1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/mm.h> 26 #include <linux/proc_fs.h> 27 #include <linux/tty.h> 28 #include <linux/binfmts.h> 29 #include <linux/coredump.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/ptrace.h> 33 #include <linux/signal.h> 34 #include <linux/signalfd.h> 35 #include <linux/ratelimit.h> 36 #include <linux/task_work.h> 37 #include <linux/capability.h> 38 #include <linux/freezer.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/nsproxy.h> 41 #include <linux/user_namespace.h> 42 #include <linux/uprobes.h> 43 #include <linux/compat.h> 44 #include <linux/cn_proc.h> 45 #include <linux/compiler.h> 46 #include <linux/posix-timers.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 #include <linux/sysctl.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/signal.h> 53 54 #include <asm/param.h> 55 #include <linux/uaccess.h> 56 #include <asm/unistd.h> 57 #include <asm/siginfo.h> 58 #include <asm/cacheflush.h> 59 #include <asm/syscall.h> /* for syscall_get_* */ 60 61 /* 62 * SLAB caches for signal bits. 63 */ 64 65 static struct kmem_cache *sigqueue_cachep; 66 67 int print_fatal_signals __read_mostly; 68 69 static void __user *sig_handler(struct task_struct *t, int sig) 70 { 71 return t->sighand->action[sig - 1].sa.sa_handler; 72 } 73 74 static inline bool sig_handler_ignored(void __user *handler, int sig) 75 { 76 /* Is it explicitly or implicitly ignored? */ 77 return handler == SIG_IGN || 78 (handler == SIG_DFL && sig_kernel_ignore(sig)); 79 } 80 81 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 82 { 83 void __user *handler; 84 85 handler = sig_handler(t, sig); 86 87 /* SIGKILL and SIGSTOP may not be sent to the global init */ 88 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 89 return true; 90 91 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 92 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 93 return true; 94 95 /* Only allow kernel generated signals to this kthread */ 96 if (unlikely((t->flags & PF_KTHREAD) && 97 (handler == SIG_KTHREAD_KERNEL) && !force)) 98 return true; 99 100 return sig_handler_ignored(handler, sig); 101 } 102 103 static bool sig_ignored(struct task_struct *t, int sig, bool force) 104 { 105 /* 106 * Blocked signals are never ignored, since the 107 * signal handler may change by the time it is 108 * unblocked. 109 */ 110 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 111 return false; 112 113 /* 114 * Tracers may want to know about even ignored signal unless it 115 * is SIGKILL which can't be reported anyway but can be ignored 116 * by SIGNAL_UNKILLABLE task. 117 */ 118 if (t->ptrace && sig != SIGKILL) 119 return false; 120 121 return sig_task_ignored(t, sig, force); 122 } 123 124 /* 125 * Re-calculate pending state from the set of locally pending 126 * signals, globally pending signals, and blocked signals. 127 */ 128 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 129 { 130 unsigned long ready; 131 long i; 132 133 switch (_NSIG_WORDS) { 134 default: 135 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 136 ready |= signal->sig[i] &~ blocked->sig[i]; 137 break; 138 139 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 140 ready |= signal->sig[2] &~ blocked->sig[2]; 141 ready |= signal->sig[1] &~ blocked->sig[1]; 142 ready |= signal->sig[0] &~ blocked->sig[0]; 143 break; 144 145 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 146 ready |= signal->sig[0] &~ blocked->sig[0]; 147 break; 148 149 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 150 } 151 return ready != 0; 152 } 153 154 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 155 156 static bool recalc_sigpending_tsk(struct task_struct *t) 157 { 158 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 159 PENDING(&t->pending, &t->blocked) || 160 PENDING(&t->signal->shared_pending, &t->blocked) || 161 cgroup_task_frozen(t)) { 162 set_tsk_thread_flag(t, TIF_SIGPENDING); 163 return true; 164 } 165 166 /* 167 * We must never clear the flag in another thread, or in current 168 * when it's possible the current syscall is returning -ERESTART*. 169 * So we don't clear it here, and only callers who know they should do. 170 */ 171 return false; 172 } 173 174 /* 175 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 176 * This is superfluous when called on current, the wakeup is a harmless no-op. 177 */ 178 void recalc_sigpending_and_wake(struct task_struct *t) 179 { 180 if (recalc_sigpending_tsk(t)) 181 signal_wake_up(t, 0); 182 } 183 184 void recalc_sigpending(void) 185 { 186 if (!recalc_sigpending_tsk(current) && !freezing(current)) 187 clear_thread_flag(TIF_SIGPENDING); 188 189 } 190 EXPORT_SYMBOL(recalc_sigpending); 191 192 void calculate_sigpending(void) 193 { 194 /* Have any signals or users of TIF_SIGPENDING been delayed 195 * until after fork? 196 */ 197 spin_lock_irq(¤t->sighand->siglock); 198 set_tsk_thread_flag(current, TIF_SIGPENDING); 199 recalc_sigpending(); 200 spin_unlock_irq(¤t->sighand->siglock); 201 } 202 203 /* Given the mask, find the first available signal that should be serviced. */ 204 205 #define SYNCHRONOUS_MASK \ 206 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 207 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 208 209 int next_signal(struct sigpending *pending, sigset_t *mask) 210 { 211 unsigned long i, *s, *m, x; 212 int sig = 0; 213 214 s = pending->signal.sig; 215 m = mask->sig; 216 217 /* 218 * Handle the first word specially: it contains the 219 * synchronous signals that need to be dequeued first. 220 */ 221 x = *s &~ *m; 222 if (x) { 223 if (x & SYNCHRONOUS_MASK) 224 x &= SYNCHRONOUS_MASK; 225 sig = ffz(~x) + 1; 226 return sig; 227 } 228 229 switch (_NSIG_WORDS) { 230 default: 231 for (i = 1; i < _NSIG_WORDS; ++i) { 232 x = *++s &~ *++m; 233 if (!x) 234 continue; 235 sig = ffz(~x) + i*_NSIG_BPW + 1; 236 break; 237 } 238 break; 239 240 case 2: 241 x = s[1] &~ m[1]; 242 if (!x) 243 break; 244 sig = ffz(~x) + _NSIG_BPW + 1; 245 break; 246 247 case 1: 248 /* Nothing to do */ 249 break; 250 } 251 252 return sig; 253 } 254 255 static inline void print_dropped_signal(int sig) 256 { 257 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 258 259 if (!print_fatal_signals) 260 return; 261 262 if (!__ratelimit(&ratelimit_state)) 263 return; 264 265 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 266 current->comm, current->pid, sig); 267 } 268 269 /** 270 * task_set_jobctl_pending - set jobctl pending bits 271 * @task: target task 272 * @mask: pending bits to set 273 * 274 * Clear @mask from @task->jobctl. @mask must be subset of 275 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 276 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 277 * cleared. If @task is already being killed or exiting, this function 278 * becomes noop. 279 * 280 * CONTEXT: 281 * Must be called with @task->sighand->siglock held. 282 * 283 * RETURNS: 284 * %true if @mask is set, %false if made noop because @task was dying. 285 */ 286 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 287 { 288 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 289 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 290 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 291 292 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 293 return false; 294 295 if (mask & JOBCTL_STOP_SIGMASK) 296 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 297 298 task->jobctl |= mask; 299 return true; 300 } 301 302 /** 303 * task_clear_jobctl_trapping - clear jobctl trapping bit 304 * @task: target task 305 * 306 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 307 * Clear it and wake up the ptracer. Note that we don't need any further 308 * locking. @task->siglock guarantees that @task->parent points to the 309 * ptracer. 310 * 311 * CONTEXT: 312 * Must be called with @task->sighand->siglock held. 313 */ 314 void task_clear_jobctl_trapping(struct task_struct *task) 315 { 316 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 317 task->jobctl &= ~JOBCTL_TRAPPING; 318 smp_mb(); /* advised by wake_up_bit() */ 319 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 320 } 321 } 322 323 /** 324 * task_clear_jobctl_pending - clear jobctl pending bits 325 * @task: target task 326 * @mask: pending bits to clear 327 * 328 * Clear @mask from @task->jobctl. @mask must be subset of 329 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 330 * STOP bits are cleared together. 331 * 332 * If clearing of @mask leaves no stop or trap pending, this function calls 333 * task_clear_jobctl_trapping(). 334 * 335 * CONTEXT: 336 * Must be called with @task->sighand->siglock held. 337 */ 338 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 339 { 340 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 341 342 if (mask & JOBCTL_STOP_PENDING) 343 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 344 345 task->jobctl &= ~mask; 346 347 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 348 task_clear_jobctl_trapping(task); 349 } 350 351 /** 352 * task_participate_group_stop - participate in a group stop 353 * @task: task participating in a group stop 354 * 355 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 356 * Group stop states are cleared and the group stop count is consumed if 357 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 358 * stop, the appropriate `SIGNAL_*` flags are set. 359 * 360 * CONTEXT: 361 * Must be called with @task->sighand->siglock held. 362 * 363 * RETURNS: 364 * %true if group stop completion should be notified to the parent, %false 365 * otherwise. 366 */ 367 static bool task_participate_group_stop(struct task_struct *task) 368 { 369 struct signal_struct *sig = task->signal; 370 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 371 372 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 373 374 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 375 376 if (!consume) 377 return false; 378 379 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 380 sig->group_stop_count--; 381 382 /* 383 * Tell the caller to notify completion iff we are entering into a 384 * fresh group stop. Read comment in do_signal_stop() for details. 385 */ 386 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 387 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 388 return true; 389 } 390 return false; 391 } 392 393 void task_join_group_stop(struct task_struct *task) 394 { 395 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 396 struct signal_struct *sig = current->signal; 397 398 if (sig->group_stop_count) { 399 sig->group_stop_count++; 400 mask |= JOBCTL_STOP_CONSUME; 401 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 402 return; 403 404 /* Have the new thread join an on-going signal group stop */ 405 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 406 } 407 408 /* 409 * allocate a new signal queue record 410 * - this may be called without locks if and only if t == current, otherwise an 411 * appropriate lock must be held to stop the target task from exiting 412 */ 413 static struct sigqueue * 414 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 415 int override_rlimit, const unsigned int sigqueue_flags) 416 { 417 struct sigqueue *q = NULL; 418 struct ucounts *ucounts = NULL; 419 long sigpending; 420 421 /* 422 * Protect access to @t credentials. This can go away when all 423 * callers hold rcu read lock. 424 * 425 * NOTE! A pending signal will hold on to the user refcount, 426 * and we get/put the refcount only when the sigpending count 427 * changes from/to zero. 428 */ 429 rcu_read_lock(); 430 ucounts = task_ucounts(t); 431 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 432 rcu_read_unlock(); 433 if (!sigpending) 434 return NULL; 435 436 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 437 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 438 } else { 439 print_dropped_signal(sig); 440 } 441 442 if (unlikely(q == NULL)) { 443 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 444 } else { 445 INIT_LIST_HEAD(&q->list); 446 q->flags = sigqueue_flags; 447 q->ucounts = ucounts; 448 } 449 return q; 450 } 451 452 static void __sigqueue_free(struct sigqueue *q) 453 { 454 if (q->flags & SIGQUEUE_PREALLOC) 455 return; 456 if (q->ucounts) { 457 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 458 q->ucounts = NULL; 459 } 460 kmem_cache_free(sigqueue_cachep, q); 461 } 462 463 void flush_sigqueue(struct sigpending *queue) 464 { 465 struct sigqueue *q; 466 467 sigemptyset(&queue->signal); 468 while (!list_empty(&queue->list)) { 469 q = list_entry(queue->list.next, struct sigqueue , list); 470 list_del_init(&q->list); 471 __sigqueue_free(q); 472 } 473 } 474 475 /* 476 * Flush all pending signals for this kthread. 477 */ 478 void flush_signals(struct task_struct *t) 479 { 480 unsigned long flags; 481 482 spin_lock_irqsave(&t->sighand->siglock, flags); 483 clear_tsk_thread_flag(t, TIF_SIGPENDING); 484 flush_sigqueue(&t->pending); 485 flush_sigqueue(&t->signal->shared_pending); 486 spin_unlock_irqrestore(&t->sighand->siglock, flags); 487 } 488 EXPORT_SYMBOL(flush_signals); 489 490 #ifdef CONFIG_POSIX_TIMERS 491 static void __flush_itimer_signals(struct sigpending *pending) 492 { 493 sigset_t signal, retain; 494 struct sigqueue *q, *n; 495 496 signal = pending->signal; 497 sigemptyset(&retain); 498 499 list_for_each_entry_safe(q, n, &pending->list, list) { 500 int sig = q->info.si_signo; 501 502 if (likely(q->info.si_code != SI_TIMER)) { 503 sigaddset(&retain, sig); 504 } else { 505 sigdelset(&signal, sig); 506 list_del_init(&q->list); 507 __sigqueue_free(q); 508 } 509 } 510 511 sigorsets(&pending->signal, &signal, &retain); 512 } 513 514 void flush_itimer_signals(void) 515 { 516 struct task_struct *tsk = current; 517 unsigned long flags; 518 519 spin_lock_irqsave(&tsk->sighand->siglock, flags); 520 __flush_itimer_signals(&tsk->pending); 521 __flush_itimer_signals(&tsk->signal->shared_pending); 522 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 523 } 524 #endif 525 526 void ignore_signals(struct task_struct *t) 527 { 528 int i; 529 530 for (i = 0; i < _NSIG; ++i) 531 t->sighand->action[i].sa.sa_handler = SIG_IGN; 532 533 flush_signals(t); 534 } 535 536 /* 537 * Flush all handlers for a task. 538 */ 539 540 void 541 flush_signal_handlers(struct task_struct *t, int force_default) 542 { 543 int i; 544 struct k_sigaction *ka = &t->sighand->action[0]; 545 for (i = _NSIG ; i != 0 ; i--) { 546 if (force_default || ka->sa.sa_handler != SIG_IGN) 547 ka->sa.sa_handler = SIG_DFL; 548 ka->sa.sa_flags = 0; 549 #ifdef __ARCH_HAS_SA_RESTORER 550 ka->sa.sa_restorer = NULL; 551 #endif 552 sigemptyset(&ka->sa.sa_mask); 553 ka++; 554 } 555 } 556 557 bool unhandled_signal(struct task_struct *tsk, int sig) 558 { 559 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 560 if (is_global_init(tsk)) 561 return true; 562 563 if (handler != SIG_IGN && handler != SIG_DFL) 564 return false; 565 566 /* If dying, we handle all new signals by ignoring them */ 567 if (fatal_signal_pending(tsk)) 568 return false; 569 570 /* if ptraced, let the tracer determine */ 571 return !tsk->ptrace; 572 } 573 574 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 575 bool *resched_timer) 576 { 577 struct sigqueue *q, *first = NULL; 578 579 /* 580 * Collect the siginfo appropriate to this signal. Check if 581 * there is another siginfo for the same signal. 582 */ 583 list_for_each_entry(q, &list->list, list) { 584 if (q->info.si_signo == sig) { 585 if (first) 586 goto still_pending; 587 first = q; 588 } 589 } 590 591 sigdelset(&list->signal, sig); 592 593 if (first) { 594 still_pending: 595 list_del_init(&first->list); 596 copy_siginfo(info, &first->info); 597 598 *resched_timer = 599 (first->flags & SIGQUEUE_PREALLOC) && 600 (info->si_code == SI_TIMER) && 601 (info->si_sys_private); 602 603 __sigqueue_free(first); 604 } else { 605 /* 606 * Ok, it wasn't in the queue. This must be 607 * a fast-pathed signal or we must have been 608 * out of queue space. So zero out the info. 609 */ 610 clear_siginfo(info); 611 info->si_signo = sig; 612 info->si_errno = 0; 613 info->si_code = SI_USER; 614 info->si_pid = 0; 615 info->si_uid = 0; 616 } 617 } 618 619 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 620 kernel_siginfo_t *info, bool *resched_timer) 621 { 622 int sig = next_signal(pending, mask); 623 624 if (sig) 625 collect_signal(sig, pending, info, resched_timer); 626 return sig; 627 } 628 629 /* 630 * Dequeue a signal and return the element to the caller, which is 631 * expected to free it. 632 * 633 * All callers have to hold the siglock. 634 */ 635 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 636 kernel_siginfo_t *info, enum pid_type *type) 637 { 638 bool resched_timer = false; 639 int signr; 640 641 /* We only dequeue private signals from ourselves, we don't let 642 * signalfd steal them 643 */ 644 *type = PIDTYPE_PID; 645 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 646 if (!signr) { 647 *type = PIDTYPE_TGID; 648 signr = __dequeue_signal(&tsk->signal->shared_pending, 649 mask, info, &resched_timer); 650 #ifdef CONFIG_POSIX_TIMERS 651 /* 652 * itimer signal ? 653 * 654 * itimers are process shared and we restart periodic 655 * itimers in the signal delivery path to prevent DoS 656 * attacks in the high resolution timer case. This is 657 * compliant with the old way of self-restarting 658 * itimers, as the SIGALRM is a legacy signal and only 659 * queued once. Changing the restart behaviour to 660 * restart the timer in the signal dequeue path is 661 * reducing the timer noise on heavy loaded !highres 662 * systems too. 663 */ 664 if (unlikely(signr == SIGALRM)) { 665 struct hrtimer *tmr = &tsk->signal->real_timer; 666 667 if (!hrtimer_is_queued(tmr) && 668 tsk->signal->it_real_incr != 0) { 669 hrtimer_forward(tmr, tmr->base->get_time(), 670 tsk->signal->it_real_incr); 671 hrtimer_restart(tmr); 672 } 673 } 674 #endif 675 } 676 677 recalc_sigpending(); 678 if (!signr) 679 return 0; 680 681 if (unlikely(sig_kernel_stop(signr))) { 682 /* 683 * Set a marker that we have dequeued a stop signal. Our 684 * caller might release the siglock and then the pending 685 * stop signal it is about to process is no longer in the 686 * pending bitmasks, but must still be cleared by a SIGCONT 687 * (and overruled by a SIGKILL). So those cases clear this 688 * shared flag after we've set it. Note that this flag may 689 * remain set after the signal we return is ignored or 690 * handled. That doesn't matter because its only purpose 691 * is to alert stop-signal processing code when another 692 * processor has come along and cleared the flag. 693 */ 694 current->jobctl |= JOBCTL_STOP_DEQUEUED; 695 } 696 #ifdef CONFIG_POSIX_TIMERS 697 if (resched_timer) { 698 /* 699 * Release the siglock to ensure proper locking order 700 * of timer locks outside of siglocks. Note, we leave 701 * irqs disabled here, since the posix-timers code is 702 * about to disable them again anyway. 703 */ 704 spin_unlock(&tsk->sighand->siglock); 705 posixtimer_rearm(info); 706 spin_lock(&tsk->sighand->siglock); 707 708 /* Don't expose the si_sys_private value to userspace */ 709 info->si_sys_private = 0; 710 } 711 #endif 712 return signr; 713 } 714 EXPORT_SYMBOL_GPL(dequeue_signal); 715 716 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 717 { 718 struct task_struct *tsk = current; 719 struct sigpending *pending = &tsk->pending; 720 struct sigqueue *q, *sync = NULL; 721 722 /* 723 * Might a synchronous signal be in the queue? 724 */ 725 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 726 return 0; 727 728 /* 729 * Return the first synchronous signal in the queue. 730 */ 731 list_for_each_entry(q, &pending->list, list) { 732 /* Synchronous signals have a positive si_code */ 733 if ((q->info.si_code > SI_USER) && 734 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 735 sync = q; 736 goto next; 737 } 738 } 739 return 0; 740 next: 741 /* 742 * Check if there is another siginfo for the same signal. 743 */ 744 list_for_each_entry_continue(q, &pending->list, list) { 745 if (q->info.si_signo == sync->info.si_signo) 746 goto still_pending; 747 } 748 749 sigdelset(&pending->signal, sync->info.si_signo); 750 recalc_sigpending(); 751 still_pending: 752 list_del_init(&sync->list); 753 copy_siginfo(info, &sync->info); 754 __sigqueue_free(sync); 755 return info->si_signo; 756 } 757 758 /* 759 * Tell a process that it has a new active signal.. 760 * 761 * NOTE! we rely on the previous spin_lock to 762 * lock interrupts for us! We can only be called with 763 * "siglock" held, and the local interrupt must 764 * have been disabled when that got acquired! 765 * 766 * No need to set need_resched since signal event passing 767 * goes through ->blocked 768 */ 769 void signal_wake_up_state(struct task_struct *t, unsigned int state) 770 { 771 lockdep_assert_held(&t->sighand->siglock); 772 773 set_tsk_thread_flag(t, TIF_SIGPENDING); 774 775 /* 776 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 777 * case. We don't check t->state here because there is a race with it 778 * executing another processor and just now entering stopped state. 779 * By using wake_up_state, we ensure the process will wake up and 780 * handle its death signal. 781 */ 782 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 783 kick_process(t); 784 } 785 786 /* 787 * Remove signals in mask from the pending set and queue. 788 * Returns 1 if any signals were found. 789 * 790 * All callers must be holding the siglock. 791 */ 792 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 793 { 794 struct sigqueue *q, *n; 795 sigset_t m; 796 797 sigandsets(&m, mask, &s->signal); 798 if (sigisemptyset(&m)) 799 return; 800 801 sigandnsets(&s->signal, &s->signal, mask); 802 list_for_each_entry_safe(q, n, &s->list, list) { 803 if (sigismember(mask, q->info.si_signo)) { 804 list_del_init(&q->list); 805 __sigqueue_free(q); 806 } 807 } 808 } 809 810 static inline int is_si_special(const struct kernel_siginfo *info) 811 { 812 return info <= SEND_SIG_PRIV; 813 } 814 815 static inline bool si_fromuser(const struct kernel_siginfo *info) 816 { 817 return info == SEND_SIG_NOINFO || 818 (!is_si_special(info) && SI_FROMUSER(info)); 819 } 820 821 /* 822 * called with RCU read lock from check_kill_permission() 823 */ 824 static bool kill_ok_by_cred(struct task_struct *t) 825 { 826 const struct cred *cred = current_cred(); 827 const struct cred *tcred = __task_cred(t); 828 829 return uid_eq(cred->euid, tcred->suid) || 830 uid_eq(cred->euid, tcred->uid) || 831 uid_eq(cred->uid, tcred->suid) || 832 uid_eq(cred->uid, tcred->uid) || 833 ns_capable(tcred->user_ns, CAP_KILL); 834 } 835 836 /* 837 * Bad permissions for sending the signal 838 * - the caller must hold the RCU read lock 839 */ 840 static int check_kill_permission(int sig, struct kernel_siginfo *info, 841 struct task_struct *t) 842 { 843 struct pid *sid; 844 int error; 845 846 if (!valid_signal(sig)) 847 return -EINVAL; 848 849 if (!si_fromuser(info)) 850 return 0; 851 852 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 853 if (error) 854 return error; 855 856 if (!same_thread_group(current, t) && 857 !kill_ok_by_cred(t)) { 858 switch (sig) { 859 case SIGCONT: 860 sid = task_session(t); 861 /* 862 * We don't return the error if sid == NULL. The 863 * task was unhashed, the caller must notice this. 864 */ 865 if (!sid || sid == task_session(current)) 866 break; 867 fallthrough; 868 default: 869 return -EPERM; 870 } 871 } 872 873 return security_task_kill(t, info, sig, NULL); 874 } 875 876 /** 877 * ptrace_trap_notify - schedule trap to notify ptracer 878 * @t: tracee wanting to notify tracer 879 * 880 * This function schedules sticky ptrace trap which is cleared on the next 881 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 882 * ptracer. 883 * 884 * If @t is running, STOP trap will be taken. If trapped for STOP and 885 * ptracer is listening for events, tracee is woken up so that it can 886 * re-trap for the new event. If trapped otherwise, STOP trap will be 887 * eventually taken without returning to userland after the existing traps 888 * are finished by PTRACE_CONT. 889 * 890 * CONTEXT: 891 * Must be called with @task->sighand->siglock held. 892 */ 893 static void ptrace_trap_notify(struct task_struct *t) 894 { 895 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 896 lockdep_assert_held(&t->sighand->siglock); 897 898 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 899 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 900 } 901 902 /* 903 * Handle magic process-wide effects of stop/continue signals. Unlike 904 * the signal actions, these happen immediately at signal-generation 905 * time regardless of blocking, ignoring, or handling. This does the 906 * actual continuing for SIGCONT, but not the actual stopping for stop 907 * signals. The process stop is done as a signal action for SIG_DFL. 908 * 909 * Returns true if the signal should be actually delivered, otherwise 910 * it should be dropped. 911 */ 912 static bool prepare_signal(int sig, struct task_struct *p, bool force) 913 { 914 struct signal_struct *signal = p->signal; 915 struct task_struct *t; 916 sigset_t flush; 917 918 if (signal->flags & SIGNAL_GROUP_EXIT) { 919 if (signal->core_state) 920 return sig == SIGKILL; 921 /* 922 * The process is in the middle of dying, drop the signal. 923 */ 924 return false; 925 } else if (sig_kernel_stop(sig)) { 926 /* 927 * This is a stop signal. Remove SIGCONT from all queues. 928 */ 929 siginitset(&flush, sigmask(SIGCONT)); 930 flush_sigqueue_mask(&flush, &signal->shared_pending); 931 for_each_thread(p, t) 932 flush_sigqueue_mask(&flush, &t->pending); 933 } else if (sig == SIGCONT) { 934 unsigned int why; 935 /* 936 * Remove all stop signals from all queues, wake all threads. 937 */ 938 siginitset(&flush, SIG_KERNEL_STOP_MASK); 939 flush_sigqueue_mask(&flush, &signal->shared_pending); 940 for_each_thread(p, t) { 941 flush_sigqueue_mask(&flush, &t->pending); 942 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 943 if (likely(!(t->ptrace & PT_SEIZED))) { 944 t->jobctl &= ~JOBCTL_STOPPED; 945 wake_up_state(t, __TASK_STOPPED); 946 } else 947 ptrace_trap_notify(t); 948 } 949 950 /* 951 * Notify the parent with CLD_CONTINUED if we were stopped. 952 * 953 * If we were in the middle of a group stop, we pretend it 954 * was already finished, and then continued. Since SIGCHLD 955 * doesn't queue we report only CLD_STOPPED, as if the next 956 * CLD_CONTINUED was dropped. 957 */ 958 why = 0; 959 if (signal->flags & SIGNAL_STOP_STOPPED) 960 why |= SIGNAL_CLD_CONTINUED; 961 else if (signal->group_stop_count) 962 why |= SIGNAL_CLD_STOPPED; 963 964 if (why) { 965 /* 966 * The first thread which returns from do_signal_stop() 967 * will take ->siglock, notice SIGNAL_CLD_MASK, and 968 * notify its parent. See get_signal(). 969 */ 970 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 971 signal->group_stop_count = 0; 972 signal->group_exit_code = 0; 973 } 974 } 975 976 return !sig_ignored(p, sig, force); 977 } 978 979 /* 980 * Test if P wants to take SIG. After we've checked all threads with this, 981 * it's equivalent to finding no threads not blocking SIG. Any threads not 982 * blocking SIG were ruled out because they are not running and already 983 * have pending signals. Such threads will dequeue from the shared queue 984 * as soon as they're available, so putting the signal on the shared queue 985 * will be equivalent to sending it to one such thread. 986 */ 987 static inline bool wants_signal(int sig, struct task_struct *p) 988 { 989 if (sigismember(&p->blocked, sig)) 990 return false; 991 992 if (p->flags & PF_EXITING) 993 return false; 994 995 if (sig == SIGKILL) 996 return true; 997 998 if (task_is_stopped_or_traced(p)) 999 return false; 1000 1001 return task_curr(p) || !task_sigpending(p); 1002 } 1003 1004 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 1005 { 1006 struct signal_struct *signal = p->signal; 1007 struct task_struct *t; 1008 1009 /* 1010 * Now find a thread we can wake up to take the signal off the queue. 1011 * 1012 * Try the suggested task first (may or may not be the main thread). 1013 */ 1014 if (wants_signal(sig, p)) 1015 t = p; 1016 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1017 /* 1018 * There is just one thread and it does not need to be woken. 1019 * It will dequeue unblocked signals before it runs again. 1020 */ 1021 return; 1022 else { 1023 /* 1024 * Otherwise try to find a suitable thread. 1025 */ 1026 t = signal->curr_target; 1027 while (!wants_signal(sig, t)) { 1028 t = next_thread(t); 1029 if (t == signal->curr_target) 1030 /* 1031 * No thread needs to be woken. 1032 * Any eligible threads will see 1033 * the signal in the queue soon. 1034 */ 1035 return; 1036 } 1037 signal->curr_target = t; 1038 } 1039 1040 /* 1041 * Found a killable thread. If the signal will be fatal, 1042 * then start taking the whole group down immediately. 1043 */ 1044 if (sig_fatal(p, sig) && 1045 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1046 !sigismember(&t->real_blocked, sig) && 1047 (sig == SIGKILL || !p->ptrace)) { 1048 /* 1049 * This signal will be fatal to the whole group. 1050 */ 1051 if (!sig_kernel_coredump(sig)) { 1052 /* 1053 * Start a group exit and wake everybody up. 1054 * This way we don't have other threads 1055 * running and doing things after a slower 1056 * thread has the fatal signal pending. 1057 */ 1058 signal->flags = SIGNAL_GROUP_EXIT; 1059 signal->group_exit_code = sig; 1060 signal->group_stop_count = 0; 1061 t = p; 1062 do { 1063 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1064 sigaddset(&t->pending.signal, SIGKILL); 1065 signal_wake_up(t, 1); 1066 } while_each_thread(p, t); 1067 return; 1068 } 1069 } 1070 1071 /* 1072 * The signal is already in the shared-pending queue. 1073 * Tell the chosen thread to wake up and dequeue it. 1074 */ 1075 signal_wake_up(t, sig == SIGKILL); 1076 return; 1077 } 1078 1079 static inline bool legacy_queue(struct sigpending *signals, int sig) 1080 { 1081 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1082 } 1083 1084 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1085 struct task_struct *t, enum pid_type type, bool force) 1086 { 1087 struct sigpending *pending; 1088 struct sigqueue *q; 1089 int override_rlimit; 1090 int ret = 0, result; 1091 1092 lockdep_assert_held(&t->sighand->siglock); 1093 1094 result = TRACE_SIGNAL_IGNORED; 1095 if (!prepare_signal(sig, t, force)) 1096 goto ret; 1097 1098 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1099 /* 1100 * Short-circuit ignored signals and support queuing 1101 * exactly one non-rt signal, so that we can get more 1102 * detailed information about the cause of the signal. 1103 */ 1104 result = TRACE_SIGNAL_ALREADY_PENDING; 1105 if (legacy_queue(pending, sig)) 1106 goto ret; 1107 1108 result = TRACE_SIGNAL_DELIVERED; 1109 /* 1110 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1111 */ 1112 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1113 goto out_set; 1114 1115 /* 1116 * Real-time signals must be queued if sent by sigqueue, or 1117 * some other real-time mechanism. It is implementation 1118 * defined whether kill() does so. We attempt to do so, on 1119 * the principle of least surprise, but since kill is not 1120 * allowed to fail with EAGAIN when low on memory we just 1121 * make sure at least one signal gets delivered and don't 1122 * pass on the info struct. 1123 */ 1124 if (sig < SIGRTMIN) 1125 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1126 else 1127 override_rlimit = 0; 1128 1129 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1130 1131 if (q) { 1132 list_add_tail(&q->list, &pending->list); 1133 switch ((unsigned long) info) { 1134 case (unsigned long) SEND_SIG_NOINFO: 1135 clear_siginfo(&q->info); 1136 q->info.si_signo = sig; 1137 q->info.si_errno = 0; 1138 q->info.si_code = SI_USER; 1139 q->info.si_pid = task_tgid_nr_ns(current, 1140 task_active_pid_ns(t)); 1141 rcu_read_lock(); 1142 q->info.si_uid = 1143 from_kuid_munged(task_cred_xxx(t, user_ns), 1144 current_uid()); 1145 rcu_read_unlock(); 1146 break; 1147 case (unsigned long) SEND_SIG_PRIV: 1148 clear_siginfo(&q->info); 1149 q->info.si_signo = sig; 1150 q->info.si_errno = 0; 1151 q->info.si_code = SI_KERNEL; 1152 q->info.si_pid = 0; 1153 q->info.si_uid = 0; 1154 break; 1155 default: 1156 copy_siginfo(&q->info, info); 1157 break; 1158 } 1159 } else if (!is_si_special(info) && 1160 sig >= SIGRTMIN && info->si_code != SI_USER) { 1161 /* 1162 * Queue overflow, abort. We may abort if the 1163 * signal was rt and sent by user using something 1164 * other than kill(). 1165 */ 1166 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1167 ret = -EAGAIN; 1168 goto ret; 1169 } else { 1170 /* 1171 * This is a silent loss of information. We still 1172 * send the signal, but the *info bits are lost. 1173 */ 1174 result = TRACE_SIGNAL_LOSE_INFO; 1175 } 1176 1177 out_set: 1178 signalfd_notify(t, sig); 1179 sigaddset(&pending->signal, sig); 1180 1181 /* Let multiprocess signals appear after on-going forks */ 1182 if (type > PIDTYPE_TGID) { 1183 struct multiprocess_signals *delayed; 1184 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1185 sigset_t *signal = &delayed->signal; 1186 /* Can't queue both a stop and a continue signal */ 1187 if (sig == SIGCONT) 1188 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1189 else if (sig_kernel_stop(sig)) 1190 sigdelset(signal, SIGCONT); 1191 sigaddset(signal, sig); 1192 } 1193 } 1194 1195 complete_signal(sig, t, type); 1196 ret: 1197 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1198 return ret; 1199 } 1200 1201 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1202 { 1203 bool ret = false; 1204 switch (siginfo_layout(info->si_signo, info->si_code)) { 1205 case SIL_KILL: 1206 case SIL_CHLD: 1207 case SIL_RT: 1208 ret = true; 1209 break; 1210 case SIL_TIMER: 1211 case SIL_POLL: 1212 case SIL_FAULT: 1213 case SIL_FAULT_TRAPNO: 1214 case SIL_FAULT_MCEERR: 1215 case SIL_FAULT_BNDERR: 1216 case SIL_FAULT_PKUERR: 1217 case SIL_FAULT_PERF_EVENT: 1218 case SIL_SYS: 1219 ret = false; 1220 break; 1221 } 1222 return ret; 1223 } 1224 1225 int send_signal_locked(int sig, struct kernel_siginfo *info, 1226 struct task_struct *t, enum pid_type type) 1227 { 1228 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1229 bool force = false; 1230 1231 if (info == SEND_SIG_NOINFO) { 1232 /* Force if sent from an ancestor pid namespace */ 1233 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1234 } else if (info == SEND_SIG_PRIV) { 1235 /* Don't ignore kernel generated signals */ 1236 force = true; 1237 } else if (has_si_pid_and_uid(info)) { 1238 /* SIGKILL and SIGSTOP is special or has ids */ 1239 struct user_namespace *t_user_ns; 1240 1241 rcu_read_lock(); 1242 t_user_ns = task_cred_xxx(t, user_ns); 1243 if (current_user_ns() != t_user_ns) { 1244 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1245 info->si_uid = from_kuid_munged(t_user_ns, uid); 1246 } 1247 rcu_read_unlock(); 1248 1249 /* A kernel generated signal? */ 1250 force = (info->si_code == SI_KERNEL); 1251 1252 /* From an ancestor pid namespace? */ 1253 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1254 info->si_pid = 0; 1255 force = true; 1256 } 1257 } 1258 return __send_signal_locked(sig, info, t, type, force); 1259 } 1260 1261 static void print_fatal_signal(int signr) 1262 { 1263 struct pt_regs *regs = task_pt_regs(current); 1264 struct file *exe_file; 1265 1266 exe_file = get_task_exe_file(current); 1267 if (exe_file) { 1268 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n", 1269 exe_file, current->comm, signr); 1270 fput(exe_file); 1271 } else { 1272 pr_info("%s: potentially unexpected fatal signal %d.\n", 1273 current->comm, signr); 1274 } 1275 1276 #if defined(__i386__) && !defined(__arch_um__) 1277 pr_info("code at %08lx: ", regs->ip); 1278 { 1279 int i; 1280 for (i = 0; i < 16; i++) { 1281 unsigned char insn; 1282 1283 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1284 break; 1285 pr_cont("%02x ", insn); 1286 } 1287 } 1288 pr_cont("\n"); 1289 #endif 1290 preempt_disable(); 1291 show_regs(regs); 1292 preempt_enable(); 1293 } 1294 1295 static int __init setup_print_fatal_signals(char *str) 1296 { 1297 get_option (&str, &print_fatal_signals); 1298 1299 return 1; 1300 } 1301 1302 __setup("print-fatal-signals=", setup_print_fatal_signals); 1303 1304 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1305 enum pid_type type) 1306 { 1307 unsigned long flags; 1308 int ret = -ESRCH; 1309 1310 if (lock_task_sighand(p, &flags)) { 1311 ret = send_signal_locked(sig, info, p, type); 1312 unlock_task_sighand(p, &flags); 1313 } 1314 1315 return ret; 1316 } 1317 1318 enum sig_handler { 1319 HANDLER_CURRENT, /* If reachable use the current handler */ 1320 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1321 HANDLER_EXIT, /* Only visible as the process exit code */ 1322 }; 1323 1324 /* 1325 * Force a signal that the process can't ignore: if necessary 1326 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1327 * 1328 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1329 * since we do not want to have a signal handler that was blocked 1330 * be invoked when user space had explicitly blocked it. 1331 * 1332 * We don't want to have recursive SIGSEGV's etc, for example, 1333 * that is why we also clear SIGNAL_UNKILLABLE. 1334 */ 1335 static int 1336 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1337 enum sig_handler handler) 1338 { 1339 unsigned long int flags; 1340 int ret, blocked, ignored; 1341 struct k_sigaction *action; 1342 int sig = info->si_signo; 1343 1344 spin_lock_irqsave(&t->sighand->siglock, flags); 1345 action = &t->sighand->action[sig-1]; 1346 ignored = action->sa.sa_handler == SIG_IGN; 1347 blocked = sigismember(&t->blocked, sig); 1348 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1349 action->sa.sa_handler = SIG_DFL; 1350 if (handler == HANDLER_EXIT) 1351 action->sa.sa_flags |= SA_IMMUTABLE; 1352 if (blocked) { 1353 sigdelset(&t->blocked, sig); 1354 recalc_sigpending_and_wake(t); 1355 } 1356 } 1357 /* 1358 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1359 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1360 */ 1361 if (action->sa.sa_handler == SIG_DFL && 1362 (!t->ptrace || (handler == HANDLER_EXIT))) 1363 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1364 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1365 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1366 1367 return ret; 1368 } 1369 1370 int force_sig_info(struct kernel_siginfo *info) 1371 { 1372 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1373 } 1374 1375 /* 1376 * Nuke all other threads in the group. 1377 */ 1378 int zap_other_threads(struct task_struct *p) 1379 { 1380 struct task_struct *t = p; 1381 int count = 0; 1382 1383 p->signal->group_stop_count = 0; 1384 1385 while_each_thread(p, t) { 1386 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1387 /* Don't require de_thread to wait for the vhost_worker */ 1388 if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER) 1389 count++; 1390 1391 /* Don't bother with already dead threads */ 1392 if (t->exit_state) 1393 continue; 1394 sigaddset(&t->pending.signal, SIGKILL); 1395 signal_wake_up(t, 1); 1396 } 1397 1398 return count; 1399 } 1400 1401 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1402 unsigned long *flags) 1403 { 1404 struct sighand_struct *sighand; 1405 1406 rcu_read_lock(); 1407 for (;;) { 1408 sighand = rcu_dereference(tsk->sighand); 1409 if (unlikely(sighand == NULL)) 1410 break; 1411 1412 /* 1413 * This sighand can be already freed and even reused, but 1414 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1415 * initializes ->siglock: this slab can't go away, it has 1416 * the same object type, ->siglock can't be reinitialized. 1417 * 1418 * We need to ensure that tsk->sighand is still the same 1419 * after we take the lock, we can race with de_thread() or 1420 * __exit_signal(). In the latter case the next iteration 1421 * must see ->sighand == NULL. 1422 */ 1423 spin_lock_irqsave(&sighand->siglock, *flags); 1424 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1425 break; 1426 spin_unlock_irqrestore(&sighand->siglock, *flags); 1427 } 1428 rcu_read_unlock(); 1429 1430 return sighand; 1431 } 1432 1433 #ifdef CONFIG_LOCKDEP 1434 void lockdep_assert_task_sighand_held(struct task_struct *task) 1435 { 1436 struct sighand_struct *sighand; 1437 1438 rcu_read_lock(); 1439 sighand = rcu_dereference(task->sighand); 1440 if (sighand) 1441 lockdep_assert_held(&sighand->siglock); 1442 else 1443 WARN_ON_ONCE(1); 1444 rcu_read_unlock(); 1445 } 1446 #endif 1447 1448 /* 1449 * send signal info to all the members of a group 1450 */ 1451 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1452 struct task_struct *p, enum pid_type type) 1453 { 1454 int ret; 1455 1456 rcu_read_lock(); 1457 ret = check_kill_permission(sig, info, p); 1458 rcu_read_unlock(); 1459 1460 if (!ret && sig) 1461 ret = do_send_sig_info(sig, info, p, type); 1462 1463 return ret; 1464 } 1465 1466 /* 1467 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1468 * control characters do (^C, ^Z etc) 1469 * - the caller must hold at least a readlock on tasklist_lock 1470 */ 1471 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1472 { 1473 struct task_struct *p = NULL; 1474 int retval, success; 1475 1476 success = 0; 1477 retval = -ESRCH; 1478 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1479 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1480 success |= !err; 1481 retval = err; 1482 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1483 return success ? 0 : retval; 1484 } 1485 1486 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1487 { 1488 int error = -ESRCH; 1489 struct task_struct *p; 1490 1491 for (;;) { 1492 rcu_read_lock(); 1493 p = pid_task(pid, PIDTYPE_PID); 1494 if (p) 1495 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1496 rcu_read_unlock(); 1497 if (likely(!p || error != -ESRCH)) 1498 return error; 1499 1500 /* 1501 * The task was unhashed in between, try again. If it 1502 * is dead, pid_task() will return NULL, if we race with 1503 * de_thread() it will find the new leader. 1504 */ 1505 } 1506 } 1507 1508 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1509 { 1510 int error; 1511 rcu_read_lock(); 1512 error = kill_pid_info(sig, info, find_vpid(pid)); 1513 rcu_read_unlock(); 1514 return error; 1515 } 1516 1517 static inline bool kill_as_cred_perm(const struct cred *cred, 1518 struct task_struct *target) 1519 { 1520 const struct cred *pcred = __task_cred(target); 1521 1522 return uid_eq(cred->euid, pcred->suid) || 1523 uid_eq(cred->euid, pcred->uid) || 1524 uid_eq(cred->uid, pcred->suid) || 1525 uid_eq(cred->uid, pcred->uid); 1526 } 1527 1528 /* 1529 * The usb asyncio usage of siginfo is wrong. The glibc support 1530 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1531 * AKA after the generic fields: 1532 * kernel_pid_t si_pid; 1533 * kernel_uid32_t si_uid; 1534 * sigval_t si_value; 1535 * 1536 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1537 * after the generic fields is: 1538 * void __user *si_addr; 1539 * 1540 * This is a practical problem when there is a 64bit big endian kernel 1541 * and a 32bit userspace. As the 32bit address will encoded in the low 1542 * 32bits of the pointer. Those low 32bits will be stored at higher 1543 * address than appear in a 32 bit pointer. So userspace will not 1544 * see the address it was expecting for it's completions. 1545 * 1546 * There is nothing in the encoding that can allow 1547 * copy_siginfo_to_user32 to detect this confusion of formats, so 1548 * handle this by requiring the caller of kill_pid_usb_asyncio to 1549 * notice when this situration takes place and to store the 32bit 1550 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1551 * parameter. 1552 */ 1553 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1554 struct pid *pid, const struct cred *cred) 1555 { 1556 struct kernel_siginfo info; 1557 struct task_struct *p; 1558 unsigned long flags; 1559 int ret = -EINVAL; 1560 1561 if (!valid_signal(sig)) 1562 return ret; 1563 1564 clear_siginfo(&info); 1565 info.si_signo = sig; 1566 info.si_errno = errno; 1567 info.si_code = SI_ASYNCIO; 1568 *((sigval_t *)&info.si_pid) = addr; 1569 1570 rcu_read_lock(); 1571 p = pid_task(pid, PIDTYPE_PID); 1572 if (!p) { 1573 ret = -ESRCH; 1574 goto out_unlock; 1575 } 1576 if (!kill_as_cred_perm(cred, p)) { 1577 ret = -EPERM; 1578 goto out_unlock; 1579 } 1580 ret = security_task_kill(p, &info, sig, cred); 1581 if (ret) 1582 goto out_unlock; 1583 1584 if (sig) { 1585 if (lock_task_sighand(p, &flags)) { 1586 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1587 unlock_task_sighand(p, &flags); 1588 } else 1589 ret = -ESRCH; 1590 } 1591 out_unlock: 1592 rcu_read_unlock(); 1593 return ret; 1594 } 1595 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1596 1597 /* 1598 * kill_something_info() interprets pid in interesting ways just like kill(2). 1599 * 1600 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1601 * is probably wrong. Should make it like BSD or SYSV. 1602 */ 1603 1604 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1605 { 1606 int ret; 1607 1608 if (pid > 0) 1609 return kill_proc_info(sig, info, pid); 1610 1611 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1612 if (pid == INT_MIN) 1613 return -ESRCH; 1614 1615 read_lock(&tasklist_lock); 1616 if (pid != -1) { 1617 ret = __kill_pgrp_info(sig, info, 1618 pid ? find_vpid(-pid) : task_pgrp(current)); 1619 } else { 1620 int retval = 0, count = 0; 1621 struct task_struct * p; 1622 1623 for_each_process(p) { 1624 if (task_pid_vnr(p) > 1 && 1625 !same_thread_group(p, current)) { 1626 int err = group_send_sig_info(sig, info, p, 1627 PIDTYPE_MAX); 1628 ++count; 1629 if (err != -EPERM) 1630 retval = err; 1631 } 1632 } 1633 ret = count ? retval : -ESRCH; 1634 } 1635 read_unlock(&tasklist_lock); 1636 1637 return ret; 1638 } 1639 1640 /* 1641 * These are for backward compatibility with the rest of the kernel source. 1642 */ 1643 1644 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1645 { 1646 /* 1647 * Make sure legacy kernel users don't send in bad values 1648 * (normal paths check this in check_kill_permission). 1649 */ 1650 if (!valid_signal(sig)) 1651 return -EINVAL; 1652 1653 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1654 } 1655 EXPORT_SYMBOL(send_sig_info); 1656 1657 #define __si_special(priv) \ 1658 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1659 1660 int 1661 send_sig(int sig, struct task_struct *p, int priv) 1662 { 1663 return send_sig_info(sig, __si_special(priv), p); 1664 } 1665 EXPORT_SYMBOL(send_sig); 1666 1667 void force_sig(int sig) 1668 { 1669 struct kernel_siginfo info; 1670 1671 clear_siginfo(&info); 1672 info.si_signo = sig; 1673 info.si_errno = 0; 1674 info.si_code = SI_KERNEL; 1675 info.si_pid = 0; 1676 info.si_uid = 0; 1677 force_sig_info(&info); 1678 } 1679 EXPORT_SYMBOL(force_sig); 1680 1681 void force_fatal_sig(int sig) 1682 { 1683 struct kernel_siginfo info; 1684 1685 clear_siginfo(&info); 1686 info.si_signo = sig; 1687 info.si_errno = 0; 1688 info.si_code = SI_KERNEL; 1689 info.si_pid = 0; 1690 info.si_uid = 0; 1691 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1692 } 1693 1694 void force_exit_sig(int sig) 1695 { 1696 struct kernel_siginfo info; 1697 1698 clear_siginfo(&info); 1699 info.si_signo = sig; 1700 info.si_errno = 0; 1701 info.si_code = SI_KERNEL; 1702 info.si_pid = 0; 1703 info.si_uid = 0; 1704 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1705 } 1706 1707 /* 1708 * When things go south during signal handling, we 1709 * will force a SIGSEGV. And if the signal that caused 1710 * the problem was already a SIGSEGV, we'll want to 1711 * make sure we don't even try to deliver the signal.. 1712 */ 1713 void force_sigsegv(int sig) 1714 { 1715 if (sig == SIGSEGV) 1716 force_fatal_sig(SIGSEGV); 1717 else 1718 force_sig(SIGSEGV); 1719 } 1720 1721 int force_sig_fault_to_task(int sig, int code, void __user *addr, 1722 struct task_struct *t) 1723 { 1724 struct kernel_siginfo info; 1725 1726 clear_siginfo(&info); 1727 info.si_signo = sig; 1728 info.si_errno = 0; 1729 info.si_code = code; 1730 info.si_addr = addr; 1731 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1732 } 1733 1734 int force_sig_fault(int sig, int code, void __user *addr) 1735 { 1736 return force_sig_fault_to_task(sig, code, addr, current); 1737 } 1738 1739 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t) 1740 { 1741 struct kernel_siginfo info; 1742 1743 clear_siginfo(&info); 1744 info.si_signo = sig; 1745 info.si_errno = 0; 1746 info.si_code = code; 1747 info.si_addr = addr; 1748 return send_sig_info(info.si_signo, &info, t); 1749 } 1750 1751 int force_sig_mceerr(int code, void __user *addr, short lsb) 1752 { 1753 struct kernel_siginfo info; 1754 1755 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1756 clear_siginfo(&info); 1757 info.si_signo = SIGBUS; 1758 info.si_errno = 0; 1759 info.si_code = code; 1760 info.si_addr = addr; 1761 info.si_addr_lsb = lsb; 1762 return force_sig_info(&info); 1763 } 1764 1765 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1766 { 1767 struct kernel_siginfo info; 1768 1769 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1770 clear_siginfo(&info); 1771 info.si_signo = SIGBUS; 1772 info.si_errno = 0; 1773 info.si_code = code; 1774 info.si_addr = addr; 1775 info.si_addr_lsb = lsb; 1776 return send_sig_info(info.si_signo, &info, t); 1777 } 1778 EXPORT_SYMBOL(send_sig_mceerr); 1779 1780 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1781 { 1782 struct kernel_siginfo info; 1783 1784 clear_siginfo(&info); 1785 info.si_signo = SIGSEGV; 1786 info.si_errno = 0; 1787 info.si_code = SEGV_BNDERR; 1788 info.si_addr = addr; 1789 info.si_lower = lower; 1790 info.si_upper = upper; 1791 return force_sig_info(&info); 1792 } 1793 1794 #ifdef SEGV_PKUERR 1795 int force_sig_pkuerr(void __user *addr, u32 pkey) 1796 { 1797 struct kernel_siginfo info; 1798 1799 clear_siginfo(&info); 1800 info.si_signo = SIGSEGV; 1801 info.si_errno = 0; 1802 info.si_code = SEGV_PKUERR; 1803 info.si_addr = addr; 1804 info.si_pkey = pkey; 1805 return force_sig_info(&info); 1806 } 1807 #endif 1808 1809 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1810 { 1811 struct kernel_siginfo info; 1812 1813 clear_siginfo(&info); 1814 info.si_signo = SIGTRAP; 1815 info.si_errno = 0; 1816 info.si_code = TRAP_PERF; 1817 info.si_addr = addr; 1818 info.si_perf_data = sig_data; 1819 info.si_perf_type = type; 1820 1821 /* 1822 * Signals generated by perf events should not terminate the whole 1823 * process if SIGTRAP is blocked, however, delivering the signal 1824 * asynchronously is better than not delivering at all. But tell user 1825 * space if the signal was asynchronous, so it can clearly be 1826 * distinguished from normal synchronous ones. 1827 */ 1828 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1829 TRAP_PERF_FLAG_ASYNC : 1830 0; 1831 1832 return send_sig_info(info.si_signo, &info, current); 1833 } 1834 1835 /** 1836 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1837 * @syscall: syscall number to send to userland 1838 * @reason: filter-supplied reason code to send to userland (via si_errno) 1839 * @force_coredump: true to trigger a coredump 1840 * 1841 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1842 */ 1843 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1844 { 1845 struct kernel_siginfo info; 1846 1847 clear_siginfo(&info); 1848 info.si_signo = SIGSYS; 1849 info.si_code = SYS_SECCOMP; 1850 info.si_call_addr = (void __user *)KSTK_EIP(current); 1851 info.si_errno = reason; 1852 info.si_arch = syscall_get_arch(current); 1853 info.si_syscall = syscall; 1854 return force_sig_info_to_task(&info, current, 1855 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1856 } 1857 1858 /* For the crazy architectures that include trap information in 1859 * the errno field, instead of an actual errno value. 1860 */ 1861 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1862 { 1863 struct kernel_siginfo info; 1864 1865 clear_siginfo(&info); 1866 info.si_signo = SIGTRAP; 1867 info.si_errno = errno; 1868 info.si_code = TRAP_HWBKPT; 1869 info.si_addr = addr; 1870 return force_sig_info(&info); 1871 } 1872 1873 /* For the rare architectures that include trap information using 1874 * si_trapno. 1875 */ 1876 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1877 { 1878 struct kernel_siginfo info; 1879 1880 clear_siginfo(&info); 1881 info.si_signo = sig; 1882 info.si_errno = 0; 1883 info.si_code = code; 1884 info.si_addr = addr; 1885 info.si_trapno = trapno; 1886 return force_sig_info(&info); 1887 } 1888 1889 /* For the rare architectures that include trap information using 1890 * si_trapno. 1891 */ 1892 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1893 struct task_struct *t) 1894 { 1895 struct kernel_siginfo info; 1896 1897 clear_siginfo(&info); 1898 info.si_signo = sig; 1899 info.si_errno = 0; 1900 info.si_code = code; 1901 info.si_addr = addr; 1902 info.si_trapno = trapno; 1903 return send_sig_info(info.si_signo, &info, t); 1904 } 1905 1906 int kill_pgrp(struct pid *pid, int sig, int priv) 1907 { 1908 int ret; 1909 1910 read_lock(&tasklist_lock); 1911 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1912 read_unlock(&tasklist_lock); 1913 1914 return ret; 1915 } 1916 EXPORT_SYMBOL(kill_pgrp); 1917 1918 int kill_pid(struct pid *pid, int sig, int priv) 1919 { 1920 return kill_pid_info(sig, __si_special(priv), pid); 1921 } 1922 EXPORT_SYMBOL(kill_pid); 1923 1924 /* 1925 * These functions support sending signals using preallocated sigqueue 1926 * structures. This is needed "because realtime applications cannot 1927 * afford to lose notifications of asynchronous events, like timer 1928 * expirations or I/O completions". In the case of POSIX Timers 1929 * we allocate the sigqueue structure from the timer_create. If this 1930 * allocation fails we are able to report the failure to the application 1931 * with an EAGAIN error. 1932 */ 1933 struct sigqueue *sigqueue_alloc(void) 1934 { 1935 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1936 } 1937 1938 void sigqueue_free(struct sigqueue *q) 1939 { 1940 unsigned long flags; 1941 spinlock_t *lock = ¤t->sighand->siglock; 1942 1943 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1944 /* 1945 * We must hold ->siglock while testing q->list 1946 * to serialize with collect_signal() or with 1947 * __exit_signal()->flush_sigqueue(). 1948 */ 1949 spin_lock_irqsave(lock, flags); 1950 q->flags &= ~SIGQUEUE_PREALLOC; 1951 /* 1952 * If it is queued it will be freed when dequeued, 1953 * like the "regular" sigqueue. 1954 */ 1955 if (!list_empty(&q->list)) 1956 q = NULL; 1957 spin_unlock_irqrestore(lock, flags); 1958 1959 if (q) 1960 __sigqueue_free(q); 1961 } 1962 1963 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1964 { 1965 int sig = q->info.si_signo; 1966 struct sigpending *pending; 1967 struct task_struct *t; 1968 unsigned long flags; 1969 int ret, result; 1970 1971 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1972 1973 ret = -1; 1974 rcu_read_lock(); 1975 1976 /* 1977 * This function is used by POSIX timers to deliver a timer signal. 1978 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1979 * set), the signal must be delivered to the specific thread (queues 1980 * into t->pending). 1981 * 1982 * Where type is not PIDTYPE_PID, signals must be delivered to the 1983 * process. In this case, prefer to deliver to current if it is in 1984 * the same thread group as the target process, which avoids 1985 * unnecessarily waking up a potentially idle task. 1986 */ 1987 t = pid_task(pid, type); 1988 if (!t) 1989 goto ret; 1990 if (type != PIDTYPE_PID && same_thread_group(t, current)) 1991 t = current; 1992 if (!likely(lock_task_sighand(t, &flags))) 1993 goto ret; 1994 1995 ret = 1; /* the signal is ignored */ 1996 result = TRACE_SIGNAL_IGNORED; 1997 if (!prepare_signal(sig, t, false)) 1998 goto out; 1999 2000 ret = 0; 2001 if (unlikely(!list_empty(&q->list))) { 2002 /* 2003 * If an SI_TIMER entry is already queue just increment 2004 * the overrun count. 2005 */ 2006 BUG_ON(q->info.si_code != SI_TIMER); 2007 q->info.si_overrun++; 2008 result = TRACE_SIGNAL_ALREADY_PENDING; 2009 goto out; 2010 } 2011 q->info.si_overrun = 0; 2012 2013 signalfd_notify(t, sig); 2014 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 2015 list_add_tail(&q->list, &pending->list); 2016 sigaddset(&pending->signal, sig); 2017 complete_signal(sig, t, type); 2018 result = TRACE_SIGNAL_DELIVERED; 2019 out: 2020 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2021 unlock_task_sighand(t, &flags); 2022 ret: 2023 rcu_read_unlock(); 2024 return ret; 2025 } 2026 2027 static void do_notify_pidfd(struct task_struct *task) 2028 { 2029 struct pid *pid; 2030 2031 WARN_ON(task->exit_state == 0); 2032 pid = task_pid(task); 2033 wake_up_all(&pid->wait_pidfd); 2034 } 2035 2036 /* 2037 * Let a parent know about the death of a child. 2038 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2039 * 2040 * Returns true if our parent ignored us and so we've switched to 2041 * self-reaping. 2042 */ 2043 bool do_notify_parent(struct task_struct *tsk, int sig) 2044 { 2045 struct kernel_siginfo info; 2046 unsigned long flags; 2047 struct sighand_struct *psig; 2048 bool autoreap = false; 2049 u64 utime, stime; 2050 2051 WARN_ON_ONCE(sig == -1); 2052 2053 /* do_notify_parent_cldstop should have been called instead. */ 2054 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2055 2056 WARN_ON_ONCE(!tsk->ptrace && 2057 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2058 2059 /* Wake up all pidfd waiters */ 2060 do_notify_pidfd(tsk); 2061 2062 if (sig != SIGCHLD) { 2063 /* 2064 * This is only possible if parent == real_parent. 2065 * Check if it has changed security domain. 2066 */ 2067 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2068 sig = SIGCHLD; 2069 } 2070 2071 clear_siginfo(&info); 2072 info.si_signo = sig; 2073 info.si_errno = 0; 2074 /* 2075 * We are under tasklist_lock here so our parent is tied to 2076 * us and cannot change. 2077 * 2078 * task_active_pid_ns will always return the same pid namespace 2079 * until a task passes through release_task. 2080 * 2081 * write_lock() currently calls preempt_disable() which is the 2082 * same as rcu_read_lock(), but according to Oleg, this is not 2083 * correct to rely on this 2084 */ 2085 rcu_read_lock(); 2086 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2087 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2088 task_uid(tsk)); 2089 rcu_read_unlock(); 2090 2091 task_cputime(tsk, &utime, &stime); 2092 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2093 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2094 2095 info.si_status = tsk->exit_code & 0x7f; 2096 if (tsk->exit_code & 0x80) 2097 info.si_code = CLD_DUMPED; 2098 else if (tsk->exit_code & 0x7f) 2099 info.si_code = CLD_KILLED; 2100 else { 2101 info.si_code = CLD_EXITED; 2102 info.si_status = tsk->exit_code >> 8; 2103 } 2104 2105 psig = tsk->parent->sighand; 2106 spin_lock_irqsave(&psig->siglock, flags); 2107 if (!tsk->ptrace && sig == SIGCHLD && 2108 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2109 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2110 /* 2111 * We are exiting and our parent doesn't care. POSIX.1 2112 * defines special semantics for setting SIGCHLD to SIG_IGN 2113 * or setting the SA_NOCLDWAIT flag: we should be reaped 2114 * automatically and not left for our parent's wait4 call. 2115 * Rather than having the parent do it as a magic kind of 2116 * signal handler, we just set this to tell do_exit that we 2117 * can be cleaned up without becoming a zombie. Note that 2118 * we still call __wake_up_parent in this case, because a 2119 * blocked sys_wait4 might now return -ECHILD. 2120 * 2121 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2122 * is implementation-defined: we do (if you don't want 2123 * it, just use SIG_IGN instead). 2124 */ 2125 autoreap = true; 2126 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2127 sig = 0; 2128 } 2129 /* 2130 * Send with __send_signal as si_pid and si_uid are in the 2131 * parent's namespaces. 2132 */ 2133 if (valid_signal(sig) && sig) 2134 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2135 __wake_up_parent(tsk, tsk->parent); 2136 spin_unlock_irqrestore(&psig->siglock, flags); 2137 2138 return autoreap; 2139 } 2140 2141 /** 2142 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2143 * @tsk: task reporting the state change 2144 * @for_ptracer: the notification is for ptracer 2145 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2146 * 2147 * Notify @tsk's parent that the stopped/continued state has changed. If 2148 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2149 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2150 * 2151 * CONTEXT: 2152 * Must be called with tasklist_lock at least read locked. 2153 */ 2154 static void do_notify_parent_cldstop(struct task_struct *tsk, 2155 bool for_ptracer, int why) 2156 { 2157 struct kernel_siginfo info; 2158 unsigned long flags; 2159 struct task_struct *parent; 2160 struct sighand_struct *sighand; 2161 u64 utime, stime; 2162 2163 if (for_ptracer) { 2164 parent = tsk->parent; 2165 } else { 2166 tsk = tsk->group_leader; 2167 parent = tsk->real_parent; 2168 } 2169 2170 clear_siginfo(&info); 2171 info.si_signo = SIGCHLD; 2172 info.si_errno = 0; 2173 /* 2174 * see comment in do_notify_parent() about the following 4 lines 2175 */ 2176 rcu_read_lock(); 2177 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2178 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2179 rcu_read_unlock(); 2180 2181 task_cputime(tsk, &utime, &stime); 2182 info.si_utime = nsec_to_clock_t(utime); 2183 info.si_stime = nsec_to_clock_t(stime); 2184 2185 info.si_code = why; 2186 switch (why) { 2187 case CLD_CONTINUED: 2188 info.si_status = SIGCONT; 2189 break; 2190 case CLD_STOPPED: 2191 info.si_status = tsk->signal->group_exit_code & 0x7f; 2192 break; 2193 case CLD_TRAPPED: 2194 info.si_status = tsk->exit_code & 0x7f; 2195 break; 2196 default: 2197 BUG(); 2198 } 2199 2200 sighand = parent->sighand; 2201 spin_lock_irqsave(&sighand->siglock, flags); 2202 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2203 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2204 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2205 /* 2206 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2207 */ 2208 __wake_up_parent(tsk, parent); 2209 spin_unlock_irqrestore(&sighand->siglock, flags); 2210 } 2211 2212 /* 2213 * This must be called with current->sighand->siglock held. 2214 * 2215 * This should be the path for all ptrace stops. 2216 * We always set current->last_siginfo while stopped here. 2217 * That makes it a way to test a stopped process for 2218 * being ptrace-stopped vs being job-control-stopped. 2219 * 2220 * Returns the signal the ptracer requested the code resume 2221 * with. If the code did not stop because the tracer is gone, 2222 * the stop signal remains unchanged unless clear_code. 2223 */ 2224 static int ptrace_stop(int exit_code, int why, unsigned long message, 2225 kernel_siginfo_t *info) 2226 __releases(¤t->sighand->siglock) 2227 __acquires(¤t->sighand->siglock) 2228 { 2229 bool gstop_done = false; 2230 2231 if (arch_ptrace_stop_needed()) { 2232 /* 2233 * The arch code has something special to do before a 2234 * ptrace stop. This is allowed to block, e.g. for faults 2235 * on user stack pages. We can't keep the siglock while 2236 * calling arch_ptrace_stop, so we must release it now. 2237 * To preserve proper semantics, we must do this before 2238 * any signal bookkeeping like checking group_stop_count. 2239 */ 2240 spin_unlock_irq(¤t->sighand->siglock); 2241 arch_ptrace_stop(); 2242 spin_lock_irq(¤t->sighand->siglock); 2243 } 2244 2245 /* 2246 * After this point ptrace_signal_wake_up or signal_wake_up 2247 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2248 * signal comes in. Handle previous ptrace_unlinks and fatal 2249 * signals here to prevent ptrace_stop sleeping in schedule. 2250 */ 2251 if (!current->ptrace || __fatal_signal_pending(current)) 2252 return exit_code; 2253 2254 set_special_state(TASK_TRACED); 2255 current->jobctl |= JOBCTL_TRACED; 2256 2257 /* 2258 * We're committing to trapping. TRACED should be visible before 2259 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2260 * Also, transition to TRACED and updates to ->jobctl should be 2261 * atomic with respect to siglock and should be done after the arch 2262 * hook as siglock is released and regrabbed across it. 2263 * 2264 * TRACER TRACEE 2265 * 2266 * ptrace_attach() 2267 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2268 * do_wait() 2269 * set_current_state() smp_wmb(); 2270 * ptrace_do_wait() 2271 * wait_task_stopped() 2272 * task_stopped_code() 2273 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2274 */ 2275 smp_wmb(); 2276 2277 current->ptrace_message = message; 2278 current->last_siginfo = info; 2279 current->exit_code = exit_code; 2280 2281 /* 2282 * If @why is CLD_STOPPED, we're trapping to participate in a group 2283 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2284 * across siglock relocks since INTERRUPT was scheduled, PENDING 2285 * could be clear now. We act as if SIGCONT is received after 2286 * TASK_TRACED is entered - ignore it. 2287 */ 2288 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2289 gstop_done = task_participate_group_stop(current); 2290 2291 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2292 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2293 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2294 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2295 2296 /* entering a trap, clear TRAPPING */ 2297 task_clear_jobctl_trapping(current); 2298 2299 spin_unlock_irq(¤t->sighand->siglock); 2300 read_lock(&tasklist_lock); 2301 /* 2302 * Notify parents of the stop. 2303 * 2304 * While ptraced, there are two parents - the ptracer and 2305 * the real_parent of the group_leader. The ptracer should 2306 * know about every stop while the real parent is only 2307 * interested in the completion of group stop. The states 2308 * for the two don't interact with each other. Notify 2309 * separately unless they're gonna be duplicates. 2310 */ 2311 if (current->ptrace) 2312 do_notify_parent_cldstop(current, true, why); 2313 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2314 do_notify_parent_cldstop(current, false, why); 2315 2316 /* 2317 * The previous do_notify_parent_cldstop() invocation woke ptracer. 2318 * One a PREEMPTION kernel this can result in preemption requirement 2319 * which will be fulfilled after read_unlock() and the ptracer will be 2320 * put on the CPU. 2321 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for 2322 * this task wait in schedule(). If this task gets preempted then it 2323 * remains enqueued on the runqueue. The ptracer will observe this and 2324 * then sleep for a delay of one HZ tick. In the meantime this task 2325 * gets scheduled, enters schedule() and will wait for the ptracer. 2326 * 2327 * This preemption point is not bad from a correctness point of 2328 * view but extends the runtime by one HZ tick time due to the 2329 * ptracer's sleep. The preempt-disable section ensures that there 2330 * will be no preemption between unlock and schedule() and so 2331 * improving the performance since the ptracer will observe that 2332 * the tracee is scheduled out once it gets on the CPU. 2333 * 2334 * On PREEMPT_RT locking tasklist_lock does not disable preemption. 2335 * Therefore the task can be preempted after do_notify_parent_cldstop() 2336 * before unlocking tasklist_lock so there is no benefit in doing this. 2337 * 2338 * In fact disabling preemption is harmful on PREEMPT_RT because 2339 * the spinlock_t in cgroup_enter_frozen() must not be acquired 2340 * with preemption disabled due to the 'sleeping' spinlock 2341 * substitution of RT. 2342 */ 2343 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2344 preempt_disable(); 2345 read_unlock(&tasklist_lock); 2346 cgroup_enter_frozen(); 2347 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2348 preempt_enable_no_resched(); 2349 schedule(); 2350 cgroup_leave_frozen(true); 2351 2352 /* 2353 * We are back. Now reacquire the siglock before touching 2354 * last_siginfo, so that we are sure to have synchronized with 2355 * any signal-sending on another CPU that wants to examine it. 2356 */ 2357 spin_lock_irq(¤t->sighand->siglock); 2358 exit_code = current->exit_code; 2359 current->last_siginfo = NULL; 2360 current->ptrace_message = 0; 2361 current->exit_code = 0; 2362 2363 /* LISTENING can be set only during STOP traps, clear it */ 2364 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2365 2366 /* 2367 * Queued signals ignored us while we were stopped for tracing. 2368 * So check for any that we should take before resuming user mode. 2369 * This sets TIF_SIGPENDING, but never clears it. 2370 */ 2371 recalc_sigpending_tsk(current); 2372 return exit_code; 2373 } 2374 2375 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2376 { 2377 kernel_siginfo_t info; 2378 2379 clear_siginfo(&info); 2380 info.si_signo = signr; 2381 info.si_code = exit_code; 2382 info.si_pid = task_pid_vnr(current); 2383 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2384 2385 /* Let the debugger run. */ 2386 return ptrace_stop(exit_code, why, message, &info); 2387 } 2388 2389 int ptrace_notify(int exit_code, unsigned long message) 2390 { 2391 int signr; 2392 2393 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2394 if (unlikely(task_work_pending(current))) 2395 task_work_run(); 2396 2397 spin_lock_irq(¤t->sighand->siglock); 2398 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2399 spin_unlock_irq(¤t->sighand->siglock); 2400 return signr; 2401 } 2402 2403 /** 2404 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2405 * @signr: signr causing group stop if initiating 2406 * 2407 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2408 * and participate in it. If already set, participate in the existing 2409 * group stop. If participated in a group stop (and thus slept), %true is 2410 * returned with siglock released. 2411 * 2412 * If ptraced, this function doesn't handle stop itself. Instead, 2413 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2414 * untouched. The caller must ensure that INTERRUPT trap handling takes 2415 * places afterwards. 2416 * 2417 * CONTEXT: 2418 * Must be called with @current->sighand->siglock held, which is released 2419 * on %true return. 2420 * 2421 * RETURNS: 2422 * %false if group stop is already cancelled or ptrace trap is scheduled. 2423 * %true if participated in group stop. 2424 */ 2425 static bool do_signal_stop(int signr) 2426 __releases(¤t->sighand->siglock) 2427 { 2428 struct signal_struct *sig = current->signal; 2429 2430 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2431 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2432 struct task_struct *t; 2433 2434 /* signr will be recorded in task->jobctl for retries */ 2435 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2436 2437 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2438 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2439 unlikely(sig->group_exec_task)) 2440 return false; 2441 /* 2442 * There is no group stop already in progress. We must 2443 * initiate one now. 2444 * 2445 * While ptraced, a task may be resumed while group stop is 2446 * still in effect and then receive a stop signal and 2447 * initiate another group stop. This deviates from the 2448 * usual behavior as two consecutive stop signals can't 2449 * cause two group stops when !ptraced. That is why we 2450 * also check !task_is_stopped(t) below. 2451 * 2452 * The condition can be distinguished by testing whether 2453 * SIGNAL_STOP_STOPPED is already set. Don't generate 2454 * group_exit_code in such case. 2455 * 2456 * This is not necessary for SIGNAL_STOP_CONTINUED because 2457 * an intervening stop signal is required to cause two 2458 * continued events regardless of ptrace. 2459 */ 2460 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2461 sig->group_exit_code = signr; 2462 2463 sig->group_stop_count = 0; 2464 2465 if (task_set_jobctl_pending(current, signr | gstop)) 2466 sig->group_stop_count++; 2467 2468 t = current; 2469 while_each_thread(current, t) { 2470 /* 2471 * Setting state to TASK_STOPPED for a group 2472 * stop is always done with the siglock held, 2473 * so this check has no races. 2474 */ 2475 if (!task_is_stopped(t) && 2476 task_set_jobctl_pending(t, signr | gstop)) { 2477 sig->group_stop_count++; 2478 if (likely(!(t->ptrace & PT_SEIZED))) 2479 signal_wake_up(t, 0); 2480 else 2481 ptrace_trap_notify(t); 2482 } 2483 } 2484 } 2485 2486 if (likely(!current->ptrace)) { 2487 int notify = 0; 2488 2489 /* 2490 * If there are no other threads in the group, or if there 2491 * is a group stop in progress and we are the last to stop, 2492 * report to the parent. 2493 */ 2494 if (task_participate_group_stop(current)) 2495 notify = CLD_STOPPED; 2496 2497 current->jobctl |= JOBCTL_STOPPED; 2498 set_special_state(TASK_STOPPED); 2499 spin_unlock_irq(¤t->sighand->siglock); 2500 2501 /* 2502 * Notify the parent of the group stop completion. Because 2503 * we're not holding either the siglock or tasklist_lock 2504 * here, ptracer may attach inbetween; however, this is for 2505 * group stop and should always be delivered to the real 2506 * parent of the group leader. The new ptracer will get 2507 * its notification when this task transitions into 2508 * TASK_TRACED. 2509 */ 2510 if (notify) { 2511 read_lock(&tasklist_lock); 2512 do_notify_parent_cldstop(current, false, notify); 2513 read_unlock(&tasklist_lock); 2514 } 2515 2516 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2517 cgroup_enter_frozen(); 2518 schedule(); 2519 return true; 2520 } else { 2521 /* 2522 * While ptraced, group stop is handled by STOP trap. 2523 * Schedule it and let the caller deal with it. 2524 */ 2525 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2526 return false; 2527 } 2528 } 2529 2530 /** 2531 * do_jobctl_trap - take care of ptrace jobctl traps 2532 * 2533 * When PT_SEIZED, it's used for both group stop and explicit 2534 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2535 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2536 * the stop signal; otherwise, %SIGTRAP. 2537 * 2538 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2539 * number as exit_code and no siginfo. 2540 * 2541 * CONTEXT: 2542 * Must be called with @current->sighand->siglock held, which may be 2543 * released and re-acquired before returning with intervening sleep. 2544 */ 2545 static void do_jobctl_trap(void) 2546 { 2547 struct signal_struct *signal = current->signal; 2548 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2549 2550 if (current->ptrace & PT_SEIZED) { 2551 if (!signal->group_stop_count && 2552 !(signal->flags & SIGNAL_STOP_STOPPED)) 2553 signr = SIGTRAP; 2554 WARN_ON_ONCE(!signr); 2555 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2556 CLD_STOPPED, 0); 2557 } else { 2558 WARN_ON_ONCE(!signr); 2559 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2560 } 2561 } 2562 2563 /** 2564 * do_freezer_trap - handle the freezer jobctl trap 2565 * 2566 * Puts the task into frozen state, if only the task is not about to quit. 2567 * In this case it drops JOBCTL_TRAP_FREEZE. 2568 * 2569 * CONTEXT: 2570 * Must be called with @current->sighand->siglock held, 2571 * which is always released before returning. 2572 */ 2573 static void do_freezer_trap(void) 2574 __releases(¤t->sighand->siglock) 2575 { 2576 /* 2577 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2578 * let's make another loop to give it a chance to be handled. 2579 * In any case, we'll return back. 2580 */ 2581 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2582 JOBCTL_TRAP_FREEZE) { 2583 spin_unlock_irq(¤t->sighand->siglock); 2584 return; 2585 } 2586 2587 /* 2588 * Now we're sure that there is no pending fatal signal and no 2589 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2590 * immediately (if there is a non-fatal signal pending), and 2591 * put the task into sleep. 2592 */ 2593 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2594 clear_thread_flag(TIF_SIGPENDING); 2595 spin_unlock_irq(¤t->sighand->siglock); 2596 cgroup_enter_frozen(); 2597 schedule(); 2598 } 2599 2600 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2601 { 2602 /* 2603 * We do not check sig_kernel_stop(signr) but set this marker 2604 * unconditionally because we do not know whether debugger will 2605 * change signr. This flag has no meaning unless we are going 2606 * to stop after return from ptrace_stop(). In this case it will 2607 * be checked in do_signal_stop(), we should only stop if it was 2608 * not cleared by SIGCONT while we were sleeping. See also the 2609 * comment in dequeue_signal(). 2610 */ 2611 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2612 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2613 2614 /* We're back. Did the debugger cancel the sig? */ 2615 if (signr == 0) 2616 return signr; 2617 2618 /* 2619 * Update the siginfo structure if the signal has 2620 * changed. If the debugger wanted something 2621 * specific in the siginfo structure then it should 2622 * have updated *info via PTRACE_SETSIGINFO. 2623 */ 2624 if (signr != info->si_signo) { 2625 clear_siginfo(info); 2626 info->si_signo = signr; 2627 info->si_errno = 0; 2628 info->si_code = SI_USER; 2629 rcu_read_lock(); 2630 info->si_pid = task_pid_vnr(current->parent); 2631 info->si_uid = from_kuid_munged(current_user_ns(), 2632 task_uid(current->parent)); 2633 rcu_read_unlock(); 2634 } 2635 2636 /* If the (new) signal is now blocked, requeue it. */ 2637 if (sigismember(¤t->blocked, signr) || 2638 fatal_signal_pending(current)) { 2639 send_signal_locked(signr, info, current, type); 2640 signr = 0; 2641 } 2642 2643 return signr; 2644 } 2645 2646 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2647 { 2648 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2649 case SIL_FAULT: 2650 case SIL_FAULT_TRAPNO: 2651 case SIL_FAULT_MCEERR: 2652 case SIL_FAULT_BNDERR: 2653 case SIL_FAULT_PKUERR: 2654 case SIL_FAULT_PERF_EVENT: 2655 ksig->info.si_addr = arch_untagged_si_addr( 2656 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2657 break; 2658 case SIL_KILL: 2659 case SIL_TIMER: 2660 case SIL_POLL: 2661 case SIL_CHLD: 2662 case SIL_RT: 2663 case SIL_SYS: 2664 break; 2665 } 2666 } 2667 2668 bool get_signal(struct ksignal *ksig) 2669 { 2670 struct sighand_struct *sighand = current->sighand; 2671 struct signal_struct *signal = current->signal; 2672 int signr; 2673 2674 clear_notify_signal(); 2675 if (unlikely(task_work_pending(current))) 2676 task_work_run(); 2677 2678 if (!task_sigpending(current)) 2679 return false; 2680 2681 if (unlikely(uprobe_deny_signal())) 2682 return false; 2683 2684 /* 2685 * Do this once, we can't return to user-mode if freezing() == T. 2686 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2687 * thus do not need another check after return. 2688 */ 2689 try_to_freeze(); 2690 2691 relock: 2692 spin_lock_irq(&sighand->siglock); 2693 2694 /* 2695 * Every stopped thread goes here after wakeup. Check to see if 2696 * we should notify the parent, prepare_signal(SIGCONT) encodes 2697 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2698 */ 2699 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2700 int why; 2701 2702 if (signal->flags & SIGNAL_CLD_CONTINUED) 2703 why = CLD_CONTINUED; 2704 else 2705 why = CLD_STOPPED; 2706 2707 signal->flags &= ~SIGNAL_CLD_MASK; 2708 2709 spin_unlock_irq(&sighand->siglock); 2710 2711 /* 2712 * Notify the parent that we're continuing. This event is 2713 * always per-process and doesn't make whole lot of sense 2714 * for ptracers, who shouldn't consume the state via 2715 * wait(2) either, but, for backward compatibility, notify 2716 * the ptracer of the group leader too unless it's gonna be 2717 * a duplicate. 2718 */ 2719 read_lock(&tasklist_lock); 2720 do_notify_parent_cldstop(current, false, why); 2721 2722 if (ptrace_reparented(current->group_leader)) 2723 do_notify_parent_cldstop(current->group_leader, 2724 true, why); 2725 read_unlock(&tasklist_lock); 2726 2727 goto relock; 2728 } 2729 2730 for (;;) { 2731 struct k_sigaction *ka; 2732 enum pid_type type; 2733 2734 /* Has this task already been marked for death? */ 2735 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2736 signal->group_exec_task) { 2737 clear_siginfo(&ksig->info); 2738 ksig->info.si_signo = signr = SIGKILL; 2739 sigdelset(¤t->pending.signal, SIGKILL); 2740 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2741 &sighand->action[SIGKILL - 1]); 2742 recalc_sigpending(); 2743 goto fatal; 2744 } 2745 2746 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2747 do_signal_stop(0)) 2748 goto relock; 2749 2750 if (unlikely(current->jobctl & 2751 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2752 if (current->jobctl & JOBCTL_TRAP_MASK) { 2753 do_jobctl_trap(); 2754 spin_unlock_irq(&sighand->siglock); 2755 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2756 do_freezer_trap(); 2757 2758 goto relock; 2759 } 2760 2761 /* 2762 * If the task is leaving the frozen state, let's update 2763 * cgroup counters and reset the frozen bit. 2764 */ 2765 if (unlikely(cgroup_task_frozen(current))) { 2766 spin_unlock_irq(&sighand->siglock); 2767 cgroup_leave_frozen(false); 2768 goto relock; 2769 } 2770 2771 /* 2772 * Signals generated by the execution of an instruction 2773 * need to be delivered before any other pending signals 2774 * so that the instruction pointer in the signal stack 2775 * frame points to the faulting instruction. 2776 */ 2777 type = PIDTYPE_PID; 2778 signr = dequeue_synchronous_signal(&ksig->info); 2779 if (!signr) 2780 signr = dequeue_signal(current, ¤t->blocked, 2781 &ksig->info, &type); 2782 2783 if (!signr) 2784 break; /* will return 0 */ 2785 2786 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2787 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2788 signr = ptrace_signal(signr, &ksig->info, type); 2789 if (!signr) 2790 continue; 2791 } 2792 2793 ka = &sighand->action[signr-1]; 2794 2795 /* Trace actually delivered signals. */ 2796 trace_signal_deliver(signr, &ksig->info, ka); 2797 2798 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2799 continue; 2800 if (ka->sa.sa_handler != SIG_DFL) { 2801 /* Run the handler. */ 2802 ksig->ka = *ka; 2803 2804 if (ka->sa.sa_flags & SA_ONESHOT) 2805 ka->sa.sa_handler = SIG_DFL; 2806 2807 break; /* will return non-zero "signr" value */ 2808 } 2809 2810 /* 2811 * Now we are doing the default action for this signal. 2812 */ 2813 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2814 continue; 2815 2816 /* 2817 * Global init gets no signals it doesn't want. 2818 * Container-init gets no signals it doesn't want from same 2819 * container. 2820 * 2821 * Note that if global/container-init sees a sig_kernel_only() 2822 * signal here, the signal must have been generated internally 2823 * or must have come from an ancestor namespace. In either 2824 * case, the signal cannot be dropped. 2825 */ 2826 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2827 !sig_kernel_only(signr)) 2828 continue; 2829 2830 if (sig_kernel_stop(signr)) { 2831 /* 2832 * The default action is to stop all threads in 2833 * the thread group. The job control signals 2834 * do nothing in an orphaned pgrp, but SIGSTOP 2835 * always works. Note that siglock needs to be 2836 * dropped during the call to is_orphaned_pgrp() 2837 * because of lock ordering with tasklist_lock. 2838 * This allows an intervening SIGCONT to be posted. 2839 * We need to check for that and bail out if necessary. 2840 */ 2841 if (signr != SIGSTOP) { 2842 spin_unlock_irq(&sighand->siglock); 2843 2844 /* signals can be posted during this window */ 2845 2846 if (is_current_pgrp_orphaned()) 2847 goto relock; 2848 2849 spin_lock_irq(&sighand->siglock); 2850 } 2851 2852 if (likely(do_signal_stop(ksig->info.si_signo))) { 2853 /* It released the siglock. */ 2854 goto relock; 2855 } 2856 2857 /* 2858 * We didn't actually stop, due to a race 2859 * with SIGCONT or something like that. 2860 */ 2861 continue; 2862 } 2863 2864 fatal: 2865 spin_unlock_irq(&sighand->siglock); 2866 if (unlikely(cgroup_task_frozen(current))) 2867 cgroup_leave_frozen(true); 2868 2869 /* 2870 * Anything else is fatal, maybe with a core dump. 2871 */ 2872 current->flags |= PF_SIGNALED; 2873 2874 if (sig_kernel_coredump(signr)) { 2875 if (print_fatal_signals) 2876 print_fatal_signal(ksig->info.si_signo); 2877 proc_coredump_connector(current); 2878 /* 2879 * If it was able to dump core, this kills all 2880 * other threads in the group and synchronizes with 2881 * their demise. If we lost the race with another 2882 * thread getting here, it set group_exit_code 2883 * first and our do_group_exit call below will use 2884 * that value and ignore the one we pass it. 2885 */ 2886 do_coredump(&ksig->info); 2887 } 2888 2889 /* 2890 * PF_USER_WORKER threads will catch and exit on fatal signals 2891 * themselves. They have cleanup that must be performed, so 2892 * we cannot call do_exit() on their behalf. 2893 */ 2894 if (current->flags & PF_USER_WORKER) 2895 goto out; 2896 2897 /* 2898 * Death signals, no core dump. 2899 */ 2900 do_group_exit(ksig->info.si_signo); 2901 /* NOTREACHED */ 2902 } 2903 spin_unlock_irq(&sighand->siglock); 2904 out: 2905 ksig->sig = signr; 2906 2907 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2908 hide_si_addr_tag_bits(ksig); 2909 2910 return ksig->sig > 0; 2911 } 2912 2913 /** 2914 * signal_delivered - called after signal delivery to update blocked signals 2915 * @ksig: kernel signal struct 2916 * @stepping: nonzero if debugger single-step or block-step in use 2917 * 2918 * This function should be called when a signal has successfully been 2919 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2920 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2921 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2922 */ 2923 static void signal_delivered(struct ksignal *ksig, int stepping) 2924 { 2925 sigset_t blocked; 2926 2927 /* A signal was successfully delivered, and the 2928 saved sigmask was stored on the signal frame, 2929 and will be restored by sigreturn. So we can 2930 simply clear the restore sigmask flag. */ 2931 clear_restore_sigmask(); 2932 2933 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2934 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2935 sigaddset(&blocked, ksig->sig); 2936 set_current_blocked(&blocked); 2937 if (current->sas_ss_flags & SS_AUTODISARM) 2938 sas_ss_reset(current); 2939 if (stepping) 2940 ptrace_notify(SIGTRAP, 0); 2941 } 2942 2943 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2944 { 2945 if (failed) 2946 force_sigsegv(ksig->sig); 2947 else 2948 signal_delivered(ksig, stepping); 2949 } 2950 2951 /* 2952 * It could be that complete_signal() picked us to notify about the 2953 * group-wide signal. Other threads should be notified now to take 2954 * the shared signals in @which since we will not. 2955 */ 2956 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2957 { 2958 sigset_t retarget; 2959 struct task_struct *t; 2960 2961 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2962 if (sigisemptyset(&retarget)) 2963 return; 2964 2965 t = tsk; 2966 while_each_thread(tsk, t) { 2967 if (t->flags & PF_EXITING) 2968 continue; 2969 2970 if (!has_pending_signals(&retarget, &t->blocked)) 2971 continue; 2972 /* Remove the signals this thread can handle. */ 2973 sigandsets(&retarget, &retarget, &t->blocked); 2974 2975 if (!task_sigpending(t)) 2976 signal_wake_up(t, 0); 2977 2978 if (sigisemptyset(&retarget)) 2979 break; 2980 } 2981 } 2982 2983 void exit_signals(struct task_struct *tsk) 2984 { 2985 int group_stop = 0; 2986 sigset_t unblocked; 2987 2988 /* 2989 * @tsk is about to have PF_EXITING set - lock out users which 2990 * expect stable threadgroup. 2991 */ 2992 cgroup_threadgroup_change_begin(tsk); 2993 2994 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 2995 sched_mm_cid_exit_signals(tsk); 2996 tsk->flags |= PF_EXITING; 2997 cgroup_threadgroup_change_end(tsk); 2998 return; 2999 } 3000 3001 spin_lock_irq(&tsk->sighand->siglock); 3002 /* 3003 * From now this task is not visible for group-wide signals, 3004 * see wants_signal(), do_signal_stop(). 3005 */ 3006 sched_mm_cid_exit_signals(tsk); 3007 tsk->flags |= PF_EXITING; 3008 3009 cgroup_threadgroup_change_end(tsk); 3010 3011 if (!task_sigpending(tsk)) 3012 goto out; 3013 3014 unblocked = tsk->blocked; 3015 signotset(&unblocked); 3016 retarget_shared_pending(tsk, &unblocked); 3017 3018 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3019 task_participate_group_stop(tsk)) 3020 group_stop = CLD_STOPPED; 3021 out: 3022 spin_unlock_irq(&tsk->sighand->siglock); 3023 3024 /* 3025 * If group stop has completed, deliver the notification. This 3026 * should always go to the real parent of the group leader. 3027 */ 3028 if (unlikely(group_stop)) { 3029 read_lock(&tasklist_lock); 3030 do_notify_parent_cldstop(tsk, false, group_stop); 3031 read_unlock(&tasklist_lock); 3032 } 3033 } 3034 3035 /* 3036 * System call entry points. 3037 */ 3038 3039 /** 3040 * sys_restart_syscall - restart a system call 3041 */ 3042 SYSCALL_DEFINE0(restart_syscall) 3043 { 3044 struct restart_block *restart = ¤t->restart_block; 3045 return restart->fn(restart); 3046 } 3047 3048 long do_no_restart_syscall(struct restart_block *param) 3049 { 3050 return -EINTR; 3051 } 3052 3053 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3054 { 3055 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3056 sigset_t newblocked; 3057 /* A set of now blocked but previously unblocked signals. */ 3058 sigandnsets(&newblocked, newset, ¤t->blocked); 3059 retarget_shared_pending(tsk, &newblocked); 3060 } 3061 tsk->blocked = *newset; 3062 recalc_sigpending(); 3063 } 3064 3065 /** 3066 * set_current_blocked - change current->blocked mask 3067 * @newset: new mask 3068 * 3069 * It is wrong to change ->blocked directly, this helper should be used 3070 * to ensure the process can't miss a shared signal we are going to block. 3071 */ 3072 void set_current_blocked(sigset_t *newset) 3073 { 3074 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3075 __set_current_blocked(newset); 3076 } 3077 3078 void __set_current_blocked(const sigset_t *newset) 3079 { 3080 struct task_struct *tsk = current; 3081 3082 /* 3083 * In case the signal mask hasn't changed, there is nothing we need 3084 * to do. The current->blocked shouldn't be modified by other task. 3085 */ 3086 if (sigequalsets(&tsk->blocked, newset)) 3087 return; 3088 3089 spin_lock_irq(&tsk->sighand->siglock); 3090 __set_task_blocked(tsk, newset); 3091 spin_unlock_irq(&tsk->sighand->siglock); 3092 } 3093 3094 /* 3095 * This is also useful for kernel threads that want to temporarily 3096 * (or permanently) block certain signals. 3097 * 3098 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3099 * interface happily blocks "unblockable" signals like SIGKILL 3100 * and friends. 3101 */ 3102 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3103 { 3104 struct task_struct *tsk = current; 3105 sigset_t newset; 3106 3107 /* Lockless, only current can change ->blocked, never from irq */ 3108 if (oldset) 3109 *oldset = tsk->blocked; 3110 3111 switch (how) { 3112 case SIG_BLOCK: 3113 sigorsets(&newset, &tsk->blocked, set); 3114 break; 3115 case SIG_UNBLOCK: 3116 sigandnsets(&newset, &tsk->blocked, set); 3117 break; 3118 case SIG_SETMASK: 3119 newset = *set; 3120 break; 3121 default: 3122 return -EINVAL; 3123 } 3124 3125 __set_current_blocked(&newset); 3126 return 0; 3127 } 3128 EXPORT_SYMBOL(sigprocmask); 3129 3130 /* 3131 * The api helps set app-provided sigmasks. 3132 * 3133 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3134 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3135 * 3136 * Note that it does set_restore_sigmask() in advance, so it must be always 3137 * paired with restore_saved_sigmask_unless() before return from syscall. 3138 */ 3139 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3140 { 3141 sigset_t kmask; 3142 3143 if (!umask) 3144 return 0; 3145 if (sigsetsize != sizeof(sigset_t)) 3146 return -EINVAL; 3147 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3148 return -EFAULT; 3149 3150 set_restore_sigmask(); 3151 current->saved_sigmask = current->blocked; 3152 set_current_blocked(&kmask); 3153 3154 return 0; 3155 } 3156 3157 #ifdef CONFIG_COMPAT 3158 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3159 size_t sigsetsize) 3160 { 3161 sigset_t kmask; 3162 3163 if (!umask) 3164 return 0; 3165 if (sigsetsize != sizeof(compat_sigset_t)) 3166 return -EINVAL; 3167 if (get_compat_sigset(&kmask, umask)) 3168 return -EFAULT; 3169 3170 set_restore_sigmask(); 3171 current->saved_sigmask = current->blocked; 3172 set_current_blocked(&kmask); 3173 3174 return 0; 3175 } 3176 #endif 3177 3178 /** 3179 * sys_rt_sigprocmask - change the list of currently blocked signals 3180 * @how: whether to add, remove, or set signals 3181 * @nset: stores pending signals 3182 * @oset: previous value of signal mask if non-null 3183 * @sigsetsize: size of sigset_t type 3184 */ 3185 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3186 sigset_t __user *, oset, size_t, sigsetsize) 3187 { 3188 sigset_t old_set, new_set; 3189 int error; 3190 3191 /* XXX: Don't preclude handling different sized sigset_t's. */ 3192 if (sigsetsize != sizeof(sigset_t)) 3193 return -EINVAL; 3194 3195 old_set = current->blocked; 3196 3197 if (nset) { 3198 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3199 return -EFAULT; 3200 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3201 3202 error = sigprocmask(how, &new_set, NULL); 3203 if (error) 3204 return error; 3205 } 3206 3207 if (oset) { 3208 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3209 return -EFAULT; 3210 } 3211 3212 return 0; 3213 } 3214 3215 #ifdef CONFIG_COMPAT 3216 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3217 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3218 { 3219 sigset_t old_set = current->blocked; 3220 3221 /* XXX: Don't preclude handling different sized sigset_t's. */ 3222 if (sigsetsize != sizeof(sigset_t)) 3223 return -EINVAL; 3224 3225 if (nset) { 3226 sigset_t new_set; 3227 int error; 3228 if (get_compat_sigset(&new_set, nset)) 3229 return -EFAULT; 3230 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3231 3232 error = sigprocmask(how, &new_set, NULL); 3233 if (error) 3234 return error; 3235 } 3236 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3237 } 3238 #endif 3239 3240 static void do_sigpending(sigset_t *set) 3241 { 3242 spin_lock_irq(¤t->sighand->siglock); 3243 sigorsets(set, ¤t->pending.signal, 3244 ¤t->signal->shared_pending.signal); 3245 spin_unlock_irq(¤t->sighand->siglock); 3246 3247 /* Outside the lock because only this thread touches it. */ 3248 sigandsets(set, ¤t->blocked, set); 3249 } 3250 3251 /** 3252 * sys_rt_sigpending - examine a pending signal that has been raised 3253 * while blocked 3254 * @uset: stores pending signals 3255 * @sigsetsize: size of sigset_t type or larger 3256 */ 3257 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3258 { 3259 sigset_t set; 3260 3261 if (sigsetsize > sizeof(*uset)) 3262 return -EINVAL; 3263 3264 do_sigpending(&set); 3265 3266 if (copy_to_user(uset, &set, sigsetsize)) 3267 return -EFAULT; 3268 3269 return 0; 3270 } 3271 3272 #ifdef CONFIG_COMPAT 3273 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3274 compat_size_t, sigsetsize) 3275 { 3276 sigset_t set; 3277 3278 if (sigsetsize > sizeof(*uset)) 3279 return -EINVAL; 3280 3281 do_sigpending(&set); 3282 3283 return put_compat_sigset(uset, &set, sigsetsize); 3284 } 3285 #endif 3286 3287 static const struct { 3288 unsigned char limit, layout; 3289 } sig_sicodes[] = { 3290 [SIGILL] = { NSIGILL, SIL_FAULT }, 3291 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3292 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3293 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3294 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3295 #if defined(SIGEMT) 3296 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3297 #endif 3298 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3299 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3300 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3301 }; 3302 3303 static bool known_siginfo_layout(unsigned sig, int si_code) 3304 { 3305 if (si_code == SI_KERNEL) 3306 return true; 3307 else if ((si_code > SI_USER)) { 3308 if (sig_specific_sicodes(sig)) { 3309 if (si_code <= sig_sicodes[sig].limit) 3310 return true; 3311 } 3312 else if (si_code <= NSIGPOLL) 3313 return true; 3314 } 3315 else if (si_code >= SI_DETHREAD) 3316 return true; 3317 else if (si_code == SI_ASYNCNL) 3318 return true; 3319 return false; 3320 } 3321 3322 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3323 { 3324 enum siginfo_layout layout = SIL_KILL; 3325 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3326 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3327 (si_code <= sig_sicodes[sig].limit)) { 3328 layout = sig_sicodes[sig].layout; 3329 /* Handle the exceptions */ 3330 if ((sig == SIGBUS) && 3331 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3332 layout = SIL_FAULT_MCEERR; 3333 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3334 layout = SIL_FAULT_BNDERR; 3335 #ifdef SEGV_PKUERR 3336 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3337 layout = SIL_FAULT_PKUERR; 3338 #endif 3339 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3340 layout = SIL_FAULT_PERF_EVENT; 3341 else if (IS_ENABLED(CONFIG_SPARC) && 3342 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3343 layout = SIL_FAULT_TRAPNO; 3344 else if (IS_ENABLED(CONFIG_ALPHA) && 3345 ((sig == SIGFPE) || 3346 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3347 layout = SIL_FAULT_TRAPNO; 3348 } 3349 else if (si_code <= NSIGPOLL) 3350 layout = SIL_POLL; 3351 } else { 3352 if (si_code == SI_TIMER) 3353 layout = SIL_TIMER; 3354 else if (si_code == SI_SIGIO) 3355 layout = SIL_POLL; 3356 else if (si_code < 0) 3357 layout = SIL_RT; 3358 } 3359 return layout; 3360 } 3361 3362 static inline char __user *si_expansion(const siginfo_t __user *info) 3363 { 3364 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3365 } 3366 3367 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3368 { 3369 char __user *expansion = si_expansion(to); 3370 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3371 return -EFAULT; 3372 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3373 return -EFAULT; 3374 return 0; 3375 } 3376 3377 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3378 const siginfo_t __user *from) 3379 { 3380 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3381 char __user *expansion = si_expansion(from); 3382 char buf[SI_EXPANSION_SIZE]; 3383 int i; 3384 /* 3385 * An unknown si_code might need more than 3386 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3387 * extra bytes are 0. This guarantees copy_siginfo_to_user 3388 * will return this data to userspace exactly. 3389 */ 3390 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3391 return -EFAULT; 3392 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3393 if (buf[i] != 0) 3394 return -E2BIG; 3395 } 3396 } 3397 return 0; 3398 } 3399 3400 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3401 const siginfo_t __user *from) 3402 { 3403 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3404 return -EFAULT; 3405 to->si_signo = signo; 3406 return post_copy_siginfo_from_user(to, from); 3407 } 3408 3409 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3410 { 3411 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3412 return -EFAULT; 3413 return post_copy_siginfo_from_user(to, from); 3414 } 3415 3416 #ifdef CONFIG_COMPAT 3417 /** 3418 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3419 * @to: compat siginfo destination 3420 * @from: kernel siginfo source 3421 * 3422 * Note: This function does not work properly for the SIGCHLD on x32, but 3423 * fortunately it doesn't have to. The only valid callers for this function are 3424 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3425 * The latter does not care because SIGCHLD will never cause a coredump. 3426 */ 3427 void copy_siginfo_to_external32(struct compat_siginfo *to, 3428 const struct kernel_siginfo *from) 3429 { 3430 memset(to, 0, sizeof(*to)); 3431 3432 to->si_signo = from->si_signo; 3433 to->si_errno = from->si_errno; 3434 to->si_code = from->si_code; 3435 switch(siginfo_layout(from->si_signo, from->si_code)) { 3436 case SIL_KILL: 3437 to->si_pid = from->si_pid; 3438 to->si_uid = from->si_uid; 3439 break; 3440 case SIL_TIMER: 3441 to->si_tid = from->si_tid; 3442 to->si_overrun = from->si_overrun; 3443 to->si_int = from->si_int; 3444 break; 3445 case SIL_POLL: 3446 to->si_band = from->si_band; 3447 to->si_fd = from->si_fd; 3448 break; 3449 case SIL_FAULT: 3450 to->si_addr = ptr_to_compat(from->si_addr); 3451 break; 3452 case SIL_FAULT_TRAPNO: 3453 to->si_addr = ptr_to_compat(from->si_addr); 3454 to->si_trapno = from->si_trapno; 3455 break; 3456 case SIL_FAULT_MCEERR: 3457 to->si_addr = ptr_to_compat(from->si_addr); 3458 to->si_addr_lsb = from->si_addr_lsb; 3459 break; 3460 case SIL_FAULT_BNDERR: 3461 to->si_addr = ptr_to_compat(from->si_addr); 3462 to->si_lower = ptr_to_compat(from->si_lower); 3463 to->si_upper = ptr_to_compat(from->si_upper); 3464 break; 3465 case SIL_FAULT_PKUERR: 3466 to->si_addr = ptr_to_compat(from->si_addr); 3467 to->si_pkey = from->si_pkey; 3468 break; 3469 case SIL_FAULT_PERF_EVENT: 3470 to->si_addr = ptr_to_compat(from->si_addr); 3471 to->si_perf_data = from->si_perf_data; 3472 to->si_perf_type = from->si_perf_type; 3473 to->si_perf_flags = from->si_perf_flags; 3474 break; 3475 case SIL_CHLD: 3476 to->si_pid = from->si_pid; 3477 to->si_uid = from->si_uid; 3478 to->si_status = from->si_status; 3479 to->si_utime = from->si_utime; 3480 to->si_stime = from->si_stime; 3481 break; 3482 case SIL_RT: 3483 to->si_pid = from->si_pid; 3484 to->si_uid = from->si_uid; 3485 to->si_int = from->si_int; 3486 break; 3487 case SIL_SYS: 3488 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3489 to->si_syscall = from->si_syscall; 3490 to->si_arch = from->si_arch; 3491 break; 3492 } 3493 } 3494 3495 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3496 const struct kernel_siginfo *from) 3497 { 3498 struct compat_siginfo new; 3499 3500 copy_siginfo_to_external32(&new, from); 3501 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3502 return -EFAULT; 3503 return 0; 3504 } 3505 3506 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3507 const struct compat_siginfo *from) 3508 { 3509 clear_siginfo(to); 3510 to->si_signo = from->si_signo; 3511 to->si_errno = from->si_errno; 3512 to->si_code = from->si_code; 3513 switch(siginfo_layout(from->si_signo, from->si_code)) { 3514 case SIL_KILL: 3515 to->si_pid = from->si_pid; 3516 to->si_uid = from->si_uid; 3517 break; 3518 case SIL_TIMER: 3519 to->si_tid = from->si_tid; 3520 to->si_overrun = from->si_overrun; 3521 to->si_int = from->si_int; 3522 break; 3523 case SIL_POLL: 3524 to->si_band = from->si_band; 3525 to->si_fd = from->si_fd; 3526 break; 3527 case SIL_FAULT: 3528 to->si_addr = compat_ptr(from->si_addr); 3529 break; 3530 case SIL_FAULT_TRAPNO: 3531 to->si_addr = compat_ptr(from->si_addr); 3532 to->si_trapno = from->si_trapno; 3533 break; 3534 case SIL_FAULT_MCEERR: 3535 to->si_addr = compat_ptr(from->si_addr); 3536 to->si_addr_lsb = from->si_addr_lsb; 3537 break; 3538 case SIL_FAULT_BNDERR: 3539 to->si_addr = compat_ptr(from->si_addr); 3540 to->si_lower = compat_ptr(from->si_lower); 3541 to->si_upper = compat_ptr(from->si_upper); 3542 break; 3543 case SIL_FAULT_PKUERR: 3544 to->si_addr = compat_ptr(from->si_addr); 3545 to->si_pkey = from->si_pkey; 3546 break; 3547 case SIL_FAULT_PERF_EVENT: 3548 to->si_addr = compat_ptr(from->si_addr); 3549 to->si_perf_data = from->si_perf_data; 3550 to->si_perf_type = from->si_perf_type; 3551 to->si_perf_flags = from->si_perf_flags; 3552 break; 3553 case SIL_CHLD: 3554 to->si_pid = from->si_pid; 3555 to->si_uid = from->si_uid; 3556 to->si_status = from->si_status; 3557 #ifdef CONFIG_X86_X32_ABI 3558 if (in_x32_syscall()) { 3559 to->si_utime = from->_sifields._sigchld_x32._utime; 3560 to->si_stime = from->_sifields._sigchld_x32._stime; 3561 } else 3562 #endif 3563 { 3564 to->si_utime = from->si_utime; 3565 to->si_stime = from->si_stime; 3566 } 3567 break; 3568 case SIL_RT: 3569 to->si_pid = from->si_pid; 3570 to->si_uid = from->si_uid; 3571 to->si_int = from->si_int; 3572 break; 3573 case SIL_SYS: 3574 to->si_call_addr = compat_ptr(from->si_call_addr); 3575 to->si_syscall = from->si_syscall; 3576 to->si_arch = from->si_arch; 3577 break; 3578 } 3579 return 0; 3580 } 3581 3582 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3583 const struct compat_siginfo __user *ufrom) 3584 { 3585 struct compat_siginfo from; 3586 3587 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3588 return -EFAULT; 3589 3590 from.si_signo = signo; 3591 return post_copy_siginfo_from_user32(to, &from); 3592 } 3593 3594 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3595 const struct compat_siginfo __user *ufrom) 3596 { 3597 struct compat_siginfo from; 3598 3599 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3600 return -EFAULT; 3601 3602 return post_copy_siginfo_from_user32(to, &from); 3603 } 3604 #endif /* CONFIG_COMPAT */ 3605 3606 /** 3607 * do_sigtimedwait - wait for queued signals specified in @which 3608 * @which: queued signals to wait for 3609 * @info: if non-null, the signal's siginfo is returned here 3610 * @ts: upper bound on process time suspension 3611 */ 3612 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3613 const struct timespec64 *ts) 3614 { 3615 ktime_t *to = NULL, timeout = KTIME_MAX; 3616 struct task_struct *tsk = current; 3617 sigset_t mask = *which; 3618 enum pid_type type; 3619 int sig, ret = 0; 3620 3621 if (ts) { 3622 if (!timespec64_valid(ts)) 3623 return -EINVAL; 3624 timeout = timespec64_to_ktime(*ts); 3625 to = &timeout; 3626 } 3627 3628 /* 3629 * Invert the set of allowed signals to get those we want to block. 3630 */ 3631 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3632 signotset(&mask); 3633 3634 spin_lock_irq(&tsk->sighand->siglock); 3635 sig = dequeue_signal(tsk, &mask, info, &type); 3636 if (!sig && timeout) { 3637 /* 3638 * None ready, temporarily unblock those we're interested 3639 * while we are sleeping in so that we'll be awakened when 3640 * they arrive. Unblocking is always fine, we can avoid 3641 * set_current_blocked(). 3642 */ 3643 tsk->real_blocked = tsk->blocked; 3644 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3645 recalc_sigpending(); 3646 spin_unlock_irq(&tsk->sighand->siglock); 3647 3648 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3649 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3650 HRTIMER_MODE_REL); 3651 spin_lock_irq(&tsk->sighand->siglock); 3652 __set_task_blocked(tsk, &tsk->real_blocked); 3653 sigemptyset(&tsk->real_blocked); 3654 sig = dequeue_signal(tsk, &mask, info, &type); 3655 } 3656 spin_unlock_irq(&tsk->sighand->siglock); 3657 3658 if (sig) 3659 return sig; 3660 return ret ? -EINTR : -EAGAIN; 3661 } 3662 3663 /** 3664 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3665 * in @uthese 3666 * @uthese: queued signals to wait for 3667 * @uinfo: if non-null, the signal's siginfo is returned here 3668 * @uts: upper bound on process time suspension 3669 * @sigsetsize: size of sigset_t type 3670 */ 3671 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3672 siginfo_t __user *, uinfo, 3673 const struct __kernel_timespec __user *, uts, 3674 size_t, sigsetsize) 3675 { 3676 sigset_t these; 3677 struct timespec64 ts; 3678 kernel_siginfo_t info; 3679 int ret; 3680 3681 /* XXX: Don't preclude handling different sized sigset_t's. */ 3682 if (sigsetsize != sizeof(sigset_t)) 3683 return -EINVAL; 3684 3685 if (copy_from_user(&these, uthese, sizeof(these))) 3686 return -EFAULT; 3687 3688 if (uts) { 3689 if (get_timespec64(&ts, uts)) 3690 return -EFAULT; 3691 } 3692 3693 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3694 3695 if (ret > 0 && uinfo) { 3696 if (copy_siginfo_to_user(uinfo, &info)) 3697 ret = -EFAULT; 3698 } 3699 3700 return ret; 3701 } 3702 3703 #ifdef CONFIG_COMPAT_32BIT_TIME 3704 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3705 siginfo_t __user *, uinfo, 3706 const struct old_timespec32 __user *, uts, 3707 size_t, sigsetsize) 3708 { 3709 sigset_t these; 3710 struct timespec64 ts; 3711 kernel_siginfo_t info; 3712 int ret; 3713 3714 if (sigsetsize != sizeof(sigset_t)) 3715 return -EINVAL; 3716 3717 if (copy_from_user(&these, uthese, sizeof(these))) 3718 return -EFAULT; 3719 3720 if (uts) { 3721 if (get_old_timespec32(&ts, uts)) 3722 return -EFAULT; 3723 } 3724 3725 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3726 3727 if (ret > 0 && uinfo) { 3728 if (copy_siginfo_to_user(uinfo, &info)) 3729 ret = -EFAULT; 3730 } 3731 3732 return ret; 3733 } 3734 #endif 3735 3736 #ifdef CONFIG_COMPAT 3737 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3738 struct compat_siginfo __user *, uinfo, 3739 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3740 { 3741 sigset_t s; 3742 struct timespec64 t; 3743 kernel_siginfo_t info; 3744 long ret; 3745 3746 if (sigsetsize != sizeof(sigset_t)) 3747 return -EINVAL; 3748 3749 if (get_compat_sigset(&s, uthese)) 3750 return -EFAULT; 3751 3752 if (uts) { 3753 if (get_timespec64(&t, uts)) 3754 return -EFAULT; 3755 } 3756 3757 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3758 3759 if (ret > 0 && uinfo) { 3760 if (copy_siginfo_to_user32(uinfo, &info)) 3761 ret = -EFAULT; 3762 } 3763 3764 return ret; 3765 } 3766 3767 #ifdef CONFIG_COMPAT_32BIT_TIME 3768 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3769 struct compat_siginfo __user *, uinfo, 3770 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3771 { 3772 sigset_t s; 3773 struct timespec64 t; 3774 kernel_siginfo_t info; 3775 long ret; 3776 3777 if (sigsetsize != sizeof(sigset_t)) 3778 return -EINVAL; 3779 3780 if (get_compat_sigset(&s, uthese)) 3781 return -EFAULT; 3782 3783 if (uts) { 3784 if (get_old_timespec32(&t, uts)) 3785 return -EFAULT; 3786 } 3787 3788 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3789 3790 if (ret > 0 && uinfo) { 3791 if (copy_siginfo_to_user32(uinfo, &info)) 3792 ret = -EFAULT; 3793 } 3794 3795 return ret; 3796 } 3797 #endif 3798 #endif 3799 3800 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3801 { 3802 clear_siginfo(info); 3803 info->si_signo = sig; 3804 info->si_errno = 0; 3805 info->si_code = SI_USER; 3806 info->si_pid = task_tgid_vnr(current); 3807 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3808 } 3809 3810 /** 3811 * sys_kill - send a signal to a process 3812 * @pid: the PID of the process 3813 * @sig: signal to be sent 3814 */ 3815 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3816 { 3817 struct kernel_siginfo info; 3818 3819 prepare_kill_siginfo(sig, &info); 3820 3821 return kill_something_info(sig, &info, pid); 3822 } 3823 3824 /* 3825 * Verify that the signaler and signalee either are in the same pid namespace 3826 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3827 * namespace. 3828 */ 3829 static bool access_pidfd_pidns(struct pid *pid) 3830 { 3831 struct pid_namespace *active = task_active_pid_ns(current); 3832 struct pid_namespace *p = ns_of_pid(pid); 3833 3834 for (;;) { 3835 if (!p) 3836 return false; 3837 if (p == active) 3838 break; 3839 p = p->parent; 3840 } 3841 3842 return true; 3843 } 3844 3845 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3846 siginfo_t __user *info) 3847 { 3848 #ifdef CONFIG_COMPAT 3849 /* 3850 * Avoid hooking up compat syscalls and instead handle necessary 3851 * conversions here. Note, this is a stop-gap measure and should not be 3852 * considered a generic solution. 3853 */ 3854 if (in_compat_syscall()) 3855 return copy_siginfo_from_user32( 3856 kinfo, (struct compat_siginfo __user *)info); 3857 #endif 3858 return copy_siginfo_from_user(kinfo, info); 3859 } 3860 3861 static struct pid *pidfd_to_pid(const struct file *file) 3862 { 3863 struct pid *pid; 3864 3865 pid = pidfd_pid(file); 3866 if (!IS_ERR(pid)) 3867 return pid; 3868 3869 return tgid_pidfd_to_pid(file); 3870 } 3871 3872 /** 3873 * sys_pidfd_send_signal - Signal a process through a pidfd 3874 * @pidfd: file descriptor of the process 3875 * @sig: signal to send 3876 * @info: signal info 3877 * @flags: future flags 3878 * 3879 * The syscall currently only signals via PIDTYPE_PID which covers 3880 * kill(<positive-pid>, <signal>. It does not signal threads or process 3881 * groups. 3882 * In order to extend the syscall to threads and process groups the @flags 3883 * argument should be used. In essence, the @flags argument will determine 3884 * what is signaled and not the file descriptor itself. Put in other words, 3885 * grouping is a property of the flags argument not a property of the file 3886 * descriptor. 3887 * 3888 * Return: 0 on success, negative errno on failure 3889 */ 3890 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3891 siginfo_t __user *, info, unsigned int, flags) 3892 { 3893 int ret; 3894 struct fd f; 3895 struct pid *pid; 3896 kernel_siginfo_t kinfo; 3897 3898 /* Enforce flags be set to 0 until we add an extension. */ 3899 if (flags) 3900 return -EINVAL; 3901 3902 f = fdget(pidfd); 3903 if (!f.file) 3904 return -EBADF; 3905 3906 /* Is this a pidfd? */ 3907 pid = pidfd_to_pid(f.file); 3908 if (IS_ERR(pid)) { 3909 ret = PTR_ERR(pid); 3910 goto err; 3911 } 3912 3913 ret = -EINVAL; 3914 if (!access_pidfd_pidns(pid)) 3915 goto err; 3916 3917 if (info) { 3918 ret = copy_siginfo_from_user_any(&kinfo, info); 3919 if (unlikely(ret)) 3920 goto err; 3921 3922 ret = -EINVAL; 3923 if (unlikely(sig != kinfo.si_signo)) 3924 goto err; 3925 3926 /* Only allow sending arbitrary signals to yourself. */ 3927 ret = -EPERM; 3928 if ((task_pid(current) != pid) && 3929 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3930 goto err; 3931 } else { 3932 prepare_kill_siginfo(sig, &kinfo); 3933 } 3934 3935 ret = kill_pid_info(sig, &kinfo, pid); 3936 3937 err: 3938 fdput(f); 3939 return ret; 3940 } 3941 3942 static int 3943 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3944 { 3945 struct task_struct *p; 3946 int error = -ESRCH; 3947 3948 rcu_read_lock(); 3949 p = find_task_by_vpid(pid); 3950 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3951 error = check_kill_permission(sig, info, p); 3952 /* 3953 * The null signal is a permissions and process existence 3954 * probe. No signal is actually delivered. 3955 */ 3956 if (!error && sig) { 3957 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3958 /* 3959 * If lock_task_sighand() failed we pretend the task 3960 * dies after receiving the signal. The window is tiny, 3961 * and the signal is private anyway. 3962 */ 3963 if (unlikely(error == -ESRCH)) 3964 error = 0; 3965 } 3966 } 3967 rcu_read_unlock(); 3968 3969 return error; 3970 } 3971 3972 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3973 { 3974 struct kernel_siginfo info; 3975 3976 clear_siginfo(&info); 3977 info.si_signo = sig; 3978 info.si_errno = 0; 3979 info.si_code = SI_TKILL; 3980 info.si_pid = task_tgid_vnr(current); 3981 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3982 3983 return do_send_specific(tgid, pid, sig, &info); 3984 } 3985 3986 /** 3987 * sys_tgkill - send signal to one specific thread 3988 * @tgid: the thread group ID of the thread 3989 * @pid: the PID of the thread 3990 * @sig: signal to be sent 3991 * 3992 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3993 * exists but it's not belonging to the target process anymore. This 3994 * method solves the problem of threads exiting and PIDs getting reused. 3995 */ 3996 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3997 { 3998 /* This is only valid for single tasks */ 3999 if (pid <= 0 || tgid <= 0) 4000 return -EINVAL; 4001 4002 return do_tkill(tgid, pid, sig); 4003 } 4004 4005 /** 4006 * sys_tkill - send signal to one specific task 4007 * @pid: the PID of the task 4008 * @sig: signal to be sent 4009 * 4010 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4011 */ 4012 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4013 { 4014 /* This is only valid for single tasks */ 4015 if (pid <= 0) 4016 return -EINVAL; 4017 4018 return do_tkill(0, pid, sig); 4019 } 4020 4021 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4022 { 4023 /* Not even root can pretend to send signals from the kernel. 4024 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4025 */ 4026 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4027 (task_pid_vnr(current) != pid)) 4028 return -EPERM; 4029 4030 /* POSIX.1b doesn't mention process groups. */ 4031 return kill_proc_info(sig, info, pid); 4032 } 4033 4034 /** 4035 * sys_rt_sigqueueinfo - send signal information to a signal 4036 * @pid: the PID of the thread 4037 * @sig: signal to be sent 4038 * @uinfo: signal info to be sent 4039 */ 4040 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4041 siginfo_t __user *, uinfo) 4042 { 4043 kernel_siginfo_t info; 4044 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4045 if (unlikely(ret)) 4046 return ret; 4047 return do_rt_sigqueueinfo(pid, sig, &info); 4048 } 4049 4050 #ifdef CONFIG_COMPAT 4051 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4052 compat_pid_t, pid, 4053 int, sig, 4054 struct compat_siginfo __user *, uinfo) 4055 { 4056 kernel_siginfo_t info; 4057 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4058 if (unlikely(ret)) 4059 return ret; 4060 return do_rt_sigqueueinfo(pid, sig, &info); 4061 } 4062 #endif 4063 4064 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4065 { 4066 /* This is only valid for single tasks */ 4067 if (pid <= 0 || tgid <= 0) 4068 return -EINVAL; 4069 4070 /* Not even root can pretend to send signals from the kernel. 4071 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4072 */ 4073 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4074 (task_pid_vnr(current) != pid)) 4075 return -EPERM; 4076 4077 return do_send_specific(tgid, pid, sig, info); 4078 } 4079 4080 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4081 siginfo_t __user *, uinfo) 4082 { 4083 kernel_siginfo_t info; 4084 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4085 if (unlikely(ret)) 4086 return ret; 4087 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4088 } 4089 4090 #ifdef CONFIG_COMPAT 4091 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4092 compat_pid_t, tgid, 4093 compat_pid_t, pid, 4094 int, sig, 4095 struct compat_siginfo __user *, uinfo) 4096 { 4097 kernel_siginfo_t info; 4098 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4099 if (unlikely(ret)) 4100 return ret; 4101 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4102 } 4103 #endif 4104 4105 /* 4106 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4107 */ 4108 void kernel_sigaction(int sig, __sighandler_t action) 4109 { 4110 spin_lock_irq(¤t->sighand->siglock); 4111 current->sighand->action[sig - 1].sa.sa_handler = action; 4112 if (action == SIG_IGN) { 4113 sigset_t mask; 4114 4115 sigemptyset(&mask); 4116 sigaddset(&mask, sig); 4117 4118 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4119 flush_sigqueue_mask(&mask, ¤t->pending); 4120 recalc_sigpending(); 4121 } 4122 spin_unlock_irq(¤t->sighand->siglock); 4123 } 4124 EXPORT_SYMBOL(kernel_sigaction); 4125 4126 void __weak sigaction_compat_abi(struct k_sigaction *act, 4127 struct k_sigaction *oact) 4128 { 4129 } 4130 4131 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4132 { 4133 struct task_struct *p = current, *t; 4134 struct k_sigaction *k; 4135 sigset_t mask; 4136 4137 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4138 return -EINVAL; 4139 4140 k = &p->sighand->action[sig-1]; 4141 4142 spin_lock_irq(&p->sighand->siglock); 4143 if (k->sa.sa_flags & SA_IMMUTABLE) { 4144 spin_unlock_irq(&p->sighand->siglock); 4145 return -EINVAL; 4146 } 4147 if (oact) 4148 *oact = *k; 4149 4150 /* 4151 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4152 * e.g. by having an architecture use the bit in their uapi. 4153 */ 4154 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4155 4156 /* 4157 * Clear unknown flag bits in order to allow userspace to detect missing 4158 * support for flag bits and to allow the kernel to use non-uapi bits 4159 * internally. 4160 */ 4161 if (act) 4162 act->sa.sa_flags &= UAPI_SA_FLAGS; 4163 if (oact) 4164 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4165 4166 sigaction_compat_abi(act, oact); 4167 4168 if (act) { 4169 sigdelsetmask(&act->sa.sa_mask, 4170 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4171 *k = *act; 4172 /* 4173 * POSIX 3.3.1.3: 4174 * "Setting a signal action to SIG_IGN for a signal that is 4175 * pending shall cause the pending signal to be discarded, 4176 * whether or not it is blocked." 4177 * 4178 * "Setting a signal action to SIG_DFL for a signal that is 4179 * pending and whose default action is to ignore the signal 4180 * (for example, SIGCHLD), shall cause the pending signal to 4181 * be discarded, whether or not it is blocked" 4182 */ 4183 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4184 sigemptyset(&mask); 4185 sigaddset(&mask, sig); 4186 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4187 for_each_thread(p, t) 4188 flush_sigqueue_mask(&mask, &t->pending); 4189 } 4190 } 4191 4192 spin_unlock_irq(&p->sighand->siglock); 4193 return 0; 4194 } 4195 4196 #ifdef CONFIG_DYNAMIC_SIGFRAME 4197 static inline void sigaltstack_lock(void) 4198 __acquires(¤t->sighand->siglock) 4199 { 4200 spin_lock_irq(¤t->sighand->siglock); 4201 } 4202 4203 static inline void sigaltstack_unlock(void) 4204 __releases(¤t->sighand->siglock) 4205 { 4206 spin_unlock_irq(¤t->sighand->siglock); 4207 } 4208 #else 4209 static inline void sigaltstack_lock(void) { } 4210 static inline void sigaltstack_unlock(void) { } 4211 #endif 4212 4213 static int 4214 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4215 size_t min_ss_size) 4216 { 4217 struct task_struct *t = current; 4218 int ret = 0; 4219 4220 if (oss) { 4221 memset(oss, 0, sizeof(stack_t)); 4222 oss->ss_sp = (void __user *) t->sas_ss_sp; 4223 oss->ss_size = t->sas_ss_size; 4224 oss->ss_flags = sas_ss_flags(sp) | 4225 (current->sas_ss_flags & SS_FLAG_BITS); 4226 } 4227 4228 if (ss) { 4229 void __user *ss_sp = ss->ss_sp; 4230 size_t ss_size = ss->ss_size; 4231 unsigned ss_flags = ss->ss_flags; 4232 int ss_mode; 4233 4234 if (unlikely(on_sig_stack(sp))) 4235 return -EPERM; 4236 4237 ss_mode = ss_flags & ~SS_FLAG_BITS; 4238 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4239 ss_mode != 0)) 4240 return -EINVAL; 4241 4242 /* 4243 * Return before taking any locks if no actual 4244 * sigaltstack changes were requested. 4245 */ 4246 if (t->sas_ss_sp == (unsigned long)ss_sp && 4247 t->sas_ss_size == ss_size && 4248 t->sas_ss_flags == ss_flags) 4249 return 0; 4250 4251 sigaltstack_lock(); 4252 if (ss_mode == SS_DISABLE) { 4253 ss_size = 0; 4254 ss_sp = NULL; 4255 } else { 4256 if (unlikely(ss_size < min_ss_size)) 4257 ret = -ENOMEM; 4258 if (!sigaltstack_size_valid(ss_size)) 4259 ret = -ENOMEM; 4260 } 4261 if (!ret) { 4262 t->sas_ss_sp = (unsigned long) ss_sp; 4263 t->sas_ss_size = ss_size; 4264 t->sas_ss_flags = ss_flags; 4265 } 4266 sigaltstack_unlock(); 4267 } 4268 return ret; 4269 } 4270 4271 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4272 { 4273 stack_t new, old; 4274 int err; 4275 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4276 return -EFAULT; 4277 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4278 current_user_stack_pointer(), 4279 MINSIGSTKSZ); 4280 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4281 err = -EFAULT; 4282 return err; 4283 } 4284 4285 int restore_altstack(const stack_t __user *uss) 4286 { 4287 stack_t new; 4288 if (copy_from_user(&new, uss, sizeof(stack_t))) 4289 return -EFAULT; 4290 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4291 MINSIGSTKSZ); 4292 /* squash all but EFAULT for now */ 4293 return 0; 4294 } 4295 4296 int __save_altstack(stack_t __user *uss, unsigned long sp) 4297 { 4298 struct task_struct *t = current; 4299 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4300 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4301 __put_user(t->sas_ss_size, &uss->ss_size); 4302 return err; 4303 } 4304 4305 #ifdef CONFIG_COMPAT 4306 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4307 compat_stack_t __user *uoss_ptr) 4308 { 4309 stack_t uss, uoss; 4310 int ret; 4311 4312 if (uss_ptr) { 4313 compat_stack_t uss32; 4314 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4315 return -EFAULT; 4316 uss.ss_sp = compat_ptr(uss32.ss_sp); 4317 uss.ss_flags = uss32.ss_flags; 4318 uss.ss_size = uss32.ss_size; 4319 } 4320 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4321 compat_user_stack_pointer(), 4322 COMPAT_MINSIGSTKSZ); 4323 if (ret >= 0 && uoss_ptr) { 4324 compat_stack_t old; 4325 memset(&old, 0, sizeof(old)); 4326 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4327 old.ss_flags = uoss.ss_flags; 4328 old.ss_size = uoss.ss_size; 4329 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4330 ret = -EFAULT; 4331 } 4332 return ret; 4333 } 4334 4335 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4336 const compat_stack_t __user *, uss_ptr, 4337 compat_stack_t __user *, uoss_ptr) 4338 { 4339 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4340 } 4341 4342 int compat_restore_altstack(const compat_stack_t __user *uss) 4343 { 4344 int err = do_compat_sigaltstack(uss, NULL); 4345 /* squash all but -EFAULT for now */ 4346 return err == -EFAULT ? err : 0; 4347 } 4348 4349 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4350 { 4351 int err; 4352 struct task_struct *t = current; 4353 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4354 &uss->ss_sp) | 4355 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4356 __put_user(t->sas_ss_size, &uss->ss_size); 4357 return err; 4358 } 4359 #endif 4360 4361 #ifdef __ARCH_WANT_SYS_SIGPENDING 4362 4363 /** 4364 * sys_sigpending - examine pending signals 4365 * @uset: where mask of pending signal is returned 4366 */ 4367 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4368 { 4369 sigset_t set; 4370 4371 if (sizeof(old_sigset_t) > sizeof(*uset)) 4372 return -EINVAL; 4373 4374 do_sigpending(&set); 4375 4376 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4377 return -EFAULT; 4378 4379 return 0; 4380 } 4381 4382 #ifdef CONFIG_COMPAT 4383 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4384 { 4385 sigset_t set; 4386 4387 do_sigpending(&set); 4388 4389 return put_user(set.sig[0], set32); 4390 } 4391 #endif 4392 4393 #endif 4394 4395 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4396 /** 4397 * sys_sigprocmask - examine and change blocked signals 4398 * @how: whether to add, remove, or set signals 4399 * @nset: signals to add or remove (if non-null) 4400 * @oset: previous value of signal mask if non-null 4401 * 4402 * Some platforms have their own version with special arguments; 4403 * others support only sys_rt_sigprocmask. 4404 */ 4405 4406 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4407 old_sigset_t __user *, oset) 4408 { 4409 old_sigset_t old_set, new_set; 4410 sigset_t new_blocked; 4411 4412 old_set = current->blocked.sig[0]; 4413 4414 if (nset) { 4415 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4416 return -EFAULT; 4417 4418 new_blocked = current->blocked; 4419 4420 switch (how) { 4421 case SIG_BLOCK: 4422 sigaddsetmask(&new_blocked, new_set); 4423 break; 4424 case SIG_UNBLOCK: 4425 sigdelsetmask(&new_blocked, new_set); 4426 break; 4427 case SIG_SETMASK: 4428 new_blocked.sig[0] = new_set; 4429 break; 4430 default: 4431 return -EINVAL; 4432 } 4433 4434 set_current_blocked(&new_blocked); 4435 } 4436 4437 if (oset) { 4438 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4439 return -EFAULT; 4440 } 4441 4442 return 0; 4443 } 4444 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4445 4446 #ifndef CONFIG_ODD_RT_SIGACTION 4447 /** 4448 * sys_rt_sigaction - alter an action taken by a process 4449 * @sig: signal to be sent 4450 * @act: new sigaction 4451 * @oact: used to save the previous sigaction 4452 * @sigsetsize: size of sigset_t type 4453 */ 4454 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4455 const struct sigaction __user *, act, 4456 struct sigaction __user *, oact, 4457 size_t, sigsetsize) 4458 { 4459 struct k_sigaction new_sa, old_sa; 4460 int ret; 4461 4462 /* XXX: Don't preclude handling different sized sigset_t's. */ 4463 if (sigsetsize != sizeof(sigset_t)) 4464 return -EINVAL; 4465 4466 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4467 return -EFAULT; 4468 4469 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4470 if (ret) 4471 return ret; 4472 4473 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4474 return -EFAULT; 4475 4476 return 0; 4477 } 4478 #ifdef CONFIG_COMPAT 4479 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4480 const struct compat_sigaction __user *, act, 4481 struct compat_sigaction __user *, oact, 4482 compat_size_t, sigsetsize) 4483 { 4484 struct k_sigaction new_ka, old_ka; 4485 #ifdef __ARCH_HAS_SA_RESTORER 4486 compat_uptr_t restorer; 4487 #endif 4488 int ret; 4489 4490 /* XXX: Don't preclude handling different sized sigset_t's. */ 4491 if (sigsetsize != sizeof(compat_sigset_t)) 4492 return -EINVAL; 4493 4494 if (act) { 4495 compat_uptr_t handler; 4496 ret = get_user(handler, &act->sa_handler); 4497 new_ka.sa.sa_handler = compat_ptr(handler); 4498 #ifdef __ARCH_HAS_SA_RESTORER 4499 ret |= get_user(restorer, &act->sa_restorer); 4500 new_ka.sa.sa_restorer = compat_ptr(restorer); 4501 #endif 4502 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4503 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4504 if (ret) 4505 return -EFAULT; 4506 } 4507 4508 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4509 if (!ret && oact) { 4510 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4511 &oact->sa_handler); 4512 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4513 sizeof(oact->sa_mask)); 4514 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4515 #ifdef __ARCH_HAS_SA_RESTORER 4516 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4517 &oact->sa_restorer); 4518 #endif 4519 } 4520 return ret; 4521 } 4522 #endif 4523 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4524 4525 #ifdef CONFIG_OLD_SIGACTION 4526 SYSCALL_DEFINE3(sigaction, int, sig, 4527 const struct old_sigaction __user *, act, 4528 struct old_sigaction __user *, oact) 4529 { 4530 struct k_sigaction new_ka, old_ka; 4531 int ret; 4532 4533 if (act) { 4534 old_sigset_t mask; 4535 if (!access_ok(act, sizeof(*act)) || 4536 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4537 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4538 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4539 __get_user(mask, &act->sa_mask)) 4540 return -EFAULT; 4541 #ifdef __ARCH_HAS_KA_RESTORER 4542 new_ka.ka_restorer = NULL; 4543 #endif 4544 siginitset(&new_ka.sa.sa_mask, mask); 4545 } 4546 4547 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4548 4549 if (!ret && oact) { 4550 if (!access_ok(oact, sizeof(*oact)) || 4551 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4552 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4553 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4554 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4555 return -EFAULT; 4556 } 4557 4558 return ret; 4559 } 4560 #endif 4561 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4562 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4563 const struct compat_old_sigaction __user *, act, 4564 struct compat_old_sigaction __user *, oact) 4565 { 4566 struct k_sigaction new_ka, old_ka; 4567 int ret; 4568 compat_old_sigset_t mask; 4569 compat_uptr_t handler, restorer; 4570 4571 if (act) { 4572 if (!access_ok(act, sizeof(*act)) || 4573 __get_user(handler, &act->sa_handler) || 4574 __get_user(restorer, &act->sa_restorer) || 4575 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4576 __get_user(mask, &act->sa_mask)) 4577 return -EFAULT; 4578 4579 #ifdef __ARCH_HAS_KA_RESTORER 4580 new_ka.ka_restorer = NULL; 4581 #endif 4582 new_ka.sa.sa_handler = compat_ptr(handler); 4583 new_ka.sa.sa_restorer = compat_ptr(restorer); 4584 siginitset(&new_ka.sa.sa_mask, mask); 4585 } 4586 4587 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4588 4589 if (!ret && oact) { 4590 if (!access_ok(oact, sizeof(*oact)) || 4591 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4592 &oact->sa_handler) || 4593 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4594 &oact->sa_restorer) || 4595 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4596 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4597 return -EFAULT; 4598 } 4599 return ret; 4600 } 4601 #endif 4602 4603 #ifdef CONFIG_SGETMASK_SYSCALL 4604 4605 /* 4606 * For backwards compatibility. Functionality superseded by sigprocmask. 4607 */ 4608 SYSCALL_DEFINE0(sgetmask) 4609 { 4610 /* SMP safe */ 4611 return current->blocked.sig[0]; 4612 } 4613 4614 SYSCALL_DEFINE1(ssetmask, int, newmask) 4615 { 4616 int old = current->blocked.sig[0]; 4617 sigset_t newset; 4618 4619 siginitset(&newset, newmask); 4620 set_current_blocked(&newset); 4621 4622 return old; 4623 } 4624 #endif /* CONFIG_SGETMASK_SYSCALL */ 4625 4626 #ifdef __ARCH_WANT_SYS_SIGNAL 4627 /* 4628 * For backwards compatibility. Functionality superseded by sigaction. 4629 */ 4630 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4631 { 4632 struct k_sigaction new_sa, old_sa; 4633 int ret; 4634 4635 new_sa.sa.sa_handler = handler; 4636 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4637 sigemptyset(&new_sa.sa.sa_mask); 4638 4639 ret = do_sigaction(sig, &new_sa, &old_sa); 4640 4641 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4642 } 4643 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4644 4645 #ifdef __ARCH_WANT_SYS_PAUSE 4646 4647 SYSCALL_DEFINE0(pause) 4648 { 4649 while (!signal_pending(current)) { 4650 __set_current_state(TASK_INTERRUPTIBLE); 4651 schedule(); 4652 } 4653 return -ERESTARTNOHAND; 4654 } 4655 4656 #endif 4657 4658 static int sigsuspend(sigset_t *set) 4659 { 4660 current->saved_sigmask = current->blocked; 4661 set_current_blocked(set); 4662 4663 while (!signal_pending(current)) { 4664 __set_current_state(TASK_INTERRUPTIBLE); 4665 schedule(); 4666 } 4667 set_restore_sigmask(); 4668 return -ERESTARTNOHAND; 4669 } 4670 4671 /** 4672 * sys_rt_sigsuspend - replace the signal mask for a value with the 4673 * @unewset value until a signal is received 4674 * @unewset: new signal mask value 4675 * @sigsetsize: size of sigset_t type 4676 */ 4677 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4678 { 4679 sigset_t newset; 4680 4681 /* XXX: Don't preclude handling different sized sigset_t's. */ 4682 if (sigsetsize != sizeof(sigset_t)) 4683 return -EINVAL; 4684 4685 if (copy_from_user(&newset, unewset, sizeof(newset))) 4686 return -EFAULT; 4687 return sigsuspend(&newset); 4688 } 4689 4690 #ifdef CONFIG_COMPAT 4691 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4692 { 4693 sigset_t newset; 4694 4695 /* XXX: Don't preclude handling different sized sigset_t's. */ 4696 if (sigsetsize != sizeof(sigset_t)) 4697 return -EINVAL; 4698 4699 if (get_compat_sigset(&newset, unewset)) 4700 return -EFAULT; 4701 return sigsuspend(&newset); 4702 } 4703 #endif 4704 4705 #ifdef CONFIG_OLD_SIGSUSPEND 4706 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4707 { 4708 sigset_t blocked; 4709 siginitset(&blocked, mask); 4710 return sigsuspend(&blocked); 4711 } 4712 #endif 4713 #ifdef CONFIG_OLD_SIGSUSPEND3 4714 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4715 { 4716 sigset_t blocked; 4717 siginitset(&blocked, mask); 4718 return sigsuspend(&blocked); 4719 } 4720 #endif 4721 4722 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4723 { 4724 return NULL; 4725 } 4726 4727 static inline void siginfo_buildtime_checks(void) 4728 { 4729 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4730 4731 /* Verify the offsets in the two siginfos match */ 4732 #define CHECK_OFFSET(field) \ 4733 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4734 4735 /* kill */ 4736 CHECK_OFFSET(si_pid); 4737 CHECK_OFFSET(si_uid); 4738 4739 /* timer */ 4740 CHECK_OFFSET(si_tid); 4741 CHECK_OFFSET(si_overrun); 4742 CHECK_OFFSET(si_value); 4743 4744 /* rt */ 4745 CHECK_OFFSET(si_pid); 4746 CHECK_OFFSET(si_uid); 4747 CHECK_OFFSET(si_value); 4748 4749 /* sigchld */ 4750 CHECK_OFFSET(si_pid); 4751 CHECK_OFFSET(si_uid); 4752 CHECK_OFFSET(si_status); 4753 CHECK_OFFSET(si_utime); 4754 CHECK_OFFSET(si_stime); 4755 4756 /* sigfault */ 4757 CHECK_OFFSET(si_addr); 4758 CHECK_OFFSET(si_trapno); 4759 CHECK_OFFSET(si_addr_lsb); 4760 CHECK_OFFSET(si_lower); 4761 CHECK_OFFSET(si_upper); 4762 CHECK_OFFSET(si_pkey); 4763 CHECK_OFFSET(si_perf_data); 4764 CHECK_OFFSET(si_perf_type); 4765 CHECK_OFFSET(si_perf_flags); 4766 4767 /* sigpoll */ 4768 CHECK_OFFSET(si_band); 4769 CHECK_OFFSET(si_fd); 4770 4771 /* sigsys */ 4772 CHECK_OFFSET(si_call_addr); 4773 CHECK_OFFSET(si_syscall); 4774 CHECK_OFFSET(si_arch); 4775 #undef CHECK_OFFSET 4776 4777 /* usb asyncio */ 4778 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4779 offsetof(struct siginfo, si_addr)); 4780 if (sizeof(int) == sizeof(void __user *)) { 4781 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4782 sizeof(void __user *)); 4783 } else { 4784 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4785 sizeof_field(struct siginfo, si_uid)) != 4786 sizeof(void __user *)); 4787 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4788 offsetof(struct siginfo, si_uid)); 4789 } 4790 #ifdef CONFIG_COMPAT 4791 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4792 offsetof(struct compat_siginfo, si_addr)); 4793 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4794 sizeof(compat_uptr_t)); 4795 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4796 sizeof_field(struct siginfo, si_pid)); 4797 #endif 4798 } 4799 4800 #if defined(CONFIG_SYSCTL) 4801 static struct ctl_table signal_debug_table[] = { 4802 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE 4803 { 4804 .procname = "exception-trace", 4805 .data = &show_unhandled_signals, 4806 .maxlen = sizeof(int), 4807 .mode = 0644, 4808 .proc_handler = proc_dointvec 4809 }, 4810 #endif 4811 { } 4812 }; 4813 4814 static int __init init_signal_sysctls(void) 4815 { 4816 register_sysctl_init("debug", signal_debug_table); 4817 return 0; 4818 } 4819 early_initcall(init_signal_sysctls); 4820 #endif /* CONFIG_SYSCTL */ 4821 4822 void __init signals_init(void) 4823 { 4824 siginfo_buildtime_checks(); 4825 4826 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4827 } 4828 4829 #ifdef CONFIG_KGDB_KDB 4830 #include <linux/kdb.h> 4831 /* 4832 * kdb_send_sig - Allows kdb to send signals without exposing 4833 * signal internals. This function checks if the required locks are 4834 * available before calling the main signal code, to avoid kdb 4835 * deadlocks. 4836 */ 4837 void kdb_send_sig(struct task_struct *t, int sig) 4838 { 4839 static struct task_struct *kdb_prev_t; 4840 int new_t, ret; 4841 if (!spin_trylock(&t->sighand->siglock)) { 4842 kdb_printf("Can't do kill command now.\n" 4843 "The sigmask lock is held somewhere else in " 4844 "kernel, try again later\n"); 4845 return; 4846 } 4847 new_t = kdb_prev_t != t; 4848 kdb_prev_t = t; 4849 if (!task_is_running(t) && new_t) { 4850 spin_unlock(&t->sighand->siglock); 4851 kdb_printf("Process is not RUNNING, sending a signal from " 4852 "kdb risks deadlock\n" 4853 "on the run queue locks. " 4854 "The signal has _not_ been sent.\n" 4855 "Reissue the kill command if you want to risk " 4856 "the deadlock.\n"); 4857 return; 4858 } 4859 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4860 spin_unlock(&t->sighand->siglock); 4861 if (ret) 4862 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4863 sig, t->pid); 4864 else 4865 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4866 } 4867 #endif /* CONFIG_KGDB_KDB */ 4868