xref: /linux/kernel/signal.c (revision 04c319e05d0b08cc789db7abccce0fcb13dbab16)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 #include <uapi/linux/pidfd.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/signal.h>
54 
55 #include <asm/param.h>
56 #include <linux/uaccess.h>
57 #include <asm/unistd.h>
58 #include <asm/siginfo.h>
59 #include <asm/cacheflush.h>
60 #include <asm/syscall.h>	/* for syscall_get_* */
61 
62 #include "time/posix-timers.h"
63 
64 /*
65  * SLAB caches for signal bits.
66  */
67 
68 static struct kmem_cache *sigqueue_cachep;
69 
70 int print_fatal_signals __read_mostly;
71 
72 static void __user *sig_handler(struct task_struct *t, int sig)
73 {
74 	return t->sighand->action[sig - 1].sa.sa_handler;
75 }
76 
77 static inline bool sig_handler_ignored(void __user *handler, int sig)
78 {
79 	/* Is it explicitly or implicitly ignored? */
80 	return handler == SIG_IGN ||
81 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
82 }
83 
84 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
85 {
86 	void __user *handler;
87 
88 	handler = sig_handler(t, sig);
89 
90 	/* SIGKILL and SIGSTOP may not be sent to the global init */
91 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
92 		return true;
93 
94 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
95 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
96 		return true;
97 
98 	/* Only allow kernel generated signals to this kthread */
99 	if (unlikely((t->flags & PF_KTHREAD) &&
100 		     (handler == SIG_KTHREAD_KERNEL) && !force))
101 		return true;
102 
103 	return sig_handler_ignored(handler, sig);
104 }
105 
106 static bool sig_ignored(struct task_struct *t, int sig, bool force)
107 {
108 	/*
109 	 * Blocked signals are never ignored, since the
110 	 * signal handler may change by the time it is
111 	 * unblocked.
112 	 */
113 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
114 		return false;
115 
116 	/*
117 	 * Tracers may want to know about even ignored signal unless it
118 	 * is SIGKILL which can't be reported anyway but can be ignored
119 	 * by SIGNAL_UNKILLABLE task.
120 	 */
121 	if (t->ptrace && sig != SIGKILL)
122 		return false;
123 
124 	return sig_task_ignored(t, sig, force);
125 }
126 
127 /*
128  * Re-calculate pending state from the set of locally pending
129  * signals, globally pending signals, and blocked signals.
130  */
131 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
132 {
133 	unsigned long ready;
134 	long i;
135 
136 	switch (_NSIG_WORDS) {
137 	default:
138 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
139 			ready |= signal->sig[i] &~ blocked->sig[i];
140 		break;
141 
142 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
143 		ready |= signal->sig[2] &~ blocked->sig[2];
144 		ready |= signal->sig[1] &~ blocked->sig[1];
145 		ready |= signal->sig[0] &~ blocked->sig[0];
146 		break;
147 
148 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
149 		ready |= signal->sig[0] &~ blocked->sig[0];
150 		break;
151 
152 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
153 	}
154 	return ready !=	0;
155 }
156 
157 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
158 
159 static bool recalc_sigpending_tsk(struct task_struct *t)
160 {
161 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
162 	    PENDING(&t->pending, &t->blocked) ||
163 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
164 	    cgroup_task_frozen(t)) {
165 		set_tsk_thread_flag(t, TIF_SIGPENDING);
166 		return true;
167 	}
168 
169 	/*
170 	 * We must never clear the flag in another thread, or in current
171 	 * when it's possible the current syscall is returning -ERESTART*.
172 	 * So we don't clear it here, and only callers who know they should do.
173 	 */
174 	return false;
175 }
176 
177 void recalc_sigpending(void)
178 {
179 	if (!recalc_sigpending_tsk(current) && !freezing(current))
180 		clear_thread_flag(TIF_SIGPENDING);
181 
182 }
183 EXPORT_SYMBOL(recalc_sigpending);
184 
185 void calculate_sigpending(void)
186 {
187 	/* Have any signals or users of TIF_SIGPENDING been delayed
188 	 * until after fork?
189 	 */
190 	spin_lock_irq(&current->sighand->siglock);
191 	set_tsk_thread_flag(current, TIF_SIGPENDING);
192 	recalc_sigpending();
193 	spin_unlock_irq(&current->sighand->siglock);
194 }
195 
196 /* Given the mask, find the first available signal that should be serviced. */
197 
198 #define SYNCHRONOUS_MASK \
199 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
200 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
201 
202 int next_signal(struct sigpending *pending, sigset_t *mask)
203 {
204 	unsigned long i, *s, *m, x;
205 	int sig = 0;
206 
207 	s = pending->signal.sig;
208 	m = mask->sig;
209 
210 	/*
211 	 * Handle the first word specially: it contains the
212 	 * synchronous signals that need to be dequeued first.
213 	 */
214 	x = *s &~ *m;
215 	if (x) {
216 		if (x & SYNCHRONOUS_MASK)
217 			x &= SYNCHRONOUS_MASK;
218 		sig = ffz(~x) + 1;
219 		return sig;
220 	}
221 
222 	switch (_NSIG_WORDS) {
223 	default:
224 		for (i = 1; i < _NSIG_WORDS; ++i) {
225 			x = *++s &~ *++m;
226 			if (!x)
227 				continue;
228 			sig = ffz(~x) + i*_NSIG_BPW + 1;
229 			break;
230 		}
231 		break;
232 
233 	case 2:
234 		x = s[1] &~ m[1];
235 		if (!x)
236 			break;
237 		sig = ffz(~x) + _NSIG_BPW + 1;
238 		break;
239 
240 	case 1:
241 		/* Nothing to do */
242 		break;
243 	}
244 
245 	return sig;
246 }
247 
248 static inline void print_dropped_signal(int sig)
249 {
250 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
251 
252 	if (!print_fatal_signals)
253 		return;
254 
255 	if (!__ratelimit(&ratelimit_state))
256 		return;
257 
258 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
259 				current->comm, current->pid, sig);
260 }
261 
262 /**
263  * task_set_jobctl_pending - set jobctl pending bits
264  * @task: target task
265  * @mask: pending bits to set
266  *
267  * Clear @mask from @task->jobctl.  @mask must be subset of
268  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
269  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
270  * cleared.  If @task is already being killed or exiting, this function
271  * becomes noop.
272  *
273  * CONTEXT:
274  * Must be called with @task->sighand->siglock held.
275  *
276  * RETURNS:
277  * %true if @mask is set, %false if made noop because @task was dying.
278  */
279 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
280 {
281 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
282 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
283 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
284 
285 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
286 		return false;
287 
288 	if (mask & JOBCTL_STOP_SIGMASK)
289 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
290 
291 	task->jobctl |= mask;
292 	return true;
293 }
294 
295 /**
296  * task_clear_jobctl_trapping - clear jobctl trapping bit
297  * @task: target task
298  *
299  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
300  * Clear it and wake up the ptracer.  Note that we don't need any further
301  * locking.  @task->siglock guarantees that @task->parent points to the
302  * ptracer.
303  *
304  * CONTEXT:
305  * Must be called with @task->sighand->siglock held.
306  */
307 void task_clear_jobctl_trapping(struct task_struct *task)
308 {
309 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
310 		task->jobctl &= ~JOBCTL_TRAPPING;
311 		smp_mb();	/* advised by wake_up_bit() */
312 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
313 	}
314 }
315 
316 /**
317  * task_clear_jobctl_pending - clear jobctl pending bits
318  * @task: target task
319  * @mask: pending bits to clear
320  *
321  * Clear @mask from @task->jobctl.  @mask must be subset of
322  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
323  * STOP bits are cleared together.
324  *
325  * If clearing of @mask leaves no stop or trap pending, this function calls
326  * task_clear_jobctl_trapping().
327  *
328  * CONTEXT:
329  * Must be called with @task->sighand->siglock held.
330  */
331 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
332 {
333 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
334 
335 	if (mask & JOBCTL_STOP_PENDING)
336 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
337 
338 	task->jobctl &= ~mask;
339 
340 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
341 		task_clear_jobctl_trapping(task);
342 }
343 
344 /**
345  * task_participate_group_stop - participate in a group stop
346  * @task: task participating in a group stop
347  *
348  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
349  * Group stop states are cleared and the group stop count is consumed if
350  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
351  * stop, the appropriate `SIGNAL_*` flags are set.
352  *
353  * CONTEXT:
354  * Must be called with @task->sighand->siglock held.
355  *
356  * RETURNS:
357  * %true if group stop completion should be notified to the parent, %false
358  * otherwise.
359  */
360 static bool task_participate_group_stop(struct task_struct *task)
361 {
362 	struct signal_struct *sig = task->signal;
363 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
364 
365 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
366 
367 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
368 
369 	if (!consume)
370 		return false;
371 
372 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
373 		sig->group_stop_count--;
374 
375 	/*
376 	 * Tell the caller to notify completion iff we are entering into a
377 	 * fresh group stop.  Read comment in do_signal_stop() for details.
378 	 */
379 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
380 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
381 		return true;
382 	}
383 	return false;
384 }
385 
386 void task_join_group_stop(struct task_struct *task)
387 {
388 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
389 	struct signal_struct *sig = current->signal;
390 
391 	if (sig->group_stop_count) {
392 		sig->group_stop_count++;
393 		mask |= JOBCTL_STOP_CONSUME;
394 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
395 		return;
396 
397 	/* Have the new thread join an on-going signal group stop */
398 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
399 }
400 
401 static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig,
402 				       int override_rlimit)
403 {
404 	struct ucounts *ucounts;
405 	long sigpending;
406 
407 	/*
408 	 * Protect access to @t credentials. This can go away when all
409 	 * callers hold rcu read lock.
410 	 *
411 	 * NOTE! A pending signal will hold on to the user refcount,
412 	 * and we get/put the refcount only when the sigpending count
413 	 * changes from/to zero.
414 	 */
415 	rcu_read_lock();
416 	ucounts = task_ucounts(t);
417 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING,
418 					    override_rlimit);
419 	rcu_read_unlock();
420 	if (!sigpending)
421 		return NULL;
422 
423 	if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) {
424 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
425 		print_dropped_signal(sig);
426 		return NULL;
427 	}
428 
429 	return ucounts;
430 }
431 
432 static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts,
433 			    const unsigned int sigqueue_flags)
434 {
435 	INIT_LIST_HEAD(&q->list);
436 	q->flags = sigqueue_flags;
437 	q->ucounts = ucounts;
438 }
439 
440 /*
441  * allocate a new signal queue record
442  * - this may be called without locks if and only if t == current, otherwise an
443  *   appropriate lock must be held to stop the target task from exiting
444  */
445 static struct sigqueue *sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
446 				       int override_rlimit)
447 {
448 	struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit);
449 	struct sigqueue *q;
450 
451 	if (!ucounts)
452 		return NULL;
453 
454 	q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
455 	if (!q) {
456 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
457 		return NULL;
458 	}
459 
460 	__sigqueue_init(q, ucounts, 0);
461 	return q;
462 }
463 
464 static void __sigqueue_free(struct sigqueue *q)
465 {
466 	if (q->flags & SIGQUEUE_PREALLOC) {
467 		posixtimer_sigqueue_putref(q);
468 		return;
469 	}
470 	if (q->ucounts) {
471 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
472 		q->ucounts = NULL;
473 	}
474 	kmem_cache_free(sigqueue_cachep, q);
475 }
476 
477 void flush_sigqueue(struct sigpending *queue)
478 {
479 	struct sigqueue *q;
480 
481 	sigemptyset(&queue->signal);
482 	while (!list_empty(&queue->list)) {
483 		q = list_entry(queue->list.next, struct sigqueue , list);
484 		list_del_init(&q->list);
485 		__sigqueue_free(q);
486 	}
487 }
488 
489 /*
490  * Flush all pending signals for this kthread.
491  */
492 void flush_signals(struct task_struct *t)
493 {
494 	unsigned long flags;
495 
496 	spin_lock_irqsave(&t->sighand->siglock, flags);
497 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
498 	flush_sigqueue(&t->pending);
499 	flush_sigqueue(&t->signal->shared_pending);
500 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
501 }
502 EXPORT_SYMBOL(flush_signals);
503 
504 void ignore_signals(struct task_struct *t)
505 {
506 	int i;
507 
508 	for (i = 0; i < _NSIG; ++i)
509 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
510 
511 	flush_signals(t);
512 }
513 
514 /*
515  * Flush all handlers for a task.
516  */
517 
518 void
519 flush_signal_handlers(struct task_struct *t, int force_default)
520 {
521 	int i;
522 	struct k_sigaction *ka = &t->sighand->action[0];
523 	for (i = _NSIG ; i != 0 ; i--) {
524 		if (force_default || ka->sa.sa_handler != SIG_IGN)
525 			ka->sa.sa_handler = SIG_DFL;
526 		ka->sa.sa_flags = 0;
527 #ifdef __ARCH_HAS_SA_RESTORER
528 		ka->sa.sa_restorer = NULL;
529 #endif
530 		sigemptyset(&ka->sa.sa_mask);
531 		ka++;
532 	}
533 }
534 
535 bool unhandled_signal(struct task_struct *tsk, int sig)
536 {
537 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
538 	if (is_global_init(tsk))
539 		return true;
540 
541 	if (handler != SIG_IGN && handler != SIG_DFL)
542 		return false;
543 
544 	/* If dying, we handle all new signals by ignoring them */
545 	if (fatal_signal_pending(tsk))
546 		return false;
547 
548 	/* if ptraced, let the tracer determine */
549 	return !tsk->ptrace;
550 }
551 
552 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
553 			   struct sigqueue **timer_sigq)
554 {
555 	struct sigqueue *q, *first = NULL;
556 
557 	/*
558 	 * Collect the siginfo appropriate to this signal.  Check if
559 	 * there is another siginfo for the same signal.
560 	*/
561 	list_for_each_entry(q, &list->list, list) {
562 		if (q->info.si_signo == sig) {
563 			if (first)
564 				goto still_pending;
565 			first = q;
566 		}
567 	}
568 
569 	sigdelset(&list->signal, sig);
570 
571 	if (first) {
572 still_pending:
573 		list_del_init(&first->list);
574 		copy_siginfo(info, &first->info);
575 
576 		/*
577 		 * posix-timer signals are preallocated and freed when the last
578 		 * reference count is dropped in posixtimer_deliver_signal() or
579 		 * immediately on timer deletion when the signal is not pending.
580 		 * Spare the extra round through __sigqueue_free() which is
581 		 * ignoring preallocated signals.
582 		 */
583 		if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER)))
584 			*timer_sigq = first;
585 		else
586 			__sigqueue_free(first);
587 	} else {
588 		/*
589 		 * Ok, it wasn't in the queue.  This must be
590 		 * a fast-pathed signal or we must have been
591 		 * out of queue space.  So zero out the info.
592 		 */
593 		clear_siginfo(info);
594 		info->si_signo = sig;
595 		info->si_errno = 0;
596 		info->si_code = SI_USER;
597 		info->si_pid = 0;
598 		info->si_uid = 0;
599 	}
600 }
601 
602 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
603 			    kernel_siginfo_t *info, struct sigqueue **timer_sigq)
604 {
605 	int sig = next_signal(pending, mask);
606 
607 	if (sig)
608 		collect_signal(sig, pending, info, timer_sigq);
609 	return sig;
610 }
611 
612 /*
613  * Try to dequeue a signal. If a deliverable signal is found fill in the
614  * caller provided siginfo and return the signal number. Otherwise return
615  * 0.
616  */
617 int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type)
618 {
619 	struct task_struct *tsk = current;
620 	struct sigqueue *timer_sigq;
621 	int signr;
622 
623 	lockdep_assert_held(&tsk->sighand->siglock);
624 
625 again:
626 	*type = PIDTYPE_PID;
627 	timer_sigq = NULL;
628 	signr = __dequeue_signal(&tsk->pending, mask, info, &timer_sigq);
629 	if (!signr) {
630 		*type = PIDTYPE_TGID;
631 		signr = __dequeue_signal(&tsk->signal->shared_pending,
632 					 mask, info, &timer_sigq);
633 
634 		if (unlikely(signr == SIGALRM))
635 			posixtimer_rearm_itimer(tsk);
636 	}
637 
638 	recalc_sigpending();
639 	if (!signr)
640 		return 0;
641 
642 	if (unlikely(sig_kernel_stop(signr))) {
643 		/*
644 		 * Set a marker that we have dequeued a stop signal.  Our
645 		 * caller might release the siglock and then the pending
646 		 * stop signal it is about to process is no longer in the
647 		 * pending bitmasks, but must still be cleared by a SIGCONT
648 		 * (and overruled by a SIGKILL).  So those cases clear this
649 		 * shared flag after we've set it.  Note that this flag may
650 		 * remain set after the signal we return is ignored or
651 		 * handled.  That doesn't matter because its only purpose
652 		 * is to alert stop-signal processing code when another
653 		 * processor has come along and cleared the flag.
654 		 */
655 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
656 	}
657 
658 	if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(timer_sigq)) {
659 		if (!posixtimer_deliver_signal(info, timer_sigq))
660 			goto again;
661 	}
662 
663 	return signr;
664 }
665 EXPORT_SYMBOL_GPL(dequeue_signal);
666 
667 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
668 {
669 	struct task_struct *tsk = current;
670 	struct sigpending *pending = &tsk->pending;
671 	struct sigqueue *q, *sync = NULL;
672 
673 	/*
674 	 * Might a synchronous signal be in the queue?
675 	 */
676 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
677 		return 0;
678 
679 	/*
680 	 * Return the first synchronous signal in the queue.
681 	 */
682 	list_for_each_entry(q, &pending->list, list) {
683 		/* Synchronous signals have a positive si_code */
684 		if ((q->info.si_code > SI_USER) &&
685 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
686 			sync = q;
687 			goto next;
688 		}
689 	}
690 	return 0;
691 next:
692 	/*
693 	 * Check if there is another siginfo for the same signal.
694 	 */
695 	list_for_each_entry_continue(q, &pending->list, list) {
696 		if (q->info.si_signo == sync->info.si_signo)
697 			goto still_pending;
698 	}
699 
700 	sigdelset(&pending->signal, sync->info.si_signo);
701 	recalc_sigpending();
702 still_pending:
703 	list_del_init(&sync->list);
704 	copy_siginfo(info, &sync->info);
705 	__sigqueue_free(sync);
706 	return info->si_signo;
707 }
708 
709 /*
710  * Tell a process that it has a new active signal..
711  *
712  * NOTE! we rely on the previous spin_lock to
713  * lock interrupts for us! We can only be called with
714  * "siglock" held, and the local interrupt must
715  * have been disabled when that got acquired!
716  *
717  * No need to set need_resched since signal event passing
718  * goes through ->blocked
719  */
720 void signal_wake_up_state(struct task_struct *t, unsigned int state)
721 {
722 	lockdep_assert_held(&t->sighand->siglock);
723 
724 	set_tsk_thread_flag(t, TIF_SIGPENDING);
725 
726 	/*
727 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
728 	 * case. We don't check t->state here because there is a race with it
729 	 * executing another processor and just now entering stopped state.
730 	 * By using wake_up_state, we ensure the process will wake up and
731 	 * handle its death signal.
732 	 */
733 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
734 		kick_process(t);
735 }
736 
737 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q);
738 
739 static void sigqueue_free_ignored(struct task_struct *tsk, struct sigqueue *q)
740 {
741 	if (likely(!(q->flags & SIGQUEUE_PREALLOC) || q->info.si_code != SI_TIMER))
742 		__sigqueue_free(q);
743 	else
744 		posixtimer_sig_ignore(tsk, q);
745 }
746 
747 /* Remove signals in mask from the pending set and queue. */
748 static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s)
749 {
750 	struct sigqueue *q, *n;
751 	sigset_t m;
752 
753 	lockdep_assert_held(&p->sighand->siglock);
754 
755 	sigandsets(&m, mask, &s->signal);
756 	if (sigisemptyset(&m))
757 		return;
758 
759 	sigandnsets(&s->signal, &s->signal, mask);
760 	list_for_each_entry_safe(q, n, &s->list, list) {
761 		if (sigismember(mask, q->info.si_signo)) {
762 			list_del_init(&q->list);
763 			sigqueue_free_ignored(p, q);
764 		}
765 	}
766 }
767 
768 static inline int is_si_special(const struct kernel_siginfo *info)
769 {
770 	return info <= SEND_SIG_PRIV;
771 }
772 
773 static inline bool si_fromuser(const struct kernel_siginfo *info)
774 {
775 	return info == SEND_SIG_NOINFO ||
776 		(!is_si_special(info) && SI_FROMUSER(info));
777 }
778 
779 /*
780  * called with RCU read lock from check_kill_permission()
781  */
782 static bool kill_ok_by_cred(struct task_struct *t)
783 {
784 	const struct cred *cred = current_cred();
785 	const struct cred *tcred = __task_cred(t);
786 
787 	return uid_eq(cred->euid, tcred->suid) ||
788 	       uid_eq(cred->euid, tcred->uid) ||
789 	       uid_eq(cred->uid, tcred->suid) ||
790 	       uid_eq(cred->uid, tcred->uid) ||
791 	       ns_capable(tcred->user_ns, CAP_KILL);
792 }
793 
794 /*
795  * Bad permissions for sending the signal
796  * - the caller must hold the RCU read lock
797  */
798 static int check_kill_permission(int sig, struct kernel_siginfo *info,
799 				 struct task_struct *t)
800 {
801 	struct pid *sid;
802 	int error;
803 
804 	if (!valid_signal(sig))
805 		return -EINVAL;
806 
807 	if (!si_fromuser(info))
808 		return 0;
809 
810 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
811 	if (error)
812 		return error;
813 
814 	if (!same_thread_group(current, t) &&
815 	    !kill_ok_by_cred(t)) {
816 		switch (sig) {
817 		case SIGCONT:
818 			sid = task_session(t);
819 			/*
820 			 * We don't return the error if sid == NULL. The
821 			 * task was unhashed, the caller must notice this.
822 			 */
823 			if (!sid || sid == task_session(current))
824 				break;
825 			fallthrough;
826 		default:
827 			return -EPERM;
828 		}
829 	}
830 
831 	return security_task_kill(t, info, sig, NULL);
832 }
833 
834 /**
835  * ptrace_trap_notify - schedule trap to notify ptracer
836  * @t: tracee wanting to notify tracer
837  *
838  * This function schedules sticky ptrace trap which is cleared on the next
839  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
840  * ptracer.
841  *
842  * If @t is running, STOP trap will be taken.  If trapped for STOP and
843  * ptracer is listening for events, tracee is woken up so that it can
844  * re-trap for the new event.  If trapped otherwise, STOP trap will be
845  * eventually taken without returning to userland after the existing traps
846  * are finished by PTRACE_CONT.
847  *
848  * CONTEXT:
849  * Must be called with @task->sighand->siglock held.
850  */
851 static void ptrace_trap_notify(struct task_struct *t)
852 {
853 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
854 	lockdep_assert_held(&t->sighand->siglock);
855 
856 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
857 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
858 }
859 
860 /*
861  * Handle magic process-wide effects of stop/continue signals. Unlike
862  * the signal actions, these happen immediately at signal-generation
863  * time regardless of blocking, ignoring, or handling.  This does the
864  * actual continuing for SIGCONT, but not the actual stopping for stop
865  * signals. The process stop is done as a signal action for SIG_DFL.
866  *
867  * Returns true if the signal should be actually delivered, otherwise
868  * it should be dropped.
869  */
870 static bool prepare_signal(int sig, struct task_struct *p, bool force)
871 {
872 	struct signal_struct *signal = p->signal;
873 	struct task_struct *t;
874 	sigset_t flush;
875 
876 	if (signal->flags & SIGNAL_GROUP_EXIT) {
877 		if (signal->core_state)
878 			return sig == SIGKILL;
879 		/*
880 		 * The process is in the middle of dying, drop the signal.
881 		 */
882 		return false;
883 	} else if (sig_kernel_stop(sig)) {
884 		/*
885 		 * This is a stop signal.  Remove SIGCONT from all queues.
886 		 */
887 		siginitset(&flush, sigmask(SIGCONT));
888 		flush_sigqueue_mask(p, &flush, &signal->shared_pending);
889 		for_each_thread(p, t)
890 			flush_sigqueue_mask(p, &flush, &t->pending);
891 	} else if (sig == SIGCONT) {
892 		unsigned int why;
893 		/*
894 		 * Remove all stop signals from all queues, wake all threads.
895 		 */
896 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
897 		flush_sigqueue_mask(p, &flush, &signal->shared_pending);
898 		for_each_thread(p, t) {
899 			flush_sigqueue_mask(p, &flush, &t->pending);
900 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
901 			if (likely(!(t->ptrace & PT_SEIZED))) {
902 				t->jobctl &= ~JOBCTL_STOPPED;
903 				wake_up_state(t, __TASK_STOPPED);
904 			} else
905 				ptrace_trap_notify(t);
906 		}
907 
908 		/*
909 		 * Notify the parent with CLD_CONTINUED if we were stopped.
910 		 *
911 		 * If we were in the middle of a group stop, we pretend it
912 		 * was already finished, and then continued. Since SIGCHLD
913 		 * doesn't queue we report only CLD_STOPPED, as if the next
914 		 * CLD_CONTINUED was dropped.
915 		 */
916 		why = 0;
917 		if (signal->flags & SIGNAL_STOP_STOPPED)
918 			why |= SIGNAL_CLD_CONTINUED;
919 		else if (signal->group_stop_count)
920 			why |= SIGNAL_CLD_STOPPED;
921 
922 		if (why) {
923 			/*
924 			 * The first thread which returns from do_signal_stop()
925 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
926 			 * notify its parent. See get_signal().
927 			 */
928 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
929 			signal->group_stop_count = 0;
930 			signal->group_exit_code = 0;
931 		}
932 	}
933 
934 	return !sig_ignored(p, sig, force);
935 }
936 
937 /*
938  * Test if P wants to take SIG.  After we've checked all threads with this,
939  * it's equivalent to finding no threads not blocking SIG.  Any threads not
940  * blocking SIG were ruled out because they are not running and already
941  * have pending signals.  Such threads will dequeue from the shared queue
942  * as soon as they're available, so putting the signal on the shared queue
943  * will be equivalent to sending it to one such thread.
944  */
945 static inline bool wants_signal(int sig, struct task_struct *p)
946 {
947 	if (sigismember(&p->blocked, sig))
948 		return false;
949 
950 	if (p->flags & PF_EXITING)
951 		return false;
952 
953 	if (sig == SIGKILL)
954 		return true;
955 
956 	if (task_is_stopped_or_traced(p))
957 		return false;
958 
959 	return task_curr(p) || !task_sigpending(p);
960 }
961 
962 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
963 {
964 	struct signal_struct *signal = p->signal;
965 	struct task_struct *t;
966 
967 	/*
968 	 * Now find a thread we can wake up to take the signal off the queue.
969 	 *
970 	 * Try the suggested task first (may or may not be the main thread).
971 	 */
972 	if (wants_signal(sig, p))
973 		t = p;
974 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
975 		/*
976 		 * There is just one thread and it does not need to be woken.
977 		 * It will dequeue unblocked signals before it runs again.
978 		 */
979 		return;
980 	else {
981 		/*
982 		 * Otherwise try to find a suitable thread.
983 		 */
984 		t = signal->curr_target;
985 		while (!wants_signal(sig, t)) {
986 			t = next_thread(t);
987 			if (t == signal->curr_target)
988 				/*
989 				 * No thread needs to be woken.
990 				 * Any eligible threads will see
991 				 * the signal in the queue soon.
992 				 */
993 				return;
994 		}
995 		signal->curr_target = t;
996 	}
997 
998 	/*
999 	 * Found a killable thread.  If the signal will be fatal,
1000 	 * then start taking the whole group down immediately.
1001 	 */
1002 	if (sig_fatal(p, sig) &&
1003 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1004 	    !sigismember(&t->real_blocked, sig) &&
1005 	    (sig == SIGKILL || !p->ptrace)) {
1006 		/*
1007 		 * This signal will be fatal to the whole group.
1008 		 */
1009 		if (!sig_kernel_coredump(sig)) {
1010 			/*
1011 			 * Start a group exit and wake everybody up.
1012 			 * This way we don't have other threads
1013 			 * running and doing things after a slower
1014 			 * thread has the fatal signal pending.
1015 			 */
1016 			signal->flags = SIGNAL_GROUP_EXIT;
1017 			signal->group_exit_code = sig;
1018 			signal->group_stop_count = 0;
1019 			__for_each_thread(signal, t) {
1020 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1021 				sigaddset(&t->pending.signal, SIGKILL);
1022 				signal_wake_up(t, 1);
1023 			}
1024 			return;
1025 		}
1026 	}
1027 
1028 	/*
1029 	 * The signal is already in the shared-pending queue.
1030 	 * Tell the chosen thread to wake up and dequeue it.
1031 	 */
1032 	signal_wake_up(t, sig == SIGKILL);
1033 	return;
1034 }
1035 
1036 static inline bool legacy_queue(struct sigpending *signals, int sig)
1037 {
1038 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1039 }
1040 
1041 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1042 				struct task_struct *t, enum pid_type type, bool force)
1043 {
1044 	struct sigpending *pending;
1045 	struct sigqueue *q;
1046 	int override_rlimit;
1047 	int ret = 0, result;
1048 
1049 	lockdep_assert_held(&t->sighand->siglock);
1050 
1051 	result = TRACE_SIGNAL_IGNORED;
1052 	if (!prepare_signal(sig, t, force))
1053 		goto ret;
1054 
1055 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1056 	/*
1057 	 * Short-circuit ignored signals and support queuing
1058 	 * exactly one non-rt signal, so that we can get more
1059 	 * detailed information about the cause of the signal.
1060 	 */
1061 	result = TRACE_SIGNAL_ALREADY_PENDING;
1062 	if (legacy_queue(pending, sig))
1063 		goto ret;
1064 
1065 	result = TRACE_SIGNAL_DELIVERED;
1066 	/*
1067 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1068 	 */
1069 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1070 		goto out_set;
1071 
1072 	/*
1073 	 * Real-time signals must be queued if sent by sigqueue, or
1074 	 * some other real-time mechanism.  It is implementation
1075 	 * defined whether kill() does so.  We attempt to do so, on
1076 	 * the principle of least surprise, but since kill is not
1077 	 * allowed to fail with EAGAIN when low on memory we just
1078 	 * make sure at least one signal gets delivered and don't
1079 	 * pass on the info struct.
1080 	 */
1081 	if (sig < SIGRTMIN)
1082 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1083 	else
1084 		override_rlimit = 0;
1085 
1086 	q = sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1087 
1088 	if (q) {
1089 		list_add_tail(&q->list, &pending->list);
1090 		switch ((unsigned long) info) {
1091 		case (unsigned long) SEND_SIG_NOINFO:
1092 			clear_siginfo(&q->info);
1093 			q->info.si_signo = sig;
1094 			q->info.si_errno = 0;
1095 			q->info.si_code = SI_USER;
1096 			q->info.si_pid = task_tgid_nr_ns(current,
1097 							task_active_pid_ns(t));
1098 			rcu_read_lock();
1099 			q->info.si_uid =
1100 				from_kuid_munged(task_cred_xxx(t, user_ns),
1101 						 current_uid());
1102 			rcu_read_unlock();
1103 			break;
1104 		case (unsigned long) SEND_SIG_PRIV:
1105 			clear_siginfo(&q->info);
1106 			q->info.si_signo = sig;
1107 			q->info.si_errno = 0;
1108 			q->info.si_code = SI_KERNEL;
1109 			q->info.si_pid = 0;
1110 			q->info.si_uid = 0;
1111 			break;
1112 		default:
1113 			copy_siginfo(&q->info, info);
1114 			break;
1115 		}
1116 	} else if (!is_si_special(info) &&
1117 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1118 		/*
1119 		 * Queue overflow, abort.  We may abort if the
1120 		 * signal was rt and sent by user using something
1121 		 * other than kill().
1122 		 */
1123 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1124 		ret = -EAGAIN;
1125 		goto ret;
1126 	} else {
1127 		/*
1128 		 * This is a silent loss of information.  We still
1129 		 * send the signal, but the *info bits are lost.
1130 		 */
1131 		result = TRACE_SIGNAL_LOSE_INFO;
1132 	}
1133 
1134 out_set:
1135 	signalfd_notify(t, sig);
1136 	sigaddset(&pending->signal, sig);
1137 
1138 	/* Let multiprocess signals appear after on-going forks */
1139 	if (type > PIDTYPE_TGID) {
1140 		struct multiprocess_signals *delayed;
1141 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1142 			sigset_t *signal = &delayed->signal;
1143 			/* Can't queue both a stop and a continue signal */
1144 			if (sig == SIGCONT)
1145 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1146 			else if (sig_kernel_stop(sig))
1147 				sigdelset(signal, SIGCONT);
1148 			sigaddset(signal, sig);
1149 		}
1150 	}
1151 
1152 	complete_signal(sig, t, type);
1153 ret:
1154 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1155 	return ret;
1156 }
1157 
1158 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1159 {
1160 	bool ret = false;
1161 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1162 	case SIL_KILL:
1163 	case SIL_CHLD:
1164 	case SIL_RT:
1165 		ret = true;
1166 		break;
1167 	case SIL_TIMER:
1168 	case SIL_POLL:
1169 	case SIL_FAULT:
1170 	case SIL_FAULT_TRAPNO:
1171 	case SIL_FAULT_MCEERR:
1172 	case SIL_FAULT_BNDERR:
1173 	case SIL_FAULT_PKUERR:
1174 	case SIL_FAULT_PERF_EVENT:
1175 	case SIL_SYS:
1176 		ret = false;
1177 		break;
1178 	}
1179 	return ret;
1180 }
1181 
1182 int send_signal_locked(int sig, struct kernel_siginfo *info,
1183 		       struct task_struct *t, enum pid_type type)
1184 {
1185 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1186 	bool force = false;
1187 
1188 	if (info == SEND_SIG_NOINFO) {
1189 		/* Force if sent from an ancestor pid namespace */
1190 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1191 	} else if (info == SEND_SIG_PRIV) {
1192 		/* Don't ignore kernel generated signals */
1193 		force = true;
1194 	} else if (has_si_pid_and_uid(info)) {
1195 		/* SIGKILL and SIGSTOP is special or has ids */
1196 		struct user_namespace *t_user_ns;
1197 
1198 		rcu_read_lock();
1199 		t_user_ns = task_cred_xxx(t, user_ns);
1200 		if (current_user_ns() != t_user_ns) {
1201 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1202 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1203 		}
1204 		rcu_read_unlock();
1205 
1206 		/* A kernel generated signal? */
1207 		force = (info->si_code == SI_KERNEL);
1208 
1209 		/* From an ancestor pid namespace? */
1210 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1211 			info->si_pid = 0;
1212 			force = true;
1213 		}
1214 	}
1215 	return __send_signal_locked(sig, info, t, type, force);
1216 }
1217 
1218 static void print_fatal_signal(int signr)
1219 {
1220 	struct pt_regs *regs = task_pt_regs(current);
1221 	struct file *exe_file;
1222 
1223 	exe_file = get_task_exe_file(current);
1224 	if (exe_file) {
1225 		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1226 			exe_file, current->comm, signr);
1227 		fput(exe_file);
1228 	} else {
1229 		pr_info("%s: potentially unexpected fatal signal %d.\n",
1230 			current->comm, signr);
1231 	}
1232 
1233 #if defined(__i386__) && !defined(__arch_um__)
1234 	pr_info("code at %08lx: ", regs->ip);
1235 	{
1236 		int i;
1237 		for (i = 0; i < 16; i++) {
1238 			unsigned char insn;
1239 
1240 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1241 				break;
1242 			pr_cont("%02x ", insn);
1243 		}
1244 	}
1245 	pr_cont("\n");
1246 #endif
1247 	preempt_disable();
1248 	show_regs(regs);
1249 	preempt_enable();
1250 }
1251 
1252 static int __init setup_print_fatal_signals(char *str)
1253 {
1254 	get_option (&str, &print_fatal_signals);
1255 
1256 	return 1;
1257 }
1258 
1259 __setup("print-fatal-signals=", setup_print_fatal_signals);
1260 
1261 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1262 			enum pid_type type)
1263 {
1264 	unsigned long flags;
1265 	int ret = -ESRCH;
1266 
1267 	if (lock_task_sighand(p, &flags)) {
1268 		ret = send_signal_locked(sig, info, p, type);
1269 		unlock_task_sighand(p, &flags);
1270 	}
1271 
1272 	return ret;
1273 }
1274 
1275 enum sig_handler {
1276 	HANDLER_CURRENT, /* If reachable use the current handler */
1277 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1278 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1279 };
1280 
1281 /*
1282  * Force a signal that the process can't ignore: if necessary
1283  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1284  *
1285  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1286  * since we do not want to have a signal handler that was blocked
1287  * be invoked when user space had explicitly blocked it.
1288  *
1289  * We don't want to have recursive SIGSEGV's etc, for example,
1290  * that is why we also clear SIGNAL_UNKILLABLE.
1291  */
1292 static int
1293 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1294 	enum sig_handler handler)
1295 {
1296 	unsigned long int flags;
1297 	int ret, blocked, ignored;
1298 	struct k_sigaction *action;
1299 	int sig = info->si_signo;
1300 
1301 	spin_lock_irqsave(&t->sighand->siglock, flags);
1302 	action = &t->sighand->action[sig-1];
1303 	ignored = action->sa.sa_handler == SIG_IGN;
1304 	blocked = sigismember(&t->blocked, sig);
1305 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1306 		action->sa.sa_handler = SIG_DFL;
1307 		if (handler == HANDLER_EXIT)
1308 			action->sa.sa_flags |= SA_IMMUTABLE;
1309 		if (blocked)
1310 			sigdelset(&t->blocked, sig);
1311 	}
1312 	/*
1313 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1314 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1315 	 */
1316 	if (action->sa.sa_handler == SIG_DFL &&
1317 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1318 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1319 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1320 	/* This can happen if the signal was already pending and blocked */
1321 	if (!task_sigpending(t))
1322 		signal_wake_up(t, 0);
1323 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1324 
1325 	return ret;
1326 }
1327 
1328 int force_sig_info(struct kernel_siginfo *info)
1329 {
1330 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1331 }
1332 
1333 /*
1334  * Nuke all other threads in the group.
1335  */
1336 int zap_other_threads(struct task_struct *p)
1337 {
1338 	struct task_struct *t;
1339 	int count = 0;
1340 
1341 	p->signal->group_stop_count = 0;
1342 
1343 	for_other_threads(p, t) {
1344 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1345 		count++;
1346 
1347 		/* Don't bother with already dead threads */
1348 		if (t->exit_state)
1349 			continue;
1350 		sigaddset(&t->pending.signal, SIGKILL);
1351 		signal_wake_up(t, 1);
1352 	}
1353 
1354 	return count;
1355 }
1356 
1357 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1358 					   unsigned long *flags)
1359 {
1360 	struct sighand_struct *sighand;
1361 
1362 	rcu_read_lock();
1363 	for (;;) {
1364 		sighand = rcu_dereference(tsk->sighand);
1365 		if (unlikely(sighand == NULL))
1366 			break;
1367 
1368 		/*
1369 		 * This sighand can be already freed and even reused, but
1370 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1371 		 * initializes ->siglock: this slab can't go away, it has
1372 		 * the same object type, ->siglock can't be reinitialized.
1373 		 *
1374 		 * We need to ensure that tsk->sighand is still the same
1375 		 * after we take the lock, we can race with de_thread() or
1376 		 * __exit_signal(). In the latter case the next iteration
1377 		 * must see ->sighand == NULL.
1378 		 */
1379 		spin_lock_irqsave(&sighand->siglock, *flags);
1380 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1381 			break;
1382 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1383 	}
1384 	rcu_read_unlock();
1385 
1386 	return sighand;
1387 }
1388 
1389 #ifdef CONFIG_LOCKDEP
1390 void lockdep_assert_task_sighand_held(struct task_struct *task)
1391 {
1392 	struct sighand_struct *sighand;
1393 
1394 	rcu_read_lock();
1395 	sighand = rcu_dereference(task->sighand);
1396 	if (sighand)
1397 		lockdep_assert_held(&sighand->siglock);
1398 	else
1399 		WARN_ON_ONCE(1);
1400 	rcu_read_unlock();
1401 }
1402 #endif
1403 
1404 /*
1405  * send signal info to all the members of a thread group or to the
1406  * individual thread if type == PIDTYPE_PID.
1407  */
1408 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1409 			struct task_struct *p, enum pid_type type)
1410 {
1411 	int ret;
1412 
1413 	rcu_read_lock();
1414 	ret = check_kill_permission(sig, info, p);
1415 	rcu_read_unlock();
1416 
1417 	if (!ret && sig)
1418 		ret = do_send_sig_info(sig, info, p, type);
1419 
1420 	return ret;
1421 }
1422 
1423 /*
1424  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1425  * control characters do (^C, ^Z etc)
1426  * - the caller must hold at least a readlock on tasklist_lock
1427  */
1428 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1429 {
1430 	struct task_struct *p = NULL;
1431 	int ret = -ESRCH;
1432 
1433 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1434 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1435 		/*
1436 		 * If group_send_sig_info() succeeds at least once ret
1437 		 * becomes 0 and after that the code below has no effect.
1438 		 * Otherwise we return the last err or -ESRCH if this
1439 		 * process group is empty.
1440 		 */
1441 		if (ret)
1442 			ret = err;
1443 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1444 
1445 	return ret;
1446 }
1447 
1448 static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1449 				struct pid *pid, enum pid_type type)
1450 {
1451 	int error = -ESRCH;
1452 	struct task_struct *p;
1453 
1454 	for (;;) {
1455 		rcu_read_lock();
1456 		p = pid_task(pid, PIDTYPE_PID);
1457 		if (p)
1458 			error = group_send_sig_info(sig, info, p, type);
1459 		rcu_read_unlock();
1460 		if (likely(!p || error != -ESRCH))
1461 			return error;
1462 		/*
1463 		 * The task was unhashed in between, try again.  If it
1464 		 * is dead, pid_task() will return NULL, if we race with
1465 		 * de_thread() it will find the new leader.
1466 		 */
1467 	}
1468 }
1469 
1470 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1471 {
1472 	return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1473 }
1474 
1475 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1476 {
1477 	int error;
1478 	rcu_read_lock();
1479 	error = kill_pid_info(sig, info, find_vpid(pid));
1480 	rcu_read_unlock();
1481 	return error;
1482 }
1483 
1484 static inline bool kill_as_cred_perm(const struct cred *cred,
1485 				     struct task_struct *target)
1486 {
1487 	const struct cred *pcred = __task_cred(target);
1488 
1489 	return uid_eq(cred->euid, pcred->suid) ||
1490 	       uid_eq(cred->euid, pcred->uid) ||
1491 	       uid_eq(cred->uid, pcred->suid) ||
1492 	       uid_eq(cred->uid, pcred->uid);
1493 }
1494 
1495 /*
1496  * The usb asyncio usage of siginfo is wrong.  The glibc support
1497  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1498  * AKA after the generic fields:
1499  *	kernel_pid_t	si_pid;
1500  *	kernel_uid32_t	si_uid;
1501  *	sigval_t	si_value;
1502  *
1503  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1504  * after the generic fields is:
1505  *	void __user 	*si_addr;
1506  *
1507  * This is a practical problem when there is a 64bit big endian kernel
1508  * and a 32bit userspace.  As the 32bit address will encoded in the low
1509  * 32bits of the pointer.  Those low 32bits will be stored at higher
1510  * address than appear in a 32 bit pointer.  So userspace will not
1511  * see the address it was expecting for it's completions.
1512  *
1513  * There is nothing in the encoding that can allow
1514  * copy_siginfo_to_user32 to detect this confusion of formats, so
1515  * handle this by requiring the caller of kill_pid_usb_asyncio to
1516  * notice when this situration takes place and to store the 32bit
1517  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1518  * parameter.
1519  */
1520 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1521 			 struct pid *pid, const struct cred *cred)
1522 {
1523 	struct kernel_siginfo info;
1524 	struct task_struct *p;
1525 	unsigned long flags;
1526 	int ret = -EINVAL;
1527 
1528 	if (!valid_signal(sig))
1529 		return ret;
1530 
1531 	clear_siginfo(&info);
1532 	info.si_signo = sig;
1533 	info.si_errno = errno;
1534 	info.si_code = SI_ASYNCIO;
1535 	*((sigval_t *)&info.si_pid) = addr;
1536 
1537 	rcu_read_lock();
1538 	p = pid_task(pid, PIDTYPE_PID);
1539 	if (!p) {
1540 		ret = -ESRCH;
1541 		goto out_unlock;
1542 	}
1543 	if (!kill_as_cred_perm(cred, p)) {
1544 		ret = -EPERM;
1545 		goto out_unlock;
1546 	}
1547 	ret = security_task_kill(p, &info, sig, cred);
1548 	if (ret)
1549 		goto out_unlock;
1550 
1551 	if (sig) {
1552 		if (lock_task_sighand(p, &flags)) {
1553 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1554 			unlock_task_sighand(p, &flags);
1555 		} else
1556 			ret = -ESRCH;
1557 	}
1558 out_unlock:
1559 	rcu_read_unlock();
1560 	return ret;
1561 }
1562 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1563 
1564 /*
1565  * kill_something_info() interprets pid in interesting ways just like kill(2).
1566  *
1567  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1568  * is probably wrong.  Should make it like BSD or SYSV.
1569  */
1570 
1571 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1572 {
1573 	int ret;
1574 
1575 	if (pid > 0)
1576 		return kill_proc_info(sig, info, pid);
1577 
1578 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1579 	if (pid == INT_MIN)
1580 		return -ESRCH;
1581 
1582 	read_lock(&tasklist_lock);
1583 	if (pid != -1) {
1584 		ret = __kill_pgrp_info(sig, info,
1585 				pid ? find_vpid(-pid) : task_pgrp(current));
1586 	} else {
1587 		int retval = 0, count = 0;
1588 		struct task_struct * p;
1589 
1590 		for_each_process(p) {
1591 			if (task_pid_vnr(p) > 1 &&
1592 					!same_thread_group(p, current)) {
1593 				int err = group_send_sig_info(sig, info, p,
1594 							      PIDTYPE_MAX);
1595 				++count;
1596 				if (err != -EPERM)
1597 					retval = err;
1598 			}
1599 		}
1600 		ret = count ? retval : -ESRCH;
1601 	}
1602 	read_unlock(&tasklist_lock);
1603 
1604 	return ret;
1605 }
1606 
1607 /*
1608  * These are for backward compatibility with the rest of the kernel source.
1609  */
1610 
1611 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1612 {
1613 	/*
1614 	 * Make sure legacy kernel users don't send in bad values
1615 	 * (normal paths check this in check_kill_permission).
1616 	 */
1617 	if (!valid_signal(sig))
1618 		return -EINVAL;
1619 
1620 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1621 }
1622 EXPORT_SYMBOL(send_sig_info);
1623 
1624 #define __si_special(priv) \
1625 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1626 
1627 int
1628 send_sig(int sig, struct task_struct *p, int priv)
1629 {
1630 	return send_sig_info(sig, __si_special(priv), p);
1631 }
1632 EXPORT_SYMBOL(send_sig);
1633 
1634 void force_sig(int sig)
1635 {
1636 	struct kernel_siginfo info;
1637 
1638 	clear_siginfo(&info);
1639 	info.si_signo = sig;
1640 	info.si_errno = 0;
1641 	info.si_code = SI_KERNEL;
1642 	info.si_pid = 0;
1643 	info.si_uid = 0;
1644 	force_sig_info(&info);
1645 }
1646 EXPORT_SYMBOL(force_sig);
1647 
1648 void force_fatal_sig(int sig)
1649 {
1650 	struct kernel_siginfo info;
1651 
1652 	clear_siginfo(&info);
1653 	info.si_signo = sig;
1654 	info.si_errno = 0;
1655 	info.si_code = SI_KERNEL;
1656 	info.si_pid = 0;
1657 	info.si_uid = 0;
1658 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1659 }
1660 
1661 void force_exit_sig(int sig)
1662 {
1663 	struct kernel_siginfo info;
1664 
1665 	clear_siginfo(&info);
1666 	info.si_signo = sig;
1667 	info.si_errno = 0;
1668 	info.si_code = SI_KERNEL;
1669 	info.si_pid = 0;
1670 	info.si_uid = 0;
1671 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1672 }
1673 
1674 /*
1675  * When things go south during signal handling, we
1676  * will force a SIGSEGV. And if the signal that caused
1677  * the problem was already a SIGSEGV, we'll want to
1678  * make sure we don't even try to deliver the signal..
1679  */
1680 void force_sigsegv(int sig)
1681 {
1682 	if (sig == SIGSEGV)
1683 		force_fatal_sig(SIGSEGV);
1684 	else
1685 		force_sig(SIGSEGV);
1686 }
1687 
1688 int force_sig_fault_to_task(int sig, int code, void __user *addr,
1689 			    struct task_struct *t)
1690 {
1691 	struct kernel_siginfo info;
1692 
1693 	clear_siginfo(&info);
1694 	info.si_signo = sig;
1695 	info.si_errno = 0;
1696 	info.si_code  = code;
1697 	info.si_addr  = addr;
1698 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1699 }
1700 
1701 int force_sig_fault(int sig, int code, void __user *addr)
1702 {
1703 	return force_sig_fault_to_task(sig, code, addr, current);
1704 }
1705 
1706 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1707 {
1708 	struct kernel_siginfo info;
1709 
1710 	clear_siginfo(&info);
1711 	info.si_signo = sig;
1712 	info.si_errno = 0;
1713 	info.si_code  = code;
1714 	info.si_addr  = addr;
1715 	return send_sig_info(info.si_signo, &info, t);
1716 }
1717 
1718 int force_sig_mceerr(int code, void __user *addr, short lsb)
1719 {
1720 	struct kernel_siginfo info;
1721 
1722 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1723 	clear_siginfo(&info);
1724 	info.si_signo = SIGBUS;
1725 	info.si_errno = 0;
1726 	info.si_code = code;
1727 	info.si_addr = addr;
1728 	info.si_addr_lsb = lsb;
1729 	return force_sig_info(&info);
1730 }
1731 
1732 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1733 {
1734 	struct kernel_siginfo info;
1735 
1736 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1737 	clear_siginfo(&info);
1738 	info.si_signo = SIGBUS;
1739 	info.si_errno = 0;
1740 	info.si_code = code;
1741 	info.si_addr = addr;
1742 	info.si_addr_lsb = lsb;
1743 	return send_sig_info(info.si_signo, &info, t);
1744 }
1745 EXPORT_SYMBOL(send_sig_mceerr);
1746 
1747 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1748 {
1749 	struct kernel_siginfo info;
1750 
1751 	clear_siginfo(&info);
1752 	info.si_signo = SIGSEGV;
1753 	info.si_errno = 0;
1754 	info.si_code  = SEGV_BNDERR;
1755 	info.si_addr  = addr;
1756 	info.si_lower = lower;
1757 	info.si_upper = upper;
1758 	return force_sig_info(&info);
1759 }
1760 
1761 #ifdef SEGV_PKUERR
1762 int force_sig_pkuerr(void __user *addr, u32 pkey)
1763 {
1764 	struct kernel_siginfo info;
1765 
1766 	clear_siginfo(&info);
1767 	info.si_signo = SIGSEGV;
1768 	info.si_errno = 0;
1769 	info.si_code  = SEGV_PKUERR;
1770 	info.si_addr  = addr;
1771 	info.si_pkey  = pkey;
1772 	return force_sig_info(&info);
1773 }
1774 #endif
1775 
1776 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1777 {
1778 	struct kernel_siginfo info;
1779 
1780 	clear_siginfo(&info);
1781 	info.si_signo     = SIGTRAP;
1782 	info.si_errno     = 0;
1783 	info.si_code      = TRAP_PERF;
1784 	info.si_addr      = addr;
1785 	info.si_perf_data = sig_data;
1786 	info.si_perf_type = type;
1787 
1788 	/*
1789 	 * Signals generated by perf events should not terminate the whole
1790 	 * process if SIGTRAP is blocked, however, delivering the signal
1791 	 * asynchronously is better than not delivering at all. But tell user
1792 	 * space if the signal was asynchronous, so it can clearly be
1793 	 * distinguished from normal synchronous ones.
1794 	 */
1795 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1796 				     TRAP_PERF_FLAG_ASYNC :
1797 				     0;
1798 
1799 	return send_sig_info(info.si_signo, &info, current);
1800 }
1801 
1802 /**
1803  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1804  * @syscall: syscall number to send to userland
1805  * @reason: filter-supplied reason code to send to userland (via si_errno)
1806  * @force_coredump: true to trigger a coredump
1807  *
1808  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1809  */
1810 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1811 {
1812 	struct kernel_siginfo info;
1813 
1814 	clear_siginfo(&info);
1815 	info.si_signo = SIGSYS;
1816 	info.si_code = SYS_SECCOMP;
1817 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1818 	info.si_errno = reason;
1819 	info.si_arch = syscall_get_arch(current);
1820 	info.si_syscall = syscall;
1821 	return force_sig_info_to_task(&info, current,
1822 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1823 }
1824 
1825 /* For the crazy architectures that include trap information in
1826  * the errno field, instead of an actual errno value.
1827  */
1828 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1829 {
1830 	struct kernel_siginfo info;
1831 
1832 	clear_siginfo(&info);
1833 	info.si_signo = SIGTRAP;
1834 	info.si_errno = errno;
1835 	info.si_code  = TRAP_HWBKPT;
1836 	info.si_addr  = addr;
1837 	return force_sig_info(&info);
1838 }
1839 
1840 /* For the rare architectures that include trap information using
1841  * si_trapno.
1842  */
1843 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1844 {
1845 	struct kernel_siginfo info;
1846 
1847 	clear_siginfo(&info);
1848 	info.si_signo = sig;
1849 	info.si_errno = 0;
1850 	info.si_code  = code;
1851 	info.si_addr  = addr;
1852 	info.si_trapno = trapno;
1853 	return force_sig_info(&info);
1854 }
1855 
1856 /* For the rare architectures that include trap information using
1857  * si_trapno.
1858  */
1859 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1860 			  struct task_struct *t)
1861 {
1862 	struct kernel_siginfo info;
1863 
1864 	clear_siginfo(&info);
1865 	info.si_signo = sig;
1866 	info.si_errno = 0;
1867 	info.si_code  = code;
1868 	info.si_addr  = addr;
1869 	info.si_trapno = trapno;
1870 	return send_sig_info(info.si_signo, &info, t);
1871 }
1872 
1873 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1874 {
1875 	int ret;
1876 	read_lock(&tasklist_lock);
1877 	ret = __kill_pgrp_info(sig, info, pgrp);
1878 	read_unlock(&tasklist_lock);
1879 	return ret;
1880 }
1881 
1882 int kill_pgrp(struct pid *pid, int sig, int priv)
1883 {
1884 	return kill_pgrp_info(sig, __si_special(priv), pid);
1885 }
1886 EXPORT_SYMBOL(kill_pgrp);
1887 
1888 int kill_pid(struct pid *pid, int sig, int priv)
1889 {
1890 	return kill_pid_info(sig, __si_special(priv), pid);
1891 }
1892 EXPORT_SYMBOL(kill_pid);
1893 
1894 #ifdef CONFIG_POSIX_TIMERS
1895 /*
1896  * These functions handle POSIX timer signals. POSIX timers use
1897  * preallocated sigqueue structs for sending signals.
1898  */
1899 static void __flush_itimer_signals(struct sigpending *pending)
1900 {
1901 	sigset_t signal, retain;
1902 	struct sigqueue *q, *n;
1903 
1904 	signal = pending->signal;
1905 	sigemptyset(&retain);
1906 
1907 	list_for_each_entry_safe(q, n, &pending->list, list) {
1908 		int sig = q->info.si_signo;
1909 
1910 		if (likely(q->info.si_code != SI_TIMER)) {
1911 			sigaddset(&retain, sig);
1912 		} else {
1913 			sigdelset(&signal, sig);
1914 			list_del_init(&q->list);
1915 			__sigqueue_free(q);
1916 		}
1917 	}
1918 
1919 	sigorsets(&pending->signal, &signal, &retain);
1920 }
1921 
1922 void flush_itimer_signals(void)
1923 {
1924 	struct task_struct *tsk = current;
1925 
1926 	guard(spinlock_irqsave)(&tsk->sighand->siglock);
1927 	__flush_itimer_signals(&tsk->pending);
1928 	__flush_itimer_signals(&tsk->signal->shared_pending);
1929 }
1930 
1931 bool posixtimer_init_sigqueue(struct sigqueue *q)
1932 {
1933 	struct ucounts *ucounts = sig_get_ucounts(current, -1, 0);
1934 
1935 	if (!ucounts)
1936 		return false;
1937 	clear_siginfo(&q->info);
1938 	__sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC);
1939 	return true;
1940 }
1941 
1942 static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type)
1943 {
1944 	struct sigpending *pending;
1945 	int sig = q->info.si_signo;
1946 
1947 	signalfd_notify(t, sig);
1948 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1949 	list_add_tail(&q->list, &pending->list);
1950 	sigaddset(&pending->signal, sig);
1951 	complete_signal(sig, t, type);
1952 }
1953 
1954 /*
1955  * This function is used by POSIX timers to deliver a timer signal.
1956  * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1957  * set), the signal must be delivered to the specific thread (queues
1958  * into t->pending).
1959  *
1960  * Where type is not PIDTYPE_PID, signals must be delivered to the
1961  * process. In this case, prefer to deliver to current if it is in
1962  * the same thread group as the target process and its sighand is
1963  * stable, which avoids unnecessarily waking up a potentially idle task.
1964  */
1965 static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr)
1966 {
1967 	struct task_struct *t = pid_task(tmr->it_pid, tmr->it_pid_type);
1968 
1969 	if (t && tmr->it_pid_type != PIDTYPE_PID &&
1970 	    same_thread_group(t, current) && !current->exit_state)
1971 		t = current;
1972 	return t;
1973 }
1974 
1975 void posixtimer_send_sigqueue(struct k_itimer *tmr)
1976 {
1977 	struct sigqueue *q = &tmr->sigq;
1978 	int sig = q->info.si_signo;
1979 	struct task_struct *t;
1980 	unsigned long flags;
1981 	int result;
1982 
1983 	guard(rcu)();
1984 
1985 	t = posixtimer_get_target(tmr);
1986 	if (!t)
1987 		return;
1988 
1989 	if (!likely(lock_task_sighand(t, &flags)))
1990 		return;
1991 
1992 	/*
1993 	 * Update @tmr::sigqueue_seq for posix timer signals with sighand
1994 	 * locked to prevent a race against dequeue_signal().
1995 	 */
1996 	tmr->it_sigqueue_seq = tmr->it_signal_seq;
1997 
1998 	/*
1999 	 * Set the signal delivery status under sighand lock, so that the
2000 	 * ignored signal handling can distinguish between a periodic and a
2001 	 * non-periodic timer.
2002 	 */
2003 	tmr->it_sig_periodic = tmr->it_status == POSIX_TIMER_REQUEUE_PENDING;
2004 
2005 	if (!prepare_signal(sig, t, false)) {
2006 		result = TRACE_SIGNAL_IGNORED;
2007 
2008 		if (!list_empty(&q->list)) {
2009 			/*
2010 			 * If task group is exiting with the signal already pending,
2011 			 * wait for __exit_signal() to do its job. Otherwise if
2012 			 * ignored, it's not supposed to be queued. Try to survive.
2013 			 */
2014 			WARN_ON_ONCE(!(t->signal->flags & SIGNAL_GROUP_EXIT));
2015 			goto out;
2016 		}
2017 
2018 		/* Periodic timers with SIG_IGN are queued on the ignored list */
2019 		if (tmr->it_sig_periodic) {
2020 			/*
2021 			 * Already queued means the timer was rearmed after
2022 			 * the previous expiry got it on the ignore list.
2023 			 * Nothing to do for that case.
2024 			 */
2025 			if (hlist_unhashed(&tmr->ignored_list)) {
2026 				/*
2027 				 * Take a signal reference and queue it on
2028 				 * the ignored list.
2029 				 */
2030 				posixtimer_sigqueue_getref(q);
2031 				posixtimer_sig_ignore(t, q);
2032 			}
2033 		} else if (!hlist_unhashed(&tmr->ignored_list)) {
2034 			/*
2035 			 * Covers the case where a timer was periodic and
2036 			 * then the signal was ignored. Later it was rearmed
2037 			 * as oneshot timer. The previous signal is invalid
2038 			 * now, and this oneshot signal has to be dropped.
2039 			 * Remove it from the ignored list and drop the
2040 			 * reference count as the signal is not longer
2041 			 * queued.
2042 			 */
2043 			hlist_del_init(&tmr->ignored_list);
2044 			posixtimer_putref(tmr);
2045 		}
2046 		goto out;
2047 	}
2048 
2049 	/* This should never happen and leaks a reference count */
2050 	if (WARN_ON_ONCE(!hlist_unhashed(&tmr->ignored_list)))
2051 		hlist_del_init(&tmr->ignored_list);
2052 
2053 	if (unlikely(!list_empty(&q->list))) {
2054 		/* This holds a reference count already */
2055 		result = TRACE_SIGNAL_ALREADY_PENDING;
2056 		goto out;
2057 	}
2058 
2059 	posixtimer_sigqueue_getref(q);
2060 	posixtimer_queue_sigqueue(q, t, tmr->it_pid_type);
2061 	result = TRACE_SIGNAL_DELIVERED;
2062 out:
2063 	trace_signal_generate(sig, &q->info, t, tmr->it_pid_type != PIDTYPE_PID, result);
2064 	unlock_task_sighand(t, &flags);
2065 }
2066 
2067 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q)
2068 {
2069 	struct k_itimer *tmr = container_of(q, struct k_itimer, sigq);
2070 
2071 	/*
2072 	 * If the timer is marked deleted already or the signal originates
2073 	 * from a non-periodic timer, then just drop the reference
2074 	 * count. Otherwise queue it on the ignored list.
2075 	 */
2076 	if (tmr->it_signal && tmr->it_sig_periodic)
2077 		hlist_add_head(&tmr->ignored_list, &tsk->signal->ignored_posix_timers);
2078 	else
2079 		posixtimer_putref(tmr);
2080 }
2081 
2082 static void posixtimer_sig_unignore(struct task_struct *tsk, int sig)
2083 {
2084 	struct hlist_head *head = &tsk->signal->ignored_posix_timers;
2085 	struct hlist_node *tmp;
2086 	struct k_itimer *tmr;
2087 
2088 	if (likely(hlist_empty(head)))
2089 		return;
2090 
2091 	/*
2092 	 * Rearming a timer with sighand lock held is not possible due to
2093 	 * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and
2094 	 * let the signal delivery path deal with it whether it needs to be
2095 	 * rearmed or not. This cannot be decided here w/o dropping sighand
2096 	 * lock and creating a loop retry horror show.
2097 	 */
2098 	hlist_for_each_entry_safe(tmr, tmp , head, ignored_list) {
2099 		struct task_struct *target;
2100 
2101 		/*
2102 		 * tmr::sigq.info.si_signo is immutable, so accessing it
2103 		 * without holding tmr::it_lock is safe.
2104 		 */
2105 		if (tmr->sigq.info.si_signo != sig)
2106 			continue;
2107 
2108 		hlist_del_init(&tmr->ignored_list);
2109 
2110 		/* This should never happen and leaks a reference count */
2111 		if (WARN_ON_ONCE(!list_empty(&tmr->sigq.list)))
2112 			continue;
2113 
2114 		/*
2115 		 * Get the target for the signal. If target is a thread and
2116 		 * has exited by now, drop the reference count.
2117 		 */
2118 		guard(rcu)();
2119 		target = posixtimer_get_target(tmr);
2120 		if (target)
2121 			posixtimer_queue_sigqueue(&tmr->sigq, target, tmr->it_pid_type);
2122 		else
2123 			posixtimer_putref(tmr);
2124 	}
2125 }
2126 #else /* CONFIG_POSIX_TIMERS */
2127 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) { }
2128 static inline void posixtimer_sig_unignore(struct task_struct *tsk, int sig) { }
2129 #endif /* !CONFIG_POSIX_TIMERS */
2130 
2131 void do_notify_pidfd(struct task_struct *task)
2132 {
2133 	struct pid *pid = task_pid(task);
2134 
2135 	WARN_ON(task->exit_state == 0);
2136 
2137 	__wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2138 			poll_to_key(EPOLLIN | EPOLLRDNORM));
2139 }
2140 
2141 /*
2142  * Let a parent know about the death of a child.
2143  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2144  *
2145  * Returns true if our parent ignored us and so we've switched to
2146  * self-reaping.
2147  */
2148 bool do_notify_parent(struct task_struct *tsk, int sig)
2149 {
2150 	struct kernel_siginfo info;
2151 	unsigned long flags;
2152 	struct sighand_struct *psig;
2153 	bool autoreap = false;
2154 	u64 utime, stime;
2155 
2156 	WARN_ON_ONCE(sig == -1);
2157 
2158 	/* do_notify_parent_cldstop should have been called instead.  */
2159 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2160 
2161 	WARN_ON_ONCE(!tsk->ptrace &&
2162 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2163 	/*
2164 	 * tsk is a group leader and has no threads, wake up the
2165 	 * non-PIDFD_THREAD waiters.
2166 	 */
2167 	if (thread_group_empty(tsk))
2168 		do_notify_pidfd(tsk);
2169 
2170 	if (sig != SIGCHLD) {
2171 		/*
2172 		 * This is only possible if parent == real_parent.
2173 		 * Check if it has changed security domain.
2174 		 */
2175 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2176 			sig = SIGCHLD;
2177 	}
2178 
2179 	clear_siginfo(&info);
2180 	info.si_signo = sig;
2181 	info.si_errno = 0;
2182 	/*
2183 	 * We are under tasklist_lock here so our parent is tied to
2184 	 * us and cannot change.
2185 	 *
2186 	 * task_active_pid_ns will always return the same pid namespace
2187 	 * until a task passes through release_task.
2188 	 *
2189 	 * write_lock() currently calls preempt_disable() which is the
2190 	 * same as rcu_read_lock(), but according to Oleg, this is not
2191 	 * correct to rely on this
2192 	 */
2193 	rcu_read_lock();
2194 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2195 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2196 				       task_uid(tsk));
2197 	rcu_read_unlock();
2198 
2199 	task_cputime(tsk, &utime, &stime);
2200 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2201 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2202 
2203 	info.si_status = tsk->exit_code & 0x7f;
2204 	if (tsk->exit_code & 0x80)
2205 		info.si_code = CLD_DUMPED;
2206 	else if (tsk->exit_code & 0x7f)
2207 		info.si_code = CLD_KILLED;
2208 	else {
2209 		info.si_code = CLD_EXITED;
2210 		info.si_status = tsk->exit_code >> 8;
2211 	}
2212 
2213 	psig = tsk->parent->sighand;
2214 	spin_lock_irqsave(&psig->siglock, flags);
2215 	if (!tsk->ptrace && sig == SIGCHLD &&
2216 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2217 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2218 		/*
2219 		 * We are exiting and our parent doesn't care.  POSIX.1
2220 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2221 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2222 		 * automatically and not left for our parent's wait4 call.
2223 		 * Rather than having the parent do it as a magic kind of
2224 		 * signal handler, we just set this to tell do_exit that we
2225 		 * can be cleaned up without becoming a zombie.  Note that
2226 		 * we still call __wake_up_parent in this case, because a
2227 		 * blocked sys_wait4 might now return -ECHILD.
2228 		 *
2229 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2230 		 * is implementation-defined: we do (if you don't want
2231 		 * it, just use SIG_IGN instead).
2232 		 */
2233 		autoreap = true;
2234 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2235 			sig = 0;
2236 	}
2237 	/*
2238 	 * Send with __send_signal as si_pid and si_uid are in the
2239 	 * parent's namespaces.
2240 	 */
2241 	if (valid_signal(sig) && sig)
2242 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2243 	__wake_up_parent(tsk, tsk->parent);
2244 	spin_unlock_irqrestore(&psig->siglock, flags);
2245 
2246 	return autoreap;
2247 }
2248 
2249 /**
2250  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2251  * @tsk: task reporting the state change
2252  * @for_ptracer: the notification is for ptracer
2253  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2254  *
2255  * Notify @tsk's parent that the stopped/continued state has changed.  If
2256  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2257  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2258  *
2259  * CONTEXT:
2260  * Must be called with tasklist_lock at least read locked.
2261  */
2262 static void do_notify_parent_cldstop(struct task_struct *tsk,
2263 				     bool for_ptracer, int why)
2264 {
2265 	struct kernel_siginfo info;
2266 	unsigned long flags;
2267 	struct task_struct *parent;
2268 	struct sighand_struct *sighand;
2269 	u64 utime, stime;
2270 
2271 	if (for_ptracer) {
2272 		parent = tsk->parent;
2273 	} else {
2274 		tsk = tsk->group_leader;
2275 		parent = tsk->real_parent;
2276 	}
2277 
2278 	clear_siginfo(&info);
2279 	info.si_signo = SIGCHLD;
2280 	info.si_errno = 0;
2281 	/*
2282 	 * see comment in do_notify_parent() about the following 4 lines
2283 	 */
2284 	rcu_read_lock();
2285 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2286 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2287 	rcu_read_unlock();
2288 
2289 	task_cputime(tsk, &utime, &stime);
2290 	info.si_utime = nsec_to_clock_t(utime);
2291 	info.si_stime = nsec_to_clock_t(stime);
2292 
2293  	info.si_code = why;
2294  	switch (why) {
2295  	case CLD_CONTINUED:
2296  		info.si_status = SIGCONT;
2297  		break;
2298  	case CLD_STOPPED:
2299  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2300  		break;
2301  	case CLD_TRAPPED:
2302  		info.si_status = tsk->exit_code & 0x7f;
2303  		break;
2304  	default:
2305  		BUG();
2306  	}
2307 
2308 	sighand = parent->sighand;
2309 	spin_lock_irqsave(&sighand->siglock, flags);
2310 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2311 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2312 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2313 	/*
2314 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2315 	 */
2316 	__wake_up_parent(tsk, parent);
2317 	spin_unlock_irqrestore(&sighand->siglock, flags);
2318 }
2319 
2320 /*
2321  * This must be called with current->sighand->siglock held.
2322  *
2323  * This should be the path for all ptrace stops.
2324  * We always set current->last_siginfo while stopped here.
2325  * That makes it a way to test a stopped process for
2326  * being ptrace-stopped vs being job-control-stopped.
2327  *
2328  * Returns the signal the ptracer requested the code resume
2329  * with.  If the code did not stop because the tracer is gone,
2330  * the stop signal remains unchanged unless clear_code.
2331  */
2332 static int ptrace_stop(int exit_code, int why, unsigned long message,
2333 		       kernel_siginfo_t *info)
2334 	__releases(&current->sighand->siglock)
2335 	__acquires(&current->sighand->siglock)
2336 {
2337 	bool gstop_done = false;
2338 
2339 	if (arch_ptrace_stop_needed()) {
2340 		/*
2341 		 * The arch code has something special to do before a
2342 		 * ptrace stop.  This is allowed to block, e.g. for faults
2343 		 * on user stack pages.  We can't keep the siglock while
2344 		 * calling arch_ptrace_stop, so we must release it now.
2345 		 * To preserve proper semantics, we must do this before
2346 		 * any signal bookkeeping like checking group_stop_count.
2347 		 */
2348 		spin_unlock_irq(&current->sighand->siglock);
2349 		arch_ptrace_stop();
2350 		spin_lock_irq(&current->sighand->siglock);
2351 	}
2352 
2353 	/*
2354 	 * After this point ptrace_signal_wake_up or signal_wake_up
2355 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2356 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2357 	 * signals here to prevent ptrace_stop sleeping in schedule.
2358 	 */
2359 	if (!current->ptrace || __fatal_signal_pending(current))
2360 		return exit_code;
2361 
2362 	set_special_state(TASK_TRACED);
2363 	current->jobctl |= JOBCTL_TRACED;
2364 
2365 	/*
2366 	 * We're committing to trapping.  TRACED should be visible before
2367 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2368 	 * Also, transition to TRACED and updates to ->jobctl should be
2369 	 * atomic with respect to siglock and should be done after the arch
2370 	 * hook as siglock is released and regrabbed across it.
2371 	 *
2372 	 *     TRACER				    TRACEE
2373 	 *
2374 	 *     ptrace_attach()
2375 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2376 	 *     do_wait()
2377 	 *       set_current_state()                smp_wmb();
2378 	 *       ptrace_do_wait()
2379 	 *         wait_task_stopped()
2380 	 *           task_stopped_code()
2381 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2382 	 */
2383 	smp_wmb();
2384 
2385 	current->ptrace_message = message;
2386 	current->last_siginfo = info;
2387 	current->exit_code = exit_code;
2388 
2389 	/*
2390 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2391 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2392 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2393 	 * could be clear now.  We act as if SIGCONT is received after
2394 	 * TASK_TRACED is entered - ignore it.
2395 	 */
2396 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2397 		gstop_done = task_participate_group_stop(current);
2398 
2399 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2400 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2401 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2402 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2403 
2404 	/* entering a trap, clear TRAPPING */
2405 	task_clear_jobctl_trapping(current);
2406 
2407 	spin_unlock_irq(&current->sighand->siglock);
2408 	read_lock(&tasklist_lock);
2409 	/*
2410 	 * Notify parents of the stop.
2411 	 *
2412 	 * While ptraced, there are two parents - the ptracer and
2413 	 * the real_parent of the group_leader.  The ptracer should
2414 	 * know about every stop while the real parent is only
2415 	 * interested in the completion of group stop.  The states
2416 	 * for the two don't interact with each other.  Notify
2417 	 * separately unless they're gonna be duplicates.
2418 	 */
2419 	if (current->ptrace)
2420 		do_notify_parent_cldstop(current, true, why);
2421 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2422 		do_notify_parent_cldstop(current, false, why);
2423 
2424 	/*
2425 	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2426 	 * One a PREEMPTION kernel this can result in preemption requirement
2427 	 * which will be fulfilled after read_unlock() and the ptracer will be
2428 	 * put on the CPU.
2429 	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2430 	 * this task wait in schedule(). If this task gets preempted then it
2431 	 * remains enqueued on the runqueue. The ptracer will observe this and
2432 	 * then sleep for a delay of one HZ tick. In the meantime this task
2433 	 * gets scheduled, enters schedule() and will wait for the ptracer.
2434 	 *
2435 	 * This preemption point is not bad from a correctness point of
2436 	 * view but extends the runtime by one HZ tick time due to the
2437 	 * ptracer's sleep.  The preempt-disable section ensures that there
2438 	 * will be no preemption between unlock and schedule() and so
2439 	 * improving the performance since the ptracer will observe that
2440 	 * the tracee is scheduled out once it gets on the CPU.
2441 	 *
2442 	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2443 	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2444 	 * before unlocking tasklist_lock so there is no benefit in doing this.
2445 	 *
2446 	 * In fact disabling preemption is harmful on PREEMPT_RT because
2447 	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2448 	 * with preemption disabled due to the 'sleeping' spinlock
2449 	 * substitution of RT.
2450 	 */
2451 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2452 		preempt_disable();
2453 	read_unlock(&tasklist_lock);
2454 	cgroup_enter_frozen();
2455 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2456 		preempt_enable_no_resched();
2457 	schedule();
2458 	cgroup_leave_frozen(true);
2459 
2460 	/*
2461 	 * We are back.  Now reacquire the siglock before touching
2462 	 * last_siginfo, so that we are sure to have synchronized with
2463 	 * any signal-sending on another CPU that wants to examine it.
2464 	 */
2465 	spin_lock_irq(&current->sighand->siglock);
2466 	exit_code = current->exit_code;
2467 	current->last_siginfo = NULL;
2468 	current->ptrace_message = 0;
2469 	current->exit_code = 0;
2470 
2471 	/* LISTENING can be set only during STOP traps, clear it */
2472 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2473 
2474 	/*
2475 	 * Queued signals ignored us while we were stopped for tracing.
2476 	 * So check for any that we should take before resuming user mode.
2477 	 * This sets TIF_SIGPENDING, but never clears it.
2478 	 */
2479 	recalc_sigpending_tsk(current);
2480 	return exit_code;
2481 }
2482 
2483 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2484 {
2485 	kernel_siginfo_t info;
2486 
2487 	clear_siginfo(&info);
2488 	info.si_signo = signr;
2489 	info.si_code = exit_code;
2490 	info.si_pid = task_pid_vnr(current);
2491 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2492 
2493 	/* Let the debugger run.  */
2494 	return ptrace_stop(exit_code, why, message, &info);
2495 }
2496 
2497 int ptrace_notify(int exit_code, unsigned long message)
2498 {
2499 	int signr;
2500 
2501 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2502 	if (unlikely(task_work_pending(current)))
2503 		task_work_run();
2504 
2505 	spin_lock_irq(&current->sighand->siglock);
2506 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2507 	spin_unlock_irq(&current->sighand->siglock);
2508 	return signr;
2509 }
2510 
2511 /**
2512  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2513  * @signr: signr causing group stop if initiating
2514  *
2515  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2516  * and participate in it.  If already set, participate in the existing
2517  * group stop.  If participated in a group stop (and thus slept), %true is
2518  * returned with siglock released.
2519  *
2520  * If ptraced, this function doesn't handle stop itself.  Instead,
2521  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2522  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2523  * places afterwards.
2524  *
2525  * CONTEXT:
2526  * Must be called with @current->sighand->siglock held, which is released
2527  * on %true return.
2528  *
2529  * RETURNS:
2530  * %false if group stop is already cancelled or ptrace trap is scheduled.
2531  * %true if participated in group stop.
2532  */
2533 static bool do_signal_stop(int signr)
2534 	__releases(&current->sighand->siglock)
2535 {
2536 	struct signal_struct *sig = current->signal;
2537 
2538 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2539 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2540 		struct task_struct *t;
2541 
2542 		/* signr will be recorded in task->jobctl for retries */
2543 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2544 
2545 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2546 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2547 		    unlikely(sig->group_exec_task))
2548 			return false;
2549 		/*
2550 		 * There is no group stop already in progress.  We must
2551 		 * initiate one now.
2552 		 *
2553 		 * While ptraced, a task may be resumed while group stop is
2554 		 * still in effect and then receive a stop signal and
2555 		 * initiate another group stop.  This deviates from the
2556 		 * usual behavior as two consecutive stop signals can't
2557 		 * cause two group stops when !ptraced.  That is why we
2558 		 * also check !task_is_stopped(t) below.
2559 		 *
2560 		 * The condition can be distinguished by testing whether
2561 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2562 		 * group_exit_code in such case.
2563 		 *
2564 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2565 		 * an intervening stop signal is required to cause two
2566 		 * continued events regardless of ptrace.
2567 		 */
2568 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2569 			sig->group_exit_code = signr;
2570 
2571 		sig->group_stop_count = 0;
2572 		if (task_set_jobctl_pending(current, signr | gstop))
2573 			sig->group_stop_count++;
2574 
2575 		for_other_threads(current, t) {
2576 			/*
2577 			 * Setting state to TASK_STOPPED for a group
2578 			 * stop is always done with the siglock held,
2579 			 * so this check has no races.
2580 			 */
2581 			if (!task_is_stopped(t) &&
2582 			    task_set_jobctl_pending(t, signr | gstop)) {
2583 				sig->group_stop_count++;
2584 				if (likely(!(t->ptrace & PT_SEIZED)))
2585 					signal_wake_up(t, 0);
2586 				else
2587 					ptrace_trap_notify(t);
2588 			}
2589 		}
2590 	}
2591 
2592 	if (likely(!current->ptrace)) {
2593 		int notify = 0;
2594 
2595 		/*
2596 		 * If there are no other threads in the group, or if there
2597 		 * is a group stop in progress and we are the last to stop,
2598 		 * report to the parent.
2599 		 */
2600 		if (task_participate_group_stop(current))
2601 			notify = CLD_STOPPED;
2602 
2603 		current->jobctl |= JOBCTL_STOPPED;
2604 		set_special_state(TASK_STOPPED);
2605 		spin_unlock_irq(&current->sighand->siglock);
2606 
2607 		/*
2608 		 * Notify the parent of the group stop completion.  Because
2609 		 * we're not holding either the siglock or tasklist_lock
2610 		 * here, ptracer may attach inbetween; however, this is for
2611 		 * group stop and should always be delivered to the real
2612 		 * parent of the group leader.  The new ptracer will get
2613 		 * its notification when this task transitions into
2614 		 * TASK_TRACED.
2615 		 */
2616 		if (notify) {
2617 			read_lock(&tasklist_lock);
2618 			do_notify_parent_cldstop(current, false, notify);
2619 			read_unlock(&tasklist_lock);
2620 		}
2621 
2622 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2623 		cgroup_enter_frozen();
2624 		schedule();
2625 		return true;
2626 	} else {
2627 		/*
2628 		 * While ptraced, group stop is handled by STOP trap.
2629 		 * Schedule it and let the caller deal with it.
2630 		 */
2631 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2632 		return false;
2633 	}
2634 }
2635 
2636 /**
2637  * do_jobctl_trap - take care of ptrace jobctl traps
2638  *
2639  * When PT_SEIZED, it's used for both group stop and explicit
2640  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2641  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2642  * the stop signal; otherwise, %SIGTRAP.
2643  *
2644  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2645  * number as exit_code and no siginfo.
2646  *
2647  * CONTEXT:
2648  * Must be called with @current->sighand->siglock held, which may be
2649  * released and re-acquired before returning with intervening sleep.
2650  */
2651 static void do_jobctl_trap(void)
2652 {
2653 	struct signal_struct *signal = current->signal;
2654 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2655 
2656 	if (current->ptrace & PT_SEIZED) {
2657 		if (!signal->group_stop_count &&
2658 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2659 			signr = SIGTRAP;
2660 		WARN_ON_ONCE(!signr);
2661 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2662 				 CLD_STOPPED, 0);
2663 	} else {
2664 		WARN_ON_ONCE(!signr);
2665 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2666 	}
2667 }
2668 
2669 /**
2670  * do_freezer_trap - handle the freezer jobctl trap
2671  *
2672  * Puts the task into frozen state, if only the task is not about to quit.
2673  * In this case it drops JOBCTL_TRAP_FREEZE.
2674  *
2675  * CONTEXT:
2676  * Must be called with @current->sighand->siglock held,
2677  * which is always released before returning.
2678  */
2679 static void do_freezer_trap(void)
2680 	__releases(&current->sighand->siglock)
2681 {
2682 	/*
2683 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2684 	 * let's make another loop to give it a chance to be handled.
2685 	 * In any case, we'll return back.
2686 	 */
2687 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2688 	     JOBCTL_TRAP_FREEZE) {
2689 		spin_unlock_irq(&current->sighand->siglock);
2690 		return;
2691 	}
2692 
2693 	/*
2694 	 * Now we're sure that there is no pending fatal signal and no
2695 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2696 	 * immediately (if there is a non-fatal signal pending), and
2697 	 * put the task into sleep.
2698 	 */
2699 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2700 	clear_thread_flag(TIF_SIGPENDING);
2701 	spin_unlock_irq(&current->sighand->siglock);
2702 	cgroup_enter_frozen();
2703 	schedule();
2704 
2705 	/*
2706 	 * We could've been woken by task_work, run it to clear
2707 	 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
2708 	 */
2709 	clear_notify_signal();
2710 	if (unlikely(task_work_pending(current)))
2711 		task_work_run();
2712 }
2713 
2714 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2715 {
2716 	/*
2717 	 * We do not check sig_kernel_stop(signr) but set this marker
2718 	 * unconditionally because we do not know whether debugger will
2719 	 * change signr. This flag has no meaning unless we are going
2720 	 * to stop after return from ptrace_stop(). In this case it will
2721 	 * be checked in do_signal_stop(), we should only stop if it was
2722 	 * not cleared by SIGCONT while we were sleeping. See also the
2723 	 * comment in dequeue_signal().
2724 	 */
2725 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2726 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2727 
2728 	/* We're back.  Did the debugger cancel the sig?  */
2729 	if (signr == 0)
2730 		return signr;
2731 
2732 	/*
2733 	 * Update the siginfo structure if the signal has
2734 	 * changed.  If the debugger wanted something
2735 	 * specific in the siginfo structure then it should
2736 	 * have updated *info via PTRACE_SETSIGINFO.
2737 	 */
2738 	if (signr != info->si_signo) {
2739 		clear_siginfo(info);
2740 		info->si_signo = signr;
2741 		info->si_errno = 0;
2742 		info->si_code = SI_USER;
2743 		rcu_read_lock();
2744 		info->si_pid = task_pid_vnr(current->parent);
2745 		info->si_uid = from_kuid_munged(current_user_ns(),
2746 						task_uid(current->parent));
2747 		rcu_read_unlock();
2748 	}
2749 
2750 	/* If the (new) signal is now blocked, requeue it.  */
2751 	if (sigismember(&current->blocked, signr) ||
2752 	    fatal_signal_pending(current)) {
2753 		send_signal_locked(signr, info, current, type);
2754 		signr = 0;
2755 	}
2756 
2757 	return signr;
2758 }
2759 
2760 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2761 {
2762 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2763 	case SIL_FAULT:
2764 	case SIL_FAULT_TRAPNO:
2765 	case SIL_FAULT_MCEERR:
2766 	case SIL_FAULT_BNDERR:
2767 	case SIL_FAULT_PKUERR:
2768 	case SIL_FAULT_PERF_EVENT:
2769 		ksig->info.si_addr = arch_untagged_si_addr(
2770 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2771 		break;
2772 	case SIL_KILL:
2773 	case SIL_TIMER:
2774 	case SIL_POLL:
2775 	case SIL_CHLD:
2776 	case SIL_RT:
2777 	case SIL_SYS:
2778 		break;
2779 	}
2780 }
2781 
2782 bool get_signal(struct ksignal *ksig)
2783 {
2784 	struct sighand_struct *sighand = current->sighand;
2785 	struct signal_struct *signal = current->signal;
2786 	int signr;
2787 
2788 	clear_notify_signal();
2789 	if (unlikely(task_work_pending(current)))
2790 		task_work_run();
2791 
2792 	if (!task_sigpending(current))
2793 		return false;
2794 
2795 	if (unlikely(uprobe_deny_signal()))
2796 		return false;
2797 
2798 	/*
2799 	 * Do this once, we can't return to user-mode if freezing() == T.
2800 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2801 	 * thus do not need another check after return.
2802 	 */
2803 	try_to_freeze();
2804 
2805 relock:
2806 	spin_lock_irq(&sighand->siglock);
2807 
2808 	/*
2809 	 * Every stopped thread goes here after wakeup. Check to see if
2810 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2811 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2812 	 */
2813 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2814 		int why;
2815 
2816 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2817 			why = CLD_CONTINUED;
2818 		else
2819 			why = CLD_STOPPED;
2820 
2821 		signal->flags &= ~SIGNAL_CLD_MASK;
2822 
2823 		spin_unlock_irq(&sighand->siglock);
2824 
2825 		/*
2826 		 * Notify the parent that we're continuing.  This event is
2827 		 * always per-process and doesn't make whole lot of sense
2828 		 * for ptracers, who shouldn't consume the state via
2829 		 * wait(2) either, but, for backward compatibility, notify
2830 		 * the ptracer of the group leader too unless it's gonna be
2831 		 * a duplicate.
2832 		 */
2833 		read_lock(&tasklist_lock);
2834 		do_notify_parent_cldstop(current, false, why);
2835 
2836 		if (ptrace_reparented(current->group_leader))
2837 			do_notify_parent_cldstop(current->group_leader,
2838 						true, why);
2839 		read_unlock(&tasklist_lock);
2840 
2841 		goto relock;
2842 	}
2843 
2844 	for (;;) {
2845 		struct k_sigaction *ka;
2846 		enum pid_type type;
2847 
2848 		/* Has this task already been marked for death? */
2849 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2850 		     signal->group_exec_task) {
2851 			signr = SIGKILL;
2852 			sigdelset(&current->pending.signal, SIGKILL);
2853 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2854 					     &sighand->action[SIGKILL-1]);
2855 			recalc_sigpending();
2856 			/*
2857 			 * implies do_group_exit() or return to PF_USER_WORKER,
2858 			 * no need to initialize ksig->info/etc.
2859 			 */
2860 			goto fatal;
2861 		}
2862 
2863 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2864 		    do_signal_stop(0))
2865 			goto relock;
2866 
2867 		if (unlikely(current->jobctl &
2868 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2869 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2870 				do_jobctl_trap();
2871 				spin_unlock_irq(&sighand->siglock);
2872 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2873 				do_freezer_trap();
2874 
2875 			goto relock;
2876 		}
2877 
2878 		/*
2879 		 * If the task is leaving the frozen state, let's update
2880 		 * cgroup counters and reset the frozen bit.
2881 		 */
2882 		if (unlikely(cgroup_task_frozen(current))) {
2883 			spin_unlock_irq(&sighand->siglock);
2884 			cgroup_leave_frozen(false);
2885 			goto relock;
2886 		}
2887 
2888 		/*
2889 		 * Signals generated by the execution of an instruction
2890 		 * need to be delivered before any other pending signals
2891 		 * so that the instruction pointer in the signal stack
2892 		 * frame points to the faulting instruction.
2893 		 */
2894 		type = PIDTYPE_PID;
2895 		signr = dequeue_synchronous_signal(&ksig->info);
2896 		if (!signr)
2897 			signr = dequeue_signal(&current->blocked, &ksig->info, &type);
2898 
2899 		if (!signr)
2900 			break; /* will return 0 */
2901 
2902 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2903 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2904 			signr = ptrace_signal(signr, &ksig->info, type);
2905 			if (!signr)
2906 				continue;
2907 		}
2908 
2909 		ka = &sighand->action[signr-1];
2910 
2911 		/* Trace actually delivered signals. */
2912 		trace_signal_deliver(signr, &ksig->info, ka);
2913 
2914 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2915 			continue;
2916 		if (ka->sa.sa_handler != SIG_DFL) {
2917 			/* Run the handler.  */
2918 			ksig->ka = *ka;
2919 
2920 			if (ka->sa.sa_flags & SA_ONESHOT)
2921 				ka->sa.sa_handler = SIG_DFL;
2922 
2923 			break; /* will return non-zero "signr" value */
2924 		}
2925 
2926 		/*
2927 		 * Now we are doing the default action for this signal.
2928 		 */
2929 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2930 			continue;
2931 
2932 		/*
2933 		 * Global init gets no signals it doesn't want.
2934 		 * Container-init gets no signals it doesn't want from same
2935 		 * container.
2936 		 *
2937 		 * Note that if global/container-init sees a sig_kernel_only()
2938 		 * signal here, the signal must have been generated internally
2939 		 * or must have come from an ancestor namespace. In either
2940 		 * case, the signal cannot be dropped.
2941 		 */
2942 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2943 				!sig_kernel_only(signr))
2944 			continue;
2945 
2946 		if (sig_kernel_stop(signr)) {
2947 			/*
2948 			 * The default action is to stop all threads in
2949 			 * the thread group.  The job control signals
2950 			 * do nothing in an orphaned pgrp, but SIGSTOP
2951 			 * always works.  Note that siglock needs to be
2952 			 * dropped during the call to is_orphaned_pgrp()
2953 			 * because of lock ordering with tasklist_lock.
2954 			 * This allows an intervening SIGCONT to be posted.
2955 			 * We need to check for that and bail out if necessary.
2956 			 */
2957 			if (signr != SIGSTOP) {
2958 				spin_unlock_irq(&sighand->siglock);
2959 
2960 				/* signals can be posted during this window */
2961 
2962 				if (is_current_pgrp_orphaned())
2963 					goto relock;
2964 
2965 				spin_lock_irq(&sighand->siglock);
2966 			}
2967 
2968 			if (likely(do_signal_stop(signr))) {
2969 				/* It released the siglock.  */
2970 				goto relock;
2971 			}
2972 
2973 			/*
2974 			 * We didn't actually stop, due to a race
2975 			 * with SIGCONT or something like that.
2976 			 */
2977 			continue;
2978 		}
2979 
2980 	fatal:
2981 		spin_unlock_irq(&sighand->siglock);
2982 		if (unlikely(cgroup_task_frozen(current)))
2983 			cgroup_leave_frozen(true);
2984 
2985 		/*
2986 		 * Anything else is fatal, maybe with a core dump.
2987 		 */
2988 		current->flags |= PF_SIGNALED;
2989 
2990 		if (sig_kernel_coredump(signr)) {
2991 			if (print_fatal_signals)
2992 				print_fatal_signal(signr);
2993 			proc_coredump_connector(current);
2994 			/*
2995 			 * If it was able to dump core, this kills all
2996 			 * other threads in the group and synchronizes with
2997 			 * their demise.  If we lost the race with another
2998 			 * thread getting here, it set group_exit_code
2999 			 * first and our do_group_exit call below will use
3000 			 * that value and ignore the one we pass it.
3001 			 */
3002 			do_coredump(&ksig->info);
3003 		}
3004 
3005 		/*
3006 		 * PF_USER_WORKER threads will catch and exit on fatal signals
3007 		 * themselves. They have cleanup that must be performed, so we
3008 		 * cannot call do_exit() on their behalf. Note that ksig won't
3009 		 * be properly initialized, PF_USER_WORKER's shouldn't use it.
3010 		 */
3011 		if (current->flags & PF_USER_WORKER)
3012 			goto out;
3013 
3014 		/*
3015 		 * Death signals, no core dump.
3016 		 */
3017 		do_group_exit(signr);
3018 		/* NOTREACHED */
3019 	}
3020 	spin_unlock_irq(&sighand->siglock);
3021 
3022 	ksig->sig = signr;
3023 
3024 	if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
3025 		hide_si_addr_tag_bits(ksig);
3026 out:
3027 	return signr > 0;
3028 }
3029 
3030 /**
3031  * signal_delivered - called after signal delivery to update blocked signals
3032  * @ksig:		kernel signal struct
3033  * @stepping:		nonzero if debugger single-step or block-step in use
3034  *
3035  * This function should be called when a signal has successfully been
3036  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
3037  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
3038  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
3039  */
3040 static void signal_delivered(struct ksignal *ksig, int stepping)
3041 {
3042 	sigset_t blocked;
3043 
3044 	/* A signal was successfully delivered, and the
3045 	   saved sigmask was stored on the signal frame,
3046 	   and will be restored by sigreturn.  So we can
3047 	   simply clear the restore sigmask flag.  */
3048 	clear_restore_sigmask();
3049 
3050 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
3051 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
3052 		sigaddset(&blocked, ksig->sig);
3053 	set_current_blocked(&blocked);
3054 	if (current->sas_ss_flags & SS_AUTODISARM)
3055 		sas_ss_reset(current);
3056 	if (stepping)
3057 		ptrace_notify(SIGTRAP, 0);
3058 }
3059 
3060 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
3061 {
3062 	if (failed)
3063 		force_sigsegv(ksig->sig);
3064 	else
3065 		signal_delivered(ksig, stepping);
3066 }
3067 
3068 /*
3069  * It could be that complete_signal() picked us to notify about the
3070  * group-wide signal. Other threads should be notified now to take
3071  * the shared signals in @which since we will not.
3072  */
3073 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
3074 {
3075 	sigset_t retarget;
3076 	struct task_struct *t;
3077 
3078 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
3079 	if (sigisemptyset(&retarget))
3080 		return;
3081 
3082 	for_other_threads(tsk, t) {
3083 		if (t->flags & PF_EXITING)
3084 			continue;
3085 
3086 		if (!has_pending_signals(&retarget, &t->blocked))
3087 			continue;
3088 		/* Remove the signals this thread can handle. */
3089 		sigandsets(&retarget, &retarget, &t->blocked);
3090 
3091 		if (!task_sigpending(t))
3092 			signal_wake_up(t, 0);
3093 
3094 		if (sigisemptyset(&retarget))
3095 			break;
3096 	}
3097 }
3098 
3099 void exit_signals(struct task_struct *tsk)
3100 {
3101 	int group_stop = 0;
3102 	sigset_t unblocked;
3103 
3104 	/*
3105 	 * @tsk is about to have PF_EXITING set - lock out users which
3106 	 * expect stable threadgroup.
3107 	 */
3108 	cgroup_threadgroup_change_begin(tsk);
3109 
3110 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3111 		sched_mm_cid_exit_signals(tsk);
3112 		tsk->flags |= PF_EXITING;
3113 		cgroup_threadgroup_change_end(tsk);
3114 		return;
3115 	}
3116 
3117 	spin_lock_irq(&tsk->sighand->siglock);
3118 	/*
3119 	 * From now this task is not visible for group-wide signals,
3120 	 * see wants_signal(), do_signal_stop().
3121 	 */
3122 	sched_mm_cid_exit_signals(tsk);
3123 	tsk->flags |= PF_EXITING;
3124 
3125 	cgroup_threadgroup_change_end(tsk);
3126 
3127 	if (!task_sigpending(tsk))
3128 		goto out;
3129 
3130 	unblocked = tsk->blocked;
3131 	signotset(&unblocked);
3132 	retarget_shared_pending(tsk, &unblocked);
3133 
3134 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3135 	    task_participate_group_stop(tsk))
3136 		group_stop = CLD_STOPPED;
3137 out:
3138 	spin_unlock_irq(&tsk->sighand->siglock);
3139 
3140 	/*
3141 	 * If group stop has completed, deliver the notification.  This
3142 	 * should always go to the real parent of the group leader.
3143 	 */
3144 	if (unlikely(group_stop)) {
3145 		read_lock(&tasklist_lock);
3146 		do_notify_parent_cldstop(tsk, false, group_stop);
3147 		read_unlock(&tasklist_lock);
3148 	}
3149 }
3150 
3151 /*
3152  * System call entry points.
3153  */
3154 
3155 /**
3156  *  sys_restart_syscall - restart a system call
3157  */
3158 SYSCALL_DEFINE0(restart_syscall)
3159 {
3160 	struct restart_block *restart = &current->restart_block;
3161 	return restart->fn(restart);
3162 }
3163 
3164 long do_no_restart_syscall(struct restart_block *param)
3165 {
3166 	return -EINTR;
3167 }
3168 
3169 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3170 {
3171 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3172 		sigset_t newblocked;
3173 		/* A set of now blocked but previously unblocked signals. */
3174 		sigandnsets(&newblocked, newset, &current->blocked);
3175 		retarget_shared_pending(tsk, &newblocked);
3176 	}
3177 	tsk->blocked = *newset;
3178 	recalc_sigpending();
3179 }
3180 
3181 /**
3182  * set_current_blocked - change current->blocked mask
3183  * @newset: new mask
3184  *
3185  * It is wrong to change ->blocked directly, this helper should be used
3186  * to ensure the process can't miss a shared signal we are going to block.
3187  */
3188 void set_current_blocked(sigset_t *newset)
3189 {
3190 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3191 	__set_current_blocked(newset);
3192 }
3193 
3194 void __set_current_blocked(const sigset_t *newset)
3195 {
3196 	struct task_struct *tsk = current;
3197 
3198 	/*
3199 	 * In case the signal mask hasn't changed, there is nothing we need
3200 	 * to do. The current->blocked shouldn't be modified by other task.
3201 	 */
3202 	if (sigequalsets(&tsk->blocked, newset))
3203 		return;
3204 
3205 	spin_lock_irq(&tsk->sighand->siglock);
3206 	__set_task_blocked(tsk, newset);
3207 	spin_unlock_irq(&tsk->sighand->siglock);
3208 }
3209 
3210 /*
3211  * This is also useful for kernel threads that want to temporarily
3212  * (or permanently) block certain signals.
3213  *
3214  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3215  * interface happily blocks "unblockable" signals like SIGKILL
3216  * and friends.
3217  */
3218 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3219 {
3220 	struct task_struct *tsk = current;
3221 	sigset_t newset;
3222 
3223 	/* Lockless, only current can change ->blocked, never from irq */
3224 	if (oldset)
3225 		*oldset = tsk->blocked;
3226 
3227 	switch (how) {
3228 	case SIG_BLOCK:
3229 		sigorsets(&newset, &tsk->blocked, set);
3230 		break;
3231 	case SIG_UNBLOCK:
3232 		sigandnsets(&newset, &tsk->blocked, set);
3233 		break;
3234 	case SIG_SETMASK:
3235 		newset = *set;
3236 		break;
3237 	default:
3238 		return -EINVAL;
3239 	}
3240 
3241 	__set_current_blocked(&newset);
3242 	return 0;
3243 }
3244 EXPORT_SYMBOL(sigprocmask);
3245 
3246 /*
3247  * The api helps set app-provided sigmasks.
3248  *
3249  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3250  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3251  *
3252  * Note that it does set_restore_sigmask() in advance, so it must be always
3253  * paired with restore_saved_sigmask_unless() before return from syscall.
3254  */
3255 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3256 {
3257 	sigset_t kmask;
3258 
3259 	if (!umask)
3260 		return 0;
3261 	if (sigsetsize != sizeof(sigset_t))
3262 		return -EINVAL;
3263 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3264 		return -EFAULT;
3265 
3266 	set_restore_sigmask();
3267 	current->saved_sigmask = current->blocked;
3268 	set_current_blocked(&kmask);
3269 
3270 	return 0;
3271 }
3272 
3273 #ifdef CONFIG_COMPAT
3274 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3275 			    size_t sigsetsize)
3276 {
3277 	sigset_t kmask;
3278 
3279 	if (!umask)
3280 		return 0;
3281 	if (sigsetsize != sizeof(compat_sigset_t))
3282 		return -EINVAL;
3283 	if (get_compat_sigset(&kmask, umask))
3284 		return -EFAULT;
3285 
3286 	set_restore_sigmask();
3287 	current->saved_sigmask = current->blocked;
3288 	set_current_blocked(&kmask);
3289 
3290 	return 0;
3291 }
3292 #endif
3293 
3294 /**
3295  *  sys_rt_sigprocmask - change the list of currently blocked signals
3296  *  @how: whether to add, remove, or set signals
3297  *  @nset: stores pending signals
3298  *  @oset: previous value of signal mask if non-null
3299  *  @sigsetsize: size of sigset_t type
3300  */
3301 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3302 		sigset_t __user *, oset, size_t, sigsetsize)
3303 {
3304 	sigset_t old_set, new_set;
3305 	int error;
3306 
3307 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3308 	if (sigsetsize != sizeof(sigset_t))
3309 		return -EINVAL;
3310 
3311 	old_set = current->blocked;
3312 
3313 	if (nset) {
3314 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3315 			return -EFAULT;
3316 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3317 
3318 		error = sigprocmask(how, &new_set, NULL);
3319 		if (error)
3320 			return error;
3321 	}
3322 
3323 	if (oset) {
3324 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3325 			return -EFAULT;
3326 	}
3327 
3328 	return 0;
3329 }
3330 
3331 #ifdef CONFIG_COMPAT
3332 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3333 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3334 {
3335 	sigset_t old_set = current->blocked;
3336 
3337 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3338 	if (sigsetsize != sizeof(sigset_t))
3339 		return -EINVAL;
3340 
3341 	if (nset) {
3342 		sigset_t new_set;
3343 		int error;
3344 		if (get_compat_sigset(&new_set, nset))
3345 			return -EFAULT;
3346 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3347 
3348 		error = sigprocmask(how, &new_set, NULL);
3349 		if (error)
3350 			return error;
3351 	}
3352 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3353 }
3354 #endif
3355 
3356 static void do_sigpending(sigset_t *set)
3357 {
3358 	spin_lock_irq(&current->sighand->siglock);
3359 	sigorsets(set, &current->pending.signal,
3360 		  &current->signal->shared_pending.signal);
3361 	spin_unlock_irq(&current->sighand->siglock);
3362 
3363 	/* Outside the lock because only this thread touches it.  */
3364 	sigandsets(set, &current->blocked, set);
3365 }
3366 
3367 /**
3368  *  sys_rt_sigpending - examine a pending signal that has been raised
3369  *			while blocked
3370  *  @uset: stores pending signals
3371  *  @sigsetsize: size of sigset_t type or larger
3372  */
3373 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3374 {
3375 	sigset_t set;
3376 
3377 	if (sigsetsize > sizeof(*uset))
3378 		return -EINVAL;
3379 
3380 	do_sigpending(&set);
3381 
3382 	if (copy_to_user(uset, &set, sigsetsize))
3383 		return -EFAULT;
3384 
3385 	return 0;
3386 }
3387 
3388 #ifdef CONFIG_COMPAT
3389 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3390 		compat_size_t, sigsetsize)
3391 {
3392 	sigset_t set;
3393 
3394 	if (sigsetsize > sizeof(*uset))
3395 		return -EINVAL;
3396 
3397 	do_sigpending(&set);
3398 
3399 	return put_compat_sigset(uset, &set, sigsetsize);
3400 }
3401 #endif
3402 
3403 static const struct {
3404 	unsigned char limit, layout;
3405 } sig_sicodes[] = {
3406 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3407 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3408 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3409 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3410 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3411 #if defined(SIGEMT)
3412 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3413 #endif
3414 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3415 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3416 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3417 };
3418 
3419 static bool known_siginfo_layout(unsigned sig, int si_code)
3420 {
3421 	if (si_code == SI_KERNEL)
3422 		return true;
3423 	else if ((si_code > SI_USER)) {
3424 		if (sig_specific_sicodes(sig)) {
3425 			if (si_code <= sig_sicodes[sig].limit)
3426 				return true;
3427 		}
3428 		else if (si_code <= NSIGPOLL)
3429 			return true;
3430 	}
3431 	else if (si_code >= SI_DETHREAD)
3432 		return true;
3433 	else if (si_code == SI_ASYNCNL)
3434 		return true;
3435 	return false;
3436 }
3437 
3438 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3439 {
3440 	enum siginfo_layout layout = SIL_KILL;
3441 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3442 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3443 		    (si_code <= sig_sicodes[sig].limit)) {
3444 			layout = sig_sicodes[sig].layout;
3445 			/* Handle the exceptions */
3446 			if ((sig == SIGBUS) &&
3447 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3448 				layout = SIL_FAULT_MCEERR;
3449 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3450 				layout = SIL_FAULT_BNDERR;
3451 #ifdef SEGV_PKUERR
3452 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3453 				layout = SIL_FAULT_PKUERR;
3454 #endif
3455 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3456 				layout = SIL_FAULT_PERF_EVENT;
3457 			else if (IS_ENABLED(CONFIG_SPARC) &&
3458 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3459 				layout = SIL_FAULT_TRAPNO;
3460 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3461 				 ((sig == SIGFPE) ||
3462 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3463 				layout = SIL_FAULT_TRAPNO;
3464 		}
3465 		else if (si_code <= NSIGPOLL)
3466 			layout = SIL_POLL;
3467 	} else {
3468 		if (si_code == SI_TIMER)
3469 			layout = SIL_TIMER;
3470 		else if (si_code == SI_SIGIO)
3471 			layout = SIL_POLL;
3472 		else if (si_code < 0)
3473 			layout = SIL_RT;
3474 	}
3475 	return layout;
3476 }
3477 
3478 static inline char __user *si_expansion(const siginfo_t __user *info)
3479 {
3480 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3481 }
3482 
3483 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3484 {
3485 	char __user *expansion = si_expansion(to);
3486 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3487 		return -EFAULT;
3488 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3489 		return -EFAULT;
3490 	return 0;
3491 }
3492 
3493 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3494 				       const siginfo_t __user *from)
3495 {
3496 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3497 		char __user *expansion = si_expansion(from);
3498 		char buf[SI_EXPANSION_SIZE];
3499 		int i;
3500 		/*
3501 		 * An unknown si_code might need more than
3502 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3503 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3504 		 * will return this data to userspace exactly.
3505 		 */
3506 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3507 			return -EFAULT;
3508 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3509 			if (buf[i] != 0)
3510 				return -E2BIG;
3511 		}
3512 	}
3513 	return 0;
3514 }
3515 
3516 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3517 				    const siginfo_t __user *from)
3518 {
3519 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3520 		return -EFAULT;
3521 	to->si_signo = signo;
3522 	return post_copy_siginfo_from_user(to, from);
3523 }
3524 
3525 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3526 {
3527 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3528 		return -EFAULT;
3529 	return post_copy_siginfo_from_user(to, from);
3530 }
3531 
3532 #ifdef CONFIG_COMPAT
3533 /**
3534  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3535  * @to: compat siginfo destination
3536  * @from: kernel siginfo source
3537  *
3538  * Note: This function does not work properly for the SIGCHLD on x32, but
3539  * fortunately it doesn't have to.  The only valid callers for this function are
3540  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3541  * The latter does not care because SIGCHLD will never cause a coredump.
3542  */
3543 void copy_siginfo_to_external32(struct compat_siginfo *to,
3544 		const struct kernel_siginfo *from)
3545 {
3546 	memset(to, 0, sizeof(*to));
3547 
3548 	to->si_signo = from->si_signo;
3549 	to->si_errno = from->si_errno;
3550 	to->si_code  = from->si_code;
3551 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3552 	case SIL_KILL:
3553 		to->si_pid = from->si_pid;
3554 		to->si_uid = from->si_uid;
3555 		break;
3556 	case SIL_TIMER:
3557 		to->si_tid     = from->si_tid;
3558 		to->si_overrun = from->si_overrun;
3559 		to->si_int     = from->si_int;
3560 		break;
3561 	case SIL_POLL:
3562 		to->si_band = from->si_band;
3563 		to->si_fd   = from->si_fd;
3564 		break;
3565 	case SIL_FAULT:
3566 		to->si_addr = ptr_to_compat(from->si_addr);
3567 		break;
3568 	case SIL_FAULT_TRAPNO:
3569 		to->si_addr = ptr_to_compat(from->si_addr);
3570 		to->si_trapno = from->si_trapno;
3571 		break;
3572 	case SIL_FAULT_MCEERR:
3573 		to->si_addr = ptr_to_compat(from->si_addr);
3574 		to->si_addr_lsb = from->si_addr_lsb;
3575 		break;
3576 	case SIL_FAULT_BNDERR:
3577 		to->si_addr = ptr_to_compat(from->si_addr);
3578 		to->si_lower = ptr_to_compat(from->si_lower);
3579 		to->si_upper = ptr_to_compat(from->si_upper);
3580 		break;
3581 	case SIL_FAULT_PKUERR:
3582 		to->si_addr = ptr_to_compat(from->si_addr);
3583 		to->si_pkey = from->si_pkey;
3584 		break;
3585 	case SIL_FAULT_PERF_EVENT:
3586 		to->si_addr = ptr_to_compat(from->si_addr);
3587 		to->si_perf_data = from->si_perf_data;
3588 		to->si_perf_type = from->si_perf_type;
3589 		to->si_perf_flags = from->si_perf_flags;
3590 		break;
3591 	case SIL_CHLD:
3592 		to->si_pid = from->si_pid;
3593 		to->si_uid = from->si_uid;
3594 		to->si_status = from->si_status;
3595 		to->si_utime = from->si_utime;
3596 		to->si_stime = from->si_stime;
3597 		break;
3598 	case SIL_RT:
3599 		to->si_pid = from->si_pid;
3600 		to->si_uid = from->si_uid;
3601 		to->si_int = from->si_int;
3602 		break;
3603 	case SIL_SYS:
3604 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3605 		to->si_syscall   = from->si_syscall;
3606 		to->si_arch      = from->si_arch;
3607 		break;
3608 	}
3609 }
3610 
3611 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3612 			   const struct kernel_siginfo *from)
3613 {
3614 	struct compat_siginfo new;
3615 
3616 	copy_siginfo_to_external32(&new, from);
3617 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3618 		return -EFAULT;
3619 	return 0;
3620 }
3621 
3622 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3623 					 const struct compat_siginfo *from)
3624 {
3625 	clear_siginfo(to);
3626 	to->si_signo = from->si_signo;
3627 	to->si_errno = from->si_errno;
3628 	to->si_code  = from->si_code;
3629 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3630 	case SIL_KILL:
3631 		to->si_pid = from->si_pid;
3632 		to->si_uid = from->si_uid;
3633 		break;
3634 	case SIL_TIMER:
3635 		to->si_tid     = from->si_tid;
3636 		to->si_overrun = from->si_overrun;
3637 		to->si_int     = from->si_int;
3638 		break;
3639 	case SIL_POLL:
3640 		to->si_band = from->si_band;
3641 		to->si_fd   = from->si_fd;
3642 		break;
3643 	case SIL_FAULT:
3644 		to->si_addr = compat_ptr(from->si_addr);
3645 		break;
3646 	case SIL_FAULT_TRAPNO:
3647 		to->si_addr = compat_ptr(from->si_addr);
3648 		to->si_trapno = from->si_trapno;
3649 		break;
3650 	case SIL_FAULT_MCEERR:
3651 		to->si_addr = compat_ptr(from->si_addr);
3652 		to->si_addr_lsb = from->si_addr_lsb;
3653 		break;
3654 	case SIL_FAULT_BNDERR:
3655 		to->si_addr = compat_ptr(from->si_addr);
3656 		to->si_lower = compat_ptr(from->si_lower);
3657 		to->si_upper = compat_ptr(from->si_upper);
3658 		break;
3659 	case SIL_FAULT_PKUERR:
3660 		to->si_addr = compat_ptr(from->si_addr);
3661 		to->si_pkey = from->si_pkey;
3662 		break;
3663 	case SIL_FAULT_PERF_EVENT:
3664 		to->si_addr = compat_ptr(from->si_addr);
3665 		to->si_perf_data = from->si_perf_data;
3666 		to->si_perf_type = from->si_perf_type;
3667 		to->si_perf_flags = from->si_perf_flags;
3668 		break;
3669 	case SIL_CHLD:
3670 		to->si_pid    = from->si_pid;
3671 		to->si_uid    = from->si_uid;
3672 		to->si_status = from->si_status;
3673 #ifdef CONFIG_X86_X32_ABI
3674 		if (in_x32_syscall()) {
3675 			to->si_utime = from->_sifields._sigchld_x32._utime;
3676 			to->si_stime = from->_sifields._sigchld_x32._stime;
3677 		} else
3678 #endif
3679 		{
3680 			to->si_utime = from->si_utime;
3681 			to->si_stime = from->si_stime;
3682 		}
3683 		break;
3684 	case SIL_RT:
3685 		to->si_pid = from->si_pid;
3686 		to->si_uid = from->si_uid;
3687 		to->si_int = from->si_int;
3688 		break;
3689 	case SIL_SYS:
3690 		to->si_call_addr = compat_ptr(from->si_call_addr);
3691 		to->si_syscall   = from->si_syscall;
3692 		to->si_arch      = from->si_arch;
3693 		break;
3694 	}
3695 	return 0;
3696 }
3697 
3698 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3699 				      const struct compat_siginfo __user *ufrom)
3700 {
3701 	struct compat_siginfo from;
3702 
3703 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3704 		return -EFAULT;
3705 
3706 	from.si_signo = signo;
3707 	return post_copy_siginfo_from_user32(to, &from);
3708 }
3709 
3710 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3711 			     const struct compat_siginfo __user *ufrom)
3712 {
3713 	struct compat_siginfo from;
3714 
3715 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3716 		return -EFAULT;
3717 
3718 	return post_copy_siginfo_from_user32(to, &from);
3719 }
3720 #endif /* CONFIG_COMPAT */
3721 
3722 /**
3723  *  do_sigtimedwait - wait for queued signals specified in @which
3724  *  @which: queued signals to wait for
3725  *  @info: if non-null, the signal's siginfo is returned here
3726  *  @ts: upper bound on process time suspension
3727  */
3728 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3729 		    const struct timespec64 *ts)
3730 {
3731 	ktime_t *to = NULL, timeout = KTIME_MAX;
3732 	struct task_struct *tsk = current;
3733 	sigset_t mask = *which;
3734 	enum pid_type type;
3735 	int sig, ret = 0;
3736 
3737 	if (ts) {
3738 		if (!timespec64_valid(ts))
3739 			return -EINVAL;
3740 		timeout = timespec64_to_ktime(*ts);
3741 		to = &timeout;
3742 	}
3743 
3744 	/*
3745 	 * Invert the set of allowed signals to get those we want to block.
3746 	 */
3747 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3748 	signotset(&mask);
3749 
3750 	spin_lock_irq(&tsk->sighand->siglock);
3751 	sig = dequeue_signal(&mask, info, &type);
3752 	if (!sig && timeout) {
3753 		/*
3754 		 * None ready, temporarily unblock those we're interested
3755 		 * while we are sleeping in so that we'll be awakened when
3756 		 * they arrive. Unblocking is always fine, we can avoid
3757 		 * set_current_blocked().
3758 		 */
3759 		tsk->real_blocked = tsk->blocked;
3760 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3761 		recalc_sigpending();
3762 		spin_unlock_irq(&tsk->sighand->siglock);
3763 
3764 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3765 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3766 					       HRTIMER_MODE_REL);
3767 		spin_lock_irq(&tsk->sighand->siglock);
3768 		__set_task_blocked(tsk, &tsk->real_blocked);
3769 		sigemptyset(&tsk->real_blocked);
3770 		sig = dequeue_signal(&mask, info, &type);
3771 	}
3772 	spin_unlock_irq(&tsk->sighand->siglock);
3773 
3774 	if (sig)
3775 		return sig;
3776 	return ret ? -EINTR : -EAGAIN;
3777 }
3778 
3779 /**
3780  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3781  *			in @uthese
3782  *  @uthese: queued signals to wait for
3783  *  @uinfo: if non-null, the signal's siginfo is returned here
3784  *  @uts: upper bound on process time suspension
3785  *  @sigsetsize: size of sigset_t type
3786  */
3787 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3788 		siginfo_t __user *, uinfo,
3789 		const struct __kernel_timespec __user *, uts,
3790 		size_t, sigsetsize)
3791 {
3792 	sigset_t these;
3793 	struct timespec64 ts;
3794 	kernel_siginfo_t info;
3795 	int ret;
3796 
3797 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3798 	if (sigsetsize != sizeof(sigset_t))
3799 		return -EINVAL;
3800 
3801 	if (copy_from_user(&these, uthese, sizeof(these)))
3802 		return -EFAULT;
3803 
3804 	if (uts) {
3805 		if (get_timespec64(&ts, uts))
3806 			return -EFAULT;
3807 	}
3808 
3809 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3810 
3811 	if (ret > 0 && uinfo) {
3812 		if (copy_siginfo_to_user(uinfo, &info))
3813 			ret = -EFAULT;
3814 	}
3815 
3816 	return ret;
3817 }
3818 
3819 #ifdef CONFIG_COMPAT_32BIT_TIME
3820 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3821 		siginfo_t __user *, uinfo,
3822 		const struct old_timespec32 __user *, uts,
3823 		size_t, sigsetsize)
3824 {
3825 	sigset_t these;
3826 	struct timespec64 ts;
3827 	kernel_siginfo_t info;
3828 	int ret;
3829 
3830 	if (sigsetsize != sizeof(sigset_t))
3831 		return -EINVAL;
3832 
3833 	if (copy_from_user(&these, uthese, sizeof(these)))
3834 		return -EFAULT;
3835 
3836 	if (uts) {
3837 		if (get_old_timespec32(&ts, uts))
3838 			return -EFAULT;
3839 	}
3840 
3841 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3842 
3843 	if (ret > 0 && uinfo) {
3844 		if (copy_siginfo_to_user(uinfo, &info))
3845 			ret = -EFAULT;
3846 	}
3847 
3848 	return ret;
3849 }
3850 #endif
3851 
3852 #ifdef CONFIG_COMPAT
3853 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3854 		struct compat_siginfo __user *, uinfo,
3855 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3856 {
3857 	sigset_t s;
3858 	struct timespec64 t;
3859 	kernel_siginfo_t info;
3860 	long ret;
3861 
3862 	if (sigsetsize != sizeof(sigset_t))
3863 		return -EINVAL;
3864 
3865 	if (get_compat_sigset(&s, uthese))
3866 		return -EFAULT;
3867 
3868 	if (uts) {
3869 		if (get_timespec64(&t, uts))
3870 			return -EFAULT;
3871 	}
3872 
3873 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3874 
3875 	if (ret > 0 && uinfo) {
3876 		if (copy_siginfo_to_user32(uinfo, &info))
3877 			ret = -EFAULT;
3878 	}
3879 
3880 	return ret;
3881 }
3882 
3883 #ifdef CONFIG_COMPAT_32BIT_TIME
3884 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3885 		struct compat_siginfo __user *, uinfo,
3886 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3887 {
3888 	sigset_t s;
3889 	struct timespec64 t;
3890 	kernel_siginfo_t info;
3891 	long ret;
3892 
3893 	if (sigsetsize != sizeof(sigset_t))
3894 		return -EINVAL;
3895 
3896 	if (get_compat_sigset(&s, uthese))
3897 		return -EFAULT;
3898 
3899 	if (uts) {
3900 		if (get_old_timespec32(&t, uts))
3901 			return -EFAULT;
3902 	}
3903 
3904 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3905 
3906 	if (ret > 0 && uinfo) {
3907 		if (copy_siginfo_to_user32(uinfo, &info))
3908 			ret = -EFAULT;
3909 	}
3910 
3911 	return ret;
3912 }
3913 #endif
3914 #endif
3915 
3916 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3917 				 enum pid_type type)
3918 {
3919 	clear_siginfo(info);
3920 	info->si_signo = sig;
3921 	info->si_errno = 0;
3922 	info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3923 	info->si_pid = task_tgid_vnr(current);
3924 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3925 }
3926 
3927 /**
3928  *  sys_kill - send a signal to a process
3929  *  @pid: the PID of the process
3930  *  @sig: signal to be sent
3931  */
3932 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3933 {
3934 	struct kernel_siginfo info;
3935 
3936 	prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3937 
3938 	return kill_something_info(sig, &info, pid);
3939 }
3940 
3941 /*
3942  * Verify that the signaler and signalee either are in the same pid namespace
3943  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3944  * namespace.
3945  */
3946 static bool access_pidfd_pidns(struct pid *pid)
3947 {
3948 	struct pid_namespace *active = task_active_pid_ns(current);
3949 	struct pid_namespace *p = ns_of_pid(pid);
3950 
3951 	for (;;) {
3952 		if (!p)
3953 			return false;
3954 		if (p == active)
3955 			break;
3956 		p = p->parent;
3957 	}
3958 
3959 	return true;
3960 }
3961 
3962 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3963 		siginfo_t __user *info)
3964 {
3965 #ifdef CONFIG_COMPAT
3966 	/*
3967 	 * Avoid hooking up compat syscalls and instead handle necessary
3968 	 * conversions here. Note, this is a stop-gap measure and should not be
3969 	 * considered a generic solution.
3970 	 */
3971 	if (in_compat_syscall())
3972 		return copy_siginfo_from_user32(
3973 			kinfo, (struct compat_siginfo __user *)info);
3974 #endif
3975 	return copy_siginfo_from_user(kinfo, info);
3976 }
3977 
3978 static struct pid *pidfd_to_pid(const struct file *file)
3979 {
3980 	struct pid *pid;
3981 
3982 	pid = pidfd_pid(file);
3983 	if (!IS_ERR(pid))
3984 		return pid;
3985 
3986 	return tgid_pidfd_to_pid(file);
3987 }
3988 
3989 #define PIDFD_SEND_SIGNAL_FLAGS                            \
3990 	(PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
3991 	 PIDFD_SIGNAL_PROCESS_GROUP)
3992 
3993 /**
3994  * sys_pidfd_send_signal - Signal a process through a pidfd
3995  * @pidfd:  file descriptor of the process
3996  * @sig:    signal to send
3997  * @info:   signal info
3998  * @flags:  future flags
3999  *
4000  * Send the signal to the thread group or to the individual thread depending
4001  * on PIDFD_THREAD.
4002  * In the future extension to @flags may be used to override the default scope
4003  * of @pidfd.
4004  *
4005  * Return: 0 on success, negative errno on failure
4006  */
4007 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
4008 		siginfo_t __user *, info, unsigned int, flags)
4009 {
4010 	int ret;
4011 	struct pid *pid;
4012 	kernel_siginfo_t kinfo;
4013 	enum pid_type type;
4014 
4015 	/* Enforce flags be set to 0 until we add an extension. */
4016 	if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
4017 		return -EINVAL;
4018 
4019 	/* Ensure that only a single signal scope determining flag is set. */
4020 	if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
4021 		return -EINVAL;
4022 
4023 	CLASS(fd, f)(pidfd);
4024 	if (fd_empty(f))
4025 		return -EBADF;
4026 
4027 	/* Is this a pidfd? */
4028 	pid = pidfd_to_pid(fd_file(f));
4029 	if (IS_ERR(pid))
4030 		return PTR_ERR(pid);
4031 
4032 	if (!access_pidfd_pidns(pid))
4033 		return -EINVAL;
4034 
4035 	switch (flags) {
4036 	case 0:
4037 		/* Infer scope from the type of pidfd. */
4038 		if (fd_file(f)->f_flags & PIDFD_THREAD)
4039 			type = PIDTYPE_PID;
4040 		else
4041 			type = PIDTYPE_TGID;
4042 		break;
4043 	case PIDFD_SIGNAL_THREAD:
4044 		type = PIDTYPE_PID;
4045 		break;
4046 	case PIDFD_SIGNAL_THREAD_GROUP:
4047 		type = PIDTYPE_TGID;
4048 		break;
4049 	case PIDFD_SIGNAL_PROCESS_GROUP:
4050 		type = PIDTYPE_PGID;
4051 		break;
4052 	}
4053 
4054 	if (info) {
4055 		ret = copy_siginfo_from_user_any(&kinfo, info);
4056 		if (unlikely(ret))
4057 			return ret;
4058 
4059 		if (unlikely(sig != kinfo.si_signo))
4060 			return -EINVAL;
4061 
4062 		/* Only allow sending arbitrary signals to yourself. */
4063 		if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
4064 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
4065 			return -EPERM;
4066 	} else {
4067 		prepare_kill_siginfo(sig, &kinfo, type);
4068 	}
4069 
4070 	if (type == PIDTYPE_PGID)
4071 		return kill_pgrp_info(sig, &kinfo, pid);
4072 	else
4073 		return kill_pid_info_type(sig, &kinfo, pid, type);
4074 }
4075 
4076 static int
4077 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
4078 {
4079 	struct task_struct *p;
4080 	int error = -ESRCH;
4081 
4082 	rcu_read_lock();
4083 	p = find_task_by_vpid(pid);
4084 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
4085 		error = check_kill_permission(sig, info, p);
4086 		/*
4087 		 * The null signal is a permissions and process existence
4088 		 * probe.  No signal is actually delivered.
4089 		 */
4090 		if (!error && sig) {
4091 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
4092 			/*
4093 			 * If lock_task_sighand() failed we pretend the task
4094 			 * dies after receiving the signal. The window is tiny,
4095 			 * and the signal is private anyway.
4096 			 */
4097 			if (unlikely(error == -ESRCH))
4098 				error = 0;
4099 		}
4100 	}
4101 	rcu_read_unlock();
4102 
4103 	return error;
4104 }
4105 
4106 static int do_tkill(pid_t tgid, pid_t pid, int sig)
4107 {
4108 	struct kernel_siginfo info;
4109 
4110 	prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4111 
4112 	return do_send_specific(tgid, pid, sig, &info);
4113 }
4114 
4115 /**
4116  *  sys_tgkill - send signal to one specific thread
4117  *  @tgid: the thread group ID of the thread
4118  *  @pid: the PID of the thread
4119  *  @sig: signal to be sent
4120  *
4121  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
4122  *  exists but it's not belonging to the target process anymore. This
4123  *  method solves the problem of threads exiting and PIDs getting reused.
4124  */
4125 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4126 {
4127 	/* This is only valid for single tasks */
4128 	if (pid <= 0 || tgid <= 0)
4129 		return -EINVAL;
4130 
4131 	return do_tkill(tgid, pid, sig);
4132 }
4133 
4134 /**
4135  *  sys_tkill - send signal to one specific task
4136  *  @pid: the PID of the task
4137  *  @sig: signal to be sent
4138  *
4139  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4140  */
4141 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4142 {
4143 	/* This is only valid for single tasks */
4144 	if (pid <= 0)
4145 		return -EINVAL;
4146 
4147 	return do_tkill(0, pid, sig);
4148 }
4149 
4150 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4151 {
4152 	/* Not even root can pretend to send signals from the kernel.
4153 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4154 	 */
4155 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4156 	    (task_pid_vnr(current) != pid))
4157 		return -EPERM;
4158 
4159 	/* POSIX.1b doesn't mention process groups.  */
4160 	return kill_proc_info(sig, info, pid);
4161 }
4162 
4163 /**
4164  *  sys_rt_sigqueueinfo - send signal information to a signal
4165  *  @pid: the PID of the thread
4166  *  @sig: signal to be sent
4167  *  @uinfo: signal info to be sent
4168  */
4169 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4170 		siginfo_t __user *, uinfo)
4171 {
4172 	kernel_siginfo_t info;
4173 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4174 	if (unlikely(ret))
4175 		return ret;
4176 	return do_rt_sigqueueinfo(pid, sig, &info);
4177 }
4178 
4179 #ifdef CONFIG_COMPAT
4180 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4181 			compat_pid_t, pid,
4182 			int, sig,
4183 			struct compat_siginfo __user *, uinfo)
4184 {
4185 	kernel_siginfo_t info;
4186 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4187 	if (unlikely(ret))
4188 		return ret;
4189 	return do_rt_sigqueueinfo(pid, sig, &info);
4190 }
4191 #endif
4192 
4193 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4194 {
4195 	/* This is only valid for single tasks */
4196 	if (pid <= 0 || tgid <= 0)
4197 		return -EINVAL;
4198 
4199 	/* Not even root can pretend to send signals from the kernel.
4200 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4201 	 */
4202 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4203 	    (task_pid_vnr(current) != pid))
4204 		return -EPERM;
4205 
4206 	return do_send_specific(tgid, pid, sig, info);
4207 }
4208 
4209 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4210 		siginfo_t __user *, uinfo)
4211 {
4212 	kernel_siginfo_t info;
4213 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4214 	if (unlikely(ret))
4215 		return ret;
4216 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4217 }
4218 
4219 #ifdef CONFIG_COMPAT
4220 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4221 			compat_pid_t, tgid,
4222 			compat_pid_t, pid,
4223 			int, sig,
4224 			struct compat_siginfo __user *, uinfo)
4225 {
4226 	kernel_siginfo_t info;
4227 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4228 	if (unlikely(ret))
4229 		return ret;
4230 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4231 }
4232 #endif
4233 
4234 /*
4235  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4236  */
4237 void kernel_sigaction(int sig, __sighandler_t action)
4238 {
4239 	spin_lock_irq(&current->sighand->siglock);
4240 	current->sighand->action[sig - 1].sa.sa_handler = action;
4241 	if (action == SIG_IGN) {
4242 		sigset_t mask;
4243 
4244 		sigemptyset(&mask);
4245 		sigaddset(&mask, sig);
4246 
4247 		flush_sigqueue_mask(current, &mask, &current->signal->shared_pending);
4248 		flush_sigqueue_mask(current, &mask, &current->pending);
4249 		recalc_sigpending();
4250 	}
4251 	spin_unlock_irq(&current->sighand->siglock);
4252 }
4253 EXPORT_SYMBOL(kernel_sigaction);
4254 
4255 void __weak sigaction_compat_abi(struct k_sigaction *act,
4256 		struct k_sigaction *oact)
4257 {
4258 }
4259 
4260 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4261 {
4262 	struct task_struct *p = current, *t;
4263 	struct k_sigaction *k;
4264 	sigset_t mask;
4265 
4266 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4267 		return -EINVAL;
4268 
4269 	k = &p->sighand->action[sig-1];
4270 
4271 	spin_lock_irq(&p->sighand->siglock);
4272 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4273 		spin_unlock_irq(&p->sighand->siglock);
4274 		return -EINVAL;
4275 	}
4276 	if (oact)
4277 		*oact = *k;
4278 
4279 	/*
4280 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4281 	 * e.g. by having an architecture use the bit in their uapi.
4282 	 */
4283 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4284 
4285 	/*
4286 	 * Clear unknown flag bits in order to allow userspace to detect missing
4287 	 * support for flag bits and to allow the kernel to use non-uapi bits
4288 	 * internally.
4289 	 */
4290 	if (act)
4291 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4292 	if (oact)
4293 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4294 
4295 	sigaction_compat_abi(act, oact);
4296 
4297 	if (act) {
4298 		bool was_ignored = k->sa.sa_handler == SIG_IGN;
4299 
4300 		sigdelsetmask(&act->sa.sa_mask,
4301 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4302 		*k = *act;
4303 		/*
4304 		 * POSIX 3.3.1.3:
4305 		 *  "Setting a signal action to SIG_IGN for a signal that is
4306 		 *   pending shall cause the pending signal to be discarded,
4307 		 *   whether or not it is blocked."
4308 		 *
4309 		 *  "Setting a signal action to SIG_DFL for a signal that is
4310 		 *   pending and whose default action is to ignore the signal
4311 		 *   (for example, SIGCHLD), shall cause the pending signal to
4312 		 *   be discarded, whether or not it is blocked"
4313 		 */
4314 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4315 			sigemptyset(&mask);
4316 			sigaddset(&mask, sig);
4317 			flush_sigqueue_mask(p, &mask, &p->signal->shared_pending);
4318 			for_each_thread(p, t)
4319 				flush_sigqueue_mask(p, &mask, &t->pending);
4320 		} else if (was_ignored) {
4321 			posixtimer_sig_unignore(p, sig);
4322 		}
4323 	}
4324 
4325 	spin_unlock_irq(&p->sighand->siglock);
4326 	return 0;
4327 }
4328 
4329 #ifdef CONFIG_DYNAMIC_SIGFRAME
4330 static inline void sigaltstack_lock(void)
4331 	__acquires(&current->sighand->siglock)
4332 {
4333 	spin_lock_irq(&current->sighand->siglock);
4334 }
4335 
4336 static inline void sigaltstack_unlock(void)
4337 	__releases(&current->sighand->siglock)
4338 {
4339 	spin_unlock_irq(&current->sighand->siglock);
4340 }
4341 #else
4342 static inline void sigaltstack_lock(void) { }
4343 static inline void sigaltstack_unlock(void) { }
4344 #endif
4345 
4346 static int
4347 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4348 		size_t min_ss_size)
4349 {
4350 	struct task_struct *t = current;
4351 	int ret = 0;
4352 
4353 	if (oss) {
4354 		memset(oss, 0, sizeof(stack_t));
4355 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4356 		oss->ss_size = t->sas_ss_size;
4357 		oss->ss_flags = sas_ss_flags(sp) |
4358 			(current->sas_ss_flags & SS_FLAG_BITS);
4359 	}
4360 
4361 	if (ss) {
4362 		void __user *ss_sp = ss->ss_sp;
4363 		size_t ss_size = ss->ss_size;
4364 		unsigned ss_flags = ss->ss_flags;
4365 		int ss_mode;
4366 
4367 		if (unlikely(on_sig_stack(sp)))
4368 			return -EPERM;
4369 
4370 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4371 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4372 				ss_mode != 0))
4373 			return -EINVAL;
4374 
4375 		/*
4376 		 * Return before taking any locks if no actual
4377 		 * sigaltstack changes were requested.
4378 		 */
4379 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4380 		    t->sas_ss_size == ss_size &&
4381 		    t->sas_ss_flags == ss_flags)
4382 			return 0;
4383 
4384 		sigaltstack_lock();
4385 		if (ss_mode == SS_DISABLE) {
4386 			ss_size = 0;
4387 			ss_sp = NULL;
4388 		} else {
4389 			if (unlikely(ss_size < min_ss_size))
4390 				ret = -ENOMEM;
4391 			if (!sigaltstack_size_valid(ss_size))
4392 				ret = -ENOMEM;
4393 		}
4394 		if (!ret) {
4395 			t->sas_ss_sp = (unsigned long) ss_sp;
4396 			t->sas_ss_size = ss_size;
4397 			t->sas_ss_flags = ss_flags;
4398 		}
4399 		sigaltstack_unlock();
4400 	}
4401 	return ret;
4402 }
4403 
4404 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4405 {
4406 	stack_t new, old;
4407 	int err;
4408 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4409 		return -EFAULT;
4410 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4411 			      current_user_stack_pointer(),
4412 			      MINSIGSTKSZ);
4413 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4414 		err = -EFAULT;
4415 	return err;
4416 }
4417 
4418 int restore_altstack(const stack_t __user *uss)
4419 {
4420 	stack_t new;
4421 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4422 		return -EFAULT;
4423 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4424 			     MINSIGSTKSZ);
4425 	/* squash all but EFAULT for now */
4426 	return 0;
4427 }
4428 
4429 int __save_altstack(stack_t __user *uss, unsigned long sp)
4430 {
4431 	struct task_struct *t = current;
4432 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4433 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4434 		__put_user(t->sas_ss_size, &uss->ss_size);
4435 	return err;
4436 }
4437 
4438 #ifdef CONFIG_COMPAT
4439 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4440 				 compat_stack_t __user *uoss_ptr)
4441 {
4442 	stack_t uss, uoss;
4443 	int ret;
4444 
4445 	if (uss_ptr) {
4446 		compat_stack_t uss32;
4447 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4448 			return -EFAULT;
4449 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4450 		uss.ss_flags = uss32.ss_flags;
4451 		uss.ss_size = uss32.ss_size;
4452 	}
4453 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4454 			     compat_user_stack_pointer(),
4455 			     COMPAT_MINSIGSTKSZ);
4456 	if (ret >= 0 && uoss_ptr)  {
4457 		compat_stack_t old;
4458 		memset(&old, 0, sizeof(old));
4459 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4460 		old.ss_flags = uoss.ss_flags;
4461 		old.ss_size = uoss.ss_size;
4462 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4463 			ret = -EFAULT;
4464 	}
4465 	return ret;
4466 }
4467 
4468 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4469 			const compat_stack_t __user *, uss_ptr,
4470 			compat_stack_t __user *, uoss_ptr)
4471 {
4472 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4473 }
4474 
4475 int compat_restore_altstack(const compat_stack_t __user *uss)
4476 {
4477 	int err = do_compat_sigaltstack(uss, NULL);
4478 	/* squash all but -EFAULT for now */
4479 	return err == -EFAULT ? err : 0;
4480 }
4481 
4482 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4483 {
4484 	int err;
4485 	struct task_struct *t = current;
4486 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4487 			 &uss->ss_sp) |
4488 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4489 		__put_user(t->sas_ss_size, &uss->ss_size);
4490 	return err;
4491 }
4492 #endif
4493 
4494 #ifdef __ARCH_WANT_SYS_SIGPENDING
4495 
4496 /**
4497  *  sys_sigpending - examine pending signals
4498  *  @uset: where mask of pending signal is returned
4499  */
4500 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4501 {
4502 	sigset_t set;
4503 
4504 	if (sizeof(old_sigset_t) > sizeof(*uset))
4505 		return -EINVAL;
4506 
4507 	do_sigpending(&set);
4508 
4509 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4510 		return -EFAULT;
4511 
4512 	return 0;
4513 }
4514 
4515 #ifdef CONFIG_COMPAT
4516 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4517 {
4518 	sigset_t set;
4519 
4520 	do_sigpending(&set);
4521 
4522 	return put_user(set.sig[0], set32);
4523 }
4524 #endif
4525 
4526 #endif
4527 
4528 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4529 /**
4530  *  sys_sigprocmask - examine and change blocked signals
4531  *  @how: whether to add, remove, or set signals
4532  *  @nset: signals to add or remove (if non-null)
4533  *  @oset: previous value of signal mask if non-null
4534  *
4535  * Some platforms have their own version with special arguments;
4536  * others support only sys_rt_sigprocmask.
4537  */
4538 
4539 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4540 		old_sigset_t __user *, oset)
4541 {
4542 	old_sigset_t old_set, new_set;
4543 	sigset_t new_blocked;
4544 
4545 	old_set = current->blocked.sig[0];
4546 
4547 	if (nset) {
4548 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4549 			return -EFAULT;
4550 
4551 		new_blocked = current->blocked;
4552 
4553 		switch (how) {
4554 		case SIG_BLOCK:
4555 			sigaddsetmask(&new_blocked, new_set);
4556 			break;
4557 		case SIG_UNBLOCK:
4558 			sigdelsetmask(&new_blocked, new_set);
4559 			break;
4560 		case SIG_SETMASK:
4561 			new_blocked.sig[0] = new_set;
4562 			break;
4563 		default:
4564 			return -EINVAL;
4565 		}
4566 
4567 		set_current_blocked(&new_blocked);
4568 	}
4569 
4570 	if (oset) {
4571 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4572 			return -EFAULT;
4573 	}
4574 
4575 	return 0;
4576 }
4577 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4578 
4579 #ifndef CONFIG_ODD_RT_SIGACTION
4580 /**
4581  *  sys_rt_sigaction - alter an action taken by a process
4582  *  @sig: signal to be sent
4583  *  @act: new sigaction
4584  *  @oact: used to save the previous sigaction
4585  *  @sigsetsize: size of sigset_t type
4586  */
4587 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4588 		const struct sigaction __user *, act,
4589 		struct sigaction __user *, oact,
4590 		size_t, sigsetsize)
4591 {
4592 	struct k_sigaction new_sa, old_sa;
4593 	int ret;
4594 
4595 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4596 	if (sigsetsize != sizeof(sigset_t))
4597 		return -EINVAL;
4598 
4599 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4600 		return -EFAULT;
4601 
4602 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4603 	if (ret)
4604 		return ret;
4605 
4606 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4607 		return -EFAULT;
4608 
4609 	return 0;
4610 }
4611 #ifdef CONFIG_COMPAT
4612 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4613 		const struct compat_sigaction __user *, act,
4614 		struct compat_sigaction __user *, oact,
4615 		compat_size_t, sigsetsize)
4616 {
4617 	struct k_sigaction new_ka, old_ka;
4618 #ifdef __ARCH_HAS_SA_RESTORER
4619 	compat_uptr_t restorer;
4620 #endif
4621 	int ret;
4622 
4623 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4624 	if (sigsetsize != sizeof(compat_sigset_t))
4625 		return -EINVAL;
4626 
4627 	if (act) {
4628 		compat_uptr_t handler;
4629 		ret = get_user(handler, &act->sa_handler);
4630 		new_ka.sa.sa_handler = compat_ptr(handler);
4631 #ifdef __ARCH_HAS_SA_RESTORER
4632 		ret |= get_user(restorer, &act->sa_restorer);
4633 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4634 #endif
4635 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4636 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4637 		if (ret)
4638 			return -EFAULT;
4639 	}
4640 
4641 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4642 	if (!ret && oact) {
4643 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4644 			       &oact->sa_handler);
4645 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4646 					 sizeof(oact->sa_mask));
4647 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4648 #ifdef __ARCH_HAS_SA_RESTORER
4649 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4650 				&oact->sa_restorer);
4651 #endif
4652 	}
4653 	return ret;
4654 }
4655 #endif
4656 #endif /* !CONFIG_ODD_RT_SIGACTION */
4657 
4658 #ifdef CONFIG_OLD_SIGACTION
4659 SYSCALL_DEFINE3(sigaction, int, sig,
4660 		const struct old_sigaction __user *, act,
4661 	        struct old_sigaction __user *, oact)
4662 {
4663 	struct k_sigaction new_ka, old_ka;
4664 	int ret;
4665 
4666 	if (act) {
4667 		old_sigset_t mask;
4668 		if (!access_ok(act, sizeof(*act)) ||
4669 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4670 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4671 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4672 		    __get_user(mask, &act->sa_mask))
4673 			return -EFAULT;
4674 #ifdef __ARCH_HAS_KA_RESTORER
4675 		new_ka.ka_restorer = NULL;
4676 #endif
4677 		siginitset(&new_ka.sa.sa_mask, mask);
4678 	}
4679 
4680 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4681 
4682 	if (!ret && oact) {
4683 		if (!access_ok(oact, sizeof(*oact)) ||
4684 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4685 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4686 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4687 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4688 			return -EFAULT;
4689 	}
4690 
4691 	return ret;
4692 }
4693 #endif
4694 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4695 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4696 		const struct compat_old_sigaction __user *, act,
4697 	        struct compat_old_sigaction __user *, oact)
4698 {
4699 	struct k_sigaction new_ka, old_ka;
4700 	int ret;
4701 	compat_old_sigset_t mask;
4702 	compat_uptr_t handler, restorer;
4703 
4704 	if (act) {
4705 		if (!access_ok(act, sizeof(*act)) ||
4706 		    __get_user(handler, &act->sa_handler) ||
4707 		    __get_user(restorer, &act->sa_restorer) ||
4708 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4709 		    __get_user(mask, &act->sa_mask))
4710 			return -EFAULT;
4711 
4712 #ifdef __ARCH_HAS_KA_RESTORER
4713 		new_ka.ka_restorer = NULL;
4714 #endif
4715 		new_ka.sa.sa_handler = compat_ptr(handler);
4716 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4717 		siginitset(&new_ka.sa.sa_mask, mask);
4718 	}
4719 
4720 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4721 
4722 	if (!ret && oact) {
4723 		if (!access_ok(oact, sizeof(*oact)) ||
4724 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4725 			       &oact->sa_handler) ||
4726 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4727 			       &oact->sa_restorer) ||
4728 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4729 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4730 			return -EFAULT;
4731 	}
4732 	return ret;
4733 }
4734 #endif
4735 
4736 #ifdef CONFIG_SGETMASK_SYSCALL
4737 
4738 /*
4739  * For backwards compatibility.  Functionality superseded by sigprocmask.
4740  */
4741 SYSCALL_DEFINE0(sgetmask)
4742 {
4743 	/* SMP safe */
4744 	return current->blocked.sig[0];
4745 }
4746 
4747 SYSCALL_DEFINE1(ssetmask, int, newmask)
4748 {
4749 	int old = current->blocked.sig[0];
4750 	sigset_t newset;
4751 
4752 	siginitset(&newset, newmask);
4753 	set_current_blocked(&newset);
4754 
4755 	return old;
4756 }
4757 #endif /* CONFIG_SGETMASK_SYSCALL */
4758 
4759 #ifdef __ARCH_WANT_SYS_SIGNAL
4760 /*
4761  * For backwards compatibility.  Functionality superseded by sigaction.
4762  */
4763 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4764 {
4765 	struct k_sigaction new_sa, old_sa;
4766 	int ret;
4767 
4768 	new_sa.sa.sa_handler = handler;
4769 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4770 	sigemptyset(&new_sa.sa.sa_mask);
4771 
4772 	ret = do_sigaction(sig, &new_sa, &old_sa);
4773 
4774 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4775 }
4776 #endif /* __ARCH_WANT_SYS_SIGNAL */
4777 
4778 #ifdef __ARCH_WANT_SYS_PAUSE
4779 
4780 SYSCALL_DEFINE0(pause)
4781 {
4782 	while (!signal_pending(current)) {
4783 		__set_current_state(TASK_INTERRUPTIBLE);
4784 		schedule();
4785 	}
4786 	return -ERESTARTNOHAND;
4787 }
4788 
4789 #endif
4790 
4791 static int sigsuspend(sigset_t *set)
4792 {
4793 	current->saved_sigmask = current->blocked;
4794 	set_current_blocked(set);
4795 
4796 	while (!signal_pending(current)) {
4797 		__set_current_state(TASK_INTERRUPTIBLE);
4798 		schedule();
4799 	}
4800 	set_restore_sigmask();
4801 	return -ERESTARTNOHAND;
4802 }
4803 
4804 /**
4805  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4806  *	@unewset value until a signal is received
4807  *  @unewset: new signal mask value
4808  *  @sigsetsize: size of sigset_t type
4809  */
4810 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4811 {
4812 	sigset_t newset;
4813 
4814 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4815 	if (sigsetsize != sizeof(sigset_t))
4816 		return -EINVAL;
4817 
4818 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4819 		return -EFAULT;
4820 	return sigsuspend(&newset);
4821 }
4822 
4823 #ifdef CONFIG_COMPAT
4824 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4825 {
4826 	sigset_t newset;
4827 
4828 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4829 	if (sigsetsize != sizeof(sigset_t))
4830 		return -EINVAL;
4831 
4832 	if (get_compat_sigset(&newset, unewset))
4833 		return -EFAULT;
4834 	return sigsuspend(&newset);
4835 }
4836 #endif
4837 
4838 #ifdef CONFIG_OLD_SIGSUSPEND
4839 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4840 {
4841 	sigset_t blocked;
4842 	siginitset(&blocked, mask);
4843 	return sigsuspend(&blocked);
4844 }
4845 #endif
4846 #ifdef CONFIG_OLD_SIGSUSPEND3
4847 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4848 {
4849 	sigset_t blocked;
4850 	siginitset(&blocked, mask);
4851 	return sigsuspend(&blocked);
4852 }
4853 #endif
4854 
4855 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4856 {
4857 	return NULL;
4858 }
4859 
4860 static inline void siginfo_buildtime_checks(void)
4861 {
4862 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4863 
4864 	/* Verify the offsets in the two siginfos match */
4865 #define CHECK_OFFSET(field) \
4866 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4867 
4868 	/* kill */
4869 	CHECK_OFFSET(si_pid);
4870 	CHECK_OFFSET(si_uid);
4871 
4872 	/* timer */
4873 	CHECK_OFFSET(si_tid);
4874 	CHECK_OFFSET(si_overrun);
4875 	CHECK_OFFSET(si_value);
4876 
4877 	/* rt */
4878 	CHECK_OFFSET(si_pid);
4879 	CHECK_OFFSET(si_uid);
4880 	CHECK_OFFSET(si_value);
4881 
4882 	/* sigchld */
4883 	CHECK_OFFSET(si_pid);
4884 	CHECK_OFFSET(si_uid);
4885 	CHECK_OFFSET(si_status);
4886 	CHECK_OFFSET(si_utime);
4887 	CHECK_OFFSET(si_stime);
4888 
4889 	/* sigfault */
4890 	CHECK_OFFSET(si_addr);
4891 	CHECK_OFFSET(si_trapno);
4892 	CHECK_OFFSET(si_addr_lsb);
4893 	CHECK_OFFSET(si_lower);
4894 	CHECK_OFFSET(si_upper);
4895 	CHECK_OFFSET(si_pkey);
4896 	CHECK_OFFSET(si_perf_data);
4897 	CHECK_OFFSET(si_perf_type);
4898 	CHECK_OFFSET(si_perf_flags);
4899 
4900 	/* sigpoll */
4901 	CHECK_OFFSET(si_band);
4902 	CHECK_OFFSET(si_fd);
4903 
4904 	/* sigsys */
4905 	CHECK_OFFSET(si_call_addr);
4906 	CHECK_OFFSET(si_syscall);
4907 	CHECK_OFFSET(si_arch);
4908 #undef CHECK_OFFSET
4909 
4910 	/* usb asyncio */
4911 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4912 		     offsetof(struct siginfo, si_addr));
4913 	if (sizeof(int) == sizeof(void __user *)) {
4914 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4915 			     sizeof(void __user *));
4916 	} else {
4917 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4918 			      sizeof_field(struct siginfo, si_uid)) !=
4919 			     sizeof(void __user *));
4920 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4921 			     offsetof(struct siginfo, si_uid));
4922 	}
4923 #ifdef CONFIG_COMPAT
4924 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4925 		     offsetof(struct compat_siginfo, si_addr));
4926 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4927 		     sizeof(compat_uptr_t));
4928 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4929 		     sizeof_field(struct siginfo, si_pid));
4930 #endif
4931 }
4932 
4933 #if defined(CONFIG_SYSCTL)
4934 static struct ctl_table signal_debug_table[] = {
4935 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4936 	{
4937 		.procname	= "exception-trace",
4938 		.data		= &show_unhandled_signals,
4939 		.maxlen		= sizeof(int),
4940 		.mode		= 0644,
4941 		.proc_handler	= proc_dointvec
4942 	},
4943 #endif
4944 };
4945 
4946 static int __init init_signal_sysctls(void)
4947 {
4948 	register_sysctl_init("debug", signal_debug_table);
4949 	return 0;
4950 }
4951 early_initcall(init_signal_sysctls);
4952 #endif /* CONFIG_SYSCTL */
4953 
4954 void __init signals_init(void)
4955 {
4956 	siginfo_buildtime_checks();
4957 
4958 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4959 }
4960 
4961 #ifdef CONFIG_KGDB_KDB
4962 #include <linux/kdb.h>
4963 /*
4964  * kdb_send_sig - Allows kdb to send signals without exposing
4965  * signal internals.  This function checks if the required locks are
4966  * available before calling the main signal code, to avoid kdb
4967  * deadlocks.
4968  */
4969 void kdb_send_sig(struct task_struct *t, int sig)
4970 {
4971 	static struct task_struct *kdb_prev_t;
4972 	int new_t, ret;
4973 	if (!spin_trylock(&t->sighand->siglock)) {
4974 		kdb_printf("Can't do kill command now.\n"
4975 			   "The sigmask lock is held somewhere else in "
4976 			   "kernel, try again later\n");
4977 		return;
4978 	}
4979 	new_t = kdb_prev_t != t;
4980 	kdb_prev_t = t;
4981 	if (!task_is_running(t) && new_t) {
4982 		spin_unlock(&t->sighand->siglock);
4983 		kdb_printf("Process is not RUNNING, sending a signal from "
4984 			   "kdb risks deadlock\n"
4985 			   "on the run queue locks. "
4986 			   "The signal has _not_ been sent.\n"
4987 			   "Reissue the kill command if you want to risk "
4988 			   "the deadlock.\n");
4989 		return;
4990 	}
4991 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4992 	spin_unlock(&t->sighand->siglock);
4993 	if (ret)
4994 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4995 			   sig, t->pid);
4996 	else
4997 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4998 }
4999 #endif	/* CONFIG_KGDB_KDB */
5000