1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/user.h> 18 #include <linux/sched/debug.h> 19 #include <linux/sched/task.h> 20 #include <linux/sched/task_stack.h> 21 #include <linux/sched/cputime.h> 22 #include <linux/fs.h> 23 #include <linux/tty.h> 24 #include <linux/binfmts.h> 25 #include <linux/coredump.h> 26 #include <linux/security.h> 27 #include <linux/syscalls.h> 28 #include <linux/ptrace.h> 29 #include <linux/signal.h> 30 #include <linux/signalfd.h> 31 #include <linux/ratelimit.h> 32 #include <linux/tracehook.h> 33 #include <linux/capability.h> 34 #include <linux/freezer.h> 35 #include <linux/pid_namespace.h> 36 #include <linux/nsproxy.h> 37 #include <linux/user_namespace.h> 38 #include <linux/uprobes.h> 39 #include <linux/compat.h> 40 #include <linux/cn_proc.h> 41 #include <linux/compiler.h> 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/signal.h> 45 46 #include <asm/param.h> 47 #include <linux/uaccess.h> 48 #include <asm/unistd.h> 49 #include <asm/siginfo.h> 50 #include <asm/cacheflush.h> 51 #include "audit.h" /* audit_signal_info() */ 52 53 /* 54 * SLAB caches for signal bits. 55 */ 56 57 static struct kmem_cache *sigqueue_cachep; 58 59 int print_fatal_signals __read_mostly; 60 61 static void __user *sig_handler(struct task_struct *t, int sig) 62 { 63 return t->sighand->action[sig - 1].sa.sa_handler; 64 } 65 66 static int sig_handler_ignored(void __user *handler, int sig) 67 { 68 /* Is it explicitly or implicitly ignored? */ 69 return handler == SIG_IGN || 70 (handler == SIG_DFL && sig_kernel_ignore(sig)); 71 } 72 73 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 74 { 75 void __user *handler; 76 77 handler = sig_handler(t, sig); 78 79 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 80 handler == SIG_DFL && !force) 81 return 1; 82 83 return sig_handler_ignored(handler, sig); 84 } 85 86 static int sig_ignored(struct task_struct *t, int sig, bool force) 87 { 88 /* 89 * Blocked signals are never ignored, since the 90 * signal handler may change by the time it is 91 * unblocked. 92 */ 93 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 94 return 0; 95 96 if (!sig_task_ignored(t, sig, force)) 97 return 0; 98 99 /* 100 * Tracers may want to know about even ignored signals. 101 */ 102 return !t->ptrace; 103 } 104 105 /* 106 * Re-calculate pending state from the set of locally pending 107 * signals, globally pending signals, and blocked signals. 108 */ 109 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 110 { 111 unsigned long ready; 112 long i; 113 114 switch (_NSIG_WORDS) { 115 default: 116 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 117 ready |= signal->sig[i] &~ blocked->sig[i]; 118 break; 119 120 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 121 ready |= signal->sig[2] &~ blocked->sig[2]; 122 ready |= signal->sig[1] &~ blocked->sig[1]; 123 ready |= signal->sig[0] &~ blocked->sig[0]; 124 break; 125 126 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 127 ready |= signal->sig[0] &~ blocked->sig[0]; 128 break; 129 130 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 131 } 132 return ready != 0; 133 } 134 135 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 136 137 static int recalc_sigpending_tsk(struct task_struct *t) 138 { 139 if ((t->jobctl & JOBCTL_PENDING_MASK) || 140 PENDING(&t->pending, &t->blocked) || 141 PENDING(&t->signal->shared_pending, &t->blocked)) { 142 set_tsk_thread_flag(t, TIF_SIGPENDING); 143 return 1; 144 } 145 /* 146 * We must never clear the flag in another thread, or in current 147 * when it's possible the current syscall is returning -ERESTART*. 148 * So we don't clear it here, and only callers who know they should do. 149 */ 150 return 0; 151 } 152 153 /* 154 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 155 * This is superfluous when called on current, the wakeup is a harmless no-op. 156 */ 157 void recalc_sigpending_and_wake(struct task_struct *t) 158 { 159 if (recalc_sigpending_tsk(t)) 160 signal_wake_up(t, 0); 161 } 162 163 void recalc_sigpending(void) 164 { 165 if (!recalc_sigpending_tsk(current) && !freezing(current)) 166 clear_thread_flag(TIF_SIGPENDING); 167 168 } 169 170 /* Given the mask, find the first available signal that should be serviced. */ 171 172 #define SYNCHRONOUS_MASK \ 173 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 174 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 175 176 int next_signal(struct sigpending *pending, sigset_t *mask) 177 { 178 unsigned long i, *s, *m, x; 179 int sig = 0; 180 181 s = pending->signal.sig; 182 m = mask->sig; 183 184 /* 185 * Handle the first word specially: it contains the 186 * synchronous signals that need to be dequeued first. 187 */ 188 x = *s &~ *m; 189 if (x) { 190 if (x & SYNCHRONOUS_MASK) 191 x &= SYNCHRONOUS_MASK; 192 sig = ffz(~x) + 1; 193 return sig; 194 } 195 196 switch (_NSIG_WORDS) { 197 default: 198 for (i = 1; i < _NSIG_WORDS; ++i) { 199 x = *++s &~ *++m; 200 if (!x) 201 continue; 202 sig = ffz(~x) + i*_NSIG_BPW + 1; 203 break; 204 } 205 break; 206 207 case 2: 208 x = s[1] &~ m[1]; 209 if (!x) 210 break; 211 sig = ffz(~x) + _NSIG_BPW + 1; 212 break; 213 214 case 1: 215 /* Nothing to do */ 216 break; 217 } 218 219 return sig; 220 } 221 222 static inline void print_dropped_signal(int sig) 223 { 224 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 225 226 if (!print_fatal_signals) 227 return; 228 229 if (!__ratelimit(&ratelimit_state)) 230 return; 231 232 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 233 current->comm, current->pid, sig); 234 } 235 236 /** 237 * task_set_jobctl_pending - set jobctl pending bits 238 * @task: target task 239 * @mask: pending bits to set 240 * 241 * Clear @mask from @task->jobctl. @mask must be subset of 242 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 243 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 244 * cleared. If @task is already being killed or exiting, this function 245 * becomes noop. 246 * 247 * CONTEXT: 248 * Must be called with @task->sighand->siglock held. 249 * 250 * RETURNS: 251 * %true if @mask is set, %false if made noop because @task was dying. 252 */ 253 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 254 { 255 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 256 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 257 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 258 259 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 260 return false; 261 262 if (mask & JOBCTL_STOP_SIGMASK) 263 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 264 265 task->jobctl |= mask; 266 return true; 267 } 268 269 /** 270 * task_clear_jobctl_trapping - clear jobctl trapping bit 271 * @task: target task 272 * 273 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 274 * Clear it and wake up the ptracer. Note that we don't need any further 275 * locking. @task->siglock guarantees that @task->parent points to the 276 * ptracer. 277 * 278 * CONTEXT: 279 * Must be called with @task->sighand->siglock held. 280 */ 281 void task_clear_jobctl_trapping(struct task_struct *task) 282 { 283 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 284 task->jobctl &= ~JOBCTL_TRAPPING; 285 smp_mb(); /* advised by wake_up_bit() */ 286 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 287 } 288 } 289 290 /** 291 * task_clear_jobctl_pending - clear jobctl pending bits 292 * @task: target task 293 * @mask: pending bits to clear 294 * 295 * Clear @mask from @task->jobctl. @mask must be subset of 296 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 297 * STOP bits are cleared together. 298 * 299 * If clearing of @mask leaves no stop or trap pending, this function calls 300 * task_clear_jobctl_trapping(). 301 * 302 * CONTEXT: 303 * Must be called with @task->sighand->siglock held. 304 */ 305 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 306 { 307 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 308 309 if (mask & JOBCTL_STOP_PENDING) 310 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 311 312 task->jobctl &= ~mask; 313 314 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 315 task_clear_jobctl_trapping(task); 316 } 317 318 /** 319 * task_participate_group_stop - participate in a group stop 320 * @task: task participating in a group stop 321 * 322 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 323 * Group stop states are cleared and the group stop count is consumed if 324 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 325 * stop, the appropriate %SIGNAL_* flags are set. 326 * 327 * CONTEXT: 328 * Must be called with @task->sighand->siglock held. 329 * 330 * RETURNS: 331 * %true if group stop completion should be notified to the parent, %false 332 * otherwise. 333 */ 334 static bool task_participate_group_stop(struct task_struct *task) 335 { 336 struct signal_struct *sig = task->signal; 337 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 338 339 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 340 341 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 342 343 if (!consume) 344 return false; 345 346 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 347 sig->group_stop_count--; 348 349 /* 350 * Tell the caller to notify completion iff we are entering into a 351 * fresh group stop. Read comment in do_signal_stop() for details. 352 */ 353 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 354 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 355 return true; 356 } 357 return false; 358 } 359 360 /* 361 * allocate a new signal queue record 362 * - this may be called without locks if and only if t == current, otherwise an 363 * appropriate lock must be held to stop the target task from exiting 364 */ 365 static struct sigqueue * 366 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 367 { 368 struct sigqueue *q = NULL; 369 struct user_struct *user; 370 371 /* 372 * Protect access to @t credentials. This can go away when all 373 * callers hold rcu read lock. 374 */ 375 rcu_read_lock(); 376 user = get_uid(__task_cred(t)->user); 377 atomic_inc(&user->sigpending); 378 rcu_read_unlock(); 379 380 if (override_rlimit || 381 atomic_read(&user->sigpending) <= 382 task_rlimit(t, RLIMIT_SIGPENDING)) { 383 q = kmem_cache_alloc(sigqueue_cachep, flags); 384 } else { 385 print_dropped_signal(sig); 386 } 387 388 if (unlikely(q == NULL)) { 389 atomic_dec(&user->sigpending); 390 free_uid(user); 391 } else { 392 INIT_LIST_HEAD(&q->list); 393 q->flags = 0; 394 q->user = user; 395 } 396 397 return q; 398 } 399 400 static void __sigqueue_free(struct sigqueue *q) 401 { 402 if (q->flags & SIGQUEUE_PREALLOC) 403 return; 404 atomic_dec(&q->user->sigpending); 405 free_uid(q->user); 406 kmem_cache_free(sigqueue_cachep, q); 407 } 408 409 void flush_sigqueue(struct sigpending *queue) 410 { 411 struct sigqueue *q; 412 413 sigemptyset(&queue->signal); 414 while (!list_empty(&queue->list)) { 415 q = list_entry(queue->list.next, struct sigqueue , list); 416 list_del_init(&q->list); 417 __sigqueue_free(q); 418 } 419 } 420 421 /* 422 * Flush all pending signals for this kthread. 423 */ 424 void flush_signals(struct task_struct *t) 425 { 426 unsigned long flags; 427 428 spin_lock_irqsave(&t->sighand->siglock, flags); 429 clear_tsk_thread_flag(t, TIF_SIGPENDING); 430 flush_sigqueue(&t->pending); 431 flush_sigqueue(&t->signal->shared_pending); 432 spin_unlock_irqrestore(&t->sighand->siglock, flags); 433 } 434 435 #ifdef CONFIG_POSIX_TIMERS 436 static void __flush_itimer_signals(struct sigpending *pending) 437 { 438 sigset_t signal, retain; 439 struct sigqueue *q, *n; 440 441 signal = pending->signal; 442 sigemptyset(&retain); 443 444 list_for_each_entry_safe(q, n, &pending->list, list) { 445 int sig = q->info.si_signo; 446 447 if (likely(q->info.si_code != SI_TIMER)) { 448 sigaddset(&retain, sig); 449 } else { 450 sigdelset(&signal, sig); 451 list_del_init(&q->list); 452 __sigqueue_free(q); 453 } 454 } 455 456 sigorsets(&pending->signal, &signal, &retain); 457 } 458 459 void flush_itimer_signals(void) 460 { 461 struct task_struct *tsk = current; 462 unsigned long flags; 463 464 spin_lock_irqsave(&tsk->sighand->siglock, flags); 465 __flush_itimer_signals(&tsk->pending); 466 __flush_itimer_signals(&tsk->signal->shared_pending); 467 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 468 } 469 #endif 470 471 void ignore_signals(struct task_struct *t) 472 { 473 int i; 474 475 for (i = 0; i < _NSIG; ++i) 476 t->sighand->action[i].sa.sa_handler = SIG_IGN; 477 478 flush_signals(t); 479 } 480 481 /* 482 * Flush all handlers for a task. 483 */ 484 485 void 486 flush_signal_handlers(struct task_struct *t, int force_default) 487 { 488 int i; 489 struct k_sigaction *ka = &t->sighand->action[0]; 490 for (i = _NSIG ; i != 0 ; i--) { 491 if (force_default || ka->sa.sa_handler != SIG_IGN) 492 ka->sa.sa_handler = SIG_DFL; 493 ka->sa.sa_flags = 0; 494 #ifdef __ARCH_HAS_SA_RESTORER 495 ka->sa.sa_restorer = NULL; 496 #endif 497 sigemptyset(&ka->sa.sa_mask); 498 ka++; 499 } 500 } 501 502 int unhandled_signal(struct task_struct *tsk, int sig) 503 { 504 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 505 if (is_global_init(tsk)) 506 return 1; 507 if (handler != SIG_IGN && handler != SIG_DFL) 508 return 0; 509 /* if ptraced, let the tracer determine */ 510 return !tsk->ptrace; 511 } 512 513 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info, 514 bool *resched_timer) 515 { 516 struct sigqueue *q, *first = NULL; 517 518 /* 519 * Collect the siginfo appropriate to this signal. Check if 520 * there is another siginfo for the same signal. 521 */ 522 list_for_each_entry(q, &list->list, list) { 523 if (q->info.si_signo == sig) { 524 if (first) 525 goto still_pending; 526 first = q; 527 } 528 } 529 530 sigdelset(&list->signal, sig); 531 532 if (first) { 533 still_pending: 534 list_del_init(&first->list); 535 copy_siginfo(info, &first->info); 536 537 *resched_timer = 538 (first->flags & SIGQUEUE_PREALLOC) && 539 (info->si_code == SI_TIMER) && 540 (info->si_sys_private); 541 542 __sigqueue_free(first); 543 } else { 544 /* 545 * Ok, it wasn't in the queue. This must be 546 * a fast-pathed signal or we must have been 547 * out of queue space. So zero out the info. 548 */ 549 info->si_signo = sig; 550 info->si_errno = 0; 551 info->si_code = SI_USER; 552 info->si_pid = 0; 553 info->si_uid = 0; 554 } 555 } 556 557 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 558 siginfo_t *info, bool *resched_timer) 559 { 560 int sig = next_signal(pending, mask); 561 562 if (sig) 563 collect_signal(sig, pending, info, resched_timer); 564 return sig; 565 } 566 567 /* 568 * Dequeue a signal and return the element to the caller, which is 569 * expected to free it. 570 * 571 * All callers have to hold the siglock. 572 */ 573 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 574 { 575 bool resched_timer = false; 576 int signr; 577 578 /* We only dequeue private signals from ourselves, we don't let 579 * signalfd steal them 580 */ 581 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 582 if (!signr) { 583 signr = __dequeue_signal(&tsk->signal->shared_pending, 584 mask, info, &resched_timer); 585 #ifdef CONFIG_POSIX_TIMERS 586 /* 587 * itimer signal ? 588 * 589 * itimers are process shared and we restart periodic 590 * itimers in the signal delivery path to prevent DoS 591 * attacks in the high resolution timer case. This is 592 * compliant with the old way of self-restarting 593 * itimers, as the SIGALRM is a legacy signal and only 594 * queued once. Changing the restart behaviour to 595 * restart the timer in the signal dequeue path is 596 * reducing the timer noise on heavy loaded !highres 597 * systems too. 598 */ 599 if (unlikely(signr == SIGALRM)) { 600 struct hrtimer *tmr = &tsk->signal->real_timer; 601 602 if (!hrtimer_is_queued(tmr) && 603 tsk->signal->it_real_incr != 0) { 604 hrtimer_forward(tmr, tmr->base->get_time(), 605 tsk->signal->it_real_incr); 606 hrtimer_restart(tmr); 607 } 608 } 609 #endif 610 } 611 612 recalc_sigpending(); 613 if (!signr) 614 return 0; 615 616 if (unlikely(sig_kernel_stop(signr))) { 617 /* 618 * Set a marker that we have dequeued a stop signal. Our 619 * caller might release the siglock and then the pending 620 * stop signal it is about to process is no longer in the 621 * pending bitmasks, but must still be cleared by a SIGCONT 622 * (and overruled by a SIGKILL). So those cases clear this 623 * shared flag after we've set it. Note that this flag may 624 * remain set after the signal we return is ignored or 625 * handled. That doesn't matter because its only purpose 626 * is to alert stop-signal processing code when another 627 * processor has come along and cleared the flag. 628 */ 629 current->jobctl |= JOBCTL_STOP_DEQUEUED; 630 } 631 #ifdef CONFIG_POSIX_TIMERS 632 if (resched_timer) { 633 /* 634 * Release the siglock to ensure proper locking order 635 * of timer locks outside of siglocks. Note, we leave 636 * irqs disabled here, since the posix-timers code is 637 * about to disable them again anyway. 638 */ 639 spin_unlock(&tsk->sighand->siglock); 640 do_schedule_next_timer(info); 641 spin_lock(&tsk->sighand->siglock); 642 } 643 #endif 644 return signr; 645 } 646 647 /* 648 * Tell a process that it has a new active signal.. 649 * 650 * NOTE! we rely on the previous spin_lock to 651 * lock interrupts for us! We can only be called with 652 * "siglock" held, and the local interrupt must 653 * have been disabled when that got acquired! 654 * 655 * No need to set need_resched since signal event passing 656 * goes through ->blocked 657 */ 658 void signal_wake_up_state(struct task_struct *t, unsigned int state) 659 { 660 set_tsk_thread_flag(t, TIF_SIGPENDING); 661 /* 662 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 663 * case. We don't check t->state here because there is a race with it 664 * executing another processor and just now entering stopped state. 665 * By using wake_up_state, we ensure the process will wake up and 666 * handle its death signal. 667 */ 668 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 669 kick_process(t); 670 } 671 672 /* 673 * Remove signals in mask from the pending set and queue. 674 * Returns 1 if any signals were found. 675 * 676 * All callers must be holding the siglock. 677 */ 678 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 679 { 680 struct sigqueue *q, *n; 681 sigset_t m; 682 683 sigandsets(&m, mask, &s->signal); 684 if (sigisemptyset(&m)) 685 return 0; 686 687 sigandnsets(&s->signal, &s->signal, mask); 688 list_for_each_entry_safe(q, n, &s->list, list) { 689 if (sigismember(mask, q->info.si_signo)) { 690 list_del_init(&q->list); 691 __sigqueue_free(q); 692 } 693 } 694 return 1; 695 } 696 697 static inline int is_si_special(const struct siginfo *info) 698 { 699 return info <= SEND_SIG_FORCED; 700 } 701 702 static inline bool si_fromuser(const struct siginfo *info) 703 { 704 return info == SEND_SIG_NOINFO || 705 (!is_si_special(info) && SI_FROMUSER(info)); 706 } 707 708 /* 709 * called with RCU read lock from check_kill_permission() 710 */ 711 static int kill_ok_by_cred(struct task_struct *t) 712 { 713 const struct cred *cred = current_cred(); 714 const struct cred *tcred = __task_cred(t); 715 716 if (uid_eq(cred->euid, tcred->suid) || 717 uid_eq(cred->euid, tcred->uid) || 718 uid_eq(cred->uid, tcred->suid) || 719 uid_eq(cred->uid, tcred->uid)) 720 return 1; 721 722 if (ns_capable(tcred->user_ns, CAP_KILL)) 723 return 1; 724 725 return 0; 726 } 727 728 /* 729 * Bad permissions for sending the signal 730 * - the caller must hold the RCU read lock 731 */ 732 static int check_kill_permission(int sig, struct siginfo *info, 733 struct task_struct *t) 734 { 735 struct pid *sid; 736 int error; 737 738 if (!valid_signal(sig)) 739 return -EINVAL; 740 741 if (!si_fromuser(info)) 742 return 0; 743 744 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 745 if (error) 746 return error; 747 748 if (!same_thread_group(current, t) && 749 !kill_ok_by_cred(t)) { 750 switch (sig) { 751 case SIGCONT: 752 sid = task_session(t); 753 /* 754 * We don't return the error if sid == NULL. The 755 * task was unhashed, the caller must notice this. 756 */ 757 if (!sid || sid == task_session(current)) 758 break; 759 default: 760 return -EPERM; 761 } 762 } 763 764 return security_task_kill(t, info, sig, 0); 765 } 766 767 /** 768 * ptrace_trap_notify - schedule trap to notify ptracer 769 * @t: tracee wanting to notify tracer 770 * 771 * This function schedules sticky ptrace trap which is cleared on the next 772 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 773 * ptracer. 774 * 775 * If @t is running, STOP trap will be taken. If trapped for STOP and 776 * ptracer is listening for events, tracee is woken up so that it can 777 * re-trap for the new event. If trapped otherwise, STOP trap will be 778 * eventually taken without returning to userland after the existing traps 779 * are finished by PTRACE_CONT. 780 * 781 * CONTEXT: 782 * Must be called with @task->sighand->siglock held. 783 */ 784 static void ptrace_trap_notify(struct task_struct *t) 785 { 786 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 787 assert_spin_locked(&t->sighand->siglock); 788 789 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 790 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 791 } 792 793 /* 794 * Handle magic process-wide effects of stop/continue signals. Unlike 795 * the signal actions, these happen immediately at signal-generation 796 * time regardless of blocking, ignoring, or handling. This does the 797 * actual continuing for SIGCONT, but not the actual stopping for stop 798 * signals. The process stop is done as a signal action for SIG_DFL. 799 * 800 * Returns true if the signal should be actually delivered, otherwise 801 * it should be dropped. 802 */ 803 static bool prepare_signal(int sig, struct task_struct *p, bool force) 804 { 805 struct signal_struct *signal = p->signal; 806 struct task_struct *t; 807 sigset_t flush; 808 809 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 810 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 811 return sig == SIGKILL; 812 /* 813 * The process is in the middle of dying, nothing to do. 814 */ 815 } else if (sig_kernel_stop(sig)) { 816 /* 817 * This is a stop signal. Remove SIGCONT from all queues. 818 */ 819 siginitset(&flush, sigmask(SIGCONT)); 820 flush_sigqueue_mask(&flush, &signal->shared_pending); 821 for_each_thread(p, t) 822 flush_sigqueue_mask(&flush, &t->pending); 823 } else if (sig == SIGCONT) { 824 unsigned int why; 825 /* 826 * Remove all stop signals from all queues, wake all threads. 827 */ 828 siginitset(&flush, SIG_KERNEL_STOP_MASK); 829 flush_sigqueue_mask(&flush, &signal->shared_pending); 830 for_each_thread(p, t) { 831 flush_sigqueue_mask(&flush, &t->pending); 832 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 833 if (likely(!(t->ptrace & PT_SEIZED))) 834 wake_up_state(t, __TASK_STOPPED); 835 else 836 ptrace_trap_notify(t); 837 } 838 839 /* 840 * Notify the parent with CLD_CONTINUED if we were stopped. 841 * 842 * If we were in the middle of a group stop, we pretend it 843 * was already finished, and then continued. Since SIGCHLD 844 * doesn't queue we report only CLD_STOPPED, as if the next 845 * CLD_CONTINUED was dropped. 846 */ 847 why = 0; 848 if (signal->flags & SIGNAL_STOP_STOPPED) 849 why |= SIGNAL_CLD_CONTINUED; 850 else if (signal->group_stop_count) 851 why |= SIGNAL_CLD_STOPPED; 852 853 if (why) { 854 /* 855 * The first thread which returns from do_signal_stop() 856 * will take ->siglock, notice SIGNAL_CLD_MASK, and 857 * notify its parent. See get_signal_to_deliver(). 858 */ 859 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 860 signal->group_stop_count = 0; 861 signal->group_exit_code = 0; 862 } 863 } 864 865 return !sig_ignored(p, sig, force); 866 } 867 868 /* 869 * Test if P wants to take SIG. After we've checked all threads with this, 870 * it's equivalent to finding no threads not blocking SIG. Any threads not 871 * blocking SIG were ruled out because they are not running and already 872 * have pending signals. Such threads will dequeue from the shared queue 873 * as soon as they're available, so putting the signal on the shared queue 874 * will be equivalent to sending it to one such thread. 875 */ 876 static inline int wants_signal(int sig, struct task_struct *p) 877 { 878 if (sigismember(&p->blocked, sig)) 879 return 0; 880 if (p->flags & PF_EXITING) 881 return 0; 882 if (sig == SIGKILL) 883 return 1; 884 if (task_is_stopped_or_traced(p)) 885 return 0; 886 return task_curr(p) || !signal_pending(p); 887 } 888 889 static void complete_signal(int sig, struct task_struct *p, int group) 890 { 891 struct signal_struct *signal = p->signal; 892 struct task_struct *t; 893 894 /* 895 * Now find a thread we can wake up to take the signal off the queue. 896 * 897 * If the main thread wants the signal, it gets first crack. 898 * Probably the least surprising to the average bear. 899 */ 900 if (wants_signal(sig, p)) 901 t = p; 902 else if (!group || thread_group_empty(p)) 903 /* 904 * There is just one thread and it does not need to be woken. 905 * It will dequeue unblocked signals before it runs again. 906 */ 907 return; 908 else { 909 /* 910 * Otherwise try to find a suitable thread. 911 */ 912 t = signal->curr_target; 913 while (!wants_signal(sig, t)) { 914 t = next_thread(t); 915 if (t == signal->curr_target) 916 /* 917 * No thread needs to be woken. 918 * Any eligible threads will see 919 * the signal in the queue soon. 920 */ 921 return; 922 } 923 signal->curr_target = t; 924 } 925 926 /* 927 * Found a killable thread. If the signal will be fatal, 928 * then start taking the whole group down immediately. 929 */ 930 if (sig_fatal(p, sig) && 931 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 932 !sigismember(&t->real_blocked, sig) && 933 (sig == SIGKILL || !t->ptrace)) { 934 /* 935 * This signal will be fatal to the whole group. 936 */ 937 if (!sig_kernel_coredump(sig)) { 938 /* 939 * Start a group exit and wake everybody up. 940 * This way we don't have other threads 941 * running and doing things after a slower 942 * thread has the fatal signal pending. 943 */ 944 signal->flags = SIGNAL_GROUP_EXIT; 945 signal->group_exit_code = sig; 946 signal->group_stop_count = 0; 947 t = p; 948 do { 949 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 950 sigaddset(&t->pending.signal, SIGKILL); 951 signal_wake_up(t, 1); 952 } while_each_thread(p, t); 953 return; 954 } 955 } 956 957 /* 958 * The signal is already in the shared-pending queue. 959 * Tell the chosen thread to wake up and dequeue it. 960 */ 961 signal_wake_up(t, sig == SIGKILL); 962 return; 963 } 964 965 static inline int legacy_queue(struct sigpending *signals, int sig) 966 { 967 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 968 } 969 970 #ifdef CONFIG_USER_NS 971 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 972 { 973 if (current_user_ns() == task_cred_xxx(t, user_ns)) 974 return; 975 976 if (SI_FROMKERNEL(info)) 977 return; 978 979 rcu_read_lock(); 980 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 981 make_kuid(current_user_ns(), info->si_uid)); 982 rcu_read_unlock(); 983 } 984 #else 985 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 986 { 987 return; 988 } 989 #endif 990 991 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 992 int group, int from_ancestor_ns) 993 { 994 struct sigpending *pending; 995 struct sigqueue *q; 996 int override_rlimit; 997 int ret = 0, result; 998 999 assert_spin_locked(&t->sighand->siglock); 1000 1001 result = TRACE_SIGNAL_IGNORED; 1002 if (!prepare_signal(sig, t, 1003 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1004 goto ret; 1005 1006 pending = group ? &t->signal->shared_pending : &t->pending; 1007 /* 1008 * Short-circuit ignored signals and support queuing 1009 * exactly one non-rt signal, so that we can get more 1010 * detailed information about the cause of the signal. 1011 */ 1012 result = TRACE_SIGNAL_ALREADY_PENDING; 1013 if (legacy_queue(pending, sig)) 1014 goto ret; 1015 1016 result = TRACE_SIGNAL_DELIVERED; 1017 /* 1018 * fast-pathed signals for kernel-internal things like SIGSTOP 1019 * or SIGKILL. 1020 */ 1021 if (info == SEND_SIG_FORCED) 1022 goto out_set; 1023 1024 /* 1025 * Real-time signals must be queued if sent by sigqueue, or 1026 * some other real-time mechanism. It is implementation 1027 * defined whether kill() does so. We attempt to do so, on 1028 * the principle of least surprise, but since kill is not 1029 * allowed to fail with EAGAIN when low on memory we just 1030 * make sure at least one signal gets delivered and don't 1031 * pass on the info struct. 1032 */ 1033 if (sig < SIGRTMIN) 1034 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1035 else 1036 override_rlimit = 0; 1037 1038 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1039 override_rlimit); 1040 if (q) { 1041 list_add_tail(&q->list, &pending->list); 1042 switch ((unsigned long) info) { 1043 case (unsigned long) SEND_SIG_NOINFO: 1044 q->info.si_signo = sig; 1045 q->info.si_errno = 0; 1046 q->info.si_code = SI_USER; 1047 q->info.si_pid = task_tgid_nr_ns(current, 1048 task_active_pid_ns(t)); 1049 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1050 break; 1051 case (unsigned long) SEND_SIG_PRIV: 1052 q->info.si_signo = sig; 1053 q->info.si_errno = 0; 1054 q->info.si_code = SI_KERNEL; 1055 q->info.si_pid = 0; 1056 q->info.si_uid = 0; 1057 break; 1058 default: 1059 copy_siginfo(&q->info, info); 1060 if (from_ancestor_ns) 1061 q->info.si_pid = 0; 1062 break; 1063 } 1064 1065 userns_fixup_signal_uid(&q->info, t); 1066 1067 } else if (!is_si_special(info)) { 1068 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1069 /* 1070 * Queue overflow, abort. We may abort if the 1071 * signal was rt and sent by user using something 1072 * other than kill(). 1073 */ 1074 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1075 ret = -EAGAIN; 1076 goto ret; 1077 } else { 1078 /* 1079 * This is a silent loss of information. We still 1080 * send the signal, but the *info bits are lost. 1081 */ 1082 result = TRACE_SIGNAL_LOSE_INFO; 1083 } 1084 } 1085 1086 out_set: 1087 signalfd_notify(t, sig); 1088 sigaddset(&pending->signal, sig); 1089 complete_signal(sig, t, group); 1090 ret: 1091 trace_signal_generate(sig, info, t, group, result); 1092 return ret; 1093 } 1094 1095 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1096 int group) 1097 { 1098 int from_ancestor_ns = 0; 1099 1100 #ifdef CONFIG_PID_NS 1101 from_ancestor_ns = si_fromuser(info) && 1102 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1103 #endif 1104 1105 return __send_signal(sig, info, t, group, from_ancestor_ns); 1106 } 1107 1108 static void print_fatal_signal(int signr) 1109 { 1110 struct pt_regs *regs = signal_pt_regs(); 1111 pr_info("potentially unexpected fatal signal %d.\n", signr); 1112 1113 #if defined(__i386__) && !defined(__arch_um__) 1114 pr_info("code at %08lx: ", regs->ip); 1115 { 1116 int i; 1117 for (i = 0; i < 16; i++) { 1118 unsigned char insn; 1119 1120 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1121 break; 1122 pr_cont("%02x ", insn); 1123 } 1124 } 1125 pr_cont("\n"); 1126 #endif 1127 preempt_disable(); 1128 show_regs(regs); 1129 preempt_enable(); 1130 } 1131 1132 static int __init setup_print_fatal_signals(char *str) 1133 { 1134 get_option (&str, &print_fatal_signals); 1135 1136 return 1; 1137 } 1138 1139 __setup("print-fatal-signals=", setup_print_fatal_signals); 1140 1141 int 1142 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1143 { 1144 return send_signal(sig, info, p, 1); 1145 } 1146 1147 static int 1148 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1149 { 1150 return send_signal(sig, info, t, 0); 1151 } 1152 1153 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1154 bool group) 1155 { 1156 unsigned long flags; 1157 int ret = -ESRCH; 1158 1159 if (lock_task_sighand(p, &flags)) { 1160 ret = send_signal(sig, info, p, group); 1161 unlock_task_sighand(p, &flags); 1162 } 1163 1164 return ret; 1165 } 1166 1167 /* 1168 * Force a signal that the process can't ignore: if necessary 1169 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1170 * 1171 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1172 * since we do not want to have a signal handler that was blocked 1173 * be invoked when user space had explicitly blocked it. 1174 * 1175 * We don't want to have recursive SIGSEGV's etc, for example, 1176 * that is why we also clear SIGNAL_UNKILLABLE. 1177 */ 1178 int 1179 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1180 { 1181 unsigned long int flags; 1182 int ret, blocked, ignored; 1183 struct k_sigaction *action; 1184 1185 spin_lock_irqsave(&t->sighand->siglock, flags); 1186 action = &t->sighand->action[sig-1]; 1187 ignored = action->sa.sa_handler == SIG_IGN; 1188 blocked = sigismember(&t->blocked, sig); 1189 if (blocked || ignored) { 1190 action->sa.sa_handler = SIG_DFL; 1191 if (blocked) { 1192 sigdelset(&t->blocked, sig); 1193 recalc_sigpending_and_wake(t); 1194 } 1195 } 1196 if (action->sa.sa_handler == SIG_DFL) 1197 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1198 ret = specific_send_sig_info(sig, info, t); 1199 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1200 1201 return ret; 1202 } 1203 1204 /* 1205 * Nuke all other threads in the group. 1206 */ 1207 int zap_other_threads(struct task_struct *p) 1208 { 1209 struct task_struct *t = p; 1210 int count = 0; 1211 1212 p->signal->group_stop_count = 0; 1213 1214 while_each_thread(p, t) { 1215 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1216 count++; 1217 1218 /* Don't bother with already dead threads */ 1219 if (t->exit_state) 1220 continue; 1221 sigaddset(&t->pending.signal, SIGKILL); 1222 signal_wake_up(t, 1); 1223 } 1224 1225 return count; 1226 } 1227 1228 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1229 unsigned long *flags) 1230 { 1231 struct sighand_struct *sighand; 1232 1233 for (;;) { 1234 /* 1235 * Disable interrupts early to avoid deadlocks. 1236 * See rcu_read_unlock() comment header for details. 1237 */ 1238 local_irq_save(*flags); 1239 rcu_read_lock(); 1240 sighand = rcu_dereference(tsk->sighand); 1241 if (unlikely(sighand == NULL)) { 1242 rcu_read_unlock(); 1243 local_irq_restore(*flags); 1244 break; 1245 } 1246 /* 1247 * This sighand can be already freed and even reused, but 1248 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1249 * initializes ->siglock: this slab can't go away, it has 1250 * the same object type, ->siglock can't be reinitialized. 1251 * 1252 * We need to ensure that tsk->sighand is still the same 1253 * after we take the lock, we can race with de_thread() or 1254 * __exit_signal(). In the latter case the next iteration 1255 * must see ->sighand == NULL. 1256 */ 1257 spin_lock(&sighand->siglock); 1258 if (likely(sighand == tsk->sighand)) { 1259 rcu_read_unlock(); 1260 break; 1261 } 1262 spin_unlock(&sighand->siglock); 1263 rcu_read_unlock(); 1264 local_irq_restore(*flags); 1265 } 1266 1267 return sighand; 1268 } 1269 1270 /* 1271 * send signal info to all the members of a group 1272 */ 1273 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1274 { 1275 int ret; 1276 1277 rcu_read_lock(); 1278 ret = check_kill_permission(sig, info, p); 1279 rcu_read_unlock(); 1280 1281 if (!ret && sig) 1282 ret = do_send_sig_info(sig, info, p, true); 1283 1284 return ret; 1285 } 1286 1287 /* 1288 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1289 * control characters do (^C, ^Z etc) 1290 * - the caller must hold at least a readlock on tasklist_lock 1291 */ 1292 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1293 { 1294 struct task_struct *p = NULL; 1295 int retval, success; 1296 1297 success = 0; 1298 retval = -ESRCH; 1299 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1300 int err = group_send_sig_info(sig, info, p); 1301 success |= !err; 1302 retval = err; 1303 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1304 return success ? 0 : retval; 1305 } 1306 1307 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1308 { 1309 int error = -ESRCH; 1310 struct task_struct *p; 1311 1312 for (;;) { 1313 rcu_read_lock(); 1314 p = pid_task(pid, PIDTYPE_PID); 1315 if (p) 1316 error = group_send_sig_info(sig, info, p); 1317 rcu_read_unlock(); 1318 if (likely(!p || error != -ESRCH)) 1319 return error; 1320 1321 /* 1322 * The task was unhashed in between, try again. If it 1323 * is dead, pid_task() will return NULL, if we race with 1324 * de_thread() it will find the new leader. 1325 */ 1326 } 1327 } 1328 1329 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1330 { 1331 int error; 1332 rcu_read_lock(); 1333 error = kill_pid_info(sig, info, find_vpid(pid)); 1334 rcu_read_unlock(); 1335 return error; 1336 } 1337 1338 static int kill_as_cred_perm(const struct cred *cred, 1339 struct task_struct *target) 1340 { 1341 const struct cred *pcred = __task_cred(target); 1342 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1343 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1344 return 0; 1345 return 1; 1346 } 1347 1348 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1349 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1350 const struct cred *cred, u32 secid) 1351 { 1352 int ret = -EINVAL; 1353 struct task_struct *p; 1354 unsigned long flags; 1355 1356 if (!valid_signal(sig)) 1357 return ret; 1358 1359 rcu_read_lock(); 1360 p = pid_task(pid, PIDTYPE_PID); 1361 if (!p) { 1362 ret = -ESRCH; 1363 goto out_unlock; 1364 } 1365 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1366 ret = -EPERM; 1367 goto out_unlock; 1368 } 1369 ret = security_task_kill(p, info, sig, secid); 1370 if (ret) 1371 goto out_unlock; 1372 1373 if (sig) { 1374 if (lock_task_sighand(p, &flags)) { 1375 ret = __send_signal(sig, info, p, 1, 0); 1376 unlock_task_sighand(p, &flags); 1377 } else 1378 ret = -ESRCH; 1379 } 1380 out_unlock: 1381 rcu_read_unlock(); 1382 return ret; 1383 } 1384 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1385 1386 /* 1387 * kill_something_info() interprets pid in interesting ways just like kill(2). 1388 * 1389 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1390 * is probably wrong. Should make it like BSD or SYSV. 1391 */ 1392 1393 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1394 { 1395 int ret; 1396 1397 if (pid > 0) { 1398 rcu_read_lock(); 1399 ret = kill_pid_info(sig, info, find_vpid(pid)); 1400 rcu_read_unlock(); 1401 return ret; 1402 } 1403 1404 read_lock(&tasklist_lock); 1405 if (pid != -1) { 1406 ret = __kill_pgrp_info(sig, info, 1407 pid ? find_vpid(-pid) : task_pgrp(current)); 1408 } else { 1409 int retval = 0, count = 0; 1410 struct task_struct * p; 1411 1412 for_each_process(p) { 1413 if (task_pid_vnr(p) > 1 && 1414 !same_thread_group(p, current)) { 1415 int err = group_send_sig_info(sig, info, p); 1416 ++count; 1417 if (err != -EPERM) 1418 retval = err; 1419 } 1420 } 1421 ret = count ? retval : -ESRCH; 1422 } 1423 read_unlock(&tasklist_lock); 1424 1425 return ret; 1426 } 1427 1428 /* 1429 * These are for backward compatibility with the rest of the kernel source. 1430 */ 1431 1432 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1433 { 1434 /* 1435 * Make sure legacy kernel users don't send in bad values 1436 * (normal paths check this in check_kill_permission). 1437 */ 1438 if (!valid_signal(sig)) 1439 return -EINVAL; 1440 1441 return do_send_sig_info(sig, info, p, false); 1442 } 1443 1444 #define __si_special(priv) \ 1445 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1446 1447 int 1448 send_sig(int sig, struct task_struct *p, int priv) 1449 { 1450 return send_sig_info(sig, __si_special(priv), p); 1451 } 1452 1453 void 1454 force_sig(int sig, struct task_struct *p) 1455 { 1456 force_sig_info(sig, SEND_SIG_PRIV, p); 1457 } 1458 1459 /* 1460 * When things go south during signal handling, we 1461 * will force a SIGSEGV. And if the signal that caused 1462 * the problem was already a SIGSEGV, we'll want to 1463 * make sure we don't even try to deliver the signal.. 1464 */ 1465 int 1466 force_sigsegv(int sig, struct task_struct *p) 1467 { 1468 if (sig == SIGSEGV) { 1469 unsigned long flags; 1470 spin_lock_irqsave(&p->sighand->siglock, flags); 1471 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1472 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1473 } 1474 force_sig(SIGSEGV, p); 1475 return 0; 1476 } 1477 1478 int kill_pgrp(struct pid *pid, int sig, int priv) 1479 { 1480 int ret; 1481 1482 read_lock(&tasklist_lock); 1483 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1484 read_unlock(&tasklist_lock); 1485 1486 return ret; 1487 } 1488 EXPORT_SYMBOL(kill_pgrp); 1489 1490 int kill_pid(struct pid *pid, int sig, int priv) 1491 { 1492 return kill_pid_info(sig, __si_special(priv), pid); 1493 } 1494 EXPORT_SYMBOL(kill_pid); 1495 1496 /* 1497 * These functions support sending signals using preallocated sigqueue 1498 * structures. This is needed "because realtime applications cannot 1499 * afford to lose notifications of asynchronous events, like timer 1500 * expirations or I/O completions". In the case of POSIX Timers 1501 * we allocate the sigqueue structure from the timer_create. If this 1502 * allocation fails we are able to report the failure to the application 1503 * with an EAGAIN error. 1504 */ 1505 struct sigqueue *sigqueue_alloc(void) 1506 { 1507 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1508 1509 if (q) 1510 q->flags |= SIGQUEUE_PREALLOC; 1511 1512 return q; 1513 } 1514 1515 void sigqueue_free(struct sigqueue *q) 1516 { 1517 unsigned long flags; 1518 spinlock_t *lock = ¤t->sighand->siglock; 1519 1520 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1521 /* 1522 * We must hold ->siglock while testing q->list 1523 * to serialize with collect_signal() or with 1524 * __exit_signal()->flush_sigqueue(). 1525 */ 1526 spin_lock_irqsave(lock, flags); 1527 q->flags &= ~SIGQUEUE_PREALLOC; 1528 /* 1529 * If it is queued it will be freed when dequeued, 1530 * like the "regular" sigqueue. 1531 */ 1532 if (!list_empty(&q->list)) 1533 q = NULL; 1534 spin_unlock_irqrestore(lock, flags); 1535 1536 if (q) 1537 __sigqueue_free(q); 1538 } 1539 1540 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1541 { 1542 int sig = q->info.si_signo; 1543 struct sigpending *pending; 1544 unsigned long flags; 1545 int ret, result; 1546 1547 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1548 1549 ret = -1; 1550 if (!likely(lock_task_sighand(t, &flags))) 1551 goto ret; 1552 1553 ret = 1; /* the signal is ignored */ 1554 result = TRACE_SIGNAL_IGNORED; 1555 if (!prepare_signal(sig, t, false)) 1556 goto out; 1557 1558 ret = 0; 1559 if (unlikely(!list_empty(&q->list))) { 1560 /* 1561 * If an SI_TIMER entry is already queue just increment 1562 * the overrun count. 1563 */ 1564 BUG_ON(q->info.si_code != SI_TIMER); 1565 q->info.si_overrun++; 1566 result = TRACE_SIGNAL_ALREADY_PENDING; 1567 goto out; 1568 } 1569 q->info.si_overrun = 0; 1570 1571 signalfd_notify(t, sig); 1572 pending = group ? &t->signal->shared_pending : &t->pending; 1573 list_add_tail(&q->list, &pending->list); 1574 sigaddset(&pending->signal, sig); 1575 complete_signal(sig, t, group); 1576 result = TRACE_SIGNAL_DELIVERED; 1577 out: 1578 trace_signal_generate(sig, &q->info, t, group, result); 1579 unlock_task_sighand(t, &flags); 1580 ret: 1581 return ret; 1582 } 1583 1584 /* 1585 * Let a parent know about the death of a child. 1586 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1587 * 1588 * Returns true if our parent ignored us and so we've switched to 1589 * self-reaping. 1590 */ 1591 bool do_notify_parent(struct task_struct *tsk, int sig) 1592 { 1593 struct siginfo info; 1594 unsigned long flags; 1595 struct sighand_struct *psig; 1596 bool autoreap = false; 1597 u64 utime, stime; 1598 1599 BUG_ON(sig == -1); 1600 1601 /* do_notify_parent_cldstop should have been called instead. */ 1602 BUG_ON(task_is_stopped_or_traced(tsk)); 1603 1604 BUG_ON(!tsk->ptrace && 1605 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1606 1607 if (sig != SIGCHLD) { 1608 /* 1609 * This is only possible if parent == real_parent. 1610 * Check if it has changed security domain. 1611 */ 1612 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1613 sig = SIGCHLD; 1614 } 1615 1616 info.si_signo = sig; 1617 info.si_errno = 0; 1618 /* 1619 * We are under tasklist_lock here so our parent is tied to 1620 * us and cannot change. 1621 * 1622 * task_active_pid_ns will always return the same pid namespace 1623 * until a task passes through release_task. 1624 * 1625 * write_lock() currently calls preempt_disable() which is the 1626 * same as rcu_read_lock(), but according to Oleg, this is not 1627 * correct to rely on this 1628 */ 1629 rcu_read_lock(); 1630 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1631 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1632 task_uid(tsk)); 1633 rcu_read_unlock(); 1634 1635 task_cputime(tsk, &utime, &stime); 1636 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1637 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1638 1639 info.si_status = tsk->exit_code & 0x7f; 1640 if (tsk->exit_code & 0x80) 1641 info.si_code = CLD_DUMPED; 1642 else if (tsk->exit_code & 0x7f) 1643 info.si_code = CLD_KILLED; 1644 else { 1645 info.si_code = CLD_EXITED; 1646 info.si_status = tsk->exit_code >> 8; 1647 } 1648 1649 psig = tsk->parent->sighand; 1650 spin_lock_irqsave(&psig->siglock, flags); 1651 if (!tsk->ptrace && sig == SIGCHLD && 1652 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1653 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1654 /* 1655 * We are exiting and our parent doesn't care. POSIX.1 1656 * defines special semantics for setting SIGCHLD to SIG_IGN 1657 * or setting the SA_NOCLDWAIT flag: we should be reaped 1658 * automatically and not left for our parent's wait4 call. 1659 * Rather than having the parent do it as a magic kind of 1660 * signal handler, we just set this to tell do_exit that we 1661 * can be cleaned up without becoming a zombie. Note that 1662 * we still call __wake_up_parent in this case, because a 1663 * blocked sys_wait4 might now return -ECHILD. 1664 * 1665 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1666 * is implementation-defined: we do (if you don't want 1667 * it, just use SIG_IGN instead). 1668 */ 1669 autoreap = true; 1670 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1671 sig = 0; 1672 } 1673 if (valid_signal(sig) && sig) 1674 __group_send_sig_info(sig, &info, tsk->parent); 1675 __wake_up_parent(tsk, tsk->parent); 1676 spin_unlock_irqrestore(&psig->siglock, flags); 1677 1678 return autoreap; 1679 } 1680 1681 /** 1682 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1683 * @tsk: task reporting the state change 1684 * @for_ptracer: the notification is for ptracer 1685 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1686 * 1687 * Notify @tsk's parent that the stopped/continued state has changed. If 1688 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1689 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1690 * 1691 * CONTEXT: 1692 * Must be called with tasklist_lock at least read locked. 1693 */ 1694 static void do_notify_parent_cldstop(struct task_struct *tsk, 1695 bool for_ptracer, int why) 1696 { 1697 struct siginfo info; 1698 unsigned long flags; 1699 struct task_struct *parent; 1700 struct sighand_struct *sighand; 1701 u64 utime, stime; 1702 1703 if (for_ptracer) { 1704 parent = tsk->parent; 1705 } else { 1706 tsk = tsk->group_leader; 1707 parent = tsk->real_parent; 1708 } 1709 1710 info.si_signo = SIGCHLD; 1711 info.si_errno = 0; 1712 /* 1713 * see comment in do_notify_parent() about the following 4 lines 1714 */ 1715 rcu_read_lock(); 1716 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1717 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1718 rcu_read_unlock(); 1719 1720 task_cputime(tsk, &utime, &stime); 1721 info.si_utime = nsec_to_clock_t(utime); 1722 info.si_stime = nsec_to_clock_t(stime); 1723 1724 info.si_code = why; 1725 switch (why) { 1726 case CLD_CONTINUED: 1727 info.si_status = SIGCONT; 1728 break; 1729 case CLD_STOPPED: 1730 info.si_status = tsk->signal->group_exit_code & 0x7f; 1731 break; 1732 case CLD_TRAPPED: 1733 info.si_status = tsk->exit_code & 0x7f; 1734 break; 1735 default: 1736 BUG(); 1737 } 1738 1739 sighand = parent->sighand; 1740 spin_lock_irqsave(&sighand->siglock, flags); 1741 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1742 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1743 __group_send_sig_info(SIGCHLD, &info, parent); 1744 /* 1745 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1746 */ 1747 __wake_up_parent(tsk, parent); 1748 spin_unlock_irqrestore(&sighand->siglock, flags); 1749 } 1750 1751 static inline int may_ptrace_stop(void) 1752 { 1753 if (!likely(current->ptrace)) 1754 return 0; 1755 /* 1756 * Are we in the middle of do_coredump? 1757 * If so and our tracer is also part of the coredump stopping 1758 * is a deadlock situation, and pointless because our tracer 1759 * is dead so don't allow us to stop. 1760 * If SIGKILL was already sent before the caller unlocked 1761 * ->siglock we must see ->core_state != NULL. Otherwise it 1762 * is safe to enter schedule(). 1763 * 1764 * This is almost outdated, a task with the pending SIGKILL can't 1765 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1766 * after SIGKILL was already dequeued. 1767 */ 1768 if (unlikely(current->mm->core_state) && 1769 unlikely(current->mm == current->parent->mm)) 1770 return 0; 1771 1772 return 1; 1773 } 1774 1775 /* 1776 * Return non-zero if there is a SIGKILL that should be waking us up. 1777 * Called with the siglock held. 1778 */ 1779 static int sigkill_pending(struct task_struct *tsk) 1780 { 1781 return sigismember(&tsk->pending.signal, SIGKILL) || 1782 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1783 } 1784 1785 /* 1786 * This must be called with current->sighand->siglock held. 1787 * 1788 * This should be the path for all ptrace stops. 1789 * We always set current->last_siginfo while stopped here. 1790 * That makes it a way to test a stopped process for 1791 * being ptrace-stopped vs being job-control-stopped. 1792 * 1793 * If we actually decide not to stop at all because the tracer 1794 * is gone, we keep current->exit_code unless clear_code. 1795 */ 1796 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1797 __releases(¤t->sighand->siglock) 1798 __acquires(¤t->sighand->siglock) 1799 { 1800 bool gstop_done = false; 1801 1802 if (arch_ptrace_stop_needed(exit_code, info)) { 1803 /* 1804 * The arch code has something special to do before a 1805 * ptrace stop. This is allowed to block, e.g. for faults 1806 * on user stack pages. We can't keep the siglock while 1807 * calling arch_ptrace_stop, so we must release it now. 1808 * To preserve proper semantics, we must do this before 1809 * any signal bookkeeping like checking group_stop_count. 1810 * Meanwhile, a SIGKILL could come in before we retake the 1811 * siglock. That must prevent us from sleeping in TASK_TRACED. 1812 * So after regaining the lock, we must check for SIGKILL. 1813 */ 1814 spin_unlock_irq(¤t->sighand->siglock); 1815 arch_ptrace_stop(exit_code, info); 1816 spin_lock_irq(¤t->sighand->siglock); 1817 if (sigkill_pending(current)) 1818 return; 1819 } 1820 1821 /* 1822 * We're committing to trapping. TRACED should be visible before 1823 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1824 * Also, transition to TRACED and updates to ->jobctl should be 1825 * atomic with respect to siglock and should be done after the arch 1826 * hook as siglock is released and regrabbed across it. 1827 */ 1828 set_current_state(TASK_TRACED); 1829 1830 current->last_siginfo = info; 1831 current->exit_code = exit_code; 1832 1833 /* 1834 * If @why is CLD_STOPPED, we're trapping to participate in a group 1835 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1836 * across siglock relocks since INTERRUPT was scheduled, PENDING 1837 * could be clear now. We act as if SIGCONT is received after 1838 * TASK_TRACED is entered - ignore it. 1839 */ 1840 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1841 gstop_done = task_participate_group_stop(current); 1842 1843 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1844 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1845 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1846 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1847 1848 /* entering a trap, clear TRAPPING */ 1849 task_clear_jobctl_trapping(current); 1850 1851 spin_unlock_irq(¤t->sighand->siglock); 1852 read_lock(&tasklist_lock); 1853 if (may_ptrace_stop()) { 1854 /* 1855 * Notify parents of the stop. 1856 * 1857 * While ptraced, there are two parents - the ptracer and 1858 * the real_parent of the group_leader. The ptracer should 1859 * know about every stop while the real parent is only 1860 * interested in the completion of group stop. The states 1861 * for the two don't interact with each other. Notify 1862 * separately unless they're gonna be duplicates. 1863 */ 1864 do_notify_parent_cldstop(current, true, why); 1865 if (gstop_done && ptrace_reparented(current)) 1866 do_notify_parent_cldstop(current, false, why); 1867 1868 /* 1869 * Don't want to allow preemption here, because 1870 * sys_ptrace() needs this task to be inactive. 1871 * 1872 * XXX: implement read_unlock_no_resched(). 1873 */ 1874 preempt_disable(); 1875 read_unlock(&tasklist_lock); 1876 preempt_enable_no_resched(); 1877 freezable_schedule(); 1878 } else { 1879 /* 1880 * By the time we got the lock, our tracer went away. 1881 * Don't drop the lock yet, another tracer may come. 1882 * 1883 * If @gstop_done, the ptracer went away between group stop 1884 * completion and here. During detach, it would have set 1885 * JOBCTL_STOP_PENDING on us and we'll re-enter 1886 * TASK_STOPPED in do_signal_stop() on return, so notifying 1887 * the real parent of the group stop completion is enough. 1888 */ 1889 if (gstop_done) 1890 do_notify_parent_cldstop(current, false, why); 1891 1892 /* tasklist protects us from ptrace_freeze_traced() */ 1893 __set_current_state(TASK_RUNNING); 1894 if (clear_code) 1895 current->exit_code = 0; 1896 read_unlock(&tasklist_lock); 1897 } 1898 1899 /* 1900 * We are back. Now reacquire the siglock before touching 1901 * last_siginfo, so that we are sure to have synchronized with 1902 * any signal-sending on another CPU that wants to examine it. 1903 */ 1904 spin_lock_irq(¤t->sighand->siglock); 1905 current->last_siginfo = NULL; 1906 1907 /* LISTENING can be set only during STOP traps, clear it */ 1908 current->jobctl &= ~JOBCTL_LISTENING; 1909 1910 /* 1911 * Queued signals ignored us while we were stopped for tracing. 1912 * So check for any that we should take before resuming user mode. 1913 * This sets TIF_SIGPENDING, but never clears it. 1914 */ 1915 recalc_sigpending_tsk(current); 1916 } 1917 1918 static void ptrace_do_notify(int signr, int exit_code, int why) 1919 { 1920 siginfo_t info; 1921 1922 memset(&info, 0, sizeof info); 1923 info.si_signo = signr; 1924 info.si_code = exit_code; 1925 info.si_pid = task_pid_vnr(current); 1926 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1927 1928 /* Let the debugger run. */ 1929 ptrace_stop(exit_code, why, 1, &info); 1930 } 1931 1932 void ptrace_notify(int exit_code) 1933 { 1934 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1935 if (unlikely(current->task_works)) 1936 task_work_run(); 1937 1938 spin_lock_irq(¤t->sighand->siglock); 1939 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1940 spin_unlock_irq(¤t->sighand->siglock); 1941 } 1942 1943 /** 1944 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1945 * @signr: signr causing group stop if initiating 1946 * 1947 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1948 * and participate in it. If already set, participate in the existing 1949 * group stop. If participated in a group stop (and thus slept), %true is 1950 * returned with siglock released. 1951 * 1952 * If ptraced, this function doesn't handle stop itself. Instead, 1953 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1954 * untouched. The caller must ensure that INTERRUPT trap handling takes 1955 * places afterwards. 1956 * 1957 * CONTEXT: 1958 * Must be called with @current->sighand->siglock held, which is released 1959 * on %true return. 1960 * 1961 * RETURNS: 1962 * %false if group stop is already cancelled or ptrace trap is scheduled. 1963 * %true if participated in group stop. 1964 */ 1965 static bool do_signal_stop(int signr) 1966 __releases(¤t->sighand->siglock) 1967 { 1968 struct signal_struct *sig = current->signal; 1969 1970 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 1971 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 1972 struct task_struct *t; 1973 1974 /* signr will be recorded in task->jobctl for retries */ 1975 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 1976 1977 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 1978 unlikely(signal_group_exit(sig))) 1979 return false; 1980 /* 1981 * There is no group stop already in progress. We must 1982 * initiate one now. 1983 * 1984 * While ptraced, a task may be resumed while group stop is 1985 * still in effect and then receive a stop signal and 1986 * initiate another group stop. This deviates from the 1987 * usual behavior as two consecutive stop signals can't 1988 * cause two group stops when !ptraced. That is why we 1989 * also check !task_is_stopped(t) below. 1990 * 1991 * The condition can be distinguished by testing whether 1992 * SIGNAL_STOP_STOPPED is already set. Don't generate 1993 * group_exit_code in such case. 1994 * 1995 * This is not necessary for SIGNAL_STOP_CONTINUED because 1996 * an intervening stop signal is required to cause two 1997 * continued events regardless of ptrace. 1998 */ 1999 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2000 sig->group_exit_code = signr; 2001 2002 sig->group_stop_count = 0; 2003 2004 if (task_set_jobctl_pending(current, signr | gstop)) 2005 sig->group_stop_count++; 2006 2007 t = current; 2008 while_each_thread(current, t) { 2009 /* 2010 * Setting state to TASK_STOPPED for a group 2011 * stop is always done with the siglock held, 2012 * so this check has no races. 2013 */ 2014 if (!task_is_stopped(t) && 2015 task_set_jobctl_pending(t, signr | gstop)) { 2016 sig->group_stop_count++; 2017 if (likely(!(t->ptrace & PT_SEIZED))) 2018 signal_wake_up(t, 0); 2019 else 2020 ptrace_trap_notify(t); 2021 } 2022 } 2023 } 2024 2025 if (likely(!current->ptrace)) { 2026 int notify = 0; 2027 2028 /* 2029 * If there are no other threads in the group, or if there 2030 * is a group stop in progress and we are the last to stop, 2031 * report to the parent. 2032 */ 2033 if (task_participate_group_stop(current)) 2034 notify = CLD_STOPPED; 2035 2036 __set_current_state(TASK_STOPPED); 2037 spin_unlock_irq(¤t->sighand->siglock); 2038 2039 /* 2040 * Notify the parent of the group stop completion. Because 2041 * we're not holding either the siglock or tasklist_lock 2042 * here, ptracer may attach inbetween; however, this is for 2043 * group stop and should always be delivered to the real 2044 * parent of the group leader. The new ptracer will get 2045 * its notification when this task transitions into 2046 * TASK_TRACED. 2047 */ 2048 if (notify) { 2049 read_lock(&tasklist_lock); 2050 do_notify_parent_cldstop(current, false, notify); 2051 read_unlock(&tasklist_lock); 2052 } 2053 2054 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2055 freezable_schedule(); 2056 return true; 2057 } else { 2058 /* 2059 * While ptraced, group stop is handled by STOP trap. 2060 * Schedule it and let the caller deal with it. 2061 */ 2062 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2063 return false; 2064 } 2065 } 2066 2067 /** 2068 * do_jobctl_trap - take care of ptrace jobctl traps 2069 * 2070 * When PT_SEIZED, it's used for both group stop and explicit 2071 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2072 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2073 * the stop signal; otherwise, %SIGTRAP. 2074 * 2075 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2076 * number as exit_code and no siginfo. 2077 * 2078 * CONTEXT: 2079 * Must be called with @current->sighand->siglock held, which may be 2080 * released and re-acquired before returning with intervening sleep. 2081 */ 2082 static void do_jobctl_trap(void) 2083 { 2084 struct signal_struct *signal = current->signal; 2085 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2086 2087 if (current->ptrace & PT_SEIZED) { 2088 if (!signal->group_stop_count && 2089 !(signal->flags & SIGNAL_STOP_STOPPED)) 2090 signr = SIGTRAP; 2091 WARN_ON_ONCE(!signr); 2092 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2093 CLD_STOPPED); 2094 } else { 2095 WARN_ON_ONCE(!signr); 2096 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2097 current->exit_code = 0; 2098 } 2099 } 2100 2101 static int ptrace_signal(int signr, siginfo_t *info) 2102 { 2103 ptrace_signal_deliver(); 2104 /* 2105 * We do not check sig_kernel_stop(signr) but set this marker 2106 * unconditionally because we do not know whether debugger will 2107 * change signr. This flag has no meaning unless we are going 2108 * to stop after return from ptrace_stop(). In this case it will 2109 * be checked in do_signal_stop(), we should only stop if it was 2110 * not cleared by SIGCONT while we were sleeping. See also the 2111 * comment in dequeue_signal(). 2112 */ 2113 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2114 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2115 2116 /* We're back. Did the debugger cancel the sig? */ 2117 signr = current->exit_code; 2118 if (signr == 0) 2119 return signr; 2120 2121 current->exit_code = 0; 2122 2123 /* 2124 * Update the siginfo structure if the signal has 2125 * changed. If the debugger wanted something 2126 * specific in the siginfo structure then it should 2127 * have updated *info via PTRACE_SETSIGINFO. 2128 */ 2129 if (signr != info->si_signo) { 2130 info->si_signo = signr; 2131 info->si_errno = 0; 2132 info->si_code = SI_USER; 2133 rcu_read_lock(); 2134 info->si_pid = task_pid_vnr(current->parent); 2135 info->si_uid = from_kuid_munged(current_user_ns(), 2136 task_uid(current->parent)); 2137 rcu_read_unlock(); 2138 } 2139 2140 /* If the (new) signal is now blocked, requeue it. */ 2141 if (sigismember(¤t->blocked, signr)) { 2142 specific_send_sig_info(signr, info, current); 2143 signr = 0; 2144 } 2145 2146 return signr; 2147 } 2148 2149 int get_signal(struct ksignal *ksig) 2150 { 2151 struct sighand_struct *sighand = current->sighand; 2152 struct signal_struct *signal = current->signal; 2153 int signr; 2154 2155 if (unlikely(current->task_works)) 2156 task_work_run(); 2157 2158 if (unlikely(uprobe_deny_signal())) 2159 return 0; 2160 2161 /* 2162 * Do this once, we can't return to user-mode if freezing() == T. 2163 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2164 * thus do not need another check after return. 2165 */ 2166 try_to_freeze(); 2167 2168 relock: 2169 spin_lock_irq(&sighand->siglock); 2170 /* 2171 * Every stopped thread goes here after wakeup. Check to see if 2172 * we should notify the parent, prepare_signal(SIGCONT) encodes 2173 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2174 */ 2175 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2176 int why; 2177 2178 if (signal->flags & SIGNAL_CLD_CONTINUED) 2179 why = CLD_CONTINUED; 2180 else 2181 why = CLD_STOPPED; 2182 2183 signal->flags &= ~SIGNAL_CLD_MASK; 2184 2185 spin_unlock_irq(&sighand->siglock); 2186 2187 /* 2188 * Notify the parent that we're continuing. This event is 2189 * always per-process and doesn't make whole lot of sense 2190 * for ptracers, who shouldn't consume the state via 2191 * wait(2) either, but, for backward compatibility, notify 2192 * the ptracer of the group leader too unless it's gonna be 2193 * a duplicate. 2194 */ 2195 read_lock(&tasklist_lock); 2196 do_notify_parent_cldstop(current, false, why); 2197 2198 if (ptrace_reparented(current->group_leader)) 2199 do_notify_parent_cldstop(current->group_leader, 2200 true, why); 2201 read_unlock(&tasklist_lock); 2202 2203 goto relock; 2204 } 2205 2206 for (;;) { 2207 struct k_sigaction *ka; 2208 2209 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2210 do_signal_stop(0)) 2211 goto relock; 2212 2213 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2214 do_jobctl_trap(); 2215 spin_unlock_irq(&sighand->siglock); 2216 goto relock; 2217 } 2218 2219 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2220 2221 if (!signr) 2222 break; /* will return 0 */ 2223 2224 if (unlikely(current->ptrace) && signr != SIGKILL) { 2225 signr = ptrace_signal(signr, &ksig->info); 2226 if (!signr) 2227 continue; 2228 } 2229 2230 ka = &sighand->action[signr-1]; 2231 2232 /* Trace actually delivered signals. */ 2233 trace_signal_deliver(signr, &ksig->info, ka); 2234 2235 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2236 continue; 2237 if (ka->sa.sa_handler != SIG_DFL) { 2238 /* Run the handler. */ 2239 ksig->ka = *ka; 2240 2241 if (ka->sa.sa_flags & SA_ONESHOT) 2242 ka->sa.sa_handler = SIG_DFL; 2243 2244 break; /* will return non-zero "signr" value */ 2245 } 2246 2247 /* 2248 * Now we are doing the default action for this signal. 2249 */ 2250 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2251 continue; 2252 2253 /* 2254 * Global init gets no signals it doesn't want. 2255 * Container-init gets no signals it doesn't want from same 2256 * container. 2257 * 2258 * Note that if global/container-init sees a sig_kernel_only() 2259 * signal here, the signal must have been generated internally 2260 * or must have come from an ancestor namespace. In either 2261 * case, the signal cannot be dropped. 2262 */ 2263 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2264 !sig_kernel_only(signr)) 2265 continue; 2266 2267 if (sig_kernel_stop(signr)) { 2268 /* 2269 * The default action is to stop all threads in 2270 * the thread group. The job control signals 2271 * do nothing in an orphaned pgrp, but SIGSTOP 2272 * always works. Note that siglock needs to be 2273 * dropped during the call to is_orphaned_pgrp() 2274 * because of lock ordering with tasklist_lock. 2275 * This allows an intervening SIGCONT to be posted. 2276 * We need to check for that and bail out if necessary. 2277 */ 2278 if (signr != SIGSTOP) { 2279 spin_unlock_irq(&sighand->siglock); 2280 2281 /* signals can be posted during this window */ 2282 2283 if (is_current_pgrp_orphaned()) 2284 goto relock; 2285 2286 spin_lock_irq(&sighand->siglock); 2287 } 2288 2289 if (likely(do_signal_stop(ksig->info.si_signo))) { 2290 /* It released the siglock. */ 2291 goto relock; 2292 } 2293 2294 /* 2295 * We didn't actually stop, due to a race 2296 * with SIGCONT or something like that. 2297 */ 2298 continue; 2299 } 2300 2301 spin_unlock_irq(&sighand->siglock); 2302 2303 /* 2304 * Anything else is fatal, maybe with a core dump. 2305 */ 2306 current->flags |= PF_SIGNALED; 2307 2308 if (sig_kernel_coredump(signr)) { 2309 if (print_fatal_signals) 2310 print_fatal_signal(ksig->info.si_signo); 2311 proc_coredump_connector(current); 2312 /* 2313 * If it was able to dump core, this kills all 2314 * other threads in the group and synchronizes with 2315 * their demise. If we lost the race with another 2316 * thread getting here, it set group_exit_code 2317 * first and our do_group_exit call below will use 2318 * that value and ignore the one we pass it. 2319 */ 2320 do_coredump(&ksig->info); 2321 } 2322 2323 /* 2324 * Death signals, no core dump. 2325 */ 2326 do_group_exit(ksig->info.si_signo); 2327 /* NOTREACHED */ 2328 } 2329 spin_unlock_irq(&sighand->siglock); 2330 2331 ksig->sig = signr; 2332 return ksig->sig > 0; 2333 } 2334 2335 /** 2336 * signal_delivered - 2337 * @ksig: kernel signal struct 2338 * @stepping: nonzero if debugger single-step or block-step in use 2339 * 2340 * This function should be called when a signal has successfully been 2341 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2342 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2343 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2344 */ 2345 static void signal_delivered(struct ksignal *ksig, int stepping) 2346 { 2347 sigset_t blocked; 2348 2349 /* A signal was successfully delivered, and the 2350 saved sigmask was stored on the signal frame, 2351 and will be restored by sigreturn. So we can 2352 simply clear the restore sigmask flag. */ 2353 clear_restore_sigmask(); 2354 2355 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2356 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2357 sigaddset(&blocked, ksig->sig); 2358 set_current_blocked(&blocked); 2359 tracehook_signal_handler(stepping); 2360 } 2361 2362 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2363 { 2364 if (failed) 2365 force_sigsegv(ksig->sig, current); 2366 else 2367 signal_delivered(ksig, stepping); 2368 } 2369 2370 /* 2371 * It could be that complete_signal() picked us to notify about the 2372 * group-wide signal. Other threads should be notified now to take 2373 * the shared signals in @which since we will not. 2374 */ 2375 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2376 { 2377 sigset_t retarget; 2378 struct task_struct *t; 2379 2380 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2381 if (sigisemptyset(&retarget)) 2382 return; 2383 2384 t = tsk; 2385 while_each_thread(tsk, t) { 2386 if (t->flags & PF_EXITING) 2387 continue; 2388 2389 if (!has_pending_signals(&retarget, &t->blocked)) 2390 continue; 2391 /* Remove the signals this thread can handle. */ 2392 sigandsets(&retarget, &retarget, &t->blocked); 2393 2394 if (!signal_pending(t)) 2395 signal_wake_up(t, 0); 2396 2397 if (sigisemptyset(&retarget)) 2398 break; 2399 } 2400 } 2401 2402 void exit_signals(struct task_struct *tsk) 2403 { 2404 int group_stop = 0; 2405 sigset_t unblocked; 2406 2407 /* 2408 * @tsk is about to have PF_EXITING set - lock out users which 2409 * expect stable threadgroup. 2410 */ 2411 cgroup_threadgroup_change_begin(tsk); 2412 2413 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2414 tsk->flags |= PF_EXITING; 2415 cgroup_threadgroup_change_end(tsk); 2416 return; 2417 } 2418 2419 spin_lock_irq(&tsk->sighand->siglock); 2420 /* 2421 * From now this task is not visible for group-wide signals, 2422 * see wants_signal(), do_signal_stop(). 2423 */ 2424 tsk->flags |= PF_EXITING; 2425 2426 cgroup_threadgroup_change_end(tsk); 2427 2428 if (!signal_pending(tsk)) 2429 goto out; 2430 2431 unblocked = tsk->blocked; 2432 signotset(&unblocked); 2433 retarget_shared_pending(tsk, &unblocked); 2434 2435 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2436 task_participate_group_stop(tsk)) 2437 group_stop = CLD_STOPPED; 2438 out: 2439 spin_unlock_irq(&tsk->sighand->siglock); 2440 2441 /* 2442 * If group stop has completed, deliver the notification. This 2443 * should always go to the real parent of the group leader. 2444 */ 2445 if (unlikely(group_stop)) { 2446 read_lock(&tasklist_lock); 2447 do_notify_parent_cldstop(tsk, false, group_stop); 2448 read_unlock(&tasklist_lock); 2449 } 2450 } 2451 2452 EXPORT_SYMBOL(recalc_sigpending); 2453 EXPORT_SYMBOL_GPL(dequeue_signal); 2454 EXPORT_SYMBOL(flush_signals); 2455 EXPORT_SYMBOL(force_sig); 2456 EXPORT_SYMBOL(send_sig); 2457 EXPORT_SYMBOL(send_sig_info); 2458 EXPORT_SYMBOL(sigprocmask); 2459 2460 /* 2461 * System call entry points. 2462 */ 2463 2464 /** 2465 * sys_restart_syscall - restart a system call 2466 */ 2467 SYSCALL_DEFINE0(restart_syscall) 2468 { 2469 struct restart_block *restart = ¤t->restart_block; 2470 return restart->fn(restart); 2471 } 2472 2473 long do_no_restart_syscall(struct restart_block *param) 2474 { 2475 return -EINTR; 2476 } 2477 2478 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2479 { 2480 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2481 sigset_t newblocked; 2482 /* A set of now blocked but previously unblocked signals. */ 2483 sigandnsets(&newblocked, newset, ¤t->blocked); 2484 retarget_shared_pending(tsk, &newblocked); 2485 } 2486 tsk->blocked = *newset; 2487 recalc_sigpending(); 2488 } 2489 2490 /** 2491 * set_current_blocked - change current->blocked mask 2492 * @newset: new mask 2493 * 2494 * It is wrong to change ->blocked directly, this helper should be used 2495 * to ensure the process can't miss a shared signal we are going to block. 2496 */ 2497 void set_current_blocked(sigset_t *newset) 2498 { 2499 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2500 __set_current_blocked(newset); 2501 } 2502 2503 void __set_current_blocked(const sigset_t *newset) 2504 { 2505 struct task_struct *tsk = current; 2506 2507 /* 2508 * In case the signal mask hasn't changed, there is nothing we need 2509 * to do. The current->blocked shouldn't be modified by other task. 2510 */ 2511 if (sigequalsets(&tsk->blocked, newset)) 2512 return; 2513 2514 spin_lock_irq(&tsk->sighand->siglock); 2515 __set_task_blocked(tsk, newset); 2516 spin_unlock_irq(&tsk->sighand->siglock); 2517 } 2518 2519 /* 2520 * This is also useful for kernel threads that want to temporarily 2521 * (or permanently) block certain signals. 2522 * 2523 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2524 * interface happily blocks "unblockable" signals like SIGKILL 2525 * and friends. 2526 */ 2527 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2528 { 2529 struct task_struct *tsk = current; 2530 sigset_t newset; 2531 2532 /* Lockless, only current can change ->blocked, never from irq */ 2533 if (oldset) 2534 *oldset = tsk->blocked; 2535 2536 switch (how) { 2537 case SIG_BLOCK: 2538 sigorsets(&newset, &tsk->blocked, set); 2539 break; 2540 case SIG_UNBLOCK: 2541 sigandnsets(&newset, &tsk->blocked, set); 2542 break; 2543 case SIG_SETMASK: 2544 newset = *set; 2545 break; 2546 default: 2547 return -EINVAL; 2548 } 2549 2550 __set_current_blocked(&newset); 2551 return 0; 2552 } 2553 2554 /** 2555 * sys_rt_sigprocmask - change the list of currently blocked signals 2556 * @how: whether to add, remove, or set signals 2557 * @nset: stores pending signals 2558 * @oset: previous value of signal mask if non-null 2559 * @sigsetsize: size of sigset_t type 2560 */ 2561 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2562 sigset_t __user *, oset, size_t, sigsetsize) 2563 { 2564 sigset_t old_set, new_set; 2565 int error; 2566 2567 /* XXX: Don't preclude handling different sized sigset_t's. */ 2568 if (sigsetsize != sizeof(sigset_t)) 2569 return -EINVAL; 2570 2571 old_set = current->blocked; 2572 2573 if (nset) { 2574 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2575 return -EFAULT; 2576 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2577 2578 error = sigprocmask(how, &new_set, NULL); 2579 if (error) 2580 return error; 2581 } 2582 2583 if (oset) { 2584 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2585 return -EFAULT; 2586 } 2587 2588 return 0; 2589 } 2590 2591 #ifdef CONFIG_COMPAT 2592 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2593 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2594 { 2595 #ifdef __BIG_ENDIAN 2596 sigset_t old_set = current->blocked; 2597 2598 /* XXX: Don't preclude handling different sized sigset_t's. */ 2599 if (sigsetsize != sizeof(sigset_t)) 2600 return -EINVAL; 2601 2602 if (nset) { 2603 compat_sigset_t new32; 2604 sigset_t new_set; 2605 int error; 2606 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t))) 2607 return -EFAULT; 2608 2609 sigset_from_compat(&new_set, &new32); 2610 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2611 2612 error = sigprocmask(how, &new_set, NULL); 2613 if (error) 2614 return error; 2615 } 2616 if (oset) { 2617 compat_sigset_t old32; 2618 sigset_to_compat(&old32, &old_set); 2619 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t))) 2620 return -EFAULT; 2621 } 2622 return 0; 2623 #else 2624 return sys_rt_sigprocmask(how, (sigset_t __user *)nset, 2625 (sigset_t __user *)oset, sigsetsize); 2626 #endif 2627 } 2628 #endif 2629 2630 static int do_sigpending(void *set, unsigned long sigsetsize) 2631 { 2632 if (sigsetsize > sizeof(sigset_t)) 2633 return -EINVAL; 2634 2635 spin_lock_irq(¤t->sighand->siglock); 2636 sigorsets(set, ¤t->pending.signal, 2637 ¤t->signal->shared_pending.signal); 2638 spin_unlock_irq(¤t->sighand->siglock); 2639 2640 /* Outside the lock because only this thread touches it. */ 2641 sigandsets(set, ¤t->blocked, set); 2642 return 0; 2643 } 2644 2645 /** 2646 * sys_rt_sigpending - examine a pending signal that has been raised 2647 * while blocked 2648 * @uset: stores pending signals 2649 * @sigsetsize: size of sigset_t type or larger 2650 */ 2651 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2652 { 2653 sigset_t set; 2654 int err = do_sigpending(&set, sigsetsize); 2655 if (!err && copy_to_user(uset, &set, sigsetsize)) 2656 err = -EFAULT; 2657 return err; 2658 } 2659 2660 #ifdef CONFIG_COMPAT 2661 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2662 compat_size_t, sigsetsize) 2663 { 2664 #ifdef __BIG_ENDIAN 2665 sigset_t set; 2666 int err = do_sigpending(&set, sigsetsize); 2667 if (!err) { 2668 compat_sigset_t set32; 2669 sigset_to_compat(&set32, &set); 2670 /* we can get here only if sigsetsize <= sizeof(set) */ 2671 if (copy_to_user(uset, &set32, sigsetsize)) 2672 err = -EFAULT; 2673 } 2674 return err; 2675 #else 2676 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize); 2677 #endif 2678 } 2679 #endif 2680 2681 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2682 2683 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from) 2684 { 2685 int err; 2686 2687 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2688 return -EFAULT; 2689 if (from->si_code < 0) 2690 return __copy_to_user(to, from, sizeof(siginfo_t)) 2691 ? -EFAULT : 0; 2692 /* 2693 * If you change siginfo_t structure, please be sure 2694 * this code is fixed accordingly. 2695 * Please remember to update the signalfd_copyinfo() function 2696 * inside fs/signalfd.c too, in case siginfo_t changes. 2697 * It should never copy any pad contained in the structure 2698 * to avoid security leaks, but must copy the generic 2699 * 3 ints plus the relevant union member. 2700 */ 2701 err = __put_user(from->si_signo, &to->si_signo); 2702 err |= __put_user(from->si_errno, &to->si_errno); 2703 err |= __put_user((short)from->si_code, &to->si_code); 2704 switch (from->si_code & __SI_MASK) { 2705 case __SI_KILL: 2706 err |= __put_user(from->si_pid, &to->si_pid); 2707 err |= __put_user(from->si_uid, &to->si_uid); 2708 break; 2709 case __SI_TIMER: 2710 err |= __put_user(from->si_tid, &to->si_tid); 2711 err |= __put_user(from->si_overrun, &to->si_overrun); 2712 err |= __put_user(from->si_ptr, &to->si_ptr); 2713 break; 2714 case __SI_POLL: 2715 err |= __put_user(from->si_band, &to->si_band); 2716 err |= __put_user(from->si_fd, &to->si_fd); 2717 break; 2718 case __SI_FAULT: 2719 err |= __put_user(from->si_addr, &to->si_addr); 2720 #ifdef __ARCH_SI_TRAPNO 2721 err |= __put_user(from->si_trapno, &to->si_trapno); 2722 #endif 2723 #ifdef BUS_MCEERR_AO 2724 /* 2725 * Other callers might not initialize the si_lsb field, 2726 * so check explicitly for the right codes here. 2727 */ 2728 if (from->si_signo == SIGBUS && 2729 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)) 2730 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2731 #endif 2732 #ifdef SEGV_BNDERR 2733 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) { 2734 err |= __put_user(from->si_lower, &to->si_lower); 2735 err |= __put_user(from->si_upper, &to->si_upper); 2736 } 2737 #endif 2738 #ifdef SEGV_PKUERR 2739 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR) 2740 err |= __put_user(from->si_pkey, &to->si_pkey); 2741 #endif 2742 break; 2743 case __SI_CHLD: 2744 err |= __put_user(from->si_pid, &to->si_pid); 2745 err |= __put_user(from->si_uid, &to->si_uid); 2746 err |= __put_user(from->si_status, &to->si_status); 2747 err |= __put_user(from->si_utime, &to->si_utime); 2748 err |= __put_user(from->si_stime, &to->si_stime); 2749 break; 2750 case __SI_RT: /* This is not generated by the kernel as of now. */ 2751 case __SI_MESGQ: /* But this is */ 2752 err |= __put_user(from->si_pid, &to->si_pid); 2753 err |= __put_user(from->si_uid, &to->si_uid); 2754 err |= __put_user(from->si_ptr, &to->si_ptr); 2755 break; 2756 #ifdef __ARCH_SIGSYS 2757 case __SI_SYS: 2758 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2759 err |= __put_user(from->si_syscall, &to->si_syscall); 2760 err |= __put_user(from->si_arch, &to->si_arch); 2761 break; 2762 #endif 2763 default: /* this is just in case for now ... */ 2764 err |= __put_user(from->si_pid, &to->si_pid); 2765 err |= __put_user(from->si_uid, &to->si_uid); 2766 break; 2767 } 2768 return err; 2769 } 2770 2771 #endif 2772 2773 /** 2774 * do_sigtimedwait - wait for queued signals specified in @which 2775 * @which: queued signals to wait for 2776 * @info: if non-null, the signal's siginfo is returned here 2777 * @ts: upper bound on process time suspension 2778 */ 2779 int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2780 const struct timespec *ts) 2781 { 2782 ktime_t *to = NULL, timeout = KTIME_MAX; 2783 struct task_struct *tsk = current; 2784 sigset_t mask = *which; 2785 int sig, ret = 0; 2786 2787 if (ts) { 2788 if (!timespec_valid(ts)) 2789 return -EINVAL; 2790 timeout = timespec_to_ktime(*ts); 2791 to = &timeout; 2792 } 2793 2794 /* 2795 * Invert the set of allowed signals to get those we want to block. 2796 */ 2797 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2798 signotset(&mask); 2799 2800 spin_lock_irq(&tsk->sighand->siglock); 2801 sig = dequeue_signal(tsk, &mask, info); 2802 if (!sig && timeout) { 2803 /* 2804 * None ready, temporarily unblock those we're interested 2805 * while we are sleeping in so that we'll be awakened when 2806 * they arrive. Unblocking is always fine, we can avoid 2807 * set_current_blocked(). 2808 */ 2809 tsk->real_blocked = tsk->blocked; 2810 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2811 recalc_sigpending(); 2812 spin_unlock_irq(&tsk->sighand->siglock); 2813 2814 __set_current_state(TASK_INTERRUPTIBLE); 2815 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 2816 HRTIMER_MODE_REL); 2817 spin_lock_irq(&tsk->sighand->siglock); 2818 __set_task_blocked(tsk, &tsk->real_blocked); 2819 sigemptyset(&tsk->real_blocked); 2820 sig = dequeue_signal(tsk, &mask, info); 2821 } 2822 spin_unlock_irq(&tsk->sighand->siglock); 2823 2824 if (sig) 2825 return sig; 2826 return ret ? -EINTR : -EAGAIN; 2827 } 2828 2829 /** 2830 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2831 * in @uthese 2832 * @uthese: queued signals to wait for 2833 * @uinfo: if non-null, the signal's siginfo is returned here 2834 * @uts: upper bound on process time suspension 2835 * @sigsetsize: size of sigset_t type 2836 */ 2837 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2838 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2839 size_t, sigsetsize) 2840 { 2841 sigset_t these; 2842 struct timespec ts; 2843 siginfo_t info; 2844 int ret; 2845 2846 /* XXX: Don't preclude handling different sized sigset_t's. */ 2847 if (sigsetsize != sizeof(sigset_t)) 2848 return -EINVAL; 2849 2850 if (copy_from_user(&these, uthese, sizeof(these))) 2851 return -EFAULT; 2852 2853 if (uts) { 2854 if (copy_from_user(&ts, uts, sizeof(ts))) 2855 return -EFAULT; 2856 } 2857 2858 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2859 2860 if (ret > 0 && uinfo) { 2861 if (copy_siginfo_to_user(uinfo, &info)) 2862 ret = -EFAULT; 2863 } 2864 2865 return ret; 2866 } 2867 2868 /** 2869 * sys_kill - send a signal to a process 2870 * @pid: the PID of the process 2871 * @sig: signal to be sent 2872 */ 2873 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2874 { 2875 struct siginfo info; 2876 2877 info.si_signo = sig; 2878 info.si_errno = 0; 2879 info.si_code = SI_USER; 2880 info.si_pid = task_tgid_vnr(current); 2881 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2882 2883 return kill_something_info(sig, &info, pid); 2884 } 2885 2886 static int 2887 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2888 { 2889 struct task_struct *p; 2890 int error = -ESRCH; 2891 2892 rcu_read_lock(); 2893 p = find_task_by_vpid(pid); 2894 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2895 error = check_kill_permission(sig, info, p); 2896 /* 2897 * The null signal is a permissions and process existence 2898 * probe. No signal is actually delivered. 2899 */ 2900 if (!error && sig) { 2901 error = do_send_sig_info(sig, info, p, false); 2902 /* 2903 * If lock_task_sighand() failed we pretend the task 2904 * dies after receiving the signal. The window is tiny, 2905 * and the signal is private anyway. 2906 */ 2907 if (unlikely(error == -ESRCH)) 2908 error = 0; 2909 } 2910 } 2911 rcu_read_unlock(); 2912 2913 return error; 2914 } 2915 2916 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2917 { 2918 struct siginfo info = {}; 2919 2920 info.si_signo = sig; 2921 info.si_errno = 0; 2922 info.si_code = SI_TKILL; 2923 info.si_pid = task_tgid_vnr(current); 2924 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2925 2926 return do_send_specific(tgid, pid, sig, &info); 2927 } 2928 2929 /** 2930 * sys_tgkill - send signal to one specific thread 2931 * @tgid: the thread group ID of the thread 2932 * @pid: the PID of the thread 2933 * @sig: signal to be sent 2934 * 2935 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2936 * exists but it's not belonging to the target process anymore. This 2937 * method solves the problem of threads exiting and PIDs getting reused. 2938 */ 2939 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2940 { 2941 /* This is only valid for single tasks */ 2942 if (pid <= 0 || tgid <= 0) 2943 return -EINVAL; 2944 2945 return do_tkill(tgid, pid, sig); 2946 } 2947 2948 /** 2949 * sys_tkill - send signal to one specific task 2950 * @pid: the PID of the task 2951 * @sig: signal to be sent 2952 * 2953 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2954 */ 2955 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2956 { 2957 /* This is only valid for single tasks */ 2958 if (pid <= 0) 2959 return -EINVAL; 2960 2961 return do_tkill(0, pid, sig); 2962 } 2963 2964 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info) 2965 { 2966 /* Not even root can pretend to send signals from the kernel. 2967 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2968 */ 2969 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 2970 (task_pid_vnr(current) != pid)) 2971 return -EPERM; 2972 2973 info->si_signo = sig; 2974 2975 /* POSIX.1b doesn't mention process groups. */ 2976 return kill_proc_info(sig, info, pid); 2977 } 2978 2979 /** 2980 * sys_rt_sigqueueinfo - send signal information to a signal 2981 * @pid: the PID of the thread 2982 * @sig: signal to be sent 2983 * @uinfo: signal info to be sent 2984 */ 2985 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 2986 siginfo_t __user *, uinfo) 2987 { 2988 siginfo_t info; 2989 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2990 return -EFAULT; 2991 return do_rt_sigqueueinfo(pid, sig, &info); 2992 } 2993 2994 #ifdef CONFIG_COMPAT 2995 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 2996 compat_pid_t, pid, 2997 int, sig, 2998 struct compat_siginfo __user *, uinfo) 2999 { 3000 siginfo_t info = {}; 3001 int ret = copy_siginfo_from_user32(&info, uinfo); 3002 if (unlikely(ret)) 3003 return ret; 3004 return do_rt_sigqueueinfo(pid, sig, &info); 3005 } 3006 #endif 3007 3008 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 3009 { 3010 /* This is only valid for single tasks */ 3011 if (pid <= 0 || tgid <= 0) 3012 return -EINVAL; 3013 3014 /* Not even root can pretend to send signals from the kernel. 3015 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3016 */ 3017 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3018 (task_pid_vnr(current) != pid)) 3019 return -EPERM; 3020 3021 info->si_signo = sig; 3022 3023 return do_send_specific(tgid, pid, sig, info); 3024 } 3025 3026 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3027 siginfo_t __user *, uinfo) 3028 { 3029 siginfo_t info; 3030 3031 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3032 return -EFAULT; 3033 3034 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3035 } 3036 3037 #ifdef CONFIG_COMPAT 3038 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3039 compat_pid_t, tgid, 3040 compat_pid_t, pid, 3041 int, sig, 3042 struct compat_siginfo __user *, uinfo) 3043 { 3044 siginfo_t info = {}; 3045 3046 if (copy_siginfo_from_user32(&info, uinfo)) 3047 return -EFAULT; 3048 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3049 } 3050 #endif 3051 3052 /* 3053 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3054 */ 3055 void kernel_sigaction(int sig, __sighandler_t action) 3056 { 3057 spin_lock_irq(¤t->sighand->siglock); 3058 current->sighand->action[sig - 1].sa.sa_handler = action; 3059 if (action == SIG_IGN) { 3060 sigset_t mask; 3061 3062 sigemptyset(&mask); 3063 sigaddset(&mask, sig); 3064 3065 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3066 flush_sigqueue_mask(&mask, ¤t->pending); 3067 recalc_sigpending(); 3068 } 3069 spin_unlock_irq(¤t->sighand->siglock); 3070 } 3071 EXPORT_SYMBOL(kernel_sigaction); 3072 3073 void __weak sigaction_compat_abi(struct k_sigaction *act, 3074 struct k_sigaction *oact) 3075 { 3076 } 3077 3078 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3079 { 3080 struct task_struct *p = current, *t; 3081 struct k_sigaction *k; 3082 sigset_t mask; 3083 3084 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3085 return -EINVAL; 3086 3087 k = &p->sighand->action[sig-1]; 3088 3089 spin_lock_irq(&p->sighand->siglock); 3090 if (oact) 3091 *oact = *k; 3092 3093 sigaction_compat_abi(act, oact); 3094 3095 if (act) { 3096 sigdelsetmask(&act->sa.sa_mask, 3097 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3098 *k = *act; 3099 /* 3100 * POSIX 3.3.1.3: 3101 * "Setting a signal action to SIG_IGN for a signal that is 3102 * pending shall cause the pending signal to be discarded, 3103 * whether or not it is blocked." 3104 * 3105 * "Setting a signal action to SIG_DFL for a signal that is 3106 * pending and whose default action is to ignore the signal 3107 * (for example, SIGCHLD), shall cause the pending signal to 3108 * be discarded, whether or not it is blocked" 3109 */ 3110 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3111 sigemptyset(&mask); 3112 sigaddset(&mask, sig); 3113 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3114 for_each_thread(p, t) 3115 flush_sigqueue_mask(&mask, &t->pending); 3116 } 3117 } 3118 3119 spin_unlock_irq(&p->sighand->siglock); 3120 return 0; 3121 } 3122 3123 static int 3124 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 3125 { 3126 stack_t oss; 3127 int error; 3128 3129 oss.ss_sp = (void __user *) current->sas_ss_sp; 3130 oss.ss_size = current->sas_ss_size; 3131 oss.ss_flags = sas_ss_flags(sp) | 3132 (current->sas_ss_flags & SS_FLAG_BITS); 3133 3134 if (uss) { 3135 void __user *ss_sp; 3136 size_t ss_size; 3137 unsigned ss_flags; 3138 int ss_mode; 3139 3140 error = -EFAULT; 3141 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 3142 goto out; 3143 error = __get_user(ss_sp, &uss->ss_sp) | 3144 __get_user(ss_flags, &uss->ss_flags) | 3145 __get_user(ss_size, &uss->ss_size); 3146 if (error) 3147 goto out; 3148 3149 error = -EPERM; 3150 if (on_sig_stack(sp)) 3151 goto out; 3152 3153 ss_mode = ss_flags & ~SS_FLAG_BITS; 3154 error = -EINVAL; 3155 if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 3156 ss_mode != 0) 3157 goto out; 3158 3159 if (ss_mode == SS_DISABLE) { 3160 ss_size = 0; 3161 ss_sp = NULL; 3162 } else { 3163 error = -ENOMEM; 3164 if (ss_size < MINSIGSTKSZ) 3165 goto out; 3166 } 3167 3168 current->sas_ss_sp = (unsigned long) ss_sp; 3169 current->sas_ss_size = ss_size; 3170 current->sas_ss_flags = ss_flags; 3171 } 3172 3173 error = 0; 3174 if (uoss) { 3175 error = -EFAULT; 3176 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 3177 goto out; 3178 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 3179 __put_user(oss.ss_size, &uoss->ss_size) | 3180 __put_user(oss.ss_flags, &uoss->ss_flags); 3181 } 3182 3183 out: 3184 return error; 3185 } 3186 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3187 { 3188 return do_sigaltstack(uss, uoss, current_user_stack_pointer()); 3189 } 3190 3191 int restore_altstack(const stack_t __user *uss) 3192 { 3193 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer()); 3194 /* squash all but EFAULT for now */ 3195 return err == -EFAULT ? err : 0; 3196 } 3197 3198 int __save_altstack(stack_t __user *uss, unsigned long sp) 3199 { 3200 struct task_struct *t = current; 3201 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3202 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3203 __put_user(t->sas_ss_size, &uss->ss_size); 3204 if (err) 3205 return err; 3206 if (t->sas_ss_flags & SS_AUTODISARM) 3207 sas_ss_reset(t); 3208 return 0; 3209 } 3210 3211 #ifdef CONFIG_COMPAT 3212 COMPAT_SYSCALL_DEFINE2(sigaltstack, 3213 const compat_stack_t __user *, uss_ptr, 3214 compat_stack_t __user *, uoss_ptr) 3215 { 3216 stack_t uss, uoss; 3217 int ret; 3218 mm_segment_t seg; 3219 3220 if (uss_ptr) { 3221 compat_stack_t uss32; 3222 3223 memset(&uss, 0, sizeof(stack_t)); 3224 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3225 return -EFAULT; 3226 uss.ss_sp = compat_ptr(uss32.ss_sp); 3227 uss.ss_flags = uss32.ss_flags; 3228 uss.ss_size = uss32.ss_size; 3229 } 3230 seg = get_fs(); 3231 set_fs(KERNEL_DS); 3232 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL), 3233 (stack_t __force __user *) &uoss, 3234 compat_user_stack_pointer()); 3235 set_fs(seg); 3236 if (ret >= 0 && uoss_ptr) { 3237 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) || 3238 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) || 3239 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) || 3240 __put_user(uoss.ss_size, &uoss_ptr->ss_size)) 3241 ret = -EFAULT; 3242 } 3243 return ret; 3244 } 3245 3246 int compat_restore_altstack(const compat_stack_t __user *uss) 3247 { 3248 int err = compat_sys_sigaltstack(uss, NULL); 3249 /* squash all but -EFAULT for now */ 3250 return err == -EFAULT ? err : 0; 3251 } 3252 3253 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3254 { 3255 int err; 3256 struct task_struct *t = current; 3257 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 3258 &uss->ss_sp) | 3259 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3260 __put_user(t->sas_ss_size, &uss->ss_size); 3261 if (err) 3262 return err; 3263 if (t->sas_ss_flags & SS_AUTODISARM) 3264 sas_ss_reset(t); 3265 return 0; 3266 } 3267 #endif 3268 3269 #ifdef __ARCH_WANT_SYS_SIGPENDING 3270 3271 /** 3272 * sys_sigpending - examine pending signals 3273 * @set: where mask of pending signal is returned 3274 */ 3275 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3276 { 3277 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 3278 } 3279 3280 #endif 3281 3282 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3283 /** 3284 * sys_sigprocmask - examine and change blocked signals 3285 * @how: whether to add, remove, or set signals 3286 * @nset: signals to add or remove (if non-null) 3287 * @oset: previous value of signal mask if non-null 3288 * 3289 * Some platforms have their own version with special arguments; 3290 * others support only sys_rt_sigprocmask. 3291 */ 3292 3293 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3294 old_sigset_t __user *, oset) 3295 { 3296 old_sigset_t old_set, new_set; 3297 sigset_t new_blocked; 3298 3299 old_set = current->blocked.sig[0]; 3300 3301 if (nset) { 3302 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3303 return -EFAULT; 3304 3305 new_blocked = current->blocked; 3306 3307 switch (how) { 3308 case SIG_BLOCK: 3309 sigaddsetmask(&new_blocked, new_set); 3310 break; 3311 case SIG_UNBLOCK: 3312 sigdelsetmask(&new_blocked, new_set); 3313 break; 3314 case SIG_SETMASK: 3315 new_blocked.sig[0] = new_set; 3316 break; 3317 default: 3318 return -EINVAL; 3319 } 3320 3321 set_current_blocked(&new_blocked); 3322 } 3323 3324 if (oset) { 3325 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3326 return -EFAULT; 3327 } 3328 3329 return 0; 3330 } 3331 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3332 3333 #ifndef CONFIG_ODD_RT_SIGACTION 3334 /** 3335 * sys_rt_sigaction - alter an action taken by a process 3336 * @sig: signal to be sent 3337 * @act: new sigaction 3338 * @oact: used to save the previous sigaction 3339 * @sigsetsize: size of sigset_t type 3340 */ 3341 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3342 const struct sigaction __user *, act, 3343 struct sigaction __user *, oact, 3344 size_t, sigsetsize) 3345 { 3346 struct k_sigaction new_sa, old_sa; 3347 int ret = -EINVAL; 3348 3349 /* XXX: Don't preclude handling different sized sigset_t's. */ 3350 if (sigsetsize != sizeof(sigset_t)) 3351 goto out; 3352 3353 if (act) { 3354 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3355 return -EFAULT; 3356 } 3357 3358 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3359 3360 if (!ret && oact) { 3361 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3362 return -EFAULT; 3363 } 3364 out: 3365 return ret; 3366 } 3367 #ifdef CONFIG_COMPAT 3368 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 3369 const struct compat_sigaction __user *, act, 3370 struct compat_sigaction __user *, oact, 3371 compat_size_t, sigsetsize) 3372 { 3373 struct k_sigaction new_ka, old_ka; 3374 compat_sigset_t mask; 3375 #ifdef __ARCH_HAS_SA_RESTORER 3376 compat_uptr_t restorer; 3377 #endif 3378 int ret; 3379 3380 /* XXX: Don't preclude handling different sized sigset_t's. */ 3381 if (sigsetsize != sizeof(compat_sigset_t)) 3382 return -EINVAL; 3383 3384 if (act) { 3385 compat_uptr_t handler; 3386 ret = get_user(handler, &act->sa_handler); 3387 new_ka.sa.sa_handler = compat_ptr(handler); 3388 #ifdef __ARCH_HAS_SA_RESTORER 3389 ret |= get_user(restorer, &act->sa_restorer); 3390 new_ka.sa.sa_restorer = compat_ptr(restorer); 3391 #endif 3392 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask)); 3393 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 3394 if (ret) 3395 return -EFAULT; 3396 sigset_from_compat(&new_ka.sa.sa_mask, &mask); 3397 } 3398 3399 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3400 if (!ret && oact) { 3401 sigset_to_compat(&mask, &old_ka.sa.sa_mask); 3402 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 3403 &oact->sa_handler); 3404 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask)); 3405 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 3406 #ifdef __ARCH_HAS_SA_RESTORER 3407 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3408 &oact->sa_restorer); 3409 #endif 3410 } 3411 return ret; 3412 } 3413 #endif 3414 #endif /* !CONFIG_ODD_RT_SIGACTION */ 3415 3416 #ifdef CONFIG_OLD_SIGACTION 3417 SYSCALL_DEFINE3(sigaction, int, sig, 3418 const struct old_sigaction __user *, act, 3419 struct old_sigaction __user *, oact) 3420 { 3421 struct k_sigaction new_ka, old_ka; 3422 int ret; 3423 3424 if (act) { 3425 old_sigset_t mask; 3426 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3427 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 3428 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 3429 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3430 __get_user(mask, &act->sa_mask)) 3431 return -EFAULT; 3432 #ifdef __ARCH_HAS_KA_RESTORER 3433 new_ka.ka_restorer = NULL; 3434 #endif 3435 siginitset(&new_ka.sa.sa_mask, mask); 3436 } 3437 3438 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3439 3440 if (!ret && oact) { 3441 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3442 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 3443 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 3444 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3445 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3446 return -EFAULT; 3447 } 3448 3449 return ret; 3450 } 3451 #endif 3452 #ifdef CONFIG_COMPAT_OLD_SIGACTION 3453 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 3454 const struct compat_old_sigaction __user *, act, 3455 struct compat_old_sigaction __user *, oact) 3456 { 3457 struct k_sigaction new_ka, old_ka; 3458 int ret; 3459 compat_old_sigset_t mask; 3460 compat_uptr_t handler, restorer; 3461 3462 if (act) { 3463 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3464 __get_user(handler, &act->sa_handler) || 3465 __get_user(restorer, &act->sa_restorer) || 3466 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3467 __get_user(mask, &act->sa_mask)) 3468 return -EFAULT; 3469 3470 #ifdef __ARCH_HAS_KA_RESTORER 3471 new_ka.ka_restorer = NULL; 3472 #endif 3473 new_ka.sa.sa_handler = compat_ptr(handler); 3474 new_ka.sa.sa_restorer = compat_ptr(restorer); 3475 siginitset(&new_ka.sa.sa_mask, mask); 3476 } 3477 3478 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3479 3480 if (!ret && oact) { 3481 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3482 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 3483 &oact->sa_handler) || 3484 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3485 &oact->sa_restorer) || 3486 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3487 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3488 return -EFAULT; 3489 } 3490 return ret; 3491 } 3492 #endif 3493 3494 #ifdef CONFIG_SGETMASK_SYSCALL 3495 3496 /* 3497 * For backwards compatibility. Functionality superseded by sigprocmask. 3498 */ 3499 SYSCALL_DEFINE0(sgetmask) 3500 { 3501 /* SMP safe */ 3502 return current->blocked.sig[0]; 3503 } 3504 3505 SYSCALL_DEFINE1(ssetmask, int, newmask) 3506 { 3507 int old = current->blocked.sig[0]; 3508 sigset_t newset; 3509 3510 siginitset(&newset, newmask); 3511 set_current_blocked(&newset); 3512 3513 return old; 3514 } 3515 #endif /* CONFIG_SGETMASK_SYSCALL */ 3516 3517 #ifdef __ARCH_WANT_SYS_SIGNAL 3518 /* 3519 * For backwards compatibility. Functionality superseded by sigaction. 3520 */ 3521 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3522 { 3523 struct k_sigaction new_sa, old_sa; 3524 int ret; 3525 3526 new_sa.sa.sa_handler = handler; 3527 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3528 sigemptyset(&new_sa.sa.sa_mask); 3529 3530 ret = do_sigaction(sig, &new_sa, &old_sa); 3531 3532 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3533 } 3534 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3535 3536 #ifdef __ARCH_WANT_SYS_PAUSE 3537 3538 SYSCALL_DEFINE0(pause) 3539 { 3540 while (!signal_pending(current)) { 3541 __set_current_state(TASK_INTERRUPTIBLE); 3542 schedule(); 3543 } 3544 return -ERESTARTNOHAND; 3545 } 3546 3547 #endif 3548 3549 static int sigsuspend(sigset_t *set) 3550 { 3551 current->saved_sigmask = current->blocked; 3552 set_current_blocked(set); 3553 3554 while (!signal_pending(current)) { 3555 __set_current_state(TASK_INTERRUPTIBLE); 3556 schedule(); 3557 } 3558 set_restore_sigmask(); 3559 return -ERESTARTNOHAND; 3560 } 3561 3562 /** 3563 * sys_rt_sigsuspend - replace the signal mask for a value with the 3564 * @unewset value until a signal is received 3565 * @unewset: new signal mask value 3566 * @sigsetsize: size of sigset_t type 3567 */ 3568 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3569 { 3570 sigset_t newset; 3571 3572 /* XXX: Don't preclude handling different sized sigset_t's. */ 3573 if (sigsetsize != sizeof(sigset_t)) 3574 return -EINVAL; 3575 3576 if (copy_from_user(&newset, unewset, sizeof(newset))) 3577 return -EFAULT; 3578 return sigsuspend(&newset); 3579 } 3580 3581 #ifdef CONFIG_COMPAT 3582 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 3583 { 3584 #ifdef __BIG_ENDIAN 3585 sigset_t newset; 3586 compat_sigset_t newset32; 3587 3588 /* XXX: Don't preclude handling different sized sigset_t's. */ 3589 if (sigsetsize != sizeof(sigset_t)) 3590 return -EINVAL; 3591 3592 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t))) 3593 return -EFAULT; 3594 sigset_from_compat(&newset, &newset32); 3595 return sigsuspend(&newset); 3596 #else 3597 /* on little-endian bitmaps don't care about granularity */ 3598 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize); 3599 #endif 3600 } 3601 #endif 3602 3603 #ifdef CONFIG_OLD_SIGSUSPEND 3604 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 3605 { 3606 sigset_t blocked; 3607 siginitset(&blocked, mask); 3608 return sigsuspend(&blocked); 3609 } 3610 #endif 3611 #ifdef CONFIG_OLD_SIGSUSPEND3 3612 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 3613 { 3614 sigset_t blocked; 3615 siginitset(&blocked, mask); 3616 return sigsuspend(&blocked); 3617 } 3618 #endif 3619 3620 __weak const char *arch_vma_name(struct vm_area_struct *vma) 3621 { 3622 return NULL; 3623 } 3624 3625 void __init signals_init(void) 3626 { 3627 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */ 3628 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE 3629 != offsetof(struct siginfo, _sifields._pad)); 3630 3631 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3632 } 3633 3634 #ifdef CONFIG_KGDB_KDB 3635 #include <linux/kdb.h> 3636 /* 3637 * kdb_send_sig_info - Allows kdb to send signals without exposing 3638 * signal internals. This function checks if the required locks are 3639 * available before calling the main signal code, to avoid kdb 3640 * deadlocks. 3641 */ 3642 void 3643 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3644 { 3645 static struct task_struct *kdb_prev_t; 3646 int sig, new_t; 3647 if (!spin_trylock(&t->sighand->siglock)) { 3648 kdb_printf("Can't do kill command now.\n" 3649 "The sigmask lock is held somewhere else in " 3650 "kernel, try again later\n"); 3651 return; 3652 } 3653 spin_unlock(&t->sighand->siglock); 3654 new_t = kdb_prev_t != t; 3655 kdb_prev_t = t; 3656 if (t->state != TASK_RUNNING && new_t) { 3657 kdb_printf("Process is not RUNNING, sending a signal from " 3658 "kdb risks deadlock\n" 3659 "on the run queue locks. " 3660 "The signal has _not_ been sent.\n" 3661 "Reissue the kill command if you want to risk " 3662 "the deadlock.\n"); 3663 return; 3664 } 3665 sig = info->si_signo; 3666 if (send_sig_info(sig, info, t)) 3667 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3668 sig, t->pid); 3669 else 3670 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3671 } 3672 #endif /* CONFIG_KGDB_KDB */ 3673