1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/tracehook.h> 26 #include <linux/capability.h> 27 #include <linux/freezer.h> 28 #include <linux/pid_namespace.h> 29 #include <linux/nsproxy.h> 30 31 #include <asm/param.h> 32 #include <asm/uaccess.h> 33 #include <asm/unistd.h> 34 #include <asm/siginfo.h> 35 #include "audit.h" /* audit_signal_info() */ 36 37 /* 38 * SLAB caches for signal bits. 39 */ 40 41 static struct kmem_cache *sigqueue_cachep; 42 43 static void __user *sig_handler(struct task_struct *t, int sig) 44 { 45 return t->sighand->action[sig - 1].sa.sa_handler; 46 } 47 48 static int sig_handler_ignored(void __user *handler, int sig) 49 { 50 /* Is it explicitly or implicitly ignored? */ 51 return handler == SIG_IGN || 52 (handler == SIG_DFL && sig_kernel_ignore(sig)); 53 } 54 55 static int sig_ignored(struct task_struct *t, int sig) 56 { 57 void __user *handler; 58 59 /* 60 * Blocked signals are never ignored, since the 61 * signal handler may change by the time it is 62 * unblocked. 63 */ 64 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 65 return 0; 66 67 handler = sig_handler(t, sig); 68 if (!sig_handler_ignored(handler, sig)) 69 return 0; 70 71 /* 72 * Tracers may want to know about even ignored signals. 73 */ 74 return !tracehook_consider_ignored_signal(t, sig, handler); 75 } 76 77 /* 78 * Re-calculate pending state from the set of locally pending 79 * signals, globally pending signals, and blocked signals. 80 */ 81 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 82 { 83 unsigned long ready; 84 long i; 85 86 switch (_NSIG_WORDS) { 87 default: 88 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 89 ready |= signal->sig[i] &~ blocked->sig[i]; 90 break; 91 92 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 93 ready |= signal->sig[2] &~ blocked->sig[2]; 94 ready |= signal->sig[1] &~ blocked->sig[1]; 95 ready |= signal->sig[0] &~ blocked->sig[0]; 96 break; 97 98 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 99 ready |= signal->sig[0] &~ blocked->sig[0]; 100 break; 101 102 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 103 } 104 return ready != 0; 105 } 106 107 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 108 109 static int recalc_sigpending_tsk(struct task_struct *t) 110 { 111 if (t->signal->group_stop_count > 0 || 112 PENDING(&t->pending, &t->blocked) || 113 PENDING(&t->signal->shared_pending, &t->blocked)) { 114 set_tsk_thread_flag(t, TIF_SIGPENDING); 115 return 1; 116 } 117 /* 118 * We must never clear the flag in another thread, or in current 119 * when it's possible the current syscall is returning -ERESTART*. 120 * So we don't clear it here, and only callers who know they should do. 121 */ 122 return 0; 123 } 124 125 /* 126 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 127 * This is superfluous when called on current, the wakeup is a harmless no-op. 128 */ 129 void recalc_sigpending_and_wake(struct task_struct *t) 130 { 131 if (recalc_sigpending_tsk(t)) 132 signal_wake_up(t, 0); 133 } 134 135 void recalc_sigpending(void) 136 { 137 if (unlikely(tracehook_force_sigpending())) 138 set_thread_flag(TIF_SIGPENDING); 139 else if (!recalc_sigpending_tsk(current) && !freezing(current)) 140 clear_thread_flag(TIF_SIGPENDING); 141 142 } 143 144 /* Given the mask, find the first available signal that should be serviced. */ 145 146 int next_signal(struct sigpending *pending, sigset_t *mask) 147 { 148 unsigned long i, *s, *m, x; 149 int sig = 0; 150 151 s = pending->signal.sig; 152 m = mask->sig; 153 switch (_NSIG_WORDS) { 154 default: 155 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 156 if ((x = *s &~ *m) != 0) { 157 sig = ffz(~x) + i*_NSIG_BPW + 1; 158 break; 159 } 160 break; 161 162 case 2: if ((x = s[0] &~ m[0]) != 0) 163 sig = 1; 164 else if ((x = s[1] &~ m[1]) != 0) 165 sig = _NSIG_BPW + 1; 166 else 167 break; 168 sig += ffz(~x); 169 break; 170 171 case 1: if ((x = *s &~ *m) != 0) 172 sig = ffz(~x) + 1; 173 break; 174 } 175 176 return sig; 177 } 178 179 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 180 int override_rlimit) 181 { 182 struct sigqueue *q = NULL; 183 struct user_struct *user; 184 185 /* 186 * In order to avoid problems with "switch_user()", we want to make 187 * sure that the compiler doesn't re-load "t->user" 188 */ 189 user = t->user; 190 barrier(); 191 atomic_inc(&user->sigpending); 192 if (override_rlimit || 193 atomic_read(&user->sigpending) <= 194 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 195 q = kmem_cache_alloc(sigqueue_cachep, flags); 196 if (unlikely(q == NULL)) { 197 atomic_dec(&user->sigpending); 198 } else { 199 INIT_LIST_HEAD(&q->list); 200 q->flags = 0; 201 q->user = get_uid(user); 202 } 203 return(q); 204 } 205 206 static void __sigqueue_free(struct sigqueue *q) 207 { 208 if (q->flags & SIGQUEUE_PREALLOC) 209 return; 210 atomic_dec(&q->user->sigpending); 211 free_uid(q->user); 212 kmem_cache_free(sigqueue_cachep, q); 213 } 214 215 void flush_sigqueue(struct sigpending *queue) 216 { 217 struct sigqueue *q; 218 219 sigemptyset(&queue->signal); 220 while (!list_empty(&queue->list)) { 221 q = list_entry(queue->list.next, struct sigqueue , list); 222 list_del_init(&q->list); 223 __sigqueue_free(q); 224 } 225 } 226 227 /* 228 * Flush all pending signals for a task. 229 */ 230 void flush_signals(struct task_struct *t) 231 { 232 unsigned long flags; 233 234 spin_lock_irqsave(&t->sighand->siglock, flags); 235 clear_tsk_thread_flag(t, TIF_SIGPENDING); 236 flush_sigqueue(&t->pending); 237 flush_sigqueue(&t->signal->shared_pending); 238 spin_unlock_irqrestore(&t->sighand->siglock, flags); 239 } 240 241 static void __flush_itimer_signals(struct sigpending *pending) 242 { 243 sigset_t signal, retain; 244 struct sigqueue *q, *n; 245 246 signal = pending->signal; 247 sigemptyset(&retain); 248 249 list_for_each_entry_safe(q, n, &pending->list, list) { 250 int sig = q->info.si_signo; 251 252 if (likely(q->info.si_code != SI_TIMER)) { 253 sigaddset(&retain, sig); 254 } else { 255 sigdelset(&signal, sig); 256 list_del_init(&q->list); 257 __sigqueue_free(q); 258 } 259 } 260 261 sigorsets(&pending->signal, &signal, &retain); 262 } 263 264 void flush_itimer_signals(void) 265 { 266 struct task_struct *tsk = current; 267 unsigned long flags; 268 269 spin_lock_irqsave(&tsk->sighand->siglock, flags); 270 __flush_itimer_signals(&tsk->pending); 271 __flush_itimer_signals(&tsk->signal->shared_pending); 272 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 273 } 274 275 void ignore_signals(struct task_struct *t) 276 { 277 int i; 278 279 for (i = 0; i < _NSIG; ++i) 280 t->sighand->action[i].sa.sa_handler = SIG_IGN; 281 282 flush_signals(t); 283 } 284 285 /* 286 * Flush all handlers for a task. 287 */ 288 289 void 290 flush_signal_handlers(struct task_struct *t, int force_default) 291 { 292 int i; 293 struct k_sigaction *ka = &t->sighand->action[0]; 294 for (i = _NSIG ; i != 0 ; i--) { 295 if (force_default || ka->sa.sa_handler != SIG_IGN) 296 ka->sa.sa_handler = SIG_DFL; 297 ka->sa.sa_flags = 0; 298 sigemptyset(&ka->sa.sa_mask); 299 ka++; 300 } 301 } 302 303 int unhandled_signal(struct task_struct *tsk, int sig) 304 { 305 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 306 if (is_global_init(tsk)) 307 return 1; 308 if (handler != SIG_IGN && handler != SIG_DFL) 309 return 0; 310 return !tracehook_consider_fatal_signal(tsk, sig, handler); 311 } 312 313 314 /* Notify the system that a driver wants to block all signals for this 315 * process, and wants to be notified if any signals at all were to be 316 * sent/acted upon. If the notifier routine returns non-zero, then the 317 * signal will be acted upon after all. If the notifier routine returns 0, 318 * then then signal will be blocked. Only one block per process is 319 * allowed. priv is a pointer to private data that the notifier routine 320 * can use to determine if the signal should be blocked or not. */ 321 322 void 323 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 324 { 325 unsigned long flags; 326 327 spin_lock_irqsave(¤t->sighand->siglock, flags); 328 current->notifier_mask = mask; 329 current->notifier_data = priv; 330 current->notifier = notifier; 331 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 332 } 333 334 /* Notify the system that blocking has ended. */ 335 336 void 337 unblock_all_signals(void) 338 { 339 unsigned long flags; 340 341 spin_lock_irqsave(¤t->sighand->siglock, flags); 342 current->notifier = NULL; 343 current->notifier_data = NULL; 344 recalc_sigpending(); 345 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 346 } 347 348 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 349 { 350 struct sigqueue *q, *first = NULL; 351 352 /* 353 * Collect the siginfo appropriate to this signal. Check if 354 * there is another siginfo for the same signal. 355 */ 356 list_for_each_entry(q, &list->list, list) { 357 if (q->info.si_signo == sig) { 358 if (first) 359 goto still_pending; 360 first = q; 361 } 362 } 363 364 sigdelset(&list->signal, sig); 365 366 if (first) { 367 still_pending: 368 list_del_init(&first->list); 369 copy_siginfo(info, &first->info); 370 __sigqueue_free(first); 371 } else { 372 /* Ok, it wasn't in the queue. This must be 373 a fast-pathed signal or we must have been 374 out of queue space. So zero out the info. 375 */ 376 info->si_signo = sig; 377 info->si_errno = 0; 378 info->si_code = 0; 379 info->si_pid = 0; 380 info->si_uid = 0; 381 } 382 } 383 384 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 385 siginfo_t *info) 386 { 387 int sig = next_signal(pending, mask); 388 389 if (sig) { 390 if (current->notifier) { 391 if (sigismember(current->notifier_mask, sig)) { 392 if (!(current->notifier)(current->notifier_data)) { 393 clear_thread_flag(TIF_SIGPENDING); 394 return 0; 395 } 396 } 397 } 398 399 collect_signal(sig, pending, info); 400 } 401 402 return sig; 403 } 404 405 /* 406 * Dequeue a signal and return the element to the caller, which is 407 * expected to free it. 408 * 409 * All callers have to hold the siglock. 410 */ 411 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 412 { 413 int signr; 414 415 /* We only dequeue private signals from ourselves, we don't let 416 * signalfd steal them 417 */ 418 signr = __dequeue_signal(&tsk->pending, mask, info); 419 if (!signr) { 420 signr = __dequeue_signal(&tsk->signal->shared_pending, 421 mask, info); 422 /* 423 * itimer signal ? 424 * 425 * itimers are process shared and we restart periodic 426 * itimers in the signal delivery path to prevent DoS 427 * attacks in the high resolution timer case. This is 428 * compliant with the old way of self restarting 429 * itimers, as the SIGALRM is a legacy signal and only 430 * queued once. Changing the restart behaviour to 431 * restart the timer in the signal dequeue path is 432 * reducing the timer noise on heavy loaded !highres 433 * systems too. 434 */ 435 if (unlikely(signr == SIGALRM)) { 436 struct hrtimer *tmr = &tsk->signal->real_timer; 437 438 if (!hrtimer_is_queued(tmr) && 439 tsk->signal->it_real_incr.tv64 != 0) { 440 hrtimer_forward(tmr, tmr->base->get_time(), 441 tsk->signal->it_real_incr); 442 hrtimer_restart(tmr); 443 } 444 } 445 } 446 447 recalc_sigpending(); 448 if (!signr) 449 return 0; 450 451 if (unlikely(sig_kernel_stop(signr))) { 452 /* 453 * Set a marker that we have dequeued a stop signal. Our 454 * caller might release the siglock and then the pending 455 * stop signal it is about to process is no longer in the 456 * pending bitmasks, but must still be cleared by a SIGCONT 457 * (and overruled by a SIGKILL). So those cases clear this 458 * shared flag after we've set it. Note that this flag may 459 * remain set after the signal we return is ignored or 460 * handled. That doesn't matter because its only purpose 461 * is to alert stop-signal processing code when another 462 * processor has come along and cleared the flag. 463 */ 464 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 465 } 466 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 467 /* 468 * Release the siglock to ensure proper locking order 469 * of timer locks outside of siglocks. Note, we leave 470 * irqs disabled here, since the posix-timers code is 471 * about to disable them again anyway. 472 */ 473 spin_unlock(&tsk->sighand->siglock); 474 do_schedule_next_timer(info); 475 spin_lock(&tsk->sighand->siglock); 476 } 477 return signr; 478 } 479 480 /* 481 * Tell a process that it has a new active signal.. 482 * 483 * NOTE! we rely on the previous spin_lock to 484 * lock interrupts for us! We can only be called with 485 * "siglock" held, and the local interrupt must 486 * have been disabled when that got acquired! 487 * 488 * No need to set need_resched since signal event passing 489 * goes through ->blocked 490 */ 491 void signal_wake_up(struct task_struct *t, int resume) 492 { 493 unsigned int mask; 494 495 set_tsk_thread_flag(t, TIF_SIGPENDING); 496 497 /* 498 * For SIGKILL, we want to wake it up in the stopped/traced/killable 499 * case. We don't check t->state here because there is a race with it 500 * executing another processor and just now entering stopped state. 501 * By using wake_up_state, we ensure the process will wake up and 502 * handle its death signal. 503 */ 504 mask = TASK_INTERRUPTIBLE; 505 if (resume) 506 mask |= TASK_WAKEKILL; 507 if (!wake_up_state(t, mask)) 508 kick_process(t); 509 } 510 511 /* 512 * Remove signals in mask from the pending set and queue. 513 * Returns 1 if any signals were found. 514 * 515 * All callers must be holding the siglock. 516 * 517 * This version takes a sigset mask and looks at all signals, 518 * not just those in the first mask word. 519 */ 520 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 521 { 522 struct sigqueue *q, *n; 523 sigset_t m; 524 525 sigandsets(&m, mask, &s->signal); 526 if (sigisemptyset(&m)) 527 return 0; 528 529 signandsets(&s->signal, &s->signal, mask); 530 list_for_each_entry_safe(q, n, &s->list, list) { 531 if (sigismember(mask, q->info.si_signo)) { 532 list_del_init(&q->list); 533 __sigqueue_free(q); 534 } 535 } 536 return 1; 537 } 538 /* 539 * Remove signals in mask from the pending set and queue. 540 * Returns 1 if any signals were found. 541 * 542 * All callers must be holding the siglock. 543 */ 544 static int rm_from_queue(unsigned long mask, struct sigpending *s) 545 { 546 struct sigqueue *q, *n; 547 548 if (!sigtestsetmask(&s->signal, mask)) 549 return 0; 550 551 sigdelsetmask(&s->signal, mask); 552 list_for_each_entry_safe(q, n, &s->list, list) { 553 if (q->info.si_signo < SIGRTMIN && 554 (mask & sigmask(q->info.si_signo))) { 555 list_del_init(&q->list); 556 __sigqueue_free(q); 557 } 558 } 559 return 1; 560 } 561 562 /* 563 * Bad permissions for sending the signal 564 */ 565 static int check_kill_permission(int sig, struct siginfo *info, 566 struct task_struct *t) 567 { 568 struct pid *sid; 569 int error; 570 571 if (!valid_signal(sig)) 572 return -EINVAL; 573 574 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info))) 575 return 0; 576 577 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 578 if (error) 579 return error; 580 581 if ((current->euid ^ t->suid) && (current->euid ^ t->uid) && 582 (current->uid ^ t->suid) && (current->uid ^ t->uid) && 583 !capable(CAP_KILL)) { 584 switch (sig) { 585 case SIGCONT: 586 sid = task_session(t); 587 /* 588 * We don't return the error if sid == NULL. The 589 * task was unhashed, the caller must notice this. 590 */ 591 if (!sid || sid == task_session(current)) 592 break; 593 default: 594 return -EPERM; 595 } 596 } 597 598 return security_task_kill(t, info, sig, 0); 599 } 600 601 /* 602 * Handle magic process-wide effects of stop/continue signals. Unlike 603 * the signal actions, these happen immediately at signal-generation 604 * time regardless of blocking, ignoring, or handling. This does the 605 * actual continuing for SIGCONT, but not the actual stopping for stop 606 * signals. The process stop is done as a signal action for SIG_DFL. 607 * 608 * Returns true if the signal should be actually delivered, otherwise 609 * it should be dropped. 610 */ 611 static int prepare_signal(int sig, struct task_struct *p) 612 { 613 struct signal_struct *signal = p->signal; 614 struct task_struct *t; 615 616 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { 617 /* 618 * The process is in the middle of dying, nothing to do. 619 */ 620 } else if (sig_kernel_stop(sig)) { 621 /* 622 * This is a stop signal. Remove SIGCONT from all queues. 623 */ 624 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); 625 t = p; 626 do { 627 rm_from_queue(sigmask(SIGCONT), &t->pending); 628 } while_each_thread(p, t); 629 } else if (sig == SIGCONT) { 630 unsigned int why; 631 /* 632 * Remove all stop signals from all queues, 633 * and wake all threads. 634 */ 635 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); 636 t = p; 637 do { 638 unsigned int state; 639 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 640 /* 641 * If there is a handler for SIGCONT, we must make 642 * sure that no thread returns to user mode before 643 * we post the signal, in case it was the only 644 * thread eligible to run the signal handler--then 645 * it must not do anything between resuming and 646 * running the handler. With the TIF_SIGPENDING 647 * flag set, the thread will pause and acquire the 648 * siglock that we hold now and until we've queued 649 * the pending signal. 650 * 651 * Wake up the stopped thread _after_ setting 652 * TIF_SIGPENDING 653 */ 654 state = __TASK_STOPPED; 655 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 656 set_tsk_thread_flag(t, TIF_SIGPENDING); 657 state |= TASK_INTERRUPTIBLE; 658 } 659 wake_up_state(t, state); 660 } while_each_thread(p, t); 661 662 /* 663 * Notify the parent with CLD_CONTINUED if we were stopped. 664 * 665 * If we were in the middle of a group stop, we pretend it 666 * was already finished, and then continued. Since SIGCHLD 667 * doesn't queue we report only CLD_STOPPED, as if the next 668 * CLD_CONTINUED was dropped. 669 */ 670 why = 0; 671 if (signal->flags & SIGNAL_STOP_STOPPED) 672 why |= SIGNAL_CLD_CONTINUED; 673 else if (signal->group_stop_count) 674 why |= SIGNAL_CLD_STOPPED; 675 676 if (why) { 677 /* 678 * The first thread which returns from finish_stop() 679 * will take ->siglock, notice SIGNAL_CLD_MASK, and 680 * notify its parent. See get_signal_to_deliver(). 681 */ 682 signal->flags = why | SIGNAL_STOP_CONTINUED; 683 signal->group_stop_count = 0; 684 signal->group_exit_code = 0; 685 } else { 686 /* 687 * We are not stopped, but there could be a stop 688 * signal in the middle of being processed after 689 * being removed from the queue. Clear that too. 690 */ 691 signal->flags &= ~SIGNAL_STOP_DEQUEUED; 692 } 693 } 694 695 return !sig_ignored(p, sig); 696 } 697 698 /* 699 * Test if P wants to take SIG. After we've checked all threads with this, 700 * it's equivalent to finding no threads not blocking SIG. Any threads not 701 * blocking SIG were ruled out because they are not running and already 702 * have pending signals. Such threads will dequeue from the shared queue 703 * as soon as they're available, so putting the signal on the shared queue 704 * will be equivalent to sending it to one such thread. 705 */ 706 static inline int wants_signal(int sig, struct task_struct *p) 707 { 708 if (sigismember(&p->blocked, sig)) 709 return 0; 710 if (p->flags & PF_EXITING) 711 return 0; 712 if (sig == SIGKILL) 713 return 1; 714 if (task_is_stopped_or_traced(p)) 715 return 0; 716 return task_curr(p) || !signal_pending(p); 717 } 718 719 static void complete_signal(int sig, struct task_struct *p, int group) 720 { 721 struct signal_struct *signal = p->signal; 722 struct task_struct *t; 723 724 /* 725 * Now find a thread we can wake up to take the signal off the queue. 726 * 727 * If the main thread wants the signal, it gets first crack. 728 * Probably the least surprising to the average bear. 729 */ 730 if (wants_signal(sig, p)) 731 t = p; 732 else if (!group || thread_group_empty(p)) 733 /* 734 * There is just one thread and it does not need to be woken. 735 * It will dequeue unblocked signals before it runs again. 736 */ 737 return; 738 else { 739 /* 740 * Otherwise try to find a suitable thread. 741 */ 742 t = signal->curr_target; 743 while (!wants_signal(sig, t)) { 744 t = next_thread(t); 745 if (t == signal->curr_target) 746 /* 747 * No thread needs to be woken. 748 * Any eligible threads will see 749 * the signal in the queue soon. 750 */ 751 return; 752 } 753 signal->curr_target = t; 754 } 755 756 /* 757 * Found a killable thread. If the signal will be fatal, 758 * then start taking the whole group down immediately. 759 */ 760 if (sig_fatal(p, sig) && 761 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 762 !sigismember(&t->real_blocked, sig) && 763 (sig == SIGKILL || 764 !tracehook_consider_fatal_signal(t, sig, SIG_DFL))) { 765 /* 766 * This signal will be fatal to the whole group. 767 */ 768 if (!sig_kernel_coredump(sig)) { 769 /* 770 * Start a group exit and wake everybody up. 771 * This way we don't have other threads 772 * running and doing things after a slower 773 * thread has the fatal signal pending. 774 */ 775 signal->flags = SIGNAL_GROUP_EXIT; 776 signal->group_exit_code = sig; 777 signal->group_stop_count = 0; 778 t = p; 779 do { 780 sigaddset(&t->pending.signal, SIGKILL); 781 signal_wake_up(t, 1); 782 } while_each_thread(p, t); 783 return; 784 } 785 } 786 787 /* 788 * The signal is already in the shared-pending queue. 789 * Tell the chosen thread to wake up and dequeue it. 790 */ 791 signal_wake_up(t, sig == SIGKILL); 792 return; 793 } 794 795 static inline int legacy_queue(struct sigpending *signals, int sig) 796 { 797 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 798 } 799 800 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 801 int group) 802 { 803 struct sigpending *pending; 804 struct sigqueue *q; 805 806 assert_spin_locked(&t->sighand->siglock); 807 if (!prepare_signal(sig, t)) 808 return 0; 809 810 pending = group ? &t->signal->shared_pending : &t->pending; 811 /* 812 * Short-circuit ignored signals and support queuing 813 * exactly one non-rt signal, so that we can get more 814 * detailed information about the cause of the signal. 815 */ 816 if (legacy_queue(pending, sig)) 817 return 0; 818 /* 819 * fast-pathed signals for kernel-internal things like SIGSTOP 820 * or SIGKILL. 821 */ 822 if (info == SEND_SIG_FORCED) 823 goto out_set; 824 825 /* Real-time signals must be queued if sent by sigqueue, or 826 some other real-time mechanism. It is implementation 827 defined whether kill() does so. We attempt to do so, on 828 the principle of least surprise, but since kill is not 829 allowed to fail with EAGAIN when low on memory we just 830 make sure at least one signal gets delivered and don't 831 pass on the info struct. */ 832 833 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 834 (is_si_special(info) || 835 info->si_code >= 0))); 836 if (q) { 837 list_add_tail(&q->list, &pending->list); 838 switch ((unsigned long) info) { 839 case (unsigned long) SEND_SIG_NOINFO: 840 q->info.si_signo = sig; 841 q->info.si_errno = 0; 842 q->info.si_code = SI_USER; 843 q->info.si_pid = task_pid_vnr(current); 844 q->info.si_uid = current->uid; 845 break; 846 case (unsigned long) SEND_SIG_PRIV: 847 q->info.si_signo = sig; 848 q->info.si_errno = 0; 849 q->info.si_code = SI_KERNEL; 850 q->info.si_pid = 0; 851 q->info.si_uid = 0; 852 break; 853 default: 854 copy_siginfo(&q->info, info); 855 break; 856 } 857 } else if (!is_si_special(info)) { 858 if (sig >= SIGRTMIN && info->si_code != SI_USER) 859 /* 860 * Queue overflow, abort. We may abort if the signal was rt 861 * and sent by user using something other than kill(). 862 */ 863 return -EAGAIN; 864 } 865 866 out_set: 867 signalfd_notify(t, sig); 868 sigaddset(&pending->signal, sig); 869 complete_signal(sig, t, group); 870 return 0; 871 } 872 873 int print_fatal_signals; 874 875 static void print_fatal_signal(struct pt_regs *regs, int signr) 876 { 877 printk("%s/%d: potentially unexpected fatal signal %d.\n", 878 current->comm, task_pid_nr(current), signr); 879 880 #if defined(__i386__) && !defined(__arch_um__) 881 printk("code at %08lx: ", regs->ip); 882 { 883 int i; 884 for (i = 0; i < 16; i++) { 885 unsigned char insn; 886 887 __get_user(insn, (unsigned char *)(regs->ip + i)); 888 printk("%02x ", insn); 889 } 890 } 891 #endif 892 printk("\n"); 893 show_regs(regs); 894 } 895 896 static int __init setup_print_fatal_signals(char *str) 897 { 898 get_option (&str, &print_fatal_signals); 899 900 return 1; 901 } 902 903 __setup("print-fatal-signals=", setup_print_fatal_signals); 904 905 int 906 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 907 { 908 return send_signal(sig, info, p, 1); 909 } 910 911 static int 912 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 913 { 914 return send_signal(sig, info, t, 0); 915 } 916 917 /* 918 * Force a signal that the process can't ignore: if necessary 919 * we unblock the signal and change any SIG_IGN to SIG_DFL. 920 * 921 * Note: If we unblock the signal, we always reset it to SIG_DFL, 922 * since we do not want to have a signal handler that was blocked 923 * be invoked when user space had explicitly blocked it. 924 * 925 * We don't want to have recursive SIGSEGV's etc, for example, 926 * that is why we also clear SIGNAL_UNKILLABLE. 927 */ 928 int 929 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 930 { 931 unsigned long int flags; 932 int ret, blocked, ignored; 933 struct k_sigaction *action; 934 935 spin_lock_irqsave(&t->sighand->siglock, flags); 936 action = &t->sighand->action[sig-1]; 937 ignored = action->sa.sa_handler == SIG_IGN; 938 blocked = sigismember(&t->blocked, sig); 939 if (blocked || ignored) { 940 action->sa.sa_handler = SIG_DFL; 941 if (blocked) { 942 sigdelset(&t->blocked, sig); 943 recalc_sigpending_and_wake(t); 944 } 945 } 946 if (action->sa.sa_handler == SIG_DFL) 947 t->signal->flags &= ~SIGNAL_UNKILLABLE; 948 ret = specific_send_sig_info(sig, info, t); 949 spin_unlock_irqrestore(&t->sighand->siglock, flags); 950 951 return ret; 952 } 953 954 void 955 force_sig_specific(int sig, struct task_struct *t) 956 { 957 force_sig_info(sig, SEND_SIG_FORCED, t); 958 } 959 960 /* 961 * Nuke all other threads in the group. 962 */ 963 void zap_other_threads(struct task_struct *p) 964 { 965 struct task_struct *t; 966 967 p->signal->group_stop_count = 0; 968 969 for (t = next_thread(p); t != p; t = next_thread(t)) { 970 /* 971 * Don't bother with already dead threads 972 */ 973 if (t->exit_state) 974 continue; 975 976 /* SIGKILL will be handled before any pending SIGSTOP */ 977 sigaddset(&t->pending.signal, SIGKILL); 978 signal_wake_up(t, 1); 979 } 980 } 981 982 int __fatal_signal_pending(struct task_struct *tsk) 983 { 984 return sigismember(&tsk->pending.signal, SIGKILL); 985 } 986 EXPORT_SYMBOL(__fatal_signal_pending); 987 988 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 989 { 990 struct sighand_struct *sighand; 991 992 rcu_read_lock(); 993 for (;;) { 994 sighand = rcu_dereference(tsk->sighand); 995 if (unlikely(sighand == NULL)) 996 break; 997 998 spin_lock_irqsave(&sighand->siglock, *flags); 999 if (likely(sighand == tsk->sighand)) 1000 break; 1001 spin_unlock_irqrestore(&sighand->siglock, *flags); 1002 } 1003 rcu_read_unlock(); 1004 1005 return sighand; 1006 } 1007 1008 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1009 { 1010 unsigned long flags; 1011 int ret; 1012 1013 ret = check_kill_permission(sig, info, p); 1014 1015 if (!ret && sig) { 1016 ret = -ESRCH; 1017 if (lock_task_sighand(p, &flags)) { 1018 ret = __group_send_sig_info(sig, info, p); 1019 unlock_task_sighand(p, &flags); 1020 } 1021 } 1022 1023 return ret; 1024 } 1025 1026 /* 1027 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1028 * control characters do (^C, ^Z etc) 1029 */ 1030 1031 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1032 { 1033 struct task_struct *p = NULL; 1034 int retval, success; 1035 1036 success = 0; 1037 retval = -ESRCH; 1038 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1039 int err = group_send_sig_info(sig, info, p); 1040 success |= !err; 1041 retval = err; 1042 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1043 return success ? 0 : retval; 1044 } 1045 1046 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1047 { 1048 int error = -ESRCH; 1049 struct task_struct *p; 1050 1051 rcu_read_lock(); 1052 retry: 1053 p = pid_task(pid, PIDTYPE_PID); 1054 if (p) { 1055 error = group_send_sig_info(sig, info, p); 1056 if (unlikely(error == -ESRCH)) 1057 /* 1058 * The task was unhashed in between, try again. 1059 * If it is dead, pid_task() will return NULL, 1060 * if we race with de_thread() it will find the 1061 * new leader. 1062 */ 1063 goto retry; 1064 } 1065 rcu_read_unlock(); 1066 1067 return error; 1068 } 1069 1070 int 1071 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1072 { 1073 int error; 1074 rcu_read_lock(); 1075 error = kill_pid_info(sig, info, find_vpid(pid)); 1076 rcu_read_unlock(); 1077 return error; 1078 } 1079 1080 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1081 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, 1082 uid_t uid, uid_t euid, u32 secid) 1083 { 1084 int ret = -EINVAL; 1085 struct task_struct *p; 1086 1087 if (!valid_signal(sig)) 1088 return ret; 1089 1090 read_lock(&tasklist_lock); 1091 p = pid_task(pid, PIDTYPE_PID); 1092 if (!p) { 1093 ret = -ESRCH; 1094 goto out_unlock; 1095 } 1096 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 1097 && (euid != p->suid) && (euid != p->uid) 1098 && (uid != p->suid) && (uid != p->uid)) { 1099 ret = -EPERM; 1100 goto out_unlock; 1101 } 1102 ret = security_task_kill(p, info, sig, secid); 1103 if (ret) 1104 goto out_unlock; 1105 if (sig && p->sighand) { 1106 unsigned long flags; 1107 spin_lock_irqsave(&p->sighand->siglock, flags); 1108 ret = __group_send_sig_info(sig, info, p); 1109 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1110 } 1111 out_unlock: 1112 read_unlock(&tasklist_lock); 1113 return ret; 1114 } 1115 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); 1116 1117 /* 1118 * kill_something_info() interprets pid in interesting ways just like kill(2). 1119 * 1120 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1121 * is probably wrong. Should make it like BSD or SYSV. 1122 */ 1123 1124 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1125 { 1126 int ret; 1127 1128 if (pid > 0) { 1129 rcu_read_lock(); 1130 ret = kill_pid_info(sig, info, find_vpid(pid)); 1131 rcu_read_unlock(); 1132 return ret; 1133 } 1134 1135 read_lock(&tasklist_lock); 1136 if (pid != -1) { 1137 ret = __kill_pgrp_info(sig, info, 1138 pid ? find_vpid(-pid) : task_pgrp(current)); 1139 } else { 1140 int retval = 0, count = 0; 1141 struct task_struct * p; 1142 1143 for_each_process(p) { 1144 if (p->pid > 1 && !same_thread_group(p, current)) { 1145 int err = group_send_sig_info(sig, info, p); 1146 ++count; 1147 if (err != -EPERM) 1148 retval = err; 1149 } 1150 } 1151 ret = count ? retval : -ESRCH; 1152 } 1153 read_unlock(&tasklist_lock); 1154 1155 return ret; 1156 } 1157 1158 /* 1159 * These are for backward compatibility with the rest of the kernel source. 1160 */ 1161 1162 /* 1163 * The caller must ensure the task can't exit. 1164 */ 1165 int 1166 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1167 { 1168 int ret; 1169 unsigned long flags; 1170 1171 /* 1172 * Make sure legacy kernel users don't send in bad values 1173 * (normal paths check this in check_kill_permission). 1174 */ 1175 if (!valid_signal(sig)) 1176 return -EINVAL; 1177 1178 spin_lock_irqsave(&p->sighand->siglock, flags); 1179 ret = specific_send_sig_info(sig, info, p); 1180 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1181 return ret; 1182 } 1183 1184 #define __si_special(priv) \ 1185 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1186 1187 int 1188 send_sig(int sig, struct task_struct *p, int priv) 1189 { 1190 return send_sig_info(sig, __si_special(priv), p); 1191 } 1192 1193 void 1194 force_sig(int sig, struct task_struct *p) 1195 { 1196 force_sig_info(sig, SEND_SIG_PRIV, p); 1197 } 1198 1199 /* 1200 * When things go south during signal handling, we 1201 * will force a SIGSEGV. And if the signal that caused 1202 * the problem was already a SIGSEGV, we'll want to 1203 * make sure we don't even try to deliver the signal.. 1204 */ 1205 int 1206 force_sigsegv(int sig, struct task_struct *p) 1207 { 1208 if (sig == SIGSEGV) { 1209 unsigned long flags; 1210 spin_lock_irqsave(&p->sighand->siglock, flags); 1211 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1212 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1213 } 1214 force_sig(SIGSEGV, p); 1215 return 0; 1216 } 1217 1218 int kill_pgrp(struct pid *pid, int sig, int priv) 1219 { 1220 int ret; 1221 1222 read_lock(&tasklist_lock); 1223 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1224 read_unlock(&tasklist_lock); 1225 1226 return ret; 1227 } 1228 EXPORT_SYMBOL(kill_pgrp); 1229 1230 int kill_pid(struct pid *pid, int sig, int priv) 1231 { 1232 return kill_pid_info(sig, __si_special(priv), pid); 1233 } 1234 EXPORT_SYMBOL(kill_pid); 1235 1236 /* 1237 * These functions support sending signals using preallocated sigqueue 1238 * structures. This is needed "because realtime applications cannot 1239 * afford to lose notifications of asynchronous events, like timer 1240 * expirations or I/O completions". In the case of Posix Timers 1241 * we allocate the sigqueue structure from the timer_create. If this 1242 * allocation fails we are able to report the failure to the application 1243 * with an EAGAIN error. 1244 */ 1245 1246 struct sigqueue *sigqueue_alloc(void) 1247 { 1248 struct sigqueue *q; 1249 1250 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1251 q->flags |= SIGQUEUE_PREALLOC; 1252 return(q); 1253 } 1254 1255 void sigqueue_free(struct sigqueue *q) 1256 { 1257 unsigned long flags; 1258 spinlock_t *lock = ¤t->sighand->siglock; 1259 1260 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1261 /* 1262 * We must hold ->siglock while testing q->list 1263 * to serialize with collect_signal() or with 1264 * __exit_signal()->flush_sigqueue(). 1265 */ 1266 spin_lock_irqsave(lock, flags); 1267 q->flags &= ~SIGQUEUE_PREALLOC; 1268 /* 1269 * If it is queued it will be freed when dequeued, 1270 * like the "regular" sigqueue. 1271 */ 1272 if (!list_empty(&q->list)) 1273 q = NULL; 1274 spin_unlock_irqrestore(lock, flags); 1275 1276 if (q) 1277 __sigqueue_free(q); 1278 } 1279 1280 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1281 { 1282 int sig = q->info.si_signo; 1283 struct sigpending *pending; 1284 unsigned long flags; 1285 int ret; 1286 1287 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1288 1289 ret = -1; 1290 if (!likely(lock_task_sighand(t, &flags))) 1291 goto ret; 1292 1293 ret = 1; /* the signal is ignored */ 1294 if (!prepare_signal(sig, t)) 1295 goto out; 1296 1297 ret = 0; 1298 if (unlikely(!list_empty(&q->list))) { 1299 /* 1300 * If an SI_TIMER entry is already queue just increment 1301 * the overrun count. 1302 */ 1303 BUG_ON(q->info.si_code != SI_TIMER); 1304 q->info.si_overrun++; 1305 goto out; 1306 } 1307 1308 signalfd_notify(t, sig); 1309 pending = group ? &t->signal->shared_pending : &t->pending; 1310 list_add_tail(&q->list, &pending->list); 1311 sigaddset(&pending->signal, sig); 1312 complete_signal(sig, t, group); 1313 out: 1314 unlock_task_sighand(t, &flags); 1315 ret: 1316 return ret; 1317 } 1318 1319 /* 1320 * Wake up any threads in the parent blocked in wait* syscalls. 1321 */ 1322 static inline void __wake_up_parent(struct task_struct *p, 1323 struct task_struct *parent) 1324 { 1325 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1326 } 1327 1328 /* 1329 * Let a parent know about the death of a child. 1330 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1331 * 1332 * Returns -1 if our parent ignored us and so we've switched to 1333 * self-reaping, or else @sig. 1334 */ 1335 int do_notify_parent(struct task_struct *tsk, int sig) 1336 { 1337 struct siginfo info; 1338 unsigned long flags; 1339 struct sighand_struct *psig; 1340 1341 BUG_ON(sig == -1); 1342 1343 /* do_notify_parent_cldstop should have been called instead. */ 1344 BUG_ON(task_is_stopped_or_traced(tsk)); 1345 1346 BUG_ON(!tsk->ptrace && 1347 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1348 1349 info.si_signo = sig; 1350 info.si_errno = 0; 1351 /* 1352 * we are under tasklist_lock here so our parent is tied to 1353 * us and cannot exit and release its namespace. 1354 * 1355 * the only it can is to switch its nsproxy with sys_unshare, 1356 * bu uncharing pid namespaces is not allowed, so we'll always 1357 * see relevant namespace 1358 * 1359 * write_lock() currently calls preempt_disable() which is the 1360 * same as rcu_read_lock(), but according to Oleg, this is not 1361 * correct to rely on this 1362 */ 1363 rcu_read_lock(); 1364 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); 1365 rcu_read_unlock(); 1366 1367 info.si_uid = tsk->uid; 1368 1369 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime, 1370 tsk->signal->utime)); 1371 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime, 1372 tsk->signal->stime)); 1373 1374 info.si_status = tsk->exit_code & 0x7f; 1375 if (tsk->exit_code & 0x80) 1376 info.si_code = CLD_DUMPED; 1377 else if (tsk->exit_code & 0x7f) 1378 info.si_code = CLD_KILLED; 1379 else { 1380 info.si_code = CLD_EXITED; 1381 info.si_status = tsk->exit_code >> 8; 1382 } 1383 1384 psig = tsk->parent->sighand; 1385 spin_lock_irqsave(&psig->siglock, flags); 1386 if (!tsk->ptrace && sig == SIGCHLD && 1387 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1388 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1389 /* 1390 * We are exiting and our parent doesn't care. POSIX.1 1391 * defines special semantics for setting SIGCHLD to SIG_IGN 1392 * or setting the SA_NOCLDWAIT flag: we should be reaped 1393 * automatically and not left for our parent's wait4 call. 1394 * Rather than having the parent do it as a magic kind of 1395 * signal handler, we just set this to tell do_exit that we 1396 * can be cleaned up without becoming a zombie. Note that 1397 * we still call __wake_up_parent in this case, because a 1398 * blocked sys_wait4 might now return -ECHILD. 1399 * 1400 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1401 * is implementation-defined: we do (if you don't want 1402 * it, just use SIG_IGN instead). 1403 */ 1404 tsk->exit_signal = -1; 1405 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1406 sig = -1; 1407 } 1408 if (valid_signal(sig) && sig > 0) 1409 __group_send_sig_info(sig, &info, tsk->parent); 1410 __wake_up_parent(tsk, tsk->parent); 1411 spin_unlock_irqrestore(&psig->siglock, flags); 1412 1413 return sig; 1414 } 1415 1416 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1417 { 1418 struct siginfo info; 1419 unsigned long flags; 1420 struct task_struct *parent; 1421 struct sighand_struct *sighand; 1422 1423 if (tsk->ptrace & PT_PTRACED) 1424 parent = tsk->parent; 1425 else { 1426 tsk = tsk->group_leader; 1427 parent = tsk->real_parent; 1428 } 1429 1430 info.si_signo = SIGCHLD; 1431 info.si_errno = 0; 1432 /* 1433 * see comment in do_notify_parent() abot the following 3 lines 1434 */ 1435 rcu_read_lock(); 1436 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); 1437 rcu_read_unlock(); 1438 1439 info.si_uid = tsk->uid; 1440 1441 info.si_utime = cputime_to_clock_t(tsk->utime); 1442 info.si_stime = cputime_to_clock_t(tsk->stime); 1443 1444 info.si_code = why; 1445 switch (why) { 1446 case CLD_CONTINUED: 1447 info.si_status = SIGCONT; 1448 break; 1449 case CLD_STOPPED: 1450 info.si_status = tsk->signal->group_exit_code & 0x7f; 1451 break; 1452 case CLD_TRAPPED: 1453 info.si_status = tsk->exit_code & 0x7f; 1454 break; 1455 default: 1456 BUG(); 1457 } 1458 1459 sighand = parent->sighand; 1460 spin_lock_irqsave(&sighand->siglock, flags); 1461 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1462 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1463 __group_send_sig_info(SIGCHLD, &info, parent); 1464 /* 1465 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1466 */ 1467 __wake_up_parent(tsk, parent); 1468 spin_unlock_irqrestore(&sighand->siglock, flags); 1469 } 1470 1471 static inline int may_ptrace_stop(void) 1472 { 1473 if (!likely(current->ptrace & PT_PTRACED)) 1474 return 0; 1475 /* 1476 * Are we in the middle of do_coredump? 1477 * If so and our tracer is also part of the coredump stopping 1478 * is a deadlock situation, and pointless because our tracer 1479 * is dead so don't allow us to stop. 1480 * If SIGKILL was already sent before the caller unlocked 1481 * ->siglock we must see ->core_state != NULL. Otherwise it 1482 * is safe to enter schedule(). 1483 */ 1484 if (unlikely(current->mm->core_state) && 1485 unlikely(current->mm == current->parent->mm)) 1486 return 0; 1487 1488 return 1; 1489 } 1490 1491 /* 1492 * Return nonzero if there is a SIGKILL that should be waking us up. 1493 * Called with the siglock held. 1494 */ 1495 static int sigkill_pending(struct task_struct *tsk) 1496 { 1497 return sigismember(&tsk->pending.signal, SIGKILL) || 1498 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1499 } 1500 1501 /* 1502 * This must be called with current->sighand->siglock held. 1503 * 1504 * This should be the path for all ptrace stops. 1505 * We always set current->last_siginfo while stopped here. 1506 * That makes it a way to test a stopped process for 1507 * being ptrace-stopped vs being job-control-stopped. 1508 * 1509 * If we actually decide not to stop at all because the tracer 1510 * is gone, we keep current->exit_code unless clear_code. 1511 */ 1512 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info) 1513 { 1514 if (arch_ptrace_stop_needed(exit_code, info)) { 1515 /* 1516 * The arch code has something special to do before a 1517 * ptrace stop. This is allowed to block, e.g. for faults 1518 * on user stack pages. We can't keep the siglock while 1519 * calling arch_ptrace_stop, so we must release it now. 1520 * To preserve proper semantics, we must do this before 1521 * any signal bookkeeping like checking group_stop_count. 1522 * Meanwhile, a SIGKILL could come in before we retake the 1523 * siglock. That must prevent us from sleeping in TASK_TRACED. 1524 * So after regaining the lock, we must check for SIGKILL. 1525 */ 1526 spin_unlock_irq(¤t->sighand->siglock); 1527 arch_ptrace_stop(exit_code, info); 1528 spin_lock_irq(¤t->sighand->siglock); 1529 if (sigkill_pending(current)) 1530 return; 1531 } 1532 1533 /* 1534 * If there is a group stop in progress, 1535 * we must participate in the bookkeeping. 1536 */ 1537 if (current->signal->group_stop_count > 0) 1538 --current->signal->group_stop_count; 1539 1540 current->last_siginfo = info; 1541 current->exit_code = exit_code; 1542 1543 /* Let the debugger run. */ 1544 __set_current_state(TASK_TRACED); 1545 spin_unlock_irq(¤t->sighand->siglock); 1546 read_lock(&tasklist_lock); 1547 if (may_ptrace_stop()) { 1548 do_notify_parent_cldstop(current, CLD_TRAPPED); 1549 read_unlock(&tasklist_lock); 1550 schedule(); 1551 } else { 1552 /* 1553 * By the time we got the lock, our tracer went away. 1554 * Don't drop the lock yet, another tracer may come. 1555 */ 1556 __set_current_state(TASK_RUNNING); 1557 if (clear_code) 1558 current->exit_code = 0; 1559 read_unlock(&tasklist_lock); 1560 } 1561 1562 /* 1563 * While in TASK_TRACED, we were considered "frozen enough". 1564 * Now that we woke up, it's crucial if we're supposed to be 1565 * frozen that we freeze now before running anything substantial. 1566 */ 1567 try_to_freeze(); 1568 1569 /* 1570 * We are back. Now reacquire the siglock before touching 1571 * last_siginfo, so that we are sure to have synchronized with 1572 * any signal-sending on another CPU that wants to examine it. 1573 */ 1574 spin_lock_irq(¤t->sighand->siglock); 1575 current->last_siginfo = NULL; 1576 1577 /* 1578 * Queued signals ignored us while we were stopped for tracing. 1579 * So check for any that we should take before resuming user mode. 1580 * This sets TIF_SIGPENDING, but never clears it. 1581 */ 1582 recalc_sigpending_tsk(current); 1583 } 1584 1585 void ptrace_notify(int exit_code) 1586 { 1587 siginfo_t info; 1588 1589 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1590 1591 memset(&info, 0, sizeof info); 1592 info.si_signo = SIGTRAP; 1593 info.si_code = exit_code; 1594 info.si_pid = task_pid_vnr(current); 1595 info.si_uid = current->uid; 1596 1597 /* Let the debugger run. */ 1598 spin_lock_irq(¤t->sighand->siglock); 1599 ptrace_stop(exit_code, 1, &info); 1600 spin_unlock_irq(¤t->sighand->siglock); 1601 } 1602 1603 static void 1604 finish_stop(int stop_count) 1605 { 1606 /* 1607 * If there are no other threads in the group, or if there is 1608 * a group stop in progress and we are the last to stop, 1609 * report to the parent. When ptraced, every thread reports itself. 1610 */ 1611 if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) { 1612 read_lock(&tasklist_lock); 1613 do_notify_parent_cldstop(current, CLD_STOPPED); 1614 read_unlock(&tasklist_lock); 1615 } 1616 1617 do { 1618 schedule(); 1619 } while (try_to_freeze()); 1620 /* 1621 * Now we don't run again until continued. 1622 */ 1623 current->exit_code = 0; 1624 } 1625 1626 /* 1627 * This performs the stopping for SIGSTOP and other stop signals. 1628 * We have to stop all threads in the thread group. 1629 * Returns nonzero if we've actually stopped and released the siglock. 1630 * Returns zero if we didn't stop and still hold the siglock. 1631 */ 1632 static int do_signal_stop(int signr) 1633 { 1634 struct signal_struct *sig = current->signal; 1635 int stop_count; 1636 1637 if (sig->group_stop_count > 0) { 1638 /* 1639 * There is a group stop in progress. We don't need to 1640 * start another one. 1641 */ 1642 stop_count = --sig->group_stop_count; 1643 } else { 1644 struct task_struct *t; 1645 1646 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || 1647 unlikely(signal_group_exit(sig))) 1648 return 0; 1649 /* 1650 * There is no group stop already in progress. 1651 * We must initiate one now. 1652 */ 1653 sig->group_exit_code = signr; 1654 1655 stop_count = 0; 1656 for (t = next_thread(current); t != current; t = next_thread(t)) 1657 /* 1658 * Setting state to TASK_STOPPED for a group 1659 * stop is always done with the siglock held, 1660 * so this check has no races. 1661 */ 1662 if (!(t->flags & PF_EXITING) && 1663 !task_is_stopped_or_traced(t)) { 1664 stop_count++; 1665 signal_wake_up(t, 0); 1666 } 1667 sig->group_stop_count = stop_count; 1668 } 1669 1670 if (stop_count == 0) 1671 sig->flags = SIGNAL_STOP_STOPPED; 1672 current->exit_code = sig->group_exit_code; 1673 __set_current_state(TASK_STOPPED); 1674 1675 spin_unlock_irq(¤t->sighand->siglock); 1676 finish_stop(stop_count); 1677 return 1; 1678 } 1679 1680 static int ptrace_signal(int signr, siginfo_t *info, 1681 struct pt_regs *regs, void *cookie) 1682 { 1683 if (!(current->ptrace & PT_PTRACED)) 1684 return signr; 1685 1686 ptrace_signal_deliver(regs, cookie); 1687 1688 /* Let the debugger run. */ 1689 ptrace_stop(signr, 0, info); 1690 1691 /* We're back. Did the debugger cancel the sig? */ 1692 signr = current->exit_code; 1693 if (signr == 0) 1694 return signr; 1695 1696 current->exit_code = 0; 1697 1698 /* Update the siginfo structure if the signal has 1699 changed. If the debugger wanted something 1700 specific in the siginfo structure then it should 1701 have updated *info via PTRACE_SETSIGINFO. */ 1702 if (signr != info->si_signo) { 1703 info->si_signo = signr; 1704 info->si_errno = 0; 1705 info->si_code = SI_USER; 1706 info->si_pid = task_pid_vnr(current->parent); 1707 info->si_uid = current->parent->uid; 1708 } 1709 1710 /* If the (new) signal is now blocked, requeue it. */ 1711 if (sigismember(¤t->blocked, signr)) { 1712 specific_send_sig_info(signr, info, current); 1713 signr = 0; 1714 } 1715 1716 return signr; 1717 } 1718 1719 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1720 struct pt_regs *regs, void *cookie) 1721 { 1722 struct sighand_struct *sighand = current->sighand; 1723 struct signal_struct *signal = current->signal; 1724 int signr; 1725 1726 relock: 1727 /* 1728 * We'll jump back here after any time we were stopped in TASK_STOPPED. 1729 * While in TASK_STOPPED, we were considered "frozen enough". 1730 * Now that we woke up, it's crucial if we're supposed to be 1731 * frozen that we freeze now before running anything substantial. 1732 */ 1733 try_to_freeze(); 1734 1735 spin_lock_irq(&sighand->siglock); 1736 /* 1737 * Every stopped thread goes here after wakeup. Check to see if 1738 * we should notify the parent, prepare_signal(SIGCONT) encodes 1739 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 1740 */ 1741 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 1742 int why = (signal->flags & SIGNAL_STOP_CONTINUED) 1743 ? CLD_CONTINUED : CLD_STOPPED; 1744 signal->flags &= ~SIGNAL_CLD_MASK; 1745 spin_unlock_irq(&sighand->siglock); 1746 1747 if (unlikely(!tracehook_notify_jctl(1, why))) 1748 goto relock; 1749 1750 read_lock(&tasklist_lock); 1751 do_notify_parent_cldstop(current->group_leader, why); 1752 read_unlock(&tasklist_lock); 1753 goto relock; 1754 } 1755 1756 for (;;) { 1757 struct k_sigaction *ka; 1758 1759 if (unlikely(signal->group_stop_count > 0) && 1760 do_signal_stop(0)) 1761 goto relock; 1762 1763 /* 1764 * Tracing can induce an artifical signal and choose sigaction. 1765 * The return value in @signr determines the default action, 1766 * but @info->si_signo is the signal number we will report. 1767 */ 1768 signr = tracehook_get_signal(current, regs, info, return_ka); 1769 if (unlikely(signr < 0)) 1770 goto relock; 1771 if (unlikely(signr != 0)) 1772 ka = return_ka; 1773 else { 1774 signr = dequeue_signal(current, ¤t->blocked, 1775 info); 1776 1777 if (!signr) 1778 break; /* will return 0 */ 1779 1780 if (signr != SIGKILL) { 1781 signr = ptrace_signal(signr, info, 1782 regs, cookie); 1783 if (!signr) 1784 continue; 1785 } 1786 1787 ka = &sighand->action[signr-1]; 1788 } 1789 1790 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1791 continue; 1792 if (ka->sa.sa_handler != SIG_DFL) { 1793 /* Run the handler. */ 1794 *return_ka = *ka; 1795 1796 if (ka->sa.sa_flags & SA_ONESHOT) 1797 ka->sa.sa_handler = SIG_DFL; 1798 1799 break; /* will return non-zero "signr" value */ 1800 } 1801 1802 /* 1803 * Now we are doing the default action for this signal. 1804 */ 1805 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1806 continue; 1807 1808 /* 1809 * Global init gets no signals it doesn't want. 1810 */ 1811 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 1812 !signal_group_exit(signal)) 1813 continue; 1814 1815 if (sig_kernel_stop(signr)) { 1816 /* 1817 * The default action is to stop all threads in 1818 * the thread group. The job control signals 1819 * do nothing in an orphaned pgrp, but SIGSTOP 1820 * always works. Note that siglock needs to be 1821 * dropped during the call to is_orphaned_pgrp() 1822 * because of lock ordering with tasklist_lock. 1823 * This allows an intervening SIGCONT to be posted. 1824 * We need to check for that and bail out if necessary. 1825 */ 1826 if (signr != SIGSTOP) { 1827 spin_unlock_irq(&sighand->siglock); 1828 1829 /* signals can be posted during this window */ 1830 1831 if (is_current_pgrp_orphaned()) 1832 goto relock; 1833 1834 spin_lock_irq(&sighand->siglock); 1835 } 1836 1837 if (likely(do_signal_stop(info->si_signo))) { 1838 /* It released the siglock. */ 1839 goto relock; 1840 } 1841 1842 /* 1843 * We didn't actually stop, due to a race 1844 * with SIGCONT or something like that. 1845 */ 1846 continue; 1847 } 1848 1849 spin_unlock_irq(&sighand->siglock); 1850 1851 /* 1852 * Anything else is fatal, maybe with a core dump. 1853 */ 1854 current->flags |= PF_SIGNALED; 1855 1856 if (sig_kernel_coredump(signr)) { 1857 if (print_fatal_signals) 1858 print_fatal_signal(regs, info->si_signo); 1859 /* 1860 * If it was able to dump core, this kills all 1861 * other threads in the group and synchronizes with 1862 * their demise. If we lost the race with another 1863 * thread getting here, it set group_exit_code 1864 * first and our do_group_exit call below will use 1865 * that value and ignore the one we pass it. 1866 */ 1867 do_coredump(info->si_signo, info->si_signo, regs); 1868 } 1869 1870 /* 1871 * Death signals, no core dump. 1872 */ 1873 do_group_exit(info->si_signo); 1874 /* NOTREACHED */ 1875 } 1876 spin_unlock_irq(&sighand->siglock); 1877 return signr; 1878 } 1879 1880 void exit_signals(struct task_struct *tsk) 1881 { 1882 int group_stop = 0; 1883 struct task_struct *t; 1884 1885 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 1886 tsk->flags |= PF_EXITING; 1887 return; 1888 } 1889 1890 spin_lock_irq(&tsk->sighand->siglock); 1891 /* 1892 * From now this task is not visible for group-wide signals, 1893 * see wants_signal(), do_signal_stop(). 1894 */ 1895 tsk->flags |= PF_EXITING; 1896 if (!signal_pending(tsk)) 1897 goto out; 1898 1899 /* It could be that __group_complete_signal() choose us to 1900 * notify about group-wide signal. Another thread should be 1901 * woken now to take the signal since we will not. 1902 */ 1903 for (t = tsk; (t = next_thread(t)) != tsk; ) 1904 if (!signal_pending(t) && !(t->flags & PF_EXITING)) 1905 recalc_sigpending_and_wake(t); 1906 1907 if (unlikely(tsk->signal->group_stop_count) && 1908 !--tsk->signal->group_stop_count) { 1909 tsk->signal->flags = SIGNAL_STOP_STOPPED; 1910 group_stop = 1; 1911 } 1912 out: 1913 spin_unlock_irq(&tsk->sighand->siglock); 1914 1915 if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) { 1916 read_lock(&tasklist_lock); 1917 do_notify_parent_cldstop(tsk, CLD_STOPPED); 1918 read_unlock(&tasklist_lock); 1919 } 1920 } 1921 1922 EXPORT_SYMBOL(recalc_sigpending); 1923 EXPORT_SYMBOL_GPL(dequeue_signal); 1924 EXPORT_SYMBOL(flush_signals); 1925 EXPORT_SYMBOL(force_sig); 1926 EXPORT_SYMBOL(send_sig); 1927 EXPORT_SYMBOL(send_sig_info); 1928 EXPORT_SYMBOL(sigprocmask); 1929 EXPORT_SYMBOL(block_all_signals); 1930 EXPORT_SYMBOL(unblock_all_signals); 1931 1932 1933 /* 1934 * System call entry points. 1935 */ 1936 1937 asmlinkage long sys_restart_syscall(void) 1938 { 1939 struct restart_block *restart = ¤t_thread_info()->restart_block; 1940 return restart->fn(restart); 1941 } 1942 1943 long do_no_restart_syscall(struct restart_block *param) 1944 { 1945 return -EINTR; 1946 } 1947 1948 /* 1949 * We don't need to get the kernel lock - this is all local to this 1950 * particular thread.. (and that's good, because this is _heavily_ 1951 * used by various programs) 1952 */ 1953 1954 /* 1955 * This is also useful for kernel threads that want to temporarily 1956 * (or permanently) block certain signals. 1957 * 1958 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 1959 * interface happily blocks "unblockable" signals like SIGKILL 1960 * and friends. 1961 */ 1962 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 1963 { 1964 int error; 1965 1966 spin_lock_irq(¤t->sighand->siglock); 1967 if (oldset) 1968 *oldset = current->blocked; 1969 1970 error = 0; 1971 switch (how) { 1972 case SIG_BLOCK: 1973 sigorsets(¤t->blocked, ¤t->blocked, set); 1974 break; 1975 case SIG_UNBLOCK: 1976 signandsets(¤t->blocked, ¤t->blocked, set); 1977 break; 1978 case SIG_SETMASK: 1979 current->blocked = *set; 1980 break; 1981 default: 1982 error = -EINVAL; 1983 } 1984 recalc_sigpending(); 1985 spin_unlock_irq(¤t->sighand->siglock); 1986 1987 return error; 1988 } 1989 1990 asmlinkage long 1991 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 1992 { 1993 int error = -EINVAL; 1994 sigset_t old_set, new_set; 1995 1996 /* XXX: Don't preclude handling different sized sigset_t's. */ 1997 if (sigsetsize != sizeof(sigset_t)) 1998 goto out; 1999 2000 if (set) { 2001 error = -EFAULT; 2002 if (copy_from_user(&new_set, set, sizeof(*set))) 2003 goto out; 2004 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2005 2006 error = sigprocmask(how, &new_set, &old_set); 2007 if (error) 2008 goto out; 2009 if (oset) 2010 goto set_old; 2011 } else if (oset) { 2012 spin_lock_irq(¤t->sighand->siglock); 2013 old_set = current->blocked; 2014 spin_unlock_irq(¤t->sighand->siglock); 2015 2016 set_old: 2017 error = -EFAULT; 2018 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2019 goto out; 2020 } 2021 error = 0; 2022 out: 2023 return error; 2024 } 2025 2026 long do_sigpending(void __user *set, unsigned long sigsetsize) 2027 { 2028 long error = -EINVAL; 2029 sigset_t pending; 2030 2031 if (sigsetsize > sizeof(sigset_t)) 2032 goto out; 2033 2034 spin_lock_irq(¤t->sighand->siglock); 2035 sigorsets(&pending, ¤t->pending.signal, 2036 ¤t->signal->shared_pending.signal); 2037 spin_unlock_irq(¤t->sighand->siglock); 2038 2039 /* Outside the lock because only this thread touches it. */ 2040 sigandsets(&pending, ¤t->blocked, &pending); 2041 2042 error = -EFAULT; 2043 if (!copy_to_user(set, &pending, sigsetsize)) 2044 error = 0; 2045 2046 out: 2047 return error; 2048 } 2049 2050 asmlinkage long 2051 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2052 { 2053 return do_sigpending(set, sigsetsize); 2054 } 2055 2056 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2057 2058 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2059 { 2060 int err; 2061 2062 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2063 return -EFAULT; 2064 if (from->si_code < 0) 2065 return __copy_to_user(to, from, sizeof(siginfo_t)) 2066 ? -EFAULT : 0; 2067 /* 2068 * If you change siginfo_t structure, please be sure 2069 * this code is fixed accordingly. 2070 * Please remember to update the signalfd_copyinfo() function 2071 * inside fs/signalfd.c too, in case siginfo_t changes. 2072 * It should never copy any pad contained in the structure 2073 * to avoid security leaks, but must copy the generic 2074 * 3 ints plus the relevant union member. 2075 */ 2076 err = __put_user(from->si_signo, &to->si_signo); 2077 err |= __put_user(from->si_errno, &to->si_errno); 2078 err |= __put_user((short)from->si_code, &to->si_code); 2079 switch (from->si_code & __SI_MASK) { 2080 case __SI_KILL: 2081 err |= __put_user(from->si_pid, &to->si_pid); 2082 err |= __put_user(from->si_uid, &to->si_uid); 2083 break; 2084 case __SI_TIMER: 2085 err |= __put_user(from->si_tid, &to->si_tid); 2086 err |= __put_user(from->si_overrun, &to->si_overrun); 2087 err |= __put_user(from->si_ptr, &to->si_ptr); 2088 break; 2089 case __SI_POLL: 2090 err |= __put_user(from->si_band, &to->si_band); 2091 err |= __put_user(from->si_fd, &to->si_fd); 2092 break; 2093 case __SI_FAULT: 2094 err |= __put_user(from->si_addr, &to->si_addr); 2095 #ifdef __ARCH_SI_TRAPNO 2096 err |= __put_user(from->si_trapno, &to->si_trapno); 2097 #endif 2098 break; 2099 case __SI_CHLD: 2100 err |= __put_user(from->si_pid, &to->si_pid); 2101 err |= __put_user(from->si_uid, &to->si_uid); 2102 err |= __put_user(from->si_status, &to->si_status); 2103 err |= __put_user(from->si_utime, &to->si_utime); 2104 err |= __put_user(from->si_stime, &to->si_stime); 2105 break; 2106 case __SI_RT: /* This is not generated by the kernel as of now. */ 2107 case __SI_MESGQ: /* But this is */ 2108 err |= __put_user(from->si_pid, &to->si_pid); 2109 err |= __put_user(from->si_uid, &to->si_uid); 2110 err |= __put_user(from->si_ptr, &to->si_ptr); 2111 break; 2112 default: /* this is just in case for now ... */ 2113 err |= __put_user(from->si_pid, &to->si_pid); 2114 err |= __put_user(from->si_uid, &to->si_uid); 2115 break; 2116 } 2117 return err; 2118 } 2119 2120 #endif 2121 2122 asmlinkage long 2123 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2124 siginfo_t __user *uinfo, 2125 const struct timespec __user *uts, 2126 size_t sigsetsize) 2127 { 2128 int ret, sig; 2129 sigset_t these; 2130 struct timespec ts; 2131 siginfo_t info; 2132 long timeout = 0; 2133 2134 /* XXX: Don't preclude handling different sized sigset_t's. */ 2135 if (sigsetsize != sizeof(sigset_t)) 2136 return -EINVAL; 2137 2138 if (copy_from_user(&these, uthese, sizeof(these))) 2139 return -EFAULT; 2140 2141 /* 2142 * Invert the set of allowed signals to get those we 2143 * want to block. 2144 */ 2145 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2146 signotset(&these); 2147 2148 if (uts) { 2149 if (copy_from_user(&ts, uts, sizeof(ts))) 2150 return -EFAULT; 2151 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2152 || ts.tv_sec < 0) 2153 return -EINVAL; 2154 } 2155 2156 spin_lock_irq(¤t->sighand->siglock); 2157 sig = dequeue_signal(current, &these, &info); 2158 if (!sig) { 2159 timeout = MAX_SCHEDULE_TIMEOUT; 2160 if (uts) 2161 timeout = (timespec_to_jiffies(&ts) 2162 + (ts.tv_sec || ts.tv_nsec)); 2163 2164 if (timeout) { 2165 /* None ready -- temporarily unblock those we're 2166 * interested while we are sleeping in so that we'll 2167 * be awakened when they arrive. */ 2168 current->real_blocked = current->blocked; 2169 sigandsets(¤t->blocked, ¤t->blocked, &these); 2170 recalc_sigpending(); 2171 spin_unlock_irq(¤t->sighand->siglock); 2172 2173 timeout = schedule_timeout_interruptible(timeout); 2174 2175 spin_lock_irq(¤t->sighand->siglock); 2176 sig = dequeue_signal(current, &these, &info); 2177 current->blocked = current->real_blocked; 2178 siginitset(¤t->real_blocked, 0); 2179 recalc_sigpending(); 2180 } 2181 } 2182 spin_unlock_irq(¤t->sighand->siglock); 2183 2184 if (sig) { 2185 ret = sig; 2186 if (uinfo) { 2187 if (copy_siginfo_to_user(uinfo, &info)) 2188 ret = -EFAULT; 2189 } 2190 } else { 2191 ret = -EAGAIN; 2192 if (timeout) 2193 ret = -EINTR; 2194 } 2195 2196 return ret; 2197 } 2198 2199 asmlinkage long 2200 sys_kill(pid_t pid, int sig) 2201 { 2202 struct siginfo info; 2203 2204 info.si_signo = sig; 2205 info.si_errno = 0; 2206 info.si_code = SI_USER; 2207 info.si_pid = task_tgid_vnr(current); 2208 info.si_uid = current->uid; 2209 2210 return kill_something_info(sig, &info, pid); 2211 } 2212 2213 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2214 { 2215 int error; 2216 struct siginfo info; 2217 struct task_struct *p; 2218 unsigned long flags; 2219 2220 error = -ESRCH; 2221 info.si_signo = sig; 2222 info.si_errno = 0; 2223 info.si_code = SI_TKILL; 2224 info.si_pid = task_tgid_vnr(current); 2225 info.si_uid = current->uid; 2226 2227 rcu_read_lock(); 2228 p = find_task_by_vpid(pid); 2229 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2230 error = check_kill_permission(sig, &info, p); 2231 /* 2232 * The null signal is a permissions and process existence 2233 * probe. No signal is actually delivered. 2234 * 2235 * If lock_task_sighand() fails we pretend the task dies 2236 * after receiving the signal. The window is tiny, and the 2237 * signal is private anyway. 2238 */ 2239 if (!error && sig && lock_task_sighand(p, &flags)) { 2240 error = specific_send_sig_info(sig, &info, p); 2241 unlock_task_sighand(p, &flags); 2242 } 2243 } 2244 rcu_read_unlock(); 2245 2246 return error; 2247 } 2248 2249 /** 2250 * sys_tgkill - send signal to one specific thread 2251 * @tgid: the thread group ID of the thread 2252 * @pid: the PID of the thread 2253 * @sig: signal to be sent 2254 * 2255 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2256 * exists but it's not belonging to the target process anymore. This 2257 * method solves the problem of threads exiting and PIDs getting reused. 2258 */ 2259 asmlinkage long sys_tgkill(pid_t tgid, pid_t pid, int sig) 2260 { 2261 /* This is only valid for single tasks */ 2262 if (pid <= 0 || tgid <= 0) 2263 return -EINVAL; 2264 2265 return do_tkill(tgid, pid, sig); 2266 } 2267 2268 /* 2269 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2270 */ 2271 asmlinkage long 2272 sys_tkill(pid_t pid, int sig) 2273 { 2274 /* This is only valid for single tasks */ 2275 if (pid <= 0) 2276 return -EINVAL; 2277 2278 return do_tkill(0, pid, sig); 2279 } 2280 2281 asmlinkage long 2282 sys_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t __user *uinfo) 2283 { 2284 siginfo_t info; 2285 2286 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2287 return -EFAULT; 2288 2289 /* Not even root can pretend to send signals from the kernel. 2290 Nor can they impersonate a kill(), which adds source info. */ 2291 if (info.si_code >= 0) 2292 return -EPERM; 2293 info.si_signo = sig; 2294 2295 /* POSIX.1b doesn't mention process groups. */ 2296 return kill_proc_info(sig, &info, pid); 2297 } 2298 2299 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2300 { 2301 struct task_struct *t = current; 2302 struct k_sigaction *k; 2303 sigset_t mask; 2304 2305 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2306 return -EINVAL; 2307 2308 k = &t->sighand->action[sig-1]; 2309 2310 spin_lock_irq(¤t->sighand->siglock); 2311 if (oact) 2312 *oact = *k; 2313 2314 if (act) { 2315 sigdelsetmask(&act->sa.sa_mask, 2316 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2317 *k = *act; 2318 /* 2319 * POSIX 3.3.1.3: 2320 * "Setting a signal action to SIG_IGN for a signal that is 2321 * pending shall cause the pending signal to be discarded, 2322 * whether or not it is blocked." 2323 * 2324 * "Setting a signal action to SIG_DFL for a signal that is 2325 * pending and whose default action is to ignore the signal 2326 * (for example, SIGCHLD), shall cause the pending signal to 2327 * be discarded, whether or not it is blocked" 2328 */ 2329 if (sig_handler_ignored(sig_handler(t, sig), sig)) { 2330 sigemptyset(&mask); 2331 sigaddset(&mask, sig); 2332 rm_from_queue_full(&mask, &t->signal->shared_pending); 2333 do { 2334 rm_from_queue_full(&mask, &t->pending); 2335 t = next_thread(t); 2336 } while (t != current); 2337 } 2338 } 2339 2340 spin_unlock_irq(¤t->sighand->siglock); 2341 return 0; 2342 } 2343 2344 int 2345 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2346 { 2347 stack_t oss; 2348 int error; 2349 2350 if (uoss) { 2351 oss.ss_sp = (void __user *) current->sas_ss_sp; 2352 oss.ss_size = current->sas_ss_size; 2353 oss.ss_flags = sas_ss_flags(sp); 2354 } 2355 2356 if (uss) { 2357 void __user *ss_sp; 2358 size_t ss_size; 2359 int ss_flags; 2360 2361 error = -EFAULT; 2362 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2363 || __get_user(ss_sp, &uss->ss_sp) 2364 || __get_user(ss_flags, &uss->ss_flags) 2365 || __get_user(ss_size, &uss->ss_size)) 2366 goto out; 2367 2368 error = -EPERM; 2369 if (on_sig_stack(sp)) 2370 goto out; 2371 2372 error = -EINVAL; 2373 /* 2374 * 2375 * Note - this code used to test ss_flags incorrectly 2376 * old code may have been written using ss_flags==0 2377 * to mean ss_flags==SS_ONSTACK (as this was the only 2378 * way that worked) - this fix preserves that older 2379 * mechanism 2380 */ 2381 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2382 goto out; 2383 2384 if (ss_flags == SS_DISABLE) { 2385 ss_size = 0; 2386 ss_sp = NULL; 2387 } else { 2388 error = -ENOMEM; 2389 if (ss_size < MINSIGSTKSZ) 2390 goto out; 2391 } 2392 2393 current->sas_ss_sp = (unsigned long) ss_sp; 2394 current->sas_ss_size = ss_size; 2395 } 2396 2397 if (uoss) { 2398 error = -EFAULT; 2399 if (copy_to_user(uoss, &oss, sizeof(oss))) 2400 goto out; 2401 } 2402 2403 error = 0; 2404 out: 2405 return error; 2406 } 2407 2408 #ifdef __ARCH_WANT_SYS_SIGPENDING 2409 2410 asmlinkage long 2411 sys_sigpending(old_sigset_t __user *set) 2412 { 2413 return do_sigpending(set, sizeof(*set)); 2414 } 2415 2416 #endif 2417 2418 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2419 /* Some platforms have their own version with special arguments others 2420 support only sys_rt_sigprocmask. */ 2421 2422 asmlinkage long 2423 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2424 { 2425 int error; 2426 old_sigset_t old_set, new_set; 2427 2428 if (set) { 2429 error = -EFAULT; 2430 if (copy_from_user(&new_set, set, sizeof(*set))) 2431 goto out; 2432 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2433 2434 spin_lock_irq(¤t->sighand->siglock); 2435 old_set = current->blocked.sig[0]; 2436 2437 error = 0; 2438 switch (how) { 2439 default: 2440 error = -EINVAL; 2441 break; 2442 case SIG_BLOCK: 2443 sigaddsetmask(¤t->blocked, new_set); 2444 break; 2445 case SIG_UNBLOCK: 2446 sigdelsetmask(¤t->blocked, new_set); 2447 break; 2448 case SIG_SETMASK: 2449 current->blocked.sig[0] = new_set; 2450 break; 2451 } 2452 2453 recalc_sigpending(); 2454 spin_unlock_irq(¤t->sighand->siglock); 2455 if (error) 2456 goto out; 2457 if (oset) 2458 goto set_old; 2459 } else if (oset) { 2460 old_set = current->blocked.sig[0]; 2461 set_old: 2462 error = -EFAULT; 2463 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2464 goto out; 2465 } 2466 error = 0; 2467 out: 2468 return error; 2469 } 2470 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2471 2472 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2473 asmlinkage long 2474 sys_rt_sigaction(int sig, 2475 const struct sigaction __user *act, 2476 struct sigaction __user *oact, 2477 size_t sigsetsize) 2478 { 2479 struct k_sigaction new_sa, old_sa; 2480 int ret = -EINVAL; 2481 2482 /* XXX: Don't preclude handling different sized sigset_t's. */ 2483 if (sigsetsize != sizeof(sigset_t)) 2484 goto out; 2485 2486 if (act) { 2487 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2488 return -EFAULT; 2489 } 2490 2491 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2492 2493 if (!ret && oact) { 2494 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2495 return -EFAULT; 2496 } 2497 out: 2498 return ret; 2499 } 2500 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2501 2502 #ifdef __ARCH_WANT_SYS_SGETMASK 2503 2504 /* 2505 * For backwards compatibility. Functionality superseded by sigprocmask. 2506 */ 2507 asmlinkage long 2508 sys_sgetmask(void) 2509 { 2510 /* SMP safe */ 2511 return current->blocked.sig[0]; 2512 } 2513 2514 asmlinkage long 2515 sys_ssetmask(int newmask) 2516 { 2517 int old; 2518 2519 spin_lock_irq(¤t->sighand->siglock); 2520 old = current->blocked.sig[0]; 2521 2522 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2523 sigmask(SIGSTOP))); 2524 recalc_sigpending(); 2525 spin_unlock_irq(¤t->sighand->siglock); 2526 2527 return old; 2528 } 2529 #endif /* __ARCH_WANT_SGETMASK */ 2530 2531 #ifdef __ARCH_WANT_SYS_SIGNAL 2532 /* 2533 * For backwards compatibility. Functionality superseded by sigaction. 2534 */ 2535 asmlinkage unsigned long 2536 sys_signal(int sig, __sighandler_t handler) 2537 { 2538 struct k_sigaction new_sa, old_sa; 2539 int ret; 2540 2541 new_sa.sa.sa_handler = handler; 2542 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2543 sigemptyset(&new_sa.sa.sa_mask); 2544 2545 ret = do_sigaction(sig, &new_sa, &old_sa); 2546 2547 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2548 } 2549 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2550 2551 #ifdef __ARCH_WANT_SYS_PAUSE 2552 2553 asmlinkage long 2554 sys_pause(void) 2555 { 2556 current->state = TASK_INTERRUPTIBLE; 2557 schedule(); 2558 return -ERESTARTNOHAND; 2559 } 2560 2561 #endif 2562 2563 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2564 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) 2565 { 2566 sigset_t newset; 2567 2568 /* XXX: Don't preclude handling different sized sigset_t's. */ 2569 if (sigsetsize != sizeof(sigset_t)) 2570 return -EINVAL; 2571 2572 if (copy_from_user(&newset, unewset, sizeof(newset))) 2573 return -EFAULT; 2574 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2575 2576 spin_lock_irq(¤t->sighand->siglock); 2577 current->saved_sigmask = current->blocked; 2578 current->blocked = newset; 2579 recalc_sigpending(); 2580 spin_unlock_irq(¤t->sighand->siglock); 2581 2582 current->state = TASK_INTERRUPTIBLE; 2583 schedule(); 2584 set_restore_sigmask(); 2585 return -ERESTARTNOHAND; 2586 } 2587 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2588 2589 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 2590 { 2591 return NULL; 2592 } 2593 2594 void __init signals_init(void) 2595 { 2596 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 2597 } 2598