xref: /linux/kernel/signal.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
32 
33 /*
34  * SLAB caches for signal bits.
35  */
36 
37 static kmem_cache_t *sigqueue_cachep;
38 
39 /*
40  * In POSIX a signal is sent either to a specific thread (Linux task)
41  * or to the process as a whole (Linux thread group).  How the signal
42  * is sent determines whether it's to one thread or the whole group,
43  * which determines which signal mask(s) are involved in blocking it
44  * from being delivered until later.  When the signal is delivered,
45  * either it's caught or ignored by a user handler or it has a default
46  * effect that applies to the whole thread group (POSIX process).
47  *
48  * The possible effects an unblocked signal set to SIG_DFL can have are:
49  *   ignore	- Nothing Happens
50  *   terminate	- kill the process, i.e. all threads in the group,
51  * 		  similar to exit_group.  The group leader (only) reports
52  *		  WIFSIGNALED status to its parent.
53  *   coredump	- write a core dump file describing all threads using
54  *		  the same mm and then kill all those threads
55  *   stop 	- stop all the threads in the group, i.e. TASK_STOPPED state
56  *
57  * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58  * Other signals when not blocked and set to SIG_DFL behaves as follows.
59  * The job control signals also have other special effects.
60  *
61  *	+--------------------+------------------+
62  *	|  POSIX signal      |  default action  |
63  *	+--------------------+------------------+
64  *	|  SIGHUP            |  terminate	|
65  *	|  SIGINT            |	terminate	|
66  *	|  SIGQUIT           |	coredump 	|
67  *	|  SIGILL            |	coredump 	|
68  *	|  SIGTRAP           |	coredump 	|
69  *	|  SIGABRT/SIGIOT    |	coredump 	|
70  *	|  SIGBUS            |	coredump 	|
71  *	|  SIGFPE            |	coredump 	|
72  *	|  SIGKILL           |	terminate(+)	|
73  *	|  SIGUSR1           |	terminate	|
74  *	|  SIGSEGV           |	coredump 	|
75  *	|  SIGUSR2           |	terminate	|
76  *	|  SIGPIPE           |	terminate	|
77  *	|  SIGALRM           |	terminate	|
78  *	|  SIGTERM           |	terminate	|
79  *	|  SIGCHLD           |	ignore   	|
80  *	|  SIGCONT           |	ignore(*)	|
81  *	|  SIGSTOP           |	stop(*)(+)  	|
82  *	|  SIGTSTP           |	stop(*)  	|
83  *	|  SIGTTIN           |	stop(*)  	|
84  *	|  SIGTTOU           |	stop(*)  	|
85  *	|  SIGURG            |	ignore   	|
86  *	|  SIGXCPU           |	coredump 	|
87  *	|  SIGXFSZ           |	coredump 	|
88  *	|  SIGVTALRM         |	terminate	|
89  *	|  SIGPROF           |	terminate	|
90  *	|  SIGPOLL/SIGIO     |	terminate	|
91  *	|  SIGSYS/SIGUNUSED  |	coredump 	|
92  *	|  SIGSTKFLT         |	terminate	|
93  *	|  SIGWINCH          |	ignore   	|
94  *	|  SIGPWR            |	terminate	|
95  *	|  SIGRTMIN-SIGRTMAX |	terminate       |
96  *	+--------------------+------------------+
97  *	|  non-POSIX signal  |  default action  |
98  *	+--------------------+------------------+
99  *	|  SIGEMT            |  coredump	|
100  *	+--------------------+------------------+
101  *
102  * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103  * (*) Special job control effects:
104  * When SIGCONT is sent, it resumes the process (all threads in the group)
105  * from TASK_STOPPED state and also clears any pending/queued stop signals
106  * (any of those marked with "stop(*)").  This happens regardless of blocking,
107  * catching, or ignoring SIGCONT.  When any stop signal is sent, it clears
108  * any pending/queued SIGCONT signals; this happens regardless of blocking,
109  * catching, or ignored the stop signal, though (except for SIGSTOP) the
110  * default action of stopping the process may happen later or never.
111  */
112 
113 #ifdef SIGEMT
114 #define M_SIGEMT	M(SIGEMT)
115 #else
116 #define M_SIGEMT	0
117 #endif
118 
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
125 
126 #define SIG_KERNEL_ONLY_MASK (\
127 	M(SIGKILL)   |  M(SIGSTOP)                                   )
128 
129 #define SIG_KERNEL_STOP_MASK (\
130 	M(SIGSTOP)   |  M(SIGTSTP)   |  M(SIGTTIN)   |  M(SIGTTOU)   )
131 
132 #define SIG_KERNEL_COREDUMP_MASK (\
133         M(SIGQUIT)   |  M(SIGILL)    |  M(SIGTRAP)   |  M(SIGABRT)   | \
134         M(SIGFPE)    |  M(SIGSEGV)   |  M(SIGBUS)    |  M(SIGSYS)    | \
135         M(SIGXCPU)   |  M(SIGXFSZ)   |  M_SIGEMT                     )
136 
137 #define SIG_KERNEL_IGNORE_MASK (\
138         M(SIGCONT)   |  M(SIGCHLD)   |  M(SIGWINCH)  |  M(SIGURG)    )
139 
140 #define sig_kernel_only(sig) \
141 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_STOP_MASK))
148 
149 #define sig_user_defined(t, signr) \
150 	(((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) &&	\
151 	 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152 
153 #define sig_fatal(t, signr) \
154 	(!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 	 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156 
157 static int sig_ignored(struct task_struct *t, int sig)
158 {
159 	void __user * handler;
160 
161 	/*
162 	 * Tracers always want to know about signals..
163 	 */
164 	if (t->ptrace & PT_PTRACED)
165 		return 0;
166 
167 	/*
168 	 * Blocked signals are never ignored, since the
169 	 * signal handler may change by the time it is
170 	 * unblocked.
171 	 */
172 	if (sigismember(&t->blocked, sig))
173 		return 0;
174 
175 	/* Is it explicitly or implicitly ignored? */
176 	handler = t->sighand->action[sig-1].sa.sa_handler;
177 	return   handler == SIG_IGN ||
178 		(handler == SIG_DFL && sig_kernel_ignore(sig));
179 }
180 
181 /*
182  * Re-calculate pending state from the set of locally pending
183  * signals, globally pending signals, and blocked signals.
184  */
185 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186 {
187 	unsigned long ready;
188 	long i;
189 
190 	switch (_NSIG_WORDS) {
191 	default:
192 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 			ready |= signal->sig[i] &~ blocked->sig[i];
194 		break;
195 
196 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
197 		ready |= signal->sig[2] &~ blocked->sig[2];
198 		ready |= signal->sig[1] &~ blocked->sig[1];
199 		ready |= signal->sig[0] &~ blocked->sig[0];
200 		break;
201 
202 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
203 		ready |= signal->sig[0] &~ blocked->sig[0];
204 		break;
205 
206 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
207 	}
208 	return ready !=	0;
209 }
210 
211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212 
213 fastcall void recalc_sigpending_tsk(struct task_struct *t)
214 {
215 	if (t->signal->group_stop_count > 0 ||
216 	    (freezing(t)) ||
217 	    PENDING(&t->pending, &t->blocked) ||
218 	    PENDING(&t->signal->shared_pending, &t->blocked))
219 		set_tsk_thread_flag(t, TIF_SIGPENDING);
220 	else
221 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
222 }
223 
224 void recalc_sigpending(void)
225 {
226 	recalc_sigpending_tsk(current);
227 }
228 
229 /* Given the mask, find the first available signal that should be serviced. */
230 
231 static int
232 next_signal(struct sigpending *pending, sigset_t *mask)
233 {
234 	unsigned long i, *s, *m, x;
235 	int sig = 0;
236 
237 	s = pending->signal.sig;
238 	m = mask->sig;
239 	switch (_NSIG_WORDS) {
240 	default:
241 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 			if ((x = *s &~ *m) != 0) {
243 				sig = ffz(~x) + i*_NSIG_BPW + 1;
244 				break;
245 			}
246 		break;
247 
248 	case 2: if ((x = s[0] &~ m[0]) != 0)
249 			sig = 1;
250 		else if ((x = s[1] &~ m[1]) != 0)
251 			sig = _NSIG_BPW + 1;
252 		else
253 			break;
254 		sig += ffz(~x);
255 		break;
256 
257 	case 1: if ((x = *s &~ *m) != 0)
258 			sig = ffz(~x) + 1;
259 		break;
260 	}
261 
262 	return sig;
263 }
264 
265 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, unsigned int __nocast flags,
266 					 int override_rlimit)
267 {
268 	struct sigqueue *q = NULL;
269 
270 	atomic_inc(&t->user->sigpending);
271 	if (override_rlimit ||
272 	    atomic_read(&t->user->sigpending) <=
273 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 		q = kmem_cache_alloc(sigqueue_cachep, flags);
275 	if (unlikely(q == NULL)) {
276 		atomic_dec(&t->user->sigpending);
277 	} else {
278 		INIT_LIST_HEAD(&q->list);
279 		q->flags = 0;
280 		q->lock = NULL;
281 		q->user = get_uid(t->user);
282 	}
283 	return(q);
284 }
285 
286 static inline void __sigqueue_free(struct sigqueue *q)
287 {
288 	if (q->flags & SIGQUEUE_PREALLOC)
289 		return;
290 	atomic_dec(&q->user->sigpending);
291 	free_uid(q->user);
292 	kmem_cache_free(sigqueue_cachep, q);
293 }
294 
295 static void flush_sigqueue(struct sigpending *queue)
296 {
297 	struct sigqueue *q;
298 
299 	sigemptyset(&queue->signal);
300 	while (!list_empty(&queue->list)) {
301 		q = list_entry(queue->list.next, struct sigqueue , list);
302 		list_del_init(&q->list);
303 		__sigqueue_free(q);
304 	}
305 }
306 
307 /*
308  * Flush all pending signals for a task.
309  */
310 
311 void
312 flush_signals(struct task_struct *t)
313 {
314 	unsigned long flags;
315 
316 	spin_lock_irqsave(&t->sighand->siglock, flags);
317 	clear_tsk_thread_flag(t,TIF_SIGPENDING);
318 	flush_sigqueue(&t->pending);
319 	flush_sigqueue(&t->signal->shared_pending);
320 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
321 }
322 
323 /*
324  * This function expects the tasklist_lock write-locked.
325  */
326 void __exit_sighand(struct task_struct *tsk)
327 {
328 	struct sighand_struct * sighand = tsk->sighand;
329 
330 	/* Ok, we're done with the signal handlers */
331 	tsk->sighand = NULL;
332 	if (atomic_dec_and_test(&sighand->count))
333 		kmem_cache_free(sighand_cachep, sighand);
334 }
335 
336 void exit_sighand(struct task_struct *tsk)
337 {
338 	write_lock_irq(&tasklist_lock);
339 	__exit_sighand(tsk);
340 	write_unlock_irq(&tasklist_lock);
341 }
342 
343 /*
344  * This function expects the tasklist_lock write-locked.
345  */
346 void __exit_signal(struct task_struct *tsk)
347 {
348 	struct signal_struct * sig = tsk->signal;
349 	struct sighand_struct * sighand = tsk->sighand;
350 
351 	if (!sig)
352 		BUG();
353 	if (!atomic_read(&sig->count))
354 		BUG();
355 	spin_lock(&sighand->siglock);
356 	posix_cpu_timers_exit(tsk);
357 	if (atomic_dec_and_test(&sig->count)) {
358 		posix_cpu_timers_exit_group(tsk);
359 		if (tsk == sig->curr_target)
360 			sig->curr_target = next_thread(tsk);
361 		tsk->signal = NULL;
362 		spin_unlock(&sighand->siglock);
363 		flush_sigqueue(&sig->shared_pending);
364 	} else {
365 		/*
366 		 * If there is any task waiting for the group exit
367 		 * then notify it:
368 		 */
369 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
370 			wake_up_process(sig->group_exit_task);
371 			sig->group_exit_task = NULL;
372 		}
373 		if (tsk == sig->curr_target)
374 			sig->curr_target = next_thread(tsk);
375 		tsk->signal = NULL;
376 		/*
377 		 * Accumulate here the counters for all threads but the
378 		 * group leader as they die, so they can be added into
379 		 * the process-wide totals when those are taken.
380 		 * The group leader stays around as a zombie as long
381 		 * as there are other threads.  When it gets reaped,
382 		 * the exit.c code will add its counts into these totals.
383 		 * We won't ever get here for the group leader, since it
384 		 * will have been the last reference on the signal_struct.
385 		 */
386 		sig->utime = cputime_add(sig->utime, tsk->utime);
387 		sig->stime = cputime_add(sig->stime, tsk->stime);
388 		sig->min_flt += tsk->min_flt;
389 		sig->maj_flt += tsk->maj_flt;
390 		sig->nvcsw += tsk->nvcsw;
391 		sig->nivcsw += tsk->nivcsw;
392 		sig->sched_time += tsk->sched_time;
393 		spin_unlock(&sighand->siglock);
394 		sig = NULL;	/* Marker for below.  */
395 	}
396 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
397 	flush_sigqueue(&tsk->pending);
398 	if (sig) {
399 		/*
400 		 * We are cleaning up the signal_struct here.  We delayed
401 		 * calling exit_itimers until after flush_sigqueue, just in
402 		 * case our thread-local pending queue contained a queued
403 		 * timer signal that would have been cleared in
404 		 * exit_itimers.  When that called sigqueue_free, it would
405 		 * attempt to re-take the tasklist_lock and deadlock.  This
406 		 * can never happen if we ensure that all queues the
407 		 * timer's signal might be queued on have been flushed
408 		 * first.  The shared_pending queue, and our own pending
409 		 * queue are the only queues the timer could be on, since
410 		 * there are no other threads left in the group and timer
411 		 * signals are constrained to threads inside the group.
412 		 */
413 		exit_itimers(sig);
414 		exit_thread_group_keys(sig);
415 		kmem_cache_free(signal_cachep, sig);
416 	}
417 }
418 
419 void exit_signal(struct task_struct *tsk)
420 {
421 	write_lock_irq(&tasklist_lock);
422 	__exit_signal(tsk);
423 	write_unlock_irq(&tasklist_lock);
424 }
425 
426 /*
427  * Flush all handlers for a task.
428  */
429 
430 void
431 flush_signal_handlers(struct task_struct *t, int force_default)
432 {
433 	int i;
434 	struct k_sigaction *ka = &t->sighand->action[0];
435 	for (i = _NSIG ; i != 0 ; i--) {
436 		if (force_default || ka->sa.sa_handler != SIG_IGN)
437 			ka->sa.sa_handler = SIG_DFL;
438 		ka->sa.sa_flags = 0;
439 		sigemptyset(&ka->sa.sa_mask);
440 		ka++;
441 	}
442 }
443 
444 
445 /* Notify the system that a driver wants to block all signals for this
446  * process, and wants to be notified if any signals at all were to be
447  * sent/acted upon.  If the notifier routine returns non-zero, then the
448  * signal will be acted upon after all.  If the notifier routine returns 0,
449  * then then signal will be blocked.  Only one block per process is
450  * allowed.  priv is a pointer to private data that the notifier routine
451  * can use to determine if the signal should be blocked or not.  */
452 
453 void
454 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
455 {
456 	unsigned long flags;
457 
458 	spin_lock_irqsave(&current->sighand->siglock, flags);
459 	current->notifier_mask = mask;
460 	current->notifier_data = priv;
461 	current->notifier = notifier;
462 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
463 }
464 
465 /* Notify the system that blocking has ended. */
466 
467 void
468 unblock_all_signals(void)
469 {
470 	unsigned long flags;
471 
472 	spin_lock_irqsave(&current->sighand->siglock, flags);
473 	current->notifier = NULL;
474 	current->notifier_data = NULL;
475 	recalc_sigpending();
476 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
477 }
478 
479 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
480 {
481 	struct sigqueue *q, *first = NULL;
482 	int still_pending = 0;
483 
484 	if (unlikely(!sigismember(&list->signal, sig)))
485 		return 0;
486 
487 	/*
488 	 * Collect the siginfo appropriate to this signal.  Check if
489 	 * there is another siginfo for the same signal.
490 	*/
491 	list_for_each_entry(q, &list->list, list) {
492 		if (q->info.si_signo == sig) {
493 			if (first) {
494 				still_pending = 1;
495 				break;
496 			}
497 			first = q;
498 		}
499 	}
500 	if (first) {
501 		list_del_init(&first->list);
502 		copy_siginfo(info, &first->info);
503 		__sigqueue_free(first);
504 		if (!still_pending)
505 			sigdelset(&list->signal, sig);
506 	} else {
507 
508 		/* Ok, it wasn't in the queue.  This must be
509 		   a fast-pathed signal or we must have been
510 		   out of queue space.  So zero out the info.
511 		 */
512 		sigdelset(&list->signal, sig);
513 		info->si_signo = sig;
514 		info->si_errno = 0;
515 		info->si_code = 0;
516 		info->si_pid = 0;
517 		info->si_uid = 0;
518 	}
519 	return 1;
520 }
521 
522 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
523 			siginfo_t *info)
524 {
525 	int sig = 0;
526 
527 	/* SIGKILL must have priority, otherwise it is quite easy
528 	 * to create an unkillable process, sending sig < SIGKILL
529 	 * to self */
530 	if (unlikely(sigismember(&pending->signal, SIGKILL))) {
531 		if (!sigismember(mask, SIGKILL))
532 			sig = SIGKILL;
533 	}
534 
535 	if (likely(!sig))
536 		sig = next_signal(pending, mask);
537 	if (sig) {
538 		if (current->notifier) {
539 			if (sigismember(current->notifier_mask, sig)) {
540 				if (!(current->notifier)(current->notifier_data)) {
541 					clear_thread_flag(TIF_SIGPENDING);
542 					return 0;
543 				}
544 			}
545 		}
546 
547 		if (!collect_signal(sig, pending, info))
548 			sig = 0;
549 
550 	}
551 	recalc_sigpending();
552 
553 	return sig;
554 }
555 
556 /*
557  * Dequeue a signal and return the element to the caller, which is
558  * expected to free it.
559  *
560  * All callers have to hold the siglock.
561  */
562 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
563 {
564 	int signr = __dequeue_signal(&tsk->pending, mask, info);
565 	if (!signr)
566 		signr = __dequeue_signal(&tsk->signal->shared_pending,
567 					 mask, info);
568  	if (signr && unlikely(sig_kernel_stop(signr))) {
569  		/*
570  		 * Set a marker that we have dequeued a stop signal.  Our
571  		 * caller might release the siglock and then the pending
572  		 * stop signal it is about to process is no longer in the
573  		 * pending bitmasks, but must still be cleared by a SIGCONT
574  		 * (and overruled by a SIGKILL).  So those cases clear this
575  		 * shared flag after we've set it.  Note that this flag may
576  		 * remain set after the signal we return is ignored or
577  		 * handled.  That doesn't matter because its only purpose
578  		 * is to alert stop-signal processing code when another
579  		 * processor has come along and cleared the flag.
580  		 */
581  		tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
582  	}
583 	if ( signr &&
584 	     ((info->si_code & __SI_MASK) == __SI_TIMER) &&
585 	     info->si_sys_private){
586 		/*
587 		 * Release the siglock to ensure proper locking order
588 		 * of timer locks outside of siglocks.  Note, we leave
589 		 * irqs disabled here, since the posix-timers code is
590 		 * about to disable them again anyway.
591 		 */
592 		spin_unlock(&tsk->sighand->siglock);
593 		do_schedule_next_timer(info);
594 		spin_lock(&tsk->sighand->siglock);
595 	}
596 	return signr;
597 }
598 
599 /*
600  * Tell a process that it has a new active signal..
601  *
602  * NOTE! we rely on the previous spin_lock to
603  * lock interrupts for us! We can only be called with
604  * "siglock" held, and the local interrupt must
605  * have been disabled when that got acquired!
606  *
607  * No need to set need_resched since signal event passing
608  * goes through ->blocked
609  */
610 void signal_wake_up(struct task_struct *t, int resume)
611 {
612 	unsigned int mask;
613 
614 	set_tsk_thread_flag(t, TIF_SIGPENDING);
615 
616 	/*
617 	 * For SIGKILL, we want to wake it up in the stopped/traced case.
618 	 * We don't check t->state here because there is a race with it
619 	 * executing another processor and just now entering stopped state.
620 	 * By using wake_up_state, we ensure the process will wake up and
621 	 * handle its death signal.
622 	 */
623 	mask = TASK_INTERRUPTIBLE;
624 	if (resume)
625 		mask |= TASK_STOPPED | TASK_TRACED;
626 	if (!wake_up_state(t, mask))
627 		kick_process(t);
628 }
629 
630 /*
631  * Remove signals in mask from the pending set and queue.
632  * Returns 1 if any signals were found.
633  *
634  * All callers must be holding the siglock.
635  */
636 static int rm_from_queue(unsigned long mask, struct sigpending *s)
637 {
638 	struct sigqueue *q, *n;
639 
640 	if (!sigtestsetmask(&s->signal, mask))
641 		return 0;
642 
643 	sigdelsetmask(&s->signal, mask);
644 	list_for_each_entry_safe(q, n, &s->list, list) {
645 		if (q->info.si_signo < SIGRTMIN &&
646 		    (mask & sigmask(q->info.si_signo))) {
647 			list_del_init(&q->list);
648 			__sigqueue_free(q);
649 		}
650 	}
651 	return 1;
652 }
653 
654 /*
655  * Bad permissions for sending the signal
656  */
657 static int check_kill_permission(int sig, struct siginfo *info,
658 				 struct task_struct *t)
659 {
660 	int error = -EINVAL;
661 	if (!valid_signal(sig))
662 		return error;
663 	error = -EPERM;
664 	if ((!info || ((unsigned long)info != 1 &&
665 			(unsigned long)info != 2 && SI_FROMUSER(info)))
666 	    && ((sig != SIGCONT) ||
667 		(current->signal->session != t->signal->session))
668 	    && (current->euid ^ t->suid) && (current->euid ^ t->uid)
669 	    && (current->uid ^ t->suid) && (current->uid ^ t->uid)
670 	    && !capable(CAP_KILL))
671 		return error;
672 
673 	error = security_task_kill(t, info, sig);
674 	if (!error)
675 		audit_signal_info(sig, t); /* Let audit system see the signal */
676 	return error;
677 }
678 
679 /* forward decl */
680 static void do_notify_parent_cldstop(struct task_struct *tsk,
681 				     struct task_struct *parent,
682 				     int why);
683 
684 /*
685  * Handle magic process-wide effects of stop/continue signals.
686  * Unlike the signal actions, these happen immediately at signal-generation
687  * time regardless of blocking, ignoring, or handling.  This does the
688  * actual continuing for SIGCONT, but not the actual stopping for stop
689  * signals.  The process stop is done as a signal action for SIG_DFL.
690  */
691 static void handle_stop_signal(int sig, struct task_struct *p)
692 {
693 	struct task_struct *t;
694 
695 	if (p->signal->flags & SIGNAL_GROUP_EXIT)
696 		/*
697 		 * The process is in the middle of dying already.
698 		 */
699 		return;
700 
701 	if (sig_kernel_stop(sig)) {
702 		/*
703 		 * This is a stop signal.  Remove SIGCONT from all queues.
704 		 */
705 		rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
706 		t = p;
707 		do {
708 			rm_from_queue(sigmask(SIGCONT), &t->pending);
709 			t = next_thread(t);
710 		} while (t != p);
711 	} else if (sig == SIGCONT) {
712 		/*
713 		 * Remove all stop signals from all queues,
714 		 * and wake all threads.
715 		 */
716 		if (unlikely(p->signal->group_stop_count > 0)) {
717 			/*
718 			 * There was a group stop in progress.  We'll
719 			 * pretend it finished before we got here.  We are
720 			 * obliged to report it to the parent: if the
721 			 * SIGSTOP happened "after" this SIGCONT, then it
722 			 * would have cleared this pending SIGCONT.  If it
723 			 * happened "before" this SIGCONT, then the parent
724 			 * got the SIGCHLD about the stop finishing before
725 			 * the continue happened.  We do the notification
726 			 * now, and it's as if the stop had finished and
727 			 * the SIGCHLD was pending on entry to this kill.
728 			 */
729 			p->signal->group_stop_count = 0;
730 			p->signal->flags = SIGNAL_STOP_CONTINUED;
731 			spin_unlock(&p->sighand->siglock);
732 			if (p->ptrace & PT_PTRACED)
733 				do_notify_parent_cldstop(p, p->parent,
734 							 CLD_STOPPED);
735 			else
736 				do_notify_parent_cldstop(
737 					p->group_leader,
738 					p->group_leader->real_parent,
739 							 CLD_STOPPED);
740 			spin_lock(&p->sighand->siglock);
741 		}
742 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
743 		t = p;
744 		do {
745 			unsigned int state;
746 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
747 
748 			/*
749 			 * If there is a handler for SIGCONT, we must make
750 			 * sure that no thread returns to user mode before
751 			 * we post the signal, in case it was the only
752 			 * thread eligible to run the signal handler--then
753 			 * it must not do anything between resuming and
754 			 * running the handler.  With the TIF_SIGPENDING
755 			 * flag set, the thread will pause and acquire the
756 			 * siglock that we hold now and until we've queued
757 			 * the pending signal.
758 			 *
759 			 * Wake up the stopped thread _after_ setting
760 			 * TIF_SIGPENDING
761 			 */
762 			state = TASK_STOPPED;
763 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
764 				set_tsk_thread_flag(t, TIF_SIGPENDING);
765 				state |= TASK_INTERRUPTIBLE;
766 			}
767 			wake_up_state(t, state);
768 
769 			t = next_thread(t);
770 		} while (t != p);
771 
772 		if (p->signal->flags & SIGNAL_STOP_STOPPED) {
773 			/*
774 			 * We were in fact stopped, and are now continued.
775 			 * Notify the parent with CLD_CONTINUED.
776 			 */
777 			p->signal->flags = SIGNAL_STOP_CONTINUED;
778 			p->signal->group_exit_code = 0;
779 			spin_unlock(&p->sighand->siglock);
780 			if (p->ptrace & PT_PTRACED)
781 				do_notify_parent_cldstop(p, p->parent,
782 							 CLD_CONTINUED);
783 			else
784 				do_notify_parent_cldstop(
785 					p->group_leader,
786 					p->group_leader->real_parent,
787 							 CLD_CONTINUED);
788 			spin_lock(&p->sighand->siglock);
789 		} else {
790 			/*
791 			 * We are not stopped, but there could be a stop
792 			 * signal in the middle of being processed after
793 			 * being removed from the queue.  Clear that too.
794 			 */
795 			p->signal->flags = 0;
796 		}
797 	} else if (sig == SIGKILL) {
798 		/*
799 		 * Make sure that any pending stop signal already dequeued
800 		 * is undone by the wakeup for SIGKILL.
801 		 */
802 		p->signal->flags = 0;
803 	}
804 }
805 
806 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
807 			struct sigpending *signals)
808 {
809 	struct sigqueue * q = NULL;
810 	int ret = 0;
811 
812 	/*
813 	 * fast-pathed signals for kernel-internal things like SIGSTOP
814 	 * or SIGKILL.
815 	 */
816 	if ((unsigned long)info == 2)
817 		goto out_set;
818 
819 	/* Real-time signals must be queued if sent by sigqueue, or
820 	   some other real-time mechanism.  It is implementation
821 	   defined whether kill() does so.  We attempt to do so, on
822 	   the principle of least surprise, but since kill is not
823 	   allowed to fail with EAGAIN when low on memory we just
824 	   make sure at least one signal gets delivered and don't
825 	   pass on the info struct.  */
826 
827 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
828 					     ((unsigned long) info < 2 ||
829 					      info->si_code >= 0)));
830 	if (q) {
831 		list_add_tail(&q->list, &signals->list);
832 		switch ((unsigned long) info) {
833 		case 0:
834 			q->info.si_signo = sig;
835 			q->info.si_errno = 0;
836 			q->info.si_code = SI_USER;
837 			q->info.si_pid = current->pid;
838 			q->info.si_uid = current->uid;
839 			break;
840 		case 1:
841 			q->info.si_signo = sig;
842 			q->info.si_errno = 0;
843 			q->info.si_code = SI_KERNEL;
844 			q->info.si_pid = 0;
845 			q->info.si_uid = 0;
846 			break;
847 		default:
848 			copy_siginfo(&q->info, info);
849 			break;
850 		}
851 	} else {
852 		if (sig >= SIGRTMIN && info && (unsigned long)info != 1
853 		   && info->si_code != SI_USER)
854 		/*
855 		 * Queue overflow, abort.  We may abort if the signal was rt
856 		 * and sent by user using something other than kill().
857 		 */
858 			return -EAGAIN;
859 		if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
860 			/*
861 			 * Set up a return to indicate that we dropped
862 			 * the signal.
863 			 */
864 			ret = info->si_sys_private;
865 	}
866 
867 out_set:
868 	sigaddset(&signals->signal, sig);
869 	return ret;
870 }
871 
872 #define LEGACY_QUEUE(sigptr, sig) \
873 	(((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
874 
875 
876 static int
877 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
878 {
879 	int ret = 0;
880 
881 	if (!irqs_disabled())
882 		BUG();
883 	assert_spin_locked(&t->sighand->siglock);
884 
885 	if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
886 		/*
887 		 * Set up a return to indicate that we dropped the signal.
888 		 */
889 		ret = info->si_sys_private;
890 
891 	/* Short-circuit ignored signals.  */
892 	if (sig_ignored(t, sig))
893 		goto out;
894 
895 	/* Support queueing exactly one non-rt signal, so that we
896 	   can get more detailed information about the cause of
897 	   the signal. */
898 	if (LEGACY_QUEUE(&t->pending, sig))
899 		goto out;
900 
901 	ret = send_signal(sig, info, t, &t->pending);
902 	if (!ret && !sigismember(&t->blocked, sig))
903 		signal_wake_up(t, sig == SIGKILL);
904 out:
905 	return ret;
906 }
907 
908 /*
909  * Force a signal that the process can't ignore: if necessary
910  * we unblock the signal and change any SIG_IGN to SIG_DFL.
911  */
912 
913 int
914 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
915 {
916 	unsigned long int flags;
917 	int ret;
918 
919 	spin_lock_irqsave(&t->sighand->siglock, flags);
920 	if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
921 		t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
922 		sigdelset(&t->blocked, sig);
923 		recalc_sigpending_tsk(t);
924 	}
925 	ret = specific_send_sig_info(sig, info, t);
926 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
927 
928 	return ret;
929 }
930 
931 void
932 force_sig_specific(int sig, struct task_struct *t)
933 {
934 	unsigned long int flags;
935 
936 	spin_lock_irqsave(&t->sighand->siglock, flags);
937 	if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
938 		t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
939 	sigdelset(&t->blocked, sig);
940 	recalc_sigpending_tsk(t);
941 	specific_send_sig_info(sig, (void *)2, t);
942 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
943 }
944 
945 /*
946  * Test if P wants to take SIG.  After we've checked all threads with this,
947  * it's equivalent to finding no threads not blocking SIG.  Any threads not
948  * blocking SIG were ruled out because they are not running and already
949  * have pending signals.  Such threads will dequeue from the shared queue
950  * as soon as they're available, so putting the signal on the shared queue
951  * will be equivalent to sending it to one such thread.
952  */
953 #define wants_signal(sig, p, mask) 			\
954 	(!sigismember(&(p)->blocked, sig)		\
955 	 && !((p)->state & mask)			\
956 	 && !((p)->flags & PF_EXITING)			\
957 	 && (task_curr(p) || !signal_pending(p)))
958 
959 
960 static void
961 __group_complete_signal(int sig, struct task_struct *p)
962 {
963 	unsigned int mask;
964 	struct task_struct *t;
965 
966 	/*
967 	 * Don't bother traced and stopped tasks (but
968 	 * SIGKILL will punch through that).
969 	 */
970 	mask = TASK_STOPPED | TASK_TRACED;
971 	if (sig == SIGKILL)
972 		mask = 0;
973 
974 	/*
975 	 * Now find a thread we can wake up to take the signal off the queue.
976 	 *
977 	 * If the main thread wants the signal, it gets first crack.
978 	 * Probably the least surprising to the average bear.
979 	 */
980 	if (wants_signal(sig, p, mask))
981 		t = p;
982 	else if (thread_group_empty(p))
983 		/*
984 		 * There is just one thread and it does not need to be woken.
985 		 * It will dequeue unblocked signals before it runs again.
986 		 */
987 		return;
988 	else {
989 		/*
990 		 * Otherwise try to find a suitable thread.
991 		 */
992 		t = p->signal->curr_target;
993 		if (t == NULL)
994 			/* restart balancing at this thread */
995 			t = p->signal->curr_target = p;
996 		BUG_ON(t->tgid != p->tgid);
997 
998 		while (!wants_signal(sig, t, mask)) {
999 			t = next_thread(t);
1000 			if (t == p->signal->curr_target)
1001 				/*
1002 				 * No thread needs to be woken.
1003 				 * Any eligible threads will see
1004 				 * the signal in the queue soon.
1005 				 */
1006 				return;
1007 		}
1008 		p->signal->curr_target = t;
1009 	}
1010 
1011 	/*
1012 	 * Found a killable thread.  If the signal will be fatal,
1013 	 * then start taking the whole group down immediately.
1014 	 */
1015 	if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
1016 	    !sigismember(&t->real_blocked, sig) &&
1017 	    (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1018 		/*
1019 		 * This signal will be fatal to the whole group.
1020 		 */
1021 		if (!sig_kernel_coredump(sig)) {
1022 			/*
1023 			 * Start a group exit and wake everybody up.
1024 			 * This way we don't have other threads
1025 			 * running and doing things after a slower
1026 			 * thread has the fatal signal pending.
1027 			 */
1028 			p->signal->flags = SIGNAL_GROUP_EXIT;
1029 			p->signal->group_exit_code = sig;
1030 			p->signal->group_stop_count = 0;
1031 			t = p;
1032 			do {
1033 				sigaddset(&t->pending.signal, SIGKILL);
1034 				signal_wake_up(t, 1);
1035 				t = next_thread(t);
1036 			} while (t != p);
1037 			return;
1038 		}
1039 
1040 		/*
1041 		 * There will be a core dump.  We make all threads other
1042 		 * than the chosen one go into a group stop so that nothing
1043 		 * happens until it gets scheduled, takes the signal off
1044 		 * the shared queue, and does the core dump.  This is a
1045 		 * little more complicated than strictly necessary, but it
1046 		 * keeps the signal state that winds up in the core dump
1047 		 * unchanged from the death state, e.g. which thread had
1048 		 * the core-dump signal unblocked.
1049 		 */
1050 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1051 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1052 		p->signal->group_stop_count = 0;
1053 		p->signal->group_exit_task = t;
1054 		t = p;
1055 		do {
1056 			p->signal->group_stop_count++;
1057 			signal_wake_up(t, 0);
1058 			t = next_thread(t);
1059 		} while (t != p);
1060 		wake_up_process(p->signal->group_exit_task);
1061 		return;
1062 	}
1063 
1064 	/*
1065 	 * The signal is already in the shared-pending queue.
1066 	 * Tell the chosen thread to wake up and dequeue it.
1067 	 */
1068 	signal_wake_up(t, sig == SIGKILL);
1069 	return;
1070 }
1071 
1072 int
1073 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1074 {
1075 	int ret = 0;
1076 
1077 	assert_spin_locked(&p->sighand->siglock);
1078 	handle_stop_signal(sig, p);
1079 
1080 	if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
1081 		/*
1082 		 * Set up a return to indicate that we dropped the signal.
1083 		 */
1084 		ret = info->si_sys_private;
1085 
1086 	/* Short-circuit ignored signals.  */
1087 	if (sig_ignored(p, sig))
1088 		return ret;
1089 
1090 	if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1091 		/* This is a non-RT signal and we already have one queued.  */
1092 		return ret;
1093 
1094 	/*
1095 	 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1096 	 * We always use the shared queue for process-wide signals,
1097 	 * to avoid several races.
1098 	 */
1099 	ret = send_signal(sig, info, p, &p->signal->shared_pending);
1100 	if (unlikely(ret))
1101 		return ret;
1102 
1103 	__group_complete_signal(sig, p);
1104 	return 0;
1105 }
1106 
1107 /*
1108  * Nuke all other threads in the group.
1109  */
1110 void zap_other_threads(struct task_struct *p)
1111 {
1112 	struct task_struct *t;
1113 
1114 	p->signal->flags = SIGNAL_GROUP_EXIT;
1115 	p->signal->group_stop_count = 0;
1116 
1117 	if (thread_group_empty(p))
1118 		return;
1119 
1120 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1121 		/*
1122 		 * Don't bother with already dead threads
1123 		 */
1124 		if (t->exit_state)
1125 			continue;
1126 
1127 		/*
1128 		 * We don't want to notify the parent, since we are
1129 		 * killed as part of a thread group due to another
1130 		 * thread doing an execve() or similar. So set the
1131 		 * exit signal to -1 to allow immediate reaping of
1132 		 * the process.  But don't detach the thread group
1133 		 * leader.
1134 		 */
1135 		if (t != p->group_leader)
1136 			t->exit_signal = -1;
1137 
1138 		sigaddset(&t->pending.signal, SIGKILL);
1139 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1140 		signal_wake_up(t, 1);
1141 	}
1142 }
1143 
1144 /*
1145  * Must be called with the tasklist_lock held for reading!
1146  */
1147 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1148 {
1149 	unsigned long flags;
1150 	int ret;
1151 
1152 	ret = check_kill_permission(sig, info, p);
1153 	if (!ret && sig && p->sighand) {
1154 		spin_lock_irqsave(&p->sighand->siglock, flags);
1155 		ret = __group_send_sig_info(sig, info, p);
1156 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1157 	}
1158 
1159 	return ret;
1160 }
1161 
1162 /*
1163  * kill_pg_info() sends a signal to a process group: this is what the tty
1164  * control characters do (^C, ^Z etc)
1165  */
1166 
1167 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1168 {
1169 	struct task_struct *p = NULL;
1170 	int retval, success;
1171 
1172 	if (pgrp <= 0)
1173 		return -EINVAL;
1174 
1175 	success = 0;
1176 	retval = -ESRCH;
1177 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1178 		int err = group_send_sig_info(sig, info, p);
1179 		success |= !err;
1180 		retval = err;
1181 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1182 	return success ? 0 : retval;
1183 }
1184 
1185 int
1186 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1187 {
1188 	int retval;
1189 
1190 	read_lock(&tasklist_lock);
1191 	retval = __kill_pg_info(sig, info, pgrp);
1192 	read_unlock(&tasklist_lock);
1193 
1194 	return retval;
1195 }
1196 
1197 int
1198 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1199 {
1200 	int error;
1201 	struct task_struct *p;
1202 
1203 	read_lock(&tasklist_lock);
1204 	p = find_task_by_pid(pid);
1205 	error = -ESRCH;
1206 	if (p)
1207 		error = group_send_sig_info(sig, info, p);
1208 	read_unlock(&tasklist_lock);
1209 	return error;
1210 }
1211 
1212 
1213 /*
1214  * kill_something_info() interprets pid in interesting ways just like kill(2).
1215  *
1216  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1217  * is probably wrong.  Should make it like BSD or SYSV.
1218  */
1219 
1220 static int kill_something_info(int sig, struct siginfo *info, int pid)
1221 {
1222 	if (!pid) {
1223 		return kill_pg_info(sig, info, process_group(current));
1224 	} else if (pid == -1) {
1225 		int retval = 0, count = 0;
1226 		struct task_struct * p;
1227 
1228 		read_lock(&tasklist_lock);
1229 		for_each_process(p) {
1230 			if (p->pid > 1 && p->tgid != current->tgid) {
1231 				int err = group_send_sig_info(sig, info, p);
1232 				++count;
1233 				if (err != -EPERM)
1234 					retval = err;
1235 			}
1236 		}
1237 		read_unlock(&tasklist_lock);
1238 		return count ? retval : -ESRCH;
1239 	} else if (pid < 0) {
1240 		return kill_pg_info(sig, info, -pid);
1241 	} else {
1242 		return kill_proc_info(sig, info, pid);
1243 	}
1244 }
1245 
1246 /*
1247  * These are for backward compatibility with the rest of the kernel source.
1248  */
1249 
1250 /*
1251  * These two are the most common entry points.  They send a signal
1252  * just to the specific thread.
1253  */
1254 int
1255 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1256 {
1257 	int ret;
1258 	unsigned long flags;
1259 
1260 	/*
1261 	 * Make sure legacy kernel users don't send in bad values
1262 	 * (normal paths check this in check_kill_permission).
1263 	 */
1264 	if (!valid_signal(sig))
1265 		return -EINVAL;
1266 
1267 	/*
1268 	 * We need the tasklist lock even for the specific
1269 	 * thread case (when we don't need to follow the group
1270 	 * lists) in order to avoid races with "p->sighand"
1271 	 * going away or changing from under us.
1272 	 */
1273 	read_lock(&tasklist_lock);
1274 	spin_lock_irqsave(&p->sighand->siglock, flags);
1275 	ret = specific_send_sig_info(sig, info, p);
1276 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1277 	read_unlock(&tasklist_lock);
1278 	return ret;
1279 }
1280 
1281 int
1282 send_sig(int sig, struct task_struct *p, int priv)
1283 {
1284 	return send_sig_info(sig, (void*)(long)(priv != 0), p);
1285 }
1286 
1287 /*
1288  * This is the entry point for "process-wide" signals.
1289  * They will go to an appropriate thread in the thread group.
1290  */
1291 int
1292 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1293 {
1294 	int ret;
1295 	read_lock(&tasklist_lock);
1296 	ret = group_send_sig_info(sig, info, p);
1297 	read_unlock(&tasklist_lock);
1298 	return ret;
1299 }
1300 
1301 void
1302 force_sig(int sig, struct task_struct *p)
1303 {
1304 	force_sig_info(sig, (void*)1L, p);
1305 }
1306 
1307 /*
1308  * When things go south during signal handling, we
1309  * will force a SIGSEGV. And if the signal that caused
1310  * the problem was already a SIGSEGV, we'll want to
1311  * make sure we don't even try to deliver the signal..
1312  */
1313 int
1314 force_sigsegv(int sig, struct task_struct *p)
1315 {
1316 	if (sig == SIGSEGV) {
1317 		unsigned long flags;
1318 		spin_lock_irqsave(&p->sighand->siglock, flags);
1319 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1320 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1321 	}
1322 	force_sig(SIGSEGV, p);
1323 	return 0;
1324 }
1325 
1326 int
1327 kill_pg(pid_t pgrp, int sig, int priv)
1328 {
1329 	return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
1330 }
1331 
1332 int
1333 kill_proc(pid_t pid, int sig, int priv)
1334 {
1335 	return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
1336 }
1337 
1338 /*
1339  * These functions support sending signals using preallocated sigqueue
1340  * structures.  This is needed "because realtime applications cannot
1341  * afford to lose notifications of asynchronous events, like timer
1342  * expirations or I/O completions".  In the case of Posix Timers
1343  * we allocate the sigqueue structure from the timer_create.  If this
1344  * allocation fails we are able to report the failure to the application
1345  * with an EAGAIN error.
1346  */
1347 
1348 struct sigqueue *sigqueue_alloc(void)
1349 {
1350 	struct sigqueue *q;
1351 
1352 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1353 		q->flags |= SIGQUEUE_PREALLOC;
1354 	return(q);
1355 }
1356 
1357 void sigqueue_free(struct sigqueue *q)
1358 {
1359 	unsigned long flags;
1360 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1361 	/*
1362 	 * If the signal is still pending remove it from the
1363 	 * pending queue.
1364 	 */
1365 	if (unlikely(!list_empty(&q->list))) {
1366 		read_lock(&tasklist_lock);
1367 		spin_lock_irqsave(q->lock, flags);
1368 		if (!list_empty(&q->list))
1369 			list_del_init(&q->list);
1370 		spin_unlock_irqrestore(q->lock, flags);
1371 		read_unlock(&tasklist_lock);
1372 	}
1373 	q->flags &= ~SIGQUEUE_PREALLOC;
1374 	__sigqueue_free(q);
1375 }
1376 
1377 int
1378 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1379 {
1380 	unsigned long flags;
1381 	int ret = 0;
1382 
1383 	/*
1384 	 * We need the tasklist lock even for the specific
1385 	 * thread case (when we don't need to follow the group
1386 	 * lists) in order to avoid races with "p->sighand"
1387 	 * going away or changing from under us.
1388 	 */
1389 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1390 	read_lock(&tasklist_lock);
1391 	spin_lock_irqsave(&p->sighand->siglock, flags);
1392 
1393 	if (unlikely(!list_empty(&q->list))) {
1394 		/*
1395 		 * If an SI_TIMER entry is already queue just increment
1396 		 * the overrun count.
1397 		 */
1398 		if (q->info.si_code != SI_TIMER)
1399 			BUG();
1400 		q->info.si_overrun++;
1401 		goto out;
1402 	}
1403 	/* Short-circuit ignored signals.  */
1404 	if (sig_ignored(p, sig)) {
1405 		ret = 1;
1406 		goto out;
1407 	}
1408 
1409 	q->lock = &p->sighand->siglock;
1410 	list_add_tail(&q->list, &p->pending.list);
1411 	sigaddset(&p->pending.signal, sig);
1412 	if (!sigismember(&p->blocked, sig))
1413 		signal_wake_up(p, sig == SIGKILL);
1414 
1415 out:
1416 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1417 	read_unlock(&tasklist_lock);
1418 	return(ret);
1419 }
1420 
1421 int
1422 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1423 {
1424 	unsigned long flags;
1425 	int ret = 0;
1426 
1427 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1428 	read_lock(&tasklist_lock);
1429 	spin_lock_irqsave(&p->sighand->siglock, flags);
1430 	handle_stop_signal(sig, p);
1431 
1432 	/* Short-circuit ignored signals.  */
1433 	if (sig_ignored(p, sig)) {
1434 		ret = 1;
1435 		goto out;
1436 	}
1437 
1438 	if (unlikely(!list_empty(&q->list))) {
1439 		/*
1440 		 * If an SI_TIMER entry is already queue just increment
1441 		 * the overrun count.  Other uses should not try to
1442 		 * send the signal multiple times.
1443 		 */
1444 		if (q->info.si_code != SI_TIMER)
1445 			BUG();
1446 		q->info.si_overrun++;
1447 		goto out;
1448 	}
1449 
1450 	/*
1451 	 * Put this signal on the shared-pending queue.
1452 	 * We always use the shared queue for process-wide signals,
1453 	 * to avoid several races.
1454 	 */
1455 	q->lock = &p->sighand->siglock;
1456 	list_add_tail(&q->list, &p->signal->shared_pending.list);
1457 	sigaddset(&p->signal->shared_pending.signal, sig);
1458 
1459 	__group_complete_signal(sig, p);
1460 out:
1461 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1462 	read_unlock(&tasklist_lock);
1463 	return(ret);
1464 }
1465 
1466 /*
1467  * Wake up any threads in the parent blocked in wait* syscalls.
1468  */
1469 static inline void __wake_up_parent(struct task_struct *p,
1470 				    struct task_struct *parent)
1471 {
1472 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1473 }
1474 
1475 /*
1476  * Let a parent know about the death of a child.
1477  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1478  */
1479 
1480 void do_notify_parent(struct task_struct *tsk, int sig)
1481 {
1482 	struct siginfo info;
1483 	unsigned long flags;
1484 	struct sighand_struct *psig;
1485 
1486 	BUG_ON(sig == -1);
1487 
1488  	/* do_notify_parent_cldstop should have been called instead.  */
1489  	BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1490 
1491 	BUG_ON(!tsk->ptrace &&
1492 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1493 
1494 	info.si_signo = sig;
1495 	info.si_errno = 0;
1496 	info.si_pid = tsk->pid;
1497 	info.si_uid = tsk->uid;
1498 
1499 	/* FIXME: find out whether or not this is supposed to be c*time. */
1500 	info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1501 						       tsk->signal->utime));
1502 	info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1503 						       tsk->signal->stime));
1504 
1505 	info.si_status = tsk->exit_code & 0x7f;
1506 	if (tsk->exit_code & 0x80)
1507 		info.si_code = CLD_DUMPED;
1508 	else if (tsk->exit_code & 0x7f)
1509 		info.si_code = CLD_KILLED;
1510 	else {
1511 		info.si_code = CLD_EXITED;
1512 		info.si_status = tsk->exit_code >> 8;
1513 	}
1514 
1515 	psig = tsk->parent->sighand;
1516 	spin_lock_irqsave(&psig->siglock, flags);
1517 	if (sig == SIGCHLD &&
1518 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1519 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1520 		/*
1521 		 * We are exiting and our parent doesn't care.  POSIX.1
1522 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1523 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1524 		 * automatically and not left for our parent's wait4 call.
1525 		 * Rather than having the parent do it as a magic kind of
1526 		 * signal handler, we just set this to tell do_exit that we
1527 		 * can be cleaned up without becoming a zombie.  Note that
1528 		 * we still call __wake_up_parent in this case, because a
1529 		 * blocked sys_wait4 might now return -ECHILD.
1530 		 *
1531 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1532 		 * is implementation-defined: we do (if you don't want
1533 		 * it, just use SIG_IGN instead).
1534 		 */
1535 		tsk->exit_signal = -1;
1536 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1537 			sig = 0;
1538 	}
1539 	if (valid_signal(sig) && sig > 0)
1540 		__group_send_sig_info(sig, &info, tsk->parent);
1541 	__wake_up_parent(tsk, tsk->parent);
1542 	spin_unlock_irqrestore(&psig->siglock, flags);
1543 }
1544 
1545 static void
1546 do_notify_parent_cldstop(struct task_struct *tsk, struct task_struct *parent,
1547 			 int why)
1548 {
1549 	struct siginfo info;
1550 	unsigned long flags;
1551 	struct sighand_struct *sighand;
1552 
1553 	info.si_signo = SIGCHLD;
1554 	info.si_errno = 0;
1555 	info.si_pid = tsk->pid;
1556 	info.si_uid = tsk->uid;
1557 
1558 	/* FIXME: find out whether or not this is supposed to be c*time. */
1559 	info.si_utime = cputime_to_jiffies(tsk->utime);
1560 	info.si_stime = cputime_to_jiffies(tsk->stime);
1561 
1562  	info.si_code = why;
1563  	switch (why) {
1564  	case CLD_CONTINUED:
1565  		info.si_status = SIGCONT;
1566  		break;
1567  	case CLD_STOPPED:
1568  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1569  		break;
1570  	case CLD_TRAPPED:
1571  		info.si_status = tsk->exit_code & 0x7f;
1572  		break;
1573  	default:
1574  		BUG();
1575  	}
1576 
1577 	sighand = parent->sighand;
1578 	spin_lock_irqsave(&sighand->siglock, flags);
1579 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1580 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1581 		__group_send_sig_info(SIGCHLD, &info, parent);
1582 	/*
1583 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1584 	 */
1585 	__wake_up_parent(tsk, parent);
1586 	spin_unlock_irqrestore(&sighand->siglock, flags);
1587 }
1588 
1589 /*
1590  * This must be called with current->sighand->siglock held.
1591  *
1592  * This should be the path for all ptrace stops.
1593  * We always set current->last_siginfo while stopped here.
1594  * That makes it a way to test a stopped process for
1595  * being ptrace-stopped vs being job-control-stopped.
1596  *
1597  * If we actually decide not to stop at all because the tracer is gone,
1598  * we leave nostop_code in current->exit_code.
1599  */
1600 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1601 {
1602 	/*
1603 	 * If there is a group stop in progress,
1604 	 * we must participate in the bookkeeping.
1605 	 */
1606 	if (current->signal->group_stop_count > 0)
1607 		--current->signal->group_stop_count;
1608 
1609 	current->last_siginfo = info;
1610 	current->exit_code = exit_code;
1611 
1612 	/* Let the debugger run.  */
1613 	set_current_state(TASK_TRACED);
1614 	spin_unlock_irq(&current->sighand->siglock);
1615 	read_lock(&tasklist_lock);
1616 	if (likely(current->ptrace & PT_PTRACED) &&
1617 	    likely(current->parent != current->real_parent ||
1618 		   !(current->ptrace & PT_ATTACHED)) &&
1619 	    (likely(current->parent->signal != current->signal) ||
1620 	     !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1621 		do_notify_parent_cldstop(current, current->parent,
1622 					 CLD_TRAPPED);
1623 		read_unlock(&tasklist_lock);
1624 		schedule();
1625 	} else {
1626 		/*
1627 		 * By the time we got the lock, our tracer went away.
1628 		 * Don't stop here.
1629 		 */
1630 		read_unlock(&tasklist_lock);
1631 		set_current_state(TASK_RUNNING);
1632 		current->exit_code = nostop_code;
1633 	}
1634 
1635 	/*
1636 	 * We are back.  Now reacquire the siglock before touching
1637 	 * last_siginfo, so that we are sure to have synchronized with
1638 	 * any signal-sending on another CPU that wants to examine it.
1639 	 */
1640 	spin_lock_irq(&current->sighand->siglock);
1641 	current->last_siginfo = NULL;
1642 
1643 	/*
1644 	 * Queued signals ignored us while we were stopped for tracing.
1645 	 * So check for any that we should take before resuming user mode.
1646 	 */
1647 	recalc_sigpending();
1648 }
1649 
1650 void ptrace_notify(int exit_code)
1651 {
1652 	siginfo_t info;
1653 
1654 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1655 
1656 	memset(&info, 0, sizeof info);
1657 	info.si_signo = SIGTRAP;
1658 	info.si_code = exit_code;
1659 	info.si_pid = current->pid;
1660 	info.si_uid = current->uid;
1661 
1662 	/* Let the debugger run.  */
1663 	spin_lock_irq(&current->sighand->siglock);
1664 	ptrace_stop(exit_code, 0, &info);
1665 	spin_unlock_irq(&current->sighand->siglock);
1666 }
1667 
1668 static void
1669 finish_stop(int stop_count)
1670 {
1671 	/*
1672 	 * If there are no other threads in the group, or if there is
1673 	 * a group stop in progress and we are the last to stop,
1674 	 * report to the parent.  When ptraced, every thread reports itself.
1675 	 */
1676 	if (stop_count < 0 || (current->ptrace & PT_PTRACED)) {
1677 		read_lock(&tasklist_lock);
1678 		do_notify_parent_cldstop(current, current->parent,
1679 					 CLD_STOPPED);
1680 		read_unlock(&tasklist_lock);
1681 	}
1682 	else if (stop_count == 0) {
1683 		read_lock(&tasklist_lock);
1684 		do_notify_parent_cldstop(current->group_leader,
1685 					 current->group_leader->real_parent,
1686 					 CLD_STOPPED);
1687 		read_unlock(&tasklist_lock);
1688 	}
1689 
1690 	schedule();
1691 	/*
1692 	 * Now we don't run again until continued.
1693 	 */
1694 	current->exit_code = 0;
1695 }
1696 
1697 /*
1698  * This performs the stopping for SIGSTOP and other stop signals.
1699  * We have to stop all threads in the thread group.
1700  * Returns nonzero if we've actually stopped and released the siglock.
1701  * Returns zero if we didn't stop and still hold the siglock.
1702  */
1703 static int
1704 do_signal_stop(int signr)
1705 {
1706 	struct signal_struct *sig = current->signal;
1707 	struct sighand_struct *sighand = current->sighand;
1708 	int stop_count = -1;
1709 
1710 	if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1711 		return 0;
1712 
1713 	if (sig->group_stop_count > 0) {
1714 		/*
1715 		 * There is a group stop in progress.  We don't need to
1716 		 * start another one.
1717 		 */
1718 		signr = sig->group_exit_code;
1719 		stop_count = --sig->group_stop_count;
1720 		current->exit_code = signr;
1721 		set_current_state(TASK_STOPPED);
1722 		if (stop_count == 0)
1723 			sig->flags = SIGNAL_STOP_STOPPED;
1724 		spin_unlock_irq(&sighand->siglock);
1725 	}
1726 	else if (thread_group_empty(current)) {
1727 		/*
1728 		 * Lock must be held through transition to stopped state.
1729 		 */
1730 		current->exit_code = current->signal->group_exit_code = signr;
1731 		set_current_state(TASK_STOPPED);
1732 		sig->flags = SIGNAL_STOP_STOPPED;
1733 		spin_unlock_irq(&sighand->siglock);
1734 	}
1735 	else {
1736 		/*
1737 		 * There is no group stop already in progress.
1738 		 * We must initiate one now, but that requires
1739 		 * dropping siglock to get both the tasklist lock
1740 		 * and siglock again in the proper order.  Note that
1741 		 * this allows an intervening SIGCONT to be posted.
1742 		 * We need to check for that and bail out if necessary.
1743 		 */
1744 		struct task_struct *t;
1745 
1746 		spin_unlock_irq(&sighand->siglock);
1747 
1748 		/* signals can be posted during this window */
1749 
1750 		read_lock(&tasklist_lock);
1751 		spin_lock_irq(&sighand->siglock);
1752 
1753 		if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1754 			/*
1755 			 * Another stop or continue happened while we
1756 			 * didn't have the lock.  We can just swallow this
1757 			 * signal now.  If we raced with a SIGCONT, that
1758 			 * should have just cleared it now.  If we raced
1759 			 * with another processor delivering a stop signal,
1760 			 * then the SIGCONT that wakes us up should clear it.
1761 			 */
1762 			read_unlock(&tasklist_lock);
1763 			return 0;
1764 		}
1765 
1766 		if (sig->group_stop_count == 0) {
1767 			sig->group_exit_code = signr;
1768 			stop_count = 0;
1769 			for (t = next_thread(current); t != current;
1770 			     t = next_thread(t))
1771 				/*
1772 				 * Setting state to TASK_STOPPED for a group
1773 				 * stop is always done with the siglock held,
1774 				 * so this check has no races.
1775 				 */
1776 				if (t->state < TASK_STOPPED) {
1777 					stop_count++;
1778 					signal_wake_up(t, 0);
1779 				}
1780 			sig->group_stop_count = stop_count;
1781 		}
1782 		else {
1783 			/* A race with another thread while unlocked.  */
1784 			signr = sig->group_exit_code;
1785 			stop_count = --sig->group_stop_count;
1786 		}
1787 
1788 		current->exit_code = signr;
1789 		set_current_state(TASK_STOPPED);
1790 		if (stop_count == 0)
1791 			sig->flags = SIGNAL_STOP_STOPPED;
1792 
1793 		spin_unlock_irq(&sighand->siglock);
1794 		read_unlock(&tasklist_lock);
1795 	}
1796 
1797 	finish_stop(stop_count);
1798 	return 1;
1799 }
1800 
1801 /*
1802  * Do appropriate magic when group_stop_count > 0.
1803  * We return nonzero if we stopped, after releasing the siglock.
1804  * We return zero if we still hold the siglock and should look
1805  * for another signal without checking group_stop_count again.
1806  */
1807 static inline int handle_group_stop(void)
1808 {
1809 	int stop_count;
1810 
1811 	if (current->signal->group_exit_task == current) {
1812 		/*
1813 		 * Group stop is so we can do a core dump,
1814 		 * We are the initiating thread, so get on with it.
1815 		 */
1816 		current->signal->group_exit_task = NULL;
1817 		return 0;
1818 	}
1819 
1820 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1821 		/*
1822 		 * Group stop is so another thread can do a core dump,
1823 		 * or else we are racing against a death signal.
1824 		 * Just punt the stop so we can get the next signal.
1825 		 */
1826 		return 0;
1827 
1828 	/*
1829 	 * There is a group stop in progress.  We stop
1830 	 * without any associated signal being in our queue.
1831 	 */
1832 	stop_count = --current->signal->group_stop_count;
1833 	if (stop_count == 0)
1834 		current->signal->flags = SIGNAL_STOP_STOPPED;
1835 	current->exit_code = current->signal->group_exit_code;
1836 	set_current_state(TASK_STOPPED);
1837 	spin_unlock_irq(&current->sighand->siglock);
1838 	finish_stop(stop_count);
1839 	return 1;
1840 }
1841 
1842 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1843 			  struct pt_regs *regs, void *cookie)
1844 {
1845 	sigset_t *mask = &current->blocked;
1846 	int signr = 0;
1847 
1848 relock:
1849 	spin_lock_irq(&current->sighand->siglock);
1850 	for (;;) {
1851 		struct k_sigaction *ka;
1852 
1853 		if (unlikely(current->signal->group_stop_count > 0) &&
1854 		    handle_group_stop())
1855 			goto relock;
1856 
1857 		signr = dequeue_signal(current, mask, info);
1858 
1859 		if (!signr)
1860 			break; /* will return 0 */
1861 
1862 		if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1863 			ptrace_signal_deliver(regs, cookie);
1864 
1865 			/* Let the debugger run.  */
1866 			ptrace_stop(signr, signr, info);
1867 
1868 			/* We're back.  Did the debugger cancel the sig?  */
1869 			signr = current->exit_code;
1870 			if (signr == 0)
1871 				continue;
1872 
1873 			current->exit_code = 0;
1874 
1875 			/* Update the siginfo structure if the signal has
1876 			   changed.  If the debugger wanted something
1877 			   specific in the siginfo structure then it should
1878 			   have updated *info via PTRACE_SETSIGINFO.  */
1879 			if (signr != info->si_signo) {
1880 				info->si_signo = signr;
1881 				info->si_errno = 0;
1882 				info->si_code = SI_USER;
1883 				info->si_pid = current->parent->pid;
1884 				info->si_uid = current->parent->uid;
1885 			}
1886 
1887 			/* If the (new) signal is now blocked, requeue it.  */
1888 			if (sigismember(&current->blocked, signr)) {
1889 				specific_send_sig_info(signr, info, current);
1890 				continue;
1891 			}
1892 		}
1893 
1894 		ka = &current->sighand->action[signr-1];
1895 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1896 			continue;
1897 		if (ka->sa.sa_handler != SIG_DFL) {
1898 			/* Run the handler.  */
1899 			*return_ka = *ka;
1900 
1901 			if (ka->sa.sa_flags & SA_ONESHOT)
1902 				ka->sa.sa_handler = SIG_DFL;
1903 
1904 			break; /* will return non-zero "signr" value */
1905 		}
1906 
1907 		/*
1908 		 * Now we are doing the default action for this signal.
1909 		 */
1910 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1911 			continue;
1912 
1913 		/* Init gets no signals it doesn't want.  */
1914 		if (current->pid == 1)
1915 			continue;
1916 
1917 		if (sig_kernel_stop(signr)) {
1918 			/*
1919 			 * The default action is to stop all threads in
1920 			 * the thread group.  The job control signals
1921 			 * do nothing in an orphaned pgrp, but SIGSTOP
1922 			 * always works.  Note that siglock needs to be
1923 			 * dropped during the call to is_orphaned_pgrp()
1924 			 * because of lock ordering with tasklist_lock.
1925 			 * This allows an intervening SIGCONT to be posted.
1926 			 * We need to check for that and bail out if necessary.
1927 			 */
1928 			if (signr != SIGSTOP) {
1929 				spin_unlock_irq(&current->sighand->siglock);
1930 
1931 				/* signals can be posted during this window */
1932 
1933 				if (is_orphaned_pgrp(process_group(current)))
1934 					goto relock;
1935 
1936 				spin_lock_irq(&current->sighand->siglock);
1937 			}
1938 
1939 			if (likely(do_signal_stop(signr))) {
1940 				/* It released the siglock.  */
1941 				goto relock;
1942 			}
1943 
1944 			/*
1945 			 * We didn't actually stop, due to a race
1946 			 * with SIGCONT or something like that.
1947 			 */
1948 			continue;
1949 		}
1950 
1951 		spin_unlock_irq(&current->sighand->siglock);
1952 
1953 		/*
1954 		 * Anything else is fatal, maybe with a core dump.
1955 		 */
1956 		current->flags |= PF_SIGNALED;
1957 		if (sig_kernel_coredump(signr)) {
1958 			/*
1959 			 * If it was able to dump core, this kills all
1960 			 * other threads in the group and synchronizes with
1961 			 * their demise.  If we lost the race with another
1962 			 * thread getting here, it set group_exit_code
1963 			 * first and our do_group_exit call below will use
1964 			 * that value and ignore the one we pass it.
1965 			 */
1966 			do_coredump((long)signr, signr, regs);
1967 		}
1968 
1969 		/*
1970 		 * Death signals, no core dump.
1971 		 */
1972 		do_group_exit(signr);
1973 		/* NOTREACHED */
1974 	}
1975 	spin_unlock_irq(&current->sighand->siglock);
1976 	return signr;
1977 }
1978 
1979 EXPORT_SYMBOL(recalc_sigpending);
1980 EXPORT_SYMBOL_GPL(dequeue_signal);
1981 EXPORT_SYMBOL(flush_signals);
1982 EXPORT_SYMBOL(force_sig);
1983 EXPORT_SYMBOL(kill_pg);
1984 EXPORT_SYMBOL(kill_proc);
1985 EXPORT_SYMBOL(ptrace_notify);
1986 EXPORT_SYMBOL(send_sig);
1987 EXPORT_SYMBOL(send_sig_info);
1988 EXPORT_SYMBOL(sigprocmask);
1989 EXPORT_SYMBOL(block_all_signals);
1990 EXPORT_SYMBOL(unblock_all_signals);
1991 
1992 
1993 /*
1994  * System call entry points.
1995  */
1996 
1997 asmlinkage long sys_restart_syscall(void)
1998 {
1999 	struct restart_block *restart = &current_thread_info()->restart_block;
2000 	return restart->fn(restart);
2001 }
2002 
2003 long do_no_restart_syscall(struct restart_block *param)
2004 {
2005 	return -EINTR;
2006 }
2007 
2008 /*
2009  * We don't need to get the kernel lock - this is all local to this
2010  * particular thread.. (and that's good, because this is _heavily_
2011  * used by various programs)
2012  */
2013 
2014 /*
2015  * This is also useful for kernel threads that want to temporarily
2016  * (or permanently) block certain signals.
2017  *
2018  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2019  * interface happily blocks "unblockable" signals like SIGKILL
2020  * and friends.
2021  */
2022 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2023 {
2024 	int error;
2025 	sigset_t old_block;
2026 
2027 	spin_lock_irq(&current->sighand->siglock);
2028 	old_block = current->blocked;
2029 	error = 0;
2030 	switch (how) {
2031 	case SIG_BLOCK:
2032 		sigorsets(&current->blocked, &current->blocked, set);
2033 		break;
2034 	case SIG_UNBLOCK:
2035 		signandsets(&current->blocked, &current->blocked, set);
2036 		break;
2037 	case SIG_SETMASK:
2038 		current->blocked = *set;
2039 		break;
2040 	default:
2041 		error = -EINVAL;
2042 	}
2043 	recalc_sigpending();
2044 	spin_unlock_irq(&current->sighand->siglock);
2045 	if (oldset)
2046 		*oldset = old_block;
2047 	return error;
2048 }
2049 
2050 asmlinkage long
2051 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2052 {
2053 	int error = -EINVAL;
2054 	sigset_t old_set, new_set;
2055 
2056 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2057 	if (sigsetsize != sizeof(sigset_t))
2058 		goto out;
2059 
2060 	if (set) {
2061 		error = -EFAULT;
2062 		if (copy_from_user(&new_set, set, sizeof(*set)))
2063 			goto out;
2064 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2065 
2066 		error = sigprocmask(how, &new_set, &old_set);
2067 		if (error)
2068 			goto out;
2069 		if (oset)
2070 			goto set_old;
2071 	} else if (oset) {
2072 		spin_lock_irq(&current->sighand->siglock);
2073 		old_set = current->blocked;
2074 		spin_unlock_irq(&current->sighand->siglock);
2075 
2076 	set_old:
2077 		error = -EFAULT;
2078 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2079 			goto out;
2080 	}
2081 	error = 0;
2082 out:
2083 	return error;
2084 }
2085 
2086 long do_sigpending(void __user *set, unsigned long sigsetsize)
2087 {
2088 	long error = -EINVAL;
2089 	sigset_t pending;
2090 
2091 	if (sigsetsize > sizeof(sigset_t))
2092 		goto out;
2093 
2094 	spin_lock_irq(&current->sighand->siglock);
2095 	sigorsets(&pending, &current->pending.signal,
2096 		  &current->signal->shared_pending.signal);
2097 	spin_unlock_irq(&current->sighand->siglock);
2098 
2099 	/* Outside the lock because only this thread touches it.  */
2100 	sigandsets(&pending, &current->blocked, &pending);
2101 
2102 	error = -EFAULT;
2103 	if (!copy_to_user(set, &pending, sigsetsize))
2104 		error = 0;
2105 
2106 out:
2107 	return error;
2108 }
2109 
2110 asmlinkage long
2111 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2112 {
2113 	return do_sigpending(set, sigsetsize);
2114 }
2115 
2116 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2117 
2118 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2119 {
2120 	int err;
2121 
2122 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2123 		return -EFAULT;
2124 	if (from->si_code < 0)
2125 		return __copy_to_user(to, from, sizeof(siginfo_t))
2126 			? -EFAULT : 0;
2127 	/*
2128 	 * If you change siginfo_t structure, please be sure
2129 	 * this code is fixed accordingly.
2130 	 * It should never copy any pad contained in the structure
2131 	 * to avoid security leaks, but must copy the generic
2132 	 * 3 ints plus the relevant union member.
2133 	 */
2134 	err = __put_user(from->si_signo, &to->si_signo);
2135 	err |= __put_user(from->si_errno, &to->si_errno);
2136 	err |= __put_user((short)from->si_code, &to->si_code);
2137 	switch (from->si_code & __SI_MASK) {
2138 	case __SI_KILL:
2139 		err |= __put_user(from->si_pid, &to->si_pid);
2140 		err |= __put_user(from->si_uid, &to->si_uid);
2141 		break;
2142 	case __SI_TIMER:
2143 		 err |= __put_user(from->si_tid, &to->si_tid);
2144 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2145 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2146 		break;
2147 	case __SI_POLL:
2148 		err |= __put_user(from->si_band, &to->si_band);
2149 		err |= __put_user(from->si_fd, &to->si_fd);
2150 		break;
2151 	case __SI_FAULT:
2152 		err |= __put_user(from->si_addr, &to->si_addr);
2153 #ifdef __ARCH_SI_TRAPNO
2154 		err |= __put_user(from->si_trapno, &to->si_trapno);
2155 #endif
2156 		break;
2157 	case __SI_CHLD:
2158 		err |= __put_user(from->si_pid, &to->si_pid);
2159 		err |= __put_user(from->si_uid, &to->si_uid);
2160 		err |= __put_user(from->si_status, &to->si_status);
2161 		err |= __put_user(from->si_utime, &to->si_utime);
2162 		err |= __put_user(from->si_stime, &to->si_stime);
2163 		break;
2164 	case __SI_RT: /* This is not generated by the kernel as of now. */
2165 	case __SI_MESGQ: /* But this is */
2166 		err |= __put_user(from->si_pid, &to->si_pid);
2167 		err |= __put_user(from->si_uid, &to->si_uid);
2168 		err |= __put_user(from->si_ptr, &to->si_ptr);
2169 		break;
2170 	default: /* this is just in case for now ... */
2171 		err |= __put_user(from->si_pid, &to->si_pid);
2172 		err |= __put_user(from->si_uid, &to->si_uid);
2173 		break;
2174 	}
2175 	return err;
2176 }
2177 
2178 #endif
2179 
2180 asmlinkage long
2181 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2182 		    siginfo_t __user *uinfo,
2183 		    const struct timespec __user *uts,
2184 		    size_t sigsetsize)
2185 {
2186 	int ret, sig;
2187 	sigset_t these;
2188 	struct timespec ts;
2189 	siginfo_t info;
2190 	long timeout = 0;
2191 
2192 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2193 	if (sigsetsize != sizeof(sigset_t))
2194 		return -EINVAL;
2195 
2196 	if (copy_from_user(&these, uthese, sizeof(these)))
2197 		return -EFAULT;
2198 
2199 	/*
2200 	 * Invert the set of allowed signals to get those we
2201 	 * want to block.
2202 	 */
2203 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2204 	signotset(&these);
2205 
2206 	if (uts) {
2207 		if (copy_from_user(&ts, uts, sizeof(ts)))
2208 			return -EFAULT;
2209 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2210 		    || ts.tv_sec < 0)
2211 			return -EINVAL;
2212 	}
2213 
2214 	spin_lock_irq(&current->sighand->siglock);
2215 	sig = dequeue_signal(current, &these, &info);
2216 	if (!sig) {
2217 		timeout = MAX_SCHEDULE_TIMEOUT;
2218 		if (uts)
2219 			timeout = (timespec_to_jiffies(&ts)
2220 				   + (ts.tv_sec || ts.tv_nsec));
2221 
2222 		if (timeout) {
2223 			/* None ready -- temporarily unblock those we're
2224 			 * interested while we are sleeping in so that we'll
2225 			 * be awakened when they arrive.  */
2226 			current->real_blocked = current->blocked;
2227 			sigandsets(&current->blocked, &current->blocked, &these);
2228 			recalc_sigpending();
2229 			spin_unlock_irq(&current->sighand->siglock);
2230 
2231 			current->state = TASK_INTERRUPTIBLE;
2232 			timeout = schedule_timeout(timeout);
2233 
2234 			try_to_freeze();
2235 			spin_lock_irq(&current->sighand->siglock);
2236 			sig = dequeue_signal(current, &these, &info);
2237 			current->blocked = current->real_blocked;
2238 			siginitset(&current->real_blocked, 0);
2239 			recalc_sigpending();
2240 		}
2241 	}
2242 	spin_unlock_irq(&current->sighand->siglock);
2243 
2244 	if (sig) {
2245 		ret = sig;
2246 		if (uinfo) {
2247 			if (copy_siginfo_to_user(uinfo, &info))
2248 				ret = -EFAULT;
2249 		}
2250 	} else {
2251 		ret = -EAGAIN;
2252 		if (timeout)
2253 			ret = -EINTR;
2254 	}
2255 
2256 	return ret;
2257 }
2258 
2259 asmlinkage long
2260 sys_kill(int pid, int sig)
2261 {
2262 	struct siginfo info;
2263 
2264 	info.si_signo = sig;
2265 	info.si_errno = 0;
2266 	info.si_code = SI_USER;
2267 	info.si_pid = current->tgid;
2268 	info.si_uid = current->uid;
2269 
2270 	return kill_something_info(sig, &info, pid);
2271 }
2272 
2273 /**
2274  *  sys_tgkill - send signal to one specific thread
2275  *  @tgid: the thread group ID of the thread
2276  *  @pid: the PID of the thread
2277  *  @sig: signal to be sent
2278  *
2279  *  This syscall also checks the tgid and returns -ESRCH even if the PID
2280  *  exists but it's not belonging to the target process anymore. This
2281  *  method solves the problem of threads exiting and PIDs getting reused.
2282  */
2283 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2284 {
2285 	struct siginfo info;
2286 	int error;
2287 	struct task_struct *p;
2288 
2289 	/* This is only valid for single tasks */
2290 	if (pid <= 0 || tgid <= 0)
2291 		return -EINVAL;
2292 
2293 	info.si_signo = sig;
2294 	info.si_errno = 0;
2295 	info.si_code = SI_TKILL;
2296 	info.si_pid = current->tgid;
2297 	info.si_uid = current->uid;
2298 
2299 	read_lock(&tasklist_lock);
2300 	p = find_task_by_pid(pid);
2301 	error = -ESRCH;
2302 	if (p && (p->tgid == tgid)) {
2303 		error = check_kill_permission(sig, &info, p);
2304 		/*
2305 		 * The null signal is a permissions and process existence
2306 		 * probe.  No signal is actually delivered.
2307 		 */
2308 		if (!error && sig && p->sighand) {
2309 			spin_lock_irq(&p->sighand->siglock);
2310 			handle_stop_signal(sig, p);
2311 			error = specific_send_sig_info(sig, &info, p);
2312 			spin_unlock_irq(&p->sighand->siglock);
2313 		}
2314 	}
2315 	read_unlock(&tasklist_lock);
2316 	return error;
2317 }
2318 
2319 /*
2320  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2321  */
2322 asmlinkage long
2323 sys_tkill(int pid, int sig)
2324 {
2325 	struct siginfo info;
2326 	int error;
2327 	struct task_struct *p;
2328 
2329 	/* This is only valid for single tasks */
2330 	if (pid <= 0)
2331 		return -EINVAL;
2332 
2333 	info.si_signo = sig;
2334 	info.si_errno = 0;
2335 	info.si_code = SI_TKILL;
2336 	info.si_pid = current->tgid;
2337 	info.si_uid = current->uid;
2338 
2339 	read_lock(&tasklist_lock);
2340 	p = find_task_by_pid(pid);
2341 	error = -ESRCH;
2342 	if (p) {
2343 		error = check_kill_permission(sig, &info, p);
2344 		/*
2345 		 * The null signal is a permissions and process existence
2346 		 * probe.  No signal is actually delivered.
2347 		 */
2348 		if (!error && sig && p->sighand) {
2349 			spin_lock_irq(&p->sighand->siglock);
2350 			handle_stop_signal(sig, p);
2351 			error = specific_send_sig_info(sig, &info, p);
2352 			spin_unlock_irq(&p->sighand->siglock);
2353 		}
2354 	}
2355 	read_unlock(&tasklist_lock);
2356 	return error;
2357 }
2358 
2359 asmlinkage long
2360 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2361 {
2362 	siginfo_t info;
2363 
2364 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2365 		return -EFAULT;
2366 
2367 	/* Not even root can pretend to send signals from the kernel.
2368 	   Nor can they impersonate a kill(), which adds source info.  */
2369 	if (info.si_code >= 0)
2370 		return -EPERM;
2371 	info.si_signo = sig;
2372 
2373 	/* POSIX.1b doesn't mention process groups.  */
2374 	return kill_proc_info(sig, &info, pid);
2375 }
2376 
2377 int
2378 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2379 {
2380 	struct k_sigaction *k;
2381 
2382 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2383 		return -EINVAL;
2384 
2385 	k = &current->sighand->action[sig-1];
2386 
2387 	spin_lock_irq(&current->sighand->siglock);
2388 	if (signal_pending(current)) {
2389 		/*
2390 		 * If there might be a fatal signal pending on multiple
2391 		 * threads, make sure we take it before changing the action.
2392 		 */
2393 		spin_unlock_irq(&current->sighand->siglock);
2394 		return -ERESTARTNOINTR;
2395 	}
2396 
2397 	if (oact)
2398 		*oact = *k;
2399 
2400 	if (act) {
2401 		/*
2402 		 * POSIX 3.3.1.3:
2403 		 *  "Setting a signal action to SIG_IGN for a signal that is
2404 		 *   pending shall cause the pending signal to be discarded,
2405 		 *   whether or not it is blocked."
2406 		 *
2407 		 *  "Setting a signal action to SIG_DFL for a signal that is
2408 		 *   pending and whose default action is to ignore the signal
2409 		 *   (for example, SIGCHLD), shall cause the pending signal to
2410 		 *   be discarded, whether or not it is blocked"
2411 		 */
2412 		if (act->sa.sa_handler == SIG_IGN ||
2413 		    (act->sa.sa_handler == SIG_DFL &&
2414 		     sig_kernel_ignore(sig))) {
2415 			/*
2416 			 * This is a fairly rare case, so we only take the
2417 			 * tasklist_lock once we're sure we'll need it.
2418 			 * Now we must do this little unlock and relock
2419 			 * dance to maintain the lock hierarchy.
2420 			 */
2421 			struct task_struct *t = current;
2422 			spin_unlock_irq(&t->sighand->siglock);
2423 			read_lock(&tasklist_lock);
2424 			spin_lock_irq(&t->sighand->siglock);
2425 			*k = *act;
2426 			sigdelsetmask(&k->sa.sa_mask,
2427 				      sigmask(SIGKILL) | sigmask(SIGSTOP));
2428 			rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2429 			do {
2430 				rm_from_queue(sigmask(sig), &t->pending);
2431 				recalc_sigpending_tsk(t);
2432 				t = next_thread(t);
2433 			} while (t != current);
2434 			spin_unlock_irq(&current->sighand->siglock);
2435 			read_unlock(&tasklist_lock);
2436 			return 0;
2437 		}
2438 
2439 		*k = *act;
2440 		sigdelsetmask(&k->sa.sa_mask,
2441 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2442 	}
2443 
2444 	spin_unlock_irq(&current->sighand->siglock);
2445 	return 0;
2446 }
2447 
2448 int
2449 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2450 {
2451 	stack_t oss;
2452 	int error;
2453 
2454 	if (uoss) {
2455 		oss.ss_sp = (void __user *) current->sas_ss_sp;
2456 		oss.ss_size = current->sas_ss_size;
2457 		oss.ss_flags = sas_ss_flags(sp);
2458 	}
2459 
2460 	if (uss) {
2461 		void __user *ss_sp;
2462 		size_t ss_size;
2463 		int ss_flags;
2464 
2465 		error = -EFAULT;
2466 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2467 		    || __get_user(ss_sp, &uss->ss_sp)
2468 		    || __get_user(ss_flags, &uss->ss_flags)
2469 		    || __get_user(ss_size, &uss->ss_size))
2470 			goto out;
2471 
2472 		error = -EPERM;
2473 		if (on_sig_stack(sp))
2474 			goto out;
2475 
2476 		error = -EINVAL;
2477 		/*
2478 		 *
2479 		 * Note - this code used to test ss_flags incorrectly
2480 		 *  	  old code may have been written using ss_flags==0
2481 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2482 		 *	  way that worked) - this fix preserves that older
2483 		 *	  mechanism
2484 		 */
2485 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2486 			goto out;
2487 
2488 		if (ss_flags == SS_DISABLE) {
2489 			ss_size = 0;
2490 			ss_sp = NULL;
2491 		} else {
2492 			error = -ENOMEM;
2493 			if (ss_size < MINSIGSTKSZ)
2494 				goto out;
2495 		}
2496 
2497 		current->sas_ss_sp = (unsigned long) ss_sp;
2498 		current->sas_ss_size = ss_size;
2499 	}
2500 
2501 	if (uoss) {
2502 		error = -EFAULT;
2503 		if (copy_to_user(uoss, &oss, sizeof(oss)))
2504 			goto out;
2505 	}
2506 
2507 	error = 0;
2508 out:
2509 	return error;
2510 }
2511 
2512 #ifdef __ARCH_WANT_SYS_SIGPENDING
2513 
2514 asmlinkage long
2515 sys_sigpending(old_sigset_t __user *set)
2516 {
2517 	return do_sigpending(set, sizeof(*set));
2518 }
2519 
2520 #endif
2521 
2522 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2523 /* Some platforms have their own version with special arguments others
2524    support only sys_rt_sigprocmask.  */
2525 
2526 asmlinkage long
2527 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2528 {
2529 	int error;
2530 	old_sigset_t old_set, new_set;
2531 
2532 	if (set) {
2533 		error = -EFAULT;
2534 		if (copy_from_user(&new_set, set, sizeof(*set)))
2535 			goto out;
2536 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2537 
2538 		spin_lock_irq(&current->sighand->siglock);
2539 		old_set = current->blocked.sig[0];
2540 
2541 		error = 0;
2542 		switch (how) {
2543 		default:
2544 			error = -EINVAL;
2545 			break;
2546 		case SIG_BLOCK:
2547 			sigaddsetmask(&current->blocked, new_set);
2548 			break;
2549 		case SIG_UNBLOCK:
2550 			sigdelsetmask(&current->blocked, new_set);
2551 			break;
2552 		case SIG_SETMASK:
2553 			current->blocked.sig[0] = new_set;
2554 			break;
2555 		}
2556 
2557 		recalc_sigpending();
2558 		spin_unlock_irq(&current->sighand->siglock);
2559 		if (error)
2560 			goto out;
2561 		if (oset)
2562 			goto set_old;
2563 	} else if (oset) {
2564 		old_set = current->blocked.sig[0];
2565 	set_old:
2566 		error = -EFAULT;
2567 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2568 			goto out;
2569 	}
2570 	error = 0;
2571 out:
2572 	return error;
2573 }
2574 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2575 
2576 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2577 asmlinkage long
2578 sys_rt_sigaction(int sig,
2579 		 const struct sigaction __user *act,
2580 		 struct sigaction __user *oact,
2581 		 size_t sigsetsize)
2582 {
2583 	struct k_sigaction new_sa, old_sa;
2584 	int ret = -EINVAL;
2585 
2586 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2587 	if (sigsetsize != sizeof(sigset_t))
2588 		goto out;
2589 
2590 	if (act) {
2591 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2592 			return -EFAULT;
2593 	}
2594 
2595 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2596 
2597 	if (!ret && oact) {
2598 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2599 			return -EFAULT;
2600 	}
2601 out:
2602 	return ret;
2603 }
2604 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2605 
2606 #ifdef __ARCH_WANT_SYS_SGETMASK
2607 
2608 /*
2609  * For backwards compatibility.  Functionality superseded by sigprocmask.
2610  */
2611 asmlinkage long
2612 sys_sgetmask(void)
2613 {
2614 	/* SMP safe */
2615 	return current->blocked.sig[0];
2616 }
2617 
2618 asmlinkage long
2619 sys_ssetmask(int newmask)
2620 {
2621 	int old;
2622 
2623 	spin_lock_irq(&current->sighand->siglock);
2624 	old = current->blocked.sig[0];
2625 
2626 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2627 						  sigmask(SIGSTOP)));
2628 	recalc_sigpending();
2629 	spin_unlock_irq(&current->sighand->siglock);
2630 
2631 	return old;
2632 }
2633 #endif /* __ARCH_WANT_SGETMASK */
2634 
2635 #ifdef __ARCH_WANT_SYS_SIGNAL
2636 /*
2637  * For backwards compatibility.  Functionality superseded by sigaction.
2638  */
2639 asmlinkage unsigned long
2640 sys_signal(int sig, __sighandler_t handler)
2641 {
2642 	struct k_sigaction new_sa, old_sa;
2643 	int ret;
2644 
2645 	new_sa.sa.sa_handler = handler;
2646 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2647 
2648 	ret = do_sigaction(sig, &new_sa, &old_sa);
2649 
2650 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2651 }
2652 #endif /* __ARCH_WANT_SYS_SIGNAL */
2653 
2654 #ifdef __ARCH_WANT_SYS_PAUSE
2655 
2656 asmlinkage long
2657 sys_pause(void)
2658 {
2659 	current->state = TASK_INTERRUPTIBLE;
2660 	schedule();
2661 	return -ERESTARTNOHAND;
2662 }
2663 
2664 #endif
2665 
2666 void __init signals_init(void)
2667 {
2668 	sigqueue_cachep =
2669 		kmem_cache_create("sigqueue",
2670 				  sizeof(struct sigqueue),
2671 				  __alignof__(struct sigqueue),
2672 				  SLAB_PANIC, NULL, NULL);
2673 }
2674