1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/module.h> 15 #include <linux/smp_lock.h> 16 #include <linux/init.h> 17 #include <linux/sched.h> 18 #include <linux/fs.h> 19 #include <linux/tty.h> 20 #include <linux/binfmts.h> 21 #include <linux/security.h> 22 #include <linux/syscalls.h> 23 #include <linux/ptrace.h> 24 #include <linux/signal.h> 25 #include <linux/capability.h> 26 #include <asm/param.h> 27 #include <asm/uaccess.h> 28 #include <asm/unistd.h> 29 #include <asm/siginfo.h> 30 #include "audit.h" /* audit_signal_info() */ 31 32 /* 33 * SLAB caches for signal bits. 34 */ 35 36 static kmem_cache_t *sigqueue_cachep; 37 38 /* 39 * In POSIX a signal is sent either to a specific thread (Linux task) 40 * or to the process as a whole (Linux thread group). How the signal 41 * is sent determines whether it's to one thread or the whole group, 42 * which determines which signal mask(s) are involved in blocking it 43 * from being delivered until later. When the signal is delivered, 44 * either it's caught or ignored by a user handler or it has a default 45 * effect that applies to the whole thread group (POSIX process). 46 * 47 * The possible effects an unblocked signal set to SIG_DFL can have are: 48 * ignore - Nothing Happens 49 * terminate - kill the process, i.e. all threads in the group, 50 * similar to exit_group. The group leader (only) reports 51 * WIFSIGNALED status to its parent. 52 * coredump - write a core dump file describing all threads using 53 * the same mm and then kill all those threads 54 * stop - stop all the threads in the group, i.e. TASK_STOPPED state 55 * 56 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. 57 * Other signals when not blocked and set to SIG_DFL behaves as follows. 58 * The job control signals also have other special effects. 59 * 60 * +--------------------+------------------+ 61 * | POSIX signal | default action | 62 * +--------------------+------------------+ 63 * | SIGHUP | terminate | 64 * | SIGINT | terminate | 65 * | SIGQUIT | coredump | 66 * | SIGILL | coredump | 67 * | SIGTRAP | coredump | 68 * | SIGABRT/SIGIOT | coredump | 69 * | SIGBUS | coredump | 70 * | SIGFPE | coredump | 71 * | SIGKILL | terminate(+) | 72 * | SIGUSR1 | terminate | 73 * | SIGSEGV | coredump | 74 * | SIGUSR2 | terminate | 75 * | SIGPIPE | terminate | 76 * | SIGALRM | terminate | 77 * | SIGTERM | terminate | 78 * | SIGCHLD | ignore | 79 * | SIGCONT | ignore(*) | 80 * | SIGSTOP | stop(*)(+) | 81 * | SIGTSTP | stop(*) | 82 * | SIGTTIN | stop(*) | 83 * | SIGTTOU | stop(*) | 84 * | SIGURG | ignore | 85 * | SIGXCPU | coredump | 86 * | SIGXFSZ | coredump | 87 * | SIGVTALRM | terminate | 88 * | SIGPROF | terminate | 89 * | SIGPOLL/SIGIO | terminate | 90 * | SIGSYS/SIGUNUSED | coredump | 91 * | SIGSTKFLT | terminate | 92 * | SIGWINCH | ignore | 93 * | SIGPWR | terminate | 94 * | SIGRTMIN-SIGRTMAX | terminate | 95 * +--------------------+------------------+ 96 * | non-POSIX signal | default action | 97 * +--------------------+------------------+ 98 * | SIGEMT | coredump | 99 * +--------------------+------------------+ 100 * 101 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". 102 * (*) Special job control effects: 103 * When SIGCONT is sent, it resumes the process (all threads in the group) 104 * from TASK_STOPPED state and also clears any pending/queued stop signals 105 * (any of those marked with "stop(*)"). This happens regardless of blocking, 106 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears 107 * any pending/queued SIGCONT signals; this happens regardless of blocking, 108 * catching, or ignored the stop signal, though (except for SIGSTOP) the 109 * default action of stopping the process may happen later or never. 110 */ 111 112 #ifdef SIGEMT 113 #define M_SIGEMT M(SIGEMT) 114 #else 115 #define M_SIGEMT 0 116 #endif 117 118 #if SIGRTMIN > BITS_PER_LONG 119 #define M(sig) (1ULL << ((sig)-1)) 120 #else 121 #define M(sig) (1UL << ((sig)-1)) 122 #endif 123 #define T(sig, mask) (M(sig) & (mask)) 124 125 #define SIG_KERNEL_ONLY_MASK (\ 126 M(SIGKILL) | M(SIGSTOP) ) 127 128 #define SIG_KERNEL_STOP_MASK (\ 129 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) ) 130 131 #define SIG_KERNEL_COREDUMP_MASK (\ 132 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \ 133 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \ 134 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT ) 135 136 #define SIG_KERNEL_IGNORE_MASK (\ 137 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) ) 138 139 #define sig_kernel_only(sig) \ 140 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK)) 141 #define sig_kernel_coredump(sig) \ 142 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK)) 143 #define sig_kernel_ignore(sig) \ 144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK)) 145 #define sig_kernel_stop(sig) \ 146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK)) 147 148 #define sig_needs_tasklist(sig) ((sig) == SIGCONT) 149 150 #define sig_user_defined(t, signr) \ 151 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \ 152 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN)) 153 154 #define sig_fatal(t, signr) \ 155 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ 156 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) 157 158 static int sig_ignored(struct task_struct *t, int sig) 159 { 160 void __user * handler; 161 162 /* 163 * Tracers always want to know about signals.. 164 */ 165 if (t->ptrace & PT_PTRACED) 166 return 0; 167 168 /* 169 * Blocked signals are never ignored, since the 170 * signal handler may change by the time it is 171 * unblocked. 172 */ 173 if (sigismember(&t->blocked, sig)) 174 return 0; 175 176 /* Is it explicitly or implicitly ignored? */ 177 handler = t->sighand->action[sig-1].sa.sa_handler; 178 return handler == SIG_IGN || 179 (handler == SIG_DFL && sig_kernel_ignore(sig)); 180 } 181 182 /* 183 * Re-calculate pending state from the set of locally pending 184 * signals, globally pending signals, and blocked signals. 185 */ 186 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 187 { 188 unsigned long ready; 189 long i; 190 191 switch (_NSIG_WORDS) { 192 default: 193 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 194 ready |= signal->sig[i] &~ blocked->sig[i]; 195 break; 196 197 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 198 ready |= signal->sig[2] &~ blocked->sig[2]; 199 ready |= signal->sig[1] &~ blocked->sig[1]; 200 ready |= signal->sig[0] &~ blocked->sig[0]; 201 break; 202 203 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 204 ready |= signal->sig[0] &~ blocked->sig[0]; 205 break; 206 207 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 208 } 209 return ready != 0; 210 } 211 212 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 213 214 fastcall void recalc_sigpending_tsk(struct task_struct *t) 215 { 216 if (t->signal->group_stop_count > 0 || 217 (freezing(t)) || 218 PENDING(&t->pending, &t->blocked) || 219 PENDING(&t->signal->shared_pending, &t->blocked)) 220 set_tsk_thread_flag(t, TIF_SIGPENDING); 221 else 222 clear_tsk_thread_flag(t, TIF_SIGPENDING); 223 } 224 225 void recalc_sigpending(void) 226 { 227 recalc_sigpending_tsk(current); 228 } 229 230 /* Given the mask, find the first available signal that should be serviced. */ 231 232 static int 233 next_signal(struct sigpending *pending, sigset_t *mask) 234 { 235 unsigned long i, *s, *m, x; 236 int sig = 0; 237 238 s = pending->signal.sig; 239 m = mask->sig; 240 switch (_NSIG_WORDS) { 241 default: 242 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 243 if ((x = *s &~ *m) != 0) { 244 sig = ffz(~x) + i*_NSIG_BPW + 1; 245 break; 246 } 247 break; 248 249 case 2: if ((x = s[0] &~ m[0]) != 0) 250 sig = 1; 251 else if ((x = s[1] &~ m[1]) != 0) 252 sig = _NSIG_BPW + 1; 253 else 254 break; 255 sig += ffz(~x); 256 break; 257 258 case 1: if ((x = *s &~ *m) != 0) 259 sig = ffz(~x) + 1; 260 break; 261 } 262 263 return sig; 264 } 265 266 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 267 int override_rlimit) 268 { 269 struct sigqueue *q = NULL; 270 271 atomic_inc(&t->user->sigpending); 272 if (override_rlimit || 273 atomic_read(&t->user->sigpending) <= 274 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 275 q = kmem_cache_alloc(sigqueue_cachep, flags); 276 if (unlikely(q == NULL)) { 277 atomic_dec(&t->user->sigpending); 278 } else { 279 INIT_LIST_HEAD(&q->list); 280 q->flags = 0; 281 q->user = get_uid(t->user); 282 } 283 return(q); 284 } 285 286 static void __sigqueue_free(struct sigqueue *q) 287 { 288 if (q->flags & SIGQUEUE_PREALLOC) 289 return; 290 atomic_dec(&q->user->sigpending); 291 free_uid(q->user); 292 kmem_cache_free(sigqueue_cachep, q); 293 } 294 295 void flush_sigqueue(struct sigpending *queue) 296 { 297 struct sigqueue *q; 298 299 sigemptyset(&queue->signal); 300 while (!list_empty(&queue->list)) { 301 q = list_entry(queue->list.next, struct sigqueue , list); 302 list_del_init(&q->list); 303 __sigqueue_free(q); 304 } 305 } 306 307 /* 308 * Flush all pending signals for a task. 309 */ 310 void flush_signals(struct task_struct *t) 311 { 312 unsigned long flags; 313 314 spin_lock_irqsave(&t->sighand->siglock, flags); 315 clear_tsk_thread_flag(t,TIF_SIGPENDING); 316 flush_sigqueue(&t->pending); 317 flush_sigqueue(&t->signal->shared_pending); 318 spin_unlock_irqrestore(&t->sighand->siglock, flags); 319 } 320 321 /* 322 * Flush all handlers for a task. 323 */ 324 325 void 326 flush_signal_handlers(struct task_struct *t, int force_default) 327 { 328 int i; 329 struct k_sigaction *ka = &t->sighand->action[0]; 330 for (i = _NSIG ; i != 0 ; i--) { 331 if (force_default || ka->sa.sa_handler != SIG_IGN) 332 ka->sa.sa_handler = SIG_DFL; 333 ka->sa.sa_flags = 0; 334 sigemptyset(&ka->sa.sa_mask); 335 ka++; 336 } 337 } 338 339 340 /* Notify the system that a driver wants to block all signals for this 341 * process, and wants to be notified if any signals at all were to be 342 * sent/acted upon. If the notifier routine returns non-zero, then the 343 * signal will be acted upon after all. If the notifier routine returns 0, 344 * then then signal will be blocked. Only one block per process is 345 * allowed. priv is a pointer to private data that the notifier routine 346 * can use to determine if the signal should be blocked or not. */ 347 348 void 349 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 350 { 351 unsigned long flags; 352 353 spin_lock_irqsave(¤t->sighand->siglock, flags); 354 current->notifier_mask = mask; 355 current->notifier_data = priv; 356 current->notifier = notifier; 357 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 358 } 359 360 /* Notify the system that blocking has ended. */ 361 362 void 363 unblock_all_signals(void) 364 { 365 unsigned long flags; 366 367 spin_lock_irqsave(¤t->sighand->siglock, flags); 368 current->notifier = NULL; 369 current->notifier_data = NULL; 370 recalc_sigpending(); 371 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 372 } 373 374 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info) 375 { 376 struct sigqueue *q, *first = NULL; 377 int still_pending = 0; 378 379 if (unlikely(!sigismember(&list->signal, sig))) 380 return 0; 381 382 /* 383 * Collect the siginfo appropriate to this signal. Check if 384 * there is another siginfo for the same signal. 385 */ 386 list_for_each_entry(q, &list->list, list) { 387 if (q->info.si_signo == sig) { 388 if (first) { 389 still_pending = 1; 390 break; 391 } 392 first = q; 393 } 394 } 395 if (first) { 396 list_del_init(&first->list); 397 copy_siginfo(info, &first->info); 398 __sigqueue_free(first); 399 if (!still_pending) 400 sigdelset(&list->signal, sig); 401 } else { 402 403 /* Ok, it wasn't in the queue. This must be 404 a fast-pathed signal or we must have been 405 out of queue space. So zero out the info. 406 */ 407 sigdelset(&list->signal, sig); 408 info->si_signo = sig; 409 info->si_errno = 0; 410 info->si_code = 0; 411 info->si_pid = 0; 412 info->si_uid = 0; 413 } 414 return 1; 415 } 416 417 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 418 siginfo_t *info) 419 { 420 int sig = 0; 421 422 sig = next_signal(pending, mask); 423 if (sig) { 424 if (current->notifier) { 425 if (sigismember(current->notifier_mask, sig)) { 426 if (!(current->notifier)(current->notifier_data)) { 427 clear_thread_flag(TIF_SIGPENDING); 428 return 0; 429 } 430 } 431 } 432 433 if (!collect_signal(sig, pending, info)) 434 sig = 0; 435 436 } 437 recalc_sigpending(); 438 439 return sig; 440 } 441 442 /* 443 * Dequeue a signal and return the element to the caller, which is 444 * expected to free it. 445 * 446 * All callers have to hold the siglock. 447 */ 448 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 449 { 450 int signr = __dequeue_signal(&tsk->pending, mask, info); 451 if (!signr) 452 signr = __dequeue_signal(&tsk->signal->shared_pending, 453 mask, info); 454 if (signr && unlikely(sig_kernel_stop(signr))) { 455 /* 456 * Set a marker that we have dequeued a stop signal. Our 457 * caller might release the siglock and then the pending 458 * stop signal it is about to process is no longer in the 459 * pending bitmasks, but must still be cleared by a SIGCONT 460 * (and overruled by a SIGKILL). So those cases clear this 461 * shared flag after we've set it. Note that this flag may 462 * remain set after the signal we return is ignored or 463 * handled. That doesn't matter because its only purpose 464 * is to alert stop-signal processing code when another 465 * processor has come along and cleared the flag. 466 */ 467 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) 468 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 469 } 470 if ( signr && 471 ((info->si_code & __SI_MASK) == __SI_TIMER) && 472 info->si_sys_private){ 473 /* 474 * Release the siglock to ensure proper locking order 475 * of timer locks outside of siglocks. Note, we leave 476 * irqs disabled here, since the posix-timers code is 477 * about to disable them again anyway. 478 */ 479 spin_unlock(&tsk->sighand->siglock); 480 do_schedule_next_timer(info); 481 spin_lock(&tsk->sighand->siglock); 482 } 483 return signr; 484 } 485 486 /* 487 * Tell a process that it has a new active signal.. 488 * 489 * NOTE! we rely on the previous spin_lock to 490 * lock interrupts for us! We can only be called with 491 * "siglock" held, and the local interrupt must 492 * have been disabled when that got acquired! 493 * 494 * No need to set need_resched since signal event passing 495 * goes through ->blocked 496 */ 497 void signal_wake_up(struct task_struct *t, int resume) 498 { 499 unsigned int mask; 500 501 set_tsk_thread_flag(t, TIF_SIGPENDING); 502 503 /* 504 * For SIGKILL, we want to wake it up in the stopped/traced case. 505 * We don't check t->state here because there is a race with it 506 * executing another processor and just now entering stopped state. 507 * By using wake_up_state, we ensure the process will wake up and 508 * handle its death signal. 509 */ 510 mask = TASK_INTERRUPTIBLE; 511 if (resume) 512 mask |= TASK_STOPPED | TASK_TRACED; 513 if (!wake_up_state(t, mask)) 514 kick_process(t); 515 } 516 517 /* 518 * Remove signals in mask from the pending set and queue. 519 * Returns 1 if any signals were found. 520 * 521 * All callers must be holding the siglock. 522 * 523 * This version takes a sigset mask and looks at all signals, 524 * not just those in the first mask word. 525 */ 526 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 527 { 528 struct sigqueue *q, *n; 529 sigset_t m; 530 531 sigandsets(&m, mask, &s->signal); 532 if (sigisemptyset(&m)) 533 return 0; 534 535 signandsets(&s->signal, &s->signal, mask); 536 list_for_each_entry_safe(q, n, &s->list, list) { 537 if (sigismember(mask, q->info.si_signo)) { 538 list_del_init(&q->list); 539 __sigqueue_free(q); 540 } 541 } 542 return 1; 543 } 544 /* 545 * Remove signals in mask from the pending set and queue. 546 * Returns 1 if any signals were found. 547 * 548 * All callers must be holding the siglock. 549 */ 550 static int rm_from_queue(unsigned long mask, struct sigpending *s) 551 { 552 struct sigqueue *q, *n; 553 554 if (!sigtestsetmask(&s->signal, mask)) 555 return 0; 556 557 sigdelsetmask(&s->signal, mask); 558 list_for_each_entry_safe(q, n, &s->list, list) { 559 if (q->info.si_signo < SIGRTMIN && 560 (mask & sigmask(q->info.si_signo))) { 561 list_del_init(&q->list); 562 __sigqueue_free(q); 563 } 564 } 565 return 1; 566 } 567 568 /* 569 * Bad permissions for sending the signal 570 */ 571 static int check_kill_permission(int sig, struct siginfo *info, 572 struct task_struct *t) 573 { 574 int error = -EINVAL; 575 if (!valid_signal(sig)) 576 return error; 577 error = -EPERM; 578 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 579 && ((sig != SIGCONT) || 580 (current->signal->session != t->signal->session)) 581 && (current->euid ^ t->suid) && (current->euid ^ t->uid) 582 && (current->uid ^ t->suid) && (current->uid ^ t->uid) 583 && !capable(CAP_KILL)) 584 return error; 585 586 error = security_task_kill(t, info, sig, 0); 587 if (!error) 588 audit_signal_info(sig, t); /* Let audit system see the signal */ 589 return error; 590 } 591 592 /* forward decl */ 593 static void do_notify_parent_cldstop(struct task_struct *tsk, int why); 594 595 /* 596 * Handle magic process-wide effects of stop/continue signals. 597 * Unlike the signal actions, these happen immediately at signal-generation 598 * time regardless of blocking, ignoring, or handling. This does the 599 * actual continuing for SIGCONT, but not the actual stopping for stop 600 * signals. The process stop is done as a signal action for SIG_DFL. 601 */ 602 static void handle_stop_signal(int sig, struct task_struct *p) 603 { 604 struct task_struct *t; 605 606 if (p->signal->flags & SIGNAL_GROUP_EXIT) 607 /* 608 * The process is in the middle of dying already. 609 */ 610 return; 611 612 if (sig_kernel_stop(sig)) { 613 /* 614 * This is a stop signal. Remove SIGCONT from all queues. 615 */ 616 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); 617 t = p; 618 do { 619 rm_from_queue(sigmask(SIGCONT), &t->pending); 620 t = next_thread(t); 621 } while (t != p); 622 } else if (sig == SIGCONT) { 623 /* 624 * Remove all stop signals from all queues, 625 * and wake all threads. 626 */ 627 if (unlikely(p->signal->group_stop_count > 0)) { 628 /* 629 * There was a group stop in progress. We'll 630 * pretend it finished before we got here. We are 631 * obliged to report it to the parent: if the 632 * SIGSTOP happened "after" this SIGCONT, then it 633 * would have cleared this pending SIGCONT. If it 634 * happened "before" this SIGCONT, then the parent 635 * got the SIGCHLD about the stop finishing before 636 * the continue happened. We do the notification 637 * now, and it's as if the stop had finished and 638 * the SIGCHLD was pending on entry to this kill. 639 */ 640 p->signal->group_stop_count = 0; 641 p->signal->flags = SIGNAL_STOP_CONTINUED; 642 spin_unlock(&p->sighand->siglock); 643 do_notify_parent_cldstop(p, CLD_STOPPED); 644 spin_lock(&p->sighand->siglock); 645 } 646 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 647 t = p; 648 do { 649 unsigned int state; 650 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 651 652 /* 653 * If there is a handler for SIGCONT, we must make 654 * sure that no thread returns to user mode before 655 * we post the signal, in case it was the only 656 * thread eligible to run the signal handler--then 657 * it must not do anything between resuming and 658 * running the handler. With the TIF_SIGPENDING 659 * flag set, the thread will pause and acquire the 660 * siglock that we hold now and until we've queued 661 * the pending signal. 662 * 663 * Wake up the stopped thread _after_ setting 664 * TIF_SIGPENDING 665 */ 666 state = TASK_STOPPED; 667 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 668 set_tsk_thread_flag(t, TIF_SIGPENDING); 669 state |= TASK_INTERRUPTIBLE; 670 } 671 wake_up_state(t, state); 672 673 t = next_thread(t); 674 } while (t != p); 675 676 if (p->signal->flags & SIGNAL_STOP_STOPPED) { 677 /* 678 * We were in fact stopped, and are now continued. 679 * Notify the parent with CLD_CONTINUED. 680 */ 681 p->signal->flags = SIGNAL_STOP_CONTINUED; 682 p->signal->group_exit_code = 0; 683 spin_unlock(&p->sighand->siglock); 684 do_notify_parent_cldstop(p, CLD_CONTINUED); 685 spin_lock(&p->sighand->siglock); 686 } else { 687 /* 688 * We are not stopped, but there could be a stop 689 * signal in the middle of being processed after 690 * being removed from the queue. Clear that too. 691 */ 692 p->signal->flags = 0; 693 } 694 } else if (sig == SIGKILL) { 695 /* 696 * Make sure that any pending stop signal already dequeued 697 * is undone by the wakeup for SIGKILL. 698 */ 699 p->signal->flags = 0; 700 } 701 } 702 703 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 704 struct sigpending *signals) 705 { 706 struct sigqueue * q = NULL; 707 int ret = 0; 708 709 /* 710 * fast-pathed signals for kernel-internal things like SIGSTOP 711 * or SIGKILL. 712 */ 713 if (info == SEND_SIG_FORCED) 714 goto out_set; 715 716 /* Real-time signals must be queued if sent by sigqueue, or 717 some other real-time mechanism. It is implementation 718 defined whether kill() does so. We attempt to do so, on 719 the principle of least surprise, but since kill is not 720 allowed to fail with EAGAIN when low on memory we just 721 make sure at least one signal gets delivered and don't 722 pass on the info struct. */ 723 724 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 725 (is_si_special(info) || 726 info->si_code >= 0))); 727 if (q) { 728 list_add_tail(&q->list, &signals->list); 729 switch ((unsigned long) info) { 730 case (unsigned long) SEND_SIG_NOINFO: 731 q->info.si_signo = sig; 732 q->info.si_errno = 0; 733 q->info.si_code = SI_USER; 734 q->info.si_pid = current->pid; 735 q->info.si_uid = current->uid; 736 break; 737 case (unsigned long) SEND_SIG_PRIV: 738 q->info.si_signo = sig; 739 q->info.si_errno = 0; 740 q->info.si_code = SI_KERNEL; 741 q->info.si_pid = 0; 742 q->info.si_uid = 0; 743 break; 744 default: 745 copy_siginfo(&q->info, info); 746 break; 747 } 748 } else if (!is_si_special(info)) { 749 if (sig >= SIGRTMIN && info->si_code != SI_USER) 750 /* 751 * Queue overflow, abort. We may abort if the signal was rt 752 * and sent by user using something other than kill(). 753 */ 754 return -EAGAIN; 755 } 756 757 out_set: 758 sigaddset(&signals->signal, sig); 759 return ret; 760 } 761 762 #define LEGACY_QUEUE(sigptr, sig) \ 763 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) 764 765 766 static int 767 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 768 { 769 int ret = 0; 770 771 BUG_ON(!irqs_disabled()); 772 assert_spin_locked(&t->sighand->siglock); 773 774 /* Short-circuit ignored signals. */ 775 if (sig_ignored(t, sig)) 776 goto out; 777 778 /* Support queueing exactly one non-rt signal, so that we 779 can get more detailed information about the cause of 780 the signal. */ 781 if (LEGACY_QUEUE(&t->pending, sig)) 782 goto out; 783 784 ret = send_signal(sig, info, t, &t->pending); 785 if (!ret && !sigismember(&t->blocked, sig)) 786 signal_wake_up(t, sig == SIGKILL); 787 out: 788 return ret; 789 } 790 791 /* 792 * Force a signal that the process can't ignore: if necessary 793 * we unblock the signal and change any SIG_IGN to SIG_DFL. 794 */ 795 796 int 797 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 798 { 799 unsigned long int flags; 800 int ret; 801 802 spin_lock_irqsave(&t->sighand->siglock, flags); 803 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) { 804 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL; 805 } 806 if (sigismember(&t->blocked, sig)) { 807 sigdelset(&t->blocked, sig); 808 } 809 recalc_sigpending_tsk(t); 810 ret = specific_send_sig_info(sig, info, t); 811 spin_unlock_irqrestore(&t->sighand->siglock, flags); 812 813 return ret; 814 } 815 816 void 817 force_sig_specific(int sig, struct task_struct *t) 818 { 819 force_sig_info(sig, SEND_SIG_FORCED, t); 820 } 821 822 /* 823 * Test if P wants to take SIG. After we've checked all threads with this, 824 * it's equivalent to finding no threads not blocking SIG. Any threads not 825 * blocking SIG were ruled out because they are not running and already 826 * have pending signals. Such threads will dequeue from the shared queue 827 * as soon as they're available, so putting the signal on the shared queue 828 * will be equivalent to sending it to one such thread. 829 */ 830 static inline int wants_signal(int sig, struct task_struct *p) 831 { 832 if (sigismember(&p->blocked, sig)) 833 return 0; 834 if (p->flags & PF_EXITING) 835 return 0; 836 if (sig == SIGKILL) 837 return 1; 838 if (p->state & (TASK_STOPPED | TASK_TRACED)) 839 return 0; 840 return task_curr(p) || !signal_pending(p); 841 } 842 843 static void 844 __group_complete_signal(int sig, struct task_struct *p) 845 { 846 struct task_struct *t; 847 848 /* 849 * Now find a thread we can wake up to take the signal off the queue. 850 * 851 * If the main thread wants the signal, it gets first crack. 852 * Probably the least surprising to the average bear. 853 */ 854 if (wants_signal(sig, p)) 855 t = p; 856 else if (thread_group_empty(p)) 857 /* 858 * There is just one thread and it does not need to be woken. 859 * It will dequeue unblocked signals before it runs again. 860 */ 861 return; 862 else { 863 /* 864 * Otherwise try to find a suitable thread. 865 */ 866 t = p->signal->curr_target; 867 if (t == NULL) 868 /* restart balancing at this thread */ 869 t = p->signal->curr_target = p; 870 871 while (!wants_signal(sig, t)) { 872 t = next_thread(t); 873 if (t == p->signal->curr_target) 874 /* 875 * No thread needs to be woken. 876 * Any eligible threads will see 877 * the signal in the queue soon. 878 */ 879 return; 880 } 881 p->signal->curr_target = t; 882 } 883 884 /* 885 * Found a killable thread. If the signal will be fatal, 886 * then start taking the whole group down immediately. 887 */ 888 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && 889 !sigismember(&t->real_blocked, sig) && 890 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { 891 /* 892 * This signal will be fatal to the whole group. 893 */ 894 if (!sig_kernel_coredump(sig)) { 895 /* 896 * Start a group exit and wake everybody up. 897 * This way we don't have other threads 898 * running and doing things after a slower 899 * thread has the fatal signal pending. 900 */ 901 p->signal->flags = SIGNAL_GROUP_EXIT; 902 p->signal->group_exit_code = sig; 903 p->signal->group_stop_count = 0; 904 t = p; 905 do { 906 sigaddset(&t->pending.signal, SIGKILL); 907 signal_wake_up(t, 1); 908 t = next_thread(t); 909 } while (t != p); 910 return; 911 } 912 913 /* 914 * There will be a core dump. We make all threads other 915 * than the chosen one go into a group stop so that nothing 916 * happens until it gets scheduled, takes the signal off 917 * the shared queue, and does the core dump. This is a 918 * little more complicated than strictly necessary, but it 919 * keeps the signal state that winds up in the core dump 920 * unchanged from the death state, e.g. which thread had 921 * the core-dump signal unblocked. 922 */ 923 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 924 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 925 p->signal->group_stop_count = 0; 926 p->signal->group_exit_task = t; 927 t = p; 928 do { 929 p->signal->group_stop_count++; 930 signal_wake_up(t, 0); 931 t = next_thread(t); 932 } while (t != p); 933 wake_up_process(p->signal->group_exit_task); 934 return; 935 } 936 937 /* 938 * The signal is already in the shared-pending queue. 939 * Tell the chosen thread to wake up and dequeue it. 940 */ 941 signal_wake_up(t, sig == SIGKILL); 942 return; 943 } 944 945 int 946 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 947 { 948 int ret = 0; 949 950 assert_spin_locked(&p->sighand->siglock); 951 handle_stop_signal(sig, p); 952 953 /* Short-circuit ignored signals. */ 954 if (sig_ignored(p, sig)) 955 return ret; 956 957 if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) 958 /* This is a non-RT signal and we already have one queued. */ 959 return ret; 960 961 /* 962 * Put this signal on the shared-pending queue, or fail with EAGAIN. 963 * We always use the shared queue for process-wide signals, 964 * to avoid several races. 965 */ 966 ret = send_signal(sig, info, p, &p->signal->shared_pending); 967 if (unlikely(ret)) 968 return ret; 969 970 __group_complete_signal(sig, p); 971 return 0; 972 } 973 974 /* 975 * Nuke all other threads in the group. 976 */ 977 void zap_other_threads(struct task_struct *p) 978 { 979 struct task_struct *t; 980 981 p->signal->flags = SIGNAL_GROUP_EXIT; 982 p->signal->group_stop_count = 0; 983 984 if (thread_group_empty(p)) 985 return; 986 987 for (t = next_thread(p); t != p; t = next_thread(t)) { 988 /* 989 * Don't bother with already dead threads 990 */ 991 if (t->exit_state) 992 continue; 993 994 /* 995 * We don't want to notify the parent, since we are 996 * killed as part of a thread group due to another 997 * thread doing an execve() or similar. So set the 998 * exit signal to -1 to allow immediate reaping of 999 * the process. But don't detach the thread group 1000 * leader. 1001 */ 1002 if (t != p->group_leader) 1003 t->exit_signal = -1; 1004 1005 /* SIGKILL will be handled before any pending SIGSTOP */ 1006 sigaddset(&t->pending.signal, SIGKILL); 1007 signal_wake_up(t, 1); 1008 } 1009 } 1010 1011 /* 1012 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 1013 */ 1014 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 1015 { 1016 struct sighand_struct *sighand; 1017 1018 for (;;) { 1019 sighand = rcu_dereference(tsk->sighand); 1020 if (unlikely(sighand == NULL)) 1021 break; 1022 1023 spin_lock_irqsave(&sighand->siglock, *flags); 1024 if (likely(sighand == tsk->sighand)) 1025 break; 1026 spin_unlock_irqrestore(&sighand->siglock, *flags); 1027 } 1028 1029 return sighand; 1030 } 1031 1032 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1033 { 1034 unsigned long flags; 1035 int ret; 1036 1037 ret = check_kill_permission(sig, info, p); 1038 1039 if (!ret && sig) { 1040 ret = -ESRCH; 1041 if (lock_task_sighand(p, &flags)) { 1042 ret = __group_send_sig_info(sig, info, p); 1043 unlock_task_sighand(p, &flags); 1044 } 1045 } 1046 1047 return ret; 1048 } 1049 1050 /* 1051 * kill_pg_info() sends a signal to a process group: this is what the tty 1052 * control characters do (^C, ^Z etc) 1053 */ 1054 1055 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) 1056 { 1057 struct task_struct *p = NULL; 1058 int retval, success; 1059 1060 if (pgrp <= 0) 1061 return -EINVAL; 1062 1063 success = 0; 1064 retval = -ESRCH; 1065 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 1066 int err = group_send_sig_info(sig, info, p); 1067 success |= !err; 1068 retval = err; 1069 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 1070 return success ? 0 : retval; 1071 } 1072 1073 int 1074 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) 1075 { 1076 int retval; 1077 1078 read_lock(&tasklist_lock); 1079 retval = __kill_pg_info(sig, info, pgrp); 1080 read_unlock(&tasklist_lock); 1081 1082 return retval; 1083 } 1084 1085 int 1086 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1087 { 1088 int error; 1089 int acquired_tasklist_lock = 0; 1090 struct task_struct *p; 1091 1092 rcu_read_lock(); 1093 if (unlikely(sig_needs_tasklist(sig))) { 1094 read_lock(&tasklist_lock); 1095 acquired_tasklist_lock = 1; 1096 } 1097 p = find_task_by_pid(pid); 1098 error = -ESRCH; 1099 if (p) 1100 error = group_send_sig_info(sig, info, p); 1101 if (unlikely(acquired_tasklist_lock)) 1102 read_unlock(&tasklist_lock); 1103 rcu_read_unlock(); 1104 return error; 1105 } 1106 1107 /* like kill_proc_info(), but doesn't use uid/euid of "current" */ 1108 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid, 1109 uid_t uid, uid_t euid, u32 secid) 1110 { 1111 int ret = -EINVAL; 1112 struct task_struct *p; 1113 1114 if (!valid_signal(sig)) 1115 return ret; 1116 1117 read_lock(&tasklist_lock); 1118 p = find_task_by_pid(pid); 1119 if (!p) { 1120 ret = -ESRCH; 1121 goto out_unlock; 1122 } 1123 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 1124 && (euid != p->suid) && (euid != p->uid) 1125 && (uid != p->suid) && (uid != p->uid)) { 1126 ret = -EPERM; 1127 goto out_unlock; 1128 } 1129 ret = security_task_kill(p, info, sig, secid); 1130 if (ret) 1131 goto out_unlock; 1132 if (sig && p->sighand) { 1133 unsigned long flags; 1134 spin_lock_irqsave(&p->sighand->siglock, flags); 1135 ret = __group_send_sig_info(sig, info, p); 1136 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1137 } 1138 out_unlock: 1139 read_unlock(&tasklist_lock); 1140 return ret; 1141 } 1142 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid); 1143 1144 /* 1145 * kill_something_info() interprets pid in interesting ways just like kill(2). 1146 * 1147 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1148 * is probably wrong. Should make it like BSD or SYSV. 1149 */ 1150 1151 static int kill_something_info(int sig, struct siginfo *info, int pid) 1152 { 1153 if (!pid) { 1154 return kill_pg_info(sig, info, process_group(current)); 1155 } else if (pid == -1) { 1156 int retval = 0, count = 0; 1157 struct task_struct * p; 1158 1159 read_lock(&tasklist_lock); 1160 for_each_process(p) { 1161 if (p->pid > 1 && p->tgid != current->tgid) { 1162 int err = group_send_sig_info(sig, info, p); 1163 ++count; 1164 if (err != -EPERM) 1165 retval = err; 1166 } 1167 } 1168 read_unlock(&tasklist_lock); 1169 return count ? retval : -ESRCH; 1170 } else if (pid < 0) { 1171 return kill_pg_info(sig, info, -pid); 1172 } else { 1173 return kill_proc_info(sig, info, pid); 1174 } 1175 } 1176 1177 /* 1178 * These are for backward compatibility with the rest of the kernel source. 1179 */ 1180 1181 /* 1182 * These two are the most common entry points. They send a signal 1183 * just to the specific thread. 1184 */ 1185 int 1186 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1187 { 1188 int ret; 1189 unsigned long flags; 1190 1191 /* 1192 * Make sure legacy kernel users don't send in bad values 1193 * (normal paths check this in check_kill_permission). 1194 */ 1195 if (!valid_signal(sig)) 1196 return -EINVAL; 1197 1198 /* 1199 * We need the tasklist lock even for the specific 1200 * thread case (when we don't need to follow the group 1201 * lists) in order to avoid races with "p->sighand" 1202 * going away or changing from under us. 1203 */ 1204 read_lock(&tasklist_lock); 1205 spin_lock_irqsave(&p->sighand->siglock, flags); 1206 ret = specific_send_sig_info(sig, info, p); 1207 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1208 read_unlock(&tasklist_lock); 1209 return ret; 1210 } 1211 1212 #define __si_special(priv) \ 1213 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1214 1215 int 1216 send_sig(int sig, struct task_struct *p, int priv) 1217 { 1218 return send_sig_info(sig, __si_special(priv), p); 1219 } 1220 1221 /* 1222 * This is the entry point for "process-wide" signals. 1223 * They will go to an appropriate thread in the thread group. 1224 */ 1225 int 1226 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1227 { 1228 int ret; 1229 read_lock(&tasklist_lock); 1230 ret = group_send_sig_info(sig, info, p); 1231 read_unlock(&tasklist_lock); 1232 return ret; 1233 } 1234 1235 void 1236 force_sig(int sig, struct task_struct *p) 1237 { 1238 force_sig_info(sig, SEND_SIG_PRIV, p); 1239 } 1240 1241 /* 1242 * When things go south during signal handling, we 1243 * will force a SIGSEGV. And if the signal that caused 1244 * the problem was already a SIGSEGV, we'll want to 1245 * make sure we don't even try to deliver the signal.. 1246 */ 1247 int 1248 force_sigsegv(int sig, struct task_struct *p) 1249 { 1250 if (sig == SIGSEGV) { 1251 unsigned long flags; 1252 spin_lock_irqsave(&p->sighand->siglock, flags); 1253 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1254 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1255 } 1256 force_sig(SIGSEGV, p); 1257 return 0; 1258 } 1259 1260 int 1261 kill_pg(pid_t pgrp, int sig, int priv) 1262 { 1263 return kill_pg_info(sig, __si_special(priv), pgrp); 1264 } 1265 1266 int 1267 kill_proc(pid_t pid, int sig, int priv) 1268 { 1269 return kill_proc_info(sig, __si_special(priv), pid); 1270 } 1271 1272 /* 1273 * These functions support sending signals using preallocated sigqueue 1274 * structures. This is needed "because realtime applications cannot 1275 * afford to lose notifications of asynchronous events, like timer 1276 * expirations or I/O completions". In the case of Posix Timers 1277 * we allocate the sigqueue structure from the timer_create. If this 1278 * allocation fails we are able to report the failure to the application 1279 * with an EAGAIN error. 1280 */ 1281 1282 struct sigqueue *sigqueue_alloc(void) 1283 { 1284 struct sigqueue *q; 1285 1286 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1287 q->flags |= SIGQUEUE_PREALLOC; 1288 return(q); 1289 } 1290 1291 void sigqueue_free(struct sigqueue *q) 1292 { 1293 unsigned long flags; 1294 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1295 /* 1296 * If the signal is still pending remove it from the 1297 * pending queue. 1298 */ 1299 if (unlikely(!list_empty(&q->list))) { 1300 spinlock_t *lock = ¤t->sighand->siglock; 1301 read_lock(&tasklist_lock); 1302 spin_lock_irqsave(lock, flags); 1303 if (!list_empty(&q->list)) 1304 list_del_init(&q->list); 1305 spin_unlock_irqrestore(lock, flags); 1306 read_unlock(&tasklist_lock); 1307 } 1308 q->flags &= ~SIGQUEUE_PREALLOC; 1309 __sigqueue_free(q); 1310 } 1311 1312 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1313 { 1314 unsigned long flags; 1315 int ret = 0; 1316 1317 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1318 1319 /* 1320 * The rcu based delayed sighand destroy makes it possible to 1321 * run this without tasklist lock held. The task struct itself 1322 * cannot go away as create_timer did get_task_struct(). 1323 * 1324 * We return -1, when the task is marked exiting, so 1325 * posix_timer_event can redirect it to the group leader 1326 */ 1327 rcu_read_lock(); 1328 1329 if (!likely(lock_task_sighand(p, &flags))) { 1330 ret = -1; 1331 goto out_err; 1332 } 1333 1334 if (unlikely(!list_empty(&q->list))) { 1335 /* 1336 * If an SI_TIMER entry is already queue just increment 1337 * the overrun count. 1338 */ 1339 BUG_ON(q->info.si_code != SI_TIMER); 1340 q->info.si_overrun++; 1341 goto out; 1342 } 1343 /* Short-circuit ignored signals. */ 1344 if (sig_ignored(p, sig)) { 1345 ret = 1; 1346 goto out; 1347 } 1348 1349 list_add_tail(&q->list, &p->pending.list); 1350 sigaddset(&p->pending.signal, sig); 1351 if (!sigismember(&p->blocked, sig)) 1352 signal_wake_up(p, sig == SIGKILL); 1353 1354 out: 1355 unlock_task_sighand(p, &flags); 1356 out_err: 1357 rcu_read_unlock(); 1358 1359 return ret; 1360 } 1361 1362 int 1363 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1364 { 1365 unsigned long flags; 1366 int ret = 0; 1367 1368 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1369 1370 read_lock(&tasklist_lock); 1371 /* Since it_lock is held, p->sighand cannot be NULL. */ 1372 spin_lock_irqsave(&p->sighand->siglock, flags); 1373 handle_stop_signal(sig, p); 1374 1375 /* Short-circuit ignored signals. */ 1376 if (sig_ignored(p, sig)) { 1377 ret = 1; 1378 goto out; 1379 } 1380 1381 if (unlikely(!list_empty(&q->list))) { 1382 /* 1383 * If an SI_TIMER entry is already queue just increment 1384 * the overrun count. Other uses should not try to 1385 * send the signal multiple times. 1386 */ 1387 BUG_ON(q->info.si_code != SI_TIMER); 1388 q->info.si_overrun++; 1389 goto out; 1390 } 1391 1392 /* 1393 * Put this signal on the shared-pending queue. 1394 * We always use the shared queue for process-wide signals, 1395 * to avoid several races. 1396 */ 1397 list_add_tail(&q->list, &p->signal->shared_pending.list); 1398 sigaddset(&p->signal->shared_pending.signal, sig); 1399 1400 __group_complete_signal(sig, p); 1401 out: 1402 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1403 read_unlock(&tasklist_lock); 1404 return ret; 1405 } 1406 1407 /* 1408 * Wake up any threads in the parent blocked in wait* syscalls. 1409 */ 1410 static inline void __wake_up_parent(struct task_struct *p, 1411 struct task_struct *parent) 1412 { 1413 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1414 } 1415 1416 /* 1417 * Let a parent know about the death of a child. 1418 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1419 */ 1420 1421 void do_notify_parent(struct task_struct *tsk, int sig) 1422 { 1423 struct siginfo info; 1424 unsigned long flags; 1425 struct sighand_struct *psig; 1426 1427 BUG_ON(sig == -1); 1428 1429 /* do_notify_parent_cldstop should have been called instead. */ 1430 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); 1431 1432 BUG_ON(!tsk->ptrace && 1433 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1434 1435 info.si_signo = sig; 1436 info.si_errno = 0; 1437 info.si_pid = tsk->pid; 1438 info.si_uid = tsk->uid; 1439 1440 /* FIXME: find out whether or not this is supposed to be c*time. */ 1441 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, 1442 tsk->signal->utime)); 1443 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, 1444 tsk->signal->stime)); 1445 1446 info.si_status = tsk->exit_code & 0x7f; 1447 if (tsk->exit_code & 0x80) 1448 info.si_code = CLD_DUMPED; 1449 else if (tsk->exit_code & 0x7f) 1450 info.si_code = CLD_KILLED; 1451 else { 1452 info.si_code = CLD_EXITED; 1453 info.si_status = tsk->exit_code >> 8; 1454 } 1455 1456 psig = tsk->parent->sighand; 1457 spin_lock_irqsave(&psig->siglock, flags); 1458 if (!tsk->ptrace && sig == SIGCHLD && 1459 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1460 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1461 /* 1462 * We are exiting and our parent doesn't care. POSIX.1 1463 * defines special semantics for setting SIGCHLD to SIG_IGN 1464 * or setting the SA_NOCLDWAIT flag: we should be reaped 1465 * automatically and not left for our parent's wait4 call. 1466 * Rather than having the parent do it as a magic kind of 1467 * signal handler, we just set this to tell do_exit that we 1468 * can be cleaned up without becoming a zombie. Note that 1469 * we still call __wake_up_parent in this case, because a 1470 * blocked sys_wait4 might now return -ECHILD. 1471 * 1472 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1473 * is implementation-defined: we do (if you don't want 1474 * it, just use SIG_IGN instead). 1475 */ 1476 tsk->exit_signal = -1; 1477 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1478 sig = 0; 1479 } 1480 if (valid_signal(sig) && sig > 0) 1481 __group_send_sig_info(sig, &info, tsk->parent); 1482 __wake_up_parent(tsk, tsk->parent); 1483 spin_unlock_irqrestore(&psig->siglock, flags); 1484 } 1485 1486 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1487 { 1488 struct siginfo info; 1489 unsigned long flags; 1490 struct task_struct *parent; 1491 struct sighand_struct *sighand; 1492 1493 if (tsk->ptrace & PT_PTRACED) 1494 parent = tsk->parent; 1495 else { 1496 tsk = tsk->group_leader; 1497 parent = tsk->real_parent; 1498 } 1499 1500 info.si_signo = SIGCHLD; 1501 info.si_errno = 0; 1502 info.si_pid = tsk->pid; 1503 info.si_uid = tsk->uid; 1504 1505 /* FIXME: find out whether or not this is supposed to be c*time. */ 1506 info.si_utime = cputime_to_jiffies(tsk->utime); 1507 info.si_stime = cputime_to_jiffies(tsk->stime); 1508 1509 info.si_code = why; 1510 switch (why) { 1511 case CLD_CONTINUED: 1512 info.si_status = SIGCONT; 1513 break; 1514 case CLD_STOPPED: 1515 info.si_status = tsk->signal->group_exit_code & 0x7f; 1516 break; 1517 case CLD_TRAPPED: 1518 info.si_status = tsk->exit_code & 0x7f; 1519 break; 1520 default: 1521 BUG(); 1522 } 1523 1524 sighand = parent->sighand; 1525 spin_lock_irqsave(&sighand->siglock, flags); 1526 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1527 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1528 __group_send_sig_info(SIGCHLD, &info, parent); 1529 /* 1530 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1531 */ 1532 __wake_up_parent(tsk, parent); 1533 spin_unlock_irqrestore(&sighand->siglock, flags); 1534 } 1535 1536 static inline int may_ptrace_stop(void) 1537 { 1538 if (!likely(current->ptrace & PT_PTRACED)) 1539 return 0; 1540 1541 if (unlikely(current->parent == current->real_parent && 1542 (current->ptrace & PT_ATTACHED))) 1543 return 0; 1544 1545 if (unlikely(current->signal == current->parent->signal) && 1546 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT)) 1547 return 0; 1548 1549 /* 1550 * Are we in the middle of do_coredump? 1551 * If so and our tracer is also part of the coredump stopping 1552 * is a deadlock situation, and pointless because our tracer 1553 * is dead so don't allow us to stop. 1554 * If SIGKILL was already sent before the caller unlocked 1555 * ->siglock we must see ->core_waiters != 0. Otherwise it 1556 * is safe to enter schedule(). 1557 */ 1558 if (unlikely(current->mm->core_waiters) && 1559 unlikely(current->mm == current->parent->mm)) 1560 return 0; 1561 1562 return 1; 1563 } 1564 1565 /* 1566 * This must be called with current->sighand->siglock held. 1567 * 1568 * This should be the path for all ptrace stops. 1569 * We always set current->last_siginfo while stopped here. 1570 * That makes it a way to test a stopped process for 1571 * being ptrace-stopped vs being job-control-stopped. 1572 * 1573 * If we actually decide not to stop at all because the tracer is gone, 1574 * we leave nostop_code in current->exit_code. 1575 */ 1576 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) 1577 { 1578 /* 1579 * If there is a group stop in progress, 1580 * we must participate in the bookkeeping. 1581 */ 1582 if (current->signal->group_stop_count > 0) 1583 --current->signal->group_stop_count; 1584 1585 current->last_siginfo = info; 1586 current->exit_code = exit_code; 1587 1588 /* Let the debugger run. */ 1589 set_current_state(TASK_TRACED); 1590 spin_unlock_irq(¤t->sighand->siglock); 1591 try_to_freeze(); 1592 read_lock(&tasklist_lock); 1593 if (may_ptrace_stop()) { 1594 do_notify_parent_cldstop(current, CLD_TRAPPED); 1595 read_unlock(&tasklist_lock); 1596 schedule(); 1597 } else { 1598 /* 1599 * By the time we got the lock, our tracer went away. 1600 * Don't stop here. 1601 */ 1602 read_unlock(&tasklist_lock); 1603 set_current_state(TASK_RUNNING); 1604 current->exit_code = nostop_code; 1605 } 1606 1607 /* 1608 * We are back. Now reacquire the siglock before touching 1609 * last_siginfo, so that we are sure to have synchronized with 1610 * any signal-sending on another CPU that wants to examine it. 1611 */ 1612 spin_lock_irq(¤t->sighand->siglock); 1613 current->last_siginfo = NULL; 1614 1615 /* 1616 * Queued signals ignored us while we were stopped for tracing. 1617 * So check for any that we should take before resuming user mode. 1618 */ 1619 recalc_sigpending(); 1620 } 1621 1622 void ptrace_notify(int exit_code) 1623 { 1624 siginfo_t info; 1625 1626 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1627 1628 memset(&info, 0, sizeof info); 1629 info.si_signo = SIGTRAP; 1630 info.si_code = exit_code; 1631 info.si_pid = current->pid; 1632 info.si_uid = current->uid; 1633 1634 /* Let the debugger run. */ 1635 spin_lock_irq(¤t->sighand->siglock); 1636 ptrace_stop(exit_code, 0, &info); 1637 spin_unlock_irq(¤t->sighand->siglock); 1638 } 1639 1640 static void 1641 finish_stop(int stop_count) 1642 { 1643 /* 1644 * If there are no other threads in the group, or if there is 1645 * a group stop in progress and we are the last to stop, 1646 * report to the parent. When ptraced, every thread reports itself. 1647 */ 1648 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) { 1649 read_lock(&tasklist_lock); 1650 do_notify_parent_cldstop(current, CLD_STOPPED); 1651 read_unlock(&tasklist_lock); 1652 } 1653 1654 schedule(); 1655 /* 1656 * Now we don't run again until continued. 1657 */ 1658 current->exit_code = 0; 1659 } 1660 1661 /* 1662 * This performs the stopping for SIGSTOP and other stop signals. 1663 * We have to stop all threads in the thread group. 1664 * Returns nonzero if we've actually stopped and released the siglock. 1665 * Returns zero if we didn't stop and still hold the siglock. 1666 */ 1667 static int do_signal_stop(int signr) 1668 { 1669 struct signal_struct *sig = current->signal; 1670 int stop_count; 1671 1672 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) 1673 return 0; 1674 1675 if (sig->group_stop_count > 0) { 1676 /* 1677 * There is a group stop in progress. We don't need to 1678 * start another one. 1679 */ 1680 stop_count = --sig->group_stop_count; 1681 } else { 1682 /* 1683 * There is no group stop already in progress. 1684 * We must initiate one now. 1685 */ 1686 struct task_struct *t; 1687 1688 sig->group_exit_code = signr; 1689 1690 stop_count = 0; 1691 for (t = next_thread(current); t != current; t = next_thread(t)) 1692 /* 1693 * Setting state to TASK_STOPPED for a group 1694 * stop is always done with the siglock held, 1695 * so this check has no races. 1696 */ 1697 if (!t->exit_state && 1698 !(t->state & (TASK_STOPPED|TASK_TRACED))) { 1699 stop_count++; 1700 signal_wake_up(t, 0); 1701 } 1702 sig->group_stop_count = stop_count; 1703 } 1704 1705 if (stop_count == 0) 1706 sig->flags = SIGNAL_STOP_STOPPED; 1707 current->exit_code = sig->group_exit_code; 1708 __set_current_state(TASK_STOPPED); 1709 1710 spin_unlock_irq(¤t->sighand->siglock); 1711 finish_stop(stop_count); 1712 return 1; 1713 } 1714 1715 /* 1716 * Do appropriate magic when group_stop_count > 0. 1717 * We return nonzero if we stopped, after releasing the siglock. 1718 * We return zero if we still hold the siglock and should look 1719 * for another signal without checking group_stop_count again. 1720 */ 1721 static int handle_group_stop(void) 1722 { 1723 int stop_count; 1724 1725 if (current->signal->group_exit_task == current) { 1726 /* 1727 * Group stop is so we can do a core dump, 1728 * We are the initiating thread, so get on with it. 1729 */ 1730 current->signal->group_exit_task = NULL; 1731 return 0; 1732 } 1733 1734 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1735 /* 1736 * Group stop is so another thread can do a core dump, 1737 * or else we are racing against a death signal. 1738 * Just punt the stop so we can get the next signal. 1739 */ 1740 return 0; 1741 1742 /* 1743 * There is a group stop in progress. We stop 1744 * without any associated signal being in our queue. 1745 */ 1746 stop_count = --current->signal->group_stop_count; 1747 if (stop_count == 0) 1748 current->signal->flags = SIGNAL_STOP_STOPPED; 1749 current->exit_code = current->signal->group_exit_code; 1750 set_current_state(TASK_STOPPED); 1751 spin_unlock_irq(¤t->sighand->siglock); 1752 finish_stop(stop_count); 1753 return 1; 1754 } 1755 1756 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1757 struct pt_regs *regs, void *cookie) 1758 { 1759 sigset_t *mask = ¤t->blocked; 1760 int signr = 0; 1761 1762 try_to_freeze(); 1763 1764 relock: 1765 spin_lock_irq(¤t->sighand->siglock); 1766 for (;;) { 1767 struct k_sigaction *ka; 1768 1769 if (unlikely(current->signal->group_stop_count > 0) && 1770 handle_group_stop()) 1771 goto relock; 1772 1773 signr = dequeue_signal(current, mask, info); 1774 1775 if (!signr) 1776 break; /* will return 0 */ 1777 1778 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { 1779 ptrace_signal_deliver(regs, cookie); 1780 1781 /* Let the debugger run. */ 1782 ptrace_stop(signr, signr, info); 1783 1784 /* We're back. Did the debugger cancel the sig? */ 1785 signr = current->exit_code; 1786 if (signr == 0) 1787 continue; 1788 1789 current->exit_code = 0; 1790 1791 /* Update the siginfo structure if the signal has 1792 changed. If the debugger wanted something 1793 specific in the siginfo structure then it should 1794 have updated *info via PTRACE_SETSIGINFO. */ 1795 if (signr != info->si_signo) { 1796 info->si_signo = signr; 1797 info->si_errno = 0; 1798 info->si_code = SI_USER; 1799 info->si_pid = current->parent->pid; 1800 info->si_uid = current->parent->uid; 1801 } 1802 1803 /* If the (new) signal is now blocked, requeue it. */ 1804 if (sigismember(¤t->blocked, signr)) { 1805 specific_send_sig_info(signr, info, current); 1806 continue; 1807 } 1808 } 1809 1810 ka = ¤t->sighand->action[signr-1]; 1811 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1812 continue; 1813 if (ka->sa.sa_handler != SIG_DFL) { 1814 /* Run the handler. */ 1815 *return_ka = *ka; 1816 1817 if (ka->sa.sa_flags & SA_ONESHOT) 1818 ka->sa.sa_handler = SIG_DFL; 1819 1820 break; /* will return non-zero "signr" value */ 1821 } 1822 1823 /* 1824 * Now we are doing the default action for this signal. 1825 */ 1826 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1827 continue; 1828 1829 /* Init gets no signals it doesn't want. */ 1830 if (current == child_reaper) 1831 continue; 1832 1833 if (sig_kernel_stop(signr)) { 1834 /* 1835 * The default action is to stop all threads in 1836 * the thread group. The job control signals 1837 * do nothing in an orphaned pgrp, but SIGSTOP 1838 * always works. Note that siglock needs to be 1839 * dropped during the call to is_orphaned_pgrp() 1840 * because of lock ordering with tasklist_lock. 1841 * This allows an intervening SIGCONT to be posted. 1842 * We need to check for that and bail out if necessary. 1843 */ 1844 if (signr != SIGSTOP) { 1845 spin_unlock_irq(¤t->sighand->siglock); 1846 1847 /* signals can be posted during this window */ 1848 1849 if (is_orphaned_pgrp(process_group(current))) 1850 goto relock; 1851 1852 spin_lock_irq(¤t->sighand->siglock); 1853 } 1854 1855 if (likely(do_signal_stop(signr))) { 1856 /* It released the siglock. */ 1857 goto relock; 1858 } 1859 1860 /* 1861 * We didn't actually stop, due to a race 1862 * with SIGCONT or something like that. 1863 */ 1864 continue; 1865 } 1866 1867 spin_unlock_irq(¤t->sighand->siglock); 1868 1869 /* 1870 * Anything else is fatal, maybe with a core dump. 1871 */ 1872 current->flags |= PF_SIGNALED; 1873 if (sig_kernel_coredump(signr)) { 1874 /* 1875 * If it was able to dump core, this kills all 1876 * other threads in the group and synchronizes with 1877 * their demise. If we lost the race with another 1878 * thread getting here, it set group_exit_code 1879 * first and our do_group_exit call below will use 1880 * that value and ignore the one we pass it. 1881 */ 1882 do_coredump((long)signr, signr, regs); 1883 } 1884 1885 /* 1886 * Death signals, no core dump. 1887 */ 1888 do_group_exit(signr); 1889 /* NOTREACHED */ 1890 } 1891 spin_unlock_irq(¤t->sighand->siglock); 1892 return signr; 1893 } 1894 1895 EXPORT_SYMBOL(recalc_sigpending); 1896 EXPORT_SYMBOL_GPL(dequeue_signal); 1897 EXPORT_SYMBOL(flush_signals); 1898 EXPORT_SYMBOL(force_sig); 1899 EXPORT_SYMBOL(kill_pg); 1900 EXPORT_SYMBOL(kill_proc); 1901 EXPORT_SYMBOL(ptrace_notify); 1902 EXPORT_SYMBOL(send_sig); 1903 EXPORT_SYMBOL(send_sig_info); 1904 EXPORT_SYMBOL(sigprocmask); 1905 EXPORT_SYMBOL(block_all_signals); 1906 EXPORT_SYMBOL(unblock_all_signals); 1907 1908 1909 /* 1910 * System call entry points. 1911 */ 1912 1913 asmlinkage long sys_restart_syscall(void) 1914 { 1915 struct restart_block *restart = ¤t_thread_info()->restart_block; 1916 return restart->fn(restart); 1917 } 1918 1919 long do_no_restart_syscall(struct restart_block *param) 1920 { 1921 return -EINTR; 1922 } 1923 1924 /* 1925 * We don't need to get the kernel lock - this is all local to this 1926 * particular thread.. (and that's good, because this is _heavily_ 1927 * used by various programs) 1928 */ 1929 1930 /* 1931 * This is also useful for kernel threads that want to temporarily 1932 * (or permanently) block certain signals. 1933 * 1934 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 1935 * interface happily blocks "unblockable" signals like SIGKILL 1936 * and friends. 1937 */ 1938 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 1939 { 1940 int error; 1941 1942 spin_lock_irq(¤t->sighand->siglock); 1943 if (oldset) 1944 *oldset = current->blocked; 1945 1946 error = 0; 1947 switch (how) { 1948 case SIG_BLOCK: 1949 sigorsets(¤t->blocked, ¤t->blocked, set); 1950 break; 1951 case SIG_UNBLOCK: 1952 signandsets(¤t->blocked, ¤t->blocked, set); 1953 break; 1954 case SIG_SETMASK: 1955 current->blocked = *set; 1956 break; 1957 default: 1958 error = -EINVAL; 1959 } 1960 recalc_sigpending(); 1961 spin_unlock_irq(¤t->sighand->siglock); 1962 1963 return error; 1964 } 1965 1966 asmlinkage long 1967 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 1968 { 1969 int error = -EINVAL; 1970 sigset_t old_set, new_set; 1971 1972 /* XXX: Don't preclude handling different sized sigset_t's. */ 1973 if (sigsetsize != sizeof(sigset_t)) 1974 goto out; 1975 1976 if (set) { 1977 error = -EFAULT; 1978 if (copy_from_user(&new_set, set, sizeof(*set))) 1979 goto out; 1980 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1981 1982 error = sigprocmask(how, &new_set, &old_set); 1983 if (error) 1984 goto out; 1985 if (oset) 1986 goto set_old; 1987 } else if (oset) { 1988 spin_lock_irq(¤t->sighand->siglock); 1989 old_set = current->blocked; 1990 spin_unlock_irq(¤t->sighand->siglock); 1991 1992 set_old: 1993 error = -EFAULT; 1994 if (copy_to_user(oset, &old_set, sizeof(*oset))) 1995 goto out; 1996 } 1997 error = 0; 1998 out: 1999 return error; 2000 } 2001 2002 long do_sigpending(void __user *set, unsigned long sigsetsize) 2003 { 2004 long error = -EINVAL; 2005 sigset_t pending; 2006 2007 if (sigsetsize > sizeof(sigset_t)) 2008 goto out; 2009 2010 spin_lock_irq(¤t->sighand->siglock); 2011 sigorsets(&pending, ¤t->pending.signal, 2012 ¤t->signal->shared_pending.signal); 2013 spin_unlock_irq(¤t->sighand->siglock); 2014 2015 /* Outside the lock because only this thread touches it. */ 2016 sigandsets(&pending, ¤t->blocked, &pending); 2017 2018 error = -EFAULT; 2019 if (!copy_to_user(set, &pending, sigsetsize)) 2020 error = 0; 2021 2022 out: 2023 return error; 2024 } 2025 2026 asmlinkage long 2027 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2028 { 2029 return do_sigpending(set, sigsetsize); 2030 } 2031 2032 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2033 2034 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2035 { 2036 int err; 2037 2038 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2039 return -EFAULT; 2040 if (from->si_code < 0) 2041 return __copy_to_user(to, from, sizeof(siginfo_t)) 2042 ? -EFAULT : 0; 2043 /* 2044 * If you change siginfo_t structure, please be sure 2045 * this code is fixed accordingly. 2046 * It should never copy any pad contained in the structure 2047 * to avoid security leaks, but must copy the generic 2048 * 3 ints plus the relevant union member. 2049 */ 2050 err = __put_user(from->si_signo, &to->si_signo); 2051 err |= __put_user(from->si_errno, &to->si_errno); 2052 err |= __put_user((short)from->si_code, &to->si_code); 2053 switch (from->si_code & __SI_MASK) { 2054 case __SI_KILL: 2055 err |= __put_user(from->si_pid, &to->si_pid); 2056 err |= __put_user(from->si_uid, &to->si_uid); 2057 break; 2058 case __SI_TIMER: 2059 err |= __put_user(from->si_tid, &to->si_tid); 2060 err |= __put_user(from->si_overrun, &to->si_overrun); 2061 err |= __put_user(from->si_ptr, &to->si_ptr); 2062 break; 2063 case __SI_POLL: 2064 err |= __put_user(from->si_band, &to->si_band); 2065 err |= __put_user(from->si_fd, &to->si_fd); 2066 break; 2067 case __SI_FAULT: 2068 err |= __put_user(from->si_addr, &to->si_addr); 2069 #ifdef __ARCH_SI_TRAPNO 2070 err |= __put_user(from->si_trapno, &to->si_trapno); 2071 #endif 2072 break; 2073 case __SI_CHLD: 2074 err |= __put_user(from->si_pid, &to->si_pid); 2075 err |= __put_user(from->si_uid, &to->si_uid); 2076 err |= __put_user(from->si_status, &to->si_status); 2077 err |= __put_user(from->si_utime, &to->si_utime); 2078 err |= __put_user(from->si_stime, &to->si_stime); 2079 break; 2080 case __SI_RT: /* This is not generated by the kernel as of now. */ 2081 case __SI_MESGQ: /* But this is */ 2082 err |= __put_user(from->si_pid, &to->si_pid); 2083 err |= __put_user(from->si_uid, &to->si_uid); 2084 err |= __put_user(from->si_ptr, &to->si_ptr); 2085 break; 2086 default: /* this is just in case for now ... */ 2087 err |= __put_user(from->si_pid, &to->si_pid); 2088 err |= __put_user(from->si_uid, &to->si_uid); 2089 break; 2090 } 2091 return err; 2092 } 2093 2094 #endif 2095 2096 asmlinkage long 2097 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2098 siginfo_t __user *uinfo, 2099 const struct timespec __user *uts, 2100 size_t sigsetsize) 2101 { 2102 int ret, sig; 2103 sigset_t these; 2104 struct timespec ts; 2105 siginfo_t info; 2106 long timeout = 0; 2107 2108 /* XXX: Don't preclude handling different sized sigset_t's. */ 2109 if (sigsetsize != sizeof(sigset_t)) 2110 return -EINVAL; 2111 2112 if (copy_from_user(&these, uthese, sizeof(these))) 2113 return -EFAULT; 2114 2115 /* 2116 * Invert the set of allowed signals to get those we 2117 * want to block. 2118 */ 2119 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2120 signotset(&these); 2121 2122 if (uts) { 2123 if (copy_from_user(&ts, uts, sizeof(ts))) 2124 return -EFAULT; 2125 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2126 || ts.tv_sec < 0) 2127 return -EINVAL; 2128 } 2129 2130 spin_lock_irq(¤t->sighand->siglock); 2131 sig = dequeue_signal(current, &these, &info); 2132 if (!sig) { 2133 timeout = MAX_SCHEDULE_TIMEOUT; 2134 if (uts) 2135 timeout = (timespec_to_jiffies(&ts) 2136 + (ts.tv_sec || ts.tv_nsec)); 2137 2138 if (timeout) { 2139 /* None ready -- temporarily unblock those we're 2140 * interested while we are sleeping in so that we'll 2141 * be awakened when they arrive. */ 2142 current->real_blocked = current->blocked; 2143 sigandsets(¤t->blocked, ¤t->blocked, &these); 2144 recalc_sigpending(); 2145 spin_unlock_irq(¤t->sighand->siglock); 2146 2147 timeout = schedule_timeout_interruptible(timeout); 2148 2149 spin_lock_irq(¤t->sighand->siglock); 2150 sig = dequeue_signal(current, &these, &info); 2151 current->blocked = current->real_blocked; 2152 siginitset(¤t->real_blocked, 0); 2153 recalc_sigpending(); 2154 } 2155 } 2156 spin_unlock_irq(¤t->sighand->siglock); 2157 2158 if (sig) { 2159 ret = sig; 2160 if (uinfo) { 2161 if (copy_siginfo_to_user(uinfo, &info)) 2162 ret = -EFAULT; 2163 } 2164 } else { 2165 ret = -EAGAIN; 2166 if (timeout) 2167 ret = -EINTR; 2168 } 2169 2170 return ret; 2171 } 2172 2173 asmlinkage long 2174 sys_kill(int pid, int sig) 2175 { 2176 struct siginfo info; 2177 2178 info.si_signo = sig; 2179 info.si_errno = 0; 2180 info.si_code = SI_USER; 2181 info.si_pid = current->tgid; 2182 info.si_uid = current->uid; 2183 2184 return kill_something_info(sig, &info, pid); 2185 } 2186 2187 static int do_tkill(int tgid, int pid, int sig) 2188 { 2189 int error; 2190 struct siginfo info; 2191 struct task_struct *p; 2192 2193 error = -ESRCH; 2194 info.si_signo = sig; 2195 info.si_errno = 0; 2196 info.si_code = SI_TKILL; 2197 info.si_pid = current->tgid; 2198 info.si_uid = current->uid; 2199 2200 read_lock(&tasklist_lock); 2201 p = find_task_by_pid(pid); 2202 if (p && (tgid <= 0 || p->tgid == tgid)) { 2203 error = check_kill_permission(sig, &info, p); 2204 /* 2205 * The null signal is a permissions and process existence 2206 * probe. No signal is actually delivered. 2207 */ 2208 if (!error && sig && p->sighand) { 2209 spin_lock_irq(&p->sighand->siglock); 2210 handle_stop_signal(sig, p); 2211 error = specific_send_sig_info(sig, &info, p); 2212 spin_unlock_irq(&p->sighand->siglock); 2213 } 2214 } 2215 read_unlock(&tasklist_lock); 2216 2217 return error; 2218 } 2219 2220 /** 2221 * sys_tgkill - send signal to one specific thread 2222 * @tgid: the thread group ID of the thread 2223 * @pid: the PID of the thread 2224 * @sig: signal to be sent 2225 * 2226 * This syscall also checks the tgid and returns -ESRCH even if the PID 2227 * exists but it's not belonging to the target process anymore. This 2228 * method solves the problem of threads exiting and PIDs getting reused. 2229 */ 2230 asmlinkage long sys_tgkill(int tgid, int pid, int sig) 2231 { 2232 /* This is only valid for single tasks */ 2233 if (pid <= 0 || tgid <= 0) 2234 return -EINVAL; 2235 2236 return do_tkill(tgid, pid, sig); 2237 } 2238 2239 /* 2240 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2241 */ 2242 asmlinkage long 2243 sys_tkill(int pid, int sig) 2244 { 2245 /* This is only valid for single tasks */ 2246 if (pid <= 0) 2247 return -EINVAL; 2248 2249 return do_tkill(0, pid, sig); 2250 } 2251 2252 asmlinkage long 2253 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) 2254 { 2255 siginfo_t info; 2256 2257 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2258 return -EFAULT; 2259 2260 /* Not even root can pretend to send signals from the kernel. 2261 Nor can they impersonate a kill(), which adds source info. */ 2262 if (info.si_code >= 0) 2263 return -EPERM; 2264 info.si_signo = sig; 2265 2266 /* POSIX.1b doesn't mention process groups. */ 2267 return kill_proc_info(sig, &info, pid); 2268 } 2269 2270 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2271 { 2272 struct k_sigaction *k; 2273 sigset_t mask; 2274 2275 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2276 return -EINVAL; 2277 2278 k = ¤t->sighand->action[sig-1]; 2279 2280 spin_lock_irq(¤t->sighand->siglock); 2281 if (signal_pending(current)) { 2282 /* 2283 * If there might be a fatal signal pending on multiple 2284 * threads, make sure we take it before changing the action. 2285 */ 2286 spin_unlock_irq(¤t->sighand->siglock); 2287 return -ERESTARTNOINTR; 2288 } 2289 2290 if (oact) 2291 *oact = *k; 2292 2293 if (act) { 2294 sigdelsetmask(&act->sa.sa_mask, 2295 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2296 *k = *act; 2297 /* 2298 * POSIX 3.3.1.3: 2299 * "Setting a signal action to SIG_IGN for a signal that is 2300 * pending shall cause the pending signal to be discarded, 2301 * whether or not it is blocked." 2302 * 2303 * "Setting a signal action to SIG_DFL for a signal that is 2304 * pending and whose default action is to ignore the signal 2305 * (for example, SIGCHLD), shall cause the pending signal to 2306 * be discarded, whether or not it is blocked" 2307 */ 2308 if (act->sa.sa_handler == SIG_IGN || 2309 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) { 2310 struct task_struct *t = current; 2311 sigemptyset(&mask); 2312 sigaddset(&mask, sig); 2313 rm_from_queue_full(&mask, &t->signal->shared_pending); 2314 do { 2315 rm_from_queue_full(&mask, &t->pending); 2316 recalc_sigpending_tsk(t); 2317 t = next_thread(t); 2318 } while (t != current); 2319 } 2320 } 2321 2322 spin_unlock_irq(¤t->sighand->siglock); 2323 return 0; 2324 } 2325 2326 int 2327 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2328 { 2329 stack_t oss; 2330 int error; 2331 2332 if (uoss) { 2333 oss.ss_sp = (void __user *) current->sas_ss_sp; 2334 oss.ss_size = current->sas_ss_size; 2335 oss.ss_flags = sas_ss_flags(sp); 2336 } 2337 2338 if (uss) { 2339 void __user *ss_sp; 2340 size_t ss_size; 2341 int ss_flags; 2342 2343 error = -EFAULT; 2344 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2345 || __get_user(ss_sp, &uss->ss_sp) 2346 || __get_user(ss_flags, &uss->ss_flags) 2347 || __get_user(ss_size, &uss->ss_size)) 2348 goto out; 2349 2350 error = -EPERM; 2351 if (on_sig_stack(sp)) 2352 goto out; 2353 2354 error = -EINVAL; 2355 /* 2356 * 2357 * Note - this code used to test ss_flags incorrectly 2358 * old code may have been written using ss_flags==0 2359 * to mean ss_flags==SS_ONSTACK (as this was the only 2360 * way that worked) - this fix preserves that older 2361 * mechanism 2362 */ 2363 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2364 goto out; 2365 2366 if (ss_flags == SS_DISABLE) { 2367 ss_size = 0; 2368 ss_sp = NULL; 2369 } else { 2370 error = -ENOMEM; 2371 if (ss_size < MINSIGSTKSZ) 2372 goto out; 2373 } 2374 2375 current->sas_ss_sp = (unsigned long) ss_sp; 2376 current->sas_ss_size = ss_size; 2377 } 2378 2379 if (uoss) { 2380 error = -EFAULT; 2381 if (copy_to_user(uoss, &oss, sizeof(oss))) 2382 goto out; 2383 } 2384 2385 error = 0; 2386 out: 2387 return error; 2388 } 2389 2390 #ifdef __ARCH_WANT_SYS_SIGPENDING 2391 2392 asmlinkage long 2393 sys_sigpending(old_sigset_t __user *set) 2394 { 2395 return do_sigpending(set, sizeof(*set)); 2396 } 2397 2398 #endif 2399 2400 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2401 /* Some platforms have their own version with special arguments others 2402 support only sys_rt_sigprocmask. */ 2403 2404 asmlinkage long 2405 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2406 { 2407 int error; 2408 old_sigset_t old_set, new_set; 2409 2410 if (set) { 2411 error = -EFAULT; 2412 if (copy_from_user(&new_set, set, sizeof(*set))) 2413 goto out; 2414 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2415 2416 spin_lock_irq(¤t->sighand->siglock); 2417 old_set = current->blocked.sig[0]; 2418 2419 error = 0; 2420 switch (how) { 2421 default: 2422 error = -EINVAL; 2423 break; 2424 case SIG_BLOCK: 2425 sigaddsetmask(¤t->blocked, new_set); 2426 break; 2427 case SIG_UNBLOCK: 2428 sigdelsetmask(¤t->blocked, new_set); 2429 break; 2430 case SIG_SETMASK: 2431 current->blocked.sig[0] = new_set; 2432 break; 2433 } 2434 2435 recalc_sigpending(); 2436 spin_unlock_irq(¤t->sighand->siglock); 2437 if (error) 2438 goto out; 2439 if (oset) 2440 goto set_old; 2441 } else if (oset) { 2442 old_set = current->blocked.sig[0]; 2443 set_old: 2444 error = -EFAULT; 2445 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2446 goto out; 2447 } 2448 error = 0; 2449 out: 2450 return error; 2451 } 2452 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2453 2454 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2455 asmlinkage long 2456 sys_rt_sigaction(int sig, 2457 const struct sigaction __user *act, 2458 struct sigaction __user *oact, 2459 size_t sigsetsize) 2460 { 2461 struct k_sigaction new_sa, old_sa; 2462 int ret = -EINVAL; 2463 2464 /* XXX: Don't preclude handling different sized sigset_t's. */ 2465 if (sigsetsize != sizeof(sigset_t)) 2466 goto out; 2467 2468 if (act) { 2469 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2470 return -EFAULT; 2471 } 2472 2473 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2474 2475 if (!ret && oact) { 2476 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2477 return -EFAULT; 2478 } 2479 out: 2480 return ret; 2481 } 2482 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2483 2484 #ifdef __ARCH_WANT_SYS_SGETMASK 2485 2486 /* 2487 * For backwards compatibility. Functionality superseded by sigprocmask. 2488 */ 2489 asmlinkage long 2490 sys_sgetmask(void) 2491 { 2492 /* SMP safe */ 2493 return current->blocked.sig[0]; 2494 } 2495 2496 asmlinkage long 2497 sys_ssetmask(int newmask) 2498 { 2499 int old; 2500 2501 spin_lock_irq(¤t->sighand->siglock); 2502 old = current->blocked.sig[0]; 2503 2504 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2505 sigmask(SIGSTOP))); 2506 recalc_sigpending(); 2507 spin_unlock_irq(¤t->sighand->siglock); 2508 2509 return old; 2510 } 2511 #endif /* __ARCH_WANT_SGETMASK */ 2512 2513 #ifdef __ARCH_WANT_SYS_SIGNAL 2514 /* 2515 * For backwards compatibility. Functionality superseded by sigaction. 2516 */ 2517 asmlinkage unsigned long 2518 sys_signal(int sig, __sighandler_t handler) 2519 { 2520 struct k_sigaction new_sa, old_sa; 2521 int ret; 2522 2523 new_sa.sa.sa_handler = handler; 2524 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2525 sigemptyset(&new_sa.sa.sa_mask); 2526 2527 ret = do_sigaction(sig, &new_sa, &old_sa); 2528 2529 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2530 } 2531 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2532 2533 #ifdef __ARCH_WANT_SYS_PAUSE 2534 2535 asmlinkage long 2536 sys_pause(void) 2537 { 2538 current->state = TASK_INTERRUPTIBLE; 2539 schedule(); 2540 return -ERESTARTNOHAND; 2541 } 2542 2543 #endif 2544 2545 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2546 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) 2547 { 2548 sigset_t newset; 2549 2550 /* XXX: Don't preclude handling different sized sigset_t's. */ 2551 if (sigsetsize != sizeof(sigset_t)) 2552 return -EINVAL; 2553 2554 if (copy_from_user(&newset, unewset, sizeof(newset))) 2555 return -EFAULT; 2556 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2557 2558 spin_lock_irq(¤t->sighand->siglock); 2559 current->saved_sigmask = current->blocked; 2560 current->blocked = newset; 2561 recalc_sigpending(); 2562 spin_unlock_irq(¤t->sighand->siglock); 2563 2564 current->state = TASK_INTERRUPTIBLE; 2565 schedule(); 2566 set_thread_flag(TIF_RESTORE_SIGMASK); 2567 return -ERESTARTNOHAND; 2568 } 2569 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2570 2571 void __init signals_init(void) 2572 { 2573 sigqueue_cachep = 2574 kmem_cache_create("sigqueue", 2575 sizeof(struct sigqueue), 2576 __alignof__(struct sigqueue), 2577 SLAB_PANIC, NULL, NULL); 2578 } 2579