1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/coredump.h> 21 #include <linux/security.h> 22 #include <linux/syscalls.h> 23 #include <linux/ptrace.h> 24 #include <linux/signal.h> 25 #include <linux/signalfd.h> 26 #include <linux/ratelimit.h> 27 #include <linux/tracehook.h> 28 #include <linux/capability.h> 29 #include <linux/freezer.h> 30 #include <linux/pid_namespace.h> 31 #include <linux/nsproxy.h> 32 #include <linux/user_namespace.h> 33 #include <linux/uprobes.h> 34 #include <linux/compat.h> 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/signal.h> 37 38 #include <asm/param.h> 39 #include <asm/uaccess.h> 40 #include <asm/unistd.h> 41 #include <asm/siginfo.h> 42 #include <asm/cacheflush.h> 43 #include "audit.h" /* audit_signal_info() */ 44 45 /* 46 * SLAB caches for signal bits. 47 */ 48 49 static struct kmem_cache *sigqueue_cachep; 50 51 int print_fatal_signals __read_mostly; 52 53 static void __user *sig_handler(struct task_struct *t, int sig) 54 { 55 return t->sighand->action[sig - 1].sa.sa_handler; 56 } 57 58 static int sig_handler_ignored(void __user *handler, int sig) 59 { 60 /* Is it explicitly or implicitly ignored? */ 61 return handler == SIG_IGN || 62 (handler == SIG_DFL && sig_kernel_ignore(sig)); 63 } 64 65 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 66 { 67 void __user *handler; 68 69 handler = sig_handler(t, sig); 70 71 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 72 handler == SIG_DFL && !force) 73 return 1; 74 75 return sig_handler_ignored(handler, sig); 76 } 77 78 static int sig_ignored(struct task_struct *t, int sig, bool force) 79 { 80 /* 81 * Blocked signals are never ignored, since the 82 * signal handler may change by the time it is 83 * unblocked. 84 */ 85 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 86 return 0; 87 88 if (!sig_task_ignored(t, sig, force)) 89 return 0; 90 91 /* 92 * Tracers may want to know about even ignored signals. 93 */ 94 return !t->ptrace; 95 } 96 97 /* 98 * Re-calculate pending state from the set of locally pending 99 * signals, globally pending signals, and blocked signals. 100 */ 101 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 102 { 103 unsigned long ready; 104 long i; 105 106 switch (_NSIG_WORDS) { 107 default: 108 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 109 ready |= signal->sig[i] &~ blocked->sig[i]; 110 break; 111 112 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 113 ready |= signal->sig[2] &~ blocked->sig[2]; 114 ready |= signal->sig[1] &~ blocked->sig[1]; 115 ready |= signal->sig[0] &~ blocked->sig[0]; 116 break; 117 118 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 119 ready |= signal->sig[0] &~ blocked->sig[0]; 120 break; 121 122 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 123 } 124 return ready != 0; 125 } 126 127 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 128 129 static int recalc_sigpending_tsk(struct task_struct *t) 130 { 131 if ((t->jobctl & JOBCTL_PENDING_MASK) || 132 PENDING(&t->pending, &t->blocked) || 133 PENDING(&t->signal->shared_pending, &t->blocked)) { 134 set_tsk_thread_flag(t, TIF_SIGPENDING); 135 return 1; 136 } 137 /* 138 * We must never clear the flag in another thread, or in current 139 * when it's possible the current syscall is returning -ERESTART*. 140 * So we don't clear it here, and only callers who know they should do. 141 */ 142 return 0; 143 } 144 145 /* 146 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 147 * This is superfluous when called on current, the wakeup is a harmless no-op. 148 */ 149 void recalc_sigpending_and_wake(struct task_struct *t) 150 { 151 if (recalc_sigpending_tsk(t)) 152 signal_wake_up(t, 0); 153 } 154 155 void recalc_sigpending(void) 156 { 157 if (!recalc_sigpending_tsk(current) && !freezing(current)) 158 clear_thread_flag(TIF_SIGPENDING); 159 160 } 161 162 /* Given the mask, find the first available signal that should be serviced. */ 163 164 #define SYNCHRONOUS_MASK \ 165 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 166 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 167 168 int next_signal(struct sigpending *pending, sigset_t *mask) 169 { 170 unsigned long i, *s, *m, x; 171 int sig = 0; 172 173 s = pending->signal.sig; 174 m = mask->sig; 175 176 /* 177 * Handle the first word specially: it contains the 178 * synchronous signals that need to be dequeued first. 179 */ 180 x = *s &~ *m; 181 if (x) { 182 if (x & SYNCHRONOUS_MASK) 183 x &= SYNCHRONOUS_MASK; 184 sig = ffz(~x) + 1; 185 return sig; 186 } 187 188 switch (_NSIG_WORDS) { 189 default: 190 for (i = 1; i < _NSIG_WORDS; ++i) { 191 x = *++s &~ *++m; 192 if (!x) 193 continue; 194 sig = ffz(~x) + i*_NSIG_BPW + 1; 195 break; 196 } 197 break; 198 199 case 2: 200 x = s[1] &~ m[1]; 201 if (!x) 202 break; 203 sig = ffz(~x) + _NSIG_BPW + 1; 204 break; 205 206 case 1: 207 /* Nothing to do */ 208 break; 209 } 210 211 return sig; 212 } 213 214 static inline void print_dropped_signal(int sig) 215 { 216 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 217 218 if (!print_fatal_signals) 219 return; 220 221 if (!__ratelimit(&ratelimit_state)) 222 return; 223 224 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 225 current->comm, current->pid, sig); 226 } 227 228 /** 229 * task_set_jobctl_pending - set jobctl pending bits 230 * @task: target task 231 * @mask: pending bits to set 232 * 233 * Clear @mask from @task->jobctl. @mask must be subset of 234 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 235 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 236 * cleared. If @task is already being killed or exiting, this function 237 * becomes noop. 238 * 239 * CONTEXT: 240 * Must be called with @task->sighand->siglock held. 241 * 242 * RETURNS: 243 * %true if @mask is set, %false if made noop because @task was dying. 244 */ 245 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask) 246 { 247 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 248 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 249 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 250 251 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 252 return false; 253 254 if (mask & JOBCTL_STOP_SIGMASK) 255 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 256 257 task->jobctl |= mask; 258 return true; 259 } 260 261 /** 262 * task_clear_jobctl_trapping - clear jobctl trapping bit 263 * @task: target task 264 * 265 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 266 * Clear it and wake up the ptracer. Note that we don't need any further 267 * locking. @task->siglock guarantees that @task->parent points to the 268 * ptracer. 269 * 270 * CONTEXT: 271 * Must be called with @task->sighand->siglock held. 272 */ 273 void task_clear_jobctl_trapping(struct task_struct *task) 274 { 275 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 276 task->jobctl &= ~JOBCTL_TRAPPING; 277 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 278 } 279 } 280 281 /** 282 * task_clear_jobctl_pending - clear jobctl pending bits 283 * @task: target task 284 * @mask: pending bits to clear 285 * 286 * Clear @mask from @task->jobctl. @mask must be subset of 287 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 288 * STOP bits are cleared together. 289 * 290 * If clearing of @mask leaves no stop or trap pending, this function calls 291 * task_clear_jobctl_trapping(). 292 * 293 * CONTEXT: 294 * Must be called with @task->sighand->siglock held. 295 */ 296 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask) 297 { 298 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 299 300 if (mask & JOBCTL_STOP_PENDING) 301 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 302 303 task->jobctl &= ~mask; 304 305 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 306 task_clear_jobctl_trapping(task); 307 } 308 309 /** 310 * task_participate_group_stop - participate in a group stop 311 * @task: task participating in a group stop 312 * 313 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 314 * Group stop states are cleared and the group stop count is consumed if 315 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 316 * stop, the appropriate %SIGNAL_* flags are set. 317 * 318 * CONTEXT: 319 * Must be called with @task->sighand->siglock held. 320 * 321 * RETURNS: 322 * %true if group stop completion should be notified to the parent, %false 323 * otherwise. 324 */ 325 static bool task_participate_group_stop(struct task_struct *task) 326 { 327 struct signal_struct *sig = task->signal; 328 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 329 330 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 331 332 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 333 334 if (!consume) 335 return false; 336 337 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 338 sig->group_stop_count--; 339 340 /* 341 * Tell the caller to notify completion iff we are entering into a 342 * fresh group stop. Read comment in do_signal_stop() for details. 343 */ 344 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 345 sig->flags = SIGNAL_STOP_STOPPED; 346 return true; 347 } 348 return false; 349 } 350 351 /* 352 * allocate a new signal queue record 353 * - this may be called without locks if and only if t == current, otherwise an 354 * appropriate lock must be held to stop the target task from exiting 355 */ 356 static struct sigqueue * 357 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 358 { 359 struct sigqueue *q = NULL; 360 struct user_struct *user; 361 362 /* 363 * Protect access to @t credentials. This can go away when all 364 * callers hold rcu read lock. 365 */ 366 rcu_read_lock(); 367 user = get_uid(__task_cred(t)->user); 368 atomic_inc(&user->sigpending); 369 rcu_read_unlock(); 370 371 if (override_rlimit || 372 atomic_read(&user->sigpending) <= 373 task_rlimit(t, RLIMIT_SIGPENDING)) { 374 q = kmem_cache_alloc(sigqueue_cachep, flags); 375 } else { 376 print_dropped_signal(sig); 377 } 378 379 if (unlikely(q == NULL)) { 380 atomic_dec(&user->sigpending); 381 free_uid(user); 382 } else { 383 INIT_LIST_HEAD(&q->list); 384 q->flags = 0; 385 q->user = user; 386 } 387 388 return q; 389 } 390 391 static void __sigqueue_free(struct sigqueue *q) 392 { 393 if (q->flags & SIGQUEUE_PREALLOC) 394 return; 395 atomic_dec(&q->user->sigpending); 396 free_uid(q->user); 397 kmem_cache_free(sigqueue_cachep, q); 398 } 399 400 void flush_sigqueue(struct sigpending *queue) 401 { 402 struct sigqueue *q; 403 404 sigemptyset(&queue->signal); 405 while (!list_empty(&queue->list)) { 406 q = list_entry(queue->list.next, struct sigqueue , list); 407 list_del_init(&q->list); 408 __sigqueue_free(q); 409 } 410 } 411 412 /* 413 * Flush all pending signals for a task. 414 */ 415 void __flush_signals(struct task_struct *t) 416 { 417 clear_tsk_thread_flag(t, TIF_SIGPENDING); 418 flush_sigqueue(&t->pending); 419 flush_sigqueue(&t->signal->shared_pending); 420 } 421 422 void flush_signals(struct task_struct *t) 423 { 424 unsigned long flags; 425 426 spin_lock_irqsave(&t->sighand->siglock, flags); 427 __flush_signals(t); 428 spin_unlock_irqrestore(&t->sighand->siglock, flags); 429 } 430 431 static void __flush_itimer_signals(struct sigpending *pending) 432 { 433 sigset_t signal, retain; 434 struct sigqueue *q, *n; 435 436 signal = pending->signal; 437 sigemptyset(&retain); 438 439 list_for_each_entry_safe(q, n, &pending->list, list) { 440 int sig = q->info.si_signo; 441 442 if (likely(q->info.si_code != SI_TIMER)) { 443 sigaddset(&retain, sig); 444 } else { 445 sigdelset(&signal, sig); 446 list_del_init(&q->list); 447 __sigqueue_free(q); 448 } 449 } 450 451 sigorsets(&pending->signal, &signal, &retain); 452 } 453 454 void flush_itimer_signals(void) 455 { 456 struct task_struct *tsk = current; 457 unsigned long flags; 458 459 spin_lock_irqsave(&tsk->sighand->siglock, flags); 460 __flush_itimer_signals(&tsk->pending); 461 __flush_itimer_signals(&tsk->signal->shared_pending); 462 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 463 } 464 465 void ignore_signals(struct task_struct *t) 466 { 467 int i; 468 469 for (i = 0; i < _NSIG; ++i) 470 t->sighand->action[i].sa.sa_handler = SIG_IGN; 471 472 flush_signals(t); 473 } 474 475 /* 476 * Flush all handlers for a task. 477 */ 478 479 void 480 flush_signal_handlers(struct task_struct *t, int force_default) 481 { 482 int i; 483 struct k_sigaction *ka = &t->sighand->action[0]; 484 for (i = _NSIG ; i != 0 ; i--) { 485 if (force_default || ka->sa.sa_handler != SIG_IGN) 486 ka->sa.sa_handler = SIG_DFL; 487 ka->sa.sa_flags = 0; 488 #ifdef __ARCH_HAS_SA_RESTORER 489 ka->sa.sa_restorer = NULL; 490 #endif 491 sigemptyset(&ka->sa.sa_mask); 492 ka++; 493 } 494 } 495 496 int unhandled_signal(struct task_struct *tsk, int sig) 497 { 498 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 499 if (is_global_init(tsk)) 500 return 1; 501 if (handler != SIG_IGN && handler != SIG_DFL) 502 return 0; 503 /* if ptraced, let the tracer determine */ 504 return !tsk->ptrace; 505 } 506 507 /* 508 * Notify the system that a driver wants to block all signals for this 509 * process, and wants to be notified if any signals at all were to be 510 * sent/acted upon. If the notifier routine returns non-zero, then the 511 * signal will be acted upon after all. If the notifier routine returns 0, 512 * then then signal will be blocked. Only one block per process is 513 * allowed. priv is a pointer to private data that the notifier routine 514 * can use to determine if the signal should be blocked or not. 515 */ 516 void 517 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 518 { 519 unsigned long flags; 520 521 spin_lock_irqsave(¤t->sighand->siglock, flags); 522 current->notifier_mask = mask; 523 current->notifier_data = priv; 524 current->notifier = notifier; 525 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 526 } 527 528 /* Notify the system that blocking has ended. */ 529 530 void 531 unblock_all_signals(void) 532 { 533 unsigned long flags; 534 535 spin_lock_irqsave(¤t->sighand->siglock, flags); 536 current->notifier = NULL; 537 current->notifier_data = NULL; 538 recalc_sigpending(); 539 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 540 } 541 542 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 543 { 544 struct sigqueue *q, *first = NULL; 545 546 /* 547 * Collect the siginfo appropriate to this signal. Check if 548 * there is another siginfo for the same signal. 549 */ 550 list_for_each_entry(q, &list->list, list) { 551 if (q->info.si_signo == sig) { 552 if (first) 553 goto still_pending; 554 first = q; 555 } 556 } 557 558 sigdelset(&list->signal, sig); 559 560 if (first) { 561 still_pending: 562 list_del_init(&first->list); 563 copy_siginfo(info, &first->info); 564 __sigqueue_free(first); 565 } else { 566 /* 567 * Ok, it wasn't in the queue. This must be 568 * a fast-pathed signal or we must have been 569 * out of queue space. So zero out the info. 570 */ 571 info->si_signo = sig; 572 info->si_errno = 0; 573 info->si_code = SI_USER; 574 info->si_pid = 0; 575 info->si_uid = 0; 576 } 577 } 578 579 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 580 siginfo_t *info) 581 { 582 int sig = next_signal(pending, mask); 583 584 if (sig) { 585 if (current->notifier) { 586 if (sigismember(current->notifier_mask, sig)) { 587 if (!(current->notifier)(current->notifier_data)) { 588 clear_thread_flag(TIF_SIGPENDING); 589 return 0; 590 } 591 } 592 } 593 594 collect_signal(sig, pending, info); 595 } 596 597 return sig; 598 } 599 600 /* 601 * Dequeue a signal and return the element to the caller, which is 602 * expected to free it. 603 * 604 * All callers have to hold the siglock. 605 */ 606 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 607 { 608 int signr; 609 610 /* We only dequeue private signals from ourselves, we don't let 611 * signalfd steal them 612 */ 613 signr = __dequeue_signal(&tsk->pending, mask, info); 614 if (!signr) { 615 signr = __dequeue_signal(&tsk->signal->shared_pending, 616 mask, info); 617 /* 618 * itimer signal ? 619 * 620 * itimers are process shared and we restart periodic 621 * itimers in the signal delivery path to prevent DoS 622 * attacks in the high resolution timer case. This is 623 * compliant with the old way of self-restarting 624 * itimers, as the SIGALRM is a legacy signal and only 625 * queued once. Changing the restart behaviour to 626 * restart the timer in the signal dequeue path is 627 * reducing the timer noise on heavy loaded !highres 628 * systems too. 629 */ 630 if (unlikely(signr == SIGALRM)) { 631 struct hrtimer *tmr = &tsk->signal->real_timer; 632 633 if (!hrtimer_is_queued(tmr) && 634 tsk->signal->it_real_incr.tv64 != 0) { 635 hrtimer_forward(tmr, tmr->base->get_time(), 636 tsk->signal->it_real_incr); 637 hrtimer_restart(tmr); 638 } 639 } 640 } 641 642 recalc_sigpending(); 643 if (!signr) 644 return 0; 645 646 if (unlikely(sig_kernel_stop(signr))) { 647 /* 648 * Set a marker that we have dequeued a stop signal. Our 649 * caller might release the siglock and then the pending 650 * stop signal it is about to process is no longer in the 651 * pending bitmasks, but must still be cleared by a SIGCONT 652 * (and overruled by a SIGKILL). So those cases clear this 653 * shared flag after we've set it. Note that this flag may 654 * remain set after the signal we return is ignored or 655 * handled. That doesn't matter because its only purpose 656 * is to alert stop-signal processing code when another 657 * processor has come along and cleared the flag. 658 */ 659 current->jobctl |= JOBCTL_STOP_DEQUEUED; 660 } 661 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 662 /* 663 * Release the siglock to ensure proper locking order 664 * of timer locks outside of siglocks. Note, we leave 665 * irqs disabled here, since the posix-timers code is 666 * about to disable them again anyway. 667 */ 668 spin_unlock(&tsk->sighand->siglock); 669 do_schedule_next_timer(info); 670 spin_lock(&tsk->sighand->siglock); 671 } 672 return signr; 673 } 674 675 /* 676 * Tell a process that it has a new active signal.. 677 * 678 * NOTE! we rely on the previous spin_lock to 679 * lock interrupts for us! We can only be called with 680 * "siglock" held, and the local interrupt must 681 * have been disabled when that got acquired! 682 * 683 * No need to set need_resched since signal event passing 684 * goes through ->blocked 685 */ 686 void signal_wake_up_state(struct task_struct *t, unsigned int state) 687 { 688 set_tsk_thread_flag(t, TIF_SIGPENDING); 689 /* 690 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 691 * case. We don't check t->state here because there is a race with it 692 * executing another processor and just now entering stopped state. 693 * By using wake_up_state, we ensure the process will wake up and 694 * handle its death signal. 695 */ 696 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 697 kick_process(t); 698 } 699 700 /* 701 * Remove signals in mask from the pending set and queue. 702 * Returns 1 if any signals were found. 703 * 704 * All callers must be holding the siglock. 705 * 706 * This version takes a sigset mask and looks at all signals, 707 * not just those in the first mask word. 708 */ 709 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 710 { 711 struct sigqueue *q, *n; 712 sigset_t m; 713 714 sigandsets(&m, mask, &s->signal); 715 if (sigisemptyset(&m)) 716 return 0; 717 718 sigandnsets(&s->signal, &s->signal, mask); 719 list_for_each_entry_safe(q, n, &s->list, list) { 720 if (sigismember(mask, q->info.si_signo)) { 721 list_del_init(&q->list); 722 __sigqueue_free(q); 723 } 724 } 725 return 1; 726 } 727 /* 728 * Remove signals in mask from the pending set and queue. 729 * Returns 1 if any signals were found. 730 * 731 * All callers must be holding the siglock. 732 */ 733 static int rm_from_queue(unsigned long mask, struct sigpending *s) 734 { 735 struct sigqueue *q, *n; 736 737 if (!sigtestsetmask(&s->signal, mask)) 738 return 0; 739 740 sigdelsetmask(&s->signal, mask); 741 list_for_each_entry_safe(q, n, &s->list, list) { 742 if (q->info.si_signo < SIGRTMIN && 743 (mask & sigmask(q->info.si_signo))) { 744 list_del_init(&q->list); 745 __sigqueue_free(q); 746 } 747 } 748 return 1; 749 } 750 751 static inline int is_si_special(const struct siginfo *info) 752 { 753 return info <= SEND_SIG_FORCED; 754 } 755 756 static inline bool si_fromuser(const struct siginfo *info) 757 { 758 return info == SEND_SIG_NOINFO || 759 (!is_si_special(info) && SI_FROMUSER(info)); 760 } 761 762 /* 763 * called with RCU read lock from check_kill_permission() 764 */ 765 static int kill_ok_by_cred(struct task_struct *t) 766 { 767 const struct cred *cred = current_cred(); 768 const struct cred *tcred = __task_cred(t); 769 770 if (uid_eq(cred->euid, tcred->suid) || 771 uid_eq(cred->euid, tcred->uid) || 772 uid_eq(cred->uid, tcred->suid) || 773 uid_eq(cred->uid, tcred->uid)) 774 return 1; 775 776 if (ns_capable(tcred->user_ns, CAP_KILL)) 777 return 1; 778 779 return 0; 780 } 781 782 /* 783 * Bad permissions for sending the signal 784 * - the caller must hold the RCU read lock 785 */ 786 static int check_kill_permission(int sig, struct siginfo *info, 787 struct task_struct *t) 788 { 789 struct pid *sid; 790 int error; 791 792 if (!valid_signal(sig)) 793 return -EINVAL; 794 795 if (!si_fromuser(info)) 796 return 0; 797 798 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 799 if (error) 800 return error; 801 802 if (!same_thread_group(current, t) && 803 !kill_ok_by_cred(t)) { 804 switch (sig) { 805 case SIGCONT: 806 sid = task_session(t); 807 /* 808 * We don't return the error if sid == NULL. The 809 * task was unhashed, the caller must notice this. 810 */ 811 if (!sid || sid == task_session(current)) 812 break; 813 default: 814 return -EPERM; 815 } 816 } 817 818 return security_task_kill(t, info, sig, 0); 819 } 820 821 /** 822 * ptrace_trap_notify - schedule trap to notify ptracer 823 * @t: tracee wanting to notify tracer 824 * 825 * This function schedules sticky ptrace trap which is cleared on the next 826 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 827 * ptracer. 828 * 829 * If @t is running, STOP trap will be taken. If trapped for STOP and 830 * ptracer is listening for events, tracee is woken up so that it can 831 * re-trap for the new event. If trapped otherwise, STOP trap will be 832 * eventually taken without returning to userland after the existing traps 833 * are finished by PTRACE_CONT. 834 * 835 * CONTEXT: 836 * Must be called with @task->sighand->siglock held. 837 */ 838 static void ptrace_trap_notify(struct task_struct *t) 839 { 840 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 841 assert_spin_locked(&t->sighand->siglock); 842 843 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 844 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 845 } 846 847 /* 848 * Handle magic process-wide effects of stop/continue signals. Unlike 849 * the signal actions, these happen immediately at signal-generation 850 * time regardless of blocking, ignoring, or handling. This does the 851 * actual continuing for SIGCONT, but not the actual stopping for stop 852 * signals. The process stop is done as a signal action for SIG_DFL. 853 * 854 * Returns true if the signal should be actually delivered, otherwise 855 * it should be dropped. 856 */ 857 static int prepare_signal(int sig, struct task_struct *p, bool force) 858 { 859 struct signal_struct *signal = p->signal; 860 struct task_struct *t; 861 862 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { 863 /* 864 * The process is in the middle of dying, nothing to do. 865 */ 866 } else if (sig_kernel_stop(sig)) { 867 /* 868 * This is a stop signal. Remove SIGCONT from all queues. 869 */ 870 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); 871 t = p; 872 do { 873 rm_from_queue(sigmask(SIGCONT), &t->pending); 874 } while_each_thread(p, t); 875 } else if (sig == SIGCONT) { 876 unsigned int why; 877 /* 878 * Remove all stop signals from all queues, wake all threads. 879 */ 880 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); 881 t = p; 882 do { 883 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 884 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 885 if (likely(!(t->ptrace & PT_SEIZED))) 886 wake_up_state(t, __TASK_STOPPED); 887 else 888 ptrace_trap_notify(t); 889 } while_each_thread(p, t); 890 891 /* 892 * Notify the parent with CLD_CONTINUED if we were stopped. 893 * 894 * If we were in the middle of a group stop, we pretend it 895 * was already finished, and then continued. Since SIGCHLD 896 * doesn't queue we report only CLD_STOPPED, as if the next 897 * CLD_CONTINUED was dropped. 898 */ 899 why = 0; 900 if (signal->flags & SIGNAL_STOP_STOPPED) 901 why |= SIGNAL_CLD_CONTINUED; 902 else if (signal->group_stop_count) 903 why |= SIGNAL_CLD_STOPPED; 904 905 if (why) { 906 /* 907 * The first thread which returns from do_signal_stop() 908 * will take ->siglock, notice SIGNAL_CLD_MASK, and 909 * notify its parent. See get_signal_to_deliver(). 910 */ 911 signal->flags = why | SIGNAL_STOP_CONTINUED; 912 signal->group_stop_count = 0; 913 signal->group_exit_code = 0; 914 } 915 } 916 917 return !sig_ignored(p, sig, force); 918 } 919 920 /* 921 * Test if P wants to take SIG. After we've checked all threads with this, 922 * it's equivalent to finding no threads not blocking SIG. Any threads not 923 * blocking SIG were ruled out because they are not running and already 924 * have pending signals. Such threads will dequeue from the shared queue 925 * as soon as they're available, so putting the signal on the shared queue 926 * will be equivalent to sending it to one such thread. 927 */ 928 static inline int wants_signal(int sig, struct task_struct *p) 929 { 930 if (sigismember(&p->blocked, sig)) 931 return 0; 932 if (p->flags & PF_EXITING) 933 return 0; 934 if (sig == SIGKILL) 935 return 1; 936 if (task_is_stopped_or_traced(p)) 937 return 0; 938 return task_curr(p) || !signal_pending(p); 939 } 940 941 static void complete_signal(int sig, struct task_struct *p, int group) 942 { 943 struct signal_struct *signal = p->signal; 944 struct task_struct *t; 945 946 /* 947 * Now find a thread we can wake up to take the signal off the queue. 948 * 949 * If the main thread wants the signal, it gets first crack. 950 * Probably the least surprising to the average bear. 951 */ 952 if (wants_signal(sig, p)) 953 t = p; 954 else if (!group || thread_group_empty(p)) 955 /* 956 * There is just one thread and it does not need to be woken. 957 * It will dequeue unblocked signals before it runs again. 958 */ 959 return; 960 else { 961 /* 962 * Otherwise try to find a suitable thread. 963 */ 964 t = signal->curr_target; 965 while (!wants_signal(sig, t)) { 966 t = next_thread(t); 967 if (t == signal->curr_target) 968 /* 969 * No thread needs to be woken. 970 * Any eligible threads will see 971 * the signal in the queue soon. 972 */ 973 return; 974 } 975 signal->curr_target = t; 976 } 977 978 /* 979 * Found a killable thread. If the signal will be fatal, 980 * then start taking the whole group down immediately. 981 */ 982 if (sig_fatal(p, sig) && 983 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 984 !sigismember(&t->real_blocked, sig) && 985 (sig == SIGKILL || !t->ptrace)) { 986 /* 987 * This signal will be fatal to the whole group. 988 */ 989 if (!sig_kernel_coredump(sig)) { 990 /* 991 * Start a group exit and wake everybody up. 992 * This way we don't have other threads 993 * running and doing things after a slower 994 * thread has the fatal signal pending. 995 */ 996 signal->flags = SIGNAL_GROUP_EXIT; 997 signal->group_exit_code = sig; 998 signal->group_stop_count = 0; 999 t = p; 1000 do { 1001 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1002 sigaddset(&t->pending.signal, SIGKILL); 1003 signal_wake_up(t, 1); 1004 } while_each_thread(p, t); 1005 return; 1006 } 1007 } 1008 1009 /* 1010 * The signal is already in the shared-pending queue. 1011 * Tell the chosen thread to wake up and dequeue it. 1012 */ 1013 signal_wake_up(t, sig == SIGKILL); 1014 return; 1015 } 1016 1017 static inline int legacy_queue(struct sigpending *signals, int sig) 1018 { 1019 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1020 } 1021 1022 #ifdef CONFIG_USER_NS 1023 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1024 { 1025 if (current_user_ns() == task_cred_xxx(t, user_ns)) 1026 return; 1027 1028 if (SI_FROMKERNEL(info)) 1029 return; 1030 1031 rcu_read_lock(); 1032 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 1033 make_kuid(current_user_ns(), info->si_uid)); 1034 rcu_read_unlock(); 1035 } 1036 #else 1037 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1038 { 1039 return; 1040 } 1041 #endif 1042 1043 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 1044 int group, int from_ancestor_ns) 1045 { 1046 struct sigpending *pending; 1047 struct sigqueue *q; 1048 int override_rlimit; 1049 int ret = 0, result; 1050 1051 assert_spin_locked(&t->sighand->siglock); 1052 1053 result = TRACE_SIGNAL_IGNORED; 1054 if (!prepare_signal(sig, t, 1055 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1056 goto ret; 1057 1058 pending = group ? &t->signal->shared_pending : &t->pending; 1059 /* 1060 * Short-circuit ignored signals and support queuing 1061 * exactly one non-rt signal, so that we can get more 1062 * detailed information about the cause of the signal. 1063 */ 1064 result = TRACE_SIGNAL_ALREADY_PENDING; 1065 if (legacy_queue(pending, sig)) 1066 goto ret; 1067 1068 result = TRACE_SIGNAL_DELIVERED; 1069 /* 1070 * fast-pathed signals for kernel-internal things like SIGSTOP 1071 * or SIGKILL. 1072 */ 1073 if (info == SEND_SIG_FORCED) 1074 goto out_set; 1075 1076 /* 1077 * Real-time signals must be queued if sent by sigqueue, or 1078 * some other real-time mechanism. It is implementation 1079 * defined whether kill() does so. We attempt to do so, on 1080 * the principle of least surprise, but since kill is not 1081 * allowed to fail with EAGAIN when low on memory we just 1082 * make sure at least one signal gets delivered and don't 1083 * pass on the info struct. 1084 */ 1085 if (sig < SIGRTMIN) 1086 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1087 else 1088 override_rlimit = 0; 1089 1090 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1091 override_rlimit); 1092 if (q) { 1093 list_add_tail(&q->list, &pending->list); 1094 switch ((unsigned long) info) { 1095 case (unsigned long) SEND_SIG_NOINFO: 1096 q->info.si_signo = sig; 1097 q->info.si_errno = 0; 1098 q->info.si_code = SI_USER; 1099 q->info.si_pid = task_tgid_nr_ns(current, 1100 task_active_pid_ns(t)); 1101 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1102 break; 1103 case (unsigned long) SEND_SIG_PRIV: 1104 q->info.si_signo = sig; 1105 q->info.si_errno = 0; 1106 q->info.si_code = SI_KERNEL; 1107 q->info.si_pid = 0; 1108 q->info.si_uid = 0; 1109 break; 1110 default: 1111 copy_siginfo(&q->info, info); 1112 if (from_ancestor_ns) 1113 q->info.si_pid = 0; 1114 break; 1115 } 1116 1117 userns_fixup_signal_uid(&q->info, t); 1118 1119 } else if (!is_si_special(info)) { 1120 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1121 /* 1122 * Queue overflow, abort. We may abort if the 1123 * signal was rt and sent by user using something 1124 * other than kill(). 1125 */ 1126 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1127 ret = -EAGAIN; 1128 goto ret; 1129 } else { 1130 /* 1131 * This is a silent loss of information. We still 1132 * send the signal, but the *info bits are lost. 1133 */ 1134 result = TRACE_SIGNAL_LOSE_INFO; 1135 } 1136 } 1137 1138 out_set: 1139 signalfd_notify(t, sig); 1140 sigaddset(&pending->signal, sig); 1141 complete_signal(sig, t, group); 1142 ret: 1143 trace_signal_generate(sig, info, t, group, result); 1144 return ret; 1145 } 1146 1147 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1148 int group) 1149 { 1150 int from_ancestor_ns = 0; 1151 1152 #ifdef CONFIG_PID_NS 1153 from_ancestor_ns = si_fromuser(info) && 1154 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1155 #endif 1156 1157 return __send_signal(sig, info, t, group, from_ancestor_ns); 1158 } 1159 1160 static void print_fatal_signal(int signr) 1161 { 1162 struct pt_regs *regs = signal_pt_regs(); 1163 printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr); 1164 1165 #if defined(__i386__) && !defined(__arch_um__) 1166 printk(KERN_INFO "code at %08lx: ", regs->ip); 1167 { 1168 int i; 1169 for (i = 0; i < 16; i++) { 1170 unsigned char insn; 1171 1172 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1173 break; 1174 printk(KERN_CONT "%02x ", insn); 1175 } 1176 } 1177 printk(KERN_CONT "\n"); 1178 #endif 1179 preempt_disable(); 1180 show_regs(regs); 1181 preempt_enable(); 1182 } 1183 1184 static int __init setup_print_fatal_signals(char *str) 1185 { 1186 get_option (&str, &print_fatal_signals); 1187 1188 return 1; 1189 } 1190 1191 __setup("print-fatal-signals=", setup_print_fatal_signals); 1192 1193 int 1194 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1195 { 1196 return send_signal(sig, info, p, 1); 1197 } 1198 1199 static int 1200 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1201 { 1202 return send_signal(sig, info, t, 0); 1203 } 1204 1205 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1206 bool group) 1207 { 1208 unsigned long flags; 1209 int ret = -ESRCH; 1210 1211 if (lock_task_sighand(p, &flags)) { 1212 ret = send_signal(sig, info, p, group); 1213 unlock_task_sighand(p, &flags); 1214 } 1215 1216 return ret; 1217 } 1218 1219 /* 1220 * Force a signal that the process can't ignore: if necessary 1221 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1222 * 1223 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1224 * since we do not want to have a signal handler that was blocked 1225 * be invoked when user space had explicitly blocked it. 1226 * 1227 * We don't want to have recursive SIGSEGV's etc, for example, 1228 * that is why we also clear SIGNAL_UNKILLABLE. 1229 */ 1230 int 1231 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1232 { 1233 unsigned long int flags; 1234 int ret, blocked, ignored; 1235 struct k_sigaction *action; 1236 1237 spin_lock_irqsave(&t->sighand->siglock, flags); 1238 action = &t->sighand->action[sig-1]; 1239 ignored = action->sa.sa_handler == SIG_IGN; 1240 blocked = sigismember(&t->blocked, sig); 1241 if (blocked || ignored) { 1242 action->sa.sa_handler = SIG_DFL; 1243 if (blocked) { 1244 sigdelset(&t->blocked, sig); 1245 recalc_sigpending_and_wake(t); 1246 } 1247 } 1248 if (action->sa.sa_handler == SIG_DFL) 1249 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1250 ret = specific_send_sig_info(sig, info, t); 1251 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1252 1253 return ret; 1254 } 1255 1256 /* 1257 * Nuke all other threads in the group. 1258 */ 1259 int zap_other_threads(struct task_struct *p) 1260 { 1261 struct task_struct *t = p; 1262 int count = 0; 1263 1264 p->signal->group_stop_count = 0; 1265 1266 while_each_thread(p, t) { 1267 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1268 count++; 1269 1270 /* Don't bother with already dead threads */ 1271 if (t->exit_state) 1272 continue; 1273 sigaddset(&t->pending.signal, SIGKILL); 1274 signal_wake_up(t, 1); 1275 } 1276 1277 return count; 1278 } 1279 1280 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1281 unsigned long *flags) 1282 { 1283 struct sighand_struct *sighand; 1284 1285 for (;;) { 1286 local_irq_save(*flags); 1287 rcu_read_lock(); 1288 sighand = rcu_dereference(tsk->sighand); 1289 if (unlikely(sighand == NULL)) { 1290 rcu_read_unlock(); 1291 local_irq_restore(*flags); 1292 break; 1293 } 1294 1295 spin_lock(&sighand->siglock); 1296 if (likely(sighand == tsk->sighand)) { 1297 rcu_read_unlock(); 1298 break; 1299 } 1300 spin_unlock(&sighand->siglock); 1301 rcu_read_unlock(); 1302 local_irq_restore(*flags); 1303 } 1304 1305 return sighand; 1306 } 1307 1308 /* 1309 * send signal info to all the members of a group 1310 */ 1311 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1312 { 1313 int ret; 1314 1315 rcu_read_lock(); 1316 ret = check_kill_permission(sig, info, p); 1317 rcu_read_unlock(); 1318 1319 if (!ret && sig) 1320 ret = do_send_sig_info(sig, info, p, true); 1321 1322 return ret; 1323 } 1324 1325 /* 1326 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1327 * control characters do (^C, ^Z etc) 1328 * - the caller must hold at least a readlock on tasklist_lock 1329 */ 1330 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1331 { 1332 struct task_struct *p = NULL; 1333 int retval, success; 1334 1335 success = 0; 1336 retval = -ESRCH; 1337 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1338 int err = group_send_sig_info(sig, info, p); 1339 success |= !err; 1340 retval = err; 1341 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1342 return success ? 0 : retval; 1343 } 1344 1345 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1346 { 1347 int error = -ESRCH; 1348 struct task_struct *p; 1349 1350 rcu_read_lock(); 1351 retry: 1352 p = pid_task(pid, PIDTYPE_PID); 1353 if (p) { 1354 error = group_send_sig_info(sig, info, p); 1355 if (unlikely(error == -ESRCH)) 1356 /* 1357 * The task was unhashed in between, try again. 1358 * If it is dead, pid_task() will return NULL, 1359 * if we race with de_thread() it will find the 1360 * new leader. 1361 */ 1362 goto retry; 1363 } 1364 rcu_read_unlock(); 1365 1366 return error; 1367 } 1368 1369 int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1370 { 1371 int error; 1372 rcu_read_lock(); 1373 error = kill_pid_info(sig, info, find_vpid(pid)); 1374 rcu_read_unlock(); 1375 return error; 1376 } 1377 1378 static int kill_as_cred_perm(const struct cred *cred, 1379 struct task_struct *target) 1380 { 1381 const struct cred *pcred = __task_cred(target); 1382 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1383 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1384 return 0; 1385 return 1; 1386 } 1387 1388 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1389 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1390 const struct cred *cred, u32 secid) 1391 { 1392 int ret = -EINVAL; 1393 struct task_struct *p; 1394 unsigned long flags; 1395 1396 if (!valid_signal(sig)) 1397 return ret; 1398 1399 rcu_read_lock(); 1400 p = pid_task(pid, PIDTYPE_PID); 1401 if (!p) { 1402 ret = -ESRCH; 1403 goto out_unlock; 1404 } 1405 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1406 ret = -EPERM; 1407 goto out_unlock; 1408 } 1409 ret = security_task_kill(p, info, sig, secid); 1410 if (ret) 1411 goto out_unlock; 1412 1413 if (sig) { 1414 if (lock_task_sighand(p, &flags)) { 1415 ret = __send_signal(sig, info, p, 1, 0); 1416 unlock_task_sighand(p, &flags); 1417 } else 1418 ret = -ESRCH; 1419 } 1420 out_unlock: 1421 rcu_read_unlock(); 1422 return ret; 1423 } 1424 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1425 1426 /* 1427 * kill_something_info() interprets pid in interesting ways just like kill(2). 1428 * 1429 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1430 * is probably wrong. Should make it like BSD or SYSV. 1431 */ 1432 1433 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1434 { 1435 int ret; 1436 1437 if (pid > 0) { 1438 rcu_read_lock(); 1439 ret = kill_pid_info(sig, info, find_vpid(pid)); 1440 rcu_read_unlock(); 1441 return ret; 1442 } 1443 1444 read_lock(&tasklist_lock); 1445 if (pid != -1) { 1446 ret = __kill_pgrp_info(sig, info, 1447 pid ? find_vpid(-pid) : task_pgrp(current)); 1448 } else { 1449 int retval = 0, count = 0; 1450 struct task_struct * p; 1451 1452 for_each_process(p) { 1453 if (task_pid_vnr(p) > 1 && 1454 !same_thread_group(p, current)) { 1455 int err = group_send_sig_info(sig, info, p); 1456 ++count; 1457 if (err != -EPERM) 1458 retval = err; 1459 } 1460 } 1461 ret = count ? retval : -ESRCH; 1462 } 1463 read_unlock(&tasklist_lock); 1464 1465 return ret; 1466 } 1467 1468 /* 1469 * These are for backward compatibility with the rest of the kernel source. 1470 */ 1471 1472 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1473 { 1474 /* 1475 * Make sure legacy kernel users don't send in bad values 1476 * (normal paths check this in check_kill_permission). 1477 */ 1478 if (!valid_signal(sig)) 1479 return -EINVAL; 1480 1481 return do_send_sig_info(sig, info, p, false); 1482 } 1483 1484 #define __si_special(priv) \ 1485 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1486 1487 int 1488 send_sig(int sig, struct task_struct *p, int priv) 1489 { 1490 return send_sig_info(sig, __si_special(priv), p); 1491 } 1492 1493 void 1494 force_sig(int sig, struct task_struct *p) 1495 { 1496 force_sig_info(sig, SEND_SIG_PRIV, p); 1497 } 1498 1499 /* 1500 * When things go south during signal handling, we 1501 * will force a SIGSEGV. And if the signal that caused 1502 * the problem was already a SIGSEGV, we'll want to 1503 * make sure we don't even try to deliver the signal.. 1504 */ 1505 int 1506 force_sigsegv(int sig, struct task_struct *p) 1507 { 1508 if (sig == SIGSEGV) { 1509 unsigned long flags; 1510 spin_lock_irqsave(&p->sighand->siglock, flags); 1511 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1512 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1513 } 1514 force_sig(SIGSEGV, p); 1515 return 0; 1516 } 1517 1518 int kill_pgrp(struct pid *pid, int sig, int priv) 1519 { 1520 int ret; 1521 1522 read_lock(&tasklist_lock); 1523 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1524 read_unlock(&tasklist_lock); 1525 1526 return ret; 1527 } 1528 EXPORT_SYMBOL(kill_pgrp); 1529 1530 int kill_pid(struct pid *pid, int sig, int priv) 1531 { 1532 return kill_pid_info(sig, __si_special(priv), pid); 1533 } 1534 EXPORT_SYMBOL(kill_pid); 1535 1536 /* 1537 * These functions support sending signals using preallocated sigqueue 1538 * structures. This is needed "because realtime applications cannot 1539 * afford to lose notifications of asynchronous events, like timer 1540 * expirations or I/O completions". In the case of POSIX Timers 1541 * we allocate the sigqueue structure from the timer_create. If this 1542 * allocation fails we are able to report the failure to the application 1543 * with an EAGAIN error. 1544 */ 1545 struct sigqueue *sigqueue_alloc(void) 1546 { 1547 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1548 1549 if (q) 1550 q->flags |= SIGQUEUE_PREALLOC; 1551 1552 return q; 1553 } 1554 1555 void sigqueue_free(struct sigqueue *q) 1556 { 1557 unsigned long flags; 1558 spinlock_t *lock = ¤t->sighand->siglock; 1559 1560 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1561 /* 1562 * We must hold ->siglock while testing q->list 1563 * to serialize with collect_signal() or with 1564 * __exit_signal()->flush_sigqueue(). 1565 */ 1566 spin_lock_irqsave(lock, flags); 1567 q->flags &= ~SIGQUEUE_PREALLOC; 1568 /* 1569 * If it is queued it will be freed when dequeued, 1570 * like the "regular" sigqueue. 1571 */ 1572 if (!list_empty(&q->list)) 1573 q = NULL; 1574 spin_unlock_irqrestore(lock, flags); 1575 1576 if (q) 1577 __sigqueue_free(q); 1578 } 1579 1580 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1581 { 1582 int sig = q->info.si_signo; 1583 struct sigpending *pending; 1584 unsigned long flags; 1585 int ret, result; 1586 1587 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1588 1589 ret = -1; 1590 if (!likely(lock_task_sighand(t, &flags))) 1591 goto ret; 1592 1593 ret = 1; /* the signal is ignored */ 1594 result = TRACE_SIGNAL_IGNORED; 1595 if (!prepare_signal(sig, t, false)) 1596 goto out; 1597 1598 ret = 0; 1599 if (unlikely(!list_empty(&q->list))) { 1600 /* 1601 * If an SI_TIMER entry is already queue just increment 1602 * the overrun count. 1603 */ 1604 BUG_ON(q->info.si_code != SI_TIMER); 1605 q->info.si_overrun++; 1606 result = TRACE_SIGNAL_ALREADY_PENDING; 1607 goto out; 1608 } 1609 q->info.si_overrun = 0; 1610 1611 signalfd_notify(t, sig); 1612 pending = group ? &t->signal->shared_pending : &t->pending; 1613 list_add_tail(&q->list, &pending->list); 1614 sigaddset(&pending->signal, sig); 1615 complete_signal(sig, t, group); 1616 result = TRACE_SIGNAL_DELIVERED; 1617 out: 1618 trace_signal_generate(sig, &q->info, t, group, result); 1619 unlock_task_sighand(t, &flags); 1620 ret: 1621 return ret; 1622 } 1623 1624 /* 1625 * Let a parent know about the death of a child. 1626 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1627 * 1628 * Returns true if our parent ignored us and so we've switched to 1629 * self-reaping. 1630 */ 1631 bool do_notify_parent(struct task_struct *tsk, int sig) 1632 { 1633 struct siginfo info; 1634 unsigned long flags; 1635 struct sighand_struct *psig; 1636 bool autoreap = false; 1637 cputime_t utime, stime; 1638 1639 BUG_ON(sig == -1); 1640 1641 /* do_notify_parent_cldstop should have been called instead. */ 1642 BUG_ON(task_is_stopped_or_traced(tsk)); 1643 1644 BUG_ON(!tsk->ptrace && 1645 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1646 1647 if (sig != SIGCHLD) { 1648 /* 1649 * This is only possible if parent == real_parent. 1650 * Check if it has changed security domain. 1651 */ 1652 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1653 sig = SIGCHLD; 1654 } 1655 1656 info.si_signo = sig; 1657 info.si_errno = 0; 1658 /* 1659 * We are under tasklist_lock here so our parent is tied to 1660 * us and cannot change. 1661 * 1662 * task_active_pid_ns will always return the same pid namespace 1663 * until a task passes through release_task. 1664 * 1665 * write_lock() currently calls preempt_disable() which is the 1666 * same as rcu_read_lock(), but according to Oleg, this is not 1667 * correct to rely on this 1668 */ 1669 rcu_read_lock(); 1670 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1671 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1672 task_uid(tsk)); 1673 rcu_read_unlock(); 1674 1675 task_cputime(tsk, &utime, &stime); 1676 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime); 1677 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime); 1678 1679 info.si_status = tsk->exit_code & 0x7f; 1680 if (tsk->exit_code & 0x80) 1681 info.si_code = CLD_DUMPED; 1682 else if (tsk->exit_code & 0x7f) 1683 info.si_code = CLD_KILLED; 1684 else { 1685 info.si_code = CLD_EXITED; 1686 info.si_status = tsk->exit_code >> 8; 1687 } 1688 1689 psig = tsk->parent->sighand; 1690 spin_lock_irqsave(&psig->siglock, flags); 1691 if (!tsk->ptrace && sig == SIGCHLD && 1692 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1693 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1694 /* 1695 * We are exiting and our parent doesn't care. POSIX.1 1696 * defines special semantics for setting SIGCHLD to SIG_IGN 1697 * or setting the SA_NOCLDWAIT flag: we should be reaped 1698 * automatically and not left for our parent's wait4 call. 1699 * Rather than having the parent do it as a magic kind of 1700 * signal handler, we just set this to tell do_exit that we 1701 * can be cleaned up without becoming a zombie. Note that 1702 * we still call __wake_up_parent in this case, because a 1703 * blocked sys_wait4 might now return -ECHILD. 1704 * 1705 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1706 * is implementation-defined: we do (if you don't want 1707 * it, just use SIG_IGN instead). 1708 */ 1709 autoreap = true; 1710 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1711 sig = 0; 1712 } 1713 if (valid_signal(sig) && sig) 1714 __group_send_sig_info(sig, &info, tsk->parent); 1715 __wake_up_parent(tsk, tsk->parent); 1716 spin_unlock_irqrestore(&psig->siglock, flags); 1717 1718 return autoreap; 1719 } 1720 1721 /** 1722 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1723 * @tsk: task reporting the state change 1724 * @for_ptracer: the notification is for ptracer 1725 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1726 * 1727 * Notify @tsk's parent that the stopped/continued state has changed. If 1728 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1729 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1730 * 1731 * CONTEXT: 1732 * Must be called with tasklist_lock at least read locked. 1733 */ 1734 static void do_notify_parent_cldstop(struct task_struct *tsk, 1735 bool for_ptracer, int why) 1736 { 1737 struct siginfo info; 1738 unsigned long flags; 1739 struct task_struct *parent; 1740 struct sighand_struct *sighand; 1741 cputime_t utime, stime; 1742 1743 if (for_ptracer) { 1744 parent = tsk->parent; 1745 } else { 1746 tsk = tsk->group_leader; 1747 parent = tsk->real_parent; 1748 } 1749 1750 info.si_signo = SIGCHLD; 1751 info.si_errno = 0; 1752 /* 1753 * see comment in do_notify_parent() about the following 4 lines 1754 */ 1755 rcu_read_lock(); 1756 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1757 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1758 rcu_read_unlock(); 1759 1760 task_cputime(tsk, &utime, &stime); 1761 info.si_utime = cputime_to_clock_t(utime); 1762 info.si_stime = cputime_to_clock_t(stime); 1763 1764 info.si_code = why; 1765 switch (why) { 1766 case CLD_CONTINUED: 1767 info.si_status = SIGCONT; 1768 break; 1769 case CLD_STOPPED: 1770 info.si_status = tsk->signal->group_exit_code & 0x7f; 1771 break; 1772 case CLD_TRAPPED: 1773 info.si_status = tsk->exit_code & 0x7f; 1774 break; 1775 default: 1776 BUG(); 1777 } 1778 1779 sighand = parent->sighand; 1780 spin_lock_irqsave(&sighand->siglock, flags); 1781 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1782 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1783 __group_send_sig_info(SIGCHLD, &info, parent); 1784 /* 1785 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1786 */ 1787 __wake_up_parent(tsk, parent); 1788 spin_unlock_irqrestore(&sighand->siglock, flags); 1789 } 1790 1791 static inline int may_ptrace_stop(void) 1792 { 1793 if (!likely(current->ptrace)) 1794 return 0; 1795 /* 1796 * Are we in the middle of do_coredump? 1797 * If so and our tracer is also part of the coredump stopping 1798 * is a deadlock situation, and pointless because our tracer 1799 * is dead so don't allow us to stop. 1800 * If SIGKILL was already sent before the caller unlocked 1801 * ->siglock we must see ->core_state != NULL. Otherwise it 1802 * is safe to enter schedule(). 1803 * 1804 * This is almost outdated, a task with the pending SIGKILL can't 1805 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1806 * after SIGKILL was already dequeued. 1807 */ 1808 if (unlikely(current->mm->core_state) && 1809 unlikely(current->mm == current->parent->mm)) 1810 return 0; 1811 1812 return 1; 1813 } 1814 1815 /* 1816 * Return non-zero if there is a SIGKILL that should be waking us up. 1817 * Called with the siglock held. 1818 */ 1819 static int sigkill_pending(struct task_struct *tsk) 1820 { 1821 return sigismember(&tsk->pending.signal, SIGKILL) || 1822 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1823 } 1824 1825 /* 1826 * This must be called with current->sighand->siglock held. 1827 * 1828 * This should be the path for all ptrace stops. 1829 * We always set current->last_siginfo while stopped here. 1830 * That makes it a way to test a stopped process for 1831 * being ptrace-stopped vs being job-control-stopped. 1832 * 1833 * If we actually decide not to stop at all because the tracer 1834 * is gone, we keep current->exit_code unless clear_code. 1835 */ 1836 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1837 __releases(¤t->sighand->siglock) 1838 __acquires(¤t->sighand->siglock) 1839 { 1840 bool gstop_done = false; 1841 1842 if (arch_ptrace_stop_needed(exit_code, info)) { 1843 /* 1844 * The arch code has something special to do before a 1845 * ptrace stop. This is allowed to block, e.g. for faults 1846 * on user stack pages. We can't keep the siglock while 1847 * calling arch_ptrace_stop, so we must release it now. 1848 * To preserve proper semantics, we must do this before 1849 * any signal bookkeeping like checking group_stop_count. 1850 * Meanwhile, a SIGKILL could come in before we retake the 1851 * siglock. That must prevent us from sleeping in TASK_TRACED. 1852 * So after regaining the lock, we must check for SIGKILL. 1853 */ 1854 spin_unlock_irq(¤t->sighand->siglock); 1855 arch_ptrace_stop(exit_code, info); 1856 spin_lock_irq(¤t->sighand->siglock); 1857 if (sigkill_pending(current)) 1858 return; 1859 } 1860 1861 /* 1862 * We're committing to trapping. TRACED should be visible before 1863 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1864 * Also, transition to TRACED and updates to ->jobctl should be 1865 * atomic with respect to siglock and should be done after the arch 1866 * hook as siglock is released and regrabbed across it. 1867 */ 1868 set_current_state(TASK_TRACED); 1869 1870 current->last_siginfo = info; 1871 current->exit_code = exit_code; 1872 1873 /* 1874 * If @why is CLD_STOPPED, we're trapping to participate in a group 1875 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1876 * across siglock relocks since INTERRUPT was scheduled, PENDING 1877 * could be clear now. We act as if SIGCONT is received after 1878 * TASK_TRACED is entered - ignore it. 1879 */ 1880 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1881 gstop_done = task_participate_group_stop(current); 1882 1883 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1884 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1885 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1886 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1887 1888 /* entering a trap, clear TRAPPING */ 1889 task_clear_jobctl_trapping(current); 1890 1891 spin_unlock_irq(¤t->sighand->siglock); 1892 read_lock(&tasklist_lock); 1893 if (may_ptrace_stop()) { 1894 /* 1895 * Notify parents of the stop. 1896 * 1897 * While ptraced, there are two parents - the ptracer and 1898 * the real_parent of the group_leader. The ptracer should 1899 * know about every stop while the real parent is only 1900 * interested in the completion of group stop. The states 1901 * for the two don't interact with each other. Notify 1902 * separately unless they're gonna be duplicates. 1903 */ 1904 do_notify_parent_cldstop(current, true, why); 1905 if (gstop_done && ptrace_reparented(current)) 1906 do_notify_parent_cldstop(current, false, why); 1907 1908 /* 1909 * Don't want to allow preemption here, because 1910 * sys_ptrace() needs this task to be inactive. 1911 * 1912 * XXX: implement read_unlock_no_resched(). 1913 */ 1914 preempt_disable(); 1915 read_unlock(&tasklist_lock); 1916 preempt_enable_no_resched(); 1917 freezable_schedule(); 1918 } else { 1919 /* 1920 * By the time we got the lock, our tracer went away. 1921 * Don't drop the lock yet, another tracer may come. 1922 * 1923 * If @gstop_done, the ptracer went away between group stop 1924 * completion and here. During detach, it would have set 1925 * JOBCTL_STOP_PENDING on us and we'll re-enter 1926 * TASK_STOPPED in do_signal_stop() on return, so notifying 1927 * the real parent of the group stop completion is enough. 1928 */ 1929 if (gstop_done) 1930 do_notify_parent_cldstop(current, false, why); 1931 1932 /* tasklist protects us from ptrace_freeze_traced() */ 1933 __set_current_state(TASK_RUNNING); 1934 if (clear_code) 1935 current->exit_code = 0; 1936 read_unlock(&tasklist_lock); 1937 } 1938 1939 /* 1940 * We are back. Now reacquire the siglock before touching 1941 * last_siginfo, so that we are sure to have synchronized with 1942 * any signal-sending on another CPU that wants to examine it. 1943 */ 1944 spin_lock_irq(¤t->sighand->siglock); 1945 current->last_siginfo = NULL; 1946 1947 /* LISTENING can be set only during STOP traps, clear it */ 1948 current->jobctl &= ~JOBCTL_LISTENING; 1949 1950 /* 1951 * Queued signals ignored us while we were stopped for tracing. 1952 * So check for any that we should take before resuming user mode. 1953 * This sets TIF_SIGPENDING, but never clears it. 1954 */ 1955 recalc_sigpending_tsk(current); 1956 } 1957 1958 static void ptrace_do_notify(int signr, int exit_code, int why) 1959 { 1960 siginfo_t info; 1961 1962 memset(&info, 0, sizeof info); 1963 info.si_signo = signr; 1964 info.si_code = exit_code; 1965 info.si_pid = task_pid_vnr(current); 1966 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1967 1968 /* Let the debugger run. */ 1969 ptrace_stop(exit_code, why, 1, &info); 1970 } 1971 1972 void ptrace_notify(int exit_code) 1973 { 1974 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1975 if (unlikely(current->task_works)) 1976 task_work_run(); 1977 1978 spin_lock_irq(¤t->sighand->siglock); 1979 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1980 spin_unlock_irq(¤t->sighand->siglock); 1981 } 1982 1983 /** 1984 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1985 * @signr: signr causing group stop if initiating 1986 * 1987 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1988 * and participate in it. If already set, participate in the existing 1989 * group stop. If participated in a group stop (and thus slept), %true is 1990 * returned with siglock released. 1991 * 1992 * If ptraced, this function doesn't handle stop itself. Instead, 1993 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1994 * untouched. The caller must ensure that INTERRUPT trap handling takes 1995 * places afterwards. 1996 * 1997 * CONTEXT: 1998 * Must be called with @current->sighand->siglock held, which is released 1999 * on %true return. 2000 * 2001 * RETURNS: 2002 * %false if group stop is already cancelled or ptrace trap is scheduled. 2003 * %true if participated in group stop. 2004 */ 2005 static bool do_signal_stop(int signr) 2006 __releases(¤t->sighand->siglock) 2007 { 2008 struct signal_struct *sig = current->signal; 2009 2010 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2011 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2012 struct task_struct *t; 2013 2014 /* signr will be recorded in task->jobctl for retries */ 2015 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2016 2017 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2018 unlikely(signal_group_exit(sig))) 2019 return false; 2020 /* 2021 * There is no group stop already in progress. We must 2022 * initiate one now. 2023 * 2024 * While ptraced, a task may be resumed while group stop is 2025 * still in effect and then receive a stop signal and 2026 * initiate another group stop. This deviates from the 2027 * usual behavior as two consecutive stop signals can't 2028 * cause two group stops when !ptraced. That is why we 2029 * also check !task_is_stopped(t) below. 2030 * 2031 * The condition can be distinguished by testing whether 2032 * SIGNAL_STOP_STOPPED is already set. Don't generate 2033 * group_exit_code in such case. 2034 * 2035 * This is not necessary for SIGNAL_STOP_CONTINUED because 2036 * an intervening stop signal is required to cause two 2037 * continued events regardless of ptrace. 2038 */ 2039 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2040 sig->group_exit_code = signr; 2041 2042 sig->group_stop_count = 0; 2043 2044 if (task_set_jobctl_pending(current, signr | gstop)) 2045 sig->group_stop_count++; 2046 2047 for (t = next_thread(current); t != current; 2048 t = next_thread(t)) { 2049 /* 2050 * Setting state to TASK_STOPPED for a group 2051 * stop is always done with the siglock held, 2052 * so this check has no races. 2053 */ 2054 if (!task_is_stopped(t) && 2055 task_set_jobctl_pending(t, signr | gstop)) { 2056 sig->group_stop_count++; 2057 if (likely(!(t->ptrace & PT_SEIZED))) 2058 signal_wake_up(t, 0); 2059 else 2060 ptrace_trap_notify(t); 2061 } 2062 } 2063 } 2064 2065 if (likely(!current->ptrace)) { 2066 int notify = 0; 2067 2068 /* 2069 * If there are no other threads in the group, or if there 2070 * is a group stop in progress and we are the last to stop, 2071 * report to the parent. 2072 */ 2073 if (task_participate_group_stop(current)) 2074 notify = CLD_STOPPED; 2075 2076 __set_current_state(TASK_STOPPED); 2077 spin_unlock_irq(¤t->sighand->siglock); 2078 2079 /* 2080 * Notify the parent of the group stop completion. Because 2081 * we're not holding either the siglock or tasklist_lock 2082 * here, ptracer may attach inbetween; however, this is for 2083 * group stop and should always be delivered to the real 2084 * parent of the group leader. The new ptracer will get 2085 * its notification when this task transitions into 2086 * TASK_TRACED. 2087 */ 2088 if (notify) { 2089 read_lock(&tasklist_lock); 2090 do_notify_parent_cldstop(current, false, notify); 2091 read_unlock(&tasklist_lock); 2092 } 2093 2094 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2095 freezable_schedule(); 2096 return true; 2097 } else { 2098 /* 2099 * While ptraced, group stop is handled by STOP trap. 2100 * Schedule it and let the caller deal with it. 2101 */ 2102 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2103 return false; 2104 } 2105 } 2106 2107 /** 2108 * do_jobctl_trap - take care of ptrace jobctl traps 2109 * 2110 * When PT_SEIZED, it's used for both group stop and explicit 2111 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2112 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2113 * the stop signal; otherwise, %SIGTRAP. 2114 * 2115 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2116 * number as exit_code and no siginfo. 2117 * 2118 * CONTEXT: 2119 * Must be called with @current->sighand->siglock held, which may be 2120 * released and re-acquired before returning with intervening sleep. 2121 */ 2122 static void do_jobctl_trap(void) 2123 { 2124 struct signal_struct *signal = current->signal; 2125 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2126 2127 if (current->ptrace & PT_SEIZED) { 2128 if (!signal->group_stop_count && 2129 !(signal->flags & SIGNAL_STOP_STOPPED)) 2130 signr = SIGTRAP; 2131 WARN_ON_ONCE(!signr); 2132 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2133 CLD_STOPPED); 2134 } else { 2135 WARN_ON_ONCE(!signr); 2136 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2137 current->exit_code = 0; 2138 } 2139 } 2140 2141 static int ptrace_signal(int signr, siginfo_t *info) 2142 { 2143 ptrace_signal_deliver(); 2144 /* 2145 * We do not check sig_kernel_stop(signr) but set this marker 2146 * unconditionally because we do not know whether debugger will 2147 * change signr. This flag has no meaning unless we are going 2148 * to stop after return from ptrace_stop(). In this case it will 2149 * be checked in do_signal_stop(), we should only stop if it was 2150 * not cleared by SIGCONT while we were sleeping. See also the 2151 * comment in dequeue_signal(). 2152 */ 2153 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2154 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2155 2156 /* We're back. Did the debugger cancel the sig? */ 2157 signr = current->exit_code; 2158 if (signr == 0) 2159 return signr; 2160 2161 current->exit_code = 0; 2162 2163 /* 2164 * Update the siginfo structure if the signal has 2165 * changed. If the debugger wanted something 2166 * specific in the siginfo structure then it should 2167 * have updated *info via PTRACE_SETSIGINFO. 2168 */ 2169 if (signr != info->si_signo) { 2170 info->si_signo = signr; 2171 info->si_errno = 0; 2172 info->si_code = SI_USER; 2173 rcu_read_lock(); 2174 info->si_pid = task_pid_vnr(current->parent); 2175 info->si_uid = from_kuid_munged(current_user_ns(), 2176 task_uid(current->parent)); 2177 rcu_read_unlock(); 2178 } 2179 2180 /* If the (new) signal is now blocked, requeue it. */ 2181 if (sigismember(¤t->blocked, signr)) { 2182 specific_send_sig_info(signr, info, current); 2183 signr = 0; 2184 } 2185 2186 return signr; 2187 } 2188 2189 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 2190 struct pt_regs *regs, void *cookie) 2191 { 2192 struct sighand_struct *sighand = current->sighand; 2193 struct signal_struct *signal = current->signal; 2194 int signr; 2195 2196 if (unlikely(current->task_works)) 2197 task_work_run(); 2198 2199 if (unlikely(uprobe_deny_signal())) 2200 return 0; 2201 2202 /* 2203 * Do this once, we can't return to user-mode if freezing() == T. 2204 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2205 * thus do not need another check after return. 2206 */ 2207 try_to_freeze(); 2208 2209 relock: 2210 spin_lock_irq(&sighand->siglock); 2211 /* 2212 * Every stopped thread goes here after wakeup. Check to see if 2213 * we should notify the parent, prepare_signal(SIGCONT) encodes 2214 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2215 */ 2216 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2217 int why; 2218 2219 if (signal->flags & SIGNAL_CLD_CONTINUED) 2220 why = CLD_CONTINUED; 2221 else 2222 why = CLD_STOPPED; 2223 2224 signal->flags &= ~SIGNAL_CLD_MASK; 2225 2226 spin_unlock_irq(&sighand->siglock); 2227 2228 /* 2229 * Notify the parent that we're continuing. This event is 2230 * always per-process and doesn't make whole lot of sense 2231 * for ptracers, who shouldn't consume the state via 2232 * wait(2) either, but, for backward compatibility, notify 2233 * the ptracer of the group leader too unless it's gonna be 2234 * a duplicate. 2235 */ 2236 read_lock(&tasklist_lock); 2237 do_notify_parent_cldstop(current, false, why); 2238 2239 if (ptrace_reparented(current->group_leader)) 2240 do_notify_parent_cldstop(current->group_leader, 2241 true, why); 2242 read_unlock(&tasklist_lock); 2243 2244 goto relock; 2245 } 2246 2247 for (;;) { 2248 struct k_sigaction *ka; 2249 2250 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2251 do_signal_stop(0)) 2252 goto relock; 2253 2254 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2255 do_jobctl_trap(); 2256 spin_unlock_irq(&sighand->siglock); 2257 goto relock; 2258 } 2259 2260 signr = dequeue_signal(current, ¤t->blocked, info); 2261 2262 if (!signr) 2263 break; /* will return 0 */ 2264 2265 if (unlikely(current->ptrace) && signr != SIGKILL) { 2266 signr = ptrace_signal(signr, info); 2267 if (!signr) 2268 continue; 2269 } 2270 2271 ka = &sighand->action[signr-1]; 2272 2273 /* Trace actually delivered signals. */ 2274 trace_signal_deliver(signr, info, ka); 2275 2276 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2277 continue; 2278 if (ka->sa.sa_handler != SIG_DFL) { 2279 /* Run the handler. */ 2280 *return_ka = *ka; 2281 2282 if (ka->sa.sa_flags & SA_ONESHOT) 2283 ka->sa.sa_handler = SIG_DFL; 2284 2285 break; /* will return non-zero "signr" value */ 2286 } 2287 2288 /* 2289 * Now we are doing the default action for this signal. 2290 */ 2291 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2292 continue; 2293 2294 /* 2295 * Global init gets no signals it doesn't want. 2296 * Container-init gets no signals it doesn't want from same 2297 * container. 2298 * 2299 * Note that if global/container-init sees a sig_kernel_only() 2300 * signal here, the signal must have been generated internally 2301 * or must have come from an ancestor namespace. In either 2302 * case, the signal cannot be dropped. 2303 */ 2304 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2305 !sig_kernel_only(signr)) 2306 continue; 2307 2308 if (sig_kernel_stop(signr)) { 2309 /* 2310 * The default action is to stop all threads in 2311 * the thread group. The job control signals 2312 * do nothing in an orphaned pgrp, but SIGSTOP 2313 * always works. Note that siglock needs to be 2314 * dropped during the call to is_orphaned_pgrp() 2315 * because of lock ordering with tasklist_lock. 2316 * This allows an intervening SIGCONT to be posted. 2317 * We need to check for that and bail out if necessary. 2318 */ 2319 if (signr != SIGSTOP) { 2320 spin_unlock_irq(&sighand->siglock); 2321 2322 /* signals can be posted during this window */ 2323 2324 if (is_current_pgrp_orphaned()) 2325 goto relock; 2326 2327 spin_lock_irq(&sighand->siglock); 2328 } 2329 2330 if (likely(do_signal_stop(info->si_signo))) { 2331 /* It released the siglock. */ 2332 goto relock; 2333 } 2334 2335 /* 2336 * We didn't actually stop, due to a race 2337 * with SIGCONT or something like that. 2338 */ 2339 continue; 2340 } 2341 2342 spin_unlock_irq(&sighand->siglock); 2343 2344 /* 2345 * Anything else is fatal, maybe with a core dump. 2346 */ 2347 current->flags |= PF_SIGNALED; 2348 2349 if (sig_kernel_coredump(signr)) { 2350 if (print_fatal_signals) 2351 print_fatal_signal(info->si_signo); 2352 /* 2353 * If it was able to dump core, this kills all 2354 * other threads in the group and synchronizes with 2355 * their demise. If we lost the race with another 2356 * thread getting here, it set group_exit_code 2357 * first and our do_group_exit call below will use 2358 * that value and ignore the one we pass it. 2359 */ 2360 do_coredump(info); 2361 } 2362 2363 /* 2364 * Death signals, no core dump. 2365 */ 2366 do_group_exit(info->si_signo); 2367 /* NOTREACHED */ 2368 } 2369 spin_unlock_irq(&sighand->siglock); 2370 return signr; 2371 } 2372 2373 /** 2374 * signal_delivered - 2375 * @sig: number of signal being delivered 2376 * @info: siginfo_t of signal being delivered 2377 * @ka: sigaction setting that chose the handler 2378 * @regs: user register state 2379 * @stepping: nonzero if debugger single-step or block-step in use 2380 * 2381 * This function should be called when a signal has succesfully been 2382 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask 2383 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2384 * is set in @ka->sa.sa_flags. Tracing is notified. 2385 */ 2386 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka, 2387 struct pt_regs *regs, int stepping) 2388 { 2389 sigset_t blocked; 2390 2391 /* A signal was successfully delivered, and the 2392 saved sigmask was stored on the signal frame, 2393 and will be restored by sigreturn. So we can 2394 simply clear the restore sigmask flag. */ 2395 clear_restore_sigmask(); 2396 2397 sigorsets(&blocked, ¤t->blocked, &ka->sa.sa_mask); 2398 if (!(ka->sa.sa_flags & SA_NODEFER)) 2399 sigaddset(&blocked, sig); 2400 set_current_blocked(&blocked); 2401 tracehook_signal_handler(sig, info, ka, regs, stepping); 2402 } 2403 2404 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2405 { 2406 if (failed) 2407 force_sigsegv(ksig->sig, current); 2408 else 2409 signal_delivered(ksig->sig, &ksig->info, &ksig->ka, 2410 signal_pt_regs(), stepping); 2411 } 2412 2413 /* 2414 * It could be that complete_signal() picked us to notify about the 2415 * group-wide signal. Other threads should be notified now to take 2416 * the shared signals in @which since we will not. 2417 */ 2418 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2419 { 2420 sigset_t retarget; 2421 struct task_struct *t; 2422 2423 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2424 if (sigisemptyset(&retarget)) 2425 return; 2426 2427 t = tsk; 2428 while_each_thread(tsk, t) { 2429 if (t->flags & PF_EXITING) 2430 continue; 2431 2432 if (!has_pending_signals(&retarget, &t->blocked)) 2433 continue; 2434 /* Remove the signals this thread can handle. */ 2435 sigandsets(&retarget, &retarget, &t->blocked); 2436 2437 if (!signal_pending(t)) 2438 signal_wake_up(t, 0); 2439 2440 if (sigisemptyset(&retarget)) 2441 break; 2442 } 2443 } 2444 2445 void exit_signals(struct task_struct *tsk) 2446 { 2447 int group_stop = 0; 2448 sigset_t unblocked; 2449 2450 /* 2451 * @tsk is about to have PF_EXITING set - lock out users which 2452 * expect stable threadgroup. 2453 */ 2454 threadgroup_change_begin(tsk); 2455 2456 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2457 tsk->flags |= PF_EXITING; 2458 threadgroup_change_end(tsk); 2459 return; 2460 } 2461 2462 spin_lock_irq(&tsk->sighand->siglock); 2463 /* 2464 * From now this task is not visible for group-wide signals, 2465 * see wants_signal(), do_signal_stop(). 2466 */ 2467 tsk->flags |= PF_EXITING; 2468 2469 threadgroup_change_end(tsk); 2470 2471 if (!signal_pending(tsk)) 2472 goto out; 2473 2474 unblocked = tsk->blocked; 2475 signotset(&unblocked); 2476 retarget_shared_pending(tsk, &unblocked); 2477 2478 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2479 task_participate_group_stop(tsk)) 2480 group_stop = CLD_STOPPED; 2481 out: 2482 spin_unlock_irq(&tsk->sighand->siglock); 2483 2484 /* 2485 * If group stop has completed, deliver the notification. This 2486 * should always go to the real parent of the group leader. 2487 */ 2488 if (unlikely(group_stop)) { 2489 read_lock(&tasklist_lock); 2490 do_notify_parent_cldstop(tsk, false, group_stop); 2491 read_unlock(&tasklist_lock); 2492 } 2493 } 2494 2495 EXPORT_SYMBOL(recalc_sigpending); 2496 EXPORT_SYMBOL_GPL(dequeue_signal); 2497 EXPORT_SYMBOL(flush_signals); 2498 EXPORT_SYMBOL(force_sig); 2499 EXPORT_SYMBOL(send_sig); 2500 EXPORT_SYMBOL(send_sig_info); 2501 EXPORT_SYMBOL(sigprocmask); 2502 EXPORT_SYMBOL(block_all_signals); 2503 EXPORT_SYMBOL(unblock_all_signals); 2504 2505 2506 /* 2507 * System call entry points. 2508 */ 2509 2510 /** 2511 * sys_restart_syscall - restart a system call 2512 */ 2513 SYSCALL_DEFINE0(restart_syscall) 2514 { 2515 struct restart_block *restart = ¤t_thread_info()->restart_block; 2516 return restart->fn(restart); 2517 } 2518 2519 long do_no_restart_syscall(struct restart_block *param) 2520 { 2521 return -EINTR; 2522 } 2523 2524 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2525 { 2526 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2527 sigset_t newblocked; 2528 /* A set of now blocked but previously unblocked signals. */ 2529 sigandnsets(&newblocked, newset, ¤t->blocked); 2530 retarget_shared_pending(tsk, &newblocked); 2531 } 2532 tsk->blocked = *newset; 2533 recalc_sigpending(); 2534 } 2535 2536 /** 2537 * set_current_blocked - change current->blocked mask 2538 * @newset: new mask 2539 * 2540 * It is wrong to change ->blocked directly, this helper should be used 2541 * to ensure the process can't miss a shared signal we are going to block. 2542 */ 2543 void set_current_blocked(sigset_t *newset) 2544 { 2545 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2546 __set_current_blocked(newset); 2547 } 2548 2549 void __set_current_blocked(const sigset_t *newset) 2550 { 2551 struct task_struct *tsk = current; 2552 2553 spin_lock_irq(&tsk->sighand->siglock); 2554 __set_task_blocked(tsk, newset); 2555 spin_unlock_irq(&tsk->sighand->siglock); 2556 } 2557 2558 /* 2559 * This is also useful for kernel threads that want to temporarily 2560 * (or permanently) block certain signals. 2561 * 2562 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2563 * interface happily blocks "unblockable" signals like SIGKILL 2564 * and friends. 2565 */ 2566 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2567 { 2568 struct task_struct *tsk = current; 2569 sigset_t newset; 2570 2571 /* Lockless, only current can change ->blocked, never from irq */ 2572 if (oldset) 2573 *oldset = tsk->blocked; 2574 2575 switch (how) { 2576 case SIG_BLOCK: 2577 sigorsets(&newset, &tsk->blocked, set); 2578 break; 2579 case SIG_UNBLOCK: 2580 sigandnsets(&newset, &tsk->blocked, set); 2581 break; 2582 case SIG_SETMASK: 2583 newset = *set; 2584 break; 2585 default: 2586 return -EINVAL; 2587 } 2588 2589 __set_current_blocked(&newset); 2590 return 0; 2591 } 2592 2593 /** 2594 * sys_rt_sigprocmask - change the list of currently blocked signals 2595 * @how: whether to add, remove, or set signals 2596 * @nset: stores pending signals 2597 * @oset: previous value of signal mask if non-null 2598 * @sigsetsize: size of sigset_t type 2599 */ 2600 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2601 sigset_t __user *, oset, size_t, sigsetsize) 2602 { 2603 sigset_t old_set, new_set; 2604 int error; 2605 2606 /* XXX: Don't preclude handling different sized sigset_t's. */ 2607 if (sigsetsize != sizeof(sigset_t)) 2608 return -EINVAL; 2609 2610 old_set = current->blocked; 2611 2612 if (nset) { 2613 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2614 return -EFAULT; 2615 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2616 2617 error = sigprocmask(how, &new_set, NULL); 2618 if (error) 2619 return error; 2620 } 2621 2622 if (oset) { 2623 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2624 return -EFAULT; 2625 } 2626 2627 return 0; 2628 } 2629 2630 #ifdef CONFIG_COMPAT 2631 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2632 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2633 { 2634 #ifdef __BIG_ENDIAN 2635 sigset_t old_set = current->blocked; 2636 2637 /* XXX: Don't preclude handling different sized sigset_t's. */ 2638 if (sigsetsize != sizeof(sigset_t)) 2639 return -EINVAL; 2640 2641 if (nset) { 2642 compat_sigset_t new32; 2643 sigset_t new_set; 2644 int error; 2645 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t))) 2646 return -EFAULT; 2647 2648 sigset_from_compat(&new_set, &new32); 2649 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2650 2651 error = sigprocmask(how, &new_set, NULL); 2652 if (error) 2653 return error; 2654 } 2655 if (oset) { 2656 compat_sigset_t old32; 2657 sigset_to_compat(&old32, &old_set); 2658 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t))) 2659 return -EFAULT; 2660 } 2661 return 0; 2662 #else 2663 return sys_rt_sigprocmask(how, (sigset_t __user *)nset, 2664 (sigset_t __user *)oset, sigsetsize); 2665 #endif 2666 } 2667 #endif 2668 2669 static int do_sigpending(void *set, unsigned long sigsetsize) 2670 { 2671 if (sigsetsize > sizeof(sigset_t)) 2672 return -EINVAL; 2673 2674 spin_lock_irq(¤t->sighand->siglock); 2675 sigorsets(set, ¤t->pending.signal, 2676 ¤t->signal->shared_pending.signal); 2677 spin_unlock_irq(¤t->sighand->siglock); 2678 2679 /* Outside the lock because only this thread touches it. */ 2680 sigandsets(set, ¤t->blocked, set); 2681 return 0; 2682 } 2683 2684 /** 2685 * sys_rt_sigpending - examine a pending signal that has been raised 2686 * while blocked 2687 * @uset: stores pending signals 2688 * @sigsetsize: size of sigset_t type or larger 2689 */ 2690 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2691 { 2692 sigset_t set; 2693 int err = do_sigpending(&set, sigsetsize); 2694 if (!err && copy_to_user(uset, &set, sigsetsize)) 2695 err = -EFAULT; 2696 return err; 2697 } 2698 2699 #ifdef CONFIG_COMPAT 2700 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2701 compat_size_t, sigsetsize) 2702 { 2703 #ifdef __BIG_ENDIAN 2704 sigset_t set; 2705 int err = do_sigpending(&set, sigsetsize); 2706 if (!err) { 2707 compat_sigset_t set32; 2708 sigset_to_compat(&set32, &set); 2709 /* we can get here only if sigsetsize <= sizeof(set) */ 2710 if (copy_to_user(uset, &set32, sigsetsize)) 2711 err = -EFAULT; 2712 } 2713 return err; 2714 #else 2715 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize); 2716 #endif 2717 } 2718 #endif 2719 2720 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2721 2722 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2723 { 2724 int err; 2725 2726 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2727 return -EFAULT; 2728 if (from->si_code < 0) 2729 return __copy_to_user(to, from, sizeof(siginfo_t)) 2730 ? -EFAULT : 0; 2731 /* 2732 * If you change siginfo_t structure, please be sure 2733 * this code is fixed accordingly. 2734 * Please remember to update the signalfd_copyinfo() function 2735 * inside fs/signalfd.c too, in case siginfo_t changes. 2736 * It should never copy any pad contained in the structure 2737 * to avoid security leaks, but must copy the generic 2738 * 3 ints plus the relevant union member. 2739 */ 2740 err = __put_user(from->si_signo, &to->si_signo); 2741 err |= __put_user(from->si_errno, &to->si_errno); 2742 err |= __put_user((short)from->si_code, &to->si_code); 2743 switch (from->si_code & __SI_MASK) { 2744 case __SI_KILL: 2745 err |= __put_user(from->si_pid, &to->si_pid); 2746 err |= __put_user(from->si_uid, &to->si_uid); 2747 break; 2748 case __SI_TIMER: 2749 err |= __put_user(from->si_tid, &to->si_tid); 2750 err |= __put_user(from->si_overrun, &to->si_overrun); 2751 err |= __put_user(from->si_ptr, &to->si_ptr); 2752 break; 2753 case __SI_POLL: 2754 err |= __put_user(from->si_band, &to->si_band); 2755 err |= __put_user(from->si_fd, &to->si_fd); 2756 break; 2757 case __SI_FAULT: 2758 err |= __put_user(from->si_addr, &to->si_addr); 2759 #ifdef __ARCH_SI_TRAPNO 2760 err |= __put_user(from->si_trapno, &to->si_trapno); 2761 #endif 2762 #ifdef BUS_MCEERR_AO 2763 /* 2764 * Other callers might not initialize the si_lsb field, 2765 * so check explicitly for the right codes here. 2766 */ 2767 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO) 2768 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2769 #endif 2770 break; 2771 case __SI_CHLD: 2772 err |= __put_user(from->si_pid, &to->si_pid); 2773 err |= __put_user(from->si_uid, &to->si_uid); 2774 err |= __put_user(from->si_status, &to->si_status); 2775 err |= __put_user(from->si_utime, &to->si_utime); 2776 err |= __put_user(from->si_stime, &to->si_stime); 2777 break; 2778 case __SI_RT: /* This is not generated by the kernel as of now. */ 2779 case __SI_MESGQ: /* But this is */ 2780 err |= __put_user(from->si_pid, &to->si_pid); 2781 err |= __put_user(from->si_uid, &to->si_uid); 2782 err |= __put_user(from->si_ptr, &to->si_ptr); 2783 break; 2784 #ifdef __ARCH_SIGSYS 2785 case __SI_SYS: 2786 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2787 err |= __put_user(from->si_syscall, &to->si_syscall); 2788 err |= __put_user(from->si_arch, &to->si_arch); 2789 break; 2790 #endif 2791 default: /* this is just in case for now ... */ 2792 err |= __put_user(from->si_pid, &to->si_pid); 2793 err |= __put_user(from->si_uid, &to->si_uid); 2794 break; 2795 } 2796 return err; 2797 } 2798 2799 #endif 2800 2801 /** 2802 * do_sigtimedwait - wait for queued signals specified in @which 2803 * @which: queued signals to wait for 2804 * @info: if non-null, the signal's siginfo is returned here 2805 * @ts: upper bound on process time suspension 2806 */ 2807 int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2808 const struct timespec *ts) 2809 { 2810 struct task_struct *tsk = current; 2811 long timeout = MAX_SCHEDULE_TIMEOUT; 2812 sigset_t mask = *which; 2813 int sig; 2814 2815 if (ts) { 2816 if (!timespec_valid(ts)) 2817 return -EINVAL; 2818 timeout = timespec_to_jiffies(ts); 2819 /* 2820 * We can be close to the next tick, add another one 2821 * to ensure we will wait at least the time asked for. 2822 */ 2823 if (ts->tv_sec || ts->tv_nsec) 2824 timeout++; 2825 } 2826 2827 /* 2828 * Invert the set of allowed signals to get those we want to block. 2829 */ 2830 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2831 signotset(&mask); 2832 2833 spin_lock_irq(&tsk->sighand->siglock); 2834 sig = dequeue_signal(tsk, &mask, info); 2835 if (!sig && timeout) { 2836 /* 2837 * None ready, temporarily unblock those we're interested 2838 * while we are sleeping in so that we'll be awakened when 2839 * they arrive. Unblocking is always fine, we can avoid 2840 * set_current_blocked(). 2841 */ 2842 tsk->real_blocked = tsk->blocked; 2843 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2844 recalc_sigpending(); 2845 spin_unlock_irq(&tsk->sighand->siglock); 2846 2847 timeout = schedule_timeout_interruptible(timeout); 2848 2849 spin_lock_irq(&tsk->sighand->siglock); 2850 __set_task_blocked(tsk, &tsk->real_blocked); 2851 siginitset(&tsk->real_blocked, 0); 2852 sig = dequeue_signal(tsk, &mask, info); 2853 } 2854 spin_unlock_irq(&tsk->sighand->siglock); 2855 2856 if (sig) 2857 return sig; 2858 return timeout ? -EINTR : -EAGAIN; 2859 } 2860 2861 /** 2862 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2863 * in @uthese 2864 * @uthese: queued signals to wait for 2865 * @uinfo: if non-null, the signal's siginfo is returned here 2866 * @uts: upper bound on process time suspension 2867 * @sigsetsize: size of sigset_t type 2868 */ 2869 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2870 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2871 size_t, sigsetsize) 2872 { 2873 sigset_t these; 2874 struct timespec ts; 2875 siginfo_t info; 2876 int ret; 2877 2878 /* XXX: Don't preclude handling different sized sigset_t's. */ 2879 if (sigsetsize != sizeof(sigset_t)) 2880 return -EINVAL; 2881 2882 if (copy_from_user(&these, uthese, sizeof(these))) 2883 return -EFAULT; 2884 2885 if (uts) { 2886 if (copy_from_user(&ts, uts, sizeof(ts))) 2887 return -EFAULT; 2888 } 2889 2890 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2891 2892 if (ret > 0 && uinfo) { 2893 if (copy_siginfo_to_user(uinfo, &info)) 2894 ret = -EFAULT; 2895 } 2896 2897 return ret; 2898 } 2899 2900 /** 2901 * sys_kill - send a signal to a process 2902 * @pid: the PID of the process 2903 * @sig: signal to be sent 2904 */ 2905 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2906 { 2907 struct siginfo info; 2908 2909 info.si_signo = sig; 2910 info.si_errno = 0; 2911 info.si_code = SI_USER; 2912 info.si_pid = task_tgid_vnr(current); 2913 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2914 2915 return kill_something_info(sig, &info, pid); 2916 } 2917 2918 static int 2919 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2920 { 2921 struct task_struct *p; 2922 int error = -ESRCH; 2923 2924 rcu_read_lock(); 2925 p = find_task_by_vpid(pid); 2926 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2927 error = check_kill_permission(sig, info, p); 2928 /* 2929 * The null signal is a permissions and process existence 2930 * probe. No signal is actually delivered. 2931 */ 2932 if (!error && sig) { 2933 error = do_send_sig_info(sig, info, p, false); 2934 /* 2935 * If lock_task_sighand() failed we pretend the task 2936 * dies after receiving the signal. The window is tiny, 2937 * and the signal is private anyway. 2938 */ 2939 if (unlikely(error == -ESRCH)) 2940 error = 0; 2941 } 2942 } 2943 rcu_read_unlock(); 2944 2945 return error; 2946 } 2947 2948 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2949 { 2950 struct siginfo info = {}; 2951 2952 info.si_signo = sig; 2953 info.si_errno = 0; 2954 info.si_code = SI_TKILL; 2955 info.si_pid = task_tgid_vnr(current); 2956 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2957 2958 return do_send_specific(tgid, pid, sig, &info); 2959 } 2960 2961 /** 2962 * sys_tgkill - send signal to one specific thread 2963 * @tgid: the thread group ID of the thread 2964 * @pid: the PID of the thread 2965 * @sig: signal to be sent 2966 * 2967 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2968 * exists but it's not belonging to the target process anymore. This 2969 * method solves the problem of threads exiting and PIDs getting reused. 2970 */ 2971 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2972 { 2973 /* This is only valid for single tasks */ 2974 if (pid <= 0 || tgid <= 0) 2975 return -EINVAL; 2976 2977 return do_tkill(tgid, pid, sig); 2978 } 2979 2980 /** 2981 * sys_tkill - send signal to one specific task 2982 * @pid: the PID of the task 2983 * @sig: signal to be sent 2984 * 2985 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2986 */ 2987 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2988 { 2989 /* This is only valid for single tasks */ 2990 if (pid <= 0) 2991 return -EINVAL; 2992 2993 return do_tkill(0, pid, sig); 2994 } 2995 2996 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info) 2997 { 2998 /* Not even root can pretend to send signals from the kernel. 2999 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3000 */ 3001 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3002 (task_pid_vnr(current) != pid)) { 3003 /* We used to allow any < 0 si_code */ 3004 WARN_ON_ONCE(info->si_code < 0); 3005 return -EPERM; 3006 } 3007 info->si_signo = sig; 3008 3009 /* POSIX.1b doesn't mention process groups. */ 3010 return kill_proc_info(sig, info, pid); 3011 } 3012 3013 /** 3014 * sys_rt_sigqueueinfo - send signal information to a signal 3015 * @pid: the PID of the thread 3016 * @sig: signal to be sent 3017 * @uinfo: signal info to be sent 3018 */ 3019 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3020 siginfo_t __user *, uinfo) 3021 { 3022 siginfo_t info; 3023 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3024 return -EFAULT; 3025 return do_rt_sigqueueinfo(pid, sig, &info); 3026 } 3027 3028 #ifdef CONFIG_COMPAT 3029 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3030 compat_pid_t, pid, 3031 int, sig, 3032 struct compat_siginfo __user *, uinfo) 3033 { 3034 siginfo_t info; 3035 int ret = copy_siginfo_from_user32(&info, uinfo); 3036 if (unlikely(ret)) 3037 return ret; 3038 return do_rt_sigqueueinfo(pid, sig, &info); 3039 } 3040 #endif 3041 3042 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 3043 { 3044 /* This is only valid for single tasks */ 3045 if (pid <= 0 || tgid <= 0) 3046 return -EINVAL; 3047 3048 /* Not even root can pretend to send signals from the kernel. 3049 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3050 */ 3051 if (((info->si_code >= 0 || info->si_code == SI_TKILL)) && 3052 (task_pid_vnr(current) != pid)) { 3053 /* We used to allow any < 0 si_code */ 3054 WARN_ON_ONCE(info->si_code < 0); 3055 return -EPERM; 3056 } 3057 info->si_signo = sig; 3058 3059 return do_send_specific(tgid, pid, sig, info); 3060 } 3061 3062 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3063 siginfo_t __user *, uinfo) 3064 { 3065 siginfo_t info; 3066 3067 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3068 return -EFAULT; 3069 3070 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3071 } 3072 3073 #ifdef CONFIG_COMPAT 3074 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3075 compat_pid_t, tgid, 3076 compat_pid_t, pid, 3077 int, sig, 3078 struct compat_siginfo __user *, uinfo) 3079 { 3080 siginfo_t info; 3081 3082 if (copy_siginfo_from_user32(&info, uinfo)) 3083 return -EFAULT; 3084 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3085 } 3086 #endif 3087 3088 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3089 { 3090 struct task_struct *t = current; 3091 struct k_sigaction *k; 3092 sigset_t mask; 3093 3094 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3095 return -EINVAL; 3096 3097 k = &t->sighand->action[sig-1]; 3098 3099 spin_lock_irq(¤t->sighand->siglock); 3100 if (oact) 3101 *oact = *k; 3102 3103 if (act) { 3104 sigdelsetmask(&act->sa.sa_mask, 3105 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3106 *k = *act; 3107 /* 3108 * POSIX 3.3.1.3: 3109 * "Setting a signal action to SIG_IGN for a signal that is 3110 * pending shall cause the pending signal to be discarded, 3111 * whether or not it is blocked." 3112 * 3113 * "Setting a signal action to SIG_DFL for a signal that is 3114 * pending and whose default action is to ignore the signal 3115 * (for example, SIGCHLD), shall cause the pending signal to 3116 * be discarded, whether or not it is blocked" 3117 */ 3118 if (sig_handler_ignored(sig_handler(t, sig), sig)) { 3119 sigemptyset(&mask); 3120 sigaddset(&mask, sig); 3121 rm_from_queue_full(&mask, &t->signal->shared_pending); 3122 do { 3123 rm_from_queue_full(&mask, &t->pending); 3124 t = next_thread(t); 3125 } while (t != current); 3126 } 3127 } 3128 3129 spin_unlock_irq(¤t->sighand->siglock); 3130 return 0; 3131 } 3132 3133 static int 3134 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 3135 { 3136 stack_t oss; 3137 int error; 3138 3139 oss.ss_sp = (void __user *) current->sas_ss_sp; 3140 oss.ss_size = current->sas_ss_size; 3141 oss.ss_flags = sas_ss_flags(sp); 3142 3143 if (uss) { 3144 void __user *ss_sp; 3145 size_t ss_size; 3146 int ss_flags; 3147 3148 error = -EFAULT; 3149 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 3150 goto out; 3151 error = __get_user(ss_sp, &uss->ss_sp) | 3152 __get_user(ss_flags, &uss->ss_flags) | 3153 __get_user(ss_size, &uss->ss_size); 3154 if (error) 3155 goto out; 3156 3157 error = -EPERM; 3158 if (on_sig_stack(sp)) 3159 goto out; 3160 3161 error = -EINVAL; 3162 /* 3163 * Note - this code used to test ss_flags incorrectly: 3164 * old code may have been written using ss_flags==0 3165 * to mean ss_flags==SS_ONSTACK (as this was the only 3166 * way that worked) - this fix preserves that older 3167 * mechanism. 3168 */ 3169 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 3170 goto out; 3171 3172 if (ss_flags == SS_DISABLE) { 3173 ss_size = 0; 3174 ss_sp = NULL; 3175 } else { 3176 error = -ENOMEM; 3177 if (ss_size < MINSIGSTKSZ) 3178 goto out; 3179 } 3180 3181 current->sas_ss_sp = (unsigned long) ss_sp; 3182 current->sas_ss_size = ss_size; 3183 } 3184 3185 error = 0; 3186 if (uoss) { 3187 error = -EFAULT; 3188 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 3189 goto out; 3190 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 3191 __put_user(oss.ss_size, &uoss->ss_size) | 3192 __put_user(oss.ss_flags, &uoss->ss_flags); 3193 } 3194 3195 out: 3196 return error; 3197 } 3198 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3199 { 3200 return do_sigaltstack(uss, uoss, current_user_stack_pointer()); 3201 } 3202 3203 int restore_altstack(const stack_t __user *uss) 3204 { 3205 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer()); 3206 /* squash all but EFAULT for now */ 3207 return err == -EFAULT ? err : 0; 3208 } 3209 3210 int __save_altstack(stack_t __user *uss, unsigned long sp) 3211 { 3212 struct task_struct *t = current; 3213 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3214 __put_user(sas_ss_flags(sp), &uss->ss_flags) | 3215 __put_user(t->sas_ss_size, &uss->ss_size); 3216 } 3217 3218 #ifdef CONFIG_COMPAT 3219 COMPAT_SYSCALL_DEFINE2(sigaltstack, 3220 const compat_stack_t __user *, uss_ptr, 3221 compat_stack_t __user *, uoss_ptr) 3222 { 3223 stack_t uss, uoss; 3224 int ret; 3225 mm_segment_t seg; 3226 3227 if (uss_ptr) { 3228 compat_stack_t uss32; 3229 3230 memset(&uss, 0, sizeof(stack_t)); 3231 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3232 return -EFAULT; 3233 uss.ss_sp = compat_ptr(uss32.ss_sp); 3234 uss.ss_flags = uss32.ss_flags; 3235 uss.ss_size = uss32.ss_size; 3236 } 3237 seg = get_fs(); 3238 set_fs(KERNEL_DS); 3239 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL), 3240 (stack_t __force __user *) &uoss, 3241 compat_user_stack_pointer()); 3242 set_fs(seg); 3243 if (ret >= 0 && uoss_ptr) { 3244 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) || 3245 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) || 3246 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) || 3247 __put_user(uoss.ss_size, &uoss_ptr->ss_size)) 3248 ret = -EFAULT; 3249 } 3250 return ret; 3251 } 3252 3253 int compat_restore_altstack(const compat_stack_t __user *uss) 3254 { 3255 int err = compat_sys_sigaltstack(uss, NULL); 3256 /* squash all but -EFAULT for now */ 3257 return err == -EFAULT ? err : 0; 3258 } 3259 3260 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3261 { 3262 struct task_struct *t = current; 3263 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) | 3264 __put_user(sas_ss_flags(sp), &uss->ss_flags) | 3265 __put_user(t->sas_ss_size, &uss->ss_size); 3266 } 3267 #endif 3268 3269 #ifdef __ARCH_WANT_SYS_SIGPENDING 3270 3271 /** 3272 * sys_sigpending - examine pending signals 3273 * @set: where mask of pending signal is returned 3274 */ 3275 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3276 { 3277 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 3278 } 3279 3280 #endif 3281 3282 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3283 /** 3284 * sys_sigprocmask - examine and change blocked signals 3285 * @how: whether to add, remove, or set signals 3286 * @nset: signals to add or remove (if non-null) 3287 * @oset: previous value of signal mask if non-null 3288 * 3289 * Some platforms have their own version with special arguments; 3290 * others support only sys_rt_sigprocmask. 3291 */ 3292 3293 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3294 old_sigset_t __user *, oset) 3295 { 3296 old_sigset_t old_set, new_set; 3297 sigset_t new_blocked; 3298 3299 old_set = current->blocked.sig[0]; 3300 3301 if (nset) { 3302 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3303 return -EFAULT; 3304 3305 new_blocked = current->blocked; 3306 3307 switch (how) { 3308 case SIG_BLOCK: 3309 sigaddsetmask(&new_blocked, new_set); 3310 break; 3311 case SIG_UNBLOCK: 3312 sigdelsetmask(&new_blocked, new_set); 3313 break; 3314 case SIG_SETMASK: 3315 new_blocked.sig[0] = new_set; 3316 break; 3317 default: 3318 return -EINVAL; 3319 } 3320 3321 set_current_blocked(&new_blocked); 3322 } 3323 3324 if (oset) { 3325 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3326 return -EFAULT; 3327 } 3328 3329 return 0; 3330 } 3331 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3332 3333 #ifndef CONFIG_ODD_RT_SIGACTION 3334 /** 3335 * sys_rt_sigaction - alter an action taken by a process 3336 * @sig: signal to be sent 3337 * @act: new sigaction 3338 * @oact: used to save the previous sigaction 3339 * @sigsetsize: size of sigset_t type 3340 */ 3341 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3342 const struct sigaction __user *, act, 3343 struct sigaction __user *, oact, 3344 size_t, sigsetsize) 3345 { 3346 struct k_sigaction new_sa, old_sa; 3347 int ret = -EINVAL; 3348 3349 /* XXX: Don't preclude handling different sized sigset_t's. */ 3350 if (sigsetsize != sizeof(sigset_t)) 3351 goto out; 3352 3353 if (act) { 3354 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3355 return -EFAULT; 3356 } 3357 3358 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3359 3360 if (!ret && oact) { 3361 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3362 return -EFAULT; 3363 } 3364 out: 3365 return ret; 3366 } 3367 #ifdef CONFIG_COMPAT 3368 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 3369 const struct compat_sigaction __user *, act, 3370 struct compat_sigaction __user *, oact, 3371 compat_size_t, sigsetsize) 3372 { 3373 struct k_sigaction new_ka, old_ka; 3374 compat_sigset_t mask; 3375 #ifdef __ARCH_HAS_SA_RESTORER 3376 compat_uptr_t restorer; 3377 #endif 3378 int ret; 3379 3380 /* XXX: Don't preclude handling different sized sigset_t's. */ 3381 if (sigsetsize != sizeof(compat_sigset_t)) 3382 return -EINVAL; 3383 3384 if (act) { 3385 compat_uptr_t handler; 3386 ret = get_user(handler, &act->sa_handler); 3387 new_ka.sa.sa_handler = compat_ptr(handler); 3388 #ifdef __ARCH_HAS_SA_RESTORER 3389 ret |= get_user(restorer, &act->sa_restorer); 3390 new_ka.sa.sa_restorer = compat_ptr(restorer); 3391 #endif 3392 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask)); 3393 ret |= __get_user(new_ka.sa.sa_flags, &act->sa_flags); 3394 if (ret) 3395 return -EFAULT; 3396 sigset_from_compat(&new_ka.sa.sa_mask, &mask); 3397 } 3398 3399 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3400 if (!ret && oact) { 3401 sigset_to_compat(&mask, &old_ka.sa.sa_mask); 3402 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 3403 &oact->sa_handler); 3404 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask)); 3405 ret |= __put_user(old_ka.sa.sa_flags, &oact->sa_flags); 3406 #ifdef __ARCH_HAS_SA_RESTORER 3407 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3408 &oact->sa_restorer); 3409 #endif 3410 } 3411 return ret; 3412 } 3413 #endif 3414 #endif /* !CONFIG_ODD_RT_SIGACTION */ 3415 3416 #ifdef CONFIG_OLD_SIGACTION 3417 SYSCALL_DEFINE3(sigaction, int, sig, 3418 const struct old_sigaction __user *, act, 3419 struct old_sigaction __user *, oact) 3420 { 3421 struct k_sigaction new_ka, old_ka; 3422 int ret; 3423 3424 if (act) { 3425 old_sigset_t mask; 3426 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3427 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 3428 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 3429 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3430 __get_user(mask, &act->sa_mask)) 3431 return -EFAULT; 3432 #ifdef __ARCH_HAS_KA_RESTORER 3433 new_ka.ka_restorer = NULL; 3434 #endif 3435 siginitset(&new_ka.sa.sa_mask, mask); 3436 } 3437 3438 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3439 3440 if (!ret && oact) { 3441 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3442 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 3443 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 3444 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3445 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3446 return -EFAULT; 3447 } 3448 3449 return ret; 3450 } 3451 #endif 3452 #ifdef CONFIG_COMPAT_OLD_SIGACTION 3453 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 3454 const struct compat_old_sigaction __user *, act, 3455 struct compat_old_sigaction __user *, oact) 3456 { 3457 struct k_sigaction new_ka, old_ka; 3458 int ret; 3459 compat_old_sigset_t mask; 3460 compat_uptr_t handler, restorer; 3461 3462 if (act) { 3463 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3464 __get_user(handler, &act->sa_handler) || 3465 __get_user(restorer, &act->sa_restorer) || 3466 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3467 __get_user(mask, &act->sa_mask)) 3468 return -EFAULT; 3469 3470 #ifdef __ARCH_HAS_KA_RESTORER 3471 new_ka.ka_restorer = NULL; 3472 #endif 3473 new_ka.sa.sa_handler = compat_ptr(handler); 3474 new_ka.sa.sa_restorer = compat_ptr(restorer); 3475 siginitset(&new_ka.sa.sa_mask, mask); 3476 } 3477 3478 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3479 3480 if (!ret && oact) { 3481 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3482 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 3483 &oact->sa_handler) || 3484 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3485 &oact->sa_restorer) || 3486 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3487 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3488 return -EFAULT; 3489 } 3490 return ret; 3491 } 3492 #endif 3493 3494 #ifdef __ARCH_WANT_SYS_SGETMASK 3495 3496 /* 3497 * For backwards compatibility. Functionality superseded by sigprocmask. 3498 */ 3499 SYSCALL_DEFINE0(sgetmask) 3500 { 3501 /* SMP safe */ 3502 return current->blocked.sig[0]; 3503 } 3504 3505 SYSCALL_DEFINE1(ssetmask, int, newmask) 3506 { 3507 int old = current->blocked.sig[0]; 3508 sigset_t newset; 3509 3510 siginitset(&newset, newmask); 3511 set_current_blocked(&newset); 3512 3513 return old; 3514 } 3515 #endif /* __ARCH_WANT_SGETMASK */ 3516 3517 #ifdef __ARCH_WANT_SYS_SIGNAL 3518 /* 3519 * For backwards compatibility. Functionality superseded by sigaction. 3520 */ 3521 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3522 { 3523 struct k_sigaction new_sa, old_sa; 3524 int ret; 3525 3526 new_sa.sa.sa_handler = handler; 3527 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3528 sigemptyset(&new_sa.sa.sa_mask); 3529 3530 ret = do_sigaction(sig, &new_sa, &old_sa); 3531 3532 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3533 } 3534 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3535 3536 #ifdef __ARCH_WANT_SYS_PAUSE 3537 3538 SYSCALL_DEFINE0(pause) 3539 { 3540 while (!signal_pending(current)) { 3541 current->state = TASK_INTERRUPTIBLE; 3542 schedule(); 3543 } 3544 return -ERESTARTNOHAND; 3545 } 3546 3547 #endif 3548 3549 int sigsuspend(sigset_t *set) 3550 { 3551 current->saved_sigmask = current->blocked; 3552 set_current_blocked(set); 3553 3554 current->state = TASK_INTERRUPTIBLE; 3555 schedule(); 3556 set_restore_sigmask(); 3557 return -ERESTARTNOHAND; 3558 } 3559 3560 /** 3561 * sys_rt_sigsuspend - replace the signal mask for a value with the 3562 * @unewset value until a signal is received 3563 * @unewset: new signal mask value 3564 * @sigsetsize: size of sigset_t type 3565 */ 3566 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3567 { 3568 sigset_t newset; 3569 3570 /* XXX: Don't preclude handling different sized sigset_t's. */ 3571 if (sigsetsize != sizeof(sigset_t)) 3572 return -EINVAL; 3573 3574 if (copy_from_user(&newset, unewset, sizeof(newset))) 3575 return -EFAULT; 3576 return sigsuspend(&newset); 3577 } 3578 3579 #ifdef CONFIG_COMPAT 3580 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 3581 { 3582 #ifdef __BIG_ENDIAN 3583 sigset_t newset; 3584 compat_sigset_t newset32; 3585 3586 /* XXX: Don't preclude handling different sized sigset_t's. */ 3587 if (sigsetsize != sizeof(sigset_t)) 3588 return -EINVAL; 3589 3590 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t))) 3591 return -EFAULT; 3592 sigset_from_compat(&newset, &newset32); 3593 return sigsuspend(&newset); 3594 #else 3595 /* on little-endian bitmaps don't care about granularity */ 3596 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize); 3597 #endif 3598 } 3599 #endif 3600 3601 #ifdef CONFIG_OLD_SIGSUSPEND 3602 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 3603 { 3604 sigset_t blocked; 3605 siginitset(&blocked, mask); 3606 return sigsuspend(&blocked); 3607 } 3608 #endif 3609 #ifdef CONFIG_OLD_SIGSUSPEND3 3610 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 3611 { 3612 sigset_t blocked; 3613 siginitset(&blocked, mask); 3614 return sigsuspend(&blocked); 3615 } 3616 #endif 3617 3618 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 3619 { 3620 return NULL; 3621 } 3622 3623 void __init signals_init(void) 3624 { 3625 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3626 } 3627 3628 #ifdef CONFIG_KGDB_KDB 3629 #include <linux/kdb.h> 3630 /* 3631 * kdb_send_sig_info - Allows kdb to send signals without exposing 3632 * signal internals. This function checks if the required locks are 3633 * available before calling the main signal code, to avoid kdb 3634 * deadlocks. 3635 */ 3636 void 3637 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3638 { 3639 static struct task_struct *kdb_prev_t; 3640 int sig, new_t; 3641 if (!spin_trylock(&t->sighand->siglock)) { 3642 kdb_printf("Can't do kill command now.\n" 3643 "The sigmask lock is held somewhere else in " 3644 "kernel, try again later\n"); 3645 return; 3646 } 3647 spin_unlock(&t->sighand->siglock); 3648 new_t = kdb_prev_t != t; 3649 kdb_prev_t = t; 3650 if (t->state != TASK_RUNNING && new_t) { 3651 kdb_printf("Process is not RUNNING, sending a signal from " 3652 "kdb risks deadlock\n" 3653 "on the run queue locks. " 3654 "The signal has _not_ been sent.\n" 3655 "Reissue the kill command if you want to risk " 3656 "the deadlock.\n"); 3657 return; 3658 } 3659 sig = info->si_signo; 3660 if (send_sig_info(sig, info, t)) 3661 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3662 sig, t->pid); 3663 else 3664 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3665 } 3666 #endif /* CONFIG_KGDB_KDB */ 3667