xref: /linux/kernel/signal.c (revision 0408c58be5a475c99b271f08d85859f7b59ec767)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/signal.h>
45 
46 #include <asm/param.h>
47 #include <linux/uaccess.h>
48 #include <asm/unistd.h>
49 #include <asm/siginfo.h>
50 #include <asm/cacheflush.h>
51 #include "audit.h"	/* audit_signal_info() */
52 
53 /*
54  * SLAB caches for signal bits.
55  */
56 
57 static struct kmem_cache *sigqueue_cachep;
58 
59 int print_fatal_signals __read_mostly;
60 
61 static void __user *sig_handler(struct task_struct *t, int sig)
62 {
63 	return t->sighand->action[sig - 1].sa.sa_handler;
64 }
65 
66 static int sig_handler_ignored(void __user *handler, int sig)
67 {
68 	/* Is it explicitly or implicitly ignored? */
69 	return handler == SIG_IGN ||
70 		(handler == SIG_DFL && sig_kernel_ignore(sig));
71 }
72 
73 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
74 {
75 	void __user *handler;
76 
77 	handler = sig_handler(t, sig);
78 
79 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
80 			handler == SIG_DFL && !force)
81 		return 1;
82 
83 	return sig_handler_ignored(handler, sig);
84 }
85 
86 static int sig_ignored(struct task_struct *t, int sig, bool force)
87 {
88 	/*
89 	 * Blocked signals are never ignored, since the
90 	 * signal handler may change by the time it is
91 	 * unblocked.
92 	 */
93 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
94 		return 0;
95 
96 	if (!sig_task_ignored(t, sig, force))
97 		return 0;
98 
99 	/*
100 	 * Tracers may want to know about even ignored signals.
101 	 */
102 	return !t->ptrace;
103 }
104 
105 /*
106  * Re-calculate pending state from the set of locally pending
107  * signals, globally pending signals, and blocked signals.
108  */
109 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
110 {
111 	unsigned long ready;
112 	long i;
113 
114 	switch (_NSIG_WORDS) {
115 	default:
116 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
117 			ready |= signal->sig[i] &~ blocked->sig[i];
118 		break;
119 
120 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
121 		ready |= signal->sig[2] &~ blocked->sig[2];
122 		ready |= signal->sig[1] &~ blocked->sig[1];
123 		ready |= signal->sig[0] &~ blocked->sig[0];
124 		break;
125 
126 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
127 		ready |= signal->sig[0] &~ blocked->sig[0];
128 		break;
129 
130 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
131 	}
132 	return ready !=	0;
133 }
134 
135 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
136 
137 static int recalc_sigpending_tsk(struct task_struct *t)
138 {
139 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
140 	    PENDING(&t->pending, &t->blocked) ||
141 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
142 		set_tsk_thread_flag(t, TIF_SIGPENDING);
143 		return 1;
144 	}
145 	/*
146 	 * We must never clear the flag in another thread, or in current
147 	 * when it's possible the current syscall is returning -ERESTART*.
148 	 * So we don't clear it here, and only callers who know they should do.
149 	 */
150 	return 0;
151 }
152 
153 /*
154  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
155  * This is superfluous when called on current, the wakeup is a harmless no-op.
156  */
157 void recalc_sigpending_and_wake(struct task_struct *t)
158 {
159 	if (recalc_sigpending_tsk(t))
160 		signal_wake_up(t, 0);
161 }
162 
163 void recalc_sigpending(void)
164 {
165 	if (!recalc_sigpending_tsk(current) && !freezing(current))
166 		clear_thread_flag(TIF_SIGPENDING);
167 
168 }
169 
170 /* Given the mask, find the first available signal that should be serviced. */
171 
172 #define SYNCHRONOUS_MASK \
173 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
174 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
175 
176 int next_signal(struct sigpending *pending, sigset_t *mask)
177 {
178 	unsigned long i, *s, *m, x;
179 	int sig = 0;
180 
181 	s = pending->signal.sig;
182 	m = mask->sig;
183 
184 	/*
185 	 * Handle the first word specially: it contains the
186 	 * synchronous signals that need to be dequeued first.
187 	 */
188 	x = *s &~ *m;
189 	if (x) {
190 		if (x & SYNCHRONOUS_MASK)
191 			x &= SYNCHRONOUS_MASK;
192 		sig = ffz(~x) + 1;
193 		return sig;
194 	}
195 
196 	switch (_NSIG_WORDS) {
197 	default:
198 		for (i = 1; i < _NSIG_WORDS; ++i) {
199 			x = *++s &~ *++m;
200 			if (!x)
201 				continue;
202 			sig = ffz(~x) + i*_NSIG_BPW + 1;
203 			break;
204 		}
205 		break;
206 
207 	case 2:
208 		x = s[1] &~ m[1];
209 		if (!x)
210 			break;
211 		sig = ffz(~x) + _NSIG_BPW + 1;
212 		break;
213 
214 	case 1:
215 		/* Nothing to do */
216 		break;
217 	}
218 
219 	return sig;
220 }
221 
222 static inline void print_dropped_signal(int sig)
223 {
224 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
225 
226 	if (!print_fatal_signals)
227 		return;
228 
229 	if (!__ratelimit(&ratelimit_state))
230 		return;
231 
232 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
233 				current->comm, current->pid, sig);
234 }
235 
236 /**
237  * task_set_jobctl_pending - set jobctl pending bits
238  * @task: target task
239  * @mask: pending bits to set
240  *
241  * Clear @mask from @task->jobctl.  @mask must be subset of
242  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
243  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
244  * cleared.  If @task is already being killed or exiting, this function
245  * becomes noop.
246  *
247  * CONTEXT:
248  * Must be called with @task->sighand->siglock held.
249  *
250  * RETURNS:
251  * %true if @mask is set, %false if made noop because @task was dying.
252  */
253 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
254 {
255 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
256 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
257 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
258 
259 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
260 		return false;
261 
262 	if (mask & JOBCTL_STOP_SIGMASK)
263 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
264 
265 	task->jobctl |= mask;
266 	return true;
267 }
268 
269 /**
270  * task_clear_jobctl_trapping - clear jobctl trapping bit
271  * @task: target task
272  *
273  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
274  * Clear it and wake up the ptracer.  Note that we don't need any further
275  * locking.  @task->siglock guarantees that @task->parent points to the
276  * ptracer.
277  *
278  * CONTEXT:
279  * Must be called with @task->sighand->siglock held.
280  */
281 void task_clear_jobctl_trapping(struct task_struct *task)
282 {
283 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
284 		task->jobctl &= ~JOBCTL_TRAPPING;
285 		smp_mb();	/* advised by wake_up_bit() */
286 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
287 	}
288 }
289 
290 /**
291  * task_clear_jobctl_pending - clear jobctl pending bits
292  * @task: target task
293  * @mask: pending bits to clear
294  *
295  * Clear @mask from @task->jobctl.  @mask must be subset of
296  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
297  * STOP bits are cleared together.
298  *
299  * If clearing of @mask leaves no stop or trap pending, this function calls
300  * task_clear_jobctl_trapping().
301  *
302  * CONTEXT:
303  * Must be called with @task->sighand->siglock held.
304  */
305 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
306 {
307 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
308 
309 	if (mask & JOBCTL_STOP_PENDING)
310 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
311 
312 	task->jobctl &= ~mask;
313 
314 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
315 		task_clear_jobctl_trapping(task);
316 }
317 
318 /**
319  * task_participate_group_stop - participate in a group stop
320  * @task: task participating in a group stop
321  *
322  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
323  * Group stop states are cleared and the group stop count is consumed if
324  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
325  * stop, the appropriate %SIGNAL_* flags are set.
326  *
327  * CONTEXT:
328  * Must be called with @task->sighand->siglock held.
329  *
330  * RETURNS:
331  * %true if group stop completion should be notified to the parent, %false
332  * otherwise.
333  */
334 static bool task_participate_group_stop(struct task_struct *task)
335 {
336 	struct signal_struct *sig = task->signal;
337 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
338 
339 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
340 
341 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
342 
343 	if (!consume)
344 		return false;
345 
346 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
347 		sig->group_stop_count--;
348 
349 	/*
350 	 * Tell the caller to notify completion iff we are entering into a
351 	 * fresh group stop.  Read comment in do_signal_stop() for details.
352 	 */
353 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
354 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
355 		return true;
356 	}
357 	return false;
358 }
359 
360 /*
361  * allocate a new signal queue record
362  * - this may be called without locks if and only if t == current, otherwise an
363  *   appropriate lock must be held to stop the target task from exiting
364  */
365 static struct sigqueue *
366 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
367 {
368 	struct sigqueue *q = NULL;
369 	struct user_struct *user;
370 
371 	/*
372 	 * Protect access to @t credentials. This can go away when all
373 	 * callers hold rcu read lock.
374 	 */
375 	rcu_read_lock();
376 	user = get_uid(__task_cred(t)->user);
377 	atomic_inc(&user->sigpending);
378 	rcu_read_unlock();
379 
380 	if (override_rlimit ||
381 	    atomic_read(&user->sigpending) <=
382 			task_rlimit(t, RLIMIT_SIGPENDING)) {
383 		q = kmem_cache_alloc(sigqueue_cachep, flags);
384 	} else {
385 		print_dropped_signal(sig);
386 	}
387 
388 	if (unlikely(q == NULL)) {
389 		atomic_dec(&user->sigpending);
390 		free_uid(user);
391 	} else {
392 		INIT_LIST_HEAD(&q->list);
393 		q->flags = 0;
394 		q->user = user;
395 	}
396 
397 	return q;
398 }
399 
400 static void __sigqueue_free(struct sigqueue *q)
401 {
402 	if (q->flags & SIGQUEUE_PREALLOC)
403 		return;
404 	atomic_dec(&q->user->sigpending);
405 	free_uid(q->user);
406 	kmem_cache_free(sigqueue_cachep, q);
407 }
408 
409 void flush_sigqueue(struct sigpending *queue)
410 {
411 	struct sigqueue *q;
412 
413 	sigemptyset(&queue->signal);
414 	while (!list_empty(&queue->list)) {
415 		q = list_entry(queue->list.next, struct sigqueue , list);
416 		list_del_init(&q->list);
417 		__sigqueue_free(q);
418 	}
419 }
420 
421 /*
422  * Flush all pending signals for this kthread.
423  */
424 void flush_signals(struct task_struct *t)
425 {
426 	unsigned long flags;
427 
428 	spin_lock_irqsave(&t->sighand->siglock, flags);
429 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
430 	flush_sigqueue(&t->pending);
431 	flush_sigqueue(&t->signal->shared_pending);
432 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
433 }
434 
435 #ifdef CONFIG_POSIX_TIMERS
436 static void __flush_itimer_signals(struct sigpending *pending)
437 {
438 	sigset_t signal, retain;
439 	struct sigqueue *q, *n;
440 
441 	signal = pending->signal;
442 	sigemptyset(&retain);
443 
444 	list_for_each_entry_safe(q, n, &pending->list, list) {
445 		int sig = q->info.si_signo;
446 
447 		if (likely(q->info.si_code != SI_TIMER)) {
448 			sigaddset(&retain, sig);
449 		} else {
450 			sigdelset(&signal, sig);
451 			list_del_init(&q->list);
452 			__sigqueue_free(q);
453 		}
454 	}
455 
456 	sigorsets(&pending->signal, &signal, &retain);
457 }
458 
459 void flush_itimer_signals(void)
460 {
461 	struct task_struct *tsk = current;
462 	unsigned long flags;
463 
464 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
465 	__flush_itimer_signals(&tsk->pending);
466 	__flush_itimer_signals(&tsk->signal->shared_pending);
467 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
468 }
469 #endif
470 
471 void ignore_signals(struct task_struct *t)
472 {
473 	int i;
474 
475 	for (i = 0; i < _NSIG; ++i)
476 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
477 
478 	flush_signals(t);
479 }
480 
481 /*
482  * Flush all handlers for a task.
483  */
484 
485 void
486 flush_signal_handlers(struct task_struct *t, int force_default)
487 {
488 	int i;
489 	struct k_sigaction *ka = &t->sighand->action[0];
490 	for (i = _NSIG ; i != 0 ; i--) {
491 		if (force_default || ka->sa.sa_handler != SIG_IGN)
492 			ka->sa.sa_handler = SIG_DFL;
493 		ka->sa.sa_flags = 0;
494 #ifdef __ARCH_HAS_SA_RESTORER
495 		ka->sa.sa_restorer = NULL;
496 #endif
497 		sigemptyset(&ka->sa.sa_mask);
498 		ka++;
499 	}
500 }
501 
502 int unhandled_signal(struct task_struct *tsk, int sig)
503 {
504 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
505 	if (is_global_init(tsk))
506 		return 1;
507 	if (handler != SIG_IGN && handler != SIG_DFL)
508 		return 0;
509 	/* if ptraced, let the tracer determine */
510 	return !tsk->ptrace;
511 }
512 
513 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
514 			   bool *resched_timer)
515 {
516 	struct sigqueue *q, *first = NULL;
517 
518 	/*
519 	 * Collect the siginfo appropriate to this signal.  Check if
520 	 * there is another siginfo for the same signal.
521 	*/
522 	list_for_each_entry(q, &list->list, list) {
523 		if (q->info.si_signo == sig) {
524 			if (first)
525 				goto still_pending;
526 			first = q;
527 		}
528 	}
529 
530 	sigdelset(&list->signal, sig);
531 
532 	if (first) {
533 still_pending:
534 		list_del_init(&first->list);
535 		copy_siginfo(info, &first->info);
536 
537 		*resched_timer =
538 			(first->flags & SIGQUEUE_PREALLOC) &&
539 			(info->si_code == SI_TIMER) &&
540 			(info->si_sys_private);
541 
542 		__sigqueue_free(first);
543 	} else {
544 		/*
545 		 * Ok, it wasn't in the queue.  This must be
546 		 * a fast-pathed signal or we must have been
547 		 * out of queue space.  So zero out the info.
548 		 */
549 		info->si_signo = sig;
550 		info->si_errno = 0;
551 		info->si_code = SI_USER;
552 		info->si_pid = 0;
553 		info->si_uid = 0;
554 	}
555 }
556 
557 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
558 			siginfo_t *info, bool *resched_timer)
559 {
560 	int sig = next_signal(pending, mask);
561 
562 	if (sig)
563 		collect_signal(sig, pending, info, resched_timer);
564 	return sig;
565 }
566 
567 /*
568  * Dequeue a signal and return the element to the caller, which is
569  * expected to free it.
570  *
571  * All callers have to hold the siglock.
572  */
573 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
574 {
575 	bool resched_timer = false;
576 	int signr;
577 
578 	/* We only dequeue private signals from ourselves, we don't let
579 	 * signalfd steal them
580 	 */
581 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
582 	if (!signr) {
583 		signr = __dequeue_signal(&tsk->signal->shared_pending,
584 					 mask, info, &resched_timer);
585 #ifdef CONFIG_POSIX_TIMERS
586 		/*
587 		 * itimer signal ?
588 		 *
589 		 * itimers are process shared and we restart periodic
590 		 * itimers in the signal delivery path to prevent DoS
591 		 * attacks in the high resolution timer case. This is
592 		 * compliant with the old way of self-restarting
593 		 * itimers, as the SIGALRM is a legacy signal and only
594 		 * queued once. Changing the restart behaviour to
595 		 * restart the timer in the signal dequeue path is
596 		 * reducing the timer noise on heavy loaded !highres
597 		 * systems too.
598 		 */
599 		if (unlikely(signr == SIGALRM)) {
600 			struct hrtimer *tmr = &tsk->signal->real_timer;
601 
602 			if (!hrtimer_is_queued(tmr) &&
603 			    tsk->signal->it_real_incr != 0) {
604 				hrtimer_forward(tmr, tmr->base->get_time(),
605 						tsk->signal->it_real_incr);
606 				hrtimer_restart(tmr);
607 			}
608 		}
609 #endif
610 	}
611 
612 	recalc_sigpending();
613 	if (!signr)
614 		return 0;
615 
616 	if (unlikely(sig_kernel_stop(signr))) {
617 		/*
618 		 * Set a marker that we have dequeued a stop signal.  Our
619 		 * caller might release the siglock and then the pending
620 		 * stop signal it is about to process is no longer in the
621 		 * pending bitmasks, but must still be cleared by a SIGCONT
622 		 * (and overruled by a SIGKILL).  So those cases clear this
623 		 * shared flag after we've set it.  Note that this flag may
624 		 * remain set after the signal we return is ignored or
625 		 * handled.  That doesn't matter because its only purpose
626 		 * is to alert stop-signal processing code when another
627 		 * processor has come along and cleared the flag.
628 		 */
629 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
630 	}
631 #ifdef CONFIG_POSIX_TIMERS
632 	if (resched_timer) {
633 		/*
634 		 * Release the siglock to ensure proper locking order
635 		 * of timer locks outside of siglocks.  Note, we leave
636 		 * irqs disabled here, since the posix-timers code is
637 		 * about to disable them again anyway.
638 		 */
639 		spin_unlock(&tsk->sighand->siglock);
640 		do_schedule_next_timer(info);
641 		spin_lock(&tsk->sighand->siglock);
642 	}
643 #endif
644 	return signr;
645 }
646 
647 /*
648  * Tell a process that it has a new active signal..
649  *
650  * NOTE! we rely on the previous spin_lock to
651  * lock interrupts for us! We can only be called with
652  * "siglock" held, and the local interrupt must
653  * have been disabled when that got acquired!
654  *
655  * No need to set need_resched since signal event passing
656  * goes through ->blocked
657  */
658 void signal_wake_up_state(struct task_struct *t, unsigned int state)
659 {
660 	set_tsk_thread_flag(t, TIF_SIGPENDING);
661 	/*
662 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
663 	 * case. We don't check t->state here because there is a race with it
664 	 * executing another processor and just now entering stopped state.
665 	 * By using wake_up_state, we ensure the process will wake up and
666 	 * handle its death signal.
667 	 */
668 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
669 		kick_process(t);
670 }
671 
672 /*
673  * Remove signals in mask from the pending set and queue.
674  * Returns 1 if any signals were found.
675  *
676  * All callers must be holding the siglock.
677  */
678 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
679 {
680 	struct sigqueue *q, *n;
681 	sigset_t m;
682 
683 	sigandsets(&m, mask, &s->signal);
684 	if (sigisemptyset(&m))
685 		return 0;
686 
687 	sigandnsets(&s->signal, &s->signal, mask);
688 	list_for_each_entry_safe(q, n, &s->list, list) {
689 		if (sigismember(mask, q->info.si_signo)) {
690 			list_del_init(&q->list);
691 			__sigqueue_free(q);
692 		}
693 	}
694 	return 1;
695 }
696 
697 static inline int is_si_special(const struct siginfo *info)
698 {
699 	return info <= SEND_SIG_FORCED;
700 }
701 
702 static inline bool si_fromuser(const struct siginfo *info)
703 {
704 	return info == SEND_SIG_NOINFO ||
705 		(!is_si_special(info) && SI_FROMUSER(info));
706 }
707 
708 /*
709  * called with RCU read lock from check_kill_permission()
710  */
711 static int kill_ok_by_cred(struct task_struct *t)
712 {
713 	const struct cred *cred = current_cred();
714 	const struct cred *tcred = __task_cred(t);
715 
716 	if (uid_eq(cred->euid, tcred->suid) ||
717 	    uid_eq(cred->euid, tcred->uid)  ||
718 	    uid_eq(cred->uid,  tcred->suid) ||
719 	    uid_eq(cred->uid,  tcred->uid))
720 		return 1;
721 
722 	if (ns_capable(tcred->user_ns, CAP_KILL))
723 		return 1;
724 
725 	return 0;
726 }
727 
728 /*
729  * Bad permissions for sending the signal
730  * - the caller must hold the RCU read lock
731  */
732 static int check_kill_permission(int sig, struct siginfo *info,
733 				 struct task_struct *t)
734 {
735 	struct pid *sid;
736 	int error;
737 
738 	if (!valid_signal(sig))
739 		return -EINVAL;
740 
741 	if (!si_fromuser(info))
742 		return 0;
743 
744 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
745 	if (error)
746 		return error;
747 
748 	if (!same_thread_group(current, t) &&
749 	    !kill_ok_by_cred(t)) {
750 		switch (sig) {
751 		case SIGCONT:
752 			sid = task_session(t);
753 			/*
754 			 * We don't return the error if sid == NULL. The
755 			 * task was unhashed, the caller must notice this.
756 			 */
757 			if (!sid || sid == task_session(current))
758 				break;
759 		default:
760 			return -EPERM;
761 		}
762 	}
763 
764 	return security_task_kill(t, info, sig, 0);
765 }
766 
767 /**
768  * ptrace_trap_notify - schedule trap to notify ptracer
769  * @t: tracee wanting to notify tracer
770  *
771  * This function schedules sticky ptrace trap which is cleared on the next
772  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
773  * ptracer.
774  *
775  * If @t is running, STOP trap will be taken.  If trapped for STOP and
776  * ptracer is listening for events, tracee is woken up so that it can
777  * re-trap for the new event.  If trapped otherwise, STOP trap will be
778  * eventually taken without returning to userland after the existing traps
779  * are finished by PTRACE_CONT.
780  *
781  * CONTEXT:
782  * Must be called with @task->sighand->siglock held.
783  */
784 static void ptrace_trap_notify(struct task_struct *t)
785 {
786 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
787 	assert_spin_locked(&t->sighand->siglock);
788 
789 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
790 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
791 }
792 
793 /*
794  * Handle magic process-wide effects of stop/continue signals. Unlike
795  * the signal actions, these happen immediately at signal-generation
796  * time regardless of blocking, ignoring, or handling.  This does the
797  * actual continuing for SIGCONT, but not the actual stopping for stop
798  * signals. The process stop is done as a signal action for SIG_DFL.
799  *
800  * Returns true if the signal should be actually delivered, otherwise
801  * it should be dropped.
802  */
803 static bool prepare_signal(int sig, struct task_struct *p, bool force)
804 {
805 	struct signal_struct *signal = p->signal;
806 	struct task_struct *t;
807 	sigset_t flush;
808 
809 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
810 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
811 			return sig == SIGKILL;
812 		/*
813 		 * The process is in the middle of dying, nothing to do.
814 		 */
815 	} else if (sig_kernel_stop(sig)) {
816 		/*
817 		 * This is a stop signal.  Remove SIGCONT from all queues.
818 		 */
819 		siginitset(&flush, sigmask(SIGCONT));
820 		flush_sigqueue_mask(&flush, &signal->shared_pending);
821 		for_each_thread(p, t)
822 			flush_sigqueue_mask(&flush, &t->pending);
823 	} else if (sig == SIGCONT) {
824 		unsigned int why;
825 		/*
826 		 * Remove all stop signals from all queues, wake all threads.
827 		 */
828 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
829 		flush_sigqueue_mask(&flush, &signal->shared_pending);
830 		for_each_thread(p, t) {
831 			flush_sigqueue_mask(&flush, &t->pending);
832 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
833 			if (likely(!(t->ptrace & PT_SEIZED)))
834 				wake_up_state(t, __TASK_STOPPED);
835 			else
836 				ptrace_trap_notify(t);
837 		}
838 
839 		/*
840 		 * Notify the parent with CLD_CONTINUED if we were stopped.
841 		 *
842 		 * If we were in the middle of a group stop, we pretend it
843 		 * was already finished, and then continued. Since SIGCHLD
844 		 * doesn't queue we report only CLD_STOPPED, as if the next
845 		 * CLD_CONTINUED was dropped.
846 		 */
847 		why = 0;
848 		if (signal->flags & SIGNAL_STOP_STOPPED)
849 			why |= SIGNAL_CLD_CONTINUED;
850 		else if (signal->group_stop_count)
851 			why |= SIGNAL_CLD_STOPPED;
852 
853 		if (why) {
854 			/*
855 			 * The first thread which returns from do_signal_stop()
856 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
857 			 * notify its parent. See get_signal_to_deliver().
858 			 */
859 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
860 			signal->group_stop_count = 0;
861 			signal->group_exit_code = 0;
862 		}
863 	}
864 
865 	return !sig_ignored(p, sig, force);
866 }
867 
868 /*
869  * Test if P wants to take SIG.  After we've checked all threads with this,
870  * it's equivalent to finding no threads not blocking SIG.  Any threads not
871  * blocking SIG were ruled out because they are not running and already
872  * have pending signals.  Such threads will dequeue from the shared queue
873  * as soon as they're available, so putting the signal on the shared queue
874  * will be equivalent to sending it to one such thread.
875  */
876 static inline int wants_signal(int sig, struct task_struct *p)
877 {
878 	if (sigismember(&p->blocked, sig))
879 		return 0;
880 	if (p->flags & PF_EXITING)
881 		return 0;
882 	if (sig == SIGKILL)
883 		return 1;
884 	if (task_is_stopped_or_traced(p))
885 		return 0;
886 	return task_curr(p) || !signal_pending(p);
887 }
888 
889 static void complete_signal(int sig, struct task_struct *p, int group)
890 {
891 	struct signal_struct *signal = p->signal;
892 	struct task_struct *t;
893 
894 	/*
895 	 * Now find a thread we can wake up to take the signal off the queue.
896 	 *
897 	 * If the main thread wants the signal, it gets first crack.
898 	 * Probably the least surprising to the average bear.
899 	 */
900 	if (wants_signal(sig, p))
901 		t = p;
902 	else if (!group || thread_group_empty(p))
903 		/*
904 		 * There is just one thread and it does not need to be woken.
905 		 * It will dequeue unblocked signals before it runs again.
906 		 */
907 		return;
908 	else {
909 		/*
910 		 * Otherwise try to find a suitable thread.
911 		 */
912 		t = signal->curr_target;
913 		while (!wants_signal(sig, t)) {
914 			t = next_thread(t);
915 			if (t == signal->curr_target)
916 				/*
917 				 * No thread needs to be woken.
918 				 * Any eligible threads will see
919 				 * the signal in the queue soon.
920 				 */
921 				return;
922 		}
923 		signal->curr_target = t;
924 	}
925 
926 	/*
927 	 * Found a killable thread.  If the signal will be fatal,
928 	 * then start taking the whole group down immediately.
929 	 */
930 	if (sig_fatal(p, sig) &&
931 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
932 	    !sigismember(&t->real_blocked, sig) &&
933 	    (sig == SIGKILL || !t->ptrace)) {
934 		/*
935 		 * This signal will be fatal to the whole group.
936 		 */
937 		if (!sig_kernel_coredump(sig)) {
938 			/*
939 			 * Start a group exit and wake everybody up.
940 			 * This way we don't have other threads
941 			 * running and doing things after a slower
942 			 * thread has the fatal signal pending.
943 			 */
944 			signal->flags = SIGNAL_GROUP_EXIT;
945 			signal->group_exit_code = sig;
946 			signal->group_stop_count = 0;
947 			t = p;
948 			do {
949 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
950 				sigaddset(&t->pending.signal, SIGKILL);
951 				signal_wake_up(t, 1);
952 			} while_each_thread(p, t);
953 			return;
954 		}
955 	}
956 
957 	/*
958 	 * The signal is already in the shared-pending queue.
959 	 * Tell the chosen thread to wake up and dequeue it.
960 	 */
961 	signal_wake_up(t, sig == SIGKILL);
962 	return;
963 }
964 
965 static inline int legacy_queue(struct sigpending *signals, int sig)
966 {
967 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
968 }
969 
970 #ifdef CONFIG_USER_NS
971 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
972 {
973 	if (current_user_ns() == task_cred_xxx(t, user_ns))
974 		return;
975 
976 	if (SI_FROMKERNEL(info))
977 		return;
978 
979 	rcu_read_lock();
980 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
981 					make_kuid(current_user_ns(), info->si_uid));
982 	rcu_read_unlock();
983 }
984 #else
985 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
986 {
987 	return;
988 }
989 #endif
990 
991 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
992 			int group, int from_ancestor_ns)
993 {
994 	struct sigpending *pending;
995 	struct sigqueue *q;
996 	int override_rlimit;
997 	int ret = 0, result;
998 
999 	assert_spin_locked(&t->sighand->siglock);
1000 
1001 	result = TRACE_SIGNAL_IGNORED;
1002 	if (!prepare_signal(sig, t,
1003 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1004 		goto ret;
1005 
1006 	pending = group ? &t->signal->shared_pending : &t->pending;
1007 	/*
1008 	 * Short-circuit ignored signals and support queuing
1009 	 * exactly one non-rt signal, so that we can get more
1010 	 * detailed information about the cause of the signal.
1011 	 */
1012 	result = TRACE_SIGNAL_ALREADY_PENDING;
1013 	if (legacy_queue(pending, sig))
1014 		goto ret;
1015 
1016 	result = TRACE_SIGNAL_DELIVERED;
1017 	/*
1018 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1019 	 * or SIGKILL.
1020 	 */
1021 	if (info == SEND_SIG_FORCED)
1022 		goto out_set;
1023 
1024 	/*
1025 	 * Real-time signals must be queued if sent by sigqueue, or
1026 	 * some other real-time mechanism.  It is implementation
1027 	 * defined whether kill() does so.  We attempt to do so, on
1028 	 * the principle of least surprise, but since kill is not
1029 	 * allowed to fail with EAGAIN when low on memory we just
1030 	 * make sure at least one signal gets delivered and don't
1031 	 * pass on the info struct.
1032 	 */
1033 	if (sig < SIGRTMIN)
1034 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1035 	else
1036 		override_rlimit = 0;
1037 
1038 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1039 		override_rlimit);
1040 	if (q) {
1041 		list_add_tail(&q->list, &pending->list);
1042 		switch ((unsigned long) info) {
1043 		case (unsigned long) SEND_SIG_NOINFO:
1044 			q->info.si_signo = sig;
1045 			q->info.si_errno = 0;
1046 			q->info.si_code = SI_USER;
1047 			q->info.si_pid = task_tgid_nr_ns(current,
1048 							task_active_pid_ns(t));
1049 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1050 			break;
1051 		case (unsigned long) SEND_SIG_PRIV:
1052 			q->info.si_signo = sig;
1053 			q->info.si_errno = 0;
1054 			q->info.si_code = SI_KERNEL;
1055 			q->info.si_pid = 0;
1056 			q->info.si_uid = 0;
1057 			break;
1058 		default:
1059 			copy_siginfo(&q->info, info);
1060 			if (from_ancestor_ns)
1061 				q->info.si_pid = 0;
1062 			break;
1063 		}
1064 
1065 		userns_fixup_signal_uid(&q->info, t);
1066 
1067 	} else if (!is_si_special(info)) {
1068 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1069 			/*
1070 			 * Queue overflow, abort.  We may abort if the
1071 			 * signal was rt and sent by user using something
1072 			 * other than kill().
1073 			 */
1074 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1075 			ret = -EAGAIN;
1076 			goto ret;
1077 		} else {
1078 			/*
1079 			 * This is a silent loss of information.  We still
1080 			 * send the signal, but the *info bits are lost.
1081 			 */
1082 			result = TRACE_SIGNAL_LOSE_INFO;
1083 		}
1084 	}
1085 
1086 out_set:
1087 	signalfd_notify(t, sig);
1088 	sigaddset(&pending->signal, sig);
1089 	complete_signal(sig, t, group);
1090 ret:
1091 	trace_signal_generate(sig, info, t, group, result);
1092 	return ret;
1093 }
1094 
1095 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1096 			int group)
1097 {
1098 	int from_ancestor_ns = 0;
1099 
1100 #ifdef CONFIG_PID_NS
1101 	from_ancestor_ns = si_fromuser(info) &&
1102 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1103 #endif
1104 
1105 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1106 }
1107 
1108 static void print_fatal_signal(int signr)
1109 {
1110 	struct pt_regs *regs = signal_pt_regs();
1111 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1112 
1113 #if defined(__i386__) && !defined(__arch_um__)
1114 	pr_info("code at %08lx: ", regs->ip);
1115 	{
1116 		int i;
1117 		for (i = 0; i < 16; i++) {
1118 			unsigned char insn;
1119 
1120 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1121 				break;
1122 			pr_cont("%02x ", insn);
1123 		}
1124 	}
1125 	pr_cont("\n");
1126 #endif
1127 	preempt_disable();
1128 	show_regs(regs);
1129 	preempt_enable();
1130 }
1131 
1132 static int __init setup_print_fatal_signals(char *str)
1133 {
1134 	get_option (&str, &print_fatal_signals);
1135 
1136 	return 1;
1137 }
1138 
1139 __setup("print-fatal-signals=", setup_print_fatal_signals);
1140 
1141 int
1142 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1143 {
1144 	return send_signal(sig, info, p, 1);
1145 }
1146 
1147 static int
1148 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1149 {
1150 	return send_signal(sig, info, t, 0);
1151 }
1152 
1153 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1154 			bool group)
1155 {
1156 	unsigned long flags;
1157 	int ret = -ESRCH;
1158 
1159 	if (lock_task_sighand(p, &flags)) {
1160 		ret = send_signal(sig, info, p, group);
1161 		unlock_task_sighand(p, &flags);
1162 	}
1163 
1164 	return ret;
1165 }
1166 
1167 /*
1168  * Force a signal that the process can't ignore: if necessary
1169  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1170  *
1171  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1172  * since we do not want to have a signal handler that was blocked
1173  * be invoked when user space had explicitly blocked it.
1174  *
1175  * We don't want to have recursive SIGSEGV's etc, for example,
1176  * that is why we also clear SIGNAL_UNKILLABLE.
1177  */
1178 int
1179 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1180 {
1181 	unsigned long int flags;
1182 	int ret, blocked, ignored;
1183 	struct k_sigaction *action;
1184 
1185 	spin_lock_irqsave(&t->sighand->siglock, flags);
1186 	action = &t->sighand->action[sig-1];
1187 	ignored = action->sa.sa_handler == SIG_IGN;
1188 	blocked = sigismember(&t->blocked, sig);
1189 	if (blocked || ignored) {
1190 		action->sa.sa_handler = SIG_DFL;
1191 		if (blocked) {
1192 			sigdelset(&t->blocked, sig);
1193 			recalc_sigpending_and_wake(t);
1194 		}
1195 	}
1196 	if (action->sa.sa_handler == SIG_DFL)
1197 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1198 	ret = specific_send_sig_info(sig, info, t);
1199 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1200 
1201 	return ret;
1202 }
1203 
1204 /*
1205  * Nuke all other threads in the group.
1206  */
1207 int zap_other_threads(struct task_struct *p)
1208 {
1209 	struct task_struct *t = p;
1210 	int count = 0;
1211 
1212 	p->signal->group_stop_count = 0;
1213 
1214 	while_each_thread(p, t) {
1215 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1216 		count++;
1217 
1218 		/* Don't bother with already dead threads */
1219 		if (t->exit_state)
1220 			continue;
1221 		sigaddset(&t->pending.signal, SIGKILL);
1222 		signal_wake_up(t, 1);
1223 	}
1224 
1225 	return count;
1226 }
1227 
1228 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1229 					   unsigned long *flags)
1230 {
1231 	struct sighand_struct *sighand;
1232 
1233 	for (;;) {
1234 		/*
1235 		 * Disable interrupts early to avoid deadlocks.
1236 		 * See rcu_read_unlock() comment header for details.
1237 		 */
1238 		local_irq_save(*flags);
1239 		rcu_read_lock();
1240 		sighand = rcu_dereference(tsk->sighand);
1241 		if (unlikely(sighand == NULL)) {
1242 			rcu_read_unlock();
1243 			local_irq_restore(*flags);
1244 			break;
1245 		}
1246 		/*
1247 		 * This sighand can be already freed and even reused, but
1248 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1249 		 * initializes ->siglock: this slab can't go away, it has
1250 		 * the same object type, ->siglock can't be reinitialized.
1251 		 *
1252 		 * We need to ensure that tsk->sighand is still the same
1253 		 * after we take the lock, we can race with de_thread() or
1254 		 * __exit_signal(). In the latter case the next iteration
1255 		 * must see ->sighand == NULL.
1256 		 */
1257 		spin_lock(&sighand->siglock);
1258 		if (likely(sighand == tsk->sighand)) {
1259 			rcu_read_unlock();
1260 			break;
1261 		}
1262 		spin_unlock(&sighand->siglock);
1263 		rcu_read_unlock();
1264 		local_irq_restore(*flags);
1265 	}
1266 
1267 	return sighand;
1268 }
1269 
1270 /*
1271  * send signal info to all the members of a group
1272  */
1273 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1274 {
1275 	int ret;
1276 
1277 	rcu_read_lock();
1278 	ret = check_kill_permission(sig, info, p);
1279 	rcu_read_unlock();
1280 
1281 	if (!ret && sig)
1282 		ret = do_send_sig_info(sig, info, p, true);
1283 
1284 	return ret;
1285 }
1286 
1287 /*
1288  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1289  * control characters do (^C, ^Z etc)
1290  * - the caller must hold at least a readlock on tasklist_lock
1291  */
1292 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1293 {
1294 	struct task_struct *p = NULL;
1295 	int retval, success;
1296 
1297 	success = 0;
1298 	retval = -ESRCH;
1299 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1300 		int err = group_send_sig_info(sig, info, p);
1301 		success |= !err;
1302 		retval = err;
1303 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1304 	return success ? 0 : retval;
1305 }
1306 
1307 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1308 {
1309 	int error = -ESRCH;
1310 	struct task_struct *p;
1311 
1312 	for (;;) {
1313 		rcu_read_lock();
1314 		p = pid_task(pid, PIDTYPE_PID);
1315 		if (p)
1316 			error = group_send_sig_info(sig, info, p);
1317 		rcu_read_unlock();
1318 		if (likely(!p || error != -ESRCH))
1319 			return error;
1320 
1321 		/*
1322 		 * The task was unhashed in between, try again.  If it
1323 		 * is dead, pid_task() will return NULL, if we race with
1324 		 * de_thread() it will find the new leader.
1325 		 */
1326 	}
1327 }
1328 
1329 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1330 {
1331 	int error;
1332 	rcu_read_lock();
1333 	error = kill_pid_info(sig, info, find_vpid(pid));
1334 	rcu_read_unlock();
1335 	return error;
1336 }
1337 
1338 static int kill_as_cred_perm(const struct cred *cred,
1339 			     struct task_struct *target)
1340 {
1341 	const struct cred *pcred = __task_cred(target);
1342 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1343 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1344 		return 0;
1345 	return 1;
1346 }
1347 
1348 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1349 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1350 			 const struct cred *cred, u32 secid)
1351 {
1352 	int ret = -EINVAL;
1353 	struct task_struct *p;
1354 	unsigned long flags;
1355 
1356 	if (!valid_signal(sig))
1357 		return ret;
1358 
1359 	rcu_read_lock();
1360 	p = pid_task(pid, PIDTYPE_PID);
1361 	if (!p) {
1362 		ret = -ESRCH;
1363 		goto out_unlock;
1364 	}
1365 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1366 		ret = -EPERM;
1367 		goto out_unlock;
1368 	}
1369 	ret = security_task_kill(p, info, sig, secid);
1370 	if (ret)
1371 		goto out_unlock;
1372 
1373 	if (sig) {
1374 		if (lock_task_sighand(p, &flags)) {
1375 			ret = __send_signal(sig, info, p, 1, 0);
1376 			unlock_task_sighand(p, &flags);
1377 		} else
1378 			ret = -ESRCH;
1379 	}
1380 out_unlock:
1381 	rcu_read_unlock();
1382 	return ret;
1383 }
1384 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1385 
1386 /*
1387  * kill_something_info() interprets pid in interesting ways just like kill(2).
1388  *
1389  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1390  * is probably wrong.  Should make it like BSD or SYSV.
1391  */
1392 
1393 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1394 {
1395 	int ret;
1396 
1397 	if (pid > 0) {
1398 		rcu_read_lock();
1399 		ret = kill_pid_info(sig, info, find_vpid(pid));
1400 		rcu_read_unlock();
1401 		return ret;
1402 	}
1403 
1404 	read_lock(&tasklist_lock);
1405 	if (pid != -1) {
1406 		ret = __kill_pgrp_info(sig, info,
1407 				pid ? find_vpid(-pid) : task_pgrp(current));
1408 	} else {
1409 		int retval = 0, count = 0;
1410 		struct task_struct * p;
1411 
1412 		for_each_process(p) {
1413 			if (task_pid_vnr(p) > 1 &&
1414 					!same_thread_group(p, current)) {
1415 				int err = group_send_sig_info(sig, info, p);
1416 				++count;
1417 				if (err != -EPERM)
1418 					retval = err;
1419 			}
1420 		}
1421 		ret = count ? retval : -ESRCH;
1422 	}
1423 	read_unlock(&tasklist_lock);
1424 
1425 	return ret;
1426 }
1427 
1428 /*
1429  * These are for backward compatibility with the rest of the kernel source.
1430  */
1431 
1432 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1433 {
1434 	/*
1435 	 * Make sure legacy kernel users don't send in bad values
1436 	 * (normal paths check this in check_kill_permission).
1437 	 */
1438 	if (!valid_signal(sig))
1439 		return -EINVAL;
1440 
1441 	return do_send_sig_info(sig, info, p, false);
1442 }
1443 
1444 #define __si_special(priv) \
1445 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1446 
1447 int
1448 send_sig(int sig, struct task_struct *p, int priv)
1449 {
1450 	return send_sig_info(sig, __si_special(priv), p);
1451 }
1452 
1453 void
1454 force_sig(int sig, struct task_struct *p)
1455 {
1456 	force_sig_info(sig, SEND_SIG_PRIV, p);
1457 }
1458 
1459 /*
1460  * When things go south during signal handling, we
1461  * will force a SIGSEGV. And if the signal that caused
1462  * the problem was already a SIGSEGV, we'll want to
1463  * make sure we don't even try to deliver the signal..
1464  */
1465 int
1466 force_sigsegv(int sig, struct task_struct *p)
1467 {
1468 	if (sig == SIGSEGV) {
1469 		unsigned long flags;
1470 		spin_lock_irqsave(&p->sighand->siglock, flags);
1471 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1472 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1473 	}
1474 	force_sig(SIGSEGV, p);
1475 	return 0;
1476 }
1477 
1478 int kill_pgrp(struct pid *pid, int sig, int priv)
1479 {
1480 	int ret;
1481 
1482 	read_lock(&tasklist_lock);
1483 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1484 	read_unlock(&tasklist_lock);
1485 
1486 	return ret;
1487 }
1488 EXPORT_SYMBOL(kill_pgrp);
1489 
1490 int kill_pid(struct pid *pid, int sig, int priv)
1491 {
1492 	return kill_pid_info(sig, __si_special(priv), pid);
1493 }
1494 EXPORT_SYMBOL(kill_pid);
1495 
1496 /*
1497  * These functions support sending signals using preallocated sigqueue
1498  * structures.  This is needed "because realtime applications cannot
1499  * afford to lose notifications of asynchronous events, like timer
1500  * expirations or I/O completions".  In the case of POSIX Timers
1501  * we allocate the sigqueue structure from the timer_create.  If this
1502  * allocation fails we are able to report the failure to the application
1503  * with an EAGAIN error.
1504  */
1505 struct sigqueue *sigqueue_alloc(void)
1506 {
1507 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1508 
1509 	if (q)
1510 		q->flags |= SIGQUEUE_PREALLOC;
1511 
1512 	return q;
1513 }
1514 
1515 void sigqueue_free(struct sigqueue *q)
1516 {
1517 	unsigned long flags;
1518 	spinlock_t *lock = &current->sighand->siglock;
1519 
1520 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1521 	/*
1522 	 * We must hold ->siglock while testing q->list
1523 	 * to serialize with collect_signal() or with
1524 	 * __exit_signal()->flush_sigqueue().
1525 	 */
1526 	spin_lock_irqsave(lock, flags);
1527 	q->flags &= ~SIGQUEUE_PREALLOC;
1528 	/*
1529 	 * If it is queued it will be freed when dequeued,
1530 	 * like the "regular" sigqueue.
1531 	 */
1532 	if (!list_empty(&q->list))
1533 		q = NULL;
1534 	spin_unlock_irqrestore(lock, flags);
1535 
1536 	if (q)
1537 		__sigqueue_free(q);
1538 }
1539 
1540 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1541 {
1542 	int sig = q->info.si_signo;
1543 	struct sigpending *pending;
1544 	unsigned long flags;
1545 	int ret, result;
1546 
1547 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1548 
1549 	ret = -1;
1550 	if (!likely(lock_task_sighand(t, &flags)))
1551 		goto ret;
1552 
1553 	ret = 1; /* the signal is ignored */
1554 	result = TRACE_SIGNAL_IGNORED;
1555 	if (!prepare_signal(sig, t, false))
1556 		goto out;
1557 
1558 	ret = 0;
1559 	if (unlikely(!list_empty(&q->list))) {
1560 		/*
1561 		 * If an SI_TIMER entry is already queue just increment
1562 		 * the overrun count.
1563 		 */
1564 		BUG_ON(q->info.si_code != SI_TIMER);
1565 		q->info.si_overrun++;
1566 		result = TRACE_SIGNAL_ALREADY_PENDING;
1567 		goto out;
1568 	}
1569 	q->info.si_overrun = 0;
1570 
1571 	signalfd_notify(t, sig);
1572 	pending = group ? &t->signal->shared_pending : &t->pending;
1573 	list_add_tail(&q->list, &pending->list);
1574 	sigaddset(&pending->signal, sig);
1575 	complete_signal(sig, t, group);
1576 	result = TRACE_SIGNAL_DELIVERED;
1577 out:
1578 	trace_signal_generate(sig, &q->info, t, group, result);
1579 	unlock_task_sighand(t, &flags);
1580 ret:
1581 	return ret;
1582 }
1583 
1584 /*
1585  * Let a parent know about the death of a child.
1586  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1587  *
1588  * Returns true if our parent ignored us and so we've switched to
1589  * self-reaping.
1590  */
1591 bool do_notify_parent(struct task_struct *tsk, int sig)
1592 {
1593 	struct siginfo info;
1594 	unsigned long flags;
1595 	struct sighand_struct *psig;
1596 	bool autoreap = false;
1597 	u64 utime, stime;
1598 
1599 	BUG_ON(sig == -1);
1600 
1601  	/* do_notify_parent_cldstop should have been called instead.  */
1602  	BUG_ON(task_is_stopped_or_traced(tsk));
1603 
1604 	BUG_ON(!tsk->ptrace &&
1605 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1606 
1607 	if (sig != SIGCHLD) {
1608 		/*
1609 		 * This is only possible if parent == real_parent.
1610 		 * Check if it has changed security domain.
1611 		 */
1612 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1613 			sig = SIGCHLD;
1614 	}
1615 
1616 	info.si_signo = sig;
1617 	info.si_errno = 0;
1618 	/*
1619 	 * We are under tasklist_lock here so our parent is tied to
1620 	 * us and cannot change.
1621 	 *
1622 	 * task_active_pid_ns will always return the same pid namespace
1623 	 * until a task passes through release_task.
1624 	 *
1625 	 * write_lock() currently calls preempt_disable() which is the
1626 	 * same as rcu_read_lock(), but according to Oleg, this is not
1627 	 * correct to rely on this
1628 	 */
1629 	rcu_read_lock();
1630 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1631 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1632 				       task_uid(tsk));
1633 	rcu_read_unlock();
1634 
1635 	task_cputime(tsk, &utime, &stime);
1636 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1637 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1638 
1639 	info.si_status = tsk->exit_code & 0x7f;
1640 	if (tsk->exit_code & 0x80)
1641 		info.si_code = CLD_DUMPED;
1642 	else if (tsk->exit_code & 0x7f)
1643 		info.si_code = CLD_KILLED;
1644 	else {
1645 		info.si_code = CLD_EXITED;
1646 		info.si_status = tsk->exit_code >> 8;
1647 	}
1648 
1649 	psig = tsk->parent->sighand;
1650 	spin_lock_irqsave(&psig->siglock, flags);
1651 	if (!tsk->ptrace && sig == SIGCHLD &&
1652 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1653 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1654 		/*
1655 		 * We are exiting and our parent doesn't care.  POSIX.1
1656 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1657 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1658 		 * automatically and not left for our parent's wait4 call.
1659 		 * Rather than having the parent do it as a magic kind of
1660 		 * signal handler, we just set this to tell do_exit that we
1661 		 * can be cleaned up without becoming a zombie.  Note that
1662 		 * we still call __wake_up_parent in this case, because a
1663 		 * blocked sys_wait4 might now return -ECHILD.
1664 		 *
1665 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1666 		 * is implementation-defined: we do (if you don't want
1667 		 * it, just use SIG_IGN instead).
1668 		 */
1669 		autoreap = true;
1670 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1671 			sig = 0;
1672 	}
1673 	if (valid_signal(sig) && sig)
1674 		__group_send_sig_info(sig, &info, tsk->parent);
1675 	__wake_up_parent(tsk, tsk->parent);
1676 	spin_unlock_irqrestore(&psig->siglock, flags);
1677 
1678 	return autoreap;
1679 }
1680 
1681 /**
1682  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1683  * @tsk: task reporting the state change
1684  * @for_ptracer: the notification is for ptracer
1685  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1686  *
1687  * Notify @tsk's parent that the stopped/continued state has changed.  If
1688  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1689  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1690  *
1691  * CONTEXT:
1692  * Must be called with tasklist_lock at least read locked.
1693  */
1694 static void do_notify_parent_cldstop(struct task_struct *tsk,
1695 				     bool for_ptracer, int why)
1696 {
1697 	struct siginfo info;
1698 	unsigned long flags;
1699 	struct task_struct *parent;
1700 	struct sighand_struct *sighand;
1701 	u64 utime, stime;
1702 
1703 	if (for_ptracer) {
1704 		parent = tsk->parent;
1705 	} else {
1706 		tsk = tsk->group_leader;
1707 		parent = tsk->real_parent;
1708 	}
1709 
1710 	info.si_signo = SIGCHLD;
1711 	info.si_errno = 0;
1712 	/*
1713 	 * see comment in do_notify_parent() about the following 4 lines
1714 	 */
1715 	rcu_read_lock();
1716 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1717 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1718 	rcu_read_unlock();
1719 
1720 	task_cputime(tsk, &utime, &stime);
1721 	info.si_utime = nsec_to_clock_t(utime);
1722 	info.si_stime = nsec_to_clock_t(stime);
1723 
1724  	info.si_code = why;
1725  	switch (why) {
1726  	case CLD_CONTINUED:
1727  		info.si_status = SIGCONT;
1728  		break;
1729  	case CLD_STOPPED:
1730  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1731  		break;
1732  	case CLD_TRAPPED:
1733  		info.si_status = tsk->exit_code & 0x7f;
1734  		break;
1735  	default:
1736  		BUG();
1737  	}
1738 
1739 	sighand = parent->sighand;
1740 	spin_lock_irqsave(&sighand->siglock, flags);
1741 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1742 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1743 		__group_send_sig_info(SIGCHLD, &info, parent);
1744 	/*
1745 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1746 	 */
1747 	__wake_up_parent(tsk, parent);
1748 	spin_unlock_irqrestore(&sighand->siglock, flags);
1749 }
1750 
1751 static inline int may_ptrace_stop(void)
1752 {
1753 	if (!likely(current->ptrace))
1754 		return 0;
1755 	/*
1756 	 * Are we in the middle of do_coredump?
1757 	 * If so and our tracer is also part of the coredump stopping
1758 	 * is a deadlock situation, and pointless because our tracer
1759 	 * is dead so don't allow us to stop.
1760 	 * If SIGKILL was already sent before the caller unlocked
1761 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1762 	 * is safe to enter schedule().
1763 	 *
1764 	 * This is almost outdated, a task with the pending SIGKILL can't
1765 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1766 	 * after SIGKILL was already dequeued.
1767 	 */
1768 	if (unlikely(current->mm->core_state) &&
1769 	    unlikely(current->mm == current->parent->mm))
1770 		return 0;
1771 
1772 	return 1;
1773 }
1774 
1775 /*
1776  * Return non-zero if there is a SIGKILL that should be waking us up.
1777  * Called with the siglock held.
1778  */
1779 static int sigkill_pending(struct task_struct *tsk)
1780 {
1781 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1782 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1783 }
1784 
1785 /*
1786  * This must be called with current->sighand->siglock held.
1787  *
1788  * This should be the path for all ptrace stops.
1789  * We always set current->last_siginfo while stopped here.
1790  * That makes it a way to test a stopped process for
1791  * being ptrace-stopped vs being job-control-stopped.
1792  *
1793  * If we actually decide not to stop at all because the tracer
1794  * is gone, we keep current->exit_code unless clear_code.
1795  */
1796 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1797 	__releases(&current->sighand->siglock)
1798 	__acquires(&current->sighand->siglock)
1799 {
1800 	bool gstop_done = false;
1801 
1802 	if (arch_ptrace_stop_needed(exit_code, info)) {
1803 		/*
1804 		 * The arch code has something special to do before a
1805 		 * ptrace stop.  This is allowed to block, e.g. for faults
1806 		 * on user stack pages.  We can't keep the siglock while
1807 		 * calling arch_ptrace_stop, so we must release it now.
1808 		 * To preserve proper semantics, we must do this before
1809 		 * any signal bookkeeping like checking group_stop_count.
1810 		 * Meanwhile, a SIGKILL could come in before we retake the
1811 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1812 		 * So after regaining the lock, we must check for SIGKILL.
1813 		 */
1814 		spin_unlock_irq(&current->sighand->siglock);
1815 		arch_ptrace_stop(exit_code, info);
1816 		spin_lock_irq(&current->sighand->siglock);
1817 		if (sigkill_pending(current))
1818 			return;
1819 	}
1820 
1821 	/*
1822 	 * We're committing to trapping.  TRACED should be visible before
1823 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1824 	 * Also, transition to TRACED and updates to ->jobctl should be
1825 	 * atomic with respect to siglock and should be done after the arch
1826 	 * hook as siglock is released and regrabbed across it.
1827 	 */
1828 	set_current_state(TASK_TRACED);
1829 
1830 	current->last_siginfo = info;
1831 	current->exit_code = exit_code;
1832 
1833 	/*
1834 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1835 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1836 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1837 	 * could be clear now.  We act as if SIGCONT is received after
1838 	 * TASK_TRACED is entered - ignore it.
1839 	 */
1840 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1841 		gstop_done = task_participate_group_stop(current);
1842 
1843 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1844 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1845 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1846 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1847 
1848 	/* entering a trap, clear TRAPPING */
1849 	task_clear_jobctl_trapping(current);
1850 
1851 	spin_unlock_irq(&current->sighand->siglock);
1852 	read_lock(&tasklist_lock);
1853 	if (may_ptrace_stop()) {
1854 		/*
1855 		 * Notify parents of the stop.
1856 		 *
1857 		 * While ptraced, there are two parents - the ptracer and
1858 		 * the real_parent of the group_leader.  The ptracer should
1859 		 * know about every stop while the real parent is only
1860 		 * interested in the completion of group stop.  The states
1861 		 * for the two don't interact with each other.  Notify
1862 		 * separately unless they're gonna be duplicates.
1863 		 */
1864 		do_notify_parent_cldstop(current, true, why);
1865 		if (gstop_done && ptrace_reparented(current))
1866 			do_notify_parent_cldstop(current, false, why);
1867 
1868 		/*
1869 		 * Don't want to allow preemption here, because
1870 		 * sys_ptrace() needs this task to be inactive.
1871 		 *
1872 		 * XXX: implement read_unlock_no_resched().
1873 		 */
1874 		preempt_disable();
1875 		read_unlock(&tasklist_lock);
1876 		preempt_enable_no_resched();
1877 		freezable_schedule();
1878 	} else {
1879 		/*
1880 		 * By the time we got the lock, our tracer went away.
1881 		 * Don't drop the lock yet, another tracer may come.
1882 		 *
1883 		 * If @gstop_done, the ptracer went away between group stop
1884 		 * completion and here.  During detach, it would have set
1885 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1886 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1887 		 * the real parent of the group stop completion is enough.
1888 		 */
1889 		if (gstop_done)
1890 			do_notify_parent_cldstop(current, false, why);
1891 
1892 		/* tasklist protects us from ptrace_freeze_traced() */
1893 		__set_current_state(TASK_RUNNING);
1894 		if (clear_code)
1895 			current->exit_code = 0;
1896 		read_unlock(&tasklist_lock);
1897 	}
1898 
1899 	/*
1900 	 * We are back.  Now reacquire the siglock before touching
1901 	 * last_siginfo, so that we are sure to have synchronized with
1902 	 * any signal-sending on another CPU that wants to examine it.
1903 	 */
1904 	spin_lock_irq(&current->sighand->siglock);
1905 	current->last_siginfo = NULL;
1906 
1907 	/* LISTENING can be set only during STOP traps, clear it */
1908 	current->jobctl &= ~JOBCTL_LISTENING;
1909 
1910 	/*
1911 	 * Queued signals ignored us while we were stopped for tracing.
1912 	 * So check for any that we should take before resuming user mode.
1913 	 * This sets TIF_SIGPENDING, but never clears it.
1914 	 */
1915 	recalc_sigpending_tsk(current);
1916 }
1917 
1918 static void ptrace_do_notify(int signr, int exit_code, int why)
1919 {
1920 	siginfo_t info;
1921 
1922 	memset(&info, 0, sizeof info);
1923 	info.si_signo = signr;
1924 	info.si_code = exit_code;
1925 	info.si_pid = task_pid_vnr(current);
1926 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1927 
1928 	/* Let the debugger run.  */
1929 	ptrace_stop(exit_code, why, 1, &info);
1930 }
1931 
1932 void ptrace_notify(int exit_code)
1933 {
1934 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1935 	if (unlikely(current->task_works))
1936 		task_work_run();
1937 
1938 	spin_lock_irq(&current->sighand->siglock);
1939 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1940 	spin_unlock_irq(&current->sighand->siglock);
1941 }
1942 
1943 /**
1944  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1945  * @signr: signr causing group stop if initiating
1946  *
1947  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1948  * and participate in it.  If already set, participate in the existing
1949  * group stop.  If participated in a group stop (and thus slept), %true is
1950  * returned with siglock released.
1951  *
1952  * If ptraced, this function doesn't handle stop itself.  Instead,
1953  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1954  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1955  * places afterwards.
1956  *
1957  * CONTEXT:
1958  * Must be called with @current->sighand->siglock held, which is released
1959  * on %true return.
1960  *
1961  * RETURNS:
1962  * %false if group stop is already cancelled or ptrace trap is scheduled.
1963  * %true if participated in group stop.
1964  */
1965 static bool do_signal_stop(int signr)
1966 	__releases(&current->sighand->siglock)
1967 {
1968 	struct signal_struct *sig = current->signal;
1969 
1970 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1971 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1972 		struct task_struct *t;
1973 
1974 		/* signr will be recorded in task->jobctl for retries */
1975 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1976 
1977 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1978 		    unlikely(signal_group_exit(sig)))
1979 			return false;
1980 		/*
1981 		 * There is no group stop already in progress.  We must
1982 		 * initiate one now.
1983 		 *
1984 		 * While ptraced, a task may be resumed while group stop is
1985 		 * still in effect and then receive a stop signal and
1986 		 * initiate another group stop.  This deviates from the
1987 		 * usual behavior as two consecutive stop signals can't
1988 		 * cause two group stops when !ptraced.  That is why we
1989 		 * also check !task_is_stopped(t) below.
1990 		 *
1991 		 * The condition can be distinguished by testing whether
1992 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1993 		 * group_exit_code in such case.
1994 		 *
1995 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1996 		 * an intervening stop signal is required to cause two
1997 		 * continued events regardless of ptrace.
1998 		 */
1999 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2000 			sig->group_exit_code = signr;
2001 
2002 		sig->group_stop_count = 0;
2003 
2004 		if (task_set_jobctl_pending(current, signr | gstop))
2005 			sig->group_stop_count++;
2006 
2007 		t = current;
2008 		while_each_thread(current, t) {
2009 			/*
2010 			 * Setting state to TASK_STOPPED for a group
2011 			 * stop is always done with the siglock held,
2012 			 * so this check has no races.
2013 			 */
2014 			if (!task_is_stopped(t) &&
2015 			    task_set_jobctl_pending(t, signr | gstop)) {
2016 				sig->group_stop_count++;
2017 				if (likely(!(t->ptrace & PT_SEIZED)))
2018 					signal_wake_up(t, 0);
2019 				else
2020 					ptrace_trap_notify(t);
2021 			}
2022 		}
2023 	}
2024 
2025 	if (likely(!current->ptrace)) {
2026 		int notify = 0;
2027 
2028 		/*
2029 		 * If there are no other threads in the group, or if there
2030 		 * is a group stop in progress and we are the last to stop,
2031 		 * report to the parent.
2032 		 */
2033 		if (task_participate_group_stop(current))
2034 			notify = CLD_STOPPED;
2035 
2036 		__set_current_state(TASK_STOPPED);
2037 		spin_unlock_irq(&current->sighand->siglock);
2038 
2039 		/*
2040 		 * Notify the parent of the group stop completion.  Because
2041 		 * we're not holding either the siglock or tasklist_lock
2042 		 * here, ptracer may attach inbetween; however, this is for
2043 		 * group stop and should always be delivered to the real
2044 		 * parent of the group leader.  The new ptracer will get
2045 		 * its notification when this task transitions into
2046 		 * TASK_TRACED.
2047 		 */
2048 		if (notify) {
2049 			read_lock(&tasklist_lock);
2050 			do_notify_parent_cldstop(current, false, notify);
2051 			read_unlock(&tasklist_lock);
2052 		}
2053 
2054 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2055 		freezable_schedule();
2056 		return true;
2057 	} else {
2058 		/*
2059 		 * While ptraced, group stop is handled by STOP trap.
2060 		 * Schedule it and let the caller deal with it.
2061 		 */
2062 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2063 		return false;
2064 	}
2065 }
2066 
2067 /**
2068  * do_jobctl_trap - take care of ptrace jobctl traps
2069  *
2070  * When PT_SEIZED, it's used for both group stop and explicit
2071  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2072  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2073  * the stop signal; otherwise, %SIGTRAP.
2074  *
2075  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2076  * number as exit_code and no siginfo.
2077  *
2078  * CONTEXT:
2079  * Must be called with @current->sighand->siglock held, which may be
2080  * released and re-acquired before returning with intervening sleep.
2081  */
2082 static void do_jobctl_trap(void)
2083 {
2084 	struct signal_struct *signal = current->signal;
2085 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2086 
2087 	if (current->ptrace & PT_SEIZED) {
2088 		if (!signal->group_stop_count &&
2089 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2090 			signr = SIGTRAP;
2091 		WARN_ON_ONCE(!signr);
2092 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2093 				 CLD_STOPPED);
2094 	} else {
2095 		WARN_ON_ONCE(!signr);
2096 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2097 		current->exit_code = 0;
2098 	}
2099 }
2100 
2101 static int ptrace_signal(int signr, siginfo_t *info)
2102 {
2103 	ptrace_signal_deliver();
2104 	/*
2105 	 * We do not check sig_kernel_stop(signr) but set this marker
2106 	 * unconditionally because we do not know whether debugger will
2107 	 * change signr. This flag has no meaning unless we are going
2108 	 * to stop after return from ptrace_stop(). In this case it will
2109 	 * be checked in do_signal_stop(), we should only stop if it was
2110 	 * not cleared by SIGCONT while we were sleeping. See also the
2111 	 * comment in dequeue_signal().
2112 	 */
2113 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2114 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2115 
2116 	/* We're back.  Did the debugger cancel the sig?  */
2117 	signr = current->exit_code;
2118 	if (signr == 0)
2119 		return signr;
2120 
2121 	current->exit_code = 0;
2122 
2123 	/*
2124 	 * Update the siginfo structure if the signal has
2125 	 * changed.  If the debugger wanted something
2126 	 * specific in the siginfo structure then it should
2127 	 * have updated *info via PTRACE_SETSIGINFO.
2128 	 */
2129 	if (signr != info->si_signo) {
2130 		info->si_signo = signr;
2131 		info->si_errno = 0;
2132 		info->si_code = SI_USER;
2133 		rcu_read_lock();
2134 		info->si_pid = task_pid_vnr(current->parent);
2135 		info->si_uid = from_kuid_munged(current_user_ns(),
2136 						task_uid(current->parent));
2137 		rcu_read_unlock();
2138 	}
2139 
2140 	/* If the (new) signal is now blocked, requeue it.  */
2141 	if (sigismember(&current->blocked, signr)) {
2142 		specific_send_sig_info(signr, info, current);
2143 		signr = 0;
2144 	}
2145 
2146 	return signr;
2147 }
2148 
2149 int get_signal(struct ksignal *ksig)
2150 {
2151 	struct sighand_struct *sighand = current->sighand;
2152 	struct signal_struct *signal = current->signal;
2153 	int signr;
2154 
2155 	if (unlikely(current->task_works))
2156 		task_work_run();
2157 
2158 	if (unlikely(uprobe_deny_signal()))
2159 		return 0;
2160 
2161 	/*
2162 	 * Do this once, we can't return to user-mode if freezing() == T.
2163 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2164 	 * thus do not need another check after return.
2165 	 */
2166 	try_to_freeze();
2167 
2168 relock:
2169 	spin_lock_irq(&sighand->siglock);
2170 	/*
2171 	 * Every stopped thread goes here after wakeup. Check to see if
2172 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2173 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2174 	 */
2175 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2176 		int why;
2177 
2178 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2179 			why = CLD_CONTINUED;
2180 		else
2181 			why = CLD_STOPPED;
2182 
2183 		signal->flags &= ~SIGNAL_CLD_MASK;
2184 
2185 		spin_unlock_irq(&sighand->siglock);
2186 
2187 		/*
2188 		 * Notify the parent that we're continuing.  This event is
2189 		 * always per-process and doesn't make whole lot of sense
2190 		 * for ptracers, who shouldn't consume the state via
2191 		 * wait(2) either, but, for backward compatibility, notify
2192 		 * the ptracer of the group leader too unless it's gonna be
2193 		 * a duplicate.
2194 		 */
2195 		read_lock(&tasklist_lock);
2196 		do_notify_parent_cldstop(current, false, why);
2197 
2198 		if (ptrace_reparented(current->group_leader))
2199 			do_notify_parent_cldstop(current->group_leader,
2200 						true, why);
2201 		read_unlock(&tasklist_lock);
2202 
2203 		goto relock;
2204 	}
2205 
2206 	for (;;) {
2207 		struct k_sigaction *ka;
2208 
2209 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2210 		    do_signal_stop(0))
2211 			goto relock;
2212 
2213 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2214 			do_jobctl_trap();
2215 			spin_unlock_irq(&sighand->siglock);
2216 			goto relock;
2217 		}
2218 
2219 		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2220 
2221 		if (!signr)
2222 			break; /* will return 0 */
2223 
2224 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2225 			signr = ptrace_signal(signr, &ksig->info);
2226 			if (!signr)
2227 				continue;
2228 		}
2229 
2230 		ka = &sighand->action[signr-1];
2231 
2232 		/* Trace actually delivered signals. */
2233 		trace_signal_deliver(signr, &ksig->info, ka);
2234 
2235 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2236 			continue;
2237 		if (ka->sa.sa_handler != SIG_DFL) {
2238 			/* Run the handler.  */
2239 			ksig->ka = *ka;
2240 
2241 			if (ka->sa.sa_flags & SA_ONESHOT)
2242 				ka->sa.sa_handler = SIG_DFL;
2243 
2244 			break; /* will return non-zero "signr" value */
2245 		}
2246 
2247 		/*
2248 		 * Now we are doing the default action for this signal.
2249 		 */
2250 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2251 			continue;
2252 
2253 		/*
2254 		 * Global init gets no signals it doesn't want.
2255 		 * Container-init gets no signals it doesn't want from same
2256 		 * container.
2257 		 *
2258 		 * Note that if global/container-init sees a sig_kernel_only()
2259 		 * signal here, the signal must have been generated internally
2260 		 * or must have come from an ancestor namespace. In either
2261 		 * case, the signal cannot be dropped.
2262 		 */
2263 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2264 				!sig_kernel_only(signr))
2265 			continue;
2266 
2267 		if (sig_kernel_stop(signr)) {
2268 			/*
2269 			 * The default action is to stop all threads in
2270 			 * the thread group.  The job control signals
2271 			 * do nothing in an orphaned pgrp, but SIGSTOP
2272 			 * always works.  Note that siglock needs to be
2273 			 * dropped during the call to is_orphaned_pgrp()
2274 			 * because of lock ordering with tasklist_lock.
2275 			 * This allows an intervening SIGCONT to be posted.
2276 			 * We need to check for that and bail out if necessary.
2277 			 */
2278 			if (signr != SIGSTOP) {
2279 				spin_unlock_irq(&sighand->siglock);
2280 
2281 				/* signals can be posted during this window */
2282 
2283 				if (is_current_pgrp_orphaned())
2284 					goto relock;
2285 
2286 				spin_lock_irq(&sighand->siglock);
2287 			}
2288 
2289 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2290 				/* It released the siglock.  */
2291 				goto relock;
2292 			}
2293 
2294 			/*
2295 			 * We didn't actually stop, due to a race
2296 			 * with SIGCONT or something like that.
2297 			 */
2298 			continue;
2299 		}
2300 
2301 		spin_unlock_irq(&sighand->siglock);
2302 
2303 		/*
2304 		 * Anything else is fatal, maybe with a core dump.
2305 		 */
2306 		current->flags |= PF_SIGNALED;
2307 
2308 		if (sig_kernel_coredump(signr)) {
2309 			if (print_fatal_signals)
2310 				print_fatal_signal(ksig->info.si_signo);
2311 			proc_coredump_connector(current);
2312 			/*
2313 			 * If it was able to dump core, this kills all
2314 			 * other threads in the group and synchronizes with
2315 			 * their demise.  If we lost the race with another
2316 			 * thread getting here, it set group_exit_code
2317 			 * first and our do_group_exit call below will use
2318 			 * that value and ignore the one we pass it.
2319 			 */
2320 			do_coredump(&ksig->info);
2321 		}
2322 
2323 		/*
2324 		 * Death signals, no core dump.
2325 		 */
2326 		do_group_exit(ksig->info.si_signo);
2327 		/* NOTREACHED */
2328 	}
2329 	spin_unlock_irq(&sighand->siglock);
2330 
2331 	ksig->sig = signr;
2332 	return ksig->sig > 0;
2333 }
2334 
2335 /**
2336  * signal_delivered -
2337  * @ksig:		kernel signal struct
2338  * @stepping:		nonzero if debugger single-step or block-step in use
2339  *
2340  * This function should be called when a signal has successfully been
2341  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2342  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2343  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2344  */
2345 static void signal_delivered(struct ksignal *ksig, int stepping)
2346 {
2347 	sigset_t blocked;
2348 
2349 	/* A signal was successfully delivered, and the
2350 	   saved sigmask was stored on the signal frame,
2351 	   and will be restored by sigreturn.  So we can
2352 	   simply clear the restore sigmask flag.  */
2353 	clear_restore_sigmask();
2354 
2355 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2356 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2357 		sigaddset(&blocked, ksig->sig);
2358 	set_current_blocked(&blocked);
2359 	tracehook_signal_handler(stepping);
2360 }
2361 
2362 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2363 {
2364 	if (failed)
2365 		force_sigsegv(ksig->sig, current);
2366 	else
2367 		signal_delivered(ksig, stepping);
2368 }
2369 
2370 /*
2371  * It could be that complete_signal() picked us to notify about the
2372  * group-wide signal. Other threads should be notified now to take
2373  * the shared signals in @which since we will not.
2374  */
2375 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2376 {
2377 	sigset_t retarget;
2378 	struct task_struct *t;
2379 
2380 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2381 	if (sigisemptyset(&retarget))
2382 		return;
2383 
2384 	t = tsk;
2385 	while_each_thread(tsk, t) {
2386 		if (t->flags & PF_EXITING)
2387 			continue;
2388 
2389 		if (!has_pending_signals(&retarget, &t->blocked))
2390 			continue;
2391 		/* Remove the signals this thread can handle. */
2392 		sigandsets(&retarget, &retarget, &t->blocked);
2393 
2394 		if (!signal_pending(t))
2395 			signal_wake_up(t, 0);
2396 
2397 		if (sigisemptyset(&retarget))
2398 			break;
2399 	}
2400 }
2401 
2402 void exit_signals(struct task_struct *tsk)
2403 {
2404 	int group_stop = 0;
2405 	sigset_t unblocked;
2406 
2407 	/*
2408 	 * @tsk is about to have PF_EXITING set - lock out users which
2409 	 * expect stable threadgroup.
2410 	 */
2411 	cgroup_threadgroup_change_begin(tsk);
2412 
2413 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2414 		tsk->flags |= PF_EXITING;
2415 		cgroup_threadgroup_change_end(tsk);
2416 		return;
2417 	}
2418 
2419 	spin_lock_irq(&tsk->sighand->siglock);
2420 	/*
2421 	 * From now this task is not visible for group-wide signals,
2422 	 * see wants_signal(), do_signal_stop().
2423 	 */
2424 	tsk->flags |= PF_EXITING;
2425 
2426 	cgroup_threadgroup_change_end(tsk);
2427 
2428 	if (!signal_pending(tsk))
2429 		goto out;
2430 
2431 	unblocked = tsk->blocked;
2432 	signotset(&unblocked);
2433 	retarget_shared_pending(tsk, &unblocked);
2434 
2435 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2436 	    task_participate_group_stop(tsk))
2437 		group_stop = CLD_STOPPED;
2438 out:
2439 	spin_unlock_irq(&tsk->sighand->siglock);
2440 
2441 	/*
2442 	 * If group stop has completed, deliver the notification.  This
2443 	 * should always go to the real parent of the group leader.
2444 	 */
2445 	if (unlikely(group_stop)) {
2446 		read_lock(&tasklist_lock);
2447 		do_notify_parent_cldstop(tsk, false, group_stop);
2448 		read_unlock(&tasklist_lock);
2449 	}
2450 }
2451 
2452 EXPORT_SYMBOL(recalc_sigpending);
2453 EXPORT_SYMBOL_GPL(dequeue_signal);
2454 EXPORT_SYMBOL(flush_signals);
2455 EXPORT_SYMBOL(force_sig);
2456 EXPORT_SYMBOL(send_sig);
2457 EXPORT_SYMBOL(send_sig_info);
2458 EXPORT_SYMBOL(sigprocmask);
2459 
2460 /*
2461  * System call entry points.
2462  */
2463 
2464 /**
2465  *  sys_restart_syscall - restart a system call
2466  */
2467 SYSCALL_DEFINE0(restart_syscall)
2468 {
2469 	struct restart_block *restart = &current->restart_block;
2470 	return restart->fn(restart);
2471 }
2472 
2473 long do_no_restart_syscall(struct restart_block *param)
2474 {
2475 	return -EINTR;
2476 }
2477 
2478 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2479 {
2480 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2481 		sigset_t newblocked;
2482 		/* A set of now blocked but previously unblocked signals. */
2483 		sigandnsets(&newblocked, newset, &current->blocked);
2484 		retarget_shared_pending(tsk, &newblocked);
2485 	}
2486 	tsk->blocked = *newset;
2487 	recalc_sigpending();
2488 }
2489 
2490 /**
2491  * set_current_blocked - change current->blocked mask
2492  * @newset: new mask
2493  *
2494  * It is wrong to change ->blocked directly, this helper should be used
2495  * to ensure the process can't miss a shared signal we are going to block.
2496  */
2497 void set_current_blocked(sigset_t *newset)
2498 {
2499 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2500 	__set_current_blocked(newset);
2501 }
2502 
2503 void __set_current_blocked(const sigset_t *newset)
2504 {
2505 	struct task_struct *tsk = current;
2506 
2507 	/*
2508 	 * In case the signal mask hasn't changed, there is nothing we need
2509 	 * to do. The current->blocked shouldn't be modified by other task.
2510 	 */
2511 	if (sigequalsets(&tsk->blocked, newset))
2512 		return;
2513 
2514 	spin_lock_irq(&tsk->sighand->siglock);
2515 	__set_task_blocked(tsk, newset);
2516 	spin_unlock_irq(&tsk->sighand->siglock);
2517 }
2518 
2519 /*
2520  * This is also useful for kernel threads that want to temporarily
2521  * (or permanently) block certain signals.
2522  *
2523  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2524  * interface happily blocks "unblockable" signals like SIGKILL
2525  * and friends.
2526  */
2527 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2528 {
2529 	struct task_struct *tsk = current;
2530 	sigset_t newset;
2531 
2532 	/* Lockless, only current can change ->blocked, never from irq */
2533 	if (oldset)
2534 		*oldset = tsk->blocked;
2535 
2536 	switch (how) {
2537 	case SIG_BLOCK:
2538 		sigorsets(&newset, &tsk->blocked, set);
2539 		break;
2540 	case SIG_UNBLOCK:
2541 		sigandnsets(&newset, &tsk->blocked, set);
2542 		break;
2543 	case SIG_SETMASK:
2544 		newset = *set;
2545 		break;
2546 	default:
2547 		return -EINVAL;
2548 	}
2549 
2550 	__set_current_blocked(&newset);
2551 	return 0;
2552 }
2553 
2554 /**
2555  *  sys_rt_sigprocmask - change the list of currently blocked signals
2556  *  @how: whether to add, remove, or set signals
2557  *  @nset: stores pending signals
2558  *  @oset: previous value of signal mask if non-null
2559  *  @sigsetsize: size of sigset_t type
2560  */
2561 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2562 		sigset_t __user *, oset, size_t, sigsetsize)
2563 {
2564 	sigset_t old_set, new_set;
2565 	int error;
2566 
2567 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2568 	if (sigsetsize != sizeof(sigset_t))
2569 		return -EINVAL;
2570 
2571 	old_set = current->blocked;
2572 
2573 	if (nset) {
2574 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2575 			return -EFAULT;
2576 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2577 
2578 		error = sigprocmask(how, &new_set, NULL);
2579 		if (error)
2580 			return error;
2581 	}
2582 
2583 	if (oset) {
2584 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2585 			return -EFAULT;
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 #ifdef CONFIG_COMPAT
2592 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2593 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2594 {
2595 #ifdef __BIG_ENDIAN
2596 	sigset_t old_set = current->blocked;
2597 
2598 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2599 	if (sigsetsize != sizeof(sigset_t))
2600 		return -EINVAL;
2601 
2602 	if (nset) {
2603 		compat_sigset_t new32;
2604 		sigset_t new_set;
2605 		int error;
2606 		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2607 			return -EFAULT;
2608 
2609 		sigset_from_compat(&new_set, &new32);
2610 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2611 
2612 		error = sigprocmask(how, &new_set, NULL);
2613 		if (error)
2614 			return error;
2615 	}
2616 	if (oset) {
2617 		compat_sigset_t old32;
2618 		sigset_to_compat(&old32, &old_set);
2619 		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2620 			return -EFAULT;
2621 	}
2622 	return 0;
2623 #else
2624 	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2625 				  (sigset_t __user *)oset, sigsetsize);
2626 #endif
2627 }
2628 #endif
2629 
2630 static int do_sigpending(void *set, unsigned long sigsetsize)
2631 {
2632 	if (sigsetsize > sizeof(sigset_t))
2633 		return -EINVAL;
2634 
2635 	spin_lock_irq(&current->sighand->siglock);
2636 	sigorsets(set, &current->pending.signal,
2637 		  &current->signal->shared_pending.signal);
2638 	spin_unlock_irq(&current->sighand->siglock);
2639 
2640 	/* Outside the lock because only this thread touches it.  */
2641 	sigandsets(set, &current->blocked, set);
2642 	return 0;
2643 }
2644 
2645 /**
2646  *  sys_rt_sigpending - examine a pending signal that has been raised
2647  *			while blocked
2648  *  @uset: stores pending signals
2649  *  @sigsetsize: size of sigset_t type or larger
2650  */
2651 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2652 {
2653 	sigset_t set;
2654 	int err = do_sigpending(&set, sigsetsize);
2655 	if (!err && copy_to_user(uset, &set, sigsetsize))
2656 		err = -EFAULT;
2657 	return err;
2658 }
2659 
2660 #ifdef CONFIG_COMPAT
2661 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2662 		compat_size_t, sigsetsize)
2663 {
2664 #ifdef __BIG_ENDIAN
2665 	sigset_t set;
2666 	int err = do_sigpending(&set, sigsetsize);
2667 	if (!err) {
2668 		compat_sigset_t set32;
2669 		sigset_to_compat(&set32, &set);
2670 		/* we can get here only if sigsetsize <= sizeof(set) */
2671 		if (copy_to_user(uset, &set32, sigsetsize))
2672 			err = -EFAULT;
2673 	}
2674 	return err;
2675 #else
2676 	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2677 #endif
2678 }
2679 #endif
2680 
2681 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2682 
2683 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2684 {
2685 	int err;
2686 
2687 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2688 		return -EFAULT;
2689 	if (from->si_code < 0)
2690 		return __copy_to_user(to, from, sizeof(siginfo_t))
2691 			? -EFAULT : 0;
2692 	/*
2693 	 * If you change siginfo_t structure, please be sure
2694 	 * this code is fixed accordingly.
2695 	 * Please remember to update the signalfd_copyinfo() function
2696 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2697 	 * It should never copy any pad contained in the structure
2698 	 * to avoid security leaks, but must copy the generic
2699 	 * 3 ints plus the relevant union member.
2700 	 */
2701 	err = __put_user(from->si_signo, &to->si_signo);
2702 	err |= __put_user(from->si_errno, &to->si_errno);
2703 	err |= __put_user((short)from->si_code, &to->si_code);
2704 	switch (from->si_code & __SI_MASK) {
2705 	case __SI_KILL:
2706 		err |= __put_user(from->si_pid, &to->si_pid);
2707 		err |= __put_user(from->si_uid, &to->si_uid);
2708 		break;
2709 	case __SI_TIMER:
2710 		 err |= __put_user(from->si_tid, &to->si_tid);
2711 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2712 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2713 		break;
2714 	case __SI_POLL:
2715 		err |= __put_user(from->si_band, &to->si_band);
2716 		err |= __put_user(from->si_fd, &to->si_fd);
2717 		break;
2718 	case __SI_FAULT:
2719 		err |= __put_user(from->si_addr, &to->si_addr);
2720 #ifdef __ARCH_SI_TRAPNO
2721 		err |= __put_user(from->si_trapno, &to->si_trapno);
2722 #endif
2723 #ifdef BUS_MCEERR_AO
2724 		/*
2725 		 * Other callers might not initialize the si_lsb field,
2726 		 * so check explicitly for the right codes here.
2727 		 */
2728 		if (from->si_signo == SIGBUS &&
2729 		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2730 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2731 #endif
2732 #ifdef SEGV_BNDERR
2733 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2734 			err |= __put_user(from->si_lower, &to->si_lower);
2735 			err |= __put_user(from->si_upper, &to->si_upper);
2736 		}
2737 #endif
2738 #ifdef SEGV_PKUERR
2739 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2740 			err |= __put_user(from->si_pkey, &to->si_pkey);
2741 #endif
2742 		break;
2743 	case __SI_CHLD:
2744 		err |= __put_user(from->si_pid, &to->si_pid);
2745 		err |= __put_user(from->si_uid, &to->si_uid);
2746 		err |= __put_user(from->si_status, &to->si_status);
2747 		err |= __put_user(from->si_utime, &to->si_utime);
2748 		err |= __put_user(from->si_stime, &to->si_stime);
2749 		break;
2750 	case __SI_RT: /* This is not generated by the kernel as of now. */
2751 	case __SI_MESGQ: /* But this is */
2752 		err |= __put_user(from->si_pid, &to->si_pid);
2753 		err |= __put_user(from->si_uid, &to->si_uid);
2754 		err |= __put_user(from->si_ptr, &to->si_ptr);
2755 		break;
2756 #ifdef __ARCH_SIGSYS
2757 	case __SI_SYS:
2758 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2759 		err |= __put_user(from->si_syscall, &to->si_syscall);
2760 		err |= __put_user(from->si_arch, &to->si_arch);
2761 		break;
2762 #endif
2763 	default: /* this is just in case for now ... */
2764 		err |= __put_user(from->si_pid, &to->si_pid);
2765 		err |= __put_user(from->si_uid, &to->si_uid);
2766 		break;
2767 	}
2768 	return err;
2769 }
2770 
2771 #endif
2772 
2773 /**
2774  *  do_sigtimedwait - wait for queued signals specified in @which
2775  *  @which: queued signals to wait for
2776  *  @info: if non-null, the signal's siginfo is returned here
2777  *  @ts: upper bound on process time suspension
2778  */
2779 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2780 		    const struct timespec *ts)
2781 {
2782 	ktime_t *to = NULL, timeout = KTIME_MAX;
2783 	struct task_struct *tsk = current;
2784 	sigset_t mask = *which;
2785 	int sig, ret = 0;
2786 
2787 	if (ts) {
2788 		if (!timespec_valid(ts))
2789 			return -EINVAL;
2790 		timeout = timespec_to_ktime(*ts);
2791 		to = &timeout;
2792 	}
2793 
2794 	/*
2795 	 * Invert the set of allowed signals to get those we want to block.
2796 	 */
2797 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2798 	signotset(&mask);
2799 
2800 	spin_lock_irq(&tsk->sighand->siglock);
2801 	sig = dequeue_signal(tsk, &mask, info);
2802 	if (!sig && timeout) {
2803 		/*
2804 		 * None ready, temporarily unblock those we're interested
2805 		 * while we are sleeping in so that we'll be awakened when
2806 		 * they arrive. Unblocking is always fine, we can avoid
2807 		 * set_current_blocked().
2808 		 */
2809 		tsk->real_blocked = tsk->blocked;
2810 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2811 		recalc_sigpending();
2812 		spin_unlock_irq(&tsk->sighand->siglock);
2813 
2814 		__set_current_state(TASK_INTERRUPTIBLE);
2815 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2816 							 HRTIMER_MODE_REL);
2817 		spin_lock_irq(&tsk->sighand->siglock);
2818 		__set_task_blocked(tsk, &tsk->real_blocked);
2819 		sigemptyset(&tsk->real_blocked);
2820 		sig = dequeue_signal(tsk, &mask, info);
2821 	}
2822 	spin_unlock_irq(&tsk->sighand->siglock);
2823 
2824 	if (sig)
2825 		return sig;
2826 	return ret ? -EINTR : -EAGAIN;
2827 }
2828 
2829 /**
2830  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2831  *			in @uthese
2832  *  @uthese: queued signals to wait for
2833  *  @uinfo: if non-null, the signal's siginfo is returned here
2834  *  @uts: upper bound on process time suspension
2835  *  @sigsetsize: size of sigset_t type
2836  */
2837 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2838 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2839 		size_t, sigsetsize)
2840 {
2841 	sigset_t these;
2842 	struct timespec ts;
2843 	siginfo_t info;
2844 	int ret;
2845 
2846 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2847 	if (sigsetsize != sizeof(sigset_t))
2848 		return -EINVAL;
2849 
2850 	if (copy_from_user(&these, uthese, sizeof(these)))
2851 		return -EFAULT;
2852 
2853 	if (uts) {
2854 		if (copy_from_user(&ts, uts, sizeof(ts)))
2855 			return -EFAULT;
2856 	}
2857 
2858 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2859 
2860 	if (ret > 0 && uinfo) {
2861 		if (copy_siginfo_to_user(uinfo, &info))
2862 			ret = -EFAULT;
2863 	}
2864 
2865 	return ret;
2866 }
2867 
2868 /**
2869  *  sys_kill - send a signal to a process
2870  *  @pid: the PID of the process
2871  *  @sig: signal to be sent
2872  */
2873 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2874 {
2875 	struct siginfo info;
2876 
2877 	info.si_signo = sig;
2878 	info.si_errno = 0;
2879 	info.si_code = SI_USER;
2880 	info.si_pid = task_tgid_vnr(current);
2881 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2882 
2883 	return kill_something_info(sig, &info, pid);
2884 }
2885 
2886 static int
2887 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2888 {
2889 	struct task_struct *p;
2890 	int error = -ESRCH;
2891 
2892 	rcu_read_lock();
2893 	p = find_task_by_vpid(pid);
2894 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2895 		error = check_kill_permission(sig, info, p);
2896 		/*
2897 		 * The null signal is a permissions and process existence
2898 		 * probe.  No signal is actually delivered.
2899 		 */
2900 		if (!error && sig) {
2901 			error = do_send_sig_info(sig, info, p, false);
2902 			/*
2903 			 * If lock_task_sighand() failed we pretend the task
2904 			 * dies after receiving the signal. The window is tiny,
2905 			 * and the signal is private anyway.
2906 			 */
2907 			if (unlikely(error == -ESRCH))
2908 				error = 0;
2909 		}
2910 	}
2911 	rcu_read_unlock();
2912 
2913 	return error;
2914 }
2915 
2916 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2917 {
2918 	struct siginfo info = {};
2919 
2920 	info.si_signo = sig;
2921 	info.si_errno = 0;
2922 	info.si_code = SI_TKILL;
2923 	info.si_pid = task_tgid_vnr(current);
2924 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2925 
2926 	return do_send_specific(tgid, pid, sig, &info);
2927 }
2928 
2929 /**
2930  *  sys_tgkill - send signal to one specific thread
2931  *  @tgid: the thread group ID of the thread
2932  *  @pid: the PID of the thread
2933  *  @sig: signal to be sent
2934  *
2935  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2936  *  exists but it's not belonging to the target process anymore. This
2937  *  method solves the problem of threads exiting and PIDs getting reused.
2938  */
2939 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2940 {
2941 	/* This is only valid for single tasks */
2942 	if (pid <= 0 || tgid <= 0)
2943 		return -EINVAL;
2944 
2945 	return do_tkill(tgid, pid, sig);
2946 }
2947 
2948 /**
2949  *  sys_tkill - send signal to one specific task
2950  *  @pid: the PID of the task
2951  *  @sig: signal to be sent
2952  *
2953  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2954  */
2955 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2956 {
2957 	/* This is only valid for single tasks */
2958 	if (pid <= 0)
2959 		return -EINVAL;
2960 
2961 	return do_tkill(0, pid, sig);
2962 }
2963 
2964 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2965 {
2966 	/* Not even root can pretend to send signals from the kernel.
2967 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2968 	 */
2969 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2970 	    (task_pid_vnr(current) != pid))
2971 		return -EPERM;
2972 
2973 	info->si_signo = sig;
2974 
2975 	/* POSIX.1b doesn't mention process groups.  */
2976 	return kill_proc_info(sig, info, pid);
2977 }
2978 
2979 /**
2980  *  sys_rt_sigqueueinfo - send signal information to a signal
2981  *  @pid: the PID of the thread
2982  *  @sig: signal to be sent
2983  *  @uinfo: signal info to be sent
2984  */
2985 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2986 		siginfo_t __user *, uinfo)
2987 {
2988 	siginfo_t info;
2989 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2990 		return -EFAULT;
2991 	return do_rt_sigqueueinfo(pid, sig, &info);
2992 }
2993 
2994 #ifdef CONFIG_COMPAT
2995 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2996 			compat_pid_t, pid,
2997 			int, sig,
2998 			struct compat_siginfo __user *, uinfo)
2999 {
3000 	siginfo_t info = {};
3001 	int ret = copy_siginfo_from_user32(&info, uinfo);
3002 	if (unlikely(ret))
3003 		return ret;
3004 	return do_rt_sigqueueinfo(pid, sig, &info);
3005 }
3006 #endif
3007 
3008 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3009 {
3010 	/* This is only valid for single tasks */
3011 	if (pid <= 0 || tgid <= 0)
3012 		return -EINVAL;
3013 
3014 	/* Not even root can pretend to send signals from the kernel.
3015 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3016 	 */
3017 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3018 	    (task_pid_vnr(current) != pid))
3019 		return -EPERM;
3020 
3021 	info->si_signo = sig;
3022 
3023 	return do_send_specific(tgid, pid, sig, info);
3024 }
3025 
3026 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3027 		siginfo_t __user *, uinfo)
3028 {
3029 	siginfo_t info;
3030 
3031 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3032 		return -EFAULT;
3033 
3034 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3035 }
3036 
3037 #ifdef CONFIG_COMPAT
3038 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3039 			compat_pid_t, tgid,
3040 			compat_pid_t, pid,
3041 			int, sig,
3042 			struct compat_siginfo __user *, uinfo)
3043 {
3044 	siginfo_t info = {};
3045 
3046 	if (copy_siginfo_from_user32(&info, uinfo))
3047 		return -EFAULT;
3048 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3049 }
3050 #endif
3051 
3052 /*
3053  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3054  */
3055 void kernel_sigaction(int sig, __sighandler_t action)
3056 {
3057 	spin_lock_irq(&current->sighand->siglock);
3058 	current->sighand->action[sig - 1].sa.sa_handler = action;
3059 	if (action == SIG_IGN) {
3060 		sigset_t mask;
3061 
3062 		sigemptyset(&mask);
3063 		sigaddset(&mask, sig);
3064 
3065 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3066 		flush_sigqueue_mask(&mask, &current->pending);
3067 		recalc_sigpending();
3068 	}
3069 	spin_unlock_irq(&current->sighand->siglock);
3070 }
3071 EXPORT_SYMBOL(kernel_sigaction);
3072 
3073 void __weak sigaction_compat_abi(struct k_sigaction *act,
3074 		struct k_sigaction *oact)
3075 {
3076 }
3077 
3078 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3079 {
3080 	struct task_struct *p = current, *t;
3081 	struct k_sigaction *k;
3082 	sigset_t mask;
3083 
3084 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3085 		return -EINVAL;
3086 
3087 	k = &p->sighand->action[sig-1];
3088 
3089 	spin_lock_irq(&p->sighand->siglock);
3090 	if (oact)
3091 		*oact = *k;
3092 
3093 	sigaction_compat_abi(act, oact);
3094 
3095 	if (act) {
3096 		sigdelsetmask(&act->sa.sa_mask,
3097 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3098 		*k = *act;
3099 		/*
3100 		 * POSIX 3.3.1.3:
3101 		 *  "Setting a signal action to SIG_IGN for a signal that is
3102 		 *   pending shall cause the pending signal to be discarded,
3103 		 *   whether or not it is blocked."
3104 		 *
3105 		 *  "Setting a signal action to SIG_DFL for a signal that is
3106 		 *   pending and whose default action is to ignore the signal
3107 		 *   (for example, SIGCHLD), shall cause the pending signal to
3108 		 *   be discarded, whether or not it is blocked"
3109 		 */
3110 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3111 			sigemptyset(&mask);
3112 			sigaddset(&mask, sig);
3113 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3114 			for_each_thread(p, t)
3115 				flush_sigqueue_mask(&mask, &t->pending);
3116 		}
3117 	}
3118 
3119 	spin_unlock_irq(&p->sighand->siglock);
3120 	return 0;
3121 }
3122 
3123 static int
3124 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3125 {
3126 	stack_t oss;
3127 	int error;
3128 
3129 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3130 	oss.ss_size = current->sas_ss_size;
3131 	oss.ss_flags = sas_ss_flags(sp) |
3132 		(current->sas_ss_flags & SS_FLAG_BITS);
3133 
3134 	if (uss) {
3135 		void __user *ss_sp;
3136 		size_t ss_size;
3137 		unsigned ss_flags;
3138 		int ss_mode;
3139 
3140 		error = -EFAULT;
3141 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3142 			goto out;
3143 		error = __get_user(ss_sp, &uss->ss_sp) |
3144 			__get_user(ss_flags, &uss->ss_flags) |
3145 			__get_user(ss_size, &uss->ss_size);
3146 		if (error)
3147 			goto out;
3148 
3149 		error = -EPERM;
3150 		if (on_sig_stack(sp))
3151 			goto out;
3152 
3153 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3154 		error = -EINVAL;
3155 		if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3156 				ss_mode != 0)
3157 			goto out;
3158 
3159 		if (ss_mode == SS_DISABLE) {
3160 			ss_size = 0;
3161 			ss_sp = NULL;
3162 		} else {
3163 			error = -ENOMEM;
3164 			if (ss_size < MINSIGSTKSZ)
3165 				goto out;
3166 		}
3167 
3168 		current->sas_ss_sp = (unsigned long) ss_sp;
3169 		current->sas_ss_size = ss_size;
3170 		current->sas_ss_flags = ss_flags;
3171 	}
3172 
3173 	error = 0;
3174 	if (uoss) {
3175 		error = -EFAULT;
3176 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3177 			goto out;
3178 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3179 			__put_user(oss.ss_size, &uoss->ss_size) |
3180 			__put_user(oss.ss_flags, &uoss->ss_flags);
3181 	}
3182 
3183 out:
3184 	return error;
3185 }
3186 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3187 {
3188 	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3189 }
3190 
3191 int restore_altstack(const stack_t __user *uss)
3192 {
3193 	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3194 	/* squash all but EFAULT for now */
3195 	return err == -EFAULT ? err : 0;
3196 }
3197 
3198 int __save_altstack(stack_t __user *uss, unsigned long sp)
3199 {
3200 	struct task_struct *t = current;
3201 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3202 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3203 		__put_user(t->sas_ss_size, &uss->ss_size);
3204 	if (err)
3205 		return err;
3206 	if (t->sas_ss_flags & SS_AUTODISARM)
3207 		sas_ss_reset(t);
3208 	return 0;
3209 }
3210 
3211 #ifdef CONFIG_COMPAT
3212 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3213 			const compat_stack_t __user *, uss_ptr,
3214 			compat_stack_t __user *, uoss_ptr)
3215 {
3216 	stack_t uss, uoss;
3217 	int ret;
3218 	mm_segment_t seg;
3219 
3220 	if (uss_ptr) {
3221 		compat_stack_t uss32;
3222 
3223 		memset(&uss, 0, sizeof(stack_t));
3224 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3225 			return -EFAULT;
3226 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3227 		uss.ss_flags = uss32.ss_flags;
3228 		uss.ss_size = uss32.ss_size;
3229 	}
3230 	seg = get_fs();
3231 	set_fs(KERNEL_DS);
3232 	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3233 			     (stack_t __force __user *) &uoss,
3234 			     compat_user_stack_pointer());
3235 	set_fs(seg);
3236 	if (ret >= 0 && uoss_ptr)  {
3237 		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3238 		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3239 		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3240 		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3241 			ret = -EFAULT;
3242 	}
3243 	return ret;
3244 }
3245 
3246 int compat_restore_altstack(const compat_stack_t __user *uss)
3247 {
3248 	int err = compat_sys_sigaltstack(uss, NULL);
3249 	/* squash all but -EFAULT for now */
3250 	return err == -EFAULT ? err : 0;
3251 }
3252 
3253 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3254 {
3255 	int err;
3256 	struct task_struct *t = current;
3257 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3258 			 &uss->ss_sp) |
3259 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3260 		__put_user(t->sas_ss_size, &uss->ss_size);
3261 	if (err)
3262 		return err;
3263 	if (t->sas_ss_flags & SS_AUTODISARM)
3264 		sas_ss_reset(t);
3265 	return 0;
3266 }
3267 #endif
3268 
3269 #ifdef __ARCH_WANT_SYS_SIGPENDING
3270 
3271 /**
3272  *  sys_sigpending - examine pending signals
3273  *  @set: where mask of pending signal is returned
3274  */
3275 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3276 {
3277 	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3278 }
3279 
3280 #endif
3281 
3282 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3283 /**
3284  *  sys_sigprocmask - examine and change blocked signals
3285  *  @how: whether to add, remove, or set signals
3286  *  @nset: signals to add or remove (if non-null)
3287  *  @oset: previous value of signal mask if non-null
3288  *
3289  * Some platforms have their own version with special arguments;
3290  * others support only sys_rt_sigprocmask.
3291  */
3292 
3293 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3294 		old_sigset_t __user *, oset)
3295 {
3296 	old_sigset_t old_set, new_set;
3297 	sigset_t new_blocked;
3298 
3299 	old_set = current->blocked.sig[0];
3300 
3301 	if (nset) {
3302 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3303 			return -EFAULT;
3304 
3305 		new_blocked = current->blocked;
3306 
3307 		switch (how) {
3308 		case SIG_BLOCK:
3309 			sigaddsetmask(&new_blocked, new_set);
3310 			break;
3311 		case SIG_UNBLOCK:
3312 			sigdelsetmask(&new_blocked, new_set);
3313 			break;
3314 		case SIG_SETMASK:
3315 			new_blocked.sig[0] = new_set;
3316 			break;
3317 		default:
3318 			return -EINVAL;
3319 		}
3320 
3321 		set_current_blocked(&new_blocked);
3322 	}
3323 
3324 	if (oset) {
3325 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3326 			return -EFAULT;
3327 	}
3328 
3329 	return 0;
3330 }
3331 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3332 
3333 #ifndef CONFIG_ODD_RT_SIGACTION
3334 /**
3335  *  sys_rt_sigaction - alter an action taken by a process
3336  *  @sig: signal to be sent
3337  *  @act: new sigaction
3338  *  @oact: used to save the previous sigaction
3339  *  @sigsetsize: size of sigset_t type
3340  */
3341 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3342 		const struct sigaction __user *, act,
3343 		struct sigaction __user *, oact,
3344 		size_t, sigsetsize)
3345 {
3346 	struct k_sigaction new_sa, old_sa;
3347 	int ret = -EINVAL;
3348 
3349 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3350 	if (sigsetsize != sizeof(sigset_t))
3351 		goto out;
3352 
3353 	if (act) {
3354 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3355 			return -EFAULT;
3356 	}
3357 
3358 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3359 
3360 	if (!ret && oact) {
3361 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3362 			return -EFAULT;
3363 	}
3364 out:
3365 	return ret;
3366 }
3367 #ifdef CONFIG_COMPAT
3368 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3369 		const struct compat_sigaction __user *, act,
3370 		struct compat_sigaction __user *, oact,
3371 		compat_size_t, sigsetsize)
3372 {
3373 	struct k_sigaction new_ka, old_ka;
3374 	compat_sigset_t mask;
3375 #ifdef __ARCH_HAS_SA_RESTORER
3376 	compat_uptr_t restorer;
3377 #endif
3378 	int ret;
3379 
3380 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3381 	if (sigsetsize != sizeof(compat_sigset_t))
3382 		return -EINVAL;
3383 
3384 	if (act) {
3385 		compat_uptr_t handler;
3386 		ret = get_user(handler, &act->sa_handler);
3387 		new_ka.sa.sa_handler = compat_ptr(handler);
3388 #ifdef __ARCH_HAS_SA_RESTORER
3389 		ret |= get_user(restorer, &act->sa_restorer);
3390 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3391 #endif
3392 		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3393 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3394 		if (ret)
3395 			return -EFAULT;
3396 		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3397 	}
3398 
3399 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3400 	if (!ret && oact) {
3401 		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3402 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3403 			       &oact->sa_handler);
3404 		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3405 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3406 #ifdef __ARCH_HAS_SA_RESTORER
3407 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3408 				&oact->sa_restorer);
3409 #endif
3410 	}
3411 	return ret;
3412 }
3413 #endif
3414 #endif /* !CONFIG_ODD_RT_SIGACTION */
3415 
3416 #ifdef CONFIG_OLD_SIGACTION
3417 SYSCALL_DEFINE3(sigaction, int, sig,
3418 		const struct old_sigaction __user *, act,
3419 	        struct old_sigaction __user *, oact)
3420 {
3421 	struct k_sigaction new_ka, old_ka;
3422 	int ret;
3423 
3424 	if (act) {
3425 		old_sigset_t mask;
3426 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3427 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3428 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3429 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3430 		    __get_user(mask, &act->sa_mask))
3431 			return -EFAULT;
3432 #ifdef __ARCH_HAS_KA_RESTORER
3433 		new_ka.ka_restorer = NULL;
3434 #endif
3435 		siginitset(&new_ka.sa.sa_mask, mask);
3436 	}
3437 
3438 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3439 
3440 	if (!ret && oact) {
3441 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3442 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3443 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3444 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3445 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3446 			return -EFAULT;
3447 	}
3448 
3449 	return ret;
3450 }
3451 #endif
3452 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3453 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3454 		const struct compat_old_sigaction __user *, act,
3455 	        struct compat_old_sigaction __user *, oact)
3456 {
3457 	struct k_sigaction new_ka, old_ka;
3458 	int ret;
3459 	compat_old_sigset_t mask;
3460 	compat_uptr_t handler, restorer;
3461 
3462 	if (act) {
3463 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3464 		    __get_user(handler, &act->sa_handler) ||
3465 		    __get_user(restorer, &act->sa_restorer) ||
3466 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3467 		    __get_user(mask, &act->sa_mask))
3468 			return -EFAULT;
3469 
3470 #ifdef __ARCH_HAS_KA_RESTORER
3471 		new_ka.ka_restorer = NULL;
3472 #endif
3473 		new_ka.sa.sa_handler = compat_ptr(handler);
3474 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3475 		siginitset(&new_ka.sa.sa_mask, mask);
3476 	}
3477 
3478 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3479 
3480 	if (!ret && oact) {
3481 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3482 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3483 			       &oact->sa_handler) ||
3484 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3485 			       &oact->sa_restorer) ||
3486 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3487 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3488 			return -EFAULT;
3489 	}
3490 	return ret;
3491 }
3492 #endif
3493 
3494 #ifdef CONFIG_SGETMASK_SYSCALL
3495 
3496 /*
3497  * For backwards compatibility.  Functionality superseded by sigprocmask.
3498  */
3499 SYSCALL_DEFINE0(sgetmask)
3500 {
3501 	/* SMP safe */
3502 	return current->blocked.sig[0];
3503 }
3504 
3505 SYSCALL_DEFINE1(ssetmask, int, newmask)
3506 {
3507 	int old = current->blocked.sig[0];
3508 	sigset_t newset;
3509 
3510 	siginitset(&newset, newmask);
3511 	set_current_blocked(&newset);
3512 
3513 	return old;
3514 }
3515 #endif /* CONFIG_SGETMASK_SYSCALL */
3516 
3517 #ifdef __ARCH_WANT_SYS_SIGNAL
3518 /*
3519  * For backwards compatibility.  Functionality superseded by sigaction.
3520  */
3521 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3522 {
3523 	struct k_sigaction new_sa, old_sa;
3524 	int ret;
3525 
3526 	new_sa.sa.sa_handler = handler;
3527 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3528 	sigemptyset(&new_sa.sa.sa_mask);
3529 
3530 	ret = do_sigaction(sig, &new_sa, &old_sa);
3531 
3532 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3533 }
3534 #endif /* __ARCH_WANT_SYS_SIGNAL */
3535 
3536 #ifdef __ARCH_WANT_SYS_PAUSE
3537 
3538 SYSCALL_DEFINE0(pause)
3539 {
3540 	while (!signal_pending(current)) {
3541 		__set_current_state(TASK_INTERRUPTIBLE);
3542 		schedule();
3543 	}
3544 	return -ERESTARTNOHAND;
3545 }
3546 
3547 #endif
3548 
3549 static int sigsuspend(sigset_t *set)
3550 {
3551 	current->saved_sigmask = current->blocked;
3552 	set_current_blocked(set);
3553 
3554 	while (!signal_pending(current)) {
3555 		__set_current_state(TASK_INTERRUPTIBLE);
3556 		schedule();
3557 	}
3558 	set_restore_sigmask();
3559 	return -ERESTARTNOHAND;
3560 }
3561 
3562 /**
3563  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3564  *	@unewset value until a signal is received
3565  *  @unewset: new signal mask value
3566  *  @sigsetsize: size of sigset_t type
3567  */
3568 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3569 {
3570 	sigset_t newset;
3571 
3572 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3573 	if (sigsetsize != sizeof(sigset_t))
3574 		return -EINVAL;
3575 
3576 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3577 		return -EFAULT;
3578 	return sigsuspend(&newset);
3579 }
3580 
3581 #ifdef CONFIG_COMPAT
3582 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3583 {
3584 #ifdef __BIG_ENDIAN
3585 	sigset_t newset;
3586 	compat_sigset_t newset32;
3587 
3588 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3589 	if (sigsetsize != sizeof(sigset_t))
3590 		return -EINVAL;
3591 
3592 	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3593 		return -EFAULT;
3594 	sigset_from_compat(&newset, &newset32);
3595 	return sigsuspend(&newset);
3596 #else
3597 	/* on little-endian bitmaps don't care about granularity */
3598 	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3599 #endif
3600 }
3601 #endif
3602 
3603 #ifdef CONFIG_OLD_SIGSUSPEND
3604 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3605 {
3606 	sigset_t blocked;
3607 	siginitset(&blocked, mask);
3608 	return sigsuspend(&blocked);
3609 }
3610 #endif
3611 #ifdef CONFIG_OLD_SIGSUSPEND3
3612 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3613 {
3614 	sigset_t blocked;
3615 	siginitset(&blocked, mask);
3616 	return sigsuspend(&blocked);
3617 }
3618 #endif
3619 
3620 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3621 {
3622 	return NULL;
3623 }
3624 
3625 void __init signals_init(void)
3626 {
3627 	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3628 	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3629 		!= offsetof(struct siginfo, _sifields._pad));
3630 
3631 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3632 }
3633 
3634 #ifdef CONFIG_KGDB_KDB
3635 #include <linux/kdb.h>
3636 /*
3637  * kdb_send_sig_info - Allows kdb to send signals without exposing
3638  * signal internals.  This function checks if the required locks are
3639  * available before calling the main signal code, to avoid kdb
3640  * deadlocks.
3641  */
3642 void
3643 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3644 {
3645 	static struct task_struct *kdb_prev_t;
3646 	int sig, new_t;
3647 	if (!spin_trylock(&t->sighand->siglock)) {
3648 		kdb_printf("Can't do kill command now.\n"
3649 			   "The sigmask lock is held somewhere else in "
3650 			   "kernel, try again later\n");
3651 		return;
3652 	}
3653 	spin_unlock(&t->sighand->siglock);
3654 	new_t = kdb_prev_t != t;
3655 	kdb_prev_t = t;
3656 	if (t->state != TASK_RUNNING && new_t) {
3657 		kdb_printf("Process is not RUNNING, sending a signal from "
3658 			   "kdb risks deadlock\n"
3659 			   "on the run queue locks. "
3660 			   "The signal has _not_ been sent.\n"
3661 			   "Reissue the kill command if you want to risk "
3662 			   "the deadlock.\n");
3663 		return;
3664 	}
3665 	sig = info->si_signo;
3666 	if (send_sig_info(sig, info, t))
3667 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3668 			   sig, t->pid);
3669 	else
3670 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3671 }
3672 #endif	/* CONFIG_KGDB_KDB */
3673