int sig) 1037 { 1038 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1039 } 1040 1041 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1042 struct task_struct *t, enum pid_type type, bool force) 1043 { 1044 struct sigpending *pending; 1045 struct sigqueue *q; 1046 int override_rlimit; 1047 int ret = 0, result; 1048 1049 lockdep_assert_held(&t->sighand->siglock); 1050 1051 result = TRACE_SIGNAL_IGNORED; 1052 if (!prepare_signal(sig, t, force)) 1053 goto ret; 1054 1055 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1056 /* 1057 * Short-circuit ignored signals and support queuing 1058 * exactly one non-rt signal, so that we can get more 1059 * detailed information about the cause of the signal. 1060 */ 1061 result = TRACE_SIGNAL_ALREADY_PENDING; 1062 if (legacy_queue(pending, sig)) 1063 goto ret; 1064 1065 result = TRACE_SIGNAL_DELIVERED; 1066 /* 1067 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1068 */ 1069 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1070 goto out_set; 1071 1072 /* 1073 * Real-time signals must be queued if sent by sigqueue, or 1074 * some other real-time mechanism. It is implementation 1075 * defined whether kill() does so. We attempt to do so, on 1076 * the principle of least surprise, but since kill is not 1077 * allowed to fail with EAGAIN when low on memory we just 1078 * make sure at least one signal gets delivered and don't 1079 * pass on the info struct. 1080 */ 1081 if (sig < SIGRTMIN) 1082 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1083 else 1084 override_rlimit = 0; 1085 1086 q = sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1087 1088 if (q) { 1089 list_add_tail(&q->list, &pending->list); 1090 switch ((unsigned long) info) { 1091 case (unsigned long) SEND_SIG_NOINFO: 1092 clear_siginfo(&q->info); 1093 q->info.si_signo = sig; 1094 q->info.si_errno = 0; 1095 q->info.si_code = SI_USER; 1096 q->info.si_pid = task_tgid_nr_ns(current, 1097 task_active_pid_ns(t)); 1098 rcu_read_lock(); 1099 q->info.si_uid = 1100 from_kuid_munged(task_cred_xxx(t, user_ns), 1101 current_uid()); 1102 rcu_read_unlock(); 1103 break; 1104 case (unsigned long) SEND_SIG_PRIV: 1105 clear_siginfo(&q->info); 1106 q->info.si_signo = sig; 1107 q->info.si_errno = 0; 1108 q->info.si_code = SI_KERNEL; 1109 q->info.si_pid = 0; 1110 q->info.si_uid = 0; 1111 break; 1112 default: 1113 copy_siginfo(&q->info, info); 1114 break; 1115 } 1116 } else if (!is_si_special(info) && 1117 sig >= SIGRTMIN && info->si_code != SI_USER) { 1118 /* 1119 * Queue overflow, abort. We may abort if the 1120 * signal was rt and sent by user using something 1121 * other than kill(). 1122 */ 1123 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1124 ret = -EAGAIN; 1125 goto ret; 1126 } else { 1127 /* 1128 * This is a silent loss of information. We still 1129 * send the signal, but the *info bits are lost. 1130 */ 1131 result = TRACE_SIGNAL_LOSE_INFO; 1132 } 1133 1134 out_set: 1135 signalfd_notify(t, sig); 1136 sigaddset(&pending->signal, sig); 1137 1138 /* Let multiprocess signals appear after on-going forks */ 1139 if (type > PIDTYPE_TGID) { 1140 struct multiprocess_signals *delayed; 1141 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1142 sigset_t *signal = &delayed->signal; 1143 /* Can't queue both a stop and a continue signal */ 1144 if (sig == SIGCONT) 1145 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1146 else if (sig_kernel_stop(sig)) 1147 sigdelset(signal, SIGCONT); 1148 sigaddset(signal, sig); 1149 } 1150 } 1151 1152 complete_signal(sig, t, type); 1153 ret: 1154 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1155 return ret; 1156 } 1157 1158 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1159 { 1160 bool ret = false; 1161 switch (siginfo_layout(info->si_signo, info->si_code)) { 1162 case SIL_KILL: 1163 case SIL_CHLD: 1164 case SIL_RT: 1165 ret = true; 1166 break; 1167 case SIL_TIMER: 1168 case SIL_POLL: 1169 case SIL_FAULT: 1170 case SIL_FAULT_TRAPNO: 1171 case SIL_FAULT_MCEERR: 1172 case SIL_FAULT_BNDERR: 1173 case SIL_FAULT_PKUERR: 1174 case SIL_FAULT_PERF_EVENT: 1175 case SIL_SYS: 1176 ret = false; 1177 break; 1178 } 1179 return ret; 1180 } 1181 1182 int send_signal_locked(int sig, struct kernel_siginfo *info, 1183 struct task_struct *t, enum pid_type type) 1184 { 1185 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1186 bool force = false; 1187 1188 if (info == SEND_SIG_NOINFO) { 1189 /* Force if sent from an ancestor pid namespace */ 1190 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1191 } else if (info == SEND_SIG_PRIV) { 1192 /* Don't ignore kernel generated signals */ 1193 force = true; 1194 } else if (has_si_pid_and_uid(info)) { 1195 /* SIGKILL and SIGSTOP is special or has ids */ 1196 struct user_namespace *t_user_ns; 1197 1198 rcu_read_lock(); 1199 t_user_ns = task_cred_xxx(t, user_ns); 1200 if (current_user_ns() != t_user_ns) { 1201 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1202 info->si_uid = from_kuid_munged(t_user_ns, uid); 1203 } 1204 rcu_read_unlock(); 1205 1206 /* A kernel generated signal? */ 1207 force = (info->si_code == SI_KERNEL); 1208 1209 /* From an ancestor pid namespace? */ 1210 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1211 info->si_pid = 0; 1212 force = true; 1213 } 1214 } 1215 return __send_signal_locked(sig, info, t, type, force); 1216 } 1217 1218 static void print_fatal_signal(int signr) 1219 { 1220 struct pt_regs *regs = task_pt_regs(current); 1221 struct file *exe_file; 1222 1223 exe_file = get_task_exe_file(current); 1224 if (exe_file) { 1225 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n", 1226 exe_file, current->comm, signr); 1227 fput(exe_file); 1228 } else { 1229 pr_info("%s: potentially unexpected fatal signal %d.\n", 1230 current->comm, signr); 1231 } 1232 1233 #if defined(__i386__) && !defined(__arch_um__) 1234 pr_info("code at %08lx: ", regs->ip); 1235 { 1236 int i; 1237 for (i = 0; i < 16; i++) { 1238 unsigned char insn; 1239 1240 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1241 break; 1242 pr_cont("%02x ", insn); 1243 } 1244 } 1245 pr_cont("\n"); 1246 #endif 1247 preempt_disable(); 1248 show_regs(regs); 1249 preempt_enable(); 1250 } 1251 1252 static int __init setup_print_fatal_signals(char *str) 1253 { 1254 get_option (&str, &print_fatal_signals); 1255 1256 return 1; 1257 } 1258 1259 __setup("print-fatal-signals=", setup_print_fatal_signals); 1260 1261 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1262 enum pid_type type) 1263 { 1264 unsigned long flags; 1265 int ret = -ESRCH; 1266 1267 if (lock_task_sighand(p, &flags)) { 1268 ret = send_signal_locked(sig, info, p, type); 1269 unlock_task_sighand(p, &flags); 1270 } 1271 1272 return ret; 1273 } 1274 1275 enum sig_handler { 1276 HANDLER_CURRENT, /* If reachable use the current handler */ 1277 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1278 HANDLER_EXIT, /* Only visible as the process exit code */ 1279 }; 1280 1281 /* 1282 * Force a signal that the process can't ignore: if necessary 1283 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1284 * 1285 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1286 * since we do not want to have a signal handler that was blocked 1287 * be invoked when user space had explicitly blocked it. 1288 * 1289 * We don't want to have recursive SIGSEGV's etc, for example, 1290 * that is why we also clear SIGNAL_UNKILLABLE. 1291 */ 1292 static int 1293 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1294 enum sig_handler handler) 1295 { 1296 unsigned long int flags; 1297 int ret, blocked, ignored; 1298 struct k_sigaction *action; 1299 int sig = info->si_signo; 1300 1301 spin_lock_irqsave(&t->sighand->siglock, flags); 1302 action = &t->sighand->action[sig-1]; 1303 ignored = action->sa.sa_handler == SIG_IGN; 1304 blocked = sigismember(&t->blocked, sig); 1305 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1306 action->sa.sa_handler = SIG_DFL; 1307 if (handler == HANDLER_EXIT) 1308 action->sa.sa_flags |= SA_IMMUTABLE; 1309 if (blocked) 1310 sigdelset(&t->blocked, sig); 1311 } 1312 /* 1313 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1314 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1315 */ 1316 if (action->sa.sa_handler == SIG_DFL && 1317 (!t->ptrace || (handler == HANDLER_EXIT))) 1318 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1319 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1320 /* This can happen if the signal was already pending and blocked */ 1321 if (!task_sigpending(t)) 1322 signal_wake_up(t, 0); 1323 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1324 1325 return ret; 1326 } 1327 1328 int force_sig_info(struct kernel_siginfo *info) 1329 { 1330 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1331 } 1332 1333 /* 1334 * Nuke all other threads in the group. 1335 */ 1336 int zap_other_threads(struct task_struct *p) 1337 { 1338 struct task_struct *t; 1339 int count = 0; 1340 1341 p->signal->group_stop_count = 0; 1342 1343 for_other_threads(p, t) { 1344 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1345 count++; 1346 1347 /* Don't bother with already dead threads */ 1348 if (t->exit_state) 1349 continue; 1350 sigaddset(&t->pending.signal, SIGKILL); 1351 signal_wake_up(t, 1); 1352 } 1353 1354 return count; 1355 } 1356 1357 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1358 unsigned long *flags) 1359 { 1360 struct sighand_struct *sighand; 1361 1362 rcu_read_lock(); 1363 for (;;) { 1364 sighand = rcu_dereference(tsk->sighand); 1365 if (unlikely(sighand == NULL)) 1366 break; 1367 1368 /* 1369 * This sighand can be already freed and even reused, but 1370 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1371 * initializes ->siglock: this slab can't go away, it has 1372 * the same object type, ->siglock can't be reinitialized. 1373 * 1374 * We need to ensure that tsk->sighand is still the same 1375 * after we take the lock, we can race with de_thread() or 1376 * __exit_signal(). In the latter case the next iteration 1377 * must see ->sighand == NULL. 1378 */ 1379 spin_lock_irqsave(&sighand->siglock, *flags); 1380 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1381 break; 1382 spin_unlock_irqrestore(&sighand->siglock, *flags); 1383 } 1384 rcu_read_unlock(); 1385 1386 return sighand; 1387 } 1388 1389 #ifdef CONFIG_LOCKDEP 1390 void lockdep_assert_task_sighand_held(struct task_struct *task) 1391 { 1392 struct sighand_struct *sighand; 1393 1394 rcu_read_lock(); 1395 sighand = rcu_dereference(task->sighand); 1396 if (sighand) 1397 lockdep_assert_held(&sighand->siglock); 1398 else 1399 WARN_ON_ONCE(1); 1400 rcu_read_unlock(); 1401 } 1402 #endif 1403 1404 /* 1405 * send signal info to all the members of a thread group or to the 1406 * individual thread if type == PIDTYPE_PID. 1407 */ 1408 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1409 struct task_struct *p, enum pid_type type) 1410 { 1411 int ret; 1412 1413 rcu_read_lock(); 1414 ret = check_kill_permission(sig, info, p); 1415 rcu_read_unlock(); 1416 1417 if (!ret && sig) 1418 ret = do_send_sig_info(sig, info, p, type); 1419 1420 return ret; 1421 } 1422 1423 /* 1424 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1425 * control characters do (^C, ^Z etc) 1426 * - the caller must hold at least a readlock on tasklist_lock 1427 */ 1428 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1429 { 1430 struct task_struct *p = NULL; 1431 int ret = -ESRCH; 1432 1433 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1434 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1435 /* 1436 * If group_send_sig_info() succeeds at least once ret 1437 * becomes 0 and after that the code below has no effect. 1438 * Otherwise we return the last err or -ESRCH if this 1439 * process group is empty. 1440 */ 1441 if (ret) 1442 ret = err; 1443 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1444 1445 return ret; 1446 } 1447 1448 static int kill_pid_info_type(int sig, struct kernel_siginfo *info, 1449 struct pid *pid, enum pid_type type) 1450 { 1451 int error = -ESRCH; 1452 struct task_struct *p; 1453 1454 for (;;) { 1455 rcu_read_lock(); 1456 p = pid_task(pid, PIDTYPE_PID); 1457 if (p) 1458 error = group_send_sig_info(sig, info, p, type); 1459 rcu_read_unlock(); 1460 if (likely(!p || error != -ESRCH)) 1461 return error; 1462 /* 1463 * The task was unhashed in between, try again. If it 1464 * is dead, pid_task() will return NULL, if we race with 1465 * de_thread() it will find the new leader. 1466 */ 1467 } 1468 } 1469 1470 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1471 { 1472 return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID); 1473 } 1474 1475 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1476 { 1477 int error; 1478 rcu_read_lock(); 1479 error = kill_pid_info(sig, info, find_vpid(pid)); 1480 rcu_read_unlock(); 1481 return error; 1482 } 1483 1484 static inline bool kill_as_cred_perm(const struct cred *cred, 1485 struct task_struct *target) 1486 { 1487 const struct cred *pcred = __task_cred(target); 1488 1489 return uid_eq(cred->euid, pcred->suid) || 1490 uid_eq(cred->euid, pcred->uid) || 1491 uid_eq(cred->uid, pcred->suid) || 1492 uid_eq(cred->uid, pcred->uid); 1493 } 1494 1495 /* 1496 * The usb asyncio usage of siginfo is wrong. The glibc support 1497 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1498 * AKA after the generic fields: 1499 * kernel_pid_t si_pid; 1500 * kernel_uid32_t si_uid; 1501 * sigval_t si_value; 1502 * 1503 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1504 * after the generic fields is: 1505 * void __user *si_addr; 1506 * 1507 * This is a practical problem when there is a 64bit big endian kernel 1508 * and a 32bit userspace. As the 32bit address will encoded in the low 1509 * 32bits of the pointer. Those low 32bits will be stored at higher 1510 * address than appear in a 32 bit pointer. So userspace will not 1511 * see the address it was expecting for it's completions. 1512 * 1513 * There is nothing in the encoding that can allow 1514 * copy_siginfo_to_user32 to detect this confusion of formats, so 1515 * handle this by requiring the caller of kill_pid_usb_asyncio to 1516 * notice when this situration takes place and to store the 32bit 1517 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1518 * parameter. 1519 */ 1520 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1521 struct pid *pid, const struct cred *cred) 1522 { 1523 struct kernel_siginfo info; 1524 struct task_struct *p; 1525 unsigned long flags; 1526 int ret = -EINVAL; 1527 1528 if (!valid_signal(sig)) 1529 return ret; 1530 1531 clear_siginfo(&info); 1532 info.si_signo = sig; 1533 info.si_errno = errno; 1534 info.si_code = SI_ASYNCIO; 1535 *((sigval_t *)&info.si_pid) = addr; 1536 1537 rcu_read_lock(); 1538 p = pid_task(pid, PIDTYPE_PID); 1539 if (!p) { 1540 ret = -ESRCH; 1541 goto out_unlock; 1542 } 1543 if (!kill_as_cred_perm(cred, p)) { 1544 ret = -EPERM; 1545 goto out_unlock; 1546 } 1547 ret = security_task_kill(p, &info, sig, cred); 1548 if (ret) 1549 goto out_unlock; 1550 1551 if (sig) { 1552 if (lock_task_sighand(p, &flags)) { 1553 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1554 unlock_task_sighand(p, &flags); 1555 } else 1556 ret = -ESRCH; 1557 } 1558 out_unlock: 1559 rcu_read_unlock(); 1560 return ret; 1561 } 1562 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1563 1564 /* 1565 * kill_something_info() interprets pid in interesting ways just like kill(2). 1566 * 1567 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1568 * is probably wrong. Should make it like BSD or SYSV. 1569 */ 1570 1571 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1572 { 1573 int ret; 1574 1575 if (pid > 0) 1576 return kill_proc_info(sig, info, pid); 1577 1578 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1579 if (pid == INT_MIN) 1580 return -ESRCH; 1581 1582 read_lock(&tasklist_lock); 1583 if (pid != -1) { 1584 ret = __kill_pgrp_info(sig, info, 1585 pid ? find_vpid(-pid) : task_pgrp(current)); 1586 } else { 1587 int retval = 0, count = 0; 1588 struct task_struct * p; 1589 1590 for_each_process(p) { 1591 if (task_pid_vnr(p) > 1 && 1592 !same_thread_group(p, current)) { 1593 int err = group_send_sig_info(sig, info, p, 1594 PIDTYPE_MAX); 1595 ++count; 1596 if (err != -EPERM) 1597 retval = err; 1598 } 1599 } 1600 ret = count ? retval : -ESRCH; 1601 } 1602 read_unlock(&tasklist_lock); 1603 1604 return ret; 1605 } 1606 1607 /* 1608 * These are for backward compatibility with the rest of the kernel source. 1609 */ 1610 1611 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1612 { 1613 /* 1614 * Make sure legacy kernel users don't send in bad values 1615 * (normal paths check this in check_kill_permission). 1616 */ 1617 if (!valid_signal(sig)) 1618 return -EINVAL; 1619 1620 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1621 } 1622 EXPORT_SYMBOL(send_sig_info); 1623 1624 #define __si_special(priv) \ 1625 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1626 1627 int 1628 send_sig(int sig, struct task_struct *p, int priv) 1629 { 1630 return send_sig_info(sig, __si_special(priv), p); 1631 } 1632 EXPORT_SYMBOL(send_sig); 1633 1634 void force_sig(int sig) 1635 { 1636 struct kernel_siginfo info; 1637 1638 clear_siginfo(&info); 1639 info.si_signo = sig; 1640 info.si_errno = 0; 1641 info.si_code = SI_KERNEL; 1642 info.si_pid = 0; 1643 info.si_uid = 0; 1644 force_sig_info(&info); 1645 } 1646 EXPORT_SYMBOL(force_sig); 1647 1648 void force_fatal_sig(int sig) 1649 { 1650 struct kernel_siginfo info; 1651 1652 clear_siginfo(&info); 1653 info.si_signo = sig; 1654 info.si_errno = 0; 1655 info.si_code = SI_KERNEL; 1656 info.si_pid = 0; 1657 info.si_uid = 0; 1658 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1659 } 1660 1661 void force_exit_sig(int sig) 1662 { 1663 struct kernel_siginfo info; 1664 1665 clear_siginfo(&info); 1666 info.si_signo = sig; 1667 info.si_errno = 0; 1668 info.si_code = SI_KERNEL; 1669 info.si_pid = 0; 1670 info.si_uid = 0; 1671 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1672 } 1673 1674 /* 1675 * When things go south during signal handling, we 1676 * will force a SIGSEGV. And if the signal that caused 1677 * the problem was already a SIGSEGV, we'll want to 1678 * make sure we don't even try to deliver the signal.. 1679 */ 1680 void force_sigsegv(int sig) 1681 { 1682 if (sig == SIGSEGV) 1683 force_fatal_sig(SIGSEGV); 1684 else 1685 force_sig(SIGSEGV); 1686 } 1687 1688 int force_sig_fault_to_task(int sig, int code, void __user *addr, 1689 struct task_struct *t) 1690 { 1691 struct kernel_siginfo info; 1692 1693 clear_siginfo(&info); 1694 info.si_signo = sig; 1695 info.si_errno = 0; 1696 info.si_code = code; 1697 info.si_addr = addr; 1698 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1699 } 1700 1701 int force_sig_fault(int sig, int code, void __user *addr) 1702 { 1703 return force_sig_fault_to_task(sig, code, addr, current); 1704 } 1705 1706 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t) 1707 { 1708 struct kernel_siginfo info; 1709 1710 clear_siginfo(&info); 1711 info.si_signo = sig; 1712 info.si_errno = 0; 1713 info.si_code = code; 1714 info.si_addr = addr; 1715 return send_sig_info(info.si_signo, &info, t); 1716 } 1717 1718 int force_sig_mceerr(int code, void __user *addr, short lsb) 1719 { 1720 struct kernel_siginfo info; 1721 1722 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1723 clear_siginfo(&info); 1724 info.si_signo = SIGBUS; 1725 info.si_errno = 0; 1726 info.si_code = code; 1727 info.si_addr = addr; 1728 info.si_addr_lsb = lsb; 1729 return force_sig_info(&info); 1730 } 1731 1732 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1733 { 1734 struct kernel_siginfo info; 1735 1736 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1737 clear_siginfo(&info); 1738 info.si_signo = SIGBUS; 1739 info.si_errno = 0; 1740 info.si_code = code; 1741 info.si_addr = addr; 1742 info.si_addr_lsb = lsb; 1743 return send_sig_info(info.si_signo, &info, t); 1744 } 1745 EXPORT_SYMBOL(send_sig_mceerr); 1746 1747 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1748 { 1749 struct kernel_siginfo info; 1750 1751 clear_siginfo(&info); 1752 info.si_signo = SIGSEGV; 1753 info.si_errno = 0; 1754 info.si_code = SEGV_BNDERR; 1755 info.si_addr = addr; 1756 info.si_lower = lower; 1757 info.si_upper = upper; 1758 return force_sig_info(&info); 1759 } 1760 1761 #ifdef SEGV_PKUERR 1762 int force_sig_pkuerr(void __user *addr, u32 pkey) 1763 { 1764 struct kernel_siginfo info; 1765 1766 clear_siginfo(&info); 1767 info.si_signo = SIGSEGV; 1768 info.si_errno = 0; 1769 info.si_code = SEGV_PKUERR; 1770 info.si_addr = addr; 1771 info.si_pkey = pkey; 1772 return force_sig_info(&info); 1773 } 1774 #endif 1775 1776 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1777 { 1778 struct kernel_siginfo info; 1779 1780 clear_siginfo(&info); 1781 info.si_signo = SIGTRAP; 1782 info.si_errno = 0; 1783 info.si_code = TRAP_PERF; 1784 info.si_addr = addr; 1785 info.si_perf_data = sig_data; 1786 info.si_perf_type = type; 1787 1788 /* 1789 * Signals generated by perf events should not terminate the whole 1790 * process if SIGTRAP is blocked, however, delivering the signal 1791 * asynchronously is better than not delivering at all. But tell user 1792 * space if the signal was asynchronous, so it can clearly be 1793 * distinguished from normal synchronous ones. 1794 */ 1795 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1796 TRAP_PERF_FLAG_ASYNC : 1797 0; 1798 1799 return send_sig_info(info.si_signo, &info, current); 1800 } 1801 1802 /** 1803 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1804 * @syscall: syscall number to send to userland 1805 * @reason: filter-supplied reason code to send to userland (via si_errno) 1806 * @force_coredump: true to trigger a coredump 1807 * 1808 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1809 */ 1810 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1811 { 1812 struct kernel_siginfo info; 1813 1814 clear_siginfo(&info); 1815 info.si_signo = SIGSYS; 1816 info.si_code = SYS_SECCOMP; 1817 info.si_call_addr = (void __user *)KSTK_EIP(current); 1818 info.si_errno = reason; 1819 info.si_arch = syscall_get_arch(current); 1820 info.si_syscall = syscall; 1821 return force_sig_info_to_task(&info, current, 1822 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1823 } 1824 1825 /* For the crazy architectures that include trap information in 1826 * the errno field, instead of an actual errno value. 1827 */ 1828 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1829 { 1830 struct kernel_siginfo info; 1831 1832 clear_siginfo(&info); 1833 info.si_signo = SIGTRAP; 1834 info.si_errno = errno; 1835 info.si_code = TRAP_HWBKPT; 1836 info.si_addr = addr; 1837 return force_sig_info(&info); 1838 } 1839 1840 /* For the rare architectures that include trap information using 1841 * si_trapno. 1842 */ 1843 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1844 { 1845 struct kernel_siginfo info; 1846 1847 clear_siginfo(&info); 1848 info.si_signo = sig; 1849 info.si_errno = 0; 1850 info.si_code = code; 1851 info.si_addr = addr; 1852 info.si_trapno = trapno; 1853 return force_sig_info(&info); 1854 } 1855 1856 /* For the rare architectures that include trap information using 1857 * si_trapno. 1858 */ 1859 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1860 struct task_struct *t) 1861 { 1862 struct kernel_siginfo info; 1863 1864 clear_siginfo(&info); 1865 info.si_signo = sig; 1866 info.si_errno = 0; 1867 info.si_code = code; 1868 info.si_addr = addr; 1869 info.si_trapno = trapno; 1870 return send_sig_info(info.si_signo, &info, t); 1871 } 1872 1873 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1874 { 1875 int ret; 1876 read_lock(&tasklist_lock); 1877 ret = __kill_pgrp_info(sig, info, pgrp); 1878 read_unlock(&tasklist_lock); 1879 return ret; 1880 } 1881 1882 int kill_pgrp(struct pid *pid, int sig, int priv) 1883 { 1884 return kill_pgrp_info(sig, __si_special(priv), pid); 1885 } 1886 EXPORT_SYMBOL(kill_pgrp); 1887 1888 int kill_pid(struct pid *pid, int sig, int priv) 1889 { 1890 return kill_pid_info(sig, __si_special(priv), pid); 1891 } 1892 EXPORT_SYMBOL(kill_pid); 1893 1894 #ifdef CONFIG_POSIX_TIMERS 1895 /* 1896 * These functions handle POSIX timer signals. POSIX timers use 1897 * preallocated sigqueue structs for sending signals. 1898 */ 1899 static void __flush_itimer_signals(struct sigpending *pending) 1900 { 1901 sigset_t signal, retain; 1902 struct sigqueue *q, *n; 1903 1904 signal = pending->signal; 1905 sigemptyset(&retain); 1906 1907 list_for_each_entry_safe(q, n, &pending->list, list) { 1908 int sig = q->info.si_signo; 1909 1910 if (likely(q->info.si_code != SI_TIMER)) { 1911 sigaddset(&retain, sig); 1912 } else { 1913 sigdelset(&signal, sig); 1914 list_del_init(&q->list); 1915 __sigqueue_free(q); 1916 } 1917 } 1918 1919 sigorsets(&pending->signal, &signal, &retain); 1920 } 1921 1922 void flush_itimer_signals(void) 1923 { 1924 struct task_struct *tsk = current; 1925 1926 guard(spinlock_irqsave)(&tsk->sighand->siglock); 1927 __flush_itimer_signals(&tsk->pending); 1928 __flush_itimer_signals(&tsk->signal->shared_pending); 1929 } 1930 1931 bool posixtimer_init_sigqueue(struct sigqueue *q) 1932 { 1933 struct ucounts *ucounts = sig_get_ucounts(current, -1, 0); 1934 1935 if (!ucounts) 1936 return false; 1937 clear_siginfo(&q->info); 1938 __sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC); 1939 return true; 1940 } 1941 1942 static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type) 1943 { 1944 struct sigpending *pending; 1945 int sig = q->info.si_signo; 1946 1947 signalfd_notify(t, sig); 1948 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1949 list_add_tail(&q->list, &pending->list); 1950 sigaddset(&pending->signal, sig); 1951 complete_signal(sig, t, type); 1952 } 1953 1954 /* 1955 * This function is used by POSIX timers to deliver a timer signal. 1956 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1957 * set), the signal must be delivered to the specific thread (queues 1958 * into t->pending). 1959 * 1960 * Where type is not PIDTYPE_PID, signals must be delivered to the 1961 * process. In this case, prefer to deliver to current if it is in 1962 * the same thread group as the target process and its sighand is 1963 * stable, which avoids unnecessarily waking up a potentially idle task. 1964 */ 1965 static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr) 1966 { 1967 struct task_struct *t = pid_task(tmr->it_pid, tmr->it_pid_type); 1968 1969 if (t && tmr->it_pid_type != PIDTYPE_PID && 1970 same_thread_group(t, current) && !current->exit_state) 1971 t = current; 1972 return t; 1973 } 1974 1975 void posixtimer_send_sigqueue(struct k_itimer *tmr) 1976 { 1977 struct sigqueue *q = &tmr->sigq; 1978 int sig = q->info.si_signo; 1979 struct task_struct *t; 1980 unsigned long flags; 1981 int result; 1982 1983 guard(rcu)(); 1984 1985 t = posixtimer_get_target(tmr); 1986 if (!t) 1987 return; 1988 1989 if (!likely(lock_task_sighand(t, &flags))) 1990 return; 1991 1992 /* 1993 * Update @tmr::sigqueue_seq for posix timer signals with sighand 1994 * locked to prevent a race against dequeue_signal(). 1995 */ 1996 tmr->it_sigqueue_seq = tmr->it_signal_seq; 1997 1998 /* 1999 * Set the signal delivery status under sighand lock, so that the 2000 * ignored signal handling can distinguish between a periodic and a 2001 * non-periodic timer. 2002 */ 2003 tmr->it_sig_periodic = tmr->it_status == POSIX_TIMER_REQUEUE_PENDING; 2004 2005 if (!prepare_signal(sig, t, false)) { 2006 result = TRACE_SIGNAL_IGNORED; 2007 2008 if (!list_empty(&q->list)) { 2009 /* 2010 * The signal was ignored and blocked. The timer 2011 * expiry queued it because blocked signals are 2012 * queued independent of the ignored state. 2013 * 2014 * The unblocking set SIGPENDING, but the signal 2015 * was not yet dequeued from the pending list. 2016 * So prepare_signal() sees unblocked and ignored, 2017 * which ends up here. Leave it queued like a 2018 * regular signal. 2019 * 2020 * The same happens when the task group is exiting 2021 * and the signal is already queued. 2022 * prepare_signal() treats SIGNAL_GROUP_EXIT as 2023 * ignored independent of its queued state. This 2024 * gets cleaned up in __exit_signal(). 2025 */ 2026 goto out; 2027 } 2028 2029 /* Periodic timers with SIG_IGN are queued on the ignored list */ 2030 if (tmr->it_sig_periodic) { 2031 /* 2032 * Already queued means the timer was rearmed after 2033 * the previous expiry got it on the ignore list. 2034 * Nothing to do for that case. 2035 */ 2036 if (hlist_unhashed(&tmr->ignored_list)) { 2037 /* 2038 * Take a signal reference and queue it on 2039 * the ignored list. 2040 */ 2041 posixtimer_sigqueue_getref(q); 2042 posixtimer_sig_ignore(t, q); 2043 } 2044 } else if (!hlist_unhashed(&tmr->ignored_list)) { 2045 /* 2046 * Covers the case where a timer was periodic and 2047 * then the signal was ignored. Later it was rearmed 2048 * as oneshot timer. The previous signal is invalid 2049 * now, and this oneshot signal has to be dropped. 2050 * Remove it from the ignored list and drop the 2051 * reference count as the signal is not longer 2052 * queued. 2053 */ 2054 hlist_del_init(&tmr->ignored_list); 2055 posixtimer_putref(tmr); 2056 } 2057 goto out; 2058 } 2059 2060 if (unlikely(!list_empty(&q->list))) { 2061 /* This holds a reference count already */ 2062 result = TRACE_SIGNAL_ALREADY_PENDING; 2063 goto out; 2064 } 2065 2066 /* 2067 * If the signal is on the ignore list, it got blocked after it was 2068 * ignored earlier. But nothing lifted the ignore. Move it back to 2069 * the pending list to be consistent with the regular signal 2070 * handling. This already holds a reference count. 2071 * 2072 * If it's not on the ignore list acquire a reference count. 2073 */ 2074 if (likely(hlist_unhashed(&tmr->ignored_list))) 2075 posixtimer_sigqueue_getref(q); 2076 else 2077 hlist_del_init(&tmr->ignored_list); 2078 2079 posixtimer_queue_sigqueue(q, t, tmr->it_pid_type); 2080 result = TRACE_SIGNAL_DELIVERED; 2081 out: 2082 trace_signal_generate(sig, &q->info, t, tmr->it_pid_type != PIDTYPE_PID, result); 2083 unlock_task_sighand(t, &flags); 2084 } 2085 2086 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) 2087 { 2088 struct k_itimer *tmr = container_of(q, struct k_itimer, sigq); 2089 2090 /* 2091 * If the timer is marked deleted already or the signal originates 2092 * from a non-periodic timer, then just drop the reference 2093 * count. Otherwise queue it on the ignored list. 2094 */ 2095 if (tmr->it_signal && tmr->it_sig_periodic) 2096 hlist_add_head(&tmr->ignored_list, &tsk->signal->ignored_posix_timers); 2097 else 2098 posixtimer_putref(tmr); 2099 } 2100 2101 static void posixtimer_sig_unignore(struct task_struct *tsk, int sig) 2102 { 2103 struct hlist_head *head = &tsk->signal->ignored_posix_timers; 2104 struct hlist_node *tmp; 2105 struct k_itimer *tmr; 2106 2107 if (likely(hlist_empty(head))) 2108 return; 2109 2110 /* 2111 * Rearming a timer with sighand lock held is not possible due to 2112 * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and 2113 * let the signal delivery path deal with it whether it needs to be 2114 * rearmed or not. This cannot be decided here w/o dropping sighand 2115 * lock and creating a loop retry horror show. 2116 */ 2117 hlist_for_each_entry_safe(tmr, tmp , head, ignored_list) { 2118 struct task_struct *target; 2119 2120 /* 2121 * tmr::sigq.info.si_signo is immutable, so accessing it 2122 * without holding tmr::it_lock is safe. 2123 */ 2124 if (tmr->sigq.info.si_signo != sig) 2125 continue; 2126 2127 hlist_del_init(&tmr->ignored_list); 2128 2129 /* This should never happen and leaks a reference count */ 2130 if (WARN_ON_ONCE(!list_empty(&tmr->sigq.list))) 2131 continue; 2132 2133 /* 2134 * Get the target for the signal. If target is a thread and 2135 * has exited by now, drop the reference count. 2136 */ 2137 guard(rcu)(); 2138 target = posixtimer_get_target(tmr); 2139 if (target) 2140 posixtimer_queue_sigqueue(&tmr->sigq, target, tmr->it_pid_type); 2141 else 2142 posixtimer_putref(tmr); 2143 } 2144 } 2145 #else /* CONFIG_POSIX_TIMERS */ 2146 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) { } 2147 static inline void posixtimer_sig_unignore(struct task_struct *tsk, int sig) { } 2148 #endif /* !CONFIG_POSIX_TIMERS */ 2149 2150 void do_notify_pidfd(struct task_struct *task) 2151 { 2152 struct pid *pid = task_pid(task); 2153 2154 WARN_ON(task->exit_state == 0); 2155 2156 __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0, 2157 poll_to_key(EPOLLIN | EPOLLRDNORM)); 2158 } 2159 2160 /* 2161 * Let a parent know about the death of a child. 2162 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2163 * 2164 * Returns true if our parent ignored us and so we've switched to 2165 * self-reaping. 2166 */ 2167 bool do_notify_parent(struct task_struct *tsk, int sig) 2168 { 2169 struct kernel_siginfo info; 2170 unsigned long flags; 2171 struct sighand_struct *psig; 2172 bool autoreap = false; 2173 u64 utime, stime; 2174 2175 WARN_ON_ONCE(sig == -1); 2176 2177 /* do_notify_parent_cldstop should have been called instead. */ 2178 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2179 2180 WARN_ON_ONCE(!tsk->ptrace && 2181 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2182 /* 2183 * tsk is a group leader and has no threads, wake up the 2184 * non-PIDFD_THREAD waiters. 2185 */ 2186 if (thread_group_empty(tsk)) 2187 do_notify_pidfd(tsk); 2188 2189 if (sig != SIGCHLD) { 2190 /* 2191 * This is only possible if parent == real_parent. 2192 * Check if it has changed security domain. 2193 */ 2194 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2195 sig = SIGCHLD; 2196 } 2197 2198 clear_siginfo(&info); 2199 info.si_signo = sig; 2200 info.si_errno = 0; 2201 /* 2202 * We are under tasklist_lock here so our parent is tied to 2203 * us and cannot change. 2204 * 2205 * task_active_pid_ns will always return the same pid namespace 2206 * until a task passes through release_task. 2207 * 2208 * write_lock() currently calls preempt_disable() which is the 2209 * same as rcu_read_lock(), but according to Oleg, this is not 2210 * correct to rely on this 2211 */ 2212 rcu_read_lock(); 2213 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2214 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2215 task_uid(tsk)); 2216 rcu_read_unlock(); 2217 2218 task_cputime(tsk, &utime, &stime); 2219 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2220 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2221 2222 info.si_status = tsk->exit_code & 0x7f; 2223 if (tsk->exit_code & 0x80) 2224 info.si_code = CLD_DUMPED; 2225 else if (tsk->exit_code & 0x7f) 2226 info.si_code = CLD_KILLED; 2227 else { 2228 info.si_code = CLD_EXITED; 2229 info.si_status = tsk->exit_code >> 8; 2230 } 2231 2232 psig = tsk->parent->sighand; 2233 spin_lock_irqsave(&psig->siglock, flags); 2234 if (!tsk->ptrace && sig == SIGCHLD && 2235 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2236 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2237 /* 2238 * We are exiting and our parent doesn't care. POSIX.1 2239 * defines special semantics for setting SIGCHLD to SIG_IGN 2240 * or setting the SA_NOCLDWAIT flag: we should be reaped 2241 * automatically and not left for our parent's wait4 call. 2242 * Rather than having the parent do it as a magic kind of 2243 * signal handler, we just set this to tell do_exit that we 2244 * can be cleaned up without becoming a zombie. Note that 2245 * we still call __wake_up_parent in this case, because a 2246 * blocked sys_wait4 might now return -ECHILD. 2247 * 2248 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2249 * is implementation-defined: we do (if you don't want 2250 * it, just use SIG_IGN instead). 2251 */ 2252 autoreap = true; 2253 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2254 sig = 0; 2255 } 2256 /* 2257 * Send with __send_signal as si_pid and si_uid are in the 2258 * parent's namespaces. 2259 */ 2260 if (valid_signal(sig) && sig) 2261 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2262 __wake_up_parent(tsk, tsk->parent); 2263 spin_unlock_irqrestore(&psig->siglock, flags); 2264 2265 return autoreap; 2266 } 2267 2268 /** 2269 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2270 * @tsk: task reporting the state change 2271 * @for_ptracer: the notification is for ptracer 2272 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2273 * 2274 * Notify @tsk's parent that the stopped/continued state has changed. If 2275 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2276 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2277 * 2278 * CONTEXT: 2279 * Must be called with tasklist_lock at least read locked. 2280 */ 2281 static void do_notify_parent_cldstop(struct task_struct *tsk, 2282 bool for_ptracer, int why) 2283 { 2284 struct kernel_siginfo info; 2285 unsigned long flags; 2286 struct task_struct *parent; 2287 struct sighand_struct *sighand; 2288 u64 utime, stime; 2289 2290 if (for_ptracer) { 2291 parent = tsk->parent; 2292 } else { 2293 tsk = tsk->group_leader; 2294 parent = tsk->real_parent; 2295 } 2296 2297 clear_siginfo(&info); 2298 info.si_signo = SIGCHLD; 2299 info.si_errno = 0; 2300 /* 2301 * see comment in do_notify_parent() about the following 4 lines 2302 */ 2303 rcu_read_lock(); 2304 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2305 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2306 rcu_read_unlock(); 2307 2308 task_cputime(tsk, &utime, &stime); 2309 info.si_utime = nsec_to_clock_t(utime); 2310 info.si_stime = nsec_to_clock_t(stime); 2311 2312 info.si_code = why; 2313 switch (why) { 2314 case CLD_CONTINUED: 2315 info.si_status = SIGCONT; 2316 break; 2317 case CLD_STOPPED: 2318 info.si_status = tsk->signal->group_exit_code & 0x7f; 2319 break; 2320 case CLD_TRAPPED: 2321 info.si_status = tsk->exit_code & 0x7f; 2322 break; 2323 default: 2324 BUG(); 2325 } 2326 2327 sighand = parent->sighand; 2328 spin_lock_irqsave(&sighand->siglock, flags); 2329 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2330 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2331 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2332 /* 2333 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2334 */ 2335 __wake_up_parent(tsk, parent); 2336 spin_unlock_irqrestore(&sighand->siglock, flags); 2337 } 2338 2339 /* 2340 * This must be called with current->sighand->siglock held. 2341 * 2342 * This should be the path for all ptrace stops. 2343 * We always set current->last_siginfo while stopped here. 2344 * That makes it a way to test a stopped process for 2345 * being ptrace-stopped vs being job-control-stopped. 2346 * 2347 * Returns the signal the ptracer requested the code resume 2348 * with. If the code did not stop because the tracer is gone, 2349 * the stop signal remains unchanged unless clear_code. 2350 */ 2351 static int ptrace_stop(int exit_code, int why, unsigned long message, 2352 kernel_siginfo_t *info) 2353 __releases(¤t->sighand->siglock) 2354 __acquires(¤t->sighand->siglock) 2355 { 2356 bool gstop_done = false; 2357 2358 if (arch_ptrace_stop_needed()) { 2359 /* 2360 * The arch code has something special to do before a 2361 * ptrace stop. This is allowed to block, e.g. for faults 2362 * on user stack pages. We can't keep the siglock while 2363 * calling arch_ptrace_stop, so we must release it now. 2364 * To preserve proper semantics, we must do this before 2365 * any signal bookkeeping like checking group_stop_count. 2366 */ 2367 spin_unlock_irq(¤t->sighand->siglock); 2368 arch_ptrace_stop(); 2369 spin_lock_irq(¤t->sighand->siglock); 2370 } 2371 2372 /* 2373 * After this point ptrace_signal_wake_up or signal_wake_up 2374 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2375 * signal comes in. Handle previous ptrace_unlinks and fatal 2376 * signals here to prevent ptrace_stop sleeping in schedule. 2377 */ 2378 if (!current->ptrace || __fatal_signal_pending(current)) 2379 return exit_code; 2380 2381 set_special_state(TASK_TRACED); 2382 current->jobctl |= JOBCTL_TRACED; 2383 2384 /* 2385 * We're committing to trapping. TRACED should be visible before 2386 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2387 * Also, transition to TRACED and updates to ->jobctl should be 2388 * atomic with respect to siglock and should be done after the arch 2389 * hook as siglock is released and regrabbed across it. 2390 * 2391 * TRACER TRACEE 2392 * 2393 * ptrace_attach() 2394 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2395 * do_wait() 2396 * set_current_state() smp_wmb(); 2397 * ptrace_do_wait() 2398 * wait_task_stopped() 2399 * task_stopped_code() 2400 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2401 */ 2402 smp_wmb(); 2403 2404 current->ptrace_message = message; 2405 current->last_siginfo = info; 2406 current->exit_code = exit_code; 2407 2408 /* 2409 * If @why is CLD_STOPPED, we're trapping to participate in a group 2410 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2411 * across siglock relocks since INTERRUPT was scheduled, PENDING 2412 * could be clear now. We act as if SIGCONT is received after 2413 * TASK_TRACED is entered - ignore it. 2414 */ 2415 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2416 gstop_done = task_participate_group_stop(current); 2417 2418 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2419 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2420 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2421 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2422 2423 /* entering a trap, clear TRAPPING */ 2424 task_clear_jobctl_trapping(current); 2425 2426 spin_unlock_irq(¤t->sighand->siglock); 2427 read_lock(&tasklist_lock); 2428 /* 2429 * Notify parents of the stop. 2430 * 2431 * While ptraced, there are two parents - the ptracer and 2432 * the real_parent of the group_leader. The ptracer should 2433 * know about every stop while the real parent is only 2434 * interested in the completion of group stop. The states 2435 * for the two don't interact with each other. Notify 2436 * separately unless they're gonna be duplicates. 2437 */ 2438 if (current->ptrace) 2439 do_notify_parent_cldstop(current, true, why); 2440 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2441 do_notify_parent_cldstop(current, false, why); 2442 2443 /* 2444 * The previous do_notify_parent_cldstop() invocation woke ptracer. 2445 * One a PREEMPTION kernel this can result in preemption requirement 2446 * which will be fulfilled after read_unlock() and the ptracer will be 2447 * put on the CPU. 2448 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for 2449 * this task wait in schedule(). If this task gets preempted then it 2450 * remains enqueued on the runqueue. The ptracer will observe this and 2451 * then sleep for a delay of one HZ tick. In the meantime this task 2452 * gets scheduled, enters schedule() and will wait for the ptracer. 2453 * 2454 * This preemption point is not bad from a correctness point of 2455 * view but extends the runtime by one HZ tick time due to the 2456 * ptracer's sleep. The preempt-disable section ensures that there 2457 * will be no preemption between unlock and schedule() and so 2458 * improving the performance since the ptracer will observe that 2459 * the tracee is scheduled out once it gets on the CPU. 2460 * 2461 * On PREEMPT_RT locking tasklist_lock does not disable preemption. 2462 * Therefore the task can be preempted after do_notify_parent_cldstop() 2463 * before unlocking tasklist_lock so there is no benefit in doing this. 2464 * 2465 * In fact disabling preemption is harmful on PREEMPT_RT because 2466 * the spinlock_t in cgroup_enter_frozen() must not be acquired 2467 * with preemption disabled due to the 'sleeping' spinlock 2468 * substitution of RT. 2469 */ 2470 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2471 preempt_disable(); 2472 read_unlock(&tasklist_lock); 2473 cgroup_enter_frozen(); 2474 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2475 preempt_enable_no_resched(); 2476 schedule(); 2477 cgroup_leave_frozen(true); 2478 2479 /* 2480 * We are back. Now reacquire the siglock before touching 2481 * last_siginfo, so that we are sure to have synchronized with 2482 * any signal-sending on another CPU that wants to examine it. 2483 */ 2484 spin_lock_irq(¤t->sighand->siglock); 2485 exit_code = current->exit_code; 2486 current->last_siginfo = NULL; 2487 current->ptrace_message = 0; 2488 current->exit_code = 0; 2489 2490 /* LISTENING can be set only during STOP traps, clear it */ 2491 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2492 2493 /* 2494 * Queued signals ignored us while we were stopped for tracing. 2495 * So check for any that we should take before resuming user mode. 2496 * This sets TIF_SIGPENDING, but never clears it. 2497 */ 2498 recalc_sigpending_tsk(current); 2499 return exit_code; 2500 } 2501 2502 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2503 { 2504 kernel_siginfo_t info; 2505 2506 clear_siginfo(&info); 2507 info.si_signo = signr; 2508 info.si_code = exit_code; 2509 info.si_pid = task_pid_vnr(current); 2510 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2511 2512 /* Let the debugger run. */ 2513 return ptrace_stop(exit_code, why, message, &info); 2514 } 2515 2516 int ptrace_notify(int exit_code, unsigned long message) 2517 { 2518 int signr; 2519 2520 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2521 if (unlikely(task_work_pending(current))) 2522 task_work_run(); 2523 2524 spin_lock_irq(¤t->sighand->siglock); 2525 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2526 spin_unlock_irq(¤t->sighand->siglock); 2527 return signr; 2528 } 2529 2530 /** 2531 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2532 * @signr: signr causing group stop if initiating 2533 * 2534 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2535 * and participate in it. If already set, participate in the existing 2536 * group stop. If participated in a group stop (and thus slept), %true is 2537 * returned with siglock released. 2538 * 2539 * If ptraced, this function doesn't handle stop itself. Instead, 2540 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2541 * untouched. The caller must ensure that INTERRUPT trap handling takes 2542 * places afterwards. 2543 * 2544 * CONTEXT: 2545 * Must be called with @current->sighand->siglock held, which is released 2546 * on %true return. 2547 * 2548 * RETURNS: 2549 * %false if group stop is already cancelled or ptrace trap is scheduled. 2550 * %true if participated in group stop. 2551 */ 2552 static bool do_signal_stop(int signr) 2553 __releases(¤t->sighand->siglock) 2554 { 2555 struct signal_struct *sig = current->signal; 2556 2557 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2558 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2559 struct task_struct *t; 2560 2561 /* signr will be recorded in task->jobctl for retries */ 2562 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2563 2564 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2565 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2566 unlikely(sig->group_exec_task)) 2567 return false; 2568 /* 2569 * There is no group stop already in progress. We must 2570 * initiate one now. 2571 * 2572 * While ptraced, a task may be resumed while group stop is 2573 * still in effect and then receive a stop signal and 2574 * initiate another group stop. This deviates from the 2575 * usual behavior as two consecutive stop signals can't 2576 * cause two group stops when !ptraced. That is why we 2577 * also check !task_is_stopped(t) below. 2578 * 2579 * The condition can be distinguished by testing whether 2580 * SIGNAL_STOP_STOPPED is already set. Don't generate 2581 * group_exit_code in such case. 2582 * 2583 * This is not necessary for SIGNAL_STOP_CONTINUED because 2584 * an intervening stop signal is required to cause two 2585 * continued events regardless of ptrace. 2586 */ 2587 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2588 sig->group_exit_code = signr; 2589 2590 sig->group_stop_count = 0; 2591 if (task_set_jobctl_pending(current, signr | gstop)) 2592 sig->group_stop_count++; 2593 2594 for_other_threads(current, t) { 2595 /* 2596 * Setting state to TASK_STOPPED for a group 2597 * stop is always done with the siglock held, 2598 * so this check has no races. 2599 */ 2600 if (!task_is_stopped(t) && 2601 task_set_jobctl_pending(t, signr | gstop)) { 2602 sig->group_stop_count++; 2603 if (likely(!(t->ptrace & PT_SEIZED))) 2604 signal_wake_up(t, 0); 2605 else 2606 ptrace_trap_notify(t); 2607 } 2608 } 2609 } 2610 2611 if (likely(!current->ptrace)) { 2612 int notify = 0; 2613 2614 /* 2615 * If there are no other threads in the group, or if there 2616 * is a group stop in progress and we are the last to stop, 2617 * report to the parent. 2618 */ 2619 if (task_participate_group_stop(current)) 2620 notify = CLD_STOPPED; 2621 2622 current->jobctl |= JOBCTL_STOPPED; 2623 set_special_state(TASK_STOPPED); 2624 spin_unlock_irq(¤t->sighand->siglock); 2625 2626 /* 2627 * Notify the parent of the group stop completion. Because 2628 * we're not holding either the siglock or tasklist_lock 2629 * here, ptracer may attach inbetween; however, this is for 2630 * group stop and should always be delivered to the real 2631 * parent of the group leader. The new ptracer will get 2632 * its notification when this task transitions into 2633 * TASK_TRACED. 2634 */ 2635 if (notify) { 2636 read_lock(&tasklist_lock); 2637 do_notify_parent_cldstop(current, false, notify); 2638 read_unlock(&tasklist_lock); 2639 } 2640 2641 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2642 cgroup_enter_frozen(); 2643 schedule(); 2644 return true; 2645 } else { 2646 /* 2647 * While ptraced, group stop is handled by STOP trap. 2648 * Schedule it and let the caller deal with it. 2649 */ 2650 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2651 return false; 2652 } 2653 } 2654 2655 /** 2656 * do_jobctl_trap - take care of ptrace jobctl traps 2657 * 2658 * When PT_SEIZED, it's used for both group stop and explicit 2659 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2660 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2661 * the stop signal; otherwise, %SIGTRAP. 2662 * 2663 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2664 * number as exit_code and no siginfo. 2665 * 2666 * CONTEXT: 2667 * Must be called with @current->sighand->siglock held, which may be 2668 * released and re-acquired before returning with intervening sleep. 2669 */ 2670 static void do_jobctl_trap(void) 2671 { 2672 struct signal_struct *signal = current->signal; 2673 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2674 2675 if (current->ptrace & PT_SEIZED) { 2676 if (!signal->group_stop_count && 2677 !(signal->flags & SIGNAL_STOP_STOPPED)) 2678 signr = SIGTRAP; 2679 WARN_ON_ONCE(!signr); 2680 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2681 CLD_STOPPED, 0); 2682 } else { 2683 WARN_ON_ONCE(!signr); 2684 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2685 } 2686 } 2687 2688 /** 2689 * do_freezer_trap - handle the freezer jobctl trap 2690 * 2691 * Puts the task into frozen state, if only the task is not about to quit. 2692 * In this case it drops JOBCTL_TRAP_FREEZE. 2693 * 2694 * CONTEXT: 2695 * Must be called with @current->sighand->siglock held, 2696 * which is always released before returning. 2697 */ 2698 static void do_freezer_trap(void) 2699 __releases(¤t->sighand->siglock) 2700 { 2701 /* 2702 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2703 * let's make another loop to give it a chance to be handled. 2704 * In any case, we'll return back. 2705 */ 2706 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2707 JOBCTL_TRAP_FREEZE) { 2708 spin_unlock_irq(¤t->sighand->siglock); 2709 return; 2710 } 2711 2712 /* 2713 * Now we're sure that there is no pending fatal signal and no 2714 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2715 * immediately (if there is a non-fatal signal pending), and 2716 * put the task into sleep. 2717 */ 2718 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2719 clear_thread_flag(TIF_SIGPENDING); 2720 spin_unlock_irq(¤t->sighand->siglock); 2721 cgroup_enter_frozen(); 2722 schedule(); 2723 2724 /* 2725 * We could've been woken by task_work, run it to clear 2726 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary. 2727 */ 2728 clear_notify_signal(); 2729 if (unlikely(task_work_pending(current))) 2730 task_work_run(); 2731 } 2732 2733 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2734 { 2735 /* 2736 * We do not check sig_kernel_stop(signr) but set this marker 2737 * unconditionally because we do not know whether debugger will 2738 * change signr. This flag has no meaning unless we are going 2739 * to stop after return from ptrace_stop(). In this case it will 2740 * be checked in do_signal_stop(), we should only stop if it was 2741 * not cleared by SIGCONT while we were sleeping. See also the 2742 * comment in dequeue_signal(). 2743 */ 2744 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2745 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2746 2747 /* We're back. Did the debugger cancel the sig? */ 2748 if (signr == 0) 2749 return signr; 2750 2751 /* 2752 * Update the siginfo structure if the signal has 2753 * changed. If the debugger wanted something 2754 * specific in the siginfo structure then it should 2755 * have updated *info via PTRACE_SETSIGINFO. 2756 */ 2757 if (signr != info->si_signo) { 2758 clear_siginfo(info); 2759 info->si_signo = signr; 2760 info->si_errno = 0; 2761 info->si_code = SI_USER; 2762 rcu_read_lock(); 2763 info->si_pid = task_pid_vnr(current->parent); 2764 info->si_uid = from_kuid_munged(current_user_ns(), 2765 task_uid(current->parent)); 2766 rcu_read_unlock(); 2767 } 2768 2769 /* If the (new) signal is now blocked, requeue it. */ 2770 if (sigismember(¤t->blocked, signr) || 2771 fatal_signal_pending(current)) { 2772 send_signal_locked(signr, info, current, type); 2773 signr = 0; 2774 } 2775 2776 return signr; 2777 } 2778 2779 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2780 { 2781 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2782 case SIL_FAULT: 2783 case SIL_FAULT_TRAPNO: 2784 case SIL_FAULT_MCEERR: 2785 case SIL_FAULT_BNDERR: 2786 case SIL_FAULT_PKUERR: 2787 case SIL_FAULT_PERF_EVENT: 2788 ksig->info.si_addr = arch_untagged_si_addr( 2789 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2790 break; 2791 case SIL_KILL: 2792 case SIL_TIMER: 2793 case SIL_POLL: 2794 case SIL_CHLD: 2795 case SIL_RT: 2796 case SIL_SYS: 2797 break; 2798 } 2799 } 2800 2801 bool get_signal(struct ksignal *ksig) 2802 { 2803 struct sighand_struct *sighand = current->sighand; 2804 struct signal_struct *signal = current->signal; 2805 int signr; 2806 2807 clear_notify_signal(); 2808 if (unlikely(task_work_pending(current))) 2809 task_work_run(); 2810 2811 if (!task_sigpending(current)) 2812 return false; 2813 2814 if (unlikely(uprobe_deny_signal())) 2815 return false; 2816 2817 /* 2818 * Do this once, we can't return to user-mode if freezing() == T. 2819 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2820 * thus do not need another check after return. 2821 */ 2822 try_to_freeze(); 2823 2824 relock: 2825 spin_lock_irq(&sighand->siglock); 2826 2827 /* 2828 * Every stopped thread goes here after wakeup. Check to see if 2829 * we should notify the parent, prepare_signal(SIGCONT) encodes 2830 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2831 */ 2832 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2833 int why; 2834 2835 if (signal->flags & SIGNAL_CLD_CONTINUED) 2836 why = CLD_CONTINUED; 2837 else 2838 why = CLD_STOPPED; 2839 2840 signal->flags &= ~SIGNAL_CLD_MASK; 2841 2842 spin_unlock_irq(&sighand->siglock); 2843 2844 /* 2845 * Notify the parent that we're continuing. This event is 2846 * always per-process and doesn't make whole lot of sense 2847 * for ptracers, who shouldn't consume the state via 2848 * wait(2) either, but, for backward compatibility, notify 2849 * the ptracer of the group leader too unless it's gonna be 2850 * a duplicate. 2851 */ 2852 read_lock(&tasklist_lock); 2853 do_notify_parent_cldstop(current, false, why); 2854 2855 if (ptrace_reparented(current->group_leader)) 2856 do_notify_parent_cldstop(current->group_leader, 2857 true, why); 2858 read_unlock(&tasklist_lock); 2859 2860 goto relock; 2861 } 2862 2863 for (;;) { 2864 struct k_sigaction *ka; 2865 enum pid_type type; 2866 2867 /* Has this task already been marked for death? */ 2868 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2869 signal->group_exec_task) { 2870 signr = SIGKILL; 2871 sigdelset(¤t->pending.signal, SIGKILL); 2872 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2873 &sighand->action[SIGKILL-1]); 2874 recalc_sigpending(); 2875 /* 2876 * implies do_group_exit() or return to PF_USER_WORKER, 2877 * no need to initialize ksig->info/etc. 2878 */ 2879 goto fatal; 2880 } 2881 2882 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2883 do_signal_stop(0)) 2884 goto relock; 2885 2886 if (unlikely(current->jobctl & 2887 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2888 if (current->jobctl & JOBCTL_TRAP_MASK) { 2889 do_jobctl_trap(); 2890 spin_unlock_irq(&sighand->siglock); 2891 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2892 do_freezer_trap(); 2893 2894 goto relock; 2895 } 2896 2897 /* 2898 * If the task is leaving the frozen state, let's update 2899 * cgroup counters and reset the frozen bit. 2900 */ 2901 if (unlikely(cgroup_task_frozen(current))) { 2902 spin_unlock_irq(&sighand->siglock); 2903 cgroup_leave_frozen(false); 2904 goto relock; 2905 } 2906 2907 /* 2908 * Signals generated by the execution of an instruction 2909 * need to be delivered before any other pending signals 2910 * so that the instruction pointer in the signal stack 2911 * frame points to the faulting instruction. 2912 */ 2913 type = PIDTYPE_PID; 2914 signr = dequeue_synchronous_signal(&ksig->info); 2915 if (!signr) 2916 signr = dequeue_signal(¤t->blocked, &ksig->info, &type); 2917 2918 if (!signr) 2919 break; /* will return 0 */ 2920 2921 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2922 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2923 signr = ptrace_signal(signr, &ksig->info, type); 2924 if (!signr) 2925 continue; 2926 } 2927 2928 ka = &sighand->action[signr-1]; 2929 2930 /* Trace actually delivered signals. */ 2931 trace_signal_deliver(signr, &ksig->info, ka); 2932 2933 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2934 continue; 2935 if (ka->sa.sa_handler != SIG_DFL) { 2936 /* Run the handler. */ 2937 ksig->ka = *ka; 2938 2939 if (ka->sa.sa_flags & SA_ONESHOT) 2940 ka->sa.sa_handler = SIG_DFL; 2941 2942 break; /* will return non-zero "signr" value */ 2943 } 2944 2945 /* 2946 * Now we are doing the default action for this signal. 2947 */ 2948 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2949 continue; 2950 2951 /* 2952 * Global init gets no signals it doesn't want. 2953 * Container-init gets no signals it doesn't want from same 2954 * container. 2955 * 2956 * Note that if global/container-init sees a sig_kernel_only() 2957 * signal here, the signal must have been generated internally 2958 * or must have come from an ancestor namespace. In either 2959 * case, the signal cannot be dropped. 2960 */ 2961 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2962 !sig_kernel_only(signr)) 2963 continue; 2964 2965 if (sig_kernel_stop(signr)) { 2966 /* 2967 * The default action is to stop all threads in 2968 * the thread group. The job control signals 2969 * do nothing in an orphaned pgrp, but SIGSTOP 2970 * always works. Note that siglock needs to be 2971 * dropped during the call to is_orphaned_pgrp() 2972 * because of lock ordering with tasklist_lock. 2973 * This allows an intervening SIGCONT to be posted. 2974 * We need to check for that and bail out if necessary. 2975 */ 2976 if (signr != SIGSTOP) { 2977 spin_unlock_irq(&sighand->siglock); 2978 2979 /* signals can be posted during this window */ 2980 2981 if (is_current_pgrp_orphaned()) 2982 goto relock; 2983 2984 spin_lock_irq(&sighand->siglock); 2985 } 2986 2987 if (likely(do_signal_stop(signr))) { 2988 /* It released the siglock. */ 2989 goto relock; 2990 } 2991 2992 /* 2993 * We didn't actually stop, due to a race 2994 * with SIGCONT or something like that. 2995 */ 2996 continue; 2997 } 2998 2999 fatal: 3000 spin_unlock_irq(&sighand->siglock); 3001 if (unlikely(cgroup_task_frozen(current))) 3002 cgroup_leave_frozen(true); 3003 3004 /* 3005 * Anything else is fatal, maybe with a core dump. 3006 */ 3007 current->flags |= PF_SIGNALED; 3008 3009 if (sig_kernel_coredump(signr)) { 3010 if (print_fatal_signals) 3011 print_fatal_signal(signr); 3012 proc_coredump_connector(current); 3013 /* 3014 * If it was able to dump core, this kills all 3015 * other threads in the group and synchronizes with 3016 * their demise. If we lost the race with another 3017 * thread getting here, it set group_exit_code 3018 * first and our do_group_exit call below will use 3019 * that value and ignore the one we pass it. 3020 */ 3021 do_coredump(&ksig->info); 3022 } 3023 3024 /* 3025 * PF_USER_WORKER threads will catch and exit on fatal signals 3026 * themselves. They have cleanup that must be performed, so we 3027 * cannot call do_exit() on their behalf. Note that ksig won't 3028 * be properly initialized, PF_USER_WORKER's shouldn't use it. 3029 */ 3030 if (current->flags & PF_USER_WORKER) 3031 goto out; 3032 3033 /* 3034 * Death signals, no core dump. 3035 */ 3036 do_group_exit(signr); 3037 /* NOTREACHED */ 3038 } 3039 spin_unlock_irq(&sighand->siglock); 3040 3041 ksig->sig = signr; 3042 3043 if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 3044 hide_si_addr_tag_bits(ksig); 3045 out: 3046 return signr > 0; 3047 } 3048 3049 /** 3050 * signal_delivered - called after signal delivery to update blocked signals 3051 * @ksig: kernel signal struct 3052 * @stepping: nonzero if debugger single-step or block-step in use 3053 * 3054 * This function should be called when a signal has successfully been 3055 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 3056 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 3057 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 3058 */ 3059 static void signal_delivered(struct ksignal *ksig, int stepping) 3060 { 3061 sigset_t blocked; 3062 3063 /* A signal was successfully delivered, and the 3064 saved sigmask was stored on the signal frame, 3065 and will be restored by sigreturn. So we can 3066 simply clear the restore sigmask flag. */ 3067 clear_restore_sigmask(); 3068 3069 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 3070 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 3071 sigaddset(&blocked, ksig->sig); 3072 set_current_blocked(&blocked); 3073 if (current->sas_ss_flags & SS_AUTODISARM) 3074 sas_ss_reset(current); 3075 if (stepping) 3076 ptrace_notify(SIGTRAP, 0); 3077 } 3078 3079 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 3080 { 3081 if (failed) 3082 force_sigsegv(ksig->sig); 3083 else 3084 signal_delivered(ksig, stepping); 3085 } 3086 3087 /* 3088 * It could be that complete_signal() picked us to notify about the 3089 * group-wide signal. Other threads should be notified now to take 3090 * the shared signals in @which since we will not. 3091 */ 3092 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 3093 { 3094 sigset_t retarget; 3095 struct task_struct *t; 3096 3097 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 3098 if (sigisemptyset(&retarget)) 3099 return; 3100 3101 for_other_threads(tsk, t) { 3102 if (t->flags & PF_EXITING) 3103 continue; 3104 3105 if (!has_pending_signals(&retarget, &t->blocked)) 3106 continue; 3107 /* Remove the signals this thread can handle. */ 3108 sigandsets(&retarget, &retarget, &t->blocked); 3109 3110 if (!task_sigpending(t)) 3111 signal_wake_up(t, 0); 3112 3113 if (sigisemptyset(&retarget)) 3114 break; 3115 } 3116 } 3117 3118 void exit_signals(struct task_struct *tsk) 3119 { 3120 int group_stop = 0; 3121 sigset_t unblocked; 3122 3123 /* 3124 * @tsk is about to have PF_EXITING set - lock out users which 3125 * expect stable threadgroup. 3126 */ 3127 cgroup_threadgroup_change_begin(tsk); 3128 3129 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 3130 sched_mm_cid_exit_signals(tsk); 3131 tsk->flags |= PF_EXITING; 3132 cgroup_threadgroup_change_end(tsk); 3133 return; 3134 } 3135 3136 spin_lock_irq(&tsk->sighand->siglock); 3137 /* 3138 * From now this task is not visible for group-wide signals, 3139 * see wants_signal(), do_signal_stop(). 3140 */ 3141 sched_mm_cid_exit_signals(tsk); 3142 tsk->flags |= PF_EXITING; 3143 3144 cgroup_threadgroup_change_end(tsk); 3145 3146 if (!task_sigpending(tsk)) 3147 goto out; 3148 3149 unblocked = tsk->blocked; 3150 signotset(&unblocked); 3151 retarget_shared_pending(tsk, &unblocked); 3152 3153 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3154 task_participate_group_stop(tsk)) 3155 group_stop = CLD_STOPPED; 3156 out: 3157 spin_unlock_irq(&tsk->sighand->siglock); 3158 3159 /* 3160 * If group stop has completed, deliver the notification. This 3161 * should always go to the real parent of the group leader. 3162 */ 3163 if (unlikely(group_stop)) { 3164 read_lock(&tasklist_lock); 3165 do_notify_parent_cldstop(tsk, false, group_stop); 3166 read_unlock(&tasklist_lock); 3167 } 3168 } 3169 3170 /* 3171 * System call entry points. 3172 */ 3173 3174 /** 3175 * sys_restart_syscall - restart a system call 3176 */ 3177 SYSCALL_DEFINE0(restart_syscall) 3178 { 3179 struct restart_block *restart = ¤t->restart_block; 3180 return restart->fn(restart); 3181 } 3182 3183 long do_no_restart_syscall(struct restart_block *param) 3184 { 3185 return -EINTR; 3186 } 3187 3188 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3189 { 3190 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3191 sigset_t newblocked; 3192 /* A set of now blocked but previously unblocked signals. */ 3193 sigandnsets(&newblocked, newset, ¤t->blocked); 3194 retarget_shared_pending(tsk, &newblocked); 3195 } 3196 tsk->blocked = *newset; 3197 recalc_sigpending(); 3198 } 3199 3200 /** 3201 * set_current_blocked - change current->blocked mask 3202 * @newset: new mask 3203 * 3204 * It is wrong to change ->blocked directly, this helper should be used 3205 * to ensure the process can't miss a shared signal we are going to block. 3206 */ 3207 void set_current_blocked(sigset_t *newset) 3208 { 3209 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3210 __set_current_blocked(newset); 3211 } 3212 3213 void __set_current_blocked(const sigset_t *newset) 3214 { 3215 struct task_struct *tsk = current; 3216 3217 /* 3218 * In case the signal mask hasn't changed, there is nothing we need 3219 * to do. The current->blocked shouldn't be modified by other task. 3220 */ 3221 if (sigequalsets(&tsk->blocked, newset)) 3222 return; 3223 3224 spin_lock_irq(&tsk->sighand->siglock); 3225 __set_task_blocked(tsk, newset); 3226 spin_unlock_irq(&tsk->sighand->siglock); 3227 } 3228 3229 /* 3230 * This is also useful for kernel threads that want to temporarily 3231 * (or permanently) block certain signals. 3232 * 3233 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3234 * interface happily blocks "unblockable" signals like SIGKILL 3235 * and friends. 3236 */ 3237 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3238 { 3239 struct task_struct *tsk = current; 3240 sigset_t newset; 3241 3242 /* Lockless, only current can change ->blocked, never from irq */ 3243 if (oldset) 3244 *oldset = tsk->blocked; 3245 3246 switch (how) { 3247 case SIG_BLOCK: 3248 sigorsets(&newset, &tsk->blocked, set); 3249 break; 3250 case SIG_UNBLOCK: 3251 sigandnsets(&newset, &tsk->blocked, set); 3252 break; 3253 case SIG_SETMASK: 3254 newset = *set; 3255 break; 3256 default: 3257 return -EINVAL; 3258 } 3259 3260 __set_current_blocked(&newset); 3261 return 0; 3262 } 3263 EXPORT_SYMBOL(sigprocmask); 3264 3265 /* 3266 * The api helps set app-provided sigmasks. 3267 * 3268 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3269 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3270 * 3271 * Note that it does set_restore_sigmask() in advance, so it must be always 3272 * paired with restore_saved_sigmask_unless() before return from syscall. 3273 */ 3274 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3275 { 3276 sigset_t kmask; 3277 3278 if (!umask) 3279 return 0; 3280 if (sigsetsize != sizeof(sigset_t)) 3281 return -EINVAL; 3282 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3283 return -EFAULT; 3284 3285 set_restore_sigmask(); 3286 current->saved_sigmask = current->blocked; 3287 set_current_blocked(&kmask); 3288 3289 return 0; 3290 } 3291 3292 #ifdef CONFIG_COMPAT 3293 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3294 size_t sigsetsize) 3295 { 3296 sigset_t kmask; 3297 3298 if (!umask) 3299 return 0; 3300 if (sigsetsize != sizeof(compat_sigset_t)) 3301 return -EINVAL; 3302 if (get_compat_sigset(&kmask, umask)) 3303 return -EFAULT; 3304 3305 set_restore_sigmask(); 3306 current->saved_sigmask = current->blocked; 3307 set_current_blocked(&kmask); 3308 3309 return 0; 3310 } 3311 #endif 3312 3313 /** 3314 * sys_rt_sigprocmask - change the list of currently blocked signals 3315 * @how: whether to add, remove, or set signals 3316 * @nset: stores pending signals 3317 * @oset: previous value of signal mask if non-null 3318 * @sigsetsize: size of sigset_t type 3319 */ 3320 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3321 sigset_t __user *, oset, size_t, sigsetsize) 3322 { 3323 sigset_t old_set, new_set; 3324 int error; 3325 3326 /* XXX: Don't preclude handling different sized sigset_t's. */ 3327 if (sigsetsize != sizeof(sigset_t)) 3328 return -EINVAL; 3329 3330 old_set = current->blocked; 3331 3332 if (nset) { 3333 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3334 return -EFAULT; 3335 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3336 3337 error = sigprocmask(how, &new_set, NULL); 3338 if (error) 3339 return error; 3340 } 3341 3342 if (oset) { 3343 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3344 return -EFAULT; 3345 } 3346 3347 return 0; 3348 } 3349 3350 #ifdef CONFIG_COMPAT 3351 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3352 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3353 { 3354 sigset_t old_set = current->blocked; 3355 3356 /* XXX: Don't preclude handling different sized sigset_t's. */ 3357 if (sigsetsize != sizeof(sigset_t)) 3358 return -EINVAL; 3359 3360 if (nset) { 3361 sigset_t new_set; 3362 int error; 3363 if (get_compat_sigset(&new_set, nset)) 3364 return -EFAULT; 3365 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3366 3367 error = sigprocmask(how, &new_set, NULL); 3368 if (error) 3369 return error; 3370 } 3371 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3372 } 3373 #endif 3374 3375 static void do_sigpending(sigset_t *set) 3376 { 3377 spin_lock_irq(¤t->sighand->siglock); 3378 sigorsets(set, ¤t->pending.signal, 3379 ¤t->signal->shared_pending.signal); 3380 spin_unlock_irq(¤t->sighand->siglock); 3381 3382 /* Outside the lock because only this thread touches it. */ 3383 sigandsets(set, ¤t->blocked, set); 3384 } 3385 3386 /** 3387 * sys_rt_sigpending - examine a pending signal that has been raised 3388 * while blocked 3389 * @uset: stores pending signals 3390 * @sigsetsize: size of sigset_t type or larger 3391 */ 3392 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3393 { 3394 sigset_t set; 3395 3396 if (sigsetsize > sizeof(*uset)) 3397 return -EINVAL; 3398 3399 do_sigpending(&set); 3400 3401 if (copy_to_user(uset, &set, sigsetsize)) 3402 return -EFAULT; 3403 3404 return 0; 3405 } 3406 3407 #ifdef CONFIG_COMPAT 3408 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3409 compat_size_t, sigsetsize) 3410 { 3411 sigset_t set; 3412 3413 if (sigsetsize > sizeof(*uset)) 3414 return -EINVAL; 3415 3416 do_sigpending(&set); 3417 3418 return put_compat_sigset(uset, &set, sigsetsize); 3419 } 3420 #endif 3421 3422 static const struct { 3423 unsigned char limit, layout; 3424 } sig_sicodes[] = { 3425 [SIGILL] = { NSIGILL, SIL_FAULT }, 3426 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3427 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3428 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3429 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3430 #if defined(SIGEMT) 3431 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3432 #endif 3433 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3434 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3435 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3436 }; 3437 3438 static bool known_siginfo_layout(unsigned sig, int si_code) 3439 { 3440 if (si_code == SI_KERNEL) 3441 return true; 3442 else if ((si_code > SI_USER)) { 3443 if (sig_specific_sicodes(sig)) { 3444 if (si_code <= sig_sicodes[sig].limit) 3445 return true; 3446 } 3447 else if (si_code <= NSIGPOLL) 3448 return true; 3449 } 3450 else if (si_code >= SI_DETHREAD) 3451 return true; 3452 else if (si_code == SI_ASYNCNL) 3453 return true; 3454 return false; 3455 } 3456 3457 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3458 { 3459 enum siginfo_layout layout = SIL_KILL; 3460 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3461 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3462 (si_code <= sig_sicodes[sig].limit)) { 3463 layout = sig_sicodes[sig].layout; 3464 /* Handle the exceptions */ 3465 if ((sig == SIGBUS) && 3466 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3467 layout = SIL_FAULT_MCEERR; 3468 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3469 layout = SIL_FAULT_BNDERR; 3470 #ifdef SEGV_PKUERR 3471 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3472 layout = SIL_FAULT_PKUERR; 3473 #endif 3474 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3475 layout = SIL_FAULT_PERF_EVENT; 3476 else if (IS_ENABLED(CONFIG_SPARC) && 3477 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3478 layout = SIL_FAULT_TRAPNO; 3479 else if (IS_ENABLED(CONFIG_ALPHA) && 3480 ((sig == SIGFPE) || 3481 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3482 layout = SIL_FAULT_TRAPNO; 3483 } 3484 else if (si_code <= NSIGPOLL) 3485 layout = SIL_POLL; 3486 } else { 3487 if (si_code == SI_TIMER) 3488 layout = SIL_TIMER; 3489 else if (si_code == SI_SIGIO) 3490 layout = SIL_POLL; 3491 else if (si_code < 0) 3492 layout = SIL_RT; 3493 } 3494 return layout; 3495 } 3496 3497 static inline char __user *si_expansion(const siginfo_t __user *info) 3498 { 3499 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3500 } 3501 3502 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3503 { 3504 char __user *expansion = si_expansion(to); 3505 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3506 return -EFAULT; 3507 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3508 return -EFAULT; 3509 return 0; 3510 } 3511 3512 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3513 const siginfo_t __user *from) 3514 { 3515 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3516 char __user *expansion = si_expansion(from); 3517 char buf[SI_EXPANSION_SIZE]; 3518 int i; 3519 /* 3520 * An unknown si_code might need more than 3521 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3522 * extra bytes are 0. This guarantees copy_siginfo_to_user 3523 * will return this data to userspace exactly. 3524 */ 3525 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3526 return -EFAULT; 3527 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3528 if (buf[i] != 0) 3529 return -E2BIG; 3530 } 3531 } 3532 return 0; 3533 } 3534 3535 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3536 const siginfo_t __user *from) 3537 { 3538 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3539 return -EFAULT; 3540 to->si_signo = signo; 3541 return post_copy_siginfo_from_user(to, from); 3542 } 3543 3544 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3545 { 3546 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3547 return -EFAULT; 3548 return post_copy_siginfo_from_user(to, from); 3549 } 3550 3551 #ifdef CONFIG_COMPAT 3552 /** 3553 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3554 * @to: compat siginfo destination 3555 * @from: kernel siginfo source 3556 * 3557 * Note: This function does not work properly for the SIGCHLD on x32, but 3558 * fortunately it doesn't have to. The only valid callers for this function are 3559 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3560 * The latter does not care because SIGCHLD will never cause a coredump. 3561 */ 3562 void copy_siginfo_to_external32(struct compat_siginfo *to, 3563 const struct kernel_siginfo *from) 3564 { 3565 memset(to, 0, sizeof(*to)); 3566 3567 to->si_signo = from->si_signo; 3568 to->si_errno = from->si_errno; 3569 to->si_code = from->si_code; 3570 switch(siginfo_layout(from->si_signo, from->si_code)) { 3571 case SIL_KILL: 3572 to->si_pid = from->si_pid; 3573 to->si_uid = from->si_uid; 3574 break; 3575 case SIL_TIMER: 3576 to->si_tid = from->si_tid; 3577 to->si_overrun = from->si_overrun; 3578 to->si_int = from->si_int; 3579 break; 3580 case SIL_POLL: 3581 to->si_band = from->si_band; 3582 to->si_fd = from->si_fd; 3583 break; 3584 case SIL_FAULT: 3585 to->si_addr = ptr_to_compat(from->si_addr); 3586 break; 3587 case SIL_FAULT_TRAPNO: 3588 to->si_addr = ptr_to_compat(from->si_addr); 3589 to->si_trapno = from->si_trapno; 3590 break; 3591 case SIL_FAULT_MCEERR: 3592 to->si_addr = ptr_to_compat(from->si_addr); 3593 to->si_addr_lsb = from->si_addr_lsb; 3594 break; 3595 case SIL_FAULT_BNDERR: 3596 to->si_addr = ptr_to_compat(from->si_addr); 3597 to->si_lower = ptr_to_compat(from->si_lower); 3598 to->si_upper = ptr_to_compat(from->si_upper); 3599 break; 3600 case SIL_FAULT_PKUERR: 3601 to->si_addr = ptr_to_compat(from->si_addr); 3602 to->si_pkey = from->si_pkey; 3603 break; 3604 case SIL_FAULT_PERF_EVENT: 3605 to->si_addr = ptr_to_compat(from->si_addr); 3606 to->si_perf_data = from->si_perf_data; 3607 to->si_perf_type = from->si_perf_type; 3608 to->si_perf_flags = from->si_perf_flags; 3609 break; 3610 case SIL_CHLD: 3611 to->si_pid = from->si_pid; 3612 to->si_uid = from->si_uid; 3613 to->si_status = from->si_status; 3614 to->si_utime = from->si_utime; 3615 to->si_stime = from->si_stime; 3616 break; 3617 case SIL_RT: 3618 to->si_pid = from->si_pid; 3619 to->si_uid = from->si_uid; 3620 to->si_int = from->si_int; 3621 break; 3622 case SIL_SYS: 3623 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3624 to->si_syscall = from->si_syscall; 3625 to->si_arch = from->si_arch; 3626 break; 3627 } 3628 } 3629 3630 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3631 const struct kernel_siginfo *from) 3632 { 3633 struct compat_siginfo new; 3634 3635 copy_siginfo_to_external32(&new, from); 3636 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3637 return -EFAULT; 3638 return 0; 3639 } 3640 3641 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3642 const struct compat_siginfo *from) 3643 { 3644 clear_siginfo(to); 3645 to->si_signo = from->si_signo; 3646 to->si_errno = from->si_errno; 3647 to->si_code = from->si_code; 3648 switch(siginfo_layout(from->si_signo, from->si_code)) { 3649 case SIL_KILL: 3650 to->si_pid = from->si_pid; 3651 to->si_uid = from->si_uid; 3652 break; 3653 case SIL_TIMER: 3654 to->si_tid = from->si_tid; 3655 to->si_overrun = from->si_overrun; 3656 to->si_int = from->si_int; 3657 break; 3658 case SIL_POLL: 3659 to->si_band = from->si_band; 3660 to->si_fd = from->si_fd; 3661 break; 3662 case SIL_FAULT: 3663 to->si_addr = compat_ptr(from->si_addr); 3664 break; 3665 case SIL_FAULT_TRAPNO: 3666 to->si_addr = compat_ptr(from->si_addr); 3667 to->si_trapno = from->si_trapno; 3668 break; 3669 case SIL_FAULT_MCEERR: 3670 to->si_addr = compat_ptr(from->si_addr); 3671 to->si_addr_lsb = from->si_addr_lsb; 3672 break; 3673 case SIL_FAULT_BNDERR: 3674 to->si_addr = compat_ptr(from->si_addr); 3675 to->si_lower = compat_ptr(from->si_lower); 3676 to->si_upper = compat_ptr(from->si_upper); 3677 break; 3678 case SIL_FAULT_PKUERR: 3679 to->si_addr = compat_ptr(from->si_addr); 3680 to->si_pkey = from->si_pkey; 3681 break; 3682 case SIL_FAULT_PERF_EVENT: 3683 to->si_addr = compat_ptr(from->si_addr); 3684 to->si_perf_data = from->si_perf_data; 3685 to->si_perf_type = from->si_perf_type; 3686 to->si_perf_flags = from->si_perf_flags; 3687 break; 3688 case SIL_CHLD: 3689 to->si_pid = from->si_pid; 3690 to->si_uid = from->si_uid; 3691 to->si_status = from->si_status; 3692 #ifdef CONFIG_X86_X32_ABI 3693 if (in_x32_syscall()) { 3694 to->si_utime = from->_sifields._sigchld_x32._utime; 3695 to->si_stime = from->_sifields._sigchld_x32._stime; 3696 } else 3697 #endif 3698 { 3699 to->si_utime = from->si_utime; 3700 to->si_stime = from->si_stime; 3701 } 3702 break; 3703 case SIL_RT: 3704 to->si_pid = from->si_pid; 3705 to->si_uid = from->si_uid; 3706 to->si_int = from->si_int; 3707 break; 3708 case SIL_SYS: 3709 to->si_call_addr = compat_ptr(from->si_call_addr); 3710 to->si_syscall = from->si_syscall; 3711 to->si_arch = from->si_arch; 3712 break; 3713 } 3714 return 0; 3715 } 3716 3717 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3718 const struct compat_siginfo __user *ufrom) 3719 { 3720 struct compat_siginfo from; 3721 3722 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3723 return -EFAULT; 3724 3725 from.si_signo = signo; 3726 return post_copy_siginfo_from_user32(to, &from); 3727 } 3728 3729 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3730 const struct compat_siginfo __user *ufrom) 3731 { 3732 struct compat_siginfo from; 3733 3734 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3735 return -EFAULT; 3736 3737 return post_copy_siginfo_from_user32(to, &from); 3738 } 3739 #endif /* CONFIG_COMPAT */ 3740 3741 /** 3742 * do_sigtimedwait - wait for queued signals specified in @which 3743 * @which: queued signals to wait for 3744 * @info: if non-null, the signal's siginfo is returned here 3745 * @ts: upper bound on process time suspension 3746 */ 3747 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3748 const struct timespec64 *ts) 3749 { 3750 ktime_t *to = NULL, timeout = KTIME_MAX; 3751 struct task_struct *tsk = current; 3752 sigset_t mask = *which; 3753 enum pid_type type; 3754 int sig, ret = 0; 3755 3756 if (ts) { 3757 if (!timespec64_valid(ts)) 3758 return -EINVAL; 3759 timeout = timespec64_to_ktime(*ts); 3760 to = &timeout; 3761 } 3762 3763 /* 3764 * Invert the set of allowed signals to get those we want to block. 3765 */ 3766 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3767 signotset(&mask); 3768 3769 spin_lock_irq(&tsk->sighand->siglock); 3770 sig = dequeue_signal(&mask, info, &type); 3771 if (!sig && timeout) { 3772 /* 3773 * None ready, temporarily unblock those we're interested 3774 * while we are sleeping in so that we'll be awakened when 3775 * they arrive. Unblocking is always fine, we can avoid 3776 * set_current_blocked(). 3777 */ 3778 tsk->real_blocked = tsk->blocked; 3779 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3780 recalc_sigpending(); 3781 spin_unlock_irq(&tsk->sighand->siglock); 3782 3783 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3784 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3785 HRTIMER_MODE_REL); 3786 spin_lock_irq(&tsk->sighand->siglock); 3787 __set_task_blocked(tsk, &tsk->real_blocked); 3788 sigemptyset(&tsk->real_blocked); 3789 sig = dequeue_signal(&mask, info, &type); 3790 } 3791 spin_unlock_irq(&tsk->sighand->siglock); 3792 3793 if (sig) 3794 return sig; 3795 return ret ? -EINTR : -EAGAIN; 3796 } 3797 3798 /** 3799 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3800 * in @uthese 3801 * @uthese: queued signals to wait for 3802 * @uinfo: if non-null, the signal's siginfo is returned here 3803 * @uts: upper bound on process time suspension 3804 * @sigsetsize: size of sigset_t type 3805 */ 3806 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3807 siginfo_t __user *, uinfo, 3808 const struct __kernel_timespec __user *, uts, 3809 size_t, sigsetsize) 3810 { 3811 sigset_t these; 3812 struct timespec64 ts; 3813 kernel_siginfo_t info; 3814 int ret; 3815 3816 /* XXX: Don't preclude handling different sized sigset_t's. */ 3817 if (sigsetsize != sizeof(sigset_t)) 3818 return -EINVAL; 3819 3820 if (copy_from_user(&these, uthese, sizeof(these))) 3821 return -EFAULT; 3822 3823 if (uts) { 3824 if (get_timespec64(&ts, uts)) 3825 return -EFAULT; 3826 } 3827 3828 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3829 3830 if (ret > 0 && uinfo) { 3831 if (copy_siginfo_to_user(uinfo, &info)) 3832 ret = -EFAULT; 3833 } 3834 3835 return ret; 3836 } 3837 3838 #ifdef CONFIG_COMPAT_32BIT_TIME 3839 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3840 siginfo_t __user *, uinfo, 3841 const struct old_timespec32 __user *, uts, 3842 size_t, sigsetsize) 3843 { 3844 sigset_t these; 3845 struct timespec64 ts; 3846 kernel_siginfo_t info; 3847 int ret; 3848 3849 if (sigsetsize != sizeof(sigset_t)) 3850 return -EINVAL; 3851 3852 if (copy_from_user(&these, uthese, sizeof(these))) 3853 return -EFAULT; 3854 3855 if (uts) { 3856 if (get_old_timespec32(&ts, uts)) 3857 return -EFAULT; 3858 } 3859 3860 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3861 3862 if (ret > 0 && uinfo) { 3863 if (copy_siginfo_to_user(uinfo, &info)) 3864 ret = -EFAULT; 3865 } 3866 3867 return ret; 3868 } 3869 #endif 3870 3871 #ifdef CONFIG_COMPAT 3872 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3873 struct compat_siginfo __user *, uinfo, 3874 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3875 { 3876 sigset_t s; 3877 struct timespec64 t; 3878 kernel_siginfo_t info; 3879 long ret; 3880 3881 if (sigsetsize != sizeof(sigset_t)) 3882 return -EINVAL; 3883 3884 if (get_compat_sigset(&s, uthese)) 3885 return -EFAULT; 3886 3887 if (uts) { 3888 if (get_timespec64(&t, uts)) 3889 return -EFAULT; 3890 } 3891 3892 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3893 3894 if (ret > 0 && uinfo) { 3895 if (copy_siginfo_to_user32(uinfo, &info)) 3896 ret = -EFAULT; 3897 } 3898 3899 return ret; 3900 } 3901 3902 #ifdef CONFIG_COMPAT_32BIT_TIME 3903 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3904 struct compat_siginfo __user *, uinfo, 3905 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3906 { 3907 sigset_t s; 3908 struct timespec64 t; 3909 kernel_siginfo_t info; 3910 long ret; 3911 3912 if (sigsetsize != sizeof(sigset_t)) 3913 return -EINVAL; 3914 3915 if (get_compat_sigset(&s, uthese)) 3916 return -EFAULT; 3917 3918 if (uts) { 3919 if (get_old_timespec32(&t, uts)) 3920 return -EFAULT; 3921 } 3922 3923 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3924 3925 if (ret > 0 && uinfo) { 3926 if (copy_siginfo_to_user32(uinfo, &info)) 3927 ret = -EFAULT; 3928 } 3929 3930 return ret; 3931 } 3932 #endif 3933 #endif 3934 3935 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info, 3936 enum pid_type type) 3937 { 3938 clear_siginfo(info); 3939 info->si_signo = sig; 3940 info->si_errno = 0; 3941 info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER; 3942 info->si_pid = task_tgid_vnr(current); 3943 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3944 } 3945 3946 /** 3947 * sys_kill - send a signal to a process 3948 * @pid: the PID of the process 3949 * @sig: signal to be sent 3950 */ 3951 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3952 { 3953 struct kernel_siginfo info; 3954 3955 prepare_kill_siginfo(sig, &info, PIDTYPE_TGID); 3956 3957 return kill_something_info(sig, &info, pid); 3958 } 3959 3960 /* 3961 * Verify that the signaler and signalee either are in the same pid namespace 3962 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3963 * namespace. 3964 */ 3965 static bool access_pidfd_pidns(struct pid *pid) 3966 { 3967 struct pid_namespace *active = task_active_pid_ns(current); 3968 struct pid_namespace *p = ns_of_pid(pid); 3969 3970 for (;;) { 3971 if (!p) 3972 return false; 3973 if (p == active) 3974 break; 3975 p = p->parent; 3976 } 3977 3978 return true; 3979 } 3980 3981 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3982 siginfo_t __user *info) 3983 { 3984 #ifdef CONFIG_COMPAT 3985 /* 3986 * Avoid hooking up compat syscalls and instead handle necessary 3987 * conversions here. Note, this is a stop-gap measure and should not be 3988 * considered a generic solution. 3989 */ 3990 if (in_compat_syscall()) 3991 return copy_siginfo_from_user32( 3992 kinfo, (struct compat_siginfo __user *)info); 3993 #endif 3994 return copy_siginfo_from_user(kinfo, info); 3995 } 3996 3997 static struct pid *pidfd_to_pid(const struct file *file) 3998 { 3999 struct pid *pid; 4000 4001 pid = pidfd_pid(file); 4002 if (!IS_ERR(pid)) 4003 return pid; 4004 4005 return tgid_pidfd_to_pid(file); 4006 } 4007 4008 #define PIDFD_SEND_SIGNAL_FLAGS \ 4009 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \ 4010 PIDFD_SIGNAL_PROCESS_GROUP) 4011 4012 /** 4013 * sys_pidfd_send_signal - Signal a process through a pidfd 4014 * @pidfd: file descriptor of the process 4015 * @sig: signal to send 4016 * @info: signal info 4017 * @flags: future flags 4018 * 4019 * Send the signal to the thread group or to the individual thread depending 4020 * on PIDFD_THREAD. 4021 * In the future extension to @flags may be used to override the default scope 4022 * of @pidfd. 4023 * 4024 * Return: 0 on success, negative errno on failure 4025 */ 4026 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 4027 siginfo_t __user *, info, unsigned int, flags) 4028 { 4029 int ret; 4030 struct pid *pid; 4031 kernel_siginfo_t kinfo; 4032 enum pid_type type; 4033 4034 /* Enforce flags be set to 0 until we add an extension. */ 4035 if (flags & ~PIDFD_SEND_SIGNAL_FLAGS) 4036 return -EINVAL; 4037 4038 /* Ensure that only a single signal scope determining flag is set. */ 4039 if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1) 4040 return -EINVAL; 4041 4042 CLASS(fd, f)(pidfd); 4043 if (fd_empty(f)) 4044 return -EBADF; 4045 4046 /* Is this a pidfd? */ 4047 pid = pidfd_to_pid(fd_file(f)); 4048 if (IS_ERR(pid)) 4049 return PTR_ERR(pid); 4050 4051 if (!access_pidfd_pidns(pid)) 4052 return -EINVAL; 4053 4054 switch (flags) { 4055 case 0: 4056 /* Infer scope from the type of pidfd. */ 4057 if (fd_file(f)->f_flags & PIDFD_THREAD) 4058 type = PIDTYPE_PID; 4059 else 4060 type = PIDTYPE_TGID; 4061 break; 4062 case PIDFD_SIGNAL_THREAD: 4063 type = PIDTYPE_PID; 4064 break; 4065 case PIDFD_SIGNAL_THREAD_GROUP: 4066 type = PIDTYPE_TGID; 4067 break; 4068 case PIDFD_SIGNAL_PROCESS_GROUP: 4069 type = PIDTYPE_PGID; 4070 break; 4071 } 4072 4073 if (info) { 4074 ret = copy_siginfo_from_user_any(&kinfo, info); 4075 if (unlikely(ret)) 4076 return ret; 4077 4078 if (unlikely(sig != kinfo.si_signo)) 4079 return -EINVAL; 4080 4081 /* Only allow sending arbitrary signals to yourself. */ 4082 if ((task_pid(current) != pid || type > PIDTYPE_TGID) && 4083 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 4084 return -EPERM; 4085 } else { 4086 prepare_kill_siginfo(sig, &kinfo, type); 4087 } 4088 4089 if (type == PIDTYPE_PGID) 4090 return kill_pgrp_info(sig, &kinfo, pid); 4091 else 4092 return kill_pid_info_type(sig, &kinfo, pid, type); 4093 } 4094 4095 static int 4096 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 4097 { 4098 struct task_struct *p; 4099 int error = -ESRCH; 4100 4101 rcu_read_lock(); 4102 p = find_task_by_vpid(pid); 4103 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 4104 error = check_kill_permission(sig, info, p); 4105 /* 4106 * The null signal is a permissions and process existence 4107 * probe. No signal is actually delivered. 4108 */ 4109 if (!error && sig) { 4110 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 4111 /* 4112 * If lock_task_sighand() failed we pretend the task 4113 * dies after receiving the signal. The window is tiny, 4114 * and the signal is private anyway. 4115 */ 4116 if (unlikely(error == -ESRCH)) 4117 error = 0; 4118 } 4119 } 4120 rcu_read_unlock(); 4121 4122 return error; 4123 } 4124 4125 static int do_tkill(pid_t tgid, pid_t pid, int sig) 4126 { 4127 struct kernel_siginfo info; 4128 4129 prepare_kill_siginfo(sig, &info, PIDTYPE_PID); 4130 4131 return do_send_specific(tgid, pid, sig, &info); 4132 } 4133 4134 /** 4135 * sys_tgkill - send signal to one specific thread 4136 * @tgid: the thread group ID of the thread 4137 * @pid: the PID of the thread 4138 * @sig: signal to be sent 4139 * 4140 * This syscall also checks the @tgid and returns -ESRCH even if the PID 4141 * exists but it's not belonging to the target process anymore. This 4142 * method solves the problem of threads exiting and PIDs getting reused. 4143 */ 4144 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 4145 { 4146 /* This is only valid for single tasks */ 4147 if (pid <= 0 || tgid <= 0) 4148 return -EINVAL; 4149 4150 return do_tkill(tgid, pid, sig); 4151 } 4152 4153 /** 4154 * sys_tkill - send signal to one specific task 4155 * @pid: the PID of the task 4156 * @sig: signal to be sent 4157 * 4158 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4159 */ 4160 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4161 { 4162 /* This is only valid for single tasks */ 4163 if (pid <= 0) 4164 return -EINVAL; 4165 4166 return do_tkill(0, pid, sig); 4167 } 4168 4169 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4170 { 4171 /* Not even root can pretend to send signals from the kernel. 4172 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4173 */ 4174 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4175 (task_pid_vnr(current) != pid)) 4176 return -EPERM; 4177 4178 /* POSIX.1b doesn't mention process groups. */ 4179 return kill_proc_info(sig, info, pid); 4180 } 4181 4182 /** 4183 * sys_rt_sigqueueinfo - send signal information to a signal 4184 * @pid: the PID of the thread 4185 * @sig: signal to be sent 4186 * @uinfo: signal info to be sent 4187 */ 4188 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4189 siginfo_t __user *, uinfo) 4190 { 4191 kernel_siginfo_t info; 4192 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4193 if (unlikely(ret)) 4194 return ret; 4195 return do_rt_sigqueueinfo(pid, sig, &info); 4196 } 4197 4198 #ifdef CONFIG_COMPAT 4199 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4200 compat_pid_t, pid, 4201 int, sig, 4202 struct compat_siginfo __user *, uinfo) 4203 { 4204 kernel_siginfo_t info; 4205 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4206 if (unlikely(ret)) 4207 return ret; 4208 return do_rt_sigqueueinfo(pid, sig, &info); 4209 } 4210 #endif 4211 4212 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4213 { 4214 /* This is only valid for single tasks */ 4215 if (pid <= 0 || tgid <= 0) 4216 return -EINVAL; 4217 4218 /* Not even root can pretend to send signals from the kernel. 4219 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4220 */ 4221 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4222 (task_pid_vnr(current) != pid)) 4223 return -EPERM; 4224 4225 return do_send_specific(tgid, pid, sig, info); 4226 } 4227 4228 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4229 siginfo_t __user *, uinfo) 4230 { 4231 kernel_siginfo_t info; 4232 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4233 if (unlikely(ret)) 4234 return ret; 4235 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4236 } 4237 4238 #ifdef CONFIG_COMPAT 4239 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4240 compat_pid_t, tgid, 4241 compat_pid_t, pid, 4242 int, sig, 4243 struct compat_siginfo __user *, uinfo) 4244 { 4245 kernel_siginfo_t info; 4246 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4247 if (unlikely(ret)) 4248 return ret; 4249 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4250 } 4251 #endif 4252 4253 /* 4254 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4255 */ 4256 void kernel_sigaction(int sig, __sighandler_t action) 4257 { 4258 spin_lock_irq(¤t->sighand->siglock); 4259 current->sighand->action[sig - 1].sa.sa_handler = action; 4260 if (action == SIG_IGN) { 4261 sigset_t mask; 4262 4263 sigemptyset(&mask); 4264 sigaddset(&mask, sig); 4265 4266 flush_sigqueue_mask(current, &mask, ¤t->signal->shared_pending); 4267 flush_sigqueue_mask(current, &mask, ¤t->pending); 4268 recalc_sigpending(); 4269 } 4270 spin_unlock_irq(¤t->sighand->siglock); 4271 } 4272 EXPORT_SYMBOL(kernel_sigaction); 4273 4274 void __weak sigaction_compat_abi(struct k_sigaction *act, 4275 struct k_sigaction *oact) 4276 { 4277 } 4278 4279 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4280 { 4281 struct task_struct *p = current, *t; 4282 struct k_sigaction *k; 4283 sigset_t mask; 4284 4285 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4286 return -EINVAL; 4287 4288 k = &p->sighand->action[sig-1]; 4289 4290 spin_lock_irq(&p->sighand->siglock); 4291 if (k->sa.sa_flags & SA_IMMUTABLE) { 4292 spin_unlock_irq(&p->sighand->siglock); 4293 return -EINVAL; 4294 } 4295 if (oact) 4296 *oact = *k; 4297 4298 /* 4299 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4300 * e.g. by having an architecture use the bit in their uapi. 4301 */ 4302 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4303 4304 /* 4305 * Clear unknown flag bits in order to allow userspace to detect missing 4306 * support for flag bits and to allow the kernel to use non-uapi bits 4307 * internally. 4308 */ 4309 if (act) 4310 act->sa.sa_flags &= UAPI_SA_FLAGS; 4311 if (oact) 4312 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4313 4314 sigaction_compat_abi(act, oact); 4315 4316 if (act) { 4317 bool was_ignored = k->sa.sa_handler == SIG_IGN; 4318 4319 sigdelsetmask(&act->sa.sa_mask, 4320 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4321 *k = *act; 4322 /* 4323 * POSIX 3.3.1.3: 4324 * "Setting a signal action to SIG_IGN for a signal that is 4325 * pending shall cause the pending signal to be discarded, 4326 * whether or not it is blocked." 4327 * 4328 * "Setting a signal action to SIG_DFL for a signal that is 4329 * pending and whose default action is to ignore the signal 4330 * (for example, SIGCHLD), shall cause the pending signal to 4331 * be discarded, whether or not it is blocked" 4332 */ 4333 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4334 sigemptyset(&mask); 4335 sigaddset(&mask, sig); 4336 flush_sigqueue_mask(p, &mask, &p->signal->shared_pending); 4337 for_each_thread(p, t) 4338 flush_sigqueue_mask(p, &mask, &t->pending); 4339 } else if (was_ignored) { 4340 posixtimer_sig_unignore(p, sig); 4341 } 4342 } 4343 4344 spin_unlock_irq(&p->sighand->siglock); 4345 return 0; 4346 } 4347 4348 #ifdef CONFIG_DYNAMIC_SIGFRAME 4349 static inline void sigaltstack_lock(void) 4350 __acquires(¤t->sighand->siglock) 4351 { 4352 spin_lock_irq(¤t->sighand->siglock); 4353 } 4354 4355 static inline void sigaltstack_unlock(void) 4356 __releases(¤t->sighand->siglock) 4357 { 4358 spin_unlock_irq(¤t->sighand->siglock); 4359 } 4360 #else 4361 static inline void sigaltstack_lock(void) { } 4362 static inline void sigaltstack_unlock(void) { } 4363 #endif 4364 4365 static int 4366 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4367 size_t min_ss_size) 4368 { 4369 struct task_struct *t = current; 4370 int ret = 0; 4371 4372 if (oss) { 4373 memset(oss, 0, sizeof(stack_t)); 4374 oss->ss_sp = (void __user *) t->sas_ss_sp; 4375 oss->ss_size = t->sas_ss_size; 4376 oss->ss_flags = sas_ss_flags(sp) | 4377 (current->sas_ss_flags & SS_FLAG_BITS); 4378 } 4379 4380 if (ss) { 4381 void __user *ss_sp = ss->ss_sp; 4382 size_t ss_size = ss->ss_size; 4383 unsigned ss_flags = ss->ss_flags; 4384 int ss_mode; 4385 4386 if (unlikely(on_sig_stack(sp))) 4387 return -EPERM; 4388 4389 ss_mode = ss_flags & ~SS_FLAG_BITS; 4390 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4391 ss_mode != 0)) 4392 return -EINVAL; 4393 4394 /* 4395 * Return before taking any locks if no actual 4396 * sigaltstack changes were requested. 4397 */ 4398 if (t->sas_ss_sp == (unsigned long)ss_sp && 4399 t->sas_ss_size == ss_size && 4400 t->sas_ss_flags == ss_flags) 4401 return 0; 4402 4403 sigaltstack_lock(); 4404 if (ss_mode == SS_DISABLE) { 4405 ss_size = 0; 4406 ss_sp = NULL; 4407 } else { 4408 if (unlikely(ss_size < min_ss_size)) 4409 ret = -ENOMEM; 4410 if (!sigaltstack_size_valid(ss_size)) 4411 ret = -ENOMEM; 4412 } 4413 if (!ret) { 4414 t->sas_ss_sp = (unsigned long) ss_sp; 4415 t->sas_ss_size = ss_size; 4416 t->sas_ss_flags = ss_flags; 4417 } 4418 sigaltstack_unlock(); 4419 } 4420 return ret; 4421 } 4422 4423 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4424 { 4425 stack_t new, old; 4426 int err; 4427 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4428 return -EFAULT; 4429 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4430 current_user_stack_pointer(), 4431 MINSIGSTKSZ); 4432 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4433 err = -EFAULT; 4434 return err; 4435 } 4436 4437 int restore_altstack(const stack_t __user *uss) 4438 { 4439 stack_t new; 4440 if (copy_from_user(&new, uss, sizeof(stack_t))) 4441 return -EFAULT; 4442 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4443 MINSIGSTKSZ); 4444 /* squash all but EFAULT for now */ 4445 return 0; 4446 } 4447 4448 int __save_altstack(stack_t __user *uss, unsigned long sp) 4449 { 4450 struct task_struct *t = current; 4451 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4452 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4453 __put_user(t->sas_ss_size, &uss->ss_size); 4454 return err; 4455 } 4456 4457 #ifdef CONFIG_COMPAT 4458 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4459 compat_stack_t __user *uoss_ptr) 4460 { 4461 stack_t uss, uoss; 4462 int ret; 4463 4464 if (uss_ptr) { 4465 compat_stack_t uss32; 4466 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4467 return -EFAULT; 4468 uss.ss_sp = compat_ptr(uss32.ss_sp); 4469 uss.ss_flags = uss32.ss_flags; 4470 uss.ss_size = uss32.ss_size; 4471 } 4472 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4473 compat_user_stack_pointer(), 4474 COMPAT_MINSIGSTKSZ); 4475 if (ret >= 0 && uoss_ptr) { 4476 compat_stack_t old; 4477 memset(&old, 0, sizeof(old)); 4478 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4479 old.ss_flags = uoss.ss_flags; 4480 old.ss_size = uoss.ss_size; 4481 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4482 ret = -EFAULT; 4483 } 4484 return ret; 4485 } 4486 4487 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4488 const compat_stack_t __user *, uss_ptr, 4489 compat_stack_t __user *, uoss_ptr) 4490 { 4491 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4492 } 4493 4494 int compat_restore_altstack(const compat_stack_t __user *uss) 4495 { 4496 int err = do_compat_sigaltstack(uss, NULL); 4497 /* squash all but -EFAULT for now */ 4498 return err == -EFAULT ? err : 0; 4499 } 4500 4501 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4502 { 4503 int err; 4504 struct task_struct *t = current; 4505 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4506 &uss->ss_sp) | 4507 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4508 __put_user(t->sas_ss_size, &uss->ss_size); 4509 return err; 4510 } 4511 #endif 4512 4513 #ifdef __ARCH_WANT_SYS_SIGPENDING 4514 4515 /** 4516 * sys_sigpending - examine pending signals 4517 * @uset: where mask of pending signal is returned 4518 */ 4519 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4520 { 4521 sigset_t set; 4522 4523 if (sizeof(old_sigset_t) > sizeof(*uset)) 4524 return -EINVAL; 4525 4526 do_sigpending(&set); 4527 4528 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4529 return -EFAULT; 4530 4531 return 0; 4532 } 4533 4534 #ifdef CONFIG_COMPAT 4535 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4536 { 4537 sigset_t set; 4538 4539 do_sigpending(&set); 4540 4541 return put_user(set.sig[0], set32); 4542 } 4543 #endif 4544 4545 #endif 4546 4547 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4548 /** 4549 * sys_sigprocmask - examine and change blocked signals 4550 * @how: whether to add, remove, or set signals 4551 * @nset: signals to add or remove (if non-null) 4552 * @oset: previous value of signal mask if non-null 4553 * 4554 * Some platforms have their own version with special arguments; 4555 * others support only sys_rt_sigprocmask. 4556 */ 4557 4558 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4559 old_sigset_t __user *, oset) 4560 { 4561 old_sigset_t old_set, new_set; 4562 sigset_t new_blocked; 4563 4564 old_set = current->blocked.sig[0]; 4565 4566 if (nset) { 4567 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4568 return -EFAULT; 4569 4570 new_blocked = current->blocked; 4571 4572 switch (how) { 4573 case SIG_BLOCK: 4574 sigaddsetmask(&new_blocked, new_set); 4575 break; 4576 case SIG_UNBLOCK: 4577 sigdelsetmask(&new_blocked, new_set); 4578 break; 4579 case SIG_SETMASK: 4580 new_blocked.sig[0] = new_set; 4581 break; 4582 default: 4583 return -EINVAL; 4584 } 4585 4586 set_current_blocked(&new_blocked); 4587 } 4588 4589 if (oset) { 4590 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4591 return -EFAULT; 4592 } 4593 4594 return 0; 4595 } 4596 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4597 4598 #ifndef CONFIG_ODD_RT_SIGACTION 4599 /** 4600 * sys_rt_sigaction - alter an action taken by a process 4601 * @sig: signal to be sent 4602 * @act: new sigaction 4603 * @oact: used to save the previous sigaction 4604 * @sigsetsize: size of sigset_t type 4605 */ 4606 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4607 const struct sigaction __user *, act, 4608 struct sigaction __user *, oact, 4609 size_t, sigsetsize) 4610 { 4611 struct k_sigaction new_sa, old_sa; 4612 int ret; 4613 4614 /* XXX: Don't preclude handling different sized sigset_t's. */ 4615 if (sigsetsize != sizeof(sigset_t)) 4616 return -EINVAL; 4617 4618 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4619 return -EFAULT; 4620 4621 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4622 if (ret) 4623 return ret; 4624 4625 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4626 return -EFAULT; 4627 4628 return 0; 4629 } 4630 #ifdef CONFIG_COMPAT 4631 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4632 const struct compat_sigaction __user *, act, 4633 struct compat_sigaction __user *, oact, 4634 compat_size_t, sigsetsize) 4635 { 4636 struct k_sigaction new_ka, old_ka; 4637 #ifdef __ARCH_HAS_SA_RESTORER 4638 compat_uptr_t restorer; 4639 #endif 4640 int ret; 4641 4642 /* XXX: Don't preclude handling different sized sigset_t's. */ 4643 if (sigsetsize != sizeof(compat_sigset_t)) 4644 return -EINVAL; 4645 4646 if (act) { 4647 compat_uptr_t handler; 4648 ret = get_user(handler, &act->sa_handler); 4649 new_ka.sa.sa_handler = compat_ptr(handler); 4650 #ifdef __ARCH_HAS_SA_RESTORER 4651 ret |= get_user(restorer, &act->sa_restorer); 4652 new_ka.sa.sa_restorer = compat_ptr(restorer); 4653 #endif 4654 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4655 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4656 if (ret) 4657 return -EFAULT; 4658 } 4659 4660 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4661 if (!ret && oact) { 4662 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4663 &oact->sa_handler); 4664 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4665 sizeof(oact->sa_mask)); 4666 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4667 #ifdef __ARCH_HAS_SA_RESTORER 4668 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4669 &oact->sa_restorer); 4670 #endif 4671 } 4672 return ret; 4673 } 4674 #endif 4675 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4676 4677 #ifdef CONFIG_OLD_SIGACTION 4678 SYSCALL_DEFINE3(sigaction, int, sig, 4679 const struct old_sigaction __user *, act, 4680 struct old_sigaction __user *, oact) 4681 { 4682 struct k_sigaction new_ka, old_ka; 4683 int ret; 4684 4685 if (act) { 4686 old_sigset_t mask; 4687 if (!access_ok(act, sizeof(*act)) || 4688 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4689 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4690 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4691 __get_user(mask, &act->sa_mask)) 4692 return -EFAULT; 4693 #ifdef __ARCH_HAS_KA_RESTORER 4694 new_ka.ka_restorer = NULL; 4695 #endif 4696 siginitset(&new_ka.sa.sa_mask, mask); 4697 } 4698 4699 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4700 4701 if (!ret && oact) { 4702 if (!access_ok(oact, sizeof(*oact)) || 4703 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4704 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4705 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4706 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4707 return -EFAULT; 4708 } 4709 4710 return ret; 4711 } 4712 #endif 4713 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4714 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4715 const struct compat_old_sigaction __user *, act, 4716 struct compat_old_sigaction __user *, oact) 4717 { 4718 struct k_sigaction new_ka, old_ka; 4719 int ret; 4720 compat_old_sigset_t mask; 4721 compat_uptr_t handler, restorer; 4722 4723 if (act) { 4724 if (!access_ok(act, sizeof(*act)) || 4725 __get_user(handler, &act->sa_handler) || 4726 __get_user(restorer, &act->sa_restorer) || 4727 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4728 __get_user(mask, &act->sa_mask)) 4729 return -EFAULT; 4730 4731 #ifdef __ARCH_HAS_KA_RESTORER 4732 new_ka.ka_restorer = NULL; 4733 #endif 4734 new_ka.sa.sa_handler = compat_ptr(handler); 4735 new_ka.sa.sa_restorer = compat_ptr(restorer); 4736 siginitset(&new_ka.sa.sa_mask, mask); 4737 } 4738 4739 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4740 4741 if (!ret && oact) { 4742 if (!access_ok(oact, sizeof(*oact)) || 4743 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4744 &oact->sa_handler) || 4745 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4746 &oact->sa_restorer) || 4747 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4748 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4749 return -EFAULT; 4750 } 4751 return ret; 4752 } 4753 #endif 4754 4755 #ifdef CONFIG_SGETMASK_SYSCALL 4756 4757 /* 4758 * For backwards compatibility. Functionality superseded by sigprocmask. 4759 */ 4760 SYSCALL_DEFINE0(sgetmask) 4761 { 4762 /* SMP safe */ 4763 return current->blocked.sig[0]; 4764 } 4765 4766 SYSCALL_DEFINE1(ssetmask, int, newmask) 4767 { 4768 int old = current->blocked.sig[0]; 4769 sigset_t newset; 4770 4771 siginitset(&newset, newmask); 4772 set_current_blocked(&newset); 4773 4774 return old; 4775 } 4776 #endif /* CONFIG_SGETMASK_SYSCALL */ 4777 4778 #ifdef __ARCH_WANT_SYS_SIGNAL 4779 /* 4780 * For backwards compatibility. Functionality superseded by sigaction. 4781 */ 4782 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4783 { 4784 struct k_sigaction new_sa, old_sa; 4785 int ret; 4786 4787 new_sa.sa.sa_handler = handler; 4788 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4789 sigemptyset(&new_sa.sa.sa_mask); 4790 4791 ret = do_sigaction(sig, &new_sa, &old_sa); 4792 4793 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4794 } 4795 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4796 4797 #ifdef __ARCH_WANT_SYS_PAUSE 4798 4799 SYSCALL_DEFINE0(pause) 4800 { 4801 while (!signal_pending(current)) { 4802 __set_current_state(TASK_INTERRUPTIBLE); 4803 schedule(); 4804 } 4805 return -ERESTARTNOHAND; 4806 } 4807 4808 #endif 4809 4810 static int sigsuspend(sigset_t *set) 4811 { 4812 current->saved_sigmask = current->blocked; 4813 set_current_blocked(set); 4814 4815 while (!signal_pending(current)) { 4816 __set_current_state(TASK_INTERRUPTIBLE); 4817 schedule(); 4818 } 4819 set_restore_sigmask(); 4820 return -ERESTARTNOHAND; 4821 } 4822 4823 /** 4824 * sys_rt_sigsuspend - replace the signal mask for a value with the 4825 * @unewset value until a signal is received 4826 * @unewset: new signal mask value 4827 * @sigsetsize: size of sigset_t type 4828 */ 4829 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4830 { 4831 sigset_t newset; 4832 4833 /* XXX: Don't preclude handling different sized sigset_t's. */ 4834 if (sigsetsize != sizeof(sigset_t)) 4835 return -EINVAL; 4836 4837 if (copy_from_user(&newset, unewset, sizeof(newset))) 4838 return -EFAULT; 4839 return sigsuspend(&newset); 4840 } 4841 4842 #ifdef CONFIG_COMPAT 4843 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4844 { 4845 sigset_t newset; 4846 4847 /* XXX: Don't preclude handling different sized sigset_t's. */ 4848 if (sigsetsize != sizeof(sigset_t)) 4849 return -EINVAL; 4850 4851 if (get_compat_sigset(&newset, unewset)) 4852 return -EFAULT; 4853 return sigsuspend(&newset); 4854 } 4855 #endif 4856 4857 #ifdef CONFIG_OLD_SIGSUSPEND 4858 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4859 { 4860 sigset_t blocked; 4861 siginitset(&blocked, mask); 4862 return sigsuspend(&blocked); 4863 } 4864 #endif 4865 #ifdef CONFIG_OLD_SIGSUSPEND3 4866 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4867 { 4868 sigset_t blocked; 4869 siginitset(&blocked, mask); 4870 return sigsuspend(&blocked); 4871 } 4872 #endif 4873 4874 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4875 { 4876 return NULL; 4877 } 4878 4879 static inline void siginfo_buildtime_checks(void) 4880 { 4881 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4882 4883 /* Verify the offsets in the two siginfos match */ 4884 #define CHECK_OFFSET(field) \ 4885 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4886 4887 /* kill */ 4888 CHECK_OFFSET(si_pid); 4889 CHECK_OFFSET(si_uid); 4890 4891 /* timer */ 4892 CHECK_OFFSET(si_tid); 4893 CHECK_OFFSET(si_overrun); 4894 CHECK_OFFSET(si_value); 4895 4896 /* rt */ 4897 CHECK_OFFSET(si_pid); 4898 CHECK_OFFSET(si_uid); 4899 CHECK_OFFSET(si_value); 4900 4901 /* sigchld */ 4902 CHECK_OFFSET(si_pid); 4903 CHECK_OFFSET(si_uid); 4904 CHECK_OFFSET(si_status); 4905 CHECK_OFFSET(si_utime); 4906 CHECK_OFFSET(si_stime); 4907 4908 /* sigfault */ 4909 CHECK_OFFSET(si_addr); 4910 CHECK_OFFSET(si_trapno); 4911 CHECK_OFFSET(si_addr_lsb); 4912 CHECK_OFFSET(si_lower); 4913 CHECK_OFFSET(si_upper); 4914 CHECK_OFFSET(si_pkey); 4915 CHECK_OFFSET(si_perf_data); 4916 CHECK_OFFSET(si_perf_type); 4917 CHECK_OFFSET(si_perf_flags); 4918 4919 /* sigpoll */ 4920 CHECK_OFFSET(si_band); 4921 CHECK_OFFSET(si_fd); 4922 4923 /* sigsys */ 4924 CHECK_OFFSET(si_call_addr); 4925 CHECK_OFFSET(si_syscall); 4926 CHECK_OFFSET(si_arch); 4927 #undef CHECK_OFFSET 4928 4929 /* usb asyncio */ 4930 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4931 offsetof(struct siginfo, si_addr)); 4932 if (sizeof(int) == sizeof(void __user *)) { 4933 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4934 sizeof(void __user *)); 4935 } else { 4936 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4937 sizeof_field(struct siginfo, si_uid)) != 4938 sizeof(void __user *)); 4939 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4940 offsetof(struct siginfo, si_uid)); 4941 } 4942 #ifdef CONFIG_COMPAT 4943 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4944 offsetof(struct compat_siginfo, si_addr)); 4945 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4946 sizeof(compat_uptr_t)); 4947 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4948 sizeof_field(struct siginfo, si_pid)); 4949 #endif 4950 } 4951 4952 #if defined(CONFIG_SYSCTL) 4953 static struct ctl_table signal_debug_table[] = { 4954 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE 4955 { 4956 .procname = "exception-trace", 4957 .data = &show_unhandled_signals, 4958 .maxlen = sizeof(int), 4959 .mode = 0644, 4960 .proc_handler = proc_dointvec 4961 }, 4962 #endif 4963 }; 4964 4965 static int __init init_signal_sysctls(void) 4966 { 4967 register_sysctl_init("debug", signal_debug_table); 4968 return 0; 4969 } 4970 early_initcall(init_signal_sysctls); 4971 #endif /* CONFIG_SYSCTL */ 4972 4973 void __init signals_init(void) 4974 { 4975 siginfo_buildtime_checks(); 4976 4977 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4978 } 4979 4980 #ifdef CONFIG_KGDB_KDB 4981 #include <linux/kdb.h> 4982 /* 4983 * kdb_send_sig - Allows kdb to send signals without exposing 4984 * signal internals. This function checks if the required locks are 4985 * available before calling the main signal code, to avoid kdb 4986 * deadlocks. 4987 */ 4988 void kdb_send_sig(struct task_struct *t, int sig) 4989 { 4990 static struct task_struct *kdb_prev_t; 4991 int new_t, ret; 4992 if (!spin_trylock(&t->sighand->siglock)) { 4993 kdb_printf("Can't do kill command now.\n" 4994 "The sigmask lock is held somewhere else in " 4995 "kernel, try again later\n"); 4996 return; 4997 } 4998 new_t = kdb_prev_t != t; 4999 kdb_prev_t = t; 5000 if (!task_is_running(t) && new_t) { 5001 spin_unlock(&t->sighand->siglock); 5002 kdb_printf("Process is not RUNNING, sending a signal from " 5003 "kdb risks deadlock\n" 5004 "on the run queue locks. " 5005 "The signal has _not_ been sent.\n" 5006 "Reissue the kill command if you want to risk " 5007 "the deadlock.\n"); 5008 return; 5009 } 5010 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 5011 spin_unlock(&t->sighand->siglock); 5012 if (ret) 5013 kdb_printf("Fail to deliver Signal %d to process %d.\n", 5014 sig, t->pid); 5015 else 5016 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 5017 } 5018 #endif /* CONFIG_KGDB_KDB */ 5019