xref: /linux/kernel/signal.c (revision 17afab1de42236ee2f6235f4383cc6f3f13f8a10)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/signal.h>
37 
38 #include <asm/param.h>
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
41 #include <asm/siginfo.h>
42 #include <asm/cacheflush.h>
43 #include "audit.h"	/* audit_signal_info() */
44 
45 /*
46  * SLAB caches for signal bits.
47  */
48 
49 static struct kmem_cache *sigqueue_cachep;
50 
51 int print_fatal_signals __read_mostly;
52 
53 static void __user *sig_handler(struct task_struct *t, int sig)
54 {
55 	return t->sighand->action[sig - 1].sa.sa_handler;
56 }
57 
58 static int sig_handler_ignored(void __user *handler, int sig)
59 {
60 	/* Is it explicitly or implicitly ignored? */
61 	return handler == SIG_IGN ||
62 		(handler == SIG_DFL && sig_kernel_ignore(sig));
63 }
64 
65 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
66 {
67 	void __user *handler;
68 
69 	handler = sig_handler(t, sig);
70 
71 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
72 			handler == SIG_DFL && !force)
73 		return 1;
74 
75 	return sig_handler_ignored(handler, sig);
76 }
77 
78 static int sig_ignored(struct task_struct *t, int sig, bool force)
79 {
80 	/*
81 	 * Blocked signals are never ignored, since the
82 	 * signal handler may change by the time it is
83 	 * unblocked.
84 	 */
85 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
86 		return 0;
87 
88 	if (!sig_task_ignored(t, sig, force))
89 		return 0;
90 
91 	/*
92 	 * Tracers may want to know about even ignored signals.
93 	 */
94 	return !t->ptrace;
95 }
96 
97 /*
98  * Re-calculate pending state from the set of locally pending
99  * signals, globally pending signals, and blocked signals.
100  */
101 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
102 {
103 	unsigned long ready;
104 	long i;
105 
106 	switch (_NSIG_WORDS) {
107 	default:
108 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
109 			ready |= signal->sig[i] &~ blocked->sig[i];
110 		break;
111 
112 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
113 		ready |= signal->sig[2] &~ blocked->sig[2];
114 		ready |= signal->sig[1] &~ blocked->sig[1];
115 		ready |= signal->sig[0] &~ blocked->sig[0];
116 		break;
117 
118 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
119 		ready |= signal->sig[0] &~ blocked->sig[0];
120 		break;
121 
122 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
123 	}
124 	return ready !=	0;
125 }
126 
127 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
128 
129 static int recalc_sigpending_tsk(struct task_struct *t)
130 {
131 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
132 	    PENDING(&t->pending, &t->blocked) ||
133 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
134 		set_tsk_thread_flag(t, TIF_SIGPENDING);
135 		return 1;
136 	}
137 	/*
138 	 * We must never clear the flag in another thread, or in current
139 	 * when it's possible the current syscall is returning -ERESTART*.
140 	 * So we don't clear it here, and only callers who know they should do.
141 	 */
142 	return 0;
143 }
144 
145 /*
146  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
147  * This is superfluous when called on current, the wakeup is a harmless no-op.
148  */
149 void recalc_sigpending_and_wake(struct task_struct *t)
150 {
151 	if (recalc_sigpending_tsk(t))
152 		signal_wake_up(t, 0);
153 }
154 
155 void recalc_sigpending(void)
156 {
157 	if (!recalc_sigpending_tsk(current) && !freezing(current))
158 		clear_thread_flag(TIF_SIGPENDING);
159 
160 }
161 
162 /* Given the mask, find the first available signal that should be serviced. */
163 
164 #define SYNCHRONOUS_MASK \
165 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
166 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
167 
168 int next_signal(struct sigpending *pending, sigset_t *mask)
169 {
170 	unsigned long i, *s, *m, x;
171 	int sig = 0;
172 
173 	s = pending->signal.sig;
174 	m = mask->sig;
175 
176 	/*
177 	 * Handle the first word specially: it contains the
178 	 * synchronous signals that need to be dequeued first.
179 	 */
180 	x = *s &~ *m;
181 	if (x) {
182 		if (x & SYNCHRONOUS_MASK)
183 			x &= SYNCHRONOUS_MASK;
184 		sig = ffz(~x) + 1;
185 		return sig;
186 	}
187 
188 	switch (_NSIG_WORDS) {
189 	default:
190 		for (i = 1; i < _NSIG_WORDS; ++i) {
191 			x = *++s &~ *++m;
192 			if (!x)
193 				continue;
194 			sig = ffz(~x) + i*_NSIG_BPW + 1;
195 			break;
196 		}
197 		break;
198 
199 	case 2:
200 		x = s[1] &~ m[1];
201 		if (!x)
202 			break;
203 		sig = ffz(~x) + _NSIG_BPW + 1;
204 		break;
205 
206 	case 1:
207 		/* Nothing to do */
208 		break;
209 	}
210 
211 	return sig;
212 }
213 
214 static inline void print_dropped_signal(int sig)
215 {
216 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
217 
218 	if (!print_fatal_signals)
219 		return;
220 
221 	if (!__ratelimit(&ratelimit_state))
222 		return;
223 
224 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
225 				current->comm, current->pid, sig);
226 }
227 
228 /**
229  * task_set_jobctl_pending - set jobctl pending bits
230  * @task: target task
231  * @mask: pending bits to set
232  *
233  * Clear @mask from @task->jobctl.  @mask must be subset of
234  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
235  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
236  * cleared.  If @task is already being killed or exiting, this function
237  * becomes noop.
238  *
239  * CONTEXT:
240  * Must be called with @task->sighand->siglock held.
241  *
242  * RETURNS:
243  * %true if @mask is set, %false if made noop because @task was dying.
244  */
245 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
246 {
247 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
248 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
249 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
250 
251 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
252 		return false;
253 
254 	if (mask & JOBCTL_STOP_SIGMASK)
255 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
256 
257 	task->jobctl |= mask;
258 	return true;
259 }
260 
261 /**
262  * task_clear_jobctl_trapping - clear jobctl trapping bit
263  * @task: target task
264  *
265  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
266  * Clear it and wake up the ptracer.  Note that we don't need any further
267  * locking.  @task->siglock guarantees that @task->parent points to the
268  * ptracer.
269  *
270  * CONTEXT:
271  * Must be called with @task->sighand->siglock held.
272  */
273 void task_clear_jobctl_trapping(struct task_struct *task)
274 {
275 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
276 		task->jobctl &= ~JOBCTL_TRAPPING;
277 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
278 	}
279 }
280 
281 /**
282  * task_clear_jobctl_pending - clear jobctl pending bits
283  * @task: target task
284  * @mask: pending bits to clear
285  *
286  * Clear @mask from @task->jobctl.  @mask must be subset of
287  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
288  * STOP bits are cleared together.
289  *
290  * If clearing of @mask leaves no stop or trap pending, this function calls
291  * task_clear_jobctl_trapping().
292  *
293  * CONTEXT:
294  * Must be called with @task->sighand->siglock held.
295  */
296 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
297 {
298 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
299 
300 	if (mask & JOBCTL_STOP_PENDING)
301 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
302 
303 	task->jobctl &= ~mask;
304 
305 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
306 		task_clear_jobctl_trapping(task);
307 }
308 
309 /**
310  * task_participate_group_stop - participate in a group stop
311  * @task: task participating in a group stop
312  *
313  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
314  * Group stop states are cleared and the group stop count is consumed if
315  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
316  * stop, the appropriate %SIGNAL_* flags are set.
317  *
318  * CONTEXT:
319  * Must be called with @task->sighand->siglock held.
320  *
321  * RETURNS:
322  * %true if group stop completion should be notified to the parent, %false
323  * otherwise.
324  */
325 static bool task_participate_group_stop(struct task_struct *task)
326 {
327 	struct signal_struct *sig = task->signal;
328 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
329 
330 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
331 
332 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
333 
334 	if (!consume)
335 		return false;
336 
337 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
338 		sig->group_stop_count--;
339 
340 	/*
341 	 * Tell the caller to notify completion iff we are entering into a
342 	 * fresh group stop.  Read comment in do_signal_stop() for details.
343 	 */
344 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
345 		sig->flags = SIGNAL_STOP_STOPPED;
346 		return true;
347 	}
348 	return false;
349 }
350 
351 /*
352  * allocate a new signal queue record
353  * - this may be called without locks if and only if t == current, otherwise an
354  *   appropriate lock must be held to stop the target task from exiting
355  */
356 static struct sigqueue *
357 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
358 {
359 	struct sigqueue *q = NULL;
360 	struct user_struct *user;
361 
362 	/*
363 	 * Protect access to @t credentials. This can go away when all
364 	 * callers hold rcu read lock.
365 	 */
366 	rcu_read_lock();
367 	user = get_uid(__task_cred(t)->user);
368 	atomic_inc(&user->sigpending);
369 	rcu_read_unlock();
370 
371 	if (override_rlimit ||
372 	    atomic_read(&user->sigpending) <=
373 			task_rlimit(t, RLIMIT_SIGPENDING)) {
374 		q = kmem_cache_alloc(sigqueue_cachep, flags);
375 	} else {
376 		print_dropped_signal(sig);
377 	}
378 
379 	if (unlikely(q == NULL)) {
380 		atomic_dec(&user->sigpending);
381 		free_uid(user);
382 	} else {
383 		INIT_LIST_HEAD(&q->list);
384 		q->flags = 0;
385 		q->user = user;
386 	}
387 
388 	return q;
389 }
390 
391 static void __sigqueue_free(struct sigqueue *q)
392 {
393 	if (q->flags & SIGQUEUE_PREALLOC)
394 		return;
395 	atomic_dec(&q->user->sigpending);
396 	free_uid(q->user);
397 	kmem_cache_free(sigqueue_cachep, q);
398 }
399 
400 void flush_sigqueue(struct sigpending *queue)
401 {
402 	struct sigqueue *q;
403 
404 	sigemptyset(&queue->signal);
405 	while (!list_empty(&queue->list)) {
406 		q = list_entry(queue->list.next, struct sigqueue , list);
407 		list_del_init(&q->list);
408 		__sigqueue_free(q);
409 	}
410 }
411 
412 /*
413  * Flush all pending signals for a task.
414  */
415 void __flush_signals(struct task_struct *t)
416 {
417 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
418 	flush_sigqueue(&t->pending);
419 	flush_sigqueue(&t->signal->shared_pending);
420 }
421 
422 void flush_signals(struct task_struct *t)
423 {
424 	unsigned long flags;
425 
426 	spin_lock_irqsave(&t->sighand->siglock, flags);
427 	__flush_signals(t);
428 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
429 }
430 
431 static void __flush_itimer_signals(struct sigpending *pending)
432 {
433 	sigset_t signal, retain;
434 	struct sigqueue *q, *n;
435 
436 	signal = pending->signal;
437 	sigemptyset(&retain);
438 
439 	list_for_each_entry_safe(q, n, &pending->list, list) {
440 		int sig = q->info.si_signo;
441 
442 		if (likely(q->info.si_code != SI_TIMER)) {
443 			sigaddset(&retain, sig);
444 		} else {
445 			sigdelset(&signal, sig);
446 			list_del_init(&q->list);
447 			__sigqueue_free(q);
448 		}
449 	}
450 
451 	sigorsets(&pending->signal, &signal, &retain);
452 }
453 
454 void flush_itimer_signals(void)
455 {
456 	struct task_struct *tsk = current;
457 	unsigned long flags;
458 
459 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
460 	__flush_itimer_signals(&tsk->pending);
461 	__flush_itimer_signals(&tsk->signal->shared_pending);
462 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
463 }
464 
465 void ignore_signals(struct task_struct *t)
466 {
467 	int i;
468 
469 	for (i = 0; i < _NSIG; ++i)
470 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
471 
472 	flush_signals(t);
473 }
474 
475 /*
476  * Flush all handlers for a task.
477  */
478 
479 void
480 flush_signal_handlers(struct task_struct *t, int force_default)
481 {
482 	int i;
483 	struct k_sigaction *ka = &t->sighand->action[0];
484 	for (i = _NSIG ; i != 0 ; i--) {
485 		if (force_default || ka->sa.sa_handler != SIG_IGN)
486 			ka->sa.sa_handler = SIG_DFL;
487 		ka->sa.sa_flags = 0;
488 #ifdef __ARCH_HAS_SA_RESTORER
489 		ka->sa.sa_restorer = NULL;
490 #endif
491 		sigemptyset(&ka->sa.sa_mask);
492 		ka++;
493 	}
494 }
495 
496 int unhandled_signal(struct task_struct *tsk, int sig)
497 {
498 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
499 	if (is_global_init(tsk))
500 		return 1;
501 	if (handler != SIG_IGN && handler != SIG_DFL)
502 		return 0;
503 	/* if ptraced, let the tracer determine */
504 	return !tsk->ptrace;
505 }
506 
507 /*
508  * Notify the system that a driver wants to block all signals for this
509  * process, and wants to be notified if any signals at all were to be
510  * sent/acted upon.  If the notifier routine returns non-zero, then the
511  * signal will be acted upon after all.  If the notifier routine returns 0,
512  * then then signal will be blocked.  Only one block per process is
513  * allowed.  priv is a pointer to private data that the notifier routine
514  * can use to determine if the signal should be blocked or not.
515  */
516 void
517 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
518 {
519 	unsigned long flags;
520 
521 	spin_lock_irqsave(&current->sighand->siglock, flags);
522 	current->notifier_mask = mask;
523 	current->notifier_data = priv;
524 	current->notifier = notifier;
525 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
526 }
527 
528 /* Notify the system that blocking has ended. */
529 
530 void
531 unblock_all_signals(void)
532 {
533 	unsigned long flags;
534 
535 	spin_lock_irqsave(&current->sighand->siglock, flags);
536 	current->notifier = NULL;
537 	current->notifier_data = NULL;
538 	recalc_sigpending();
539 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
540 }
541 
542 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
543 {
544 	struct sigqueue *q, *first = NULL;
545 
546 	/*
547 	 * Collect the siginfo appropriate to this signal.  Check if
548 	 * there is another siginfo for the same signal.
549 	*/
550 	list_for_each_entry(q, &list->list, list) {
551 		if (q->info.si_signo == sig) {
552 			if (first)
553 				goto still_pending;
554 			first = q;
555 		}
556 	}
557 
558 	sigdelset(&list->signal, sig);
559 
560 	if (first) {
561 still_pending:
562 		list_del_init(&first->list);
563 		copy_siginfo(info, &first->info);
564 		__sigqueue_free(first);
565 	} else {
566 		/*
567 		 * Ok, it wasn't in the queue.  This must be
568 		 * a fast-pathed signal or we must have been
569 		 * out of queue space.  So zero out the info.
570 		 */
571 		info->si_signo = sig;
572 		info->si_errno = 0;
573 		info->si_code = SI_USER;
574 		info->si_pid = 0;
575 		info->si_uid = 0;
576 	}
577 }
578 
579 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
580 			siginfo_t *info)
581 {
582 	int sig = next_signal(pending, mask);
583 
584 	if (sig) {
585 		if (current->notifier) {
586 			if (sigismember(current->notifier_mask, sig)) {
587 				if (!(current->notifier)(current->notifier_data)) {
588 					clear_thread_flag(TIF_SIGPENDING);
589 					return 0;
590 				}
591 			}
592 		}
593 
594 		collect_signal(sig, pending, info);
595 	}
596 
597 	return sig;
598 }
599 
600 /*
601  * Dequeue a signal and return the element to the caller, which is
602  * expected to free it.
603  *
604  * All callers have to hold the siglock.
605  */
606 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
607 {
608 	int signr;
609 
610 	/* We only dequeue private signals from ourselves, we don't let
611 	 * signalfd steal them
612 	 */
613 	signr = __dequeue_signal(&tsk->pending, mask, info);
614 	if (!signr) {
615 		signr = __dequeue_signal(&tsk->signal->shared_pending,
616 					 mask, info);
617 		/*
618 		 * itimer signal ?
619 		 *
620 		 * itimers are process shared and we restart periodic
621 		 * itimers in the signal delivery path to prevent DoS
622 		 * attacks in the high resolution timer case. This is
623 		 * compliant with the old way of self-restarting
624 		 * itimers, as the SIGALRM is a legacy signal and only
625 		 * queued once. Changing the restart behaviour to
626 		 * restart the timer in the signal dequeue path is
627 		 * reducing the timer noise on heavy loaded !highres
628 		 * systems too.
629 		 */
630 		if (unlikely(signr == SIGALRM)) {
631 			struct hrtimer *tmr = &tsk->signal->real_timer;
632 
633 			if (!hrtimer_is_queued(tmr) &&
634 			    tsk->signal->it_real_incr.tv64 != 0) {
635 				hrtimer_forward(tmr, tmr->base->get_time(),
636 						tsk->signal->it_real_incr);
637 				hrtimer_restart(tmr);
638 			}
639 		}
640 	}
641 
642 	recalc_sigpending();
643 	if (!signr)
644 		return 0;
645 
646 	if (unlikely(sig_kernel_stop(signr))) {
647 		/*
648 		 * Set a marker that we have dequeued a stop signal.  Our
649 		 * caller might release the siglock and then the pending
650 		 * stop signal it is about to process is no longer in the
651 		 * pending bitmasks, but must still be cleared by a SIGCONT
652 		 * (and overruled by a SIGKILL).  So those cases clear this
653 		 * shared flag after we've set it.  Note that this flag may
654 		 * remain set after the signal we return is ignored or
655 		 * handled.  That doesn't matter because its only purpose
656 		 * is to alert stop-signal processing code when another
657 		 * processor has come along and cleared the flag.
658 		 */
659 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
660 	}
661 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
662 		/*
663 		 * Release the siglock to ensure proper locking order
664 		 * of timer locks outside of siglocks.  Note, we leave
665 		 * irqs disabled here, since the posix-timers code is
666 		 * about to disable them again anyway.
667 		 */
668 		spin_unlock(&tsk->sighand->siglock);
669 		do_schedule_next_timer(info);
670 		spin_lock(&tsk->sighand->siglock);
671 	}
672 	return signr;
673 }
674 
675 /*
676  * Tell a process that it has a new active signal..
677  *
678  * NOTE! we rely on the previous spin_lock to
679  * lock interrupts for us! We can only be called with
680  * "siglock" held, and the local interrupt must
681  * have been disabled when that got acquired!
682  *
683  * No need to set need_resched since signal event passing
684  * goes through ->blocked
685  */
686 void signal_wake_up_state(struct task_struct *t, unsigned int state)
687 {
688 	set_tsk_thread_flag(t, TIF_SIGPENDING);
689 	/*
690 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
691 	 * case. We don't check t->state here because there is a race with it
692 	 * executing another processor and just now entering stopped state.
693 	 * By using wake_up_state, we ensure the process will wake up and
694 	 * handle its death signal.
695 	 */
696 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
697 		kick_process(t);
698 }
699 
700 /*
701  * Remove signals in mask from the pending set and queue.
702  * Returns 1 if any signals were found.
703  *
704  * All callers must be holding the siglock.
705  *
706  * This version takes a sigset mask and looks at all signals,
707  * not just those in the first mask word.
708  */
709 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
710 {
711 	struct sigqueue *q, *n;
712 	sigset_t m;
713 
714 	sigandsets(&m, mask, &s->signal);
715 	if (sigisemptyset(&m))
716 		return 0;
717 
718 	sigandnsets(&s->signal, &s->signal, mask);
719 	list_for_each_entry_safe(q, n, &s->list, list) {
720 		if (sigismember(mask, q->info.si_signo)) {
721 			list_del_init(&q->list);
722 			__sigqueue_free(q);
723 		}
724 	}
725 	return 1;
726 }
727 /*
728  * Remove signals in mask from the pending set and queue.
729  * Returns 1 if any signals were found.
730  *
731  * All callers must be holding the siglock.
732  */
733 static int rm_from_queue(unsigned long mask, struct sigpending *s)
734 {
735 	struct sigqueue *q, *n;
736 
737 	if (!sigtestsetmask(&s->signal, mask))
738 		return 0;
739 
740 	sigdelsetmask(&s->signal, mask);
741 	list_for_each_entry_safe(q, n, &s->list, list) {
742 		if (q->info.si_signo < SIGRTMIN &&
743 		    (mask & sigmask(q->info.si_signo))) {
744 			list_del_init(&q->list);
745 			__sigqueue_free(q);
746 		}
747 	}
748 	return 1;
749 }
750 
751 static inline int is_si_special(const struct siginfo *info)
752 {
753 	return info <= SEND_SIG_FORCED;
754 }
755 
756 static inline bool si_fromuser(const struct siginfo *info)
757 {
758 	return info == SEND_SIG_NOINFO ||
759 		(!is_si_special(info) && SI_FROMUSER(info));
760 }
761 
762 /*
763  * called with RCU read lock from check_kill_permission()
764  */
765 static int kill_ok_by_cred(struct task_struct *t)
766 {
767 	const struct cred *cred = current_cred();
768 	const struct cred *tcred = __task_cred(t);
769 
770 	if (uid_eq(cred->euid, tcred->suid) ||
771 	    uid_eq(cred->euid, tcred->uid)  ||
772 	    uid_eq(cred->uid,  tcred->suid) ||
773 	    uid_eq(cred->uid,  tcred->uid))
774 		return 1;
775 
776 	if (ns_capable(tcred->user_ns, CAP_KILL))
777 		return 1;
778 
779 	return 0;
780 }
781 
782 /*
783  * Bad permissions for sending the signal
784  * - the caller must hold the RCU read lock
785  */
786 static int check_kill_permission(int sig, struct siginfo *info,
787 				 struct task_struct *t)
788 {
789 	struct pid *sid;
790 	int error;
791 
792 	if (!valid_signal(sig))
793 		return -EINVAL;
794 
795 	if (!si_fromuser(info))
796 		return 0;
797 
798 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
799 	if (error)
800 		return error;
801 
802 	if (!same_thread_group(current, t) &&
803 	    !kill_ok_by_cred(t)) {
804 		switch (sig) {
805 		case SIGCONT:
806 			sid = task_session(t);
807 			/*
808 			 * We don't return the error if sid == NULL. The
809 			 * task was unhashed, the caller must notice this.
810 			 */
811 			if (!sid || sid == task_session(current))
812 				break;
813 		default:
814 			return -EPERM;
815 		}
816 	}
817 
818 	return security_task_kill(t, info, sig, 0);
819 }
820 
821 /**
822  * ptrace_trap_notify - schedule trap to notify ptracer
823  * @t: tracee wanting to notify tracer
824  *
825  * This function schedules sticky ptrace trap which is cleared on the next
826  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
827  * ptracer.
828  *
829  * If @t is running, STOP trap will be taken.  If trapped for STOP and
830  * ptracer is listening for events, tracee is woken up so that it can
831  * re-trap for the new event.  If trapped otherwise, STOP trap will be
832  * eventually taken without returning to userland after the existing traps
833  * are finished by PTRACE_CONT.
834  *
835  * CONTEXT:
836  * Must be called with @task->sighand->siglock held.
837  */
838 static void ptrace_trap_notify(struct task_struct *t)
839 {
840 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
841 	assert_spin_locked(&t->sighand->siglock);
842 
843 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
844 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
845 }
846 
847 /*
848  * Handle magic process-wide effects of stop/continue signals. Unlike
849  * the signal actions, these happen immediately at signal-generation
850  * time regardless of blocking, ignoring, or handling.  This does the
851  * actual continuing for SIGCONT, but not the actual stopping for stop
852  * signals. The process stop is done as a signal action for SIG_DFL.
853  *
854  * Returns true if the signal should be actually delivered, otherwise
855  * it should be dropped.
856  */
857 static int prepare_signal(int sig, struct task_struct *p, bool force)
858 {
859 	struct signal_struct *signal = p->signal;
860 	struct task_struct *t;
861 
862 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
863 		/*
864 		 * The process is in the middle of dying, nothing to do.
865 		 */
866 	} else if (sig_kernel_stop(sig)) {
867 		/*
868 		 * This is a stop signal.  Remove SIGCONT from all queues.
869 		 */
870 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
871 		t = p;
872 		do {
873 			rm_from_queue(sigmask(SIGCONT), &t->pending);
874 		} while_each_thread(p, t);
875 	} else if (sig == SIGCONT) {
876 		unsigned int why;
877 		/*
878 		 * Remove all stop signals from all queues, wake all threads.
879 		 */
880 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
881 		t = p;
882 		do {
883 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
884 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
885 			if (likely(!(t->ptrace & PT_SEIZED)))
886 				wake_up_state(t, __TASK_STOPPED);
887 			else
888 				ptrace_trap_notify(t);
889 		} while_each_thread(p, t);
890 
891 		/*
892 		 * Notify the parent with CLD_CONTINUED if we were stopped.
893 		 *
894 		 * If we were in the middle of a group stop, we pretend it
895 		 * was already finished, and then continued. Since SIGCHLD
896 		 * doesn't queue we report only CLD_STOPPED, as if the next
897 		 * CLD_CONTINUED was dropped.
898 		 */
899 		why = 0;
900 		if (signal->flags & SIGNAL_STOP_STOPPED)
901 			why |= SIGNAL_CLD_CONTINUED;
902 		else if (signal->group_stop_count)
903 			why |= SIGNAL_CLD_STOPPED;
904 
905 		if (why) {
906 			/*
907 			 * The first thread which returns from do_signal_stop()
908 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
909 			 * notify its parent. See get_signal_to_deliver().
910 			 */
911 			signal->flags = why | SIGNAL_STOP_CONTINUED;
912 			signal->group_stop_count = 0;
913 			signal->group_exit_code = 0;
914 		}
915 	}
916 
917 	return !sig_ignored(p, sig, force);
918 }
919 
920 /*
921  * Test if P wants to take SIG.  After we've checked all threads with this,
922  * it's equivalent to finding no threads not blocking SIG.  Any threads not
923  * blocking SIG were ruled out because they are not running and already
924  * have pending signals.  Such threads will dequeue from the shared queue
925  * as soon as they're available, so putting the signal on the shared queue
926  * will be equivalent to sending it to one such thread.
927  */
928 static inline int wants_signal(int sig, struct task_struct *p)
929 {
930 	if (sigismember(&p->blocked, sig))
931 		return 0;
932 	if (p->flags & PF_EXITING)
933 		return 0;
934 	if (sig == SIGKILL)
935 		return 1;
936 	if (task_is_stopped_or_traced(p))
937 		return 0;
938 	return task_curr(p) || !signal_pending(p);
939 }
940 
941 static void complete_signal(int sig, struct task_struct *p, int group)
942 {
943 	struct signal_struct *signal = p->signal;
944 	struct task_struct *t;
945 
946 	/*
947 	 * Now find a thread we can wake up to take the signal off the queue.
948 	 *
949 	 * If the main thread wants the signal, it gets first crack.
950 	 * Probably the least surprising to the average bear.
951 	 */
952 	if (wants_signal(sig, p))
953 		t = p;
954 	else if (!group || thread_group_empty(p))
955 		/*
956 		 * There is just one thread and it does not need to be woken.
957 		 * It will dequeue unblocked signals before it runs again.
958 		 */
959 		return;
960 	else {
961 		/*
962 		 * Otherwise try to find a suitable thread.
963 		 */
964 		t = signal->curr_target;
965 		while (!wants_signal(sig, t)) {
966 			t = next_thread(t);
967 			if (t == signal->curr_target)
968 				/*
969 				 * No thread needs to be woken.
970 				 * Any eligible threads will see
971 				 * the signal in the queue soon.
972 				 */
973 				return;
974 		}
975 		signal->curr_target = t;
976 	}
977 
978 	/*
979 	 * Found a killable thread.  If the signal will be fatal,
980 	 * then start taking the whole group down immediately.
981 	 */
982 	if (sig_fatal(p, sig) &&
983 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
984 	    !sigismember(&t->real_blocked, sig) &&
985 	    (sig == SIGKILL || !t->ptrace)) {
986 		/*
987 		 * This signal will be fatal to the whole group.
988 		 */
989 		if (!sig_kernel_coredump(sig)) {
990 			/*
991 			 * Start a group exit and wake everybody up.
992 			 * This way we don't have other threads
993 			 * running and doing things after a slower
994 			 * thread has the fatal signal pending.
995 			 */
996 			signal->flags = SIGNAL_GROUP_EXIT;
997 			signal->group_exit_code = sig;
998 			signal->group_stop_count = 0;
999 			t = p;
1000 			do {
1001 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1002 				sigaddset(&t->pending.signal, SIGKILL);
1003 				signal_wake_up(t, 1);
1004 			} while_each_thread(p, t);
1005 			return;
1006 		}
1007 	}
1008 
1009 	/*
1010 	 * The signal is already in the shared-pending queue.
1011 	 * Tell the chosen thread to wake up and dequeue it.
1012 	 */
1013 	signal_wake_up(t, sig == SIGKILL);
1014 	return;
1015 }
1016 
1017 static inline int legacy_queue(struct sigpending *signals, int sig)
1018 {
1019 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1020 }
1021 
1022 #ifdef CONFIG_USER_NS
1023 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1024 {
1025 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1026 		return;
1027 
1028 	if (SI_FROMKERNEL(info))
1029 		return;
1030 
1031 	rcu_read_lock();
1032 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1033 					make_kuid(current_user_ns(), info->si_uid));
1034 	rcu_read_unlock();
1035 }
1036 #else
1037 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1038 {
1039 	return;
1040 }
1041 #endif
1042 
1043 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1044 			int group, int from_ancestor_ns)
1045 {
1046 	struct sigpending *pending;
1047 	struct sigqueue *q;
1048 	int override_rlimit;
1049 	int ret = 0, result;
1050 
1051 	assert_spin_locked(&t->sighand->siglock);
1052 
1053 	result = TRACE_SIGNAL_IGNORED;
1054 	if (!prepare_signal(sig, t,
1055 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1056 		goto ret;
1057 
1058 	pending = group ? &t->signal->shared_pending : &t->pending;
1059 	/*
1060 	 * Short-circuit ignored signals and support queuing
1061 	 * exactly one non-rt signal, so that we can get more
1062 	 * detailed information about the cause of the signal.
1063 	 */
1064 	result = TRACE_SIGNAL_ALREADY_PENDING;
1065 	if (legacy_queue(pending, sig))
1066 		goto ret;
1067 
1068 	result = TRACE_SIGNAL_DELIVERED;
1069 	/*
1070 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1071 	 * or SIGKILL.
1072 	 */
1073 	if (info == SEND_SIG_FORCED)
1074 		goto out_set;
1075 
1076 	/*
1077 	 * Real-time signals must be queued if sent by sigqueue, or
1078 	 * some other real-time mechanism.  It is implementation
1079 	 * defined whether kill() does so.  We attempt to do so, on
1080 	 * the principle of least surprise, but since kill is not
1081 	 * allowed to fail with EAGAIN when low on memory we just
1082 	 * make sure at least one signal gets delivered and don't
1083 	 * pass on the info struct.
1084 	 */
1085 	if (sig < SIGRTMIN)
1086 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1087 	else
1088 		override_rlimit = 0;
1089 
1090 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1091 		override_rlimit);
1092 	if (q) {
1093 		list_add_tail(&q->list, &pending->list);
1094 		switch ((unsigned long) info) {
1095 		case (unsigned long) SEND_SIG_NOINFO:
1096 			q->info.si_signo = sig;
1097 			q->info.si_errno = 0;
1098 			q->info.si_code = SI_USER;
1099 			q->info.si_pid = task_tgid_nr_ns(current,
1100 							task_active_pid_ns(t));
1101 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1102 			break;
1103 		case (unsigned long) SEND_SIG_PRIV:
1104 			q->info.si_signo = sig;
1105 			q->info.si_errno = 0;
1106 			q->info.si_code = SI_KERNEL;
1107 			q->info.si_pid = 0;
1108 			q->info.si_uid = 0;
1109 			break;
1110 		default:
1111 			copy_siginfo(&q->info, info);
1112 			if (from_ancestor_ns)
1113 				q->info.si_pid = 0;
1114 			break;
1115 		}
1116 
1117 		userns_fixup_signal_uid(&q->info, t);
1118 
1119 	} else if (!is_si_special(info)) {
1120 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1121 			/*
1122 			 * Queue overflow, abort.  We may abort if the
1123 			 * signal was rt and sent by user using something
1124 			 * other than kill().
1125 			 */
1126 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1127 			ret = -EAGAIN;
1128 			goto ret;
1129 		} else {
1130 			/*
1131 			 * This is a silent loss of information.  We still
1132 			 * send the signal, but the *info bits are lost.
1133 			 */
1134 			result = TRACE_SIGNAL_LOSE_INFO;
1135 		}
1136 	}
1137 
1138 out_set:
1139 	signalfd_notify(t, sig);
1140 	sigaddset(&pending->signal, sig);
1141 	complete_signal(sig, t, group);
1142 ret:
1143 	trace_signal_generate(sig, info, t, group, result);
1144 	return ret;
1145 }
1146 
1147 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1148 			int group)
1149 {
1150 	int from_ancestor_ns = 0;
1151 
1152 #ifdef CONFIG_PID_NS
1153 	from_ancestor_ns = si_fromuser(info) &&
1154 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1155 #endif
1156 
1157 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1158 }
1159 
1160 static void print_fatal_signal(int signr)
1161 {
1162 	struct pt_regs *regs = signal_pt_regs();
1163 	printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1164 
1165 #if defined(__i386__) && !defined(__arch_um__)
1166 	printk(KERN_INFO "code at %08lx: ", regs->ip);
1167 	{
1168 		int i;
1169 		for (i = 0; i < 16; i++) {
1170 			unsigned char insn;
1171 
1172 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1173 				break;
1174 			printk(KERN_CONT "%02x ", insn);
1175 		}
1176 	}
1177 	printk(KERN_CONT "\n");
1178 #endif
1179 	preempt_disable();
1180 	show_regs(regs);
1181 	preempt_enable();
1182 }
1183 
1184 static int __init setup_print_fatal_signals(char *str)
1185 {
1186 	get_option (&str, &print_fatal_signals);
1187 
1188 	return 1;
1189 }
1190 
1191 __setup("print-fatal-signals=", setup_print_fatal_signals);
1192 
1193 int
1194 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1195 {
1196 	return send_signal(sig, info, p, 1);
1197 }
1198 
1199 static int
1200 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1201 {
1202 	return send_signal(sig, info, t, 0);
1203 }
1204 
1205 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1206 			bool group)
1207 {
1208 	unsigned long flags;
1209 	int ret = -ESRCH;
1210 
1211 	if (lock_task_sighand(p, &flags)) {
1212 		ret = send_signal(sig, info, p, group);
1213 		unlock_task_sighand(p, &flags);
1214 	}
1215 
1216 	return ret;
1217 }
1218 
1219 /*
1220  * Force a signal that the process can't ignore: if necessary
1221  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1222  *
1223  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1224  * since we do not want to have a signal handler that was blocked
1225  * be invoked when user space had explicitly blocked it.
1226  *
1227  * We don't want to have recursive SIGSEGV's etc, for example,
1228  * that is why we also clear SIGNAL_UNKILLABLE.
1229  */
1230 int
1231 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1232 {
1233 	unsigned long int flags;
1234 	int ret, blocked, ignored;
1235 	struct k_sigaction *action;
1236 
1237 	spin_lock_irqsave(&t->sighand->siglock, flags);
1238 	action = &t->sighand->action[sig-1];
1239 	ignored = action->sa.sa_handler == SIG_IGN;
1240 	blocked = sigismember(&t->blocked, sig);
1241 	if (blocked || ignored) {
1242 		action->sa.sa_handler = SIG_DFL;
1243 		if (blocked) {
1244 			sigdelset(&t->blocked, sig);
1245 			recalc_sigpending_and_wake(t);
1246 		}
1247 	}
1248 	if (action->sa.sa_handler == SIG_DFL)
1249 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1250 	ret = specific_send_sig_info(sig, info, t);
1251 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1252 
1253 	return ret;
1254 }
1255 
1256 /*
1257  * Nuke all other threads in the group.
1258  */
1259 int zap_other_threads(struct task_struct *p)
1260 {
1261 	struct task_struct *t = p;
1262 	int count = 0;
1263 
1264 	p->signal->group_stop_count = 0;
1265 
1266 	while_each_thread(p, t) {
1267 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1268 		count++;
1269 
1270 		/* Don't bother with already dead threads */
1271 		if (t->exit_state)
1272 			continue;
1273 		sigaddset(&t->pending.signal, SIGKILL);
1274 		signal_wake_up(t, 1);
1275 	}
1276 
1277 	return count;
1278 }
1279 
1280 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1281 					   unsigned long *flags)
1282 {
1283 	struct sighand_struct *sighand;
1284 
1285 	for (;;) {
1286 		local_irq_save(*flags);
1287 		rcu_read_lock();
1288 		sighand = rcu_dereference(tsk->sighand);
1289 		if (unlikely(sighand == NULL)) {
1290 			rcu_read_unlock();
1291 			local_irq_restore(*flags);
1292 			break;
1293 		}
1294 
1295 		spin_lock(&sighand->siglock);
1296 		if (likely(sighand == tsk->sighand)) {
1297 			rcu_read_unlock();
1298 			break;
1299 		}
1300 		spin_unlock(&sighand->siglock);
1301 		rcu_read_unlock();
1302 		local_irq_restore(*flags);
1303 	}
1304 
1305 	return sighand;
1306 }
1307 
1308 /*
1309  * send signal info to all the members of a group
1310  */
1311 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1312 {
1313 	int ret;
1314 
1315 	rcu_read_lock();
1316 	ret = check_kill_permission(sig, info, p);
1317 	rcu_read_unlock();
1318 
1319 	if (!ret && sig)
1320 		ret = do_send_sig_info(sig, info, p, true);
1321 
1322 	return ret;
1323 }
1324 
1325 /*
1326  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1327  * control characters do (^C, ^Z etc)
1328  * - the caller must hold at least a readlock on tasklist_lock
1329  */
1330 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1331 {
1332 	struct task_struct *p = NULL;
1333 	int retval, success;
1334 
1335 	success = 0;
1336 	retval = -ESRCH;
1337 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1338 		int err = group_send_sig_info(sig, info, p);
1339 		success |= !err;
1340 		retval = err;
1341 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1342 	return success ? 0 : retval;
1343 }
1344 
1345 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1346 {
1347 	int error = -ESRCH;
1348 	struct task_struct *p;
1349 
1350 	rcu_read_lock();
1351 retry:
1352 	p = pid_task(pid, PIDTYPE_PID);
1353 	if (p) {
1354 		error = group_send_sig_info(sig, info, p);
1355 		if (unlikely(error == -ESRCH))
1356 			/*
1357 			 * The task was unhashed in between, try again.
1358 			 * If it is dead, pid_task() will return NULL,
1359 			 * if we race with de_thread() it will find the
1360 			 * new leader.
1361 			 */
1362 			goto retry;
1363 	}
1364 	rcu_read_unlock();
1365 
1366 	return error;
1367 }
1368 
1369 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1370 {
1371 	int error;
1372 	rcu_read_lock();
1373 	error = kill_pid_info(sig, info, find_vpid(pid));
1374 	rcu_read_unlock();
1375 	return error;
1376 }
1377 
1378 static int kill_as_cred_perm(const struct cred *cred,
1379 			     struct task_struct *target)
1380 {
1381 	const struct cred *pcred = __task_cred(target);
1382 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1383 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1384 		return 0;
1385 	return 1;
1386 }
1387 
1388 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1389 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1390 			 const struct cred *cred, u32 secid)
1391 {
1392 	int ret = -EINVAL;
1393 	struct task_struct *p;
1394 	unsigned long flags;
1395 
1396 	if (!valid_signal(sig))
1397 		return ret;
1398 
1399 	rcu_read_lock();
1400 	p = pid_task(pid, PIDTYPE_PID);
1401 	if (!p) {
1402 		ret = -ESRCH;
1403 		goto out_unlock;
1404 	}
1405 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1406 		ret = -EPERM;
1407 		goto out_unlock;
1408 	}
1409 	ret = security_task_kill(p, info, sig, secid);
1410 	if (ret)
1411 		goto out_unlock;
1412 
1413 	if (sig) {
1414 		if (lock_task_sighand(p, &flags)) {
1415 			ret = __send_signal(sig, info, p, 1, 0);
1416 			unlock_task_sighand(p, &flags);
1417 		} else
1418 			ret = -ESRCH;
1419 	}
1420 out_unlock:
1421 	rcu_read_unlock();
1422 	return ret;
1423 }
1424 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1425 
1426 /*
1427  * kill_something_info() interprets pid in interesting ways just like kill(2).
1428  *
1429  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1430  * is probably wrong.  Should make it like BSD or SYSV.
1431  */
1432 
1433 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1434 {
1435 	int ret;
1436 
1437 	if (pid > 0) {
1438 		rcu_read_lock();
1439 		ret = kill_pid_info(sig, info, find_vpid(pid));
1440 		rcu_read_unlock();
1441 		return ret;
1442 	}
1443 
1444 	read_lock(&tasklist_lock);
1445 	if (pid != -1) {
1446 		ret = __kill_pgrp_info(sig, info,
1447 				pid ? find_vpid(-pid) : task_pgrp(current));
1448 	} else {
1449 		int retval = 0, count = 0;
1450 		struct task_struct * p;
1451 
1452 		for_each_process(p) {
1453 			if (task_pid_vnr(p) > 1 &&
1454 					!same_thread_group(p, current)) {
1455 				int err = group_send_sig_info(sig, info, p);
1456 				++count;
1457 				if (err != -EPERM)
1458 					retval = err;
1459 			}
1460 		}
1461 		ret = count ? retval : -ESRCH;
1462 	}
1463 	read_unlock(&tasklist_lock);
1464 
1465 	return ret;
1466 }
1467 
1468 /*
1469  * These are for backward compatibility with the rest of the kernel source.
1470  */
1471 
1472 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1473 {
1474 	/*
1475 	 * Make sure legacy kernel users don't send in bad values
1476 	 * (normal paths check this in check_kill_permission).
1477 	 */
1478 	if (!valid_signal(sig))
1479 		return -EINVAL;
1480 
1481 	return do_send_sig_info(sig, info, p, false);
1482 }
1483 
1484 #define __si_special(priv) \
1485 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1486 
1487 int
1488 send_sig(int sig, struct task_struct *p, int priv)
1489 {
1490 	return send_sig_info(sig, __si_special(priv), p);
1491 }
1492 
1493 void
1494 force_sig(int sig, struct task_struct *p)
1495 {
1496 	force_sig_info(sig, SEND_SIG_PRIV, p);
1497 }
1498 
1499 /*
1500  * When things go south during signal handling, we
1501  * will force a SIGSEGV. And if the signal that caused
1502  * the problem was already a SIGSEGV, we'll want to
1503  * make sure we don't even try to deliver the signal..
1504  */
1505 int
1506 force_sigsegv(int sig, struct task_struct *p)
1507 {
1508 	if (sig == SIGSEGV) {
1509 		unsigned long flags;
1510 		spin_lock_irqsave(&p->sighand->siglock, flags);
1511 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1512 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1513 	}
1514 	force_sig(SIGSEGV, p);
1515 	return 0;
1516 }
1517 
1518 int kill_pgrp(struct pid *pid, int sig, int priv)
1519 {
1520 	int ret;
1521 
1522 	read_lock(&tasklist_lock);
1523 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1524 	read_unlock(&tasklist_lock);
1525 
1526 	return ret;
1527 }
1528 EXPORT_SYMBOL(kill_pgrp);
1529 
1530 int kill_pid(struct pid *pid, int sig, int priv)
1531 {
1532 	return kill_pid_info(sig, __si_special(priv), pid);
1533 }
1534 EXPORT_SYMBOL(kill_pid);
1535 
1536 /*
1537  * These functions support sending signals using preallocated sigqueue
1538  * structures.  This is needed "because realtime applications cannot
1539  * afford to lose notifications of asynchronous events, like timer
1540  * expirations or I/O completions".  In the case of POSIX Timers
1541  * we allocate the sigqueue structure from the timer_create.  If this
1542  * allocation fails we are able to report the failure to the application
1543  * with an EAGAIN error.
1544  */
1545 struct sigqueue *sigqueue_alloc(void)
1546 {
1547 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1548 
1549 	if (q)
1550 		q->flags |= SIGQUEUE_PREALLOC;
1551 
1552 	return q;
1553 }
1554 
1555 void sigqueue_free(struct sigqueue *q)
1556 {
1557 	unsigned long flags;
1558 	spinlock_t *lock = &current->sighand->siglock;
1559 
1560 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1561 	/*
1562 	 * We must hold ->siglock while testing q->list
1563 	 * to serialize with collect_signal() or with
1564 	 * __exit_signal()->flush_sigqueue().
1565 	 */
1566 	spin_lock_irqsave(lock, flags);
1567 	q->flags &= ~SIGQUEUE_PREALLOC;
1568 	/*
1569 	 * If it is queued it will be freed when dequeued,
1570 	 * like the "regular" sigqueue.
1571 	 */
1572 	if (!list_empty(&q->list))
1573 		q = NULL;
1574 	spin_unlock_irqrestore(lock, flags);
1575 
1576 	if (q)
1577 		__sigqueue_free(q);
1578 }
1579 
1580 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1581 {
1582 	int sig = q->info.si_signo;
1583 	struct sigpending *pending;
1584 	unsigned long flags;
1585 	int ret, result;
1586 
1587 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1588 
1589 	ret = -1;
1590 	if (!likely(lock_task_sighand(t, &flags)))
1591 		goto ret;
1592 
1593 	ret = 1; /* the signal is ignored */
1594 	result = TRACE_SIGNAL_IGNORED;
1595 	if (!prepare_signal(sig, t, false))
1596 		goto out;
1597 
1598 	ret = 0;
1599 	if (unlikely(!list_empty(&q->list))) {
1600 		/*
1601 		 * If an SI_TIMER entry is already queue just increment
1602 		 * the overrun count.
1603 		 */
1604 		BUG_ON(q->info.si_code != SI_TIMER);
1605 		q->info.si_overrun++;
1606 		result = TRACE_SIGNAL_ALREADY_PENDING;
1607 		goto out;
1608 	}
1609 	q->info.si_overrun = 0;
1610 
1611 	signalfd_notify(t, sig);
1612 	pending = group ? &t->signal->shared_pending : &t->pending;
1613 	list_add_tail(&q->list, &pending->list);
1614 	sigaddset(&pending->signal, sig);
1615 	complete_signal(sig, t, group);
1616 	result = TRACE_SIGNAL_DELIVERED;
1617 out:
1618 	trace_signal_generate(sig, &q->info, t, group, result);
1619 	unlock_task_sighand(t, &flags);
1620 ret:
1621 	return ret;
1622 }
1623 
1624 /*
1625  * Let a parent know about the death of a child.
1626  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1627  *
1628  * Returns true if our parent ignored us and so we've switched to
1629  * self-reaping.
1630  */
1631 bool do_notify_parent(struct task_struct *tsk, int sig)
1632 {
1633 	struct siginfo info;
1634 	unsigned long flags;
1635 	struct sighand_struct *psig;
1636 	bool autoreap = false;
1637 	cputime_t utime, stime;
1638 
1639 	BUG_ON(sig == -1);
1640 
1641  	/* do_notify_parent_cldstop should have been called instead.  */
1642  	BUG_ON(task_is_stopped_or_traced(tsk));
1643 
1644 	BUG_ON(!tsk->ptrace &&
1645 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1646 
1647 	if (sig != SIGCHLD) {
1648 		/*
1649 		 * This is only possible if parent == real_parent.
1650 		 * Check if it has changed security domain.
1651 		 */
1652 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1653 			sig = SIGCHLD;
1654 	}
1655 
1656 	info.si_signo = sig;
1657 	info.si_errno = 0;
1658 	/*
1659 	 * We are under tasklist_lock here so our parent is tied to
1660 	 * us and cannot change.
1661 	 *
1662 	 * task_active_pid_ns will always return the same pid namespace
1663 	 * until a task passes through release_task.
1664 	 *
1665 	 * write_lock() currently calls preempt_disable() which is the
1666 	 * same as rcu_read_lock(), but according to Oleg, this is not
1667 	 * correct to rely on this
1668 	 */
1669 	rcu_read_lock();
1670 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1671 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1672 				       task_uid(tsk));
1673 	rcu_read_unlock();
1674 
1675 	task_cputime(tsk, &utime, &stime);
1676 	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1677 	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1678 
1679 	info.si_status = tsk->exit_code & 0x7f;
1680 	if (tsk->exit_code & 0x80)
1681 		info.si_code = CLD_DUMPED;
1682 	else if (tsk->exit_code & 0x7f)
1683 		info.si_code = CLD_KILLED;
1684 	else {
1685 		info.si_code = CLD_EXITED;
1686 		info.si_status = tsk->exit_code >> 8;
1687 	}
1688 
1689 	psig = tsk->parent->sighand;
1690 	spin_lock_irqsave(&psig->siglock, flags);
1691 	if (!tsk->ptrace && sig == SIGCHLD &&
1692 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1693 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1694 		/*
1695 		 * We are exiting and our parent doesn't care.  POSIX.1
1696 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1697 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1698 		 * automatically and not left for our parent's wait4 call.
1699 		 * Rather than having the parent do it as a magic kind of
1700 		 * signal handler, we just set this to tell do_exit that we
1701 		 * can be cleaned up without becoming a zombie.  Note that
1702 		 * we still call __wake_up_parent in this case, because a
1703 		 * blocked sys_wait4 might now return -ECHILD.
1704 		 *
1705 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1706 		 * is implementation-defined: we do (if you don't want
1707 		 * it, just use SIG_IGN instead).
1708 		 */
1709 		autoreap = true;
1710 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1711 			sig = 0;
1712 	}
1713 	if (valid_signal(sig) && sig)
1714 		__group_send_sig_info(sig, &info, tsk->parent);
1715 	__wake_up_parent(tsk, tsk->parent);
1716 	spin_unlock_irqrestore(&psig->siglock, flags);
1717 
1718 	return autoreap;
1719 }
1720 
1721 /**
1722  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1723  * @tsk: task reporting the state change
1724  * @for_ptracer: the notification is for ptracer
1725  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1726  *
1727  * Notify @tsk's parent that the stopped/continued state has changed.  If
1728  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1729  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1730  *
1731  * CONTEXT:
1732  * Must be called with tasklist_lock at least read locked.
1733  */
1734 static void do_notify_parent_cldstop(struct task_struct *tsk,
1735 				     bool for_ptracer, int why)
1736 {
1737 	struct siginfo info;
1738 	unsigned long flags;
1739 	struct task_struct *parent;
1740 	struct sighand_struct *sighand;
1741 	cputime_t utime, stime;
1742 
1743 	if (for_ptracer) {
1744 		parent = tsk->parent;
1745 	} else {
1746 		tsk = tsk->group_leader;
1747 		parent = tsk->real_parent;
1748 	}
1749 
1750 	info.si_signo = SIGCHLD;
1751 	info.si_errno = 0;
1752 	/*
1753 	 * see comment in do_notify_parent() about the following 4 lines
1754 	 */
1755 	rcu_read_lock();
1756 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1757 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1758 	rcu_read_unlock();
1759 
1760 	task_cputime(tsk, &utime, &stime);
1761 	info.si_utime = cputime_to_clock_t(utime);
1762 	info.si_stime = cputime_to_clock_t(stime);
1763 
1764  	info.si_code = why;
1765  	switch (why) {
1766  	case CLD_CONTINUED:
1767  		info.si_status = SIGCONT;
1768  		break;
1769  	case CLD_STOPPED:
1770  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1771  		break;
1772  	case CLD_TRAPPED:
1773  		info.si_status = tsk->exit_code & 0x7f;
1774  		break;
1775  	default:
1776  		BUG();
1777  	}
1778 
1779 	sighand = parent->sighand;
1780 	spin_lock_irqsave(&sighand->siglock, flags);
1781 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1782 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1783 		__group_send_sig_info(SIGCHLD, &info, parent);
1784 	/*
1785 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1786 	 */
1787 	__wake_up_parent(tsk, parent);
1788 	spin_unlock_irqrestore(&sighand->siglock, flags);
1789 }
1790 
1791 static inline int may_ptrace_stop(void)
1792 {
1793 	if (!likely(current->ptrace))
1794 		return 0;
1795 	/*
1796 	 * Are we in the middle of do_coredump?
1797 	 * If so and our tracer is also part of the coredump stopping
1798 	 * is a deadlock situation, and pointless because our tracer
1799 	 * is dead so don't allow us to stop.
1800 	 * If SIGKILL was already sent before the caller unlocked
1801 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1802 	 * is safe to enter schedule().
1803 	 *
1804 	 * This is almost outdated, a task with the pending SIGKILL can't
1805 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1806 	 * after SIGKILL was already dequeued.
1807 	 */
1808 	if (unlikely(current->mm->core_state) &&
1809 	    unlikely(current->mm == current->parent->mm))
1810 		return 0;
1811 
1812 	return 1;
1813 }
1814 
1815 /*
1816  * Return non-zero if there is a SIGKILL that should be waking us up.
1817  * Called with the siglock held.
1818  */
1819 static int sigkill_pending(struct task_struct *tsk)
1820 {
1821 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1822 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1823 }
1824 
1825 /*
1826  * This must be called with current->sighand->siglock held.
1827  *
1828  * This should be the path for all ptrace stops.
1829  * We always set current->last_siginfo while stopped here.
1830  * That makes it a way to test a stopped process for
1831  * being ptrace-stopped vs being job-control-stopped.
1832  *
1833  * If we actually decide not to stop at all because the tracer
1834  * is gone, we keep current->exit_code unless clear_code.
1835  */
1836 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1837 	__releases(&current->sighand->siglock)
1838 	__acquires(&current->sighand->siglock)
1839 {
1840 	bool gstop_done = false;
1841 
1842 	if (arch_ptrace_stop_needed(exit_code, info)) {
1843 		/*
1844 		 * The arch code has something special to do before a
1845 		 * ptrace stop.  This is allowed to block, e.g. for faults
1846 		 * on user stack pages.  We can't keep the siglock while
1847 		 * calling arch_ptrace_stop, so we must release it now.
1848 		 * To preserve proper semantics, we must do this before
1849 		 * any signal bookkeeping like checking group_stop_count.
1850 		 * Meanwhile, a SIGKILL could come in before we retake the
1851 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1852 		 * So after regaining the lock, we must check for SIGKILL.
1853 		 */
1854 		spin_unlock_irq(&current->sighand->siglock);
1855 		arch_ptrace_stop(exit_code, info);
1856 		spin_lock_irq(&current->sighand->siglock);
1857 		if (sigkill_pending(current))
1858 			return;
1859 	}
1860 
1861 	/*
1862 	 * We're committing to trapping.  TRACED should be visible before
1863 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1864 	 * Also, transition to TRACED and updates to ->jobctl should be
1865 	 * atomic with respect to siglock and should be done after the arch
1866 	 * hook as siglock is released and regrabbed across it.
1867 	 */
1868 	set_current_state(TASK_TRACED);
1869 
1870 	current->last_siginfo = info;
1871 	current->exit_code = exit_code;
1872 
1873 	/*
1874 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1875 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1876 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1877 	 * could be clear now.  We act as if SIGCONT is received after
1878 	 * TASK_TRACED is entered - ignore it.
1879 	 */
1880 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1881 		gstop_done = task_participate_group_stop(current);
1882 
1883 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1884 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1885 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1886 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1887 
1888 	/* entering a trap, clear TRAPPING */
1889 	task_clear_jobctl_trapping(current);
1890 
1891 	spin_unlock_irq(&current->sighand->siglock);
1892 	read_lock(&tasklist_lock);
1893 	if (may_ptrace_stop()) {
1894 		/*
1895 		 * Notify parents of the stop.
1896 		 *
1897 		 * While ptraced, there are two parents - the ptracer and
1898 		 * the real_parent of the group_leader.  The ptracer should
1899 		 * know about every stop while the real parent is only
1900 		 * interested in the completion of group stop.  The states
1901 		 * for the two don't interact with each other.  Notify
1902 		 * separately unless they're gonna be duplicates.
1903 		 */
1904 		do_notify_parent_cldstop(current, true, why);
1905 		if (gstop_done && ptrace_reparented(current))
1906 			do_notify_parent_cldstop(current, false, why);
1907 
1908 		/*
1909 		 * Don't want to allow preemption here, because
1910 		 * sys_ptrace() needs this task to be inactive.
1911 		 *
1912 		 * XXX: implement read_unlock_no_resched().
1913 		 */
1914 		preempt_disable();
1915 		read_unlock(&tasklist_lock);
1916 		preempt_enable_no_resched();
1917 		freezable_schedule();
1918 	} else {
1919 		/*
1920 		 * By the time we got the lock, our tracer went away.
1921 		 * Don't drop the lock yet, another tracer may come.
1922 		 *
1923 		 * If @gstop_done, the ptracer went away between group stop
1924 		 * completion and here.  During detach, it would have set
1925 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1926 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1927 		 * the real parent of the group stop completion is enough.
1928 		 */
1929 		if (gstop_done)
1930 			do_notify_parent_cldstop(current, false, why);
1931 
1932 		/* tasklist protects us from ptrace_freeze_traced() */
1933 		__set_current_state(TASK_RUNNING);
1934 		if (clear_code)
1935 			current->exit_code = 0;
1936 		read_unlock(&tasklist_lock);
1937 	}
1938 
1939 	/*
1940 	 * We are back.  Now reacquire the siglock before touching
1941 	 * last_siginfo, so that we are sure to have synchronized with
1942 	 * any signal-sending on another CPU that wants to examine it.
1943 	 */
1944 	spin_lock_irq(&current->sighand->siglock);
1945 	current->last_siginfo = NULL;
1946 
1947 	/* LISTENING can be set only during STOP traps, clear it */
1948 	current->jobctl &= ~JOBCTL_LISTENING;
1949 
1950 	/*
1951 	 * Queued signals ignored us while we were stopped for tracing.
1952 	 * So check for any that we should take before resuming user mode.
1953 	 * This sets TIF_SIGPENDING, but never clears it.
1954 	 */
1955 	recalc_sigpending_tsk(current);
1956 }
1957 
1958 static void ptrace_do_notify(int signr, int exit_code, int why)
1959 {
1960 	siginfo_t info;
1961 
1962 	memset(&info, 0, sizeof info);
1963 	info.si_signo = signr;
1964 	info.si_code = exit_code;
1965 	info.si_pid = task_pid_vnr(current);
1966 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1967 
1968 	/* Let the debugger run.  */
1969 	ptrace_stop(exit_code, why, 1, &info);
1970 }
1971 
1972 void ptrace_notify(int exit_code)
1973 {
1974 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1975 	if (unlikely(current->task_works))
1976 		task_work_run();
1977 
1978 	spin_lock_irq(&current->sighand->siglock);
1979 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1980 	spin_unlock_irq(&current->sighand->siglock);
1981 }
1982 
1983 /**
1984  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1985  * @signr: signr causing group stop if initiating
1986  *
1987  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1988  * and participate in it.  If already set, participate in the existing
1989  * group stop.  If participated in a group stop (and thus slept), %true is
1990  * returned with siglock released.
1991  *
1992  * If ptraced, this function doesn't handle stop itself.  Instead,
1993  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1994  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1995  * places afterwards.
1996  *
1997  * CONTEXT:
1998  * Must be called with @current->sighand->siglock held, which is released
1999  * on %true return.
2000  *
2001  * RETURNS:
2002  * %false if group stop is already cancelled or ptrace trap is scheduled.
2003  * %true if participated in group stop.
2004  */
2005 static bool do_signal_stop(int signr)
2006 	__releases(&current->sighand->siglock)
2007 {
2008 	struct signal_struct *sig = current->signal;
2009 
2010 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2011 		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2012 		struct task_struct *t;
2013 
2014 		/* signr will be recorded in task->jobctl for retries */
2015 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2016 
2017 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2018 		    unlikely(signal_group_exit(sig)))
2019 			return false;
2020 		/*
2021 		 * There is no group stop already in progress.  We must
2022 		 * initiate one now.
2023 		 *
2024 		 * While ptraced, a task may be resumed while group stop is
2025 		 * still in effect and then receive a stop signal and
2026 		 * initiate another group stop.  This deviates from the
2027 		 * usual behavior as two consecutive stop signals can't
2028 		 * cause two group stops when !ptraced.  That is why we
2029 		 * also check !task_is_stopped(t) below.
2030 		 *
2031 		 * The condition can be distinguished by testing whether
2032 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2033 		 * group_exit_code in such case.
2034 		 *
2035 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2036 		 * an intervening stop signal is required to cause two
2037 		 * continued events regardless of ptrace.
2038 		 */
2039 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2040 			sig->group_exit_code = signr;
2041 
2042 		sig->group_stop_count = 0;
2043 
2044 		if (task_set_jobctl_pending(current, signr | gstop))
2045 			sig->group_stop_count++;
2046 
2047 		for (t = next_thread(current); t != current;
2048 		     t = next_thread(t)) {
2049 			/*
2050 			 * Setting state to TASK_STOPPED for a group
2051 			 * stop is always done with the siglock held,
2052 			 * so this check has no races.
2053 			 */
2054 			if (!task_is_stopped(t) &&
2055 			    task_set_jobctl_pending(t, signr | gstop)) {
2056 				sig->group_stop_count++;
2057 				if (likely(!(t->ptrace & PT_SEIZED)))
2058 					signal_wake_up(t, 0);
2059 				else
2060 					ptrace_trap_notify(t);
2061 			}
2062 		}
2063 	}
2064 
2065 	if (likely(!current->ptrace)) {
2066 		int notify = 0;
2067 
2068 		/*
2069 		 * If there are no other threads in the group, or if there
2070 		 * is a group stop in progress and we are the last to stop,
2071 		 * report to the parent.
2072 		 */
2073 		if (task_participate_group_stop(current))
2074 			notify = CLD_STOPPED;
2075 
2076 		__set_current_state(TASK_STOPPED);
2077 		spin_unlock_irq(&current->sighand->siglock);
2078 
2079 		/*
2080 		 * Notify the parent of the group stop completion.  Because
2081 		 * we're not holding either the siglock or tasklist_lock
2082 		 * here, ptracer may attach inbetween; however, this is for
2083 		 * group stop and should always be delivered to the real
2084 		 * parent of the group leader.  The new ptracer will get
2085 		 * its notification when this task transitions into
2086 		 * TASK_TRACED.
2087 		 */
2088 		if (notify) {
2089 			read_lock(&tasklist_lock);
2090 			do_notify_parent_cldstop(current, false, notify);
2091 			read_unlock(&tasklist_lock);
2092 		}
2093 
2094 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2095 		freezable_schedule();
2096 		return true;
2097 	} else {
2098 		/*
2099 		 * While ptraced, group stop is handled by STOP trap.
2100 		 * Schedule it and let the caller deal with it.
2101 		 */
2102 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2103 		return false;
2104 	}
2105 }
2106 
2107 /**
2108  * do_jobctl_trap - take care of ptrace jobctl traps
2109  *
2110  * When PT_SEIZED, it's used for both group stop and explicit
2111  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2112  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2113  * the stop signal; otherwise, %SIGTRAP.
2114  *
2115  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2116  * number as exit_code and no siginfo.
2117  *
2118  * CONTEXT:
2119  * Must be called with @current->sighand->siglock held, which may be
2120  * released and re-acquired before returning with intervening sleep.
2121  */
2122 static void do_jobctl_trap(void)
2123 {
2124 	struct signal_struct *signal = current->signal;
2125 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2126 
2127 	if (current->ptrace & PT_SEIZED) {
2128 		if (!signal->group_stop_count &&
2129 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2130 			signr = SIGTRAP;
2131 		WARN_ON_ONCE(!signr);
2132 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2133 				 CLD_STOPPED);
2134 	} else {
2135 		WARN_ON_ONCE(!signr);
2136 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2137 		current->exit_code = 0;
2138 	}
2139 }
2140 
2141 static int ptrace_signal(int signr, siginfo_t *info)
2142 {
2143 	ptrace_signal_deliver();
2144 	/*
2145 	 * We do not check sig_kernel_stop(signr) but set this marker
2146 	 * unconditionally because we do not know whether debugger will
2147 	 * change signr. This flag has no meaning unless we are going
2148 	 * to stop after return from ptrace_stop(). In this case it will
2149 	 * be checked in do_signal_stop(), we should only stop if it was
2150 	 * not cleared by SIGCONT while we were sleeping. See also the
2151 	 * comment in dequeue_signal().
2152 	 */
2153 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2154 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2155 
2156 	/* We're back.  Did the debugger cancel the sig?  */
2157 	signr = current->exit_code;
2158 	if (signr == 0)
2159 		return signr;
2160 
2161 	current->exit_code = 0;
2162 
2163 	/*
2164 	 * Update the siginfo structure if the signal has
2165 	 * changed.  If the debugger wanted something
2166 	 * specific in the siginfo structure then it should
2167 	 * have updated *info via PTRACE_SETSIGINFO.
2168 	 */
2169 	if (signr != info->si_signo) {
2170 		info->si_signo = signr;
2171 		info->si_errno = 0;
2172 		info->si_code = SI_USER;
2173 		rcu_read_lock();
2174 		info->si_pid = task_pid_vnr(current->parent);
2175 		info->si_uid = from_kuid_munged(current_user_ns(),
2176 						task_uid(current->parent));
2177 		rcu_read_unlock();
2178 	}
2179 
2180 	/* If the (new) signal is now blocked, requeue it.  */
2181 	if (sigismember(&current->blocked, signr)) {
2182 		specific_send_sig_info(signr, info, current);
2183 		signr = 0;
2184 	}
2185 
2186 	return signr;
2187 }
2188 
2189 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2190 			  struct pt_regs *regs, void *cookie)
2191 {
2192 	struct sighand_struct *sighand = current->sighand;
2193 	struct signal_struct *signal = current->signal;
2194 	int signr;
2195 
2196 	if (unlikely(current->task_works))
2197 		task_work_run();
2198 
2199 	if (unlikely(uprobe_deny_signal()))
2200 		return 0;
2201 
2202 	/*
2203 	 * Do this once, we can't return to user-mode if freezing() == T.
2204 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2205 	 * thus do not need another check after return.
2206 	 */
2207 	try_to_freeze();
2208 
2209 relock:
2210 	spin_lock_irq(&sighand->siglock);
2211 	/*
2212 	 * Every stopped thread goes here after wakeup. Check to see if
2213 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2214 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2215 	 */
2216 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2217 		int why;
2218 
2219 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2220 			why = CLD_CONTINUED;
2221 		else
2222 			why = CLD_STOPPED;
2223 
2224 		signal->flags &= ~SIGNAL_CLD_MASK;
2225 
2226 		spin_unlock_irq(&sighand->siglock);
2227 
2228 		/*
2229 		 * Notify the parent that we're continuing.  This event is
2230 		 * always per-process and doesn't make whole lot of sense
2231 		 * for ptracers, who shouldn't consume the state via
2232 		 * wait(2) either, but, for backward compatibility, notify
2233 		 * the ptracer of the group leader too unless it's gonna be
2234 		 * a duplicate.
2235 		 */
2236 		read_lock(&tasklist_lock);
2237 		do_notify_parent_cldstop(current, false, why);
2238 
2239 		if (ptrace_reparented(current->group_leader))
2240 			do_notify_parent_cldstop(current->group_leader,
2241 						true, why);
2242 		read_unlock(&tasklist_lock);
2243 
2244 		goto relock;
2245 	}
2246 
2247 	for (;;) {
2248 		struct k_sigaction *ka;
2249 
2250 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2251 		    do_signal_stop(0))
2252 			goto relock;
2253 
2254 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2255 			do_jobctl_trap();
2256 			spin_unlock_irq(&sighand->siglock);
2257 			goto relock;
2258 		}
2259 
2260 		signr = dequeue_signal(current, &current->blocked, info);
2261 
2262 		if (!signr)
2263 			break; /* will return 0 */
2264 
2265 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2266 			signr = ptrace_signal(signr, info);
2267 			if (!signr)
2268 				continue;
2269 		}
2270 
2271 		ka = &sighand->action[signr-1];
2272 
2273 		/* Trace actually delivered signals. */
2274 		trace_signal_deliver(signr, info, ka);
2275 
2276 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2277 			continue;
2278 		if (ka->sa.sa_handler != SIG_DFL) {
2279 			/* Run the handler.  */
2280 			*return_ka = *ka;
2281 
2282 			if (ka->sa.sa_flags & SA_ONESHOT)
2283 				ka->sa.sa_handler = SIG_DFL;
2284 
2285 			break; /* will return non-zero "signr" value */
2286 		}
2287 
2288 		/*
2289 		 * Now we are doing the default action for this signal.
2290 		 */
2291 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2292 			continue;
2293 
2294 		/*
2295 		 * Global init gets no signals it doesn't want.
2296 		 * Container-init gets no signals it doesn't want from same
2297 		 * container.
2298 		 *
2299 		 * Note that if global/container-init sees a sig_kernel_only()
2300 		 * signal here, the signal must have been generated internally
2301 		 * or must have come from an ancestor namespace. In either
2302 		 * case, the signal cannot be dropped.
2303 		 */
2304 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2305 				!sig_kernel_only(signr))
2306 			continue;
2307 
2308 		if (sig_kernel_stop(signr)) {
2309 			/*
2310 			 * The default action is to stop all threads in
2311 			 * the thread group.  The job control signals
2312 			 * do nothing in an orphaned pgrp, but SIGSTOP
2313 			 * always works.  Note that siglock needs to be
2314 			 * dropped during the call to is_orphaned_pgrp()
2315 			 * because of lock ordering with tasklist_lock.
2316 			 * This allows an intervening SIGCONT to be posted.
2317 			 * We need to check for that and bail out if necessary.
2318 			 */
2319 			if (signr != SIGSTOP) {
2320 				spin_unlock_irq(&sighand->siglock);
2321 
2322 				/* signals can be posted during this window */
2323 
2324 				if (is_current_pgrp_orphaned())
2325 					goto relock;
2326 
2327 				spin_lock_irq(&sighand->siglock);
2328 			}
2329 
2330 			if (likely(do_signal_stop(info->si_signo))) {
2331 				/* It released the siglock.  */
2332 				goto relock;
2333 			}
2334 
2335 			/*
2336 			 * We didn't actually stop, due to a race
2337 			 * with SIGCONT or something like that.
2338 			 */
2339 			continue;
2340 		}
2341 
2342 		spin_unlock_irq(&sighand->siglock);
2343 
2344 		/*
2345 		 * Anything else is fatal, maybe with a core dump.
2346 		 */
2347 		current->flags |= PF_SIGNALED;
2348 
2349 		if (sig_kernel_coredump(signr)) {
2350 			if (print_fatal_signals)
2351 				print_fatal_signal(info->si_signo);
2352 			/*
2353 			 * If it was able to dump core, this kills all
2354 			 * other threads in the group and synchronizes with
2355 			 * their demise.  If we lost the race with another
2356 			 * thread getting here, it set group_exit_code
2357 			 * first and our do_group_exit call below will use
2358 			 * that value and ignore the one we pass it.
2359 			 */
2360 			do_coredump(info);
2361 		}
2362 
2363 		/*
2364 		 * Death signals, no core dump.
2365 		 */
2366 		do_group_exit(info->si_signo);
2367 		/* NOTREACHED */
2368 	}
2369 	spin_unlock_irq(&sighand->siglock);
2370 	return signr;
2371 }
2372 
2373 /**
2374  * signal_delivered -
2375  * @sig:		number of signal being delivered
2376  * @info:		siginfo_t of signal being delivered
2377  * @ka:			sigaction setting that chose the handler
2378  * @regs:		user register state
2379  * @stepping:		nonzero if debugger single-step or block-step in use
2380  *
2381  * This function should be called when a signal has succesfully been
2382  * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2383  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2384  * is set in @ka->sa.sa_flags.  Tracing is notified.
2385  */
2386 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2387 			struct pt_regs *regs, int stepping)
2388 {
2389 	sigset_t blocked;
2390 
2391 	/* A signal was successfully delivered, and the
2392 	   saved sigmask was stored on the signal frame,
2393 	   and will be restored by sigreturn.  So we can
2394 	   simply clear the restore sigmask flag.  */
2395 	clear_restore_sigmask();
2396 
2397 	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2398 	if (!(ka->sa.sa_flags & SA_NODEFER))
2399 		sigaddset(&blocked, sig);
2400 	set_current_blocked(&blocked);
2401 	tracehook_signal_handler(sig, info, ka, regs, stepping);
2402 }
2403 
2404 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2405 {
2406 	if (failed)
2407 		force_sigsegv(ksig->sig, current);
2408 	else
2409 		signal_delivered(ksig->sig, &ksig->info, &ksig->ka,
2410 			signal_pt_regs(), stepping);
2411 }
2412 
2413 /*
2414  * It could be that complete_signal() picked us to notify about the
2415  * group-wide signal. Other threads should be notified now to take
2416  * the shared signals in @which since we will not.
2417  */
2418 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2419 {
2420 	sigset_t retarget;
2421 	struct task_struct *t;
2422 
2423 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2424 	if (sigisemptyset(&retarget))
2425 		return;
2426 
2427 	t = tsk;
2428 	while_each_thread(tsk, t) {
2429 		if (t->flags & PF_EXITING)
2430 			continue;
2431 
2432 		if (!has_pending_signals(&retarget, &t->blocked))
2433 			continue;
2434 		/* Remove the signals this thread can handle. */
2435 		sigandsets(&retarget, &retarget, &t->blocked);
2436 
2437 		if (!signal_pending(t))
2438 			signal_wake_up(t, 0);
2439 
2440 		if (sigisemptyset(&retarget))
2441 			break;
2442 	}
2443 }
2444 
2445 void exit_signals(struct task_struct *tsk)
2446 {
2447 	int group_stop = 0;
2448 	sigset_t unblocked;
2449 
2450 	/*
2451 	 * @tsk is about to have PF_EXITING set - lock out users which
2452 	 * expect stable threadgroup.
2453 	 */
2454 	threadgroup_change_begin(tsk);
2455 
2456 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2457 		tsk->flags |= PF_EXITING;
2458 		threadgroup_change_end(tsk);
2459 		return;
2460 	}
2461 
2462 	spin_lock_irq(&tsk->sighand->siglock);
2463 	/*
2464 	 * From now this task is not visible for group-wide signals,
2465 	 * see wants_signal(), do_signal_stop().
2466 	 */
2467 	tsk->flags |= PF_EXITING;
2468 
2469 	threadgroup_change_end(tsk);
2470 
2471 	if (!signal_pending(tsk))
2472 		goto out;
2473 
2474 	unblocked = tsk->blocked;
2475 	signotset(&unblocked);
2476 	retarget_shared_pending(tsk, &unblocked);
2477 
2478 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2479 	    task_participate_group_stop(tsk))
2480 		group_stop = CLD_STOPPED;
2481 out:
2482 	spin_unlock_irq(&tsk->sighand->siglock);
2483 
2484 	/*
2485 	 * If group stop has completed, deliver the notification.  This
2486 	 * should always go to the real parent of the group leader.
2487 	 */
2488 	if (unlikely(group_stop)) {
2489 		read_lock(&tasklist_lock);
2490 		do_notify_parent_cldstop(tsk, false, group_stop);
2491 		read_unlock(&tasklist_lock);
2492 	}
2493 }
2494 
2495 EXPORT_SYMBOL(recalc_sigpending);
2496 EXPORT_SYMBOL_GPL(dequeue_signal);
2497 EXPORT_SYMBOL(flush_signals);
2498 EXPORT_SYMBOL(force_sig);
2499 EXPORT_SYMBOL(send_sig);
2500 EXPORT_SYMBOL(send_sig_info);
2501 EXPORT_SYMBOL(sigprocmask);
2502 EXPORT_SYMBOL(block_all_signals);
2503 EXPORT_SYMBOL(unblock_all_signals);
2504 
2505 
2506 /*
2507  * System call entry points.
2508  */
2509 
2510 /**
2511  *  sys_restart_syscall - restart a system call
2512  */
2513 SYSCALL_DEFINE0(restart_syscall)
2514 {
2515 	struct restart_block *restart = &current_thread_info()->restart_block;
2516 	return restart->fn(restart);
2517 }
2518 
2519 long do_no_restart_syscall(struct restart_block *param)
2520 {
2521 	return -EINTR;
2522 }
2523 
2524 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2525 {
2526 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2527 		sigset_t newblocked;
2528 		/* A set of now blocked but previously unblocked signals. */
2529 		sigandnsets(&newblocked, newset, &current->blocked);
2530 		retarget_shared_pending(tsk, &newblocked);
2531 	}
2532 	tsk->blocked = *newset;
2533 	recalc_sigpending();
2534 }
2535 
2536 /**
2537  * set_current_blocked - change current->blocked mask
2538  * @newset: new mask
2539  *
2540  * It is wrong to change ->blocked directly, this helper should be used
2541  * to ensure the process can't miss a shared signal we are going to block.
2542  */
2543 void set_current_blocked(sigset_t *newset)
2544 {
2545 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2546 	__set_current_blocked(newset);
2547 }
2548 
2549 void __set_current_blocked(const sigset_t *newset)
2550 {
2551 	struct task_struct *tsk = current;
2552 
2553 	spin_lock_irq(&tsk->sighand->siglock);
2554 	__set_task_blocked(tsk, newset);
2555 	spin_unlock_irq(&tsk->sighand->siglock);
2556 }
2557 
2558 /*
2559  * This is also useful for kernel threads that want to temporarily
2560  * (or permanently) block certain signals.
2561  *
2562  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2563  * interface happily blocks "unblockable" signals like SIGKILL
2564  * and friends.
2565  */
2566 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2567 {
2568 	struct task_struct *tsk = current;
2569 	sigset_t newset;
2570 
2571 	/* Lockless, only current can change ->blocked, never from irq */
2572 	if (oldset)
2573 		*oldset = tsk->blocked;
2574 
2575 	switch (how) {
2576 	case SIG_BLOCK:
2577 		sigorsets(&newset, &tsk->blocked, set);
2578 		break;
2579 	case SIG_UNBLOCK:
2580 		sigandnsets(&newset, &tsk->blocked, set);
2581 		break;
2582 	case SIG_SETMASK:
2583 		newset = *set;
2584 		break;
2585 	default:
2586 		return -EINVAL;
2587 	}
2588 
2589 	__set_current_blocked(&newset);
2590 	return 0;
2591 }
2592 
2593 /**
2594  *  sys_rt_sigprocmask - change the list of currently blocked signals
2595  *  @how: whether to add, remove, or set signals
2596  *  @nset: stores pending signals
2597  *  @oset: previous value of signal mask if non-null
2598  *  @sigsetsize: size of sigset_t type
2599  */
2600 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2601 		sigset_t __user *, oset, size_t, sigsetsize)
2602 {
2603 	sigset_t old_set, new_set;
2604 	int error;
2605 
2606 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2607 	if (sigsetsize != sizeof(sigset_t))
2608 		return -EINVAL;
2609 
2610 	old_set = current->blocked;
2611 
2612 	if (nset) {
2613 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2614 			return -EFAULT;
2615 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2616 
2617 		error = sigprocmask(how, &new_set, NULL);
2618 		if (error)
2619 			return error;
2620 	}
2621 
2622 	if (oset) {
2623 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2624 			return -EFAULT;
2625 	}
2626 
2627 	return 0;
2628 }
2629 
2630 #ifdef CONFIG_COMPAT
2631 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2632 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2633 {
2634 #ifdef __BIG_ENDIAN
2635 	sigset_t old_set = current->blocked;
2636 
2637 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2638 	if (sigsetsize != sizeof(sigset_t))
2639 		return -EINVAL;
2640 
2641 	if (nset) {
2642 		compat_sigset_t new32;
2643 		sigset_t new_set;
2644 		int error;
2645 		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2646 			return -EFAULT;
2647 
2648 		sigset_from_compat(&new_set, &new32);
2649 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2650 
2651 		error = sigprocmask(how, &new_set, NULL);
2652 		if (error)
2653 			return error;
2654 	}
2655 	if (oset) {
2656 		compat_sigset_t old32;
2657 		sigset_to_compat(&old32, &old_set);
2658 		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2659 			return -EFAULT;
2660 	}
2661 	return 0;
2662 #else
2663 	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2664 				  (sigset_t __user *)oset, sigsetsize);
2665 #endif
2666 }
2667 #endif
2668 
2669 static int do_sigpending(void *set, unsigned long sigsetsize)
2670 {
2671 	if (sigsetsize > sizeof(sigset_t))
2672 		return -EINVAL;
2673 
2674 	spin_lock_irq(&current->sighand->siglock);
2675 	sigorsets(set, &current->pending.signal,
2676 		  &current->signal->shared_pending.signal);
2677 	spin_unlock_irq(&current->sighand->siglock);
2678 
2679 	/* Outside the lock because only this thread touches it.  */
2680 	sigandsets(set, &current->blocked, set);
2681 	return 0;
2682 }
2683 
2684 /**
2685  *  sys_rt_sigpending - examine a pending signal that has been raised
2686  *			while blocked
2687  *  @uset: stores pending signals
2688  *  @sigsetsize: size of sigset_t type or larger
2689  */
2690 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2691 {
2692 	sigset_t set;
2693 	int err = do_sigpending(&set, sigsetsize);
2694 	if (!err && copy_to_user(uset, &set, sigsetsize))
2695 		err = -EFAULT;
2696 	return err;
2697 }
2698 
2699 #ifdef CONFIG_COMPAT
2700 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2701 		compat_size_t, sigsetsize)
2702 {
2703 #ifdef __BIG_ENDIAN
2704 	sigset_t set;
2705 	int err = do_sigpending(&set, sigsetsize);
2706 	if (!err) {
2707 		compat_sigset_t set32;
2708 		sigset_to_compat(&set32, &set);
2709 		/* we can get here only if sigsetsize <= sizeof(set) */
2710 		if (copy_to_user(uset, &set32, sigsetsize))
2711 			err = -EFAULT;
2712 	}
2713 	return err;
2714 #else
2715 	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2716 #endif
2717 }
2718 #endif
2719 
2720 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2721 
2722 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2723 {
2724 	int err;
2725 
2726 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2727 		return -EFAULT;
2728 	if (from->si_code < 0)
2729 		return __copy_to_user(to, from, sizeof(siginfo_t))
2730 			? -EFAULT : 0;
2731 	/*
2732 	 * If you change siginfo_t structure, please be sure
2733 	 * this code is fixed accordingly.
2734 	 * Please remember to update the signalfd_copyinfo() function
2735 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2736 	 * It should never copy any pad contained in the structure
2737 	 * to avoid security leaks, but must copy the generic
2738 	 * 3 ints plus the relevant union member.
2739 	 */
2740 	err = __put_user(from->si_signo, &to->si_signo);
2741 	err |= __put_user(from->si_errno, &to->si_errno);
2742 	err |= __put_user((short)from->si_code, &to->si_code);
2743 	switch (from->si_code & __SI_MASK) {
2744 	case __SI_KILL:
2745 		err |= __put_user(from->si_pid, &to->si_pid);
2746 		err |= __put_user(from->si_uid, &to->si_uid);
2747 		break;
2748 	case __SI_TIMER:
2749 		 err |= __put_user(from->si_tid, &to->si_tid);
2750 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2751 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2752 		break;
2753 	case __SI_POLL:
2754 		err |= __put_user(from->si_band, &to->si_band);
2755 		err |= __put_user(from->si_fd, &to->si_fd);
2756 		break;
2757 	case __SI_FAULT:
2758 		err |= __put_user(from->si_addr, &to->si_addr);
2759 #ifdef __ARCH_SI_TRAPNO
2760 		err |= __put_user(from->si_trapno, &to->si_trapno);
2761 #endif
2762 #ifdef BUS_MCEERR_AO
2763 		/*
2764 		 * Other callers might not initialize the si_lsb field,
2765 		 * so check explicitly for the right codes here.
2766 		 */
2767 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2768 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2769 #endif
2770 		break;
2771 	case __SI_CHLD:
2772 		err |= __put_user(from->si_pid, &to->si_pid);
2773 		err |= __put_user(from->si_uid, &to->si_uid);
2774 		err |= __put_user(from->si_status, &to->si_status);
2775 		err |= __put_user(from->si_utime, &to->si_utime);
2776 		err |= __put_user(from->si_stime, &to->si_stime);
2777 		break;
2778 	case __SI_RT: /* This is not generated by the kernel as of now. */
2779 	case __SI_MESGQ: /* But this is */
2780 		err |= __put_user(from->si_pid, &to->si_pid);
2781 		err |= __put_user(from->si_uid, &to->si_uid);
2782 		err |= __put_user(from->si_ptr, &to->si_ptr);
2783 		break;
2784 #ifdef __ARCH_SIGSYS
2785 	case __SI_SYS:
2786 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2787 		err |= __put_user(from->si_syscall, &to->si_syscall);
2788 		err |= __put_user(from->si_arch, &to->si_arch);
2789 		break;
2790 #endif
2791 	default: /* this is just in case for now ... */
2792 		err |= __put_user(from->si_pid, &to->si_pid);
2793 		err |= __put_user(from->si_uid, &to->si_uid);
2794 		break;
2795 	}
2796 	return err;
2797 }
2798 
2799 #endif
2800 
2801 /**
2802  *  do_sigtimedwait - wait for queued signals specified in @which
2803  *  @which: queued signals to wait for
2804  *  @info: if non-null, the signal's siginfo is returned here
2805  *  @ts: upper bound on process time suspension
2806  */
2807 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2808 			const struct timespec *ts)
2809 {
2810 	struct task_struct *tsk = current;
2811 	long timeout = MAX_SCHEDULE_TIMEOUT;
2812 	sigset_t mask = *which;
2813 	int sig;
2814 
2815 	if (ts) {
2816 		if (!timespec_valid(ts))
2817 			return -EINVAL;
2818 		timeout = timespec_to_jiffies(ts);
2819 		/*
2820 		 * We can be close to the next tick, add another one
2821 		 * to ensure we will wait at least the time asked for.
2822 		 */
2823 		if (ts->tv_sec || ts->tv_nsec)
2824 			timeout++;
2825 	}
2826 
2827 	/*
2828 	 * Invert the set of allowed signals to get those we want to block.
2829 	 */
2830 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2831 	signotset(&mask);
2832 
2833 	spin_lock_irq(&tsk->sighand->siglock);
2834 	sig = dequeue_signal(tsk, &mask, info);
2835 	if (!sig && timeout) {
2836 		/*
2837 		 * None ready, temporarily unblock those we're interested
2838 		 * while we are sleeping in so that we'll be awakened when
2839 		 * they arrive. Unblocking is always fine, we can avoid
2840 		 * set_current_blocked().
2841 		 */
2842 		tsk->real_blocked = tsk->blocked;
2843 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2844 		recalc_sigpending();
2845 		spin_unlock_irq(&tsk->sighand->siglock);
2846 
2847 		timeout = schedule_timeout_interruptible(timeout);
2848 
2849 		spin_lock_irq(&tsk->sighand->siglock);
2850 		__set_task_blocked(tsk, &tsk->real_blocked);
2851 		siginitset(&tsk->real_blocked, 0);
2852 		sig = dequeue_signal(tsk, &mask, info);
2853 	}
2854 	spin_unlock_irq(&tsk->sighand->siglock);
2855 
2856 	if (sig)
2857 		return sig;
2858 	return timeout ? -EINTR : -EAGAIN;
2859 }
2860 
2861 /**
2862  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2863  *			in @uthese
2864  *  @uthese: queued signals to wait for
2865  *  @uinfo: if non-null, the signal's siginfo is returned here
2866  *  @uts: upper bound on process time suspension
2867  *  @sigsetsize: size of sigset_t type
2868  */
2869 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2870 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2871 		size_t, sigsetsize)
2872 {
2873 	sigset_t these;
2874 	struct timespec ts;
2875 	siginfo_t info;
2876 	int ret;
2877 
2878 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2879 	if (sigsetsize != sizeof(sigset_t))
2880 		return -EINVAL;
2881 
2882 	if (copy_from_user(&these, uthese, sizeof(these)))
2883 		return -EFAULT;
2884 
2885 	if (uts) {
2886 		if (copy_from_user(&ts, uts, sizeof(ts)))
2887 			return -EFAULT;
2888 	}
2889 
2890 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2891 
2892 	if (ret > 0 && uinfo) {
2893 		if (copy_siginfo_to_user(uinfo, &info))
2894 			ret = -EFAULT;
2895 	}
2896 
2897 	return ret;
2898 }
2899 
2900 /**
2901  *  sys_kill - send a signal to a process
2902  *  @pid: the PID of the process
2903  *  @sig: signal to be sent
2904  */
2905 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2906 {
2907 	struct siginfo info;
2908 
2909 	info.si_signo = sig;
2910 	info.si_errno = 0;
2911 	info.si_code = SI_USER;
2912 	info.si_pid = task_tgid_vnr(current);
2913 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2914 
2915 	return kill_something_info(sig, &info, pid);
2916 }
2917 
2918 static int
2919 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2920 {
2921 	struct task_struct *p;
2922 	int error = -ESRCH;
2923 
2924 	rcu_read_lock();
2925 	p = find_task_by_vpid(pid);
2926 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2927 		error = check_kill_permission(sig, info, p);
2928 		/*
2929 		 * The null signal is a permissions and process existence
2930 		 * probe.  No signal is actually delivered.
2931 		 */
2932 		if (!error && sig) {
2933 			error = do_send_sig_info(sig, info, p, false);
2934 			/*
2935 			 * If lock_task_sighand() failed we pretend the task
2936 			 * dies after receiving the signal. The window is tiny,
2937 			 * and the signal is private anyway.
2938 			 */
2939 			if (unlikely(error == -ESRCH))
2940 				error = 0;
2941 		}
2942 	}
2943 	rcu_read_unlock();
2944 
2945 	return error;
2946 }
2947 
2948 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2949 {
2950 	struct siginfo info = {};
2951 
2952 	info.si_signo = sig;
2953 	info.si_errno = 0;
2954 	info.si_code = SI_TKILL;
2955 	info.si_pid = task_tgid_vnr(current);
2956 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2957 
2958 	return do_send_specific(tgid, pid, sig, &info);
2959 }
2960 
2961 /**
2962  *  sys_tgkill - send signal to one specific thread
2963  *  @tgid: the thread group ID of the thread
2964  *  @pid: the PID of the thread
2965  *  @sig: signal to be sent
2966  *
2967  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2968  *  exists but it's not belonging to the target process anymore. This
2969  *  method solves the problem of threads exiting and PIDs getting reused.
2970  */
2971 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2972 {
2973 	/* This is only valid for single tasks */
2974 	if (pid <= 0 || tgid <= 0)
2975 		return -EINVAL;
2976 
2977 	return do_tkill(tgid, pid, sig);
2978 }
2979 
2980 /**
2981  *  sys_tkill - send signal to one specific task
2982  *  @pid: the PID of the task
2983  *  @sig: signal to be sent
2984  *
2985  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2986  */
2987 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2988 {
2989 	/* This is only valid for single tasks */
2990 	if (pid <= 0)
2991 		return -EINVAL;
2992 
2993 	return do_tkill(0, pid, sig);
2994 }
2995 
2996 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2997 {
2998 	/* Not even root can pretend to send signals from the kernel.
2999 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3000 	 */
3001 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3002 	    (task_pid_vnr(current) != pid)) {
3003 		/* We used to allow any < 0 si_code */
3004 		WARN_ON_ONCE(info->si_code < 0);
3005 		return -EPERM;
3006 	}
3007 	info->si_signo = sig;
3008 
3009 	/* POSIX.1b doesn't mention process groups.  */
3010 	return kill_proc_info(sig, info, pid);
3011 }
3012 
3013 /**
3014  *  sys_rt_sigqueueinfo - send signal information to a signal
3015  *  @pid: the PID of the thread
3016  *  @sig: signal to be sent
3017  *  @uinfo: signal info to be sent
3018  */
3019 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3020 		siginfo_t __user *, uinfo)
3021 {
3022 	siginfo_t info;
3023 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3024 		return -EFAULT;
3025 	return do_rt_sigqueueinfo(pid, sig, &info);
3026 }
3027 
3028 #ifdef CONFIG_COMPAT
3029 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3030 			compat_pid_t, pid,
3031 			int, sig,
3032 			struct compat_siginfo __user *, uinfo)
3033 {
3034 	siginfo_t info;
3035 	int ret = copy_siginfo_from_user32(&info, uinfo);
3036 	if (unlikely(ret))
3037 		return ret;
3038 	return do_rt_sigqueueinfo(pid, sig, &info);
3039 }
3040 #endif
3041 
3042 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3043 {
3044 	/* This is only valid for single tasks */
3045 	if (pid <= 0 || tgid <= 0)
3046 		return -EINVAL;
3047 
3048 	/* Not even root can pretend to send signals from the kernel.
3049 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3050 	 */
3051 	if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3052 	    (task_pid_vnr(current) != pid)) {
3053 		/* We used to allow any < 0 si_code */
3054 		WARN_ON_ONCE(info->si_code < 0);
3055 		return -EPERM;
3056 	}
3057 	info->si_signo = sig;
3058 
3059 	return do_send_specific(tgid, pid, sig, info);
3060 }
3061 
3062 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3063 		siginfo_t __user *, uinfo)
3064 {
3065 	siginfo_t info;
3066 
3067 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3068 		return -EFAULT;
3069 
3070 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3071 }
3072 
3073 #ifdef CONFIG_COMPAT
3074 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3075 			compat_pid_t, tgid,
3076 			compat_pid_t, pid,
3077 			int, sig,
3078 			struct compat_siginfo __user *, uinfo)
3079 {
3080 	siginfo_t info;
3081 
3082 	if (copy_siginfo_from_user32(&info, uinfo))
3083 		return -EFAULT;
3084 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3085 }
3086 #endif
3087 
3088 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3089 {
3090 	struct task_struct *t = current;
3091 	struct k_sigaction *k;
3092 	sigset_t mask;
3093 
3094 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3095 		return -EINVAL;
3096 
3097 	k = &t->sighand->action[sig-1];
3098 
3099 	spin_lock_irq(&current->sighand->siglock);
3100 	if (oact)
3101 		*oact = *k;
3102 
3103 	if (act) {
3104 		sigdelsetmask(&act->sa.sa_mask,
3105 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3106 		*k = *act;
3107 		/*
3108 		 * POSIX 3.3.1.3:
3109 		 *  "Setting a signal action to SIG_IGN for a signal that is
3110 		 *   pending shall cause the pending signal to be discarded,
3111 		 *   whether or not it is blocked."
3112 		 *
3113 		 *  "Setting a signal action to SIG_DFL for a signal that is
3114 		 *   pending and whose default action is to ignore the signal
3115 		 *   (for example, SIGCHLD), shall cause the pending signal to
3116 		 *   be discarded, whether or not it is blocked"
3117 		 */
3118 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3119 			sigemptyset(&mask);
3120 			sigaddset(&mask, sig);
3121 			rm_from_queue_full(&mask, &t->signal->shared_pending);
3122 			do {
3123 				rm_from_queue_full(&mask, &t->pending);
3124 				t = next_thread(t);
3125 			} while (t != current);
3126 		}
3127 	}
3128 
3129 	spin_unlock_irq(&current->sighand->siglock);
3130 	return 0;
3131 }
3132 
3133 static int
3134 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3135 {
3136 	stack_t oss;
3137 	int error;
3138 
3139 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3140 	oss.ss_size = current->sas_ss_size;
3141 	oss.ss_flags = sas_ss_flags(sp);
3142 
3143 	if (uss) {
3144 		void __user *ss_sp;
3145 		size_t ss_size;
3146 		int ss_flags;
3147 
3148 		error = -EFAULT;
3149 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3150 			goto out;
3151 		error = __get_user(ss_sp, &uss->ss_sp) |
3152 			__get_user(ss_flags, &uss->ss_flags) |
3153 			__get_user(ss_size, &uss->ss_size);
3154 		if (error)
3155 			goto out;
3156 
3157 		error = -EPERM;
3158 		if (on_sig_stack(sp))
3159 			goto out;
3160 
3161 		error = -EINVAL;
3162 		/*
3163 		 * Note - this code used to test ss_flags incorrectly:
3164 		 *  	  old code may have been written using ss_flags==0
3165 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3166 		 *	  way that worked) - this fix preserves that older
3167 		 *	  mechanism.
3168 		 */
3169 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3170 			goto out;
3171 
3172 		if (ss_flags == SS_DISABLE) {
3173 			ss_size = 0;
3174 			ss_sp = NULL;
3175 		} else {
3176 			error = -ENOMEM;
3177 			if (ss_size < MINSIGSTKSZ)
3178 				goto out;
3179 		}
3180 
3181 		current->sas_ss_sp = (unsigned long) ss_sp;
3182 		current->sas_ss_size = ss_size;
3183 	}
3184 
3185 	error = 0;
3186 	if (uoss) {
3187 		error = -EFAULT;
3188 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3189 			goto out;
3190 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3191 			__put_user(oss.ss_size, &uoss->ss_size) |
3192 			__put_user(oss.ss_flags, &uoss->ss_flags);
3193 	}
3194 
3195 out:
3196 	return error;
3197 }
3198 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3199 {
3200 	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3201 }
3202 
3203 int restore_altstack(const stack_t __user *uss)
3204 {
3205 	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3206 	/* squash all but EFAULT for now */
3207 	return err == -EFAULT ? err : 0;
3208 }
3209 
3210 int __save_altstack(stack_t __user *uss, unsigned long sp)
3211 {
3212 	struct task_struct *t = current;
3213 	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3214 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3215 		__put_user(t->sas_ss_size, &uss->ss_size);
3216 }
3217 
3218 #ifdef CONFIG_COMPAT
3219 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3220 			const compat_stack_t __user *, uss_ptr,
3221 			compat_stack_t __user *, uoss_ptr)
3222 {
3223 	stack_t uss, uoss;
3224 	int ret;
3225 	mm_segment_t seg;
3226 
3227 	if (uss_ptr) {
3228 		compat_stack_t uss32;
3229 
3230 		memset(&uss, 0, sizeof(stack_t));
3231 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3232 			return -EFAULT;
3233 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3234 		uss.ss_flags = uss32.ss_flags;
3235 		uss.ss_size = uss32.ss_size;
3236 	}
3237 	seg = get_fs();
3238 	set_fs(KERNEL_DS);
3239 	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3240 			     (stack_t __force __user *) &uoss,
3241 			     compat_user_stack_pointer());
3242 	set_fs(seg);
3243 	if (ret >= 0 && uoss_ptr)  {
3244 		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3245 		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3246 		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3247 		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3248 			ret = -EFAULT;
3249 	}
3250 	return ret;
3251 }
3252 
3253 int compat_restore_altstack(const compat_stack_t __user *uss)
3254 {
3255 	int err = compat_sys_sigaltstack(uss, NULL);
3256 	/* squash all but -EFAULT for now */
3257 	return err == -EFAULT ? err : 0;
3258 }
3259 
3260 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3261 {
3262 	struct task_struct *t = current;
3263 	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3264 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3265 		__put_user(t->sas_ss_size, &uss->ss_size);
3266 }
3267 #endif
3268 
3269 #ifdef __ARCH_WANT_SYS_SIGPENDING
3270 
3271 /**
3272  *  sys_sigpending - examine pending signals
3273  *  @set: where mask of pending signal is returned
3274  */
3275 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3276 {
3277 	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3278 }
3279 
3280 #endif
3281 
3282 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3283 /**
3284  *  sys_sigprocmask - examine and change blocked signals
3285  *  @how: whether to add, remove, or set signals
3286  *  @nset: signals to add or remove (if non-null)
3287  *  @oset: previous value of signal mask if non-null
3288  *
3289  * Some platforms have their own version with special arguments;
3290  * others support only sys_rt_sigprocmask.
3291  */
3292 
3293 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3294 		old_sigset_t __user *, oset)
3295 {
3296 	old_sigset_t old_set, new_set;
3297 	sigset_t new_blocked;
3298 
3299 	old_set = current->blocked.sig[0];
3300 
3301 	if (nset) {
3302 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3303 			return -EFAULT;
3304 
3305 		new_blocked = current->blocked;
3306 
3307 		switch (how) {
3308 		case SIG_BLOCK:
3309 			sigaddsetmask(&new_blocked, new_set);
3310 			break;
3311 		case SIG_UNBLOCK:
3312 			sigdelsetmask(&new_blocked, new_set);
3313 			break;
3314 		case SIG_SETMASK:
3315 			new_blocked.sig[0] = new_set;
3316 			break;
3317 		default:
3318 			return -EINVAL;
3319 		}
3320 
3321 		set_current_blocked(&new_blocked);
3322 	}
3323 
3324 	if (oset) {
3325 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3326 			return -EFAULT;
3327 	}
3328 
3329 	return 0;
3330 }
3331 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3332 
3333 #ifndef CONFIG_ODD_RT_SIGACTION
3334 /**
3335  *  sys_rt_sigaction - alter an action taken by a process
3336  *  @sig: signal to be sent
3337  *  @act: new sigaction
3338  *  @oact: used to save the previous sigaction
3339  *  @sigsetsize: size of sigset_t type
3340  */
3341 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3342 		const struct sigaction __user *, act,
3343 		struct sigaction __user *, oact,
3344 		size_t, sigsetsize)
3345 {
3346 	struct k_sigaction new_sa, old_sa;
3347 	int ret = -EINVAL;
3348 
3349 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3350 	if (sigsetsize != sizeof(sigset_t))
3351 		goto out;
3352 
3353 	if (act) {
3354 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3355 			return -EFAULT;
3356 	}
3357 
3358 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3359 
3360 	if (!ret && oact) {
3361 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3362 			return -EFAULT;
3363 	}
3364 out:
3365 	return ret;
3366 }
3367 #ifdef CONFIG_COMPAT
3368 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3369 		const struct compat_sigaction __user *, act,
3370 		struct compat_sigaction __user *, oact,
3371 		compat_size_t, sigsetsize)
3372 {
3373 	struct k_sigaction new_ka, old_ka;
3374 	compat_sigset_t mask;
3375 #ifdef __ARCH_HAS_SA_RESTORER
3376 	compat_uptr_t restorer;
3377 #endif
3378 	int ret;
3379 
3380 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3381 	if (sigsetsize != sizeof(compat_sigset_t))
3382 		return -EINVAL;
3383 
3384 	if (act) {
3385 		compat_uptr_t handler;
3386 		ret = get_user(handler, &act->sa_handler);
3387 		new_ka.sa.sa_handler = compat_ptr(handler);
3388 #ifdef __ARCH_HAS_SA_RESTORER
3389 		ret |= get_user(restorer, &act->sa_restorer);
3390 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3391 #endif
3392 		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3393 		ret |= __get_user(new_ka.sa.sa_flags, &act->sa_flags);
3394 		if (ret)
3395 			return -EFAULT;
3396 		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3397 	}
3398 
3399 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3400 	if (!ret && oact) {
3401 		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3402 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3403 			       &oact->sa_handler);
3404 		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3405 		ret |= __put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3406 #ifdef __ARCH_HAS_SA_RESTORER
3407 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3408 				&oact->sa_restorer);
3409 #endif
3410 	}
3411 	return ret;
3412 }
3413 #endif
3414 #endif /* !CONFIG_ODD_RT_SIGACTION */
3415 
3416 #ifdef CONFIG_OLD_SIGACTION
3417 SYSCALL_DEFINE3(sigaction, int, sig,
3418 		const struct old_sigaction __user *, act,
3419 	        struct old_sigaction __user *, oact)
3420 {
3421 	struct k_sigaction new_ka, old_ka;
3422 	int ret;
3423 
3424 	if (act) {
3425 		old_sigset_t mask;
3426 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3427 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3428 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3429 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3430 		    __get_user(mask, &act->sa_mask))
3431 			return -EFAULT;
3432 #ifdef __ARCH_HAS_KA_RESTORER
3433 		new_ka.ka_restorer = NULL;
3434 #endif
3435 		siginitset(&new_ka.sa.sa_mask, mask);
3436 	}
3437 
3438 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3439 
3440 	if (!ret && oact) {
3441 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3442 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3443 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3444 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3445 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3446 			return -EFAULT;
3447 	}
3448 
3449 	return ret;
3450 }
3451 #endif
3452 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3453 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3454 		const struct compat_old_sigaction __user *, act,
3455 	        struct compat_old_sigaction __user *, oact)
3456 {
3457 	struct k_sigaction new_ka, old_ka;
3458 	int ret;
3459 	compat_old_sigset_t mask;
3460 	compat_uptr_t handler, restorer;
3461 
3462 	if (act) {
3463 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3464 		    __get_user(handler, &act->sa_handler) ||
3465 		    __get_user(restorer, &act->sa_restorer) ||
3466 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3467 		    __get_user(mask, &act->sa_mask))
3468 			return -EFAULT;
3469 
3470 #ifdef __ARCH_HAS_KA_RESTORER
3471 		new_ka.ka_restorer = NULL;
3472 #endif
3473 		new_ka.sa.sa_handler = compat_ptr(handler);
3474 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3475 		siginitset(&new_ka.sa.sa_mask, mask);
3476 	}
3477 
3478 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3479 
3480 	if (!ret && oact) {
3481 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3482 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3483 			       &oact->sa_handler) ||
3484 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3485 			       &oact->sa_restorer) ||
3486 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3487 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3488 			return -EFAULT;
3489 	}
3490 	return ret;
3491 }
3492 #endif
3493 
3494 #ifdef __ARCH_WANT_SYS_SGETMASK
3495 
3496 /*
3497  * For backwards compatibility.  Functionality superseded by sigprocmask.
3498  */
3499 SYSCALL_DEFINE0(sgetmask)
3500 {
3501 	/* SMP safe */
3502 	return current->blocked.sig[0];
3503 }
3504 
3505 SYSCALL_DEFINE1(ssetmask, int, newmask)
3506 {
3507 	int old = current->blocked.sig[0];
3508 	sigset_t newset;
3509 
3510 	siginitset(&newset, newmask);
3511 	set_current_blocked(&newset);
3512 
3513 	return old;
3514 }
3515 #endif /* __ARCH_WANT_SGETMASK */
3516 
3517 #ifdef __ARCH_WANT_SYS_SIGNAL
3518 /*
3519  * For backwards compatibility.  Functionality superseded by sigaction.
3520  */
3521 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3522 {
3523 	struct k_sigaction new_sa, old_sa;
3524 	int ret;
3525 
3526 	new_sa.sa.sa_handler = handler;
3527 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3528 	sigemptyset(&new_sa.sa.sa_mask);
3529 
3530 	ret = do_sigaction(sig, &new_sa, &old_sa);
3531 
3532 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3533 }
3534 #endif /* __ARCH_WANT_SYS_SIGNAL */
3535 
3536 #ifdef __ARCH_WANT_SYS_PAUSE
3537 
3538 SYSCALL_DEFINE0(pause)
3539 {
3540 	while (!signal_pending(current)) {
3541 		current->state = TASK_INTERRUPTIBLE;
3542 		schedule();
3543 	}
3544 	return -ERESTARTNOHAND;
3545 }
3546 
3547 #endif
3548 
3549 int sigsuspend(sigset_t *set)
3550 {
3551 	current->saved_sigmask = current->blocked;
3552 	set_current_blocked(set);
3553 
3554 	current->state = TASK_INTERRUPTIBLE;
3555 	schedule();
3556 	set_restore_sigmask();
3557 	return -ERESTARTNOHAND;
3558 }
3559 
3560 /**
3561  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3562  *	@unewset value until a signal is received
3563  *  @unewset: new signal mask value
3564  *  @sigsetsize: size of sigset_t type
3565  */
3566 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3567 {
3568 	sigset_t newset;
3569 
3570 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3571 	if (sigsetsize != sizeof(sigset_t))
3572 		return -EINVAL;
3573 
3574 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3575 		return -EFAULT;
3576 	return sigsuspend(&newset);
3577 }
3578 
3579 #ifdef CONFIG_COMPAT
3580 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3581 {
3582 #ifdef __BIG_ENDIAN
3583 	sigset_t newset;
3584 	compat_sigset_t newset32;
3585 
3586 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3587 	if (sigsetsize != sizeof(sigset_t))
3588 		return -EINVAL;
3589 
3590 	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3591 		return -EFAULT;
3592 	sigset_from_compat(&newset, &newset32);
3593 	return sigsuspend(&newset);
3594 #else
3595 	/* on little-endian bitmaps don't care about granularity */
3596 	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3597 #endif
3598 }
3599 #endif
3600 
3601 #ifdef CONFIG_OLD_SIGSUSPEND
3602 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3603 {
3604 	sigset_t blocked;
3605 	siginitset(&blocked, mask);
3606 	return sigsuspend(&blocked);
3607 }
3608 #endif
3609 #ifdef CONFIG_OLD_SIGSUSPEND3
3610 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3611 {
3612 	sigset_t blocked;
3613 	siginitset(&blocked, mask);
3614 	return sigsuspend(&blocked);
3615 }
3616 #endif
3617 
3618 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3619 {
3620 	return NULL;
3621 }
3622 
3623 void __init signals_init(void)
3624 {
3625 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3626 }
3627 
3628 #ifdef CONFIG_KGDB_KDB
3629 #include <linux/kdb.h>
3630 /*
3631  * kdb_send_sig_info - Allows kdb to send signals without exposing
3632  * signal internals.  This function checks if the required locks are
3633  * available before calling the main signal code, to avoid kdb
3634  * deadlocks.
3635  */
3636 void
3637 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3638 {
3639 	static struct task_struct *kdb_prev_t;
3640 	int sig, new_t;
3641 	if (!spin_trylock(&t->sighand->siglock)) {
3642 		kdb_printf("Can't do kill command now.\n"
3643 			   "The sigmask lock is held somewhere else in "
3644 			   "kernel, try again later\n");
3645 		return;
3646 	}
3647 	spin_unlock(&t->sighand->siglock);
3648 	new_t = kdb_prev_t != t;
3649 	kdb_prev_t = t;
3650 	if (t->state != TASK_RUNNING && new_t) {
3651 		kdb_printf("Process is not RUNNING, sending a signal from "
3652 			   "kdb risks deadlock\n"
3653 			   "on the run queue locks. "
3654 			   "The signal has _not_ been sent.\n"
3655 			   "Reissue the kill command if you want to risk "
3656 			   "the deadlock.\n");
3657 		return;
3658 	}
3659 	sig = info->si_signo;
3660 	if (send_sig_info(sig, info, t))
3661 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3662 			   sig, t->pid);
3663 	else
3664 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3665 }
3666 #endif	/* CONFIG_KGDB_KDB */
3667