xref: /linux/kernel/signal.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/tty.h>
20 #include <linux/binfmts.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/capability.h>
26 #include <asm/param.h>
27 #include <asm/uaccess.h>
28 #include <asm/unistd.h>
29 #include <asm/siginfo.h>
30 #include "audit.h"	/* audit_signal_info() */
31 
32 /*
33  * SLAB caches for signal bits.
34  */
35 
36 static kmem_cache_t *sigqueue_cachep;
37 
38 /*
39  * In POSIX a signal is sent either to a specific thread (Linux task)
40  * or to the process as a whole (Linux thread group).  How the signal
41  * is sent determines whether it's to one thread or the whole group,
42  * which determines which signal mask(s) are involved in blocking it
43  * from being delivered until later.  When the signal is delivered,
44  * either it's caught or ignored by a user handler or it has a default
45  * effect that applies to the whole thread group (POSIX process).
46  *
47  * The possible effects an unblocked signal set to SIG_DFL can have are:
48  *   ignore	- Nothing Happens
49  *   terminate	- kill the process, i.e. all threads in the group,
50  * 		  similar to exit_group.  The group leader (only) reports
51  *		  WIFSIGNALED status to its parent.
52  *   coredump	- write a core dump file describing all threads using
53  *		  the same mm and then kill all those threads
54  *   stop 	- stop all the threads in the group, i.e. TASK_STOPPED state
55  *
56  * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
57  * Other signals when not blocked and set to SIG_DFL behaves as follows.
58  * The job control signals also have other special effects.
59  *
60  *	+--------------------+------------------+
61  *	|  POSIX signal      |  default action  |
62  *	+--------------------+------------------+
63  *	|  SIGHUP            |  terminate	|
64  *	|  SIGINT            |	terminate	|
65  *	|  SIGQUIT           |	coredump 	|
66  *	|  SIGILL            |	coredump 	|
67  *	|  SIGTRAP           |	coredump 	|
68  *	|  SIGABRT/SIGIOT    |	coredump 	|
69  *	|  SIGBUS            |	coredump 	|
70  *	|  SIGFPE            |	coredump 	|
71  *	|  SIGKILL           |	terminate(+)	|
72  *	|  SIGUSR1           |	terminate	|
73  *	|  SIGSEGV           |	coredump 	|
74  *	|  SIGUSR2           |	terminate	|
75  *	|  SIGPIPE           |	terminate	|
76  *	|  SIGALRM           |	terminate	|
77  *	|  SIGTERM           |	terminate	|
78  *	|  SIGCHLD           |	ignore   	|
79  *	|  SIGCONT           |	ignore(*)	|
80  *	|  SIGSTOP           |	stop(*)(+)  	|
81  *	|  SIGTSTP           |	stop(*)  	|
82  *	|  SIGTTIN           |	stop(*)  	|
83  *	|  SIGTTOU           |	stop(*)  	|
84  *	|  SIGURG            |	ignore   	|
85  *	|  SIGXCPU           |	coredump 	|
86  *	|  SIGXFSZ           |	coredump 	|
87  *	|  SIGVTALRM         |	terminate	|
88  *	|  SIGPROF           |	terminate	|
89  *	|  SIGPOLL/SIGIO     |	terminate	|
90  *	|  SIGSYS/SIGUNUSED  |	coredump 	|
91  *	|  SIGSTKFLT         |	terminate	|
92  *	|  SIGWINCH          |	ignore   	|
93  *	|  SIGPWR            |	terminate	|
94  *	|  SIGRTMIN-SIGRTMAX |	terminate       |
95  *	+--------------------+------------------+
96  *	|  non-POSIX signal  |  default action  |
97  *	+--------------------+------------------+
98  *	|  SIGEMT            |  coredump	|
99  *	+--------------------+------------------+
100  *
101  * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
102  * (*) Special job control effects:
103  * When SIGCONT is sent, it resumes the process (all threads in the group)
104  * from TASK_STOPPED state and also clears any pending/queued stop signals
105  * (any of those marked with "stop(*)").  This happens regardless of blocking,
106  * catching, or ignoring SIGCONT.  When any stop signal is sent, it clears
107  * any pending/queued SIGCONT signals; this happens regardless of blocking,
108  * catching, or ignored the stop signal, though (except for SIGSTOP) the
109  * default action of stopping the process may happen later or never.
110  */
111 
112 #ifdef SIGEMT
113 #define M_SIGEMT	M(SIGEMT)
114 #else
115 #define M_SIGEMT	0
116 #endif
117 
118 #if SIGRTMIN > BITS_PER_LONG
119 #define M(sig) (1ULL << ((sig)-1))
120 #else
121 #define M(sig) (1UL << ((sig)-1))
122 #endif
123 #define T(sig, mask) (M(sig) & (mask))
124 
125 #define SIG_KERNEL_ONLY_MASK (\
126 	M(SIGKILL)   |  M(SIGSTOP)                                   )
127 
128 #define SIG_KERNEL_STOP_MASK (\
129 	M(SIGSTOP)   |  M(SIGTSTP)   |  M(SIGTTIN)   |  M(SIGTTOU)   )
130 
131 #define SIG_KERNEL_COREDUMP_MASK (\
132         M(SIGQUIT)   |  M(SIGILL)    |  M(SIGTRAP)   |  M(SIGABRT)   | \
133         M(SIGFPE)    |  M(SIGSEGV)   |  M(SIGBUS)    |  M(SIGSYS)    | \
134         M(SIGXCPU)   |  M(SIGXFSZ)   |  M_SIGEMT                     )
135 
136 #define SIG_KERNEL_IGNORE_MASK (\
137         M(SIGCONT)   |  M(SIGCHLD)   |  M(SIGWINCH)  |  M(SIGURG)    )
138 
139 #define sig_kernel_only(sig) \
140 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_ONLY_MASK))
141 #define sig_kernel_coredump(sig) \
142 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_COREDUMP_MASK))
143 #define sig_kernel_ignore(sig) \
144 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_IGNORE_MASK))
145 #define sig_kernel_stop(sig) \
146 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_STOP_MASK))
147 
148 #define sig_needs_tasklist(sig)	((sig) == SIGCONT)
149 
150 #define sig_user_defined(t, signr) \
151 	(((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) &&	\
152 	 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
153 
154 #define sig_fatal(t, signr) \
155 	(!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
156 	 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
157 
158 static int sig_ignored(struct task_struct *t, int sig)
159 {
160 	void __user * handler;
161 
162 	/*
163 	 * Tracers always want to know about signals..
164 	 */
165 	if (t->ptrace & PT_PTRACED)
166 		return 0;
167 
168 	/*
169 	 * Blocked signals are never ignored, since the
170 	 * signal handler may change by the time it is
171 	 * unblocked.
172 	 */
173 	if (sigismember(&t->blocked, sig))
174 		return 0;
175 
176 	/* Is it explicitly or implicitly ignored? */
177 	handler = t->sighand->action[sig-1].sa.sa_handler;
178 	return   handler == SIG_IGN ||
179 		(handler == SIG_DFL && sig_kernel_ignore(sig));
180 }
181 
182 /*
183  * Re-calculate pending state from the set of locally pending
184  * signals, globally pending signals, and blocked signals.
185  */
186 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
187 {
188 	unsigned long ready;
189 	long i;
190 
191 	switch (_NSIG_WORDS) {
192 	default:
193 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
194 			ready |= signal->sig[i] &~ blocked->sig[i];
195 		break;
196 
197 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
198 		ready |= signal->sig[2] &~ blocked->sig[2];
199 		ready |= signal->sig[1] &~ blocked->sig[1];
200 		ready |= signal->sig[0] &~ blocked->sig[0];
201 		break;
202 
203 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
204 		ready |= signal->sig[0] &~ blocked->sig[0];
205 		break;
206 
207 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
208 	}
209 	return ready !=	0;
210 }
211 
212 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
213 
214 fastcall void recalc_sigpending_tsk(struct task_struct *t)
215 {
216 	if (t->signal->group_stop_count > 0 ||
217 	    (freezing(t)) ||
218 	    PENDING(&t->pending, &t->blocked) ||
219 	    PENDING(&t->signal->shared_pending, &t->blocked))
220 		set_tsk_thread_flag(t, TIF_SIGPENDING);
221 	else
222 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
223 }
224 
225 void recalc_sigpending(void)
226 {
227 	recalc_sigpending_tsk(current);
228 }
229 
230 /* Given the mask, find the first available signal that should be serviced. */
231 
232 static int
233 next_signal(struct sigpending *pending, sigset_t *mask)
234 {
235 	unsigned long i, *s, *m, x;
236 	int sig = 0;
237 
238 	s = pending->signal.sig;
239 	m = mask->sig;
240 	switch (_NSIG_WORDS) {
241 	default:
242 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
243 			if ((x = *s &~ *m) != 0) {
244 				sig = ffz(~x) + i*_NSIG_BPW + 1;
245 				break;
246 			}
247 		break;
248 
249 	case 2: if ((x = s[0] &~ m[0]) != 0)
250 			sig = 1;
251 		else if ((x = s[1] &~ m[1]) != 0)
252 			sig = _NSIG_BPW + 1;
253 		else
254 			break;
255 		sig += ffz(~x);
256 		break;
257 
258 	case 1: if ((x = *s &~ *m) != 0)
259 			sig = ffz(~x) + 1;
260 		break;
261 	}
262 
263 	return sig;
264 }
265 
266 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
267 					 int override_rlimit)
268 {
269 	struct sigqueue *q = NULL;
270 
271 	atomic_inc(&t->user->sigpending);
272 	if (override_rlimit ||
273 	    atomic_read(&t->user->sigpending) <=
274 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
275 		q = kmem_cache_alloc(sigqueue_cachep, flags);
276 	if (unlikely(q == NULL)) {
277 		atomic_dec(&t->user->sigpending);
278 	} else {
279 		INIT_LIST_HEAD(&q->list);
280 		q->flags = 0;
281 		q->user = get_uid(t->user);
282 	}
283 	return(q);
284 }
285 
286 static void __sigqueue_free(struct sigqueue *q)
287 {
288 	if (q->flags & SIGQUEUE_PREALLOC)
289 		return;
290 	atomic_dec(&q->user->sigpending);
291 	free_uid(q->user);
292 	kmem_cache_free(sigqueue_cachep, q);
293 }
294 
295 void flush_sigqueue(struct sigpending *queue)
296 {
297 	struct sigqueue *q;
298 
299 	sigemptyset(&queue->signal);
300 	while (!list_empty(&queue->list)) {
301 		q = list_entry(queue->list.next, struct sigqueue , list);
302 		list_del_init(&q->list);
303 		__sigqueue_free(q);
304 	}
305 }
306 
307 /*
308  * Flush all pending signals for a task.
309  */
310 void flush_signals(struct task_struct *t)
311 {
312 	unsigned long flags;
313 
314 	spin_lock_irqsave(&t->sighand->siglock, flags);
315 	clear_tsk_thread_flag(t,TIF_SIGPENDING);
316 	flush_sigqueue(&t->pending);
317 	flush_sigqueue(&t->signal->shared_pending);
318 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
319 }
320 
321 /*
322  * Flush all handlers for a task.
323  */
324 
325 void
326 flush_signal_handlers(struct task_struct *t, int force_default)
327 {
328 	int i;
329 	struct k_sigaction *ka = &t->sighand->action[0];
330 	for (i = _NSIG ; i != 0 ; i--) {
331 		if (force_default || ka->sa.sa_handler != SIG_IGN)
332 			ka->sa.sa_handler = SIG_DFL;
333 		ka->sa.sa_flags = 0;
334 		sigemptyset(&ka->sa.sa_mask);
335 		ka++;
336 	}
337 }
338 
339 
340 /* Notify the system that a driver wants to block all signals for this
341  * process, and wants to be notified if any signals at all were to be
342  * sent/acted upon.  If the notifier routine returns non-zero, then the
343  * signal will be acted upon after all.  If the notifier routine returns 0,
344  * then then signal will be blocked.  Only one block per process is
345  * allowed.  priv is a pointer to private data that the notifier routine
346  * can use to determine if the signal should be blocked or not.  */
347 
348 void
349 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
350 {
351 	unsigned long flags;
352 
353 	spin_lock_irqsave(&current->sighand->siglock, flags);
354 	current->notifier_mask = mask;
355 	current->notifier_data = priv;
356 	current->notifier = notifier;
357 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
358 }
359 
360 /* Notify the system that blocking has ended. */
361 
362 void
363 unblock_all_signals(void)
364 {
365 	unsigned long flags;
366 
367 	spin_lock_irqsave(&current->sighand->siglock, flags);
368 	current->notifier = NULL;
369 	current->notifier_data = NULL;
370 	recalc_sigpending();
371 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
372 }
373 
374 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
375 {
376 	struct sigqueue *q, *first = NULL;
377 	int still_pending = 0;
378 
379 	if (unlikely(!sigismember(&list->signal, sig)))
380 		return 0;
381 
382 	/*
383 	 * Collect the siginfo appropriate to this signal.  Check if
384 	 * there is another siginfo for the same signal.
385 	*/
386 	list_for_each_entry(q, &list->list, list) {
387 		if (q->info.si_signo == sig) {
388 			if (first) {
389 				still_pending = 1;
390 				break;
391 			}
392 			first = q;
393 		}
394 	}
395 	if (first) {
396 		list_del_init(&first->list);
397 		copy_siginfo(info, &first->info);
398 		__sigqueue_free(first);
399 		if (!still_pending)
400 			sigdelset(&list->signal, sig);
401 	} else {
402 
403 		/* Ok, it wasn't in the queue.  This must be
404 		   a fast-pathed signal or we must have been
405 		   out of queue space.  So zero out the info.
406 		 */
407 		sigdelset(&list->signal, sig);
408 		info->si_signo = sig;
409 		info->si_errno = 0;
410 		info->si_code = 0;
411 		info->si_pid = 0;
412 		info->si_uid = 0;
413 	}
414 	return 1;
415 }
416 
417 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
418 			siginfo_t *info)
419 {
420 	int sig = 0;
421 
422 	sig = next_signal(pending, mask);
423 	if (sig) {
424 		if (current->notifier) {
425 			if (sigismember(current->notifier_mask, sig)) {
426 				if (!(current->notifier)(current->notifier_data)) {
427 					clear_thread_flag(TIF_SIGPENDING);
428 					return 0;
429 				}
430 			}
431 		}
432 
433 		if (!collect_signal(sig, pending, info))
434 			sig = 0;
435 
436 	}
437 	recalc_sigpending();
438 
439 	return sig;
440 }
441 
442 /*
443  * Dequeue a signal and return the element to the caller, which is
444  * expected to free it.
445  *
446  * All callers have to hold the siglock.
447  */
448 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
449 {
450 	int signr = __dequeue_signal(&tsk->pending, mask, info);
451 	if (!signr)
452 		signr = __dequeue_signal(&tsk->signal->shared_pending,
453 					 mask, info);
454  	if (signr && unlikely(sig_kernel_stop(signr))) {
455  		/*
456  		 * Set a marker that we have dequeued a stop signal.  Our
457  		 * caller might release the siglock and then the pending
458  		 * stop signal it is about to process is no longer in the
459  		 * pending bitmasks, but must still be cleared by a SIGCONT
460  		 * (and overruled by a SIGKILL).  So those cases clear this
461  		 * shared flag after we've set it.  Note that this flag may
462  		 * remain set after the signal we return is ignored or
463  		 * handled.  That doesn't matter because its only purpose
464  		 * is to alert stop-signal processing code when another
465  		 * processor has come along and cleared the flag.
466  		 */
467  		if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
468  			tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
469  	}
470 	if ( signr &&
471 	     ((info->si_code & __SI_MASK) == __SI_TIMER) &&
472 	     info->si_sys_private){
473 		/*
474 		 * Release the siglock to ensure proper locking order
475 		 * of timer locks outside of siglocks.  Note, we leave
476 		 * irqs disabled here, since the posix-timers code is
477 		 * about to disable them again anyway.
478 		 */
479 		spin_unlock(&tsk->sighand->siglock);
480 		do_schedule_next_timer(info);
481 		spin_lock(&tsk->sighand->siglock);
482 	}
483 	return signr;
484 }
485 
486 /*
487  * Tell a process that it has a new active signal..
488  *
489  * NOTE! we rely on the previous spin_lock to
490  * lock interrupts for us! We can only be called with
491  * "siglock" held, and the local interrupt must
492  * have been disabled when that got acquired!
493  *
494  * No need to set need_resched since signal event passing
495  * goes through ->blocked
496  */
497 void signal_wake_up(struct task_struct *t, int resume)
498 {
499 	unsigned int mask;
500 
501 	set_tsk_thread_flag(t, TIF_SIGPENDING);
502 
503 	/*
504 	 * For SIGKILL, we want to wake it up in the stopped/traced case.
505 	 * We don't check t->state here because there is a race with it
506 	 * executing another processor and just now entering stopped state.
507 	 * By using wake_up_state, we ensure the process will wake up and
508 	 * handle its death signal.
509 	 */
510 	mask = TASK_INTERRUPTIBLE;
511 	if (resume)
512 		mask |= TASK_STOPPED | TASK_TRACED;
513 	if (!wake_up_state(t, mask))
514 		kick_process(t);
515 }
516 
517 /*
518  * Remove signals in mask from the pending set and queue.
519  * Returns 1 if any signals were found.
520  *
521  * All callers must be holding the siglock.
522  *
523  * This version takes a sigset mask and looks at all signals,
524  * not just those in the first mask word.
525  */
526 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
527 {
528 	struct sigqueue *q, *n;
529 	sigset_t m;
530 
531 	sigandsets(&m, mask, &s->signal);
532 	if (sigisemptyset(&m))
533 		return 0;
534 
535 	signandsets(&s->signal, &s->signal, mask);
536 	list_for_each_entry_safe(q, n, &s->list, list) {
537 		if (sigismember(mask, q->info.si_signo)) {
538 			list_del_init(&q->list);
539 			__sigqueue_free(q);
540 		}
541 	}
542 	return 1;
543 }
544 /*
545  * Remove signals in mask from the pending set and queue.
546  * Returns 1 if any signals were found.
547  *
548  * All callers must be holding the siglock.
549  */
550 static int rm_from_queue(unsigned long mask, struct sigpending *s)
551 {
552 	struct sigqueue *q, *n;
553 
554 	if (!sigtestsetmask(&s->signal, mask))
555 		return 0;
556 
557 	sigdelsetmask(&s->signal, mask);
558 	list_for_each_entry_safe(q, n, &s->list, list) {
559 		if (q->info.si_signo < SIGRTMIN &&
560 		    (mask & sigmask(q->info.si_signo))) {
561 			list_del_init(&q->list);
562 			__sigqueue_free(q);
563 		}
564 	}
565 	return 1;
566 }
567 
568 /*
569  * Bad permissions for sending the signal
570  */
571 static int check_kill_permission(int sig, struct siginfo *info,
572 				 struct task_struct *t)
573 {
574 	int error = -EINVAL;
575 	if (!valid_signal(sig))
576 		return error;
577 	error = -EPERM;
578 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
579 	    && ((sig != SIGCONT) ||
580 		(current->signal->session != t->signal->session))
581 	    && (current->euid ^ t->suid) && (current->euid ^ t->uid)
582 	    && (current->uid ^ t->suid) && (current->uid ^ t->uid)
583 	    && !capable(CAP_KILL))
584 		return error;
585 
586 	error = security_task_kill(t, info, sig, 0);
587 	if (!error)
588 		audit_signal_info(sig, t); /* Let audit system see the signal */
589 	return error;
590 }
591 
592 /* forward decl */
593 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
594 
595 /*
596  * Handle magic process-wide effects of stop/continue signals.
597  * Unlike the signal actions, these happen immediately at signal-generation
598  * time regardless of blocking, ignoring, or handling.  This does the
599  * actual continuing for SIGCONT, but not the actual stopping for stop
600  * signals.  The process stop is done as a signal action for SIG_DFL.
601  */
602 static void handle_stop_signal(int sig, struct task_struct *p)
603 {
604 	struct task_struct *t;
605 
606 	if (p->signal->flags & SIGNAL_GROUP_EXIT)
607 		/*
608 		 * The process is in the middle of dying already.
609 		 */
610 		return;
611 
612 	if (sig_kernel_stop(sig)) {
613 		/*
614 		 * This is a stop signal.  Remove SIGCONT from all queues.
615 		 */
616 		rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
617 		t = p;
618 		do {
619 			rm_from_queue(sigmask(SIGCONT), &t->pending);
620 			t = next_thread(t);
621 		} while (t != p);
622 	} else if (sig == SIGCONT) {
623 		/*
624 		 * Remove all stop signals from all queues,
625 		 * and wake all threads.
626 		 */
627 		if (unlikely(p->signal->group_stop_count > 0)) {
628 			/*
629 			 * There was a group stop in progress.  We'll
630 			 * pretend it finished before we got here.  We are
631 			 * obliged to report it to the parent: if the
632 			 * SIGSTOP happened "after" this SIGCONT, then it
633 			 * would have cleared this pending SIGCONT.  If it
634 			 * happened "before" this SIGCONT, then the parent
635 			 * got the SIGCHLD about the stop finishing before
636 			 * the continue happened.  We do the notification
637 			 * now, and it's as if the stop had finished and
638 			 * the SIGCHLD was pending on entry to this kill.
639 			 */
640 			p->signal->group_stop_count = 0;
641 			p->signal->flags = SIGNAL_STOP_CONTINUED;
642 			spin_unlock(&p->sighand->siglock);
643 			do_notify_parent_cldstop(p, CLD_STOPPED);
644 			spin_lock(&p->sighand->siglock);
645 		}
646 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
647 		t = p;
648 		do {
649 			unsigned int state;
650 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
651 
652 			/*
653 			 * If there is a handler for SIGCONT, we must make
654 			 * sure that no thread returns to user mode before
655 			 * we post the signal, in case it was the only
656 			 * thread eligible to run the signal handler--then
657 			 * it must not do anything between resuming and
658 			 * running the handler.  With the TIF_SIGPENDING
659 			 * flag set, the thread will pause and acquire the
660 			 * siglock that we hold now and until we've queued
661 			 * the pending signal.
662 			 *
663 			 * Wake up the stopped thread _after_ setting
664 			 * TIF_SIGPENDING
665 			 */
666 			state = TASK_STOPPED;
667 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
668 				set_tsk_thread_flag(t, TIF_SIGPENDING);
669 				state |= TASK_INTERRUPTIBLE;
670 			}
671 			wake_up_state(t, state);
672 
673 			t = next_thread(t);
674 		} while (t != p);
675 
676 		if (p->signal->flags & SIGNAL_STOP_STOPPED) {
677 			/*
678 			 * We were in fact stopped, and are now continued.
679 			 * Notify the parent with CLD_CONTINUED.
680 			 */
681 			p->signal->flags = SIGNAL_STOP_CONTINUED;
682 			p->signal->group_exit_code = 0;
683 			spin_unlock(&p->sighand->siglock);
684 			do_notify_parent_cldstop(p, CLD_CONTINUED);
685 			spin_lock(&p->sighand->siglock);
686 		} else {
687 			/*
688 			 * We are not stopped, but there could be a stop
689 			 * signal in the middle of being processed after
690 			 * being removed from the queue.  Clear that too.
691 			 */
692 			p->signal->flags = 0;
693 		}
694 	} else if (sig == SIGKILL) {
695 		/*
696 		 * Make sure that any pending stop signal already dequeued
697 		 * is undone by the wakeup for SIGKILL.
698 		 */
699 		p->signal->flags = 0;
700 	}
701 }
702 
703 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
704 			struct sigpending *signals)
705 {
706 	struct sigqueue * q = NULL;
707 	int ret = 0;
708 
709 	/*
710 	 * fast-pathed signals for kernel-internal things like SIGSTOP
711 	 * or SIGKILL.
712 	 */
713 	if (info == SEND_SIG_FORCED)
714 		goto out_set;
715 
716 	/* Real-time signals must be queued if sent by sigqueue, or
717 	   some other real-time mechanism.  It is implementation
718 	   defined whether kill() does so.  We attempt to do so, on
719 	   the principle of least surprise, but since kill is not
720 	   allowed to fail with EAGAIN when low on memory we just
721 	   make sure at least one signal gets delivered and don't
722 	   pass on the info struct.  */
723 
724 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
725 					     (is_si_special(info) ||
726 					      info->si_code >= 0)));
727 	if (q) {
728 		list_add_tail(&q->list, &signals->list);
729 		switch ((unsigned long) info) {
730 		case (unsigned long) SEND_SIG_NOINFO:
731 			q->info.si_signo = sig;
732 			q->info.si_errno = 0;
733 			q->info.si_code = SI_USER;
734 			q->info.si_pid = current->pid;
735 			q->info.si_uid = current->uid;
736 			break;
737 		case (unsigned long) SEND_SIG_PRIV:
738 			q->info.si_signo = sig;
739 			q->info.si_errno = 0;
740 			q->info.si_code = SI_KERNEL;
741 			q->info.si_pid = 0;
742 			q->info.si_uid = 0;
743 			break;
744 		default:
745 			copy_siginfo(&q->info, info);
746 			break;
747 		}
748 	} else if (!is_si_special(info)) {
749 		if (sig >= SIGRTMIN && info->si_code != SI_USER)
750 		/*
751 		 * Queue overflow, abort.  We may abort if the signal was rt
752 		 * and sent by user using something other than kill().
753 		 */
754 			return -EAGAIN;
755 	}
756 
757 out_set:
758 	sigaddset(&signals->signal, sig);
759 	return ret;
760 }
761 
762 #define LEGACY_QUEUE(sigptr, sig) \
763 	(((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
764 
765 
766 static int
767 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
768 {
769 	int ret = 0;
770 
771 	BUG_ON(!irqs_disabled());
772 	assert_spin_locked(&t->sighand->siglock);
773 
774 	/* Short-circuit ignored signals.  */
775 	if (sig_ignored(t, sig))
776 		goto out;
777 
778 	/* Support queueing exactly one non-rt signal, so that we
779 	   can get more detailed information about the cause of
780 	   the signal. */
781 	if (LEGACY_QUEUE(&t->pending, sig))
782 		goto out;
783 
784 	ret = send_signal(sig, info, t, &t->pending);
785 	if (!ret && !sigismember(&t->blocked, sig))
786 		signal_wake_up(t, sig == SIGKILL);
787 out:
788 	return ret;
789 }
790 
791 /*
792  * Force a signal that the process can't ignore: if necessary
793  * we unblock the signal and change any SIG_IGN to SIG_DFL.
794  */
795 
796 int
797 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
798 {
799 	unsigned long int flags;
800 	int ret;
801 
802 	spin_lock_irqsave(&t->sighand->siglock, flags);
803 	if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
804 		t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
805 	}
806 	if (sigismember(&t->blocked, sig)) {
807 		sigdelset(&t->blocked, sig);
808 	}
809 	recalc_sigpending_tsk(t);
810 	ret = specific_send_sig_info(sig, info, t);
811 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
812 
813 	return ret;
814 }
815 
816 void
817 force_sig_specific(int sig, struct task_struct *t)
818 {
819 	force_sig_info(sig, SEND_SIG_FORCED, t);
820 }
821 
822 /*
823  * Test if P wants to take SIG.  After we've checked all threads with this,
824  * it's equivalent to finding no threads not blocking SIG.  Any threads not
825  * blocking SIG were ruled out because they are not running and already
826  * have pending signals.  Such threads will dequeue from the shared queue
827  * as soon as they're available, so putting the signal on the shared queue
828  * will be equivalent to sending it to one such thread.
829  */
830 static inline int wants_signal(int sig, struct task_struct *p)
831 {
832 	if (sigismember(&p->blocked, sig))
833 		return 0;
834 	if (p->flags & PF_EXITING)
835 		return 0;
836 	if (sig == SIGKILL)
837 		return 1;
838 	if (p->state & (TASK_STOPPED | TASK_TRACED))
839 		return 0;
840 	return task_curr(p) || !signal_pending(p);
841 }
842 
843 static void
844 __group_complete_signal(int sig, struct task_struct *p)
845 {
846 	struct task_struct *t;
847 
848 	/*
849 	 * Now find a thread we can wake up to take the signal off the queue.
850 	 *
851 	 * If the main thread wants the signal, it gets first crack.
852 	 * Probably the least surprising to the average bear.
853 	 */
854 	if (wants_signal(sig, p))
855 		t = p;
856 	else if (thread_group_empty(p))
857 		/*
858 		 * There is just one thread and it does not need to be woken.
859 		 * It will dequeue unblocked signals before it runs again.
860 		 */
861 		return;
862 	else {
863 		/*
864 		 * Otherwise try to find a suitable thread.
865 		 */
866 		t = p->signal->curr_target;
867 		if (t == NULL)
868 			/* restart balancing at this thread */
869 			t = p->signal->curr_target = p;
870 
871 		while (!wants_signal(sig, t)) {
872 			t = next_thread(t);
873 			if (t == p->signal->curr_target)
874 				/*
875 				 * No thread needs to be woken.
876 				 * Any eligible threads will see
877 				 * the signal in the queue soon.
878 				 */
879 				return;
880 		}
881 		p->signal->curr_target = t;
882 	}
883 
884 	/*
885 	 * Found a killable thread.  If the signal will be fatal,
886 	 * then start taking the whole group down immediately.
887 	 */
888 	if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
889 	    !sigismember(&t->real_blocked, sig) &&
890 	    (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
891 		/*
892 		 * This signal will be fatal to the whole group.
893 		 */
894 		if (!sig_kernel_coredump(sig)) {
895 			/*
896 			 * Start a group exit and wake everybody up.
897 			 * This way we don't have other threads
898 			 * running and doing things after a slower
899 			 * thread has the fatal signal pending.
900 			 */
901 			p->signal->flags = SIGNAL_GROUP_EXIT;
902 			p->signal->group_exit_code = sig;
903 			p->signal->group_stop_count = 0;
904 			t = p;
905 			do {
906 				sigaddset(&t->pending.signal, SIGKILL);
907 				signal_wake_up(t, 1);
908 				t = next_thread(t);
909 			} while (t != p);
910 			return;
911 		}
912 
913 		/*
914 		 * There will be a core dump.  We make all threads other
915 		 * than the chosen one go into a group stop so that nothing
916 		 * happens until it gets scheduled, takes the signal off
917 		 * the shared queue, and does the core dump.  This is a
918 		 * little more complicated than strictly necessary, but it
919 		 * keeps the signal state that winds up in the core dump
920 		 * unchanged from the death state, e.g. which thread had
921 		 * the core-dump signal unblocked.
922 		 */
923 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
924 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
925 		p->signal->group_stop_count = 0;
926 		p->signal->group_exit_task = t;
927 		t = p;
928 		do {
929 			p->signal->group_stop_count++;
930 			signal_wake_up(t, 0);
931 			t = next_thread(t);
932 		} while (t != p);
933 		wake_up_process(p->signal->group_exit_task);
934 		return;
935 	}
936 
937 	/*
938 	 * The signal is already in the shared-pending queue.
939 	 * Tell the chosen thread to wake up and dequeue it.
940 	 */
941 	signal_wake_up(t, sig == SIGKILL);
942 	return;
943 }
944 
945 int
946 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
947 {
948 	int ret = 0;
949 
950 	assert_spin_locked(&p->sighand->siglock);
951 	handle_stop_signal(sig, p);
952 
953 	/* Short-circuit ignored signals.  */
954 	if (sig_ignored(p, sig))
955 		return ret;
956 
957 	if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
958 		/* This is a non-RT signal and we already have one queued.  */
959 		return ret;
960 
961 	/*
962 	 * Put this signal on the shared-pending queue, or fail with EAGAIN.
963 	 * We always use the shared queue for process-wide signals,
964 	 * to avoid several races.
965 	 */
966 	ret = send_signal(sig, info, p, &p->signal->shared_pending);
967 	if (unlikely(ret))
968 		return ret;
969 
970 	__group_complete_signal(sig, p);
971 	return 0;
972 }
973 
974 /*
975  * Nuke all other threads in the group.
976  */
977 void zap_other_threads(struct task_struct *p)
978 {
979 	struct task_struct *t;
980 
981 	p->signal->flags = SIGNAL_GROUP_EXIT;
982 	p->signal->group_stop_count = 0;
983 
984 	if (thread_group_empty(p))
985 		return;
986 
987 	for (t = next_thread(p); t != p; t = next_thread(t)) {
988 		/*
989 		 * Don't bother with already dead threads
990 		 */
991 		if (t->exit_state)
992 			continue;
993 
994 		/*
995 		 * We don't want to notify the parent, since we are
996 		 * killed as part of a thread group due to another
997 		 * thread doing an execve() or similar. So set the
998 		 * exit signal to -1 to allow immediate reaping of
999 		 * the process.  But don't detach the thread group
1000 		 * leader.
1001 		 */
1002 		if (t != p->group_leader)
1003 			t->exit_signal = -1;
1004 
1005 		/* SIGKILL will be handled before any pending SIGSTOP */
1006 		sigaddset(&t->pending.signal, SIGKILL);
1007 		signal_wake_up(t, 1);
1008 	}
1009 }
1010 
1011 /*
1012  * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1013  */
1014 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1015 {
1016 	struct sighand_struct *sighand;
1017 
1018 	for (;;) {
1019 		sighand = rcu_dereference(tsk->sighand);
1020 		if (unlikely(sighand == NULL))
1021 			break;
1022 
1023 		spin_lock_irqsave(&sighand->siglock, *flags);
1024 		if (likely(sighand == tsk->sighand))
1025 			break;
1026 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1027 	}
1028 
1029 	return sighand;
1030 }
1031 
1032 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1033 {
1034 	unsigned long flags;
1035 	int ret;
1036 
1037 	ret = check_kill_permission(sig, info, p);
1038 
1039 	if (!ret && sig) {
1040 		ret = -ESRCH;
1041 		if (lock_task_sighand(p, &flags)) {
1042 			ret = __group_send_sig_info(sig, info, p);
1043 			unlock_task_sighand(p, &flags);
1044 		}
1045 	}
1046 
1047 	return ret;
1048 }
1049 
1050 /*
1051  * kill_pg_info() sends a signal to a process group: this is what the tty
1052  * control characters do (^C, ^Z etc)
1053  */
1054 
1055 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1056 {
1057 	struct task_struct *p = NULL;
1058 	int retval, success;
1059 
1060 	if (pgrp <= 0)
1061 		return -EINVAL;
1062 
1063 	success = 0;
1064 	retval = -ESRCH;
1065 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1066 		int err = group_send_sig_info(sig, info, p);
1067 		success |= !err;
1068 		retval = err;
1069 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1070 	return success ? 0 : retval;
1071 }
1072 
1073 int
1074 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1075 {
1076 	int retval;
1077 
1078 	read_lock(&tasklist_lock);
1079 	retval = __kill_pg_info(sig, info, pgrp);
1080 	read_unlock(&tasklist_lock);
1081 
1082 	return retval;
1083 }
1084 
1085 int
1086 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1087 {
1088 	int error;
1089 	int acquired_tasklist_lock = 0;
1090 	struct task_struct *p;
1091 
1092 	rcu_read_lock();
1093 	if (unlikely(sig_needs_tasklist(sig))) {
1094 		read_lock(&tasklist_lock);
1095 		acquired_tasklist_lock = 1;
1096 	}
1097 	p = find_task_by_pid(pid);
1098 	error = -ESRCH;
1099 	if (p)
1100 		error = group_send_sig_info(sig, info, p);
1101 	if (unlikely(acquired_tasklist_lock))
1102 		read_unlock(&tasklist_lock);
1103 	rcu_read_unlock();
1104 	return error;
1105 }
1106 
1107 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1108 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1109 		      uid_t uid, uid_t euid, u32 secid)
1110 {
1111 	int ret = -EINVAL;
1112 	struct task_struct *p;
1113 
1114 	if (!valid_signal(sig))
1115 		return ret;
1116 
1117 	read_lock(&tasklist_lock);
1118 	p = find_task_by_pid(pid);
1119 	if (!p) {
1120 		ret = -ESRCH;
1121 		goto out_unlock;
1122 	}
1123 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1124 	    && (euid != p->suid) && (euid != p->uid)
1125 	    && (uid != p->suid) && (uid != p->uid)) {
1126 		ret = -EPERM;
1127 		goto out_unlock;
1128 	}
1129 	ret = security_task_kill(p, info, sig, secid);
1130 	if (ret)
1131 		goto out_unlock;
1132 	if (sig && p->sighand) {
1133 		unsigned long flags;
1134 		spin_lock_irqsave(&p->sighand->siglock, flags);
1135 		ret = __group_send_sig_info(sig, info, p);
1136 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1137 	}
1138 out_unlock:
1139 	read_unlock(&tasklist_lock);
1140 	return ret;
1141 }
1142 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1143 
1144 /*
1145  * kill_something_info() interprets pid in interesting ways just like kill(2).
1146  *
1147  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1148  * is probably wrong.  Should make it like BSD or SYSV.
1149  */
1150 
1151 static int kill_something_info(int sig, struct siginfo *info, int pid)
1152 {
1153 	if (!pid) {
1154 		return kill_pg_info(sig, info, process_group(current));
1155 	} else if (pid == -1) {
1156 		int retval = 0, count = 0;
1157 		struct task_struct * p;
1158 
1159 		read_lock(&tasklist_lock);
1160 		for_each_process(p) {
1161 			if (p->pid > 1 && p->tgid != current->tgid) {
1162 				int err = group_send_sig_info(sig, info, p);
1163 				++count;
1164 				if (err != -EPERM)
1165 					retval = err;
1166 			}
1167 		}
1168 		read_unlock(&tasklist_lock);
1169 		return count ? retval : -ESRCH;
1170 	} else if (pid < 0) {
1171 		return kill_pg_info(sig, info, -pid);
1172 	} else {
1173 		return kill_proc_info(sig, info, pid);
1174 	}
1175 }
1176 
1177 /*
1178  * These are for backward compatibility with the rest of the kernel source.
1179  */
1180 
1181 /*
1182  * These two are the most common entry points.  They send a signal
1183  * just to the specific thread.
1184  */
1185 int
1186 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1187 {
1188 	int ret;
1189 	unsigned long flags;
1190 
1191 	/*
1192 	 * Make sure legacy kernel users don't send in bad values
1193 	 * (normal paths check this in check_kill_permission).
1194 	 */
1195 	if (!valid_signal(sig))
1196 		return -EINVAL;
1197 
1198 	/*
1199 	 * We need the tasklist lock even for the specific
1200 	 * thread case (when we don't need to follow the group
1201 	 * lists) in order to avoid races with "p->sighand"
1202 	 * going away or changing from under us.
1203 	 */
1204 	read_lock(&tasklist_lock);
1205 	spin_lock_irqsave(&p->sighand->siglock, flags);
1206 	ret = specific_send_sig_info(sig, info, p);
1207 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1208 	read_unlock(&tasklist_lock);
1209 	return ret;
1210 }
1211 
1212 #define __si_special(priv) \
1213 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1214 
1215 int
1216 send_sig(int sig, struct task_struct *p, int priv)
1217 {
1218 	return send_sig_info(sig, __si_special(priv), p);
1219 }
1220 
1221 /*
1222  * This is the entry point for "process-wide" signals.
1223  * They will go to an appropriate thread in the thread group.
1224  */
1225 int
1226 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1227 {
1228 	int ret;
1229 	read_lock(&tasklist_lock);
1230 	ret = group_send_sig_info(sig, info, p);
1231 	read_unlock(&tasklist_lock);
1232 	return ret;
1233 }
1234 
1235 void
1236 force_sig(int sig, struct task_struct *p)
1237 {
1238 	force_sig_info(sig, SEND_SIG_PRIV, p);
1239 }
1240 
1241 /*
1242  * When things go south during signal handling, we
1243  * will force a SIGSEGV. And if the signal that caused
1244  * the problem was already a SIGSEGV, we'll want to
1245  * make sure we don't even try to deliver the signal..
1246  */
1247 int
1248 force_sigsegv(int sig, struct task_struct *p)
1249 {
1250 	if (sig == SIGSEGV) {
1251 		unsigned long flags;
1252 		spin_lock_irqsave(&p->sighand->siglock, flags);
1253 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1254 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1255 	}
1256 	force_sig(SIGSEGV, p);
1257 	return 0;
1258 }
1259 
1260 int
1261 kill_pg(pid_t pgrp, int sig, int priv)
1262 {
1263 	return kill_pg_info(sig, __si_special(priv), pgrp);
1264 }
1265 
1266 int
1267 kill_proc(pid_t pid, int sig, int priv)
1268 {
1269 	return kill_proc_info(sig, __si_special(priv), pid);
1270 }
1271 
1272 /*
1273  * These functions support sending signals using preallocated sigqueue
1274  * structures.  This is needed "because realtime applications cannot
1275  * afford to lose notifications of asynchronous events, like timer
1276  * expirations or I/O completions".  In the case of Posix Timers
1277  * we allocate the sigqueue structure from the timer_create.  If this
1278  * allocation fails we are able to report the failure to the application
1279  * with an EAGAIN error.
1280  */
1281 
1282 struct sigqueue *sigqueue_alloc(void)
1283 {
1284 	struct sigqueue *q;
1285 
1286 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1287 		q->flags |= SIGQUEUE_PREALLOC;
1288 	return(q);
1289 }
1290 
1291 void sigqueue_free(struct sigqueue *q)
1292 {
1293 	unsigned long flags;
1294 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1295 	/*
1296 	 * If the signal is still pending remove it from the
1297 	 * pending queue.
1298 	 */
1299 	if (unlikely(!list_empty(&q->list))) {
1300 		spinlock_t *lock = &current->sighand->siglock;
1301 		read_lock(&tasklist_lock);
1302 		spin_lock_irqsave(lock, flags);
1303 		if (!list_empty(&q->list))
1304 			list_del_init(&q->list);
1305 		spin_unlock_irqrestore(lock, flags);
1306 		read_unlock(&tasklist_lock);
1307 	}
1308 	q->flags &= ~SIGQUEUE_PREALLOC;
1309 	__sigqueue_free(q);
1310 }
1311 
1312 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1313 {
1314 	unsigned long flags;
1315 	int ret = 0;
1316 
1317 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1318 
1319 	/*
1320 	 * The rcu based delayed sighand destroy makes it possible to
1321 	 * run this without tasklist lock held. The task struct itself
1322 	 * cannot go away as create_timer did get_task_struct().
1323 	 *
1324 	 * We return -1, when the task is marked exiting, so
1325 	 * posix_timer_event can redirect it to the group leader
1326 	 */
1327 	rcu_read_lock();
1328 
1329 	if (!likely(lock_task_sighand(p, &flags))) {
1330 		ret = -1;
1331 		goto out_err;
1332 	}
1333 
1334 	if (unlikely(!list_empty(&q->list))) {
1335 		/*
1336 		 * If an SI_TIMER entry is already queue just increment
1337 		 * the overrun count.
1338 		 */
1339 		BUG_ON(q->info.si_code != SI_TIMER);
1340 		q->info.si_overrun++;
1341 		goto out;
1342 	}
1343 	/* Short-circuit ignored signals.  */
1344 	if (sig_ignored(p, sig)) {
1345 		ret = 1;
1346 		goto out;
1347 	}
1348 
1349 	list_add_tail(&q->list, &p->pending.list);
1350 	sigaddset(&p->pending.signal, sig);
1351 	if (!sigismember(&p->blocked, sig))
1352 		signal_wake_up(p, sig == SIGKILL);
1353 
1354 out:
1355 	unlock_task_sighand(p, &flags);
1356 out_err:
1357 	rcu_read_unlock();
1358 
1359 	return ret;
1360 }
1361 
1362 int
1363 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1364 {
1365 	unsigned long flags;
1366 	int ret = 0;
1367 
1368 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1369 
1370 	read_lock(&tasklist_lock);
1371 	/* Since it_lock is held, p->sighand cannot be NULL. */
1372 	spin_lock_irqsave(&p->sighand->siglock, flags);
1373 	handle_stop_signal(sig, p);
1374 
1375 	/* Short-circuit ignored signals.  */
1376 	if (sig_ignored(p, sig)) {
1377 		ret = 1;
1378 		goto out;
1379 	}
1380 
1381 	if (unlikely(!list_empty(&q->list))) {
1382 		/*
1383 		 * If an SI_TIMER entry is already queue just increment
1384 		 * the overrun count.  Other uses should not try to
1385 		 * send the signal multiple times.
1386 		 */
1387 		BUG_ON(q->info.si_code != SI_TIMER);
1388 		q->info.si_overrun++;
1389 		goto out;
1390 	}
1391 
1392 	/*
1393 	 * Put this signal on the shared-pending queue.
1394 	 * We always use the shared queue for process-wide signals,
1395 	 * to avoid several races.
1396 	 */
1397 	list_add_tail(&q->list, &p->signal->shared_pending.list);
1398 	sigaddset(&p->signal->shared_pending.signal, sig);
1399 
1400 	__group_complete_signal(sig, p);
1401 out:
1402 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1403 	read_unlock(&tasklist_lock);
1404 	return ret;
1405 }
1406 
1407 /*
1408  * Wake up any threads in the parent blocked in wait* syscalls.
1409  */
1410 static inline void __wake_up_parent(struct task_struct *p,
1411 				    struct task_struct *parent)
1412 {
1413 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1414 }
1415 
1416 /*
1417  * Let a parent know about the death of a child.
1418  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1419  */
1420 
1421 void do_notify_parent(struct task_struct *tsk, int sig)
1422 {
1423 	struct siginfo info;
1424 	unsigned long flags;
1425 	struct sighand_struct *psig;
1426 
1427 	BUG_ON(sig == -1);
1428 
1429  	/* do_notify_parent_cldstop should have been called instead.  */
1430  	BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1431 
1432 	BUG_ON(!tsk->ptrace &&
1433 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1434 
1435 	info.si_signo = sig;
1436 	info.si_errno = 0;
1437 	info.si_pid = tsk->pid;
1438 	info.si_uid = tsk->uid;
1439 
1440 	/* FIXME: find out whether or not this is supposed to be c*time. */
1441 	info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1442 						       tsk->signal->utime));
1443 	info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1444 						       tsk->signal->stime));
1445 
1446 	info.si_status = tsk->exit_code & 0x7f;
1447 	if (tsk->exit_code & 0x80)
1448 		info.si_code = CLD_DUMPED;
1449 	else if (tsk->exit_code & 0x7f)
1450 		info.si_code = CLD_KILLED;
1451 	else {
1452 		info.si_code = CLD_EXITED;
1453 		info.si_status = tsk->exit_code >> 8;
1454 	}
1455 
1456 	psig = tsk->parent->sighand;
1457 	spin_lock_irqsave(&psig->siglock, flags);
1458 	if (!tsk->ptrace && sig == SIGCHLD &&
1459 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1460 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1461 		/*
1462 		 * We are exiting and our parent doesn't care.  POSIX.1
1463 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1464 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1465 		 * automatically and not left for our parent's wait4 call.
1466 		 * Rather than having the parent do it as a magic kind of
1467 		 * signal handler, we just set this to tell do_exit that we
1468 		 * can be cleaned up without becoming a zombie.  Note that
1469 		 * we still call __wake_up_parent in this case, because a
1470 		 * blocked sys_wait4 might now return -ECHILD.
1471 		 *
1472 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1473 		 * is implementation-defined: we do (if you don't want
1474 		 * it, just use SIG_IGN instead).
1475 		 */
1476 		tsk->exit_signal = -1;
1477 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1478 			sig = 0;
1479 	}
1480 	if (valid_signal(sig) && sig > 0)
1481 		__group_send_sig_info(sig, &info, tsk->parent);
1482 	__wake_up_parent(tsk, tsk->parent);
1483 	spin_unlock_irqrestore(&psig->siglock, flags);
1484 }
1485 
1486 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1487 {
1488 	struct siginfo info;
1489 	unsigned long flags;
1490 	struct task_struct *parent;
1491 	struct sighand_struct *sighand;
1492 
1493 	if (tsk->ptrace & PT_PTRACED)
1494 		parent = tsk->parent;
1495 	else {
1496 		tsk = tsk->group_leader;
1497 		parent = tsk->real_parent;
1498 	}
1499 
1500 	info.si_signo = SIGCHLD;
1501 	info.si_errno = 0;
1502 	info.si_pid = tsk->pid;
1503 	info.si_uid = tsk->uid;
1504 
1505 	/* FIXME: find out whether or not this is supposed to be c*time. */
1506 	info.si_utime = cputime_to_jiffies(tsk->utime);
1507 	info.si_stime = cputime_to_jiffies(tsk->stime);
1508 
1509  	info.si_code = why;
1510  	switch (why) {
1511  	case CLD_CONTINUED:
1512  		info.si_status = SIGCONT;
1513  		break;
1514  	case CLD_STOPPED:
1515  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1516  		break;
1517  	case CLD_TRAPPED:
1518  		info.si_status = tsk->exit_code & 0x7f;
1519  		break;
1520  	default:
1521  		BUG();
1522  	}
1523 
1524 	sighand = parent->sighand;
1525 	spin_lock_irqsave(&sighand->siglock, flags);
1526 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1527 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1528 		__group_send_sig_info(SIGCHLD, &info, parent);
1529 	/*
1530 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1531 	 */
1532 	__wake_up_parent(tsk, parent);
1533 	spin_unlock_irqrestore(&sighand->siglock, flags);
1534 }
1535 
1536 static inline int may_ptrace_stop(void)
1537 {
1538 	if (!likely(current->ptrace & PT_PTRACED))
1539 		return 0;
1540 
1541 	if (unlikely(current->parent == current->real_parent &&
1542 		    (current->ptrace & PT_ATTACHED)))
1543 		return 0;
1544 
1545 	if (unlikely(current->signal == current->parent->signal) &&
1546 	    unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1547 		return 0;
1548 
1549 	/*
1550 	 * Are we in the middle of do_coredump?
1551 	 * If so and our tracer is also part of the coredump stopping
1552 	 * is a deadlock situation, and pointless because our tracer
1553 	 * is dead so don't allow us to stop.
1554 	 * If SIGKILL was already sent before the caller unlocked
1555 	 * ->siglock we must see ->core_waiters != 0. Otherwise it
1556 	 * is safe to enter schedule().
1557 	 */
1558 	if (unlikely(current->mm->core_waiters) &&
1559 	    unlikely(current->mm == current->parent->mm))
1560 		return 0;
1561 
1562 	return 1;
1563 }
1564 
1565 /*
1566  * This must be called with current->sighand->siglock held.
1567  *
1568  * This should be the path for all ptrace stops.
1569  * We always set current->last_siginfo while stopped here.
1570  * That makes it a way to test a stopped process for
1571  * being ptrace-stopped vs being job-control-stopped.
1572  *
1573  * If we actually decide not to stop at all because the tracer is gone,
1574  * we leave nostop_code in current->exit_code.
1575  */
1576 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1577 {
1578 	/*
1579 	 * If there is a group stop in progress,
1580 	 * we must participate in the bookkeeping.
1581 	 */
1582 	if (current->signal->group_stop_count > 0)
1583 		--current->signal->group_stop_count;
1584 
1585 	current->last_siginfo = info;
1586 	current->exit_code = exit_code;
1587 
1588 	/* Let the debugger run.  */
1589 	set_current_state(TASK_TRACED);
1590 	spin_unlock_irq(&current->sighand->siglock);
1591 	try_to_freeze();
1592 	read_lock(&tasklist_lock);
1593 	if (may_ptrace_stop()) {
1594 		do_notify_parent_cldstop(current, CLD_TRAPPED);
1595 		read_unlock(&tasklist_lock);
1596 		schedule();
1597 	} else {
1598 		/*
1599 		 * By the time we got the lock, our tracer went away.
1600 		 * Don't stop here.
1601 		 */
1602 		read_unlock(&tasklist_lock);
1603 		set_current_state(TASK_RUNNING);
1604 		current->exit_code = nostop_code;
1605 	}
1606 
1607 	/*
1608 	 * We are back.  Now reacquire the siglock before touching
1609 	 * last_siginfo, so that we are sure to have synchronized with
1610 	 * any signal-sending on another CPU that wants to examine it.
1611 	 */
1612 	spin_lock_irq(&current->sighand->siglock);
1613 	current->last_siginfo = NULL;
1614 
1615 	/*
1616 	 * Queued signals ignored us while we were stopped for tracing.
1617 	 * So check for any that we should take before resuming user mode.
1618 	 */
1619 	recalc_sigpending();
1620 }
1621 
1622 void ptrace_notify(int exit_code)
1623 {
1624 	siginfo_t info;
1625 
1626 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1627 
1628 	memset(&info, 0, sizeof info);
1629 	info.si_signo = SIGTRAP;
1630 	info.si_code = exit_code;
1631 	info.si_pid = current->pid;
1632 	info.si_uid = current->uid;
1633 
1634 	/* Let the debugger run.  */
1635 	spin_lock_irq(&current->sighand->siglock);
1636 	ptrace_stop(exit_code, 0, &info);
1637 	spin_unlock_irq(&current->sighand->siglock);
1638 }
1639 
1640 static void
1641 finish_stop(int stop_count)
1642 {
1643 	/*
1644 	 * If there are no other threads in the group, or if there is
1645 	 * a group stop in progress and we are the last to stop,
1646 	 * report to the parent.  When ptraced, every thread reports itself.
1647 	 */
1648 	if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1649 		read_lock(&tasklist_lock);
1650 		do_notify_parent_cldstop(current, CLD_STOPPED);
1651 		read_unlock(&tasklist_lock);
1652 	}
1653 
1654 	schedule();
1655 	/*
1656 	 * Now we don't run again until continued.
1657 	 */
1658 	current->exit_code = 0;
1659 }
1660 
1661 /*
1662  * This performs the stopping for SIGSTOP and other stop signals.
1663  * We have to stop all threads in the thread group.
1664  * Returns nonzero if we've actually stopped and released the siglock.
1665  * Returns zero if we didn't stop and still hold the siglock.
1666  */
1667 static int do_signal_stop(int signr)
1668 {
1669 	struct signal_struct *sig = current->signal;
1670 	int stop_count;
1671 
1672 	if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1673 		return 0;
1674 
1675 	if (sig->group_stop_count > 0) {
1676 		/*
1677 		 * There is a group stop in progress.  We don't need to
1678 		 * start another one.
1679 		 */
1680 		stop_count = --sig->group_stop_count;
1681 	} else {
1682 		/*
1683 		 * There is no group stop already in progress.
1684 		 * We must initiate one now.
1685 		 */
1686 		struct task_struct *t;
1687 
1688 		sig->group_exit_code = signr;
1689 
1690 		stop_count = 0;
1691 		for (t = next_thread(current); t != current; t = next_thread(t))
1692 			/*
1693 			 * Setting state to TASK_STOPPED for a group
1694 			 * stop is always done with the siglock held,
1695 			 * so this check has no races.
1696 			 */
1697 			if (!t->exit_state &&
1698 			    !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1699 				stop_count++;
1700 				signal_wake_up(t, 0);
1701 			}
1702 		sig->group_stop_count = stop_count;
1703 	}
1704 
1705 	if (stop_count == 0)
1706 		sig->flags = SIGNAL_STOP_STOPPED;
1707 	current->exit_code = sig->group_exit_code;
1708 	__set_current_state(TASK_STOPPED);
1709 
1710 	spin_unlock_irq(&current->sighand->siglock);
1711 	finish_stop(stop_count);
1712 	return 1;
1713 }
1714 
1715 /*
1716  * Do appropriate magic when group_stop_count > 0.
1717  * We return nonzero if we stopped, after releasing the siglock.
1718  * We return zero if we still hold the siglock and should look
1719  * for another signal without checking group_stop_count again.
1720  */
1721 static int handle_group_stop(void)
1722 {
1723 	int stop_count;
1724 
1725 	if (current->signal->group_exit_task == current) {
1726 		/*
1727 		 * Group stop is so we can do a core dump,
1728 		 * We are the initiating thread, so get on with it.
1729 		 */
1730 		current->signal->group_exit_task = NULL;
1731 		return 0;
1732 	}
1733 
1734 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1735 		/*
1736 		 * Group stop is so another thread can do a core dump,
1737 		 * or else we are racing against a death signal.
1738 		 * Just punt the stop so we can get the next signal.
1739 		 */
1740 		return 0;
1741 
1742 	/*
1743 	 * There is a group stop in progress.  We stop
1744 	 * without any associated signal being in our queue.
1745 	 */
1746 	stop_count = --current->signal->group_stop_count;
1747 	if (stop_count == 0)
1748 		current->signal->flags = SIGNAL_STOP_STOPPED;
1749 	current->exit_code = current->signal->group_exit_code;
1750 	set_current_state(TASK_STOPPED);
1751 	spin_unlock_irq(&current->sighand->siglock);
1752 	finish_stop(stop_count);
1753 	return 1;
1754 }
1755 
1756 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1757 			  struct pt_regs *regs, void *cookie)
1758 {
1759 	sigset_t *mask = &current->blocked;
1760 	int signr = 0;
1761 
1762 	try_to_freeze();
1763 
1764 relock:
1765 	spin_lock_irq(&current->sighand->siglock);
1766 	for (;;) {
1767 		struct k_sigaction *ka;
1768 
1769 		if (unlikely(current->signal->group_stop_count > 0) &&
1770 		    handle_group_stop())
1771 			goto relock;
1772 
1773 		signr = dequeue_signal(current, mask, info);
1774 
1775 		if (!signr)
1776 			break; /* will return 0 */
1777 
1778 		if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1779 			ptrace_signal_deliver(regs, cookie);
1780 
1781 			/* Let the debugger run.  */
1782 			ptrace_stop(signr, signr, info);
1783 
1784 			/* We're back.  Did the debugger cancel the sig?  */
1785 			signr = current->exit_code;
1786 			if (signr == 0)
1787 				continue;
1788 
1789 			current->exit_code = 0;
1790 
1791 			/* Update the siginfo structure if the signal has
1792 			   changed.  If the debugger wanted something
1793 			   specific in the siginfo structure then it should
1794 			   have updated *info via PTRACE_SETSIGINFO.  */
1795 			if (signr != info->si_signo) {
1796 				info->si_signo = signr;
1797 				info->si_errno = 0;
1798 				info->si_code = SI_USER;
1799 				info->si_pid = current->parent->pid;
1800 				info->si_uid = current->parent->uid;
1801 			}
1802 
1803 			/* If the (new) signal is now blocked, requeue it.  */
1804 			if (sigismember(&current->blocked, signr)) {
1805 				specific_send_sig_info(signr, info, current);
1806 				continue;
1807 			}
1808 		}
1809 
1810 		ka = &current->sighand->action[signr-1];
1811 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1812 			continue;
1813 		if (ka->sa.sa_handler != SIG_DFL) {
1814 			/* Run the handler.  */
1815 			*return_ka = *ka;
1816 
1817 			if (ka->sa.sa_flags & SA_ONESHOT)
1818 				ka->sa.sa_handler = SIG_DFL;
1819 
1820 			break; /* will return non-zero "signr" value */
1821 		}
1822 
1823 		/*
1824 		 * Now we are doing the default action for this signal.
1825 		 */
1826 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1827 			continue;
1828 
1829 		/* Init gets no signals it doesn't want.  */
1830 		if (current == child_reaper)
1831 			continue;
1832 
1833 		if (sig_kernel_stop(signr)) {
1834 			/*
1835 			 * The default action is to stop all threads in
1836 			 * the thread group.  The job control signals
1837 			 * do nothing in an orphaned pgrp, but SIGSTOP
1838 			 * always works.  Note that siglock needs to be
1839 			 * dropped during the call to is_orphaned_pgrp()
1840 			 * because of lock ordering with tasklist_lock.
1841 			 * This allows an intervening SIGCONT to be posted.
1842 			 * We need to check for that and bail out if necessary.
1843 			 */
1844 			if (signr != SIGSTOP) {
1845 				spin_unlock_irq(&current->sighand->siglock);
1846 
1847 				/* signals can be posted during this window */
1848 
1849 				if (is_orphaned_pgrp(process_group(current)))
1850 					goto relock;
1851 
1852 				spin_lock_irq(&current->sighand->siglock);
1853 			}
1854 
1855 			if (likely(do_signal_stop(signr))) {
1856 				/* It released the siglock.  */
1857 				goto relock;
1858 			}
1859 
1860 			/*
1861 			 * We didn't actually stop, due to a race
1862 			 * with SIGCONT or something like that.
1863 			 */
1864 			continue;
1865 		}
1866 
1867 		spin_unlock_irq(&current->sighand->siglock);
1868 
1869 		/*
1870 		 * Anything else is fatal, maybe with a core dump.
1871 		 */
1872 		current->flags |= PF_SIGNALED;
1873 		if (sig_kernel_coredump(signr)) {
1874 			/*
1875 			 * If it was able to dump core, this kills all
1876 			 * other threads in the group and synchronizes with
1877 			 * their demise.  If we lost the race with another
1878 			 * thread getting here, it set group_exit_code
1879 			 * first and our do_group_exit call below will use
1880 			 * that value and ignore the one we pass it.
1881 			 */
1882 			do_coredump((long)signr, signr, regs);
1883 		}
1884 
1885 		/*
1886 		 * Death signals, no core dump.
1887 		 */
1888 		do_group_exit(signr);
1889 		/* NOTREACHED */
1890 	}
1891 	spin_unlock_irq(&current->sighand->siglock);
1892 	return signr;
1893 }
1894 
1895 EXPORT_SYMBOL(recalc_sigpending);
1896 EXPORT_SYMBOL_GPL(dequeue_signal);
1897 EXPORT_SYMBOL(flush_signals);
1898 EXPORT_SYMBOL(force_sig);
1899 EXPORT_SYMBOL(kill_pg);
1900 EXPORT_SYMBOL(kill_proc);
1901 EXPORT_SYMBOL(ptrace_notify);
1902 EXPORT_SYMBOL(send_sig);
1903 EXPORT_SYMBOL(send_sig_info);
1904 EXPORT_SYMBOL(sigprocmask);
1905 EXPORT_SYMBOL(block_all_signals);
1906 EXPORT_SYMBOL(unblock_all_signals);
1907 
1908 
1909 /*
1910  * System call entry points.
1911  */
1912 
1913 asmlinkage long sys_restart_syscall(void)
1914 {
1915 	struct restart_block *restart = &current_thread_info()->restart_block;
1916 	return restart->fn(restart);
1917 }
1918 
1919 long do_no_restart_syscall(struct restart_block *param)
1920 {
1921 	return -EINTR;
1922 }
1923 
1924 /*
1925  * We don't need to get the kernel lock - this is all local to this
1926  * particular thread.. (and that's good, because this is _heavily_
1927  * used by various programs)
1928  */
1929 
1930 /*
1931  * This is also useful for kernel threads that want to temporarily
1932  * (or permanently) block certain signals.
1933  *
1934  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1935  * interface happily blocks "unblockable" signals like SIGKILL
1936  * and friends.
1937  */
1938 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1939 {
1940 	int error;
1941 
1942 	spin_lock_irq(&current->sighand->siglock);
1943 	if (oldset)
1944 		*oldset = current->blocked;
1945 
1946 	error = 0;
1947 	switch (how) {
1948 	case SIG_BLOCK:
1949 		sigorsets(&current->blocked, &current->blocked, set);
1950 		break;
1951 	case SIG_UNBLOCK:
1952 		signandsets(&current->blocked, &current->blocked, set);
1953 		break;
1954 	case SIG_SETMASK:
1955 		current->blocked = *set;
1956 		break;
1957 	default:
1958 		error = -EINVAL;
1959 	}
1960 	recalc_sigpending();
1961 	spin_unlock_irq(&current->sighand->siglock);
1962 
1963 	return error;
1964 }
1965 
1966 asmlinkage long
1967 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1968 {
1969 	int error = -EINVAL;
1970 	sigset_t old_set, new_set;
1971 
1972 	/* XXX: Don't preclude handling different sized sigset_t's.  */
1973 	if (sigsetsize != sizeof(sigset_t))
1974 		goto out;
1975 
1976 	if (set) {
1977 		error = -EFAULT;
1978 		if (copy_from_user(&new_set, set, sizeof(*set)))
1979 			goto out;
1980 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1981 
1982 		error = sigprocmask(how, &new_set, &old_set);
1983 		if (error)
1984 			goto out;
1985 		if (oset)
1986 			goto set_old;
1987 	} else if (oset) {
1988 		spin_lock_irq(&current->sighand->siglock);
1989 		old_set = current->blocked;
1990 		spin_unlock_irq(&current->sighand->siglock);
1991 
1992 	set_old:
1993 		error = -EFAULT;
1994 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
1995 			goto out;
1996 	}
1997 	error = 0;
1998 out:
1999 	return error;
2000 }
2001 
2002 long do_sigpending(void __user *set, unsigned long sigsetsize)
2003 {
2004 	long error = -EINVAL;
2005 	sigset_t pending;
2006 
2007 	if (sigsetsize > sizeof(sigset_t))
2008 		goto out;
2009 
2010 	spin_lock_irq(&current->sighand->siglock);
2011 	sigorsets(&pending, &current->pending.signal,
2012 		  &current->signal->shared_pending.signal);
2013 	spin_unlock_irq(&current->sighand->siglock);
2014 
2015 	/* Outside the lock because only this thread touches it.  */
2016 	sigandsets(&pending, &current->blocked, &pending);
2017 
2018 	error = -EFAULT;
2019 	if (!copy_to_user(set, &pending, sigsetsize))
2020 		error = 0;
2021 
2022 out:
2023 	return error;
2024 }
2025 
2026 asmlinkage long
2027 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2028 {
2029 	return do_sigpending(set, sigsetsize);
2030 }
2031 
2032 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2033 
2034 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2035 {
2036 	int err;
2037 
2038 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2039 		return -EFAULT;
2040 	if (from->si_code < 0)
2041 		return __copy_to_user(to, from, sizeof(siginfo_t))
2042 			? -EFAULT : 0;
2043 	/*
2044 	 * If you change siginfo_t structure, please be sure
2045 	 * this code is fixed accordingly.
2046 	 * It should never copy any pad contained in the structure
2047 	 * to avoid security leaks, but must copy the generic
2048 	 * 3 ints plus the relevant union member.
2049 	 */
2050 	err = __put_user(from->si_signo, &to->si_signo);
2051 	err |= __put_user(from->si_errno, &to->si_errno);
2052 	err |= __put_user((short)from->si_code, &to->si_code);
2053 	switch (from->si_code & __SI_MASK) {
2054 	case __SI_KILL:
2055 		err |= __put_user(from->si_pid, &to->si_pid);
2056 		err |= __put_user(from->si_uid, &to->si_uid);
2057 		break;
2058 	case __SI_TIMER:
2059 		 err |= __put_user(from->si_tid, &to->si_tid);
2060 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2061 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2062 		break;
2063 	case __SI_POLL:
2064 		err |= __put_user(from->si_band, &to->si_band);
2065 		err |= __put_user(from->si_fd, &to->si_fd);
2066 		break;
2067 	case __SI_FAULT:
2068 		err |= __put_user(from->si_addr, &to->si_addr);
2069 #ifdef __ARCH_SI_TRAPNO
2070 		err |= __put_user(from->si_trapno, &to->si_trapno);
2071 #endif
2072 		break;
2073 	case __SI_CHLD:
2074 		err |= __put_user(from->si_pid, &to->si_pid);
2075 		err |= __put_user(from->si_uid, &to->si_uid);
2076 		err |= __put_user(from->si_status, &to->si_status);
2077 		err |= __put_user(from->si_utime, &to->si_utime);
2078 		err |= __put_user(from->si_stime, &to->si_stime);
2079 		break;
2080 	case __SI_RT: /* This is not generated by the kernel as of now. */
2081 	case __SI_MESGQ: /* But this is */
2082 		err |= __put_user(from->si_pid, &to->si_pid);
2083 		err |= __put_user(from->si_uid, &to->si_uid);
2084 		err |= __put_user(from->si_ptr, &to->si_ptr);
2085 		break;
2086 	default: /* this is just in case for now ... */
2087 		err |= __put_user(from->si_pid, &to->si_pid);
2088 		err |= __put_user(from->si_uid, &to->si_uid);
2089 		break;
2090 	}
2091 	return err;
2092 }
2093 
2094 #endif
2095 
2096 asmlinkage long
2097 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2098 		    siginfo_t __user *uinfo,
2099 		    const struct timespec __user *uts,
2100 		    size_t sigsetsize)
2101 {
2102 	int ret, sig;
2103 	sigset_t these;
2104 	struct timespec ts;
2105 	siginfo_t info;
2106 	long timeout = 0;
2107 
2108 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2109 	if (sigsetsize != sizeof(sigset_t))
2110 		return -EINVAL;
2111 
2112 	if (copy_from_user(&these, uthese, sizeof(these)))
2113 		return -EFAULT;
2114 
2115 	/*
2116 	 * Invert the set of allowed signals to get those we
2117 	 * want to block.
2118 	 */
2119 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2120 	signotset(&these);
2121 
2122 	if (uts) {
2123 		if (copy_from_user(&ts, uts, sizeof(ts)))
2124 			return -EFAULT;
2125 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2126 		    || ts.tv_sec < 0)
2127 			return -EINVAL;
2128 	}
2129 
2130 	spin_lock_irq(&current->sighand->siglock);
2131 	sig = dequeue_signal(current, &these, &info);
2132 	if (!sig) {
2133 		timeout = MAX_SCHEDULE_TIMEOUT;
2134 		if (uts)
2135 			timeout = (timespec_to_jiffies(&ts)
2136 				   + (ts.tv_sec || ts.tv_nsec));
2137 
2138 		if (timeout) {
2139 			/* None ready -- temporarily unblock those we're
2140 			 * interested while we are sleeping in so that we'll
2141 			 * be awakened when they arrive.  */
2142 			current->real_blocked = current->blocked;
2143 			sigandsets(&current->blocked, &current->blocked, &these);
2144 			recalc_sigpending();
2145 			spin_unlock_irq(&current->sighand->siglock);
2146 
2147 			timeout = schedule_timeout_interruptible(timeout);
2148 
2149 			spin_lock_irq(&current->sighand->siglock);
2150 			sig = dequeue_signal(current, &these, &info);
2151 			current->blocked = current->real_blocked;
2152 			siginitset(&current->real_blocked, 0);
2153 			recalc_sigpending();
2154 		}
2155 	}
2156 	spin_unlock_irq(&current->sighand->siglock);
2157 
2158 	if (sig) {
2159 		ret = sig;
2160 		if (uinfo) {
2161 			if (copy_siginfo_to_user(uinfo, &info))
2162 				ret = -EFAULT;
2163 		}
2164 	} else {
2165 		ret = -EAGAIN;
2166 		if (timeout)
2167 			ret = -EINTR;
2168 	}
2169 
2170 	return ret;
2171 }
2172 
2173 asmlinkage long
2174 sys_kill(int pid, int sig)
2175 {
2176 	struct siginfo info;
2177 
2178 	info.si_signo = sig;
2179 	info.si_errno = 0;
2180 	info.si_code = SI_USER;
2181 	info.si_pid = current->tgid;
2182 	info.si_uid = current->uid;
2183 
2184 	return kill_something_info(sig, &info, pid);
2185 }
2186 
2187 static int do_tkill(int tgid, int pid, int sig)
2188 {
2189 	int error;
2190 	struct siginfo info;
2191 	struct task_struct *p;
2192 
2193 	error = -ESRCH;
2194 	info.si_signo = sig;
2195 	info.si_errno = 0;
2196 	info.si_code = SI_TKILL;
2197 	info.si_pid = current->tgid;
2198 	info.si_uid = current->uid;
2199 
2200 	read_lock(&tasklist_lock);
2201 	p = find_task_by_pid(pid);
2202 	if (p && (tgid <= 0 || p->tgid == tgid)) {
2203 		error = check_kill_permission(sig, &info, p);
2204 		/*
2205 		 * The null signal is a permissions and process existence
2206 		 * probe.  No signal is actually delivered.
2207 		 */
2208 		if (!error && sig && p->sighand) {
2209 			spin_lock_irq(&p->sighand->siglock);
2210 			handle_stop_signal(sig, p);
2211 			error = specific_send_sig_info(sig, &info, p);
2212 			spin_unlock_irq(&p->sighand->siglock);
2213 		}
2214 	}
2215 	read_unlock(&tasklist_lock);
2216 
2217 	return error;
2218 }
2219 
2220 /**
2221  *  sys_tgkill - send signal to one specific thread
2222  *  @tgid: the thread group ID of the thread
2223  *  @pid: the PID of the thread
2224  *  @sig: signal to be sent
2225  *
2226  *  This syscall also checks the tgid and returns -ESRCH even if the PID
2227  *  exists but it's not belonging to the target process anymore. This
2228  *  method solves the problem of threads exiting and PIDs getting reused.
2229  */
2230 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2231 {
2232 	/* This is only valid for single tasks */
2233 	if (pid <= 0 || tgid <= 0)
2234 		return -EINVAL;
2235 
2236 	return do_tkill(tgid, pid, sig);
2237 }
2238 
2239 /*
2240  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2241  */
2242 asmlinkage long
2243 sys_tkill(int pid, int sig)
2244 {
2245 	/* This is only valid for single tasks */
2246 	if (pid <= 0)
2247 		return -EINVAL;
2248 
2249 	return do_tkill(0, pid, sig);
2250 }
2251 
2252 asmlinkage long
2253 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2254 {
2255 	siginfo_t info;
2256 
2257 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2258 		return -EFAULT;
2259 
2260 	/* Not even root can pretend to send signals from the kernel.
2261 	   Nor can they impersonate a kill(), which adds source info.  */
2262 	if (info.si_code >= 0)
2263 		return -EPERM;
2264 	info.si_signo = sig;
2265 
2266 	/* POSIX.1b doesn't mention process groups.  */
2267 	return kill_proc_info(sig, &info, pid);
2268 }
2269 
2270 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2271 {
2272 	struct k_sigaction *k;
2273 	sigset_t mask;
2274 
2275 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2276 		return -EINVAL;
2277 
2278 	k = &current->sighand->action[sig-1];
2279 
2280 	spin_lock_irq(&current->sighand->siglock);
2281 	if (signal_pending(current)) {
2282 		/*
2283 		 * If there might be a fatal signal pending on multiple
2284 		 * threads, make sure we take it before changing the action.
2285 		 */
2286 		spin_unlock_irq(&current->sighand->siglock);
2287 		return -ERESTARTNOINTR;
2288 	}
2289 
2290 	if (oact)
2291 		*oact = *k;
2292 
2293 	if (act) {
2294 		sigdelsetmask(&act->sa.sa_mask,
2295 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2296 		*k = *act;
2297 		/*
2298 		 * POSIX 3.3.1.3:
2299 		 *  "Setting a signal action to SIG_IGN for a signal that is
2300 		 *   pending shall cause the pending signal to be discarded,
2301 		 *   whether or not it is blocked."
2302 		 *
2303 		 *  "Setting a signal action to SIG_DFL for a signal that is
2304 		 *   pending and whose default action is to ignore the signal
2305 		 *   (for example, SIGCHLD), shall cause the pending signal to
2306 		 *   be discarded, whether or not it is blocked"
2307 		 */
2308 		if (act->sa.sa_handler == SIG_IGN ||
2309 		   (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2310 			struct task_struct *t = current;
2311 			sigemptyset(&mask);
2312 			sigaddset(&mask, sig);
2313 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2314 			do {
2315 				rm_from_queue_full(&mask, &t->pending);
2316 				recalc_sigpending_tsk(t);
2317 				t = next_thread(t);
2318 			} while (t != current);
2319 		}
2320 	}
2321 
2322 	spin_unlock_irq(&current->sighand->siglock);
2323 	return 0;
2324 }
2325 
2326 int
2327 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2328 {
2329 	stack_t oss;
2330 	int error;
2331 
2332 	if (uoss) {
2333 		oss.ss_sp = (void __user *) current->sas_ss_sp;
2334 		oss.ss_size = current->sas_ss_size;
2335 		oss.ss_flags = sas_ss_flags(sp);
2336 	}
2337 
2338 	if (uss) {
2339 		void __user *ss_sp;
2340 		size_t ss_size;
2341 		int ss_flags;
2342 
2343 		error = -EFAULT;
2344 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2345 		    || __get_user(ss_sp, &uss->ss_sp)
2346 		    || __get_user(ss_flags, &uss->ss_flags)
2347 		    || __get_user(ss_size, &uss->ss_size))
2348 			goto out;
2349 
2350 		error = -EPERM;
2351 		if (on_sig_stack(sp))
2352 			goto out;
2353 
2354 		error = -EINVAL;
2355 		/*
2356 		 *
2357 		 * Note - this code used to test ss_flags incorrectly
2358 		 *  	  old code may have been written using ss_flags==0
2359 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2360 		 *	  way that worked) - this fix preserves that older
2361 		 *	  mechanism
2362 		 */
2363 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2364 			goto out;
2365 
2366 		if (ss_flags == SS_DISABLE) {
2367 			ss_size = 0;
2368 			ss_sp = NULL;
2369 		} else {
2370 			error = -ENOMEM;
2371 			if (ss_size < MINSIGSTKSZ)
2372 				goto out;
2373 		}
2374 
2375 		current->sas_ss_sp = (unsigned long) ss_sp;
2376 		current->sas_ss_size = ss_size;
2377 	}
2378 
2379 	if (uoss) {
2380 		error = -EFAULT;
2381 		if (copy_to_user(uoss, &oss, sizeof(oss)))
2382 			goto out;
2383 	}
2384 
2385 	error = 0;
2386 out:
2387 	return error;
2388 }
2389 
2390 #ifdef __ARCH_WANT_SYS_SIGPENDING
2391 
2392 asmlinkage long
2393 sys_sigpending(old_sigset_t __user *set)
2394 {
2395 	return do_sigpending(set, sizeof(*set));
2396 }
2397 
2398 #endif
2399 
2400 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2401 /* Some platforms have their own version with special arguments others
2402    support only sys_rt_sigprocmask.  */
2403 
2404 asmlinkage long
2405 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2406 {
2407 	int error;
2408 	old_sigset_t old_set, new_set;
2409 
2410 	if (set) {
2411 		error = -EFAULT;
2412 		if (copy_from_user(&new_set, set, sizeof(*set)))
2413 			goto out;
2414 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2415 
2416 		spin_lock_irq(&current->sighand->siglock);
2417 		old_set = current->blocked.sig[0];
2418 
2419 		error = 0;
2420 		switch (how) {
2421 		default:
2422 			error = -EINVAL;
2423 			break;
2424 		case SIG_BLOCK:
2425 			sigaddsetmask(&current->blocked, new_set);
2426 			break;
2427 		case SIG_UNBLOCK:
2428 			sigdelsetmask(&current->blocked, new_set);
2429 			break;
2430 		case SIG_SETMASK:
2431 			current->blocked.sig[0] = new_set;
2432 			break;
2433 		}
2434 
2435 		recalc_sigpending();
2436 		spin_unlock_irq(&current->sighand->siglock);
2437 		if (error)
2438 			goto out;
2439 		if (oset)
2440 			goto set_old;
2441 	} else if (oset) {
2442 		old_set = current->blocked.sig[0];
2443 	set_old:
2444 		error = -EFAULT;
2445 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2446 			goto out;
2447 	}
2448 	error = 0;
2449 out:
2450 	return error;
2451 }
2452 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2453 
2454 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2455 asmlinkage long
2456 sys_rt_sigaction(int sig,
2457 		 const struct sigaction __user *act,
2458 		 struct sigaction __user *oact,
2459 		 size_t sigsetsize)
2460 {
2461 	struct k_sigaction new_sa, old_sa;
2462 	int ret = -EINVAL;
2463 
2464 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2465 	if (sigsetsize != sizeof(sigset_t))
2466 		goto out;
2467 
2468 	if (act) {
2469 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2470 			return -EFAULT;
2471 	}
2472 
2473 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2474 
2475 	if (!ret && oact) {
2476 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2477 			return -EFAULT;
2478 	}
2479 out:
2480 	return ret;
2481 }
2482 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2483 
2484 #ifdef __ARCH_WANT_SYS_SGETMASK
2485 
2486 /*
2487  * For backwards compatibility.  Functionality superseded by sigprocmask.
2488  */
2489 asmlinkage long
2490 sys_sgetmask(void)
2491 {
2492 	/* SMP safe */
2493 	return current->blocked.sig[0];
2494 }
2495 
2496 asmlinkage long
2497 sys_ssetmask(int newmask)
2498 {
2499 	int old;
2500 
2501 	spin_lock_irq(&current->sighand->siglock);
2502 	old = current->blocked.sig[0];
2503 
2504 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2505 						  sigmask(SIGSTOP)));
2506 	recalc_sigpending();
2507 	spin_unlock_irq(&current->sighand->siglock);
2508 
2509 	return old;
2510 }
2511 #endif /* __ARCH_WANT_SGETMASK */
2512 
2513 #ifdef __ARCH_WANT_SYS_SIGNAL
2514 /*
2515  * For backwards compatibility.  Functionality superseded by sigaction.
2516  */
2517 asmlinkage unsigned long
2518 sys_signal(int sig, __sighandler_t handler)
2519 {
2520 	struct k_sigaction new_sa, old_sa;
2521 	int ret;
2522 
2523 	new_sa.sa.sa_handler = handler;
2524 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2525 	sigemptyset(&new_sa.sa.sa_mask);
2526 
2527 	ret = do_sigaction(sig, &new_sa, &old_sa);
2528 
2529 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2530 }
2531 #endif /* __ARCH_WANT_SYS_SIGNAL */
2532 
2533 #ifdef __ARCH_WANT_SYS_PAUSE
2534 
2535 asmlinkage long
2536 sys_pause(void)
2537 {
2538 	current->state = TASK_INTERRUPTIBLE;
2539 	schedule();
2540 	return -ERESTARTNOHAND;
2541 }
2542 
2543 #endif
2544 
2545 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2546 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2547 {
2548 	sigset_t newset;
2549 
2550 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2551 	if (sigsetsize != sizeof(sigset_t))
2552 		return -EINVAL;
2553 
2554 	if (copy_from_user(&newset, unewset, sizeof(newset)))
2555 		return -EFAULT;
2556 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2557 
2558 	spin_lock_irq(&current->sighand->siglock);
2559 	current->saved_sigmask = current->blocked;
2560 	current->blocked = newset;
2561 	recalc_sigpending();
2562 	spin_unlock_irq(&current->sighand->siglock);
2563 
2564 	current->state = TASK_INTERRUPTIBLE;
2565 	schedule();
2566 	set_thread_flag(TIF_RESTORE_SIGMASK);
2567 	return -ERESTARTNOHAND;
2568 }
2569 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2570 
2571 void __init signals_init(void)
2572 {
2573 	sigqueue_cachep =
2574 		kmem_cache_create("sigqueue",
2575 				  sizeof(struct sigqueue),
2576 				  __alignof__(struct sigqueue),
2577 				  SLAB_PANIC, NULL, NULL);
2578 }
2579