xref: /linux/kernel/seccomp.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/kernel/seccomp.c
4  *
5  * Copyright 2004-2005  Andrea Arcangeli <andrea@cpushare.com>
6  *
7  * Copyright (C) 2012 Google, Inc.
8  * Will Drewry <wad@chromium.org>
9  *
10  * This defines a simple but solid secure-computing facility.
11  *
12  * Mode 1 uses a fixed list of allowed system calls.
13  * Mode 2 allows user-defined system call filters in the form
14  *        of Berkeley Packet Filters/Linux Socket Filters.
15  */
16 #define pr_fmt(fmt) "seccomp: " fmt
17 
18 #include <linux/refcount.h>
19 #include <linux/audit.h>
20 #include <linux/compat.h>
21 #include <linux/coredump.h>
22 #include <linux/kmemleak.h>
23 #include <linux/nospec.h>
24 #include <linux/prctl.h>
25 #include <linux/sched.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/seccomp.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/sysctl.h>
31 
32 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
33 #include <asm/syscall.h>
34 #endif
35 
36 #ifdef CONFIG_SECCOMP_FILTER
37 #include <linux/file.h>
38 #include <linux/filter.h>
39 #include <linux/pid.h>
40 #include <linux/ptrace.h>
41 #include <linux/capability.h>
42 #include <linux/tracehook.h>
43 #include <linux/uaccess.h>
44 #include <linux/anon_inodes.h>
45 #include <linux/lockdep.h>
46 
47 /*
48  * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the
49  * wrong direction flag in the ioctl number. This is the broken one,
50  * which the kernel needs to keep supporting until all userspaces stop
51  * using the wrong command number.
52  */
53 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR	SECCOMP_IOR(2, __u64)
54 
55 enum notify_state {
56 	SECCOMP_NOTIFY_INIT,
57 	SECCOMP_NOTIFY_SENT,
58 	SECCOMP_NOTIFY_REPLIED,
59 };
60 
61 struct seccomp_knotif {
62 	/* The struct pid of the task whose filter triggered the notification */
63 	struct task_struct *task;
64 
65 	/* The "cookie" for this request; this is unique for this filter. */
66 	u64 id;
67 
68 	/*
69 	 * The seccomp data. This pointer is valid the entire time this
70 	 * notification is active, since it comes from __seccomp_filter which
71 	 * eclipses the entire lifecycle here.
72 	 */
73 	const struct seccomp_data *data;
74 
75 	/*
76 	 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a
77 	 * struct seccomp_knotif is created and starts out in INIT. Once the
78 	 * handler reads the notification off of an FD, it transitions to SENT.
79 	 * If a signal is received the state transitions back to INIT and
80 	 * another message is sent. When the userspace handler replies, state
81 	 * transitions to REPLIED.
82 	 */
83 	enum notify_state state;
84 
85 	/* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */
86 	int error;
87 	long val;
88 	u32 flags;
89 
90 	/*
91 	 * Signals when this has changed states, such as the listener
92 	 * dying, a new seccomp addfd message, or changing to REPLIED
93 	 */
94 	struct completion ready;
95 
96 	struct list_head list;
97 
98 	/* outstanding addfd requests */
99 	struct list_head addfd;
100 };
101 
102 /**
103  * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages
104  *
105  * @file: A reference to the file to install in the other task
106  * @fd: The fd number to install it at. If the fd number is -1, it means the
107  *      installing process should allocate the fd as normal.
108  * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC
109  *         is allowed.
110  * @ret: The return value of the installing process. It is set to the fd num
111  *       upon success (>= 0).
112  * @completion: Indicates that the installing process has completed fd
113  *              installation, or gone away (either due to successful
114  *              reply, or signal)
115  *
116  */
117 struct seccomp_kaddfd {
118 	struct file *file;
119 	int fd;
120 	unsigned int flags;
121 
122 	/* To only be set on reply */
123 	int ret;
124 	struct completion completion;
125 	struct list_head list;
126 };
127 
128 /**
129  * struct notification - container for seccomp userspace notifications. Since
130  * most seccomp filters will not have notification listeners attached and this
131  * structure is fairly large, we store the notification-specific stuff in a
132  * separate structure.
133  *
134  * @request: A semaphore that users of this notification can wait on for
135  *           changes. Actual reads and writes are still controlled with
136  *           filter->notify_lock.
137  * @next_id: The id of the next request.
138  * @notifications: A list of struct seccomp_knotif elements.
139  */
140 struct notification {
141 	struct semaphore request;
142 	u64 next_id;
143 	struct list_head notifications;
144 };
145 
146 #ifdef SECCOMP_ARCH_NATIVE
147 /**
148  * struct action_cache - per-filter cache of seccomp actions per
149  * arch/syscall pair
150  *
151  * @allow_native: A bitmap where each bit represents whether the
152  *		  filter will always allow the syscall, for the
153  *		  native architecture.
154  * @allow_compat: A bitmap where each bit represents whether the
155  *		  filter will always allow the syscall, for the
156  *		  compat architecture.
157  */
158 struct action_cache {
159 	DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR);
160 #ifdef SECCOMP_ARCH_COMPAT
161 	DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR);
162 #endif
163 };
164 #else
165 struct action_cache { };
166 
167 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
168 					     const struct seccomp_data *sd)
169 {
170 	return false;
171 }
172 
173 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter)
174 {
175 }
176 #endif /* SECCOMP_ARCH_NATIVE */
177 
178 /**
179  * struct seccomp_filter - container for seccomp BPF programs
180  *
181  * @refs: Reference count to manage the object lifetime.
182  *	  A filter's reference count is incremented for each directly
183  *	  attached task, once for the dependent filter, and if
184  *	  requested for the user notifier. When @refs reaches zero,
185  *	  the filter can be freed.
186  * @users: A filter's @users count is incremented for each directly
187  *         attached task (filter installation, fork(), thread_sync),
188  *	   and once for the dependent filter (tracked in filter->prev).
189  *	   When it reaches zero it indicates that no direct or indirect
190  *	   users of that filter exist. No new tasks can get associated with
191  *	   this filter after reaching 0. The @users count is always smaller
192  *	   or equal to @refs. Hence, reaching 0 for @users does not mean
193  *	   the filter can be freed.
194  * @cache: cache of arch/syscall mappings to actions
195  * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged
196  * @prev: points to a previously installed, or inherited, filter
197  * @prog: the BPF program to evaluate
198  * @notif: the struct that holds all notification related information
199  * @notify_lock: A lock for all notification-related accesses.
200  * @wqh: A wait queue for poll if a notifier is in use.
201  *
202  * seccomp_filter objects are organized in a tree linked via the @prev
203  * pointer.  For any task, it appears to be a singly-linked list starting
204  * with current->seccomp.filter, the most recently attached or inherited filter.
205  * However, multiple filters may share a @prev node, by way of fork(), which
206  * results in a unidirectional tree existing in memory.  This is similar to
207  * how namespaces work.
208  *
209  * seccomp_filter objects should never be modified after being attached
210  * to a task_struct (other than @refs).
211  */
212 struct seccomp_filter {
213 	refcount_t refs;
214 	refcount_t users;
215 	bool log;
216 	struct action_cache cache;
217 	struct seccomp_filter *prev;
218 	struct bpf_prog *prog;
219 	struct notification *notif;
220 	struct mutex notify_lock;
221 	wait_queue_head_t wqh;
222 };
223 
224 /* Limit any path through the tree to 256KB worth of instructions. */
225 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter))
226 
227 /*
228  * Endianness is explicitly ignored and left for BPF program authors to manage
229  * as per the specific architecture.
230  */
231 static void populate_seccomp_data(struct seccomp_data *sd)
232 {
233 	/*
234 	 * Instead of using current_pt_reg(), we're already doing the work
235 	 * to safely fetch "current", so just use "task" everywhere below.
236 	 */
237 	struct task_struct *task = current;
238 	struct pt_regs *regs = task_pt_regs(task);
239 	unsigned long args[6];
240 
241 	sd->nr = syscall_get_nr(task, regs);
242 	sd->arch = syscall_get_arch(task);
243 	syscall_get_arguments(task, regs, args);
244 	sd->args[0] = args[0];
245 	sd->args[1] = args[1];
246 	sd->args[2] = args[2];
247 	sd->args[3] = args[3];
248 	sd->args[4] = args[4];
249 	sd->args[5] = args[5];
250 	sd->instruction_pointer = KSTK_EIP(task);
251 }
252 
253 /**
254  *	seccomp_check_filter - verify seccomp filter code
255  *	@filter: filter to verify
256  *	@flen: length of filter
257  *
258  * Takes a previously checked filter (by bpf_check_classic) and
259  * redirects all filter code that loads struct sk_buff data
260  * and related data through seccomp_bpf_load.  It also
261  * enforces length and alignment checking of those loads.
262  *
263  * Returns 0 if the rule set is legal or -EINVAL if not.
264  */
265 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
266 {
267 	int pc;
268 	for (pc = 0; pc < flen; pc++) {
269 		struct sock_filter *ftest = &filter[pc];
270 		u16 code = ftest->code;
271 		u32 k = ftest->k;
272 
273 		switch (code) {
274 		case BPF_LD | BPF_W | BPF_ABS:
275 			ftest->code = BPF_LDX | BPF_W | BPF_ABS;
276 			/* 32-bit aligned and not out of bounds. */
277 			if (k >= sizeof(struct seccomp_data) || k & 3)
278 				return -EINVAL;
279 			continue;
280 		case BPF_LD | BPF_W | BPF_LEN:
281 			ftest->code = BPF_LD | BPF_IMM;
282 			ftest->k = sizeof(struct seccomp_data);
283 			continue;
284 		case BPF_LDX | BPF_W | BPF_LEN:
285 			ftest->code = BPF_LDX | BPF_IMM;
286 			ftest->k = sizeof(struct seccomp_data);
287 			continue;
288 		/* Explicitly include allowed calls. */
289 		case BPF_RET | BPF_K:
290 		case BPF_RET | BPF_A:
291 		case BPF_ALU | BPF_ADD | BPF_K:
292 		case BPF_ALU | BPF_ADD | BPF_X:
293 		case BPF_ALU | BPF_SUB | BPF_K:
294 		case BPF_ALU | BPF_SUB | BPF_X:
295 		case BPF_ALU | BPF_MUL | BPF_K:
296 		case BPF_ALU | BPF_MUL | BPF_X:
297 		case BPF_ALU | BPF_DIV | BPF_K:
298 		case BPF_ALU | BPF_DIV | BPF_X:
299 		case BPF_ALU | BPF_AND | BPF_K:
300 		case BPF_ALU | BPF_AND | BPF_X:
301 		case BPF_ALU | BPF_OR | BPF_K:
302 		case BPF_ALU | BPF_OR | BPF_X:
303 		case BPF_ALU | BPF_XOR | BPF_K:
304 		case BPF_ALU | BPF_XOR | BPF_X:
305 		case BPF_ALU | BPF_LSH | BPF_K:
306 		case BPF_ALU | BPF_LSH | BPF_X:
307 		case BPF_ALU | BPF_RSH | BPF_K:
308 		case BPF_ALU | BPF_RSH | BPF_X:
309 		case BPF_ALU | BPF_NEG:
310 		case BPF_LD | BPF_IMM:
311 		case BPF_LDX | BPF_IMM:
312 		case BPF_MISC | BPF_TAX:
313 		case BPF_MISC | BPF_TXA:
314 		case BPF_LD | BPF_MEM:
315 		case BPF_LDX | BPF_MEM:
316 		case BPF_ST:
317 		case BPF_STX:
318 		case BPF_JMP | BPF_JA:
319 		case BPF_JMP | BPF_JEQ | BPF_K:
320 		case BPF_JMP | BPF_JEQ | BPF_X:
321 		case BPF_JMP | BPF_JGE | BPF_K:
322 		case BPF_JMP | BPF_JGE | BPF_X:
323 		case BPF_JMP | BPF_JGT | BPF_K:
324 		case BPF_JMP | BPF_JGT | BPF_X:
325 		case BPF_JMP | BPF_JSET | BPF_K:
326 		case BPF_JMP | BPF_JSET | BPF_X:
327 			continue;
328 		default:
329 			return -EINVAL;
330 		}
331 	}
332 	return 0;
333 }
334 
335 #ifdef SECCOMP_ARCH_NATIVE
336 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap,
337 						    size_t bitmap_size,
338 						    int syscall_nr)
339 {
340 	if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size))
341 		return false;
342 	syscall_nr = array_index_nospec(syscall_nr, bitmap_size);
343 
344 	return test_bit(syscall_nr, bitmap);
345 }
346 
347 /**
348  * seccomp_cache_check_allow - lookup seccomp cache
349  * @sfilter: The seccomp filter
350  * @sd: The seccomp data to lookup the cache with
351  *
352  * Returns true if the seccomp_data is cached and allowed.
353  */
354 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
355 					     const struct seccomp_data *sd)
356 {
357 	int syscall_nr = sd->nr;
358 	const struct action_cache *cache = &sfilter->cache;
359 
360 #ifndef SECCOMP_ARCH_COMPAT
361 	/* A native-only architecture doesn't need to check sd->arch. */
362 	return seccomp_cache_check_allow_bitmap(cache->allow_native,
363 						SECCOMP_ARCH_NATIVE_NR,
364 						syscall_nr);
365 #else
366 	if (likely(sd->arch == SECCOMP_ARCH_NATIVE))
367 		return seccomp_cache_check_allow_bitmap(cache->allow_native,
368 							SECCOMP_ARCH_NATIVE_NR,
369 							syscall_nr);
370 	if (likely(sd->arch == SECCOMP_ARCH_COMPAT))
371 		return seccomp_cache_check_allow_bitmap(cache->allow_compat,
372 							SECCOMP_ARCH_COMPAT_NR,
373 							syscall_nr);
374 #endif /* SECCOMP_ARCH_COMPAT */
375 
376 	WARN_ON_ONCE(true);
377 	return false;
378 }
379 #endif /* SECCOMP_ARCH_NATIVE */
380 
381 /**
382  * seccomp_run_filters - evaluates all seccomp filters against @sd
383  * @sd: optional seccomp data to be passed to filters
384  * @match: stores struct seccomp_filter that resulted in the return value,
385  *         unless filter returned SECCOMP_RET_ALLOW, in which case it will
386  *         be unchanged.
387  *
388  * Returns valid seccomp BPF response codes.
389  */
390 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL)))
391 static u32 seccomp_run_filters(const struct seccomp_data *sd,
392 			       struct seccomp_filter **match)
393 {
394 	u32 ret = SECCOMP_RET_ALLOW;
395 	/* Make sure cross-thread synced filter points somewhere sane. */
396 	struct seccomp_filter *f =
397 			READ_ONCE(current->seccomp.filter);
398 
399 	/* Ensure unexpected behavior doesn't result in failing open. */
400 	if (WARN_ON(f == NULL))
401 		return SECCOMP_RET_KILL_PROCESS;
402 
403 	if (seccomp_cache_check_allow(f, sd))
404 		return SECCOMP_RET_ALLOW;
405 
406 	/*
407 	 * All filters in the list are evaluated and the lowest BPF return
408 	 * value always takes priority (ignoring the DATA).
409 	 */
410 	for (; f; f = f->prev) {
411 		u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd);
412 
413 		if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) {
414 			ret = cur_ret;
415 			*match = f;
416 		}
417 	}
418 	return ret;
419 }
420 #endif /* CONFIG_SECCOMP_FILTER */
421 
422 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode)
423 {
424 	assert_spin_locked(&current->sighand->siglock);
425 
426 	if (current->seccomp.mode && current->seccomp.mode != seccomp_mode)
427 		return false;
428 
429 	return true;
430 }
431 
432 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { }
433 
434 static inline void seccomp_assign_mode(struct task_struct *task,
435 				       unsigned long seccomp_mode,
436 				       unsigned long flags)
437 {
438 	assert_spin_locked(&task->sighand->siglock);
439 
440 	task->seccomp.mode = seccomp_mode;
441 	/*
442 	 * Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and
443 	 * filter) is set.
444 	 */
445 	smp_mb__before_atomic();
446 	/* Assume default seccomp processes want spec flaw mitigation. */
447 	if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0)
448 		arch_seccomp_spec_mitigate(task);
449 	set_task_syscall_work(task, SECCOMP);
450 }
451 
452 #ifdef CONFIG_SECCOMP_FILTER
453 /* Returns 1 if the parent is an ancestor of the child. */
454 static int is_ancestor(struct seccomp_filter *parent,
455 		       struct seccomp_filter *child)
456 {
457 	/* NULL is the root ancestor. */
458 	if (parent == NULL)
459 		return 1;
460 	for (; child; child = child->prev)
461 		if (child == parent)
462 			return 1;
463 	return 0;
464 }
465 
466 /**
467  * seccomp_can_sync_threads: checks if all threads can be synchronized
468  *
469  * Expects sighand and cred_guard_mutex locks to be held.
470  *
471  * Returns 0 on success, -ve on error, or the pid of a thread which was
472  * either not in the correct seccomp mode or did not have an ancestral
473  * seccomp filter.
474  */
475 static inline pid_t seccomp_can_sync_threads(void)
476 {
477 	struct task_struct *thread, *caller;
478 
479 	BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
480 	assert_spin_locked(&current->sighand->siglock);
481 
482 	/* Validate all threads being eligible for synchronization. */
483 	caller = current;
484 	for_each_thread(caller, thread) {
485 		pid_t failed;
486 
487 		/* Skip current, since it is initiating the sync. */
488 		if (thread == caller)
489 			continue;
490 
491 		if (thread->seccomp.mode == SECCOMP_MODE_DISABLED ||
492 		    (thread->seccomp.mode == SECCOMP_MODE_FILTER &&
493 		     is_ancestor(thread->seccomp.filter,
494 				 caller->seccomp.filter)))
495 			continue;
496 
497 		/* Return the first thread that cannot be synchronized. */
498 		failed = task_pid_vnr(thread);
499 		/* If the pid cannot be resolved, then return -ESRCH */
500 		if (WARN_ON(failed == 0))
501 			failed = -ESRCH;
502 		return failed;
503 	}
504 
505 	return 0;
506 }
507 
508 static inline void seccomp_filter_free(struct seccomp_filter *filter)
509 {
510 	if (filter) {
511 		bpf_prog_destroy(filter->prog);
512 		kfree(filter);
513 	}
514 }
515 
516 static void __seccomp_filter_orphan(struct seccomp_filter *orig)
517 {
518 	while (orig && refcount_dec_and_test(&orig->users)) {
519 		if (waitqueue_active(&orig->wqh))
520 			wake_up_poll(&orig->wqh, EPOLLHUP);
521 		orig = orig->prev;
522 	}
523 }
524 
525 static void __put_seccomp_filter(struct seccomp_filter *orig)
526 {
527 	/* Clean up single-reference branches iteratively. */
528 	while (orig && refcount_dec_and_test(&orig->refs)) {
529 		struct seccomp_filter *freeme = orig;
530 		orig = orig->prev;
531 		seccomp_filter_free(freeme);
532 	}
533 }
534 
535 static void __seccomp_filter_release(struct seccomp_filter *orig)
536 {
537 	/* Notify about any unused filters in the task's former filter tree. */
538 	__seccomp_filter_orphan(orig);
539 	/* Finally drop all references to the task's former tree. */
540 	__put_seccomp_filter(orig);
541 }
542 
543 /**
544  * seccomp_filter_release - Detach the task from its filter tree,
545  *			    drop its reference count, and notify
546  *			    about unused filters
547  *
548  * This function should only be called when the task is exiting as
549  * it detaches it from its filter tree. As such, READ_ONCE() and
550  * barriers are not needed here, as would normally be needed.
551  */
552 void seccomp_filter_release(struct task_struct *tsk)
553 {
554 	struct seccomp_filter *orig = tsk->seccomp.filter;
555 
556 	/* We are effectively holding the siglock by not having any sighand. */
557 	WARN_ON(tsk->sighand != NULL);
558 
559 	/* Detach task from its filter tree. */
560 	tsk->seccomp.filter = NULL;
561 	__seccomp_filter_release(orig);
562 }
563 
564 /**
565  * seccomp_sync_threads: sets all threads to use current's filter
566  *
567  * Expects sighand and cred_guard_mutex locks to be held, and for
568  * seccomp_can_sync_threads() to have returned success already
569  * without dropping the locks.
570  *
571  */
572 static inline void seccomp_sync_threads(unsigned long flags)
573 {
574 	struct task_struct *thread, *caller;
575 
576 	BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
577 	assert_spin_locked(&current->sighand->siglock);
578 
579 	/* Synchronize all threads. */
580 	caller = current;
581 	for_each_thread(caller, thread) {
582 		/* Skip current, since it needs no changes. */
583 		if (thread == caller)
584 			continue;
585 
586 		/* Get a task reference for the new leaf node. */
587 		get_seccomp_filter(caller);
588 
589 		/*
590 		 * Drop the task reference to the shared ancestor since
591 		 * current's path will hold a reference.  (This also
592 		 * allows a put before the assignment.)
593 		 */
594 		__seccomp_filter_release(thread->seccomp.filter);
595 
596 		/* Make our new filter tree visible. */
597 		smp_store_release(&thread->seccomp.filter,
598 				  caller->seccomp.filter);
599 		atomic_set(&thread->seccomp.filter_count,
600 			   atomic_read(&thread->seccomp.filter_count));
601 
602 		/*
603 		 * Don't let an unprivileged task work around
604 		 * the no_new_privs restriction by creating
605 		 * a thread that sets it up, enters seccomp,
606 		 * then dies.
607 		 */
608 		if (task_no_new_privs(caller))
609 			task_set_no_new_privs(thread);
610 
611 		/*
612 		 * Opt the other thread into seccomp if needed.
613 		 * As threads are considered to be trust-realm
614 		 * equivalent (see ptrace_may_access), it is safe to
615 		 * allow one thread to transition the other.
616 		 */
617 		if (thread->seccomp.mode == SECCOMP_MODE_DISABLED)
618 			seccomp_assign_mode(thread, SECCOMP_MODE_FILTER,
619 					    flags);
620 	}
621 }
622 
623 /**
624  * seccomp_prepare_filter: Prepares a seccomp filter for use.
625  * @fprog: BPF program to install
626  *
627  * Returns filter on success or an ERR_PTR on failure.
628  */
629 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog)
630 {
631 	struct seccomp_filter *sfilter;
632 	int ret;
633 	const bool save_orig =
634 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE)
635 		true;
636 #else
637 		false;
638 #endif
639 
640 	if (fprog->len == 0 || fprog->len > BPF_MAXINSNS)
641 		return ERR_PTR(-EINVAL);
642 
643 	BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter));
644 
645 	/*
646 	 * Installing a seccomp filter requires that the task has
647 	 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs.
648 	 * This avoids scenarios where unprivileged tasks can affect the
649 	 * behavior of privileged children.
650 	 */
651 	if (!task_no_new_privs(current) &&
652 			!ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN))
653 		return ERR_PTR(-EACCES);
654 
655 	/* Allocate a new seccomp_filter */
656 	sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN);
657 	if (!sfilter)
658 		return ERR_PTR(-ENOMEM);
659 
660 	mutex_init(&sfilter->notify_lock);
661 	ret = bpf_prog_create_from_user(&sfilter->prog, fprog,
662 					seccomp_check_filter, save_orig);
663 	if (ret < 0) {
664 		kfree(sfilter);
665 		return ERR_PTR(ret);
666 	}
667 
668 	refcount_set(&sfilter->refs, 1);
669 	refcount_set(&sfilter->users, 1);
670 	init_waitqueue_head(&sfilter->wqh);
671 
672 	return sfilter;
673 }
674 
675 /**
676  * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog
677  * @user_filter: pointer to the user data containing a sock_fprog.
678  *
679  * Returns 0 on success and non-zero otherwise.
680  */
681 static struct seccomp_filter *
682 seccomp_prepare_user_filter(const char __user *user_filter)
683 {
684 	struct sock_fprog fprog;
685 	struct seccomp_filter *filter = ERR_PTR(-EFAULT);
686 
687 #ifdef CONFIG_COMPAT
688 	if (in_compat_syscall()) {
689 		struct compat_sock_fprog fprog32;
690 		if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))
691 			goto out;
692 		fprog.len = fprog32.len;
693 		fprog.filter = compat_ptr(fprog32.filter);
694 	} else /* falls through to the if below. */
695 #endif
696 	if (copy_from_user(&fprog, user_filter, sizeof(fprog)))
697 		goto out;
698 	filter = seccomp_prepare_filter(&fprog);
699 out:
700 	return filter;
701 }
702 
703 #ifdef SECCOMP_ARCH_NATIVE
704 /**
705  * seccomp_is_const_allow - check if filter is constant allow with given data
706  * @fprog: The BPF programs
707  * @sd: The seccomp data to check against, only syscall number and arch
708  *      number are considered constant.
709  */
710 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog,
711 				   struct seccomp_data *sd)
712 {
713 	unsigned int reg_value = 0;
714 	unsigned int pc;
715 	bool op_res;
716 
717 	if (WARN_ON_ONCE(!fprog))
718 		return false;
719 
720 	for (pc = 0; pc < fprog->len; pc++) {
721 		struct sock_filter *insn = &fprog->filter[pc];
722 		u16 code = insn->code;
723 		u32 k = insn->k;
724 
725 		switch (code) {
726 		case BPF_LD | BPF_W | BPF_ABS:
727 			switch (k) {
728 			case offsetof(struct seccomp_data, nr):
729 				reg_value = sd->nr;
730 				break;
731 			case offsetof(struct seccomp_data, arch):
732 				reg_value = sd->arch;
733 				break;
734 			default:
735 				/* can't optimize (non-constant value load) */
736 				return false;
737 			}
738 			break;
739 		case BPF_RET | BPF_K:
740 			/* reached return with constant values only, check allow */
741 			return k == SECCOMP_RET_ALLOW;
742 		case BPF_JMP | BPF_JA:
743 			pc += insn->k;
744 			break;
745 		case BPF_JMP | BPF_JEQ | BPF_K:
746 		case BPF_JMP | BPF_JGE | BPF_K:
747 		case BPF_JMP | BPF_JGT | BPF_K:
748 		case BPF_JMP | BPF_JSET | BPF_K:
749 			switch (BPF_OP(code)) {
750 			case BPF_JEQ:
751 				op_res = reg_value == k;
752 				break;
753 			case BPF_JGE:
754 				op_res = reg_value >= k;
755 				break;
756 			case BPF_JGT:
757 				op_res = reg_value > k;
758 				break;
759 			case BPF_JSET:
760 				op_res = !!(reg_value & k);
761 				break;
762 			default:
763 				/* can't optimize (unknown jump) */
764 				return false;
765 			}
766 
767 			pc += op_res ? insn->jt : insn->jf;
768 			break;
769 		case BPF_ALU | BPF_AND | BPF_K:
770 			reg_value &= k;
771 			break;
772 		default:
773 			/* can't optimize (unknown insn) */
774 			return false;
775 		}
776 	}
777 
778 	/* ran off the end of the filter?! */
779 	WARN_ON(1);
780 	return false;
781 }
782 
783 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter,
784 					 void *bitmap, const void *bitmap_prev,
785 					 size_t bitmap_size, int arch)
786 {
787 	struct sock_fprog_kern *fprog = sfilter->prog->orig_prog;
788 	struct seccomp_data sd;
789 	int nr;
790 
791 	if (bitmap_prev) {
792 		/* The new filter must be as restrictive as the last. */
793 		bitmap_copy(bitmap, bitmap_prev, bitmap_size);
794 	} else {
795 		/* Before any filters, all syscalls are always allowed. */
796 		bitmap_fill(bitmap, bitmap_size);
797 	}
798 
799 	for (nr = 0; nr < bitmap_size; nr++) {
800 		/* No bitmap change: not a cacheable action. */
801 		if (!test_bit(nr, bitmap))
802 			continue;
803 
804 		sd.nr = nr;
805 		sd.arch = arch;
806 
807 		/* No bitmap change: continue to always allow. */
808 		if (seccomp_is_const_allow(fprog, &sd))
809 			continue;
810 
811 		/*
812 		 * Not a cacheable action: always run filters.
813 		 * atomic clear_bit() not needed, filter not visible yet.
814 		 */
815 		__clear_bit(nr, bitmap);
816 	}
817 }
818 
819 /**
820  * seccomp_cache_prepare - emulate the filter to find cachable syscalls
821  * @sfilter: The seccomp filter
822  *
823  * Returns 0 if successful or -errno if error occurred.
824  */
825 static void seccomp_cache_prepare(struct seccomp_filter *sfilter)
826 {
827 	struct action_cache *cache = &sfilter->cache;
828 	const struct action_cache *cache_prev =
829 		sfilter->prev ? &sfilter->prev->cache : NULL;
830 
831 	seccomp_cache_prepare_bitmap(sfilter, cache->allow_native,
832 				     cache_prev ? cache_prev->allow_native : NULL,
833 				     SECCOMP_ARCH_NATIVE_NR,
834 				     SECCOMP_ARCH_NATIVE);
835 
836 #ifdef SECCOMP_ARCH_COMPAT
837 	seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat,
838 				     cache_prev ? cache_prev->allow_compat : NULL,
839 				     SECCOMP_ARCH_COMPAT_NR,
840 				     SECCOMP_ARCH_COMPAT);
841 #endif /* SECCOMP_ARCH_COMPAT */
842 }
843 #endif /* SECCOMP_ARCH_NATIVE */
844 
845 /**
846  * seccomp_attach_filter: validate and attach filter
847  * @flags:  flags to change filter behavior
848  * @filter: seccomp filter to add to the current process
849  *
850  * Caller must be holding current->sighand->siglock lock.
851  *
852  * Returns 0 on success, -ve on error, or
853  *   - in TSYNC mode: the pid of a thread which was either not in the correct
854  *     seccomp mode or did not have an ancestral seccomp filter
855  *   - in NEW_LISTENER mode: the fd of the new listener
856  */
857 static long seccomp_attach_filter(unsigned int flags,
858 				  struct seccomp_filter *filter)
859 {
860 	unsigned long total_insns;
861 	struct seccomp_filter *walker;
862 
863 	assert_spin_locked(&current->sighand->siglock);
864 
865 	/* Validate resulting filter length. */
866 	total_insns = filter->prog->len;
867 	for (walker = current->seccomp.filter; walker; walker = walker->prev)
868 		total_insns += walker->prog->len + 4;  /* 4 instr penalty */
869 	if (total_insns > MAX_INSNS_PER_PATH)
870 		return -ENOMEM;
871 
872 	/* If thread sync has been requested, check that it is possible. */
873 	if (flags & SECCOMP_FILTER_FLAG_TSYNC) {
874 		int ret;
875 
876 		ret = seccomp_can_sync_threads();
877 		if (ret) {
878 			if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH)
879 				return -ESRCH;
880 			else
881 				return ret;
882 		}
883 	}
884 
885 	/* Set log flag, if present. */
886 	if (flags & SECCOMP_FILTER_FLAG_LOG)
887 		filter->log = true;
888 
889 	/*
890 	 * If there is an existing filter, make it the prev and don't drop its
891 	 * task reference.
892 	 */
893 	filter->prev = current->seccomp.filter;
894 	seccomp_cache_prepare(filter);
895 	current->seccomp.filter = filter;
896 	atomic_inc(&current->seccomp.filter_count);
897 
898 	/* Now that the new filter is in place, synchronize to all threads. */
899 	if (flags & SECCOMP_FILTER_FLAG_TSYNC)
900 		seccomp_sync_threads(flags);
901 
902 	return 0;
903 }
904 
905 static void __get_seccomp_filter(struct seccomp_filter *filter)
906 {
907 	refcount_inc(&filter->refs);
908 }
909 
910 /* get_seccomp_filter - increments the reference count of the filter on @tsk */
911 void get_seccomp_filter(struct task_struct *tsk)
912 {
913 	struct seccomp_filter *orig = tsk->seccomp.filter;
914 	if (!orig)
915 		return;
916 	__get_seccomp_filter(orig);
917 	refcount_inc(&orig->users);
918 }
919 
920 static void seccomp_init_siginfo(kernel_siginfo_t *info, int syscall, int reason)
921 {
922 	clear_siginfo(info);
923 	info->si_signo = SIGSYS;
924 	info->si_code = SYS_SECCOMP;
925 	info->si_call_addr = (void __user *)KSTK_EIP(current);
926 	info->si_errno = reason;
927 	info->si_arch = syscall_get_arch(current);
928 	info->si_syscall = syscall;
929 }
930 
931 /**
932  * seccomp_send_sigsys - signals the task to allow in-process syscall emulation
933  * @syscall: syscall number to send to userland
934  * @reason: filter-supplied reason code to send to userland (via si_errno)
935  *
936  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
937  */
938 static void seccomp_send_sigsys(int syscall, int reason)
939 {
940 	struct kernel_siginfo info;
941 	seccomp_init_siginfo(&info, syscall, reason);
942 	force_sig_info(&info);
943 }
944 #endif	/* CONFIG_SECCOMP_FILTER */
945 
946 /* For use with seccomp_actions_logged */
947 #define SECCOMP_LOG_KILL_PROCESS	(1 << 0)
948 #define SECCOMP_LOG_KILL_THREAD		(1 << 1)
949 #define SECCOMP_LOG_TRAP		(1 << 2)
950 #define SECCOMP_LOG_ERRNO		(1 << 3)
951 #define SECCOMP_LOG_TRACE		(1 << 4)
952 #define SECCOMP_LOG_LOG			(1 << 5)
953 #define SECCOMP_LOG_ALLOW		(1 << 6)
954 #define SECCOMP_LOG_USER_NOTIF		(1 << 7)
955 
956 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS |
957 				    SECCOMP_LOG_KILL_THREAD  |
958 				    SECCOMP_LOG_TRAP  |
959 				    SECCOMP_LOG_ERRNO |
960 				    SECCOMP_LOG_USER_NOTIF |
961 				    SECCOMP_LOG_TRACE |
962 				    SECCOMP_LOG_LOG;
963 
964 static inline void seccomp_log(unsigned long syscall, long signr, u32 action,
965 			       bool requested)
966 {
967 	bool log = false;
968 
969 	switch (action) {
970 	case SECCOMP_RET_ALLOW:
971 		break;
972 	case SECCOMP_RET_TRAP:
973 		log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP;
974 		break;
975 	case SECCOMP_RET_ERRNO:
976 		log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO;
977 		break;
978 	case SECCOMP_RET_TRACE:
979 		log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE;
980 		break;
981 	case SECCOMP_RET_USER_NOTIF:
982 		log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF;
983 		break;
984 	case SECCOMP_RET_LOG:
985 		log = seccomp_actions_logged & SECCOMP_LOG_LOG;
986 		break;
987 	case SECCOMP_RET_KILL_THREAD:
988 		log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD;
989 		break;
990 	case SECCOMP_RET_KILL_PROCESS:
991 	default:
992 		log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS;
993 	}
994 
995 	/*
996 	 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the
997 	 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence
998 	 * any action from being logged by removing the action name from the
999 	 * seccomp_actions_logged sysctl.
1000 	 */
1001 	if (!log)
1002 		return;
1003 
1004 	audit_seccomp(syscall, signr, action);
1005 }
1006 
1007 /*
1008  * Secure computing mode 1 allows only read/write/exit/sigreturn.
1009  * To be fully secure this must be combined with rlimit
1010  * to limit the stack allocations too.
1011  */
1012 static const int mode1_syscalls[] = {
1013 	__NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn,
1014 	-1, /* negative terminated */
1015 };
1016 
1017 static void __secure_computing_strict(int this_syscall)
1018 {
1019 	const int *allowed_syscalls = mode1_syscalls;
1020 #ifdef CONFIG_COMPAT
1021 	if (in_compat_syscall())
1022 		allowed_syscalls = get_compat_mode1_syscalls();
1023 #endif
1024 	do {
1025 		if (*allowed_syscalls == this_syscall)
1026 			return;
1027 	} while (*++allowed_syscalls != -1);
1028 
1029 #ifdef SECCOMP_DEBUG
1030 	dump_stack();
1031 #endif
1032 	seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true);
1033 	do_exit(SIGKILL);
1034 }
1035 
1036 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER
1037 void secure_computing_strict(int this_syscall)
1038 {
1039 	int mode = current->seccomp.mode;
1040 
1041 	if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1042 	    unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1043 		return;
1044 
1045 	if (mode == SECCOMP_MODE_DISABLED)
1046 		return;
1047 	else if (mode == SECCOMP_MODE_STRICT)
1048 		__secure_computing_strict(this_syscall);
1049 	else
1050 		BUG();
1051 }
1052 #else
1053 
1054 #ifdef CONFIG_SECCOMP_FILTER
1055 static u64 seccomp_next_notify_id(struct seccomp_filter *filter)
1056 {
1057 	/*
1058 	 * Note: overflow is ok here, the id just needs to be unique per
1059 	 * filter.
1060 	 */
1061 	lockdep_assert_held(&filter->notify_lock);
1062 	return filter->notif->next_id++;
1063 }
1064 
1065 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd)
1066 {
1067 	/*
1068 	 * Remove the notification, and reset the list pointers, indicating
1069 	 * that it has been handled.
1070 	 */
1071 	list_del_init(&addfd->list);
1072 	addfd->ret = receive_fd_replace(addfd->fd, addfd->file, addfd->flags);
1073 	complete(&addfd->completion);
1074 }
1075 
1076 static int seccomp_do_user_notification(int this_syscall,
1077 					struct seccomp_filter *match,
1078 					const struct seccomp_data *sd)
1079 {
1080 	int err;
1081 	u32 flags = 0;
1082 	long ret = 0;
1083 	struct seccomp_knotif n = {};
1084 	struct seccomp_kaddfd *addfd, *tmp;
1085 
1086 	mutex_lock(&match->notify_lock);
1087 	err = -ENOSYS;
1088 	if (!match->notif)
1089 		goto out;
1090 
1091 	n.task = current;
1092 	n.state = SECCOMP_NOTIFY_INIT;
1093 	n.data = sd;
1094 	n.id = seccomp_next_notify_id(match);
1095 	init_completion(&n.ready);
1096 	list_add(&n.list, &match->notif->notifications);
1097 	INIT_LIST_HEAD(&n.addfd);
1098 
1099 	up(&match->notif->request);
1100 	wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM);
1101 	mutex_unlock(&match->notify_lock);
1102 
1103 	/*
1104 	 * This is where we wait for a reply from userspace.
1105 	 */
1106 wait:
1107 	err = wait_for_completion_interruptible(&n.ready);
1108 	mutex_lock(&match->notify_lock);
1109 	if (err == 0) {
1110 		/* Check if we were woken up by a addfd message */
1111 		addfd = list_first_entry_or_null(&n.addfd,
1112 						 struct seccomp_kaddfd, list);
1113 		if (addfd && n.state != SECCOMP_NOTIFY_REPLIED) {
1114 			seccomp_handle_addfd(addfd);
1115 			mutex_unlock(&match->notify_lock);
1116 			goto wait;
1117 		}
1118 		ret = n.val;
1119 		err = n.error;
1120 		flags = n.flags;
1121 	}
1122 
1123 	/* If there were any pending addfd calls, clear them out */
1124 	list_for_each_entry_safe(addfd, tmp, &n.addfd, list) {
1125 		/* The process went away before we got a chance to handle it */
1126 		addfd->ret = -ESRCH;
1127 		list_del_init(&addfd->list);
1128 		complete(&addfd->completion);
1129 	}
1130 
1131 	/*
1132 	 * Note that it's possible the listener died in between the time when
1133 	 * we were notified of a response (or a signal) and when we were able to
1134 	 * re-acquire the lock, so only delete from the list if the
1135 	 * notification actually exists.
1136 	 *
1137 	 * Also note that this test is only valid because there's no way to
1138 	 * *reattach* to a notifier right now. If one is added, we'll need to
1139 	 * keep track of the notif itself and make sure they match here.
1140 	 */
1141 	if (match->notif)
1142 		list_del(&n.list);
1143 out:
1144 	mutex_unlock(&match->notify_lock);
1145 
1146 	/* Userspace requests to continue the syscall. */
1147 	if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1148 		return 0;
1149 
1150 	syscall_set_return_value(current, current_pt_regs(),
1151 				 err, ret);
1152 	return -1;
1153 }
1154 
1155 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1156 			    const bool recheck_after_trace)
1157 {
1158 	u32 filter_ret, action;
1159 	struct seccomp_filter *match = NULL;
1160 	int data;
1161 	struct seccomp_data sd_local;
1162 
1163 	/*
1164 	 * Make sure that any changes to mode from another thread have
1165 	 * been seen after SYSCALL_WORK_SECCOMP was seen.
1166 	 */
1167 	rmb();
1168 
1169 	if (!sd) {
1170 		populate_seccomp_data(&sd_local);
1171 		sd = &sd_local;
1172 	}
1173 
1174 	filter_ret = seccomp_run_filters(sd, &match);
1175 	data = filter_ret & SECCOMP_RET_DATA;
1176 	action = filter_ret & SECCOMP_RET_ACTION_FULL;
1177 
1178 	switch (action) {
1179 	case SECCOMP_RET_ERRNO:
1180 		/* Set low-order bits as an errno, capped at MAX_ERRNO. */
1181 		if (data > MAX_ERRNO)
1182 			data = MAX_ERRNO;
1183 		syscall_set_return_value(current, current_pt_regs(),
1184 					 -data, 0);
1185 		goto skip;
1186 
1187 	case SECCOMP_RET_TRAP:
1188 		/* Show the handler the original registers. */
1189 		syscall_rollback(current, current_pt_regs());
1190 		/* Let the filter pass back 16 bits of data. */
1191 		seccomp_send_sigsys(this_syscall, data);
1192 		goto skip;
1193 
1194 	case SECCOMP_RET_TRACE:
1195 		/* We've been put in this state by the ptracer already. */
1196 		if (recheck_after_trace)
1197 			return 0;
1198 
1199 		/* ENOSYS these calls if there is no tracer attached. */
1200 		if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) {
1201 			syscall_set_return_value(current,
1202 						 current_pt_regs(),
1203 						 -ENOSYS, 0);
1204 			goto skip;
1205 		}
1206 
1207 		/* Allow the BPF to provide the event message */
1208 		ptrace_event(PTRACE_EVENT_SECCOMP, data);
1209 		/*
1210 		 * The delivery of a fatal signal during event
1211 		 * notification may silently skip tracer notification,
1212 		 * which could leave us with a potentially unmodified
1213 		 * syscall that the tracer would have liked to have
1214 		 * changed. Since the process is about to die, we just
1215 		 * force the syscall to be skipped and let the signal
1216 		 * kill the process and correctly handle any tracer exit
1217 		 * notifications.
1218 		 */
1219 		if (fatal_signal_pending(current))
1220 			goto skip;
1221 		/* Check if the tracer forced the syscall to be skipped. */
1222 		this_syscall = syscall_get_nr(current, current_pt_regs());
1223 		if (this_syscall < 0)
1224 			goto skip;
1225 
1226 		/*
1227 		 * Recheck the syscall, since it may have changed. This
1228 		 * intentionally uses a NULL struct seccomp_data to force
1229 		 * a reload of all registers. This does not goto skip since
1230 		 * a skip would have already been reported.
1231 		 */
1232 		if (__seccomp_filter(this_syscall, NULL, true))
1233 			return -1;
1234 
1235 		return 0;
1236 
1237 	case SECCOMP_RET_USER_NOTIF:
1238 		if (seccomp_do_user_notification(this_syscall, match, sd))
1239 			goto skip;
1240 
1241 		return 0;
1242 
1243 	case SECCOMP_RET_LOG:
1244 		seccomp_log(this_syscall, 0, action, true);
1245 		return 0;
1246 
1247 	case SECCOMP_RET_ALLOW:
1248 		/*
1249 		 * Note that the "match" filter will always be NULL for
1250 		 * this action since SECCOMP_RET_ALLOW is the starting
1251 		 * state in seccomp_run_filters().
1252 		 */
1253 		return 0;
1254 
1255 	case SECCOMP_RET_KILL_THREAD:
1256 	case SECCOMP_RET_KILL_PROCESS:
1257 	default:
1258 		seccomp_log(this_syscall, SIGSYS, action, true);
1259 		/* Dump core only if this is the last remaining thread. */
1260 		if (action != SECCOMP_RET_KILL_THREAD ||
1261 		    get_nr_threads(current) == 1) {
1262 			kernel_siginfo_t info;
1263 
1264 			/* Show the original registers in the dump. */
1265 			syscall_rollback(current, current_pt_regs());
1266 			/* Trigger a manual coredump since do_exit skips it. */
1267 			seccomp_init_siginfo(&info, this_syscall, data);
1268 			do_coredump(&info);
1269 		}
1270 		if (action == SECCOMP_RET_KILL_THREAD)
1271 			do_exit(SIGSYS);
1272 		else
1273 			do_group_exit(SIGSYS);
1274 	}
1275 
1276 	unreachable();
1277 
1278 skip:
1279 	seccomp_log(this_syscall, 0, action, match ? match->log : false);
1280 	return -1;
1281 }
1282 #else
1283 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1284 			    const bool recheck_after_trace)
1285 {
1286 	BUG();
1287 }
1288 #endif
1289 
1290 int __secure_computing(const struct seccomp_data *sd)
1291 {
1292 	int mode = current->seccomp.mode;
1293 	int this_syscall;
1294 
1295 	if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1296 	    unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1297 		return 0;
1298 
1299 	this_syscall = sd ? sd->nr :
1300 		syscall_get_nr(current, current_pt_regs());
1301 
1302 	switch (mode) {
1303 	case SECCOMP_MODE_STRICT:
1304 		__secure_computing_strict(this_syscall);  /* may call do_exit */
1305 		return 0;
1306 	case SECCOMP_MODE_FILTER:
1307 		return __seccomp_filter(this_syscall, sd, false);
1308 	default:
1309 		BUG();
1310 	}
1311 }
1312 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */
1313 
1314 long prctl_get_seccomp(void)
1315 {
1316 	return current->seccomp.mode;
1317 }
1318 
1319 /**
1320  * seccomp_set_mode_strict: internal function for setting strict seccomp
1321  *
1322  * Once current->seccomp.mode is non-zero, it may not be changed.
1323  *
1324  * Returns 0 on success or -EINVAL on failure.
1325  */
1326 static long seccomp_set_mode_strict(void)
1327 {
1328 	const unsigned long seccomp_mode = SECCOMP_MODE_STRICT;
1329 	long ret = -EINVAL;
1330 
1331 	spin_lock_irq(&current->sighand->siglock);
1332 
1333 	if (!seccomp_may_assign_mode(seccomp_mode))
1334 		goto out;
1335 
1336 #ifdef TIF_NOTSC
1337 	disable_TSC();
1338 #endif
1339 	seccomp_assign_mode(current, seccomp_mode, 0);
1340 	ret = 0;
1341 
1342 out:
1343 	spin_unlock_irq(&current->sighand->siglock);
1344 
1345 	return ret;
1346 }
1347 
1348 #ifdef CONFIG_SECCOMP_FILTER
1349 static void seccomp_notify_free(struct seccomp_filter *filter)
1350 {
1351 	kfree(filter->notif);
1352 	filter->notif = NULL;
1353 }
1354 
1355 static void seccomp_notify_detach(struct seccomp_filter *filter)
1356 {
1357 	struct seccomp_knotif *knotif;
1358 
1359 	if (!filter)
1360 		return;
1361 
1362 	mutex_lock(&filter->notify_lock);
1363 
1364 	/*
1365 	 * If this file is being closed because e.g. the task who owned it
1366 	 * died, let's wake everyone up who was waiting on us.
1367 	 */
1368 	list_for_each_entry(knotif, &filter->notif->notifications, list) {
1369 		if (knotif->state == SECCOMP_NOTIFY_REPLIED)
1370 			continue;
1371 
1372 		knotif->state = SECCOMP_NOTIFY_REPLIED;
1373 		knotif->error = -ENOSYS;
1374 		knotif->val = 0;
1375 
1376 		/*
1377 		 * We do not need to wake up any pending addfd messages, as
1378 		 * the notifier will do that for us, as this just looks
1379 		 * like a standard reply.
1380 		 */
1381 		complete(&knotif->ready);
1382 	}
1383 
1384 	seccomp_notify_free(filter);
1385 	mutex_unlock(&filter->notify_lock);
1386 }
1387 
1388 static int seccomp_notify_release(struct inode *inode, struct file *file)
1389 {
1390 	struct seccomp_filter *filter = file->private_data;
1391 
1392 	seccomp_notify_detach(filter);
1393 	__put_seccomp_filter(filter);
1394 	return 0;
1395 }
1396 
1397 /* must be called with notif_lock held */
1398 static inline struct seccomp_knotif *
1399 find_notification(struct seccomp_filter *filter, u64 id)
1400 {
1401 	struct seccomp_knotif *cur;
1402 
1403 	lockdep_assert_held(&filter->notify_lock);
1404 
1405 	list_for_each_entry(cur, &filter->notif->notifications, list) {
1406 		if (cur->id == id)
1407 			return cur;
1408 	}
1409 
1410 	return NULL;
1411 }
1412 
1413 
1414 static long seccomp_notify_recv(struct seccomp_filter *filter,
1415 				void __user *buf)
1416 {
1417 	struct seccomp_knotif *knotif = NULL, *cur;
1418 	struct seccomp_notif unotif;
1419 	ssize_t ret;
1420 
1421 	/* Verify that we're not given garbage to keep struct extensible. */
1422 	ret = check_zeroed_user(buf, sizeof(unotif));
1423 	if (ret < 0)
1424 		return ret;
1425 	if (!ret)
1426 		return -EINVAL;
1427 
1428 	memset(&unotif, 0, sizeof(unotif));
1429 
1430 	ret = down_interruptible(&filter->notif->request);
1431 	if (ret < 0)
1432 		return ret;
1433 
1434 	mutex_lock(&filter->notify_lock);
1435 	list_for_each_entry(cur, &filter->notif->notifications, list) {
1436 		if (cur->state == SECCOMP_NOTIFY_INIT) {
1437 			knotif = cur;
1438 			break;
1439 		}
1440 	}
1441 
1442 	/*
1443 	 * If we didn't find a notification, it could be that the task was
1444 	 * interrupted by a fatal signal between the time we were woken and
1445 	 * when we were able to acquire the rw lock.
1446 	 */
1447 	if (!knotif) {
1448 		ret = -ENOENT;
1449 		goto out;
1450 	}
1451 
1452 	unotif.id = knotif->id;
1453 	unotif.pid = task_pid_vnr(knotif->task);
1454 	unotif.data = *(knotif->data);
1455 
1456 	knotif->state = SECCOMP_NOTIFY_SENT;
1457 	wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM);
1458 	ret = 0;
1459 out:
1460 	mutex_unlock(&filter->notify_lock);
1461 
1462 	if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) {
1463 		ret = -EFAULT;
1464 
1465 		/*
1466 		 * Userspace screwed up. To make sure that we keep this
1467 		 * notification alive, let's reset it back to INIT. It
1468 		 * may have died when we released the lock, so we need to make
1469 		 * sure it's still around.
1470 		 */
1471 		mutex_lock(&filter->notify_lock);
1472 		knotif = find_notification(filter, unotif.id);
1473 		if (knotif) {
1474 			knotif->state = SECCOMP_NOTIFY_INIT;
1475 			up(&filter->notif->request);
1476 		}
1477 		mutex_unlock(&filter->notify_lock);
1478 	}
1479 
1480 	return ret;
1481 }
1482 
1483 static long seccomp_notify_send(struct seccomp_filter *filter,
1484 				void __user *buf)
1485 {
1486 	struct seccomp_notif_resp resp = {};
1487 	struct seccomp_knotif *knotif;
1488 	long ret;
1489 
1490 	if (copy_from_user(&resp, buf, sizeof(resp)))
1491 		return -EFAULT;
1492 
1493 	if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1494 		return -EINVAL;
1495 
1496 	if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) &&
1497 	    (resp.error || resp.val))
1498 		return -EINVAL;
1499 
1500 	ret = mutex_lock_interruptible(&filter->notify_lock);
1501 	if (ret < 0)
1502 		return ret;
1503 
1504 	knotif = find_notification(filter, resp.id);
1505 	if (!knotif) {
1506 		ret = -ENOENT;
1507 		goto out;
1508 	}
1509 
1510 	/* Allow exactly one reply. */
1511 	if (knotif->state != SECCOMP_NOTIFY_SENT) {
1512 		ret = -EINPROGRESS;
1513 		goto out;
1514 	}
1515 
1516 	ret = 0;
1517 	knotif->state = SECCOMP_NOTIFY_REPLIED;
1518 	knotif->error = resp.error;
1519 	knotif->val = resp.val;
1520 	knotif->flags = resp.flags;
1521 	complete(&knotif->ready);
1522 out:
1523 	mutex_unlock(&filter->notify_lock);
1524 	return ret;
1525 }
1526 
1527 static long seccomp_notify_id_valid(struct seccomp_filter *filter,
1528 				    void __user *buf)
1529 {
1530 	struct seccomp_knotif *knotif;
1531 	u64 id;
1532 	long ret;
1533 
1534 	if (copy_from_user(&id, buf, sizeof(id)))
1535 		return -EFAULT;
1536 
1537 	ret = mutex_lock_interruptible(&filter->notify_lock);
1538 	if (ret < 0)
1539 		return ret;
1540 
1541 	knotif = find_notification(filter, id);
1542 	if (knotif && knotif->state == SECCOMP_NOTIFY_SENT)
1543 		ret = 0;
1544 	else
1545 		ret = -ENOENT;
1546 
1547 	mutex_unlock(&filter->notify_lock);
1548 	return ret;
1549 }
1550 
1551 static long seccomp_notify_addfd(struct seccomp_filter *filter,
1552 				 struct seccomp_notif_addfd __user *uaddfd,
1553 				 unsigned int size)
1554 {
1555 	struct seccomp_notif_addfd addfd;
1556 	struct seccomp_knotif *knotif;
1557 	struct seccomp_kaddfd kaddfd;
1558 	int ret;
1559 
1560 	BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0);
1561 	BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST);
1562 
1563 	if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE)
1564 		return -EINVAL;
1565 
1566 	ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size);
1567 	if (ret)
1568 		return ret;
1569 
1570 	if (addfd.newfd_flags & ~O_CLOEXEC)
1571 		return -EINVAL;
1572 
1573 	if (addfd.flags & ~SECCOMP_ADDFD_FLAG_SETFD)
1574 		return -EINVAL;
1575 
1576 	if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD))
1577 		return -EINVAL;
1578 
1579 	kaddfd.file = fget(addfd.srcfd);
1580 	if (!kaddfd.file)
1581 		return -EBADF;
1582 
1583 	kaddfd.flags = addfd.newfd_flags;
1584 	kaddfd.fd = (addfd.flags & SECCOMP_ADDFD_FLAG_SETFD) ?
1585 		    addfd.newfd : -1;
1586 	init_completion(&kaddfd.completion);
1587 
1588 	ret = mutex_lock_interruptible(&filter->notify_lock);
1589 	if (ret < 0)
1590 		goto out;
1591 
1592 	knotif = find_notification(filter, addfd.id);
1593 	if (!knotif) {
1594 		ret = -ENOENT;
1595 		goto out_unlock;
1596 	}
1597 
1598 	/*
1599 	 * We do not want to allow for FD injection to occur before the
1600 	 * notification has been picked up by a userspace handler, or after
1601 	 * the notification has been replied to.
1602 	 */
1603 	if (knotif->state != SECCOMP_NOTIFY_SENT) {
1604 		ret = -EINPROGRESS;
1605 		goto out_unlock;
1606 	}
1607 
1608 	list_add(&kaddfd.list, &knotif->addfd);
1609 	complete(&knotif->ready);
1610 	mutex_unlock(&filter->notify_lock);
1611 
1612 	/* Now we wait for it to be processed or be interrupted */
1613 	ret = wait_for_completion_interruptible(&kaddfd.completion);
1614 	if (ret == 0) {
1615 		/*
1616 		 * We had a successful completion. The other side has already
1617 		 * removed us from the addfd queue, and
1618 		 * wait_for_completion_interruptible has a memory barrier upon
1619 		 * success that lets us read this value directly without
1620 		 * locking.
1621 		 */
1622 		ret = kaddfd.ret;
1623 		goto out;
1624 	}
1625 
1626 	mutex_lock(&filter->notify_lock);
1627 	/*
1628 	 * Even though we were woken up by a signal and not a successful
1629 	 * completion, a completion may have happened in the mean time.
1630 	 *
1631 	 * We need to check again if the addfd request has been handled,
1632 	 * and if not, we will remove it from the queue.
1633 	 */
1634 	if (list_empty(&kaddfd.list))
1635 		ret = kaddfd.ret;
1636 	else
1637 		list_del(&kaddfd.list);
1638 
1639 out_unlock:
1640 	mutex_unlock(&filter->notify_lock);
1641 out:
1642 	fput(kaddfd.file);
1643 
1644 	return ret;
1645 }
1646 
1647 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd,
1648 				 unsigned long arg)
1649 {
1650 	struct seccomp_filter *filter = file->private_data;
1651 	void __user *buf = (void __user *)arg;
1652 
1653 	/* Fixed-size ioctls */
1654 	switch (cmd) {
1655 	case SECCOMP_IOCTL_NOTIF_RECV:
1656 		return seccomp_notify_recv(filter, buf);
1657 	case SECCOMP_IOCTL_NOTIF_SEND:
1658 		return seccomp_notify_send(filter, buf);
1659 	case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR:
1660 	case SECCOMP_IOCTL_NOTIF_ID_VALID:
1661 		return seccomp_notify_id_valid(filter, buf);
1662 	}
1663 
1664 	/* Extensible Argument ioctls */
1665 #define EA_IOCTL(cmd)	((cmd) & ~(IOC_INOUT | IOCSIZE_MASK))
1666 	switch (EA_IOCTL(cmd)) {
1667 	case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD):
1668 		return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd));
1669 	default:
1670 		return -EINVAL;
1671 	}
1672 }
1673 
1674 static __poll_t seccomp_notify_poll(struct file *file,
1675 				    struct poll_table_struct *poll_tab)
1676 {
1677 	struct seccomp_filter *filter = file->private_data;
1678 	__poll_t ret = 0;
1679 	struct seccomp_knotif *cur;
1680 
1681 	poll_wait(file, &filter->wqh, poll_tab);
1682 
1683 	if (mutex_lock_interruptible(&filter->notify_lock) < 0)
1684 		return EPOLLERR;
1685 
1686 	list_for_each_entry(cur, &filter->notif->notifications, list) {
1687 		if (cur->state == SECCOMP_NOTIFY_INIT)
1688 			ret |= EPOLLIN | EPOLLRDNORM;
1689 		if (cur->state == SECCOMP_NOTIFY_SENT)
1690 			ret |= EPOLLOUT | EPOLLWRNORM;
1691 		if ((ret & EPOLLIN) && (ret & EPOLLOUT))
1692 			break;
1693 	}
1694 
1695 	mutex_unlock(&filter->notify_lock);
1696 
1697 	if (refcount_read(&filter->users) == 0)
1698 		ret |= EPOLLHUP;
1699 
1700 	return ret;
1701 }
1702 
1703 static const struct file_operations seccomp_notify_ops = {
1704 	.poll = seccomp_notify_poll,
1705 	.release = seccomp_notify_release,
1706 	.unlocked_ioctl = seccomp_notify_ioctl,
1707 	.compat_ioctl = seccomp_notify_ioctl,
1708 };
1709 
1710 static struct file *init_listener(struct seccomp_filter *filter)
1711 {
1712 	struct file *ret;
1713 
1714 	ret = ERR_PTR(-ENOMEM);
1715 	filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL);
1716 	if (!filter->notif)
1717 		goto out;
1718 
1719 	sema_init(&filter->notif->request, 0);
1720 	filter->notif->next_id = get_random_u64();
1721 	INIT_LIST_HEAD(&filter->notif->notifications);
1722 
1723 	ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops,
1724 				 filter, O_RDWR);
1725 	if (IS_ERR(ret))
1726 		goto out_notif;
1727 
1728 	/* The file has a reference to it now */
1729 	__get_seccomp_filter(filter);
1730 
1731 out_notif:
1732 	if (IS_ERR(ret))
1733 		seccomp_notify_free(filter);
1734 out:
1735 	return ret;
1736 }
1737 
1738 /*
1739  * Does @new_child have a listener while an ancestor also has a listener?
1740  * If so, we'll want to reject this filter.
1741  * This only has to be tested for the current process, even in the TSYNC case,
1742  * because TSYNC installs @child with the same parent on all threads.
1743  * Note that @new_child is not hooked up to its parent at this point yet, so
1744  * we use current->seccomp.filter.
1745  */
1746 static bool has_duplicate_listener(struct seccomp_filter *new_child)
1747 {
1748 	struct seccomp_filter *cur;
1749 
1750 	/* must be protected against concurrent TSYNC */
1751 	lockdep_assert_held(&current->sighand->siglock);
1752 
1753 	if (!new_child->notif)
1754 		return false;
1755 	for (cur = current->seccomp.filter; cur; cur = cur->prev) {
1756 		if (cur->notif)
1757 			return true;
1758 	}
1759 
1760 	return false;
1761 }
1762 
1763 /**
1764  * seccomp_set_mode_filter: internal function for setting seccomp filter
1765  * @flags:  flags to change filter behavior
1766  * @filter: struct sock_fprog containing filter
1767  *
1768  * This function may be called repeatedly to install additional filters.
1769  * Every filter successfully installed will be evaluated (in reverse order)
1770  * for each system call the task makes.
1771  *
1772  * Once current->seccomp.mode is non-zero, it may not be changed.
1773  *
1774  * Returns 0 on success or -EINVAL on failure.
1775  */
1776 static long seccomp_set_mode_filter(unsigned int flags,
1777 				    const char __user *filter)
1778 {
1779 	const unsigned long seccomp_mode = SECCOMP_MODE_FILTER;
1780 	struct seccomp_filter *prepared = NULL;
1781 	long ret = -EINVAL;
1782 	int listener = -1;
1783 	struct file *listener_f = NULL;
1784 
1785 	/* Validate flags. */
1786 	if (flags & ~SECCOMP_FILTER_FLAG_MASK)
1787 		return -EINVAL;
1788 
1789 	/*
1790 	 * In the successful case, NEW_LISTENER returns the new listener fd.
1791 	 * But in the failure case, TSYNC returns the thread that died. If you
1792 	 * combine these two flags, there's no way to tell whether something
1793 	 * succeeded or failed. So, let's disallow this combination if the user
1794 	 * has not explicitly requested no errors from TSYNC.
1795 	 */
1796 	if ((flags & SECCOMP_FILTER_FLAG_TSYNC) &&
1797 	    (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) &&
1798 	    ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0))
1799 		return -EINVAL;
1800 
1801 	/* Prepare the new filter before holding any locks. */
1802 	prepared = seccomp_prepare_user_filter(filter);
1803 	if (IS_ERR(prepared))
1804 		return PTR_ERR(prepared);
1805 
1806 	if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1807 		listener = get_unused_fd_flags(O_CLOEXEC);
1808 		if (listener < 0) {
1809 			ret = listener;
1810 			goto out_free;
1811 		}
1812 
1813 		listener_f = init_listener(prepared);
1814 		if (IS_ERR(listener_f)) {
1815 			put_unused_fd(listener);
1816 			ret = PTR_ERR(listener_f);
1817 			goto out_free;
1818 		}
1819 	}
1820 
1821 	/*
1822 	 * Make sure we cannot change seccomp or nnp state via TSYNC
1823 	 * while another thread is in the middle of calling exec.
1824 	 */
1825 	if (flags & SECCOMP_FILTER_FLAG_TSYNC &&
1826 	    mutex_lock_killable(&current->signal->cred_guard_mutex))
1827 		goto out_put_fd;
1828 
1829 	spin_lock_irq(&current->sighand->siglock);
1830 
1831 	if (!seccomp_may_assign_mode(seccomp_mode))
1832 		goto out;
1833 
1834 	if (has_duplicate_listener(prepared)) {
1835 		ret = -EBUSY;
1836 		goto out;
1837 	}
1838 
1839 	ret = seccomp_attach_filter(flags, prepared);
1840 	if (ret)
1841 		goto out;
1842 	/* Do not free the successfully attached filter. */
1843 	prepared = NULL;
1844 
1845 	seccomp_assign_mode(current, seccomp_mode, flags);
1846 out:
1847 	spin_unlock_irq(&current->sighand->siglock);
1848 	if (flags & SECCOMP_FILTER_FLAG_TSYNC)
1849 		mutex_unlock(&current->signal->cred_guard_mutex);
1850 out_put_fd:
1851 	if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1852 		if (ret) {
1853 			listener_f->private_data = NULL;
1854 			fput(listener_f);
1855 			put_unused_fd(listener);
1856 			seccomp_notify_detach(prepared);
1857 		} else {
1858 			fd_install(listener, listener_f);
1859 			ret = listener;
1860 		}
1861 	}
1862 out_free:
1863 	seccomp_filter_free(prepared);
1864 	return ret;
1865 }
1866 #else
1867 static inline long seccomp_set_mode_filter(unsigned int flags,
1868 					   const char __user *filter)
1869 {
1870 	return -EINVAL;
1871 }
1872 #endif
1873 
1874 static long seccomp_get_action_avail(const char __user *uaction)
1875 {
1876 	u32 action;
1877 
1878 	if (copy_from_user(&action, uaction, sizeof(action)))
1879 		return -EFAULT;
1880 
1881 	switch (action) {
1882 	case SECCOMP_RET_KILL_PROCESS:
1883 	case SECCOMP_RET_KILL_THREAD:
1884 	case SECCOMP_RET_TRAP:
1885 	case SECCOMP_RET_ERRNO:
1886 	case SECCOMP_RET_USER_NOTIF:
1887 	case SECCOMP_RET_TRACE:
1888 	case SECCOMP_RET_LOG:
1889 	case SECCOMP_RET_ALLOW:
1890 		break;
1891 	default:
1892 		return -EOPNOTSUPP;
1893 	}
1894 
1895 	return 0;
1896 }
1897 
1898 static long seccomp_get_notif_sizes(void __user *usizes)
1899 {
1900 	struct seccomp_notif_sizes sizes = {
1901 		.seccomp_notif = sizeof(struct seccomp_notif),
1902 		.seccomp_notif_resp = sizeof(struct seccomp_notif_resp),
1903 		.seccomp_data = sizeof(struct seccomp_data),
1904 	};
1905 
1906 	if (copy_to_user(usizes, &sizes, sizeof(sizes)))
1907 		return -EFAULT;
1908 
1909 	return 0;
1910 }
1911 
1912 /* Common entry point for both prctl and syscall. */
1913 static long do_seccomp(unsigned int op, unsigned int flags,
1914 		       void __user *uargs)
1915 {
1916 	switch (op) {
1917 	case SECCOMP_SET_MODE_STRICT:
1918 		if (flags != 0 || uargs != NULL)
1919 			return -EINVAL;
1920 		return seccomp_set_mode_strict();
1921 	case SECCOMP_SET_MODE_FILTER:
1922 		return seccomp_set_mode_filter(flags, uargs);
1923 	case SECCOMP_GET_ACTION_AVAIL:
1924 		if (flags != 0)
1925 			return -EINVAL;
1926 
1927 		return seccomp_get_action_avail(uargs);
1928 	case SECCOMP_GET_NOTIF_SIZES:
1929 		if (flags != 0)
1930 			return -EINVAL;
1931 
1932 		return seccomp_get_notif_sizes(uargs);
1933 	default:
1934 		return -EINVAL;
1935 	}
1936 }
1937 
1938 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags,
1939 			 void __user *, uargs)
1940 {
1941 	return do_seccomp(op, flags, uargs);
1942 }
1943 
1944 /**
1945  * prctl_set_seccomp: configures current->seccomp.mode
1946  * @seccomp_mode: requested mode to use
1947  * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER
1948  *
1949  * Returns 0 on success or -EINVAL on failure.
1950  */
1951 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter)
1952 {
1953 	unsigned int op;
1954 	void __user *uargs;
1955 
1956 	switch (seccomp_mode) {
1957 	case SECCOMP_MODE_STRICT:
1958 		op = SECCOMP_SET_MODE_STRICT;
1959 		/*
1960 		 * Setting strict mode through prctl always ignored filter,
1961 		 * so make sure it is always NULL here to pass the internal
1962 		 * check in do_seccomp().
1963 		 */
1964 		uargs = NULL;
1965 		break;
1966 	case SECCOMP_MODE_FILTER:
1967 		op = SECCOMP_SET_MODE_FILTER;
1968 		uargs = filter;
1969 		break;
1970 	default:
1971 		return -EINVAL;
1972 	}
1973 
1974 	/* prctl interface doesn't have flags, so they are always zero. */
1975 	return do_seccomp(op, 0, uargs);
1976 }
1977 
1978 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE)
1979 static struct seccomp_filter *get_nth_filter(struct task_struct *task,
1980 					     unsigned long filter_off)
1981 {
1982 	struct seccomp_filter *orig, *filter;
1983 	unsigned long count;
1984 
1985 	/*
1986 	 * Note: this is only correct because the caller should be the (ptrace)
1987 	 * tracer of the task, otherwise lock_task_sighand is needed.
1988 	 */
1989 	spin_lock_irq(&task->sighand->siglock);
1990 
1991 	if (task->seccomp.mode != SECCOMP_MODE_FILTER) {
1992 		spin_unlock_irq(&task->sighand->siglock);
1993 		return ERR_PTR(-EINVAL);
1994 	}
1995 
1996 	orig = task->seccomp.filter;
1997 	__get_seccomp_filter(orig);
1998 	spin_unlock_irq(&task->sighand->siglock);
1999 
2000 	count = 0;
2001 	for (filter = orig; filter; filter = filter->prev)
2002 		count++;
2003 
2004 	if (filter_off >= count) {
2005 		filter = ERR_PTR(-ENOENT);
2006 		goto out;
2007 	}
2008 
2009 	count -= filter_off;
2010 	for (filter = orig; filter && count > 1; filter = filter->prev)
2011 		count--;
2012 
2013 	if (WARN_ON(count != 1 || !filter)) {
2014 		filter = ERR_PTR(-ENOENT);
2015 		goto out;
2016 	}
2017 
2018 	__get_seccomp_filter(filter);
2019 
2020 out:
2021 	__put_seccomp_filter(orig);
2022 	return filter;
2023 }
2024 
2025 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off,
2026 			void __user *data)
2027 {
2028 	struct seccomp_filter *filter;
2029 	struct sock_fprog_kern *fprog;
2030 	long ret;
2031 
2032 	if (!capable(CAP_SYS_ADMIN) ||
2033 	    current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2034 		return -EACCES;
2035 	}
2036 
2037 	filter = get_nth_filter(task, filter_off);
2038 	if (IS_ERR(filter))
2039 		return PTR_ERR(filter);
2040 
2041 	fprog = filter->prog->orig_prog;
2042 	if (!fprog) {
2043 		/* This must be a new non-cBPF filter, since we save
2044 		 * every cBPF filter's orig_prog above when
2045 		 * CONFIG_CHECKPOINT_RESTORE is enabled.
2046 		 */
2047 		ret = -EMEDIUMTYPE;
2048 		goto out;
2049 	}
2050 
2051 	ret = fprog->len;
2052 	if (!data)
2053 		goto out;
2054 
2055 	if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog)))
2056 		ret = -EFAULT;
2057 
2058 out:
2059 	__put_seccomp_filter(filter);
2060 	return ret;
2061 }
2062 
2063 long seccomp_get_metadata(struct task_struct *task,
2064 			  unsigned long size, void __user *data)
2065 {
2066 	long ret;
2067 	struct seccomp_filter *filter;
2068 	struct seccomp_metadata kmd = {};
2069 
2070 	if (!capable(CAP_SYS_ADMIN) ||
2071 	    current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2072 		return -EACCES;
2073 	}
2074 
2075 	size = min_t(unsigned long, size, sizeof(kmd));
2076 
2077 	if (size < sizeof(kmd.filter_off))
2078 		return -EINVAL;
2079 
2080 	if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off)))
2081 		return -EFAULT;
2082 
2083 	filter = get_nth_filter(task, kmd.filter_off);
2084 	if (IS_ERR(filter))
2085 		return PTR_ERR(filter);
2086 
2087 	if (filter->log)
2088 		kmd.flags |= SECCOMP_FILTER_FLAG_LOG;
2089 
2090 	ret = size;
2091 	if (copy_to_user(data, &kmd, size))
2092 		ret = -EFAULT;
2093 
2094 	__put_seccomp_filter(filter);
2095 	return ret;
2096 }
2097 #endif
2098 
2099 #ifdef CONFIG_SYSCTL
2100 
2101 /* Human readable action names for friendly sysctl interaction */
2102 #define SECCOMP_RET_KILL_PROCESS_NAME	"kill_process"
2103 #define SECCOMP_RET_KILL_THREAD_NAME	"kill_thread"
2104 #define SECCOMP_RET_TRAP_NAME		"trap"
2105 #define SECCOMP_RET_ERRNO_NAME		"errno"
2106 #define SECCOMP_RET_USER_NOTIF_NAME	"user_notif"
2107 #define SECCOMP_RET_TRACE_NAME		"trace"
2108 #define SECCOMP_RET_LOG_NAME		"log"
2109 #define SECCOMP_RET_ALLOW_NAME		"allow"
2110 
2111 static const char seccomp_actions_avail[] =
2112 				SECCOMP_RET_KILL_PROCESS_NAME	" "
2113 				SECCOMP_RET_KILL_THREAD_NAME	" "
2114 				SECCOMP_RET_TRAP_NAME		" "
2115 				SECCOMP_RET_ERRNO_NAME		" "
2116 				SECCOMP_RET_USER_NOTIF_NAME     " "
2117 				SECCOMP_RET_TRACE_NAME		" "
2118 				SECCOMP_RET_LOG_NAME		" "
2119 				SECCOMP_RET_ALLOW_NAME;
2120 
2121 struct seccomp_log_name {
2122 	u32		log;
2123 	const char	*name;
2124 };
2125 
2126 static const struct seccomp_log_name seccomp_log_names[] = {
2127 	{ SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME },
2128 	{ SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME },
2129 	{ SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME },
2130 	{ SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME },
2131 	{ SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME },
2132 	{ SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME },
2133 	{ SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME },
2134 	{ SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME },
2135 	{ }
2136 };
2137 
2138 static bool seccomp_names_from_actions_logged(char *names, size_t size,
2139 					      u32 actions_logged,
2140 					      const char *sep)
2141 {
2142 	const struct seccomp_log_name *cur;
2143 	bool append_sep = false;
2144 
2145 	for (cur = seccomp_log_names; cur->name && size; cur++) {
2146 		ssize_t ret;
2147 
2148 		if (!(actions_logged & cur->log))
2149 			continue;
2150 
2151 		if (append_sep) {
2152 			ret = strscpy(names, sep, size);
2153 			if (ret < 0)
2154 				return false;
2155 
2156 			names += ret;
2157 			size -= ret;
2158 		} else
2159 			append_sep = true;
2160 
2161 		ret = strscpy(names, cur->name, size);
2162 		if (ret < 0)
2163 			return false;
2164 
2165 		names += ret;
2166 		size -= ret;
2167 	}
2168 
2169 	return true;
2170 }
2171 
2172 static bool seccomp_action_logged_from_name(u32 *action_logged,
2173 					    const char *name)
2174 {
2175 	const struct seccomp_log_name *cur;
2176 
2177 	for (cur = seccomp_log_names; cur->name; cur++) {
2178 		if (!strcmp(cur->name, name)) {
2179 			*action_logged = cur->log;
2180 			return true;
2181 		}
2182 	}
2183 
2184 	return false;
2185 }
2186 
2187 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names)
2188 {
2189 	char *name;
2190 
2191 	*actions_logged = 0;
2192 	while ((name = strsep(&names, " ")) && *name) {
2193 		u32 action_logged = 0;
2194 
2195 		if (!seccomp_action_logged_from_name(&action_logged, name))
2196 			return false;
2197 
2198 		*actions_logged |= action_logged;
2199 	}
2200 
2201 	return true;
2202 }
2203 
2204 static int read_actions_logged(struct ctl_table *ro_table, void *buffer,
2205 			       size_t *lenp, loff_t *ppos)
2206 {
2207 	char names[sizeof(seccomp_actions_avail)];
2208 	struct ctl_table table;
2209 
2210 	memset(names, 0, sizeof(names));
2211 
2212 	if (!seccomp_names_from_actions_logged(names, sizeof(names),
2213 					       seccomp_actions_logged, " "))
2214 		return -EINVAL;
2215 
2216 	table = *ro_table;
2217 	table.data = names;
2218 	table.maxlen = sizeof(names);
2219 	return proc_dostring(&table, 0, buffer, lenp, ppos);
2220 }
2221 
2222 static int write_actions_logged(struct ctl_table *ro_table, void *buffer,
2223 				size_t *lenp, loff_t *ppos, u32 *actions_logged)
2224 {
2225 	char names[sizeof(seccomp_actions_avail)];
2226 	struct ctl_table table;
2227 	int ret;
2228 
2229 	if (!capable(CAP_SYS_ADMIN))
2230 		return -EPERM;
2231 
2232 	memset(names, 0, sizeof(names));
2233 
2234 	table = *ro_table;
2235 	table.data = names;
2236 	table.maxlen = sizeof(names);
2237 	ret = proc_dostring(&table, 1, buffer, lenp, ppos);
2238 	if (ret)
2239 		return ret;
2240 
2241 	if (!seccomp_actions_logged_from_names(actions_logged, table.data))
2242 		return -EINVAL;
2243 
2244 	if (*actions_logged & SECCOMP_LOG_ALLOW)
2245 		return -EINVAL;
2246 
2247 	seccomp_actions_logged = *actions_logged;
2248 	return 0;
2249 }
2250 
2251 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged,
2252 				 int ret)
2253 {
2254 	char names[sizeof(seccomp_actions_avail)];
2255 	char old_names[sizeof(seccomp_actions_avail)];
2256 	const char *new = names;
2257 	const char *old = old_names;
2258 
2259 	if (!audit_enabled)
2260 		return;
2261 
2262 	memset(names, 0, sizeof(names));
2263 	memset(old_names, 0, sizeof(old_names));
2264 
2265 	if (ret)
2266 		new = "?";
2267 	else if (!actions_logged)
2268 		new = "(none)";
2269 	else if (!seccomp_names_from_actions_logged(names, sizeof(names),
2270 						    actions_logged, ","))
2271 		new = "?";
2272 
2273 	if (!old_actions_logged)
2274 		old = "(none)";
2275 	else if (!seccomp_names_from_actions_logged(old_names,
2276 						    sizeof(old_names),
2277 						    old_actions_logged, ","))
2278 		old = "?";
2279 
2280 	return audit_seccomp_actions_logged(new, old, !ret);
2281 }
2282 
2283 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write,
2284 					  void *buffer, size_t *lenp,
2285 					  loff_t *ppos)
2286 {
2287 	int ret;
2288 
2289 	if (write) {
2290 		u32 actions_logged = 0;
2291 		u32 old_actions_logged = seccomp_actions_logged;
2292 
2293 		ret = write_actions_logged(ro_table, buffer, lenp, ppos,
2294 					   &actions_logged);
2295 		audit_actions_logged(actions_logged, old_actions_logged, ret);
2296 	} else
2297 		ret = read_actions_logged(ro_table, buffer, lenp, ppos);
2298 
2299 	return ret;
2300 }
2301 
2302 static struct ctl_path seccomp_sysctl_path[] = {
2303 	{ .procname = "kernel", },
2304 	{ .procname = "seccomp", },
2305 	{ }
2306 };
2307 
2308 static struct ctl_table seccomp_sysctl_table[] = {
2309 	{
2310 		.procname	= "actions_avail",
2311 		.data		= (void *) &seccomp_actions_avail,
2312 		.maxlen		= sizeof(seccomp_actions_avail),
2313 		.mode		= 0444,
2314 		.proc_handler	= proc_dostring,
2315 	},
2316 	{
2317 		.procname	= "actions_logged",
2318 		.mode		= 0644,
2319 		.proc_handler	= seccomp_actions_logged_handler,
2320 	},
2321 	{ }
2322 };
2323 
2324 static int __init seccomp_sysctl_init(void)
2325 {
2326 	struct ctl_table_header *hdr;
2327 
2328 	hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table);
2329 	if (!hdr)
2330 		pr_warn("sysctl registration failed\n");
2331 	else
2332 		kmemleak_not_leak(hdr);
2333 
2334 	return 0;
2335 }
2336 
2337 device_initcall(seccomp_sysctl_init)
2338 
2339 #endif /* CONFIG_SYSCTL */
2340 
2341 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
2342 /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */
2343 static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name,
2344 					const void *bitmap, size_t bitmap_size)
2345 {
2346 	int nr;
2347 
2348 	for (nr = 0; nr < bitmap_size; nr++) {
2349 		bool cached = test_bit(nr, bitmap);
2350 		char *status = cached ? "ALLOW" : "FILTER";
2351 
2352 		seq_printf(m, "%s %d %s\n", name, nr, status);
2353 	}
2354 }
2355 
2356 int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns,
2357 			   struct pid *pid, struct task_struct *task)
2358 {
2359 	struct seccomp_filter *f;
2360 	unsigned long flags;
2361 
2362 	/*
2363 	 * We don't want some sandboxed process to know what their seccomp
2364 	 * filters consist of.
2365 	 */
2366 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
2367 		return -EACCES;
2368 
2369 	if (!lock_task_sighand(task, &flags))
2370 		return -ESRCH;
2371 
2372 	f = READ_ONCE(task->seccomp.filter);
2373 	if (!f) {
2374 		unlock_task_sighand(task, &flags);
2375 		return 0;
2376 	}
2377 
2378 	/* prevent filter from being freed while we are printing it */
2379 	__get_seccomp_filter(f);
2380 	unlock_task_sighand(task, &flags);
2381 
2382 	proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME,
2383 				    f->cache.allow_native,
2384 				    SECCOMP_ARCH_NATIVE_NR);
2385 
2386 #ifdef SECCOMP_ARCH_COMPAT
2387 	proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME,
2388 				    f->cache.allow_compat,
2389 				    SECCOMP_ARCH_COMPAT_NR);
2390 #endif /* SECCOMP_ARCH_COMPAT */
2391 
2392 	__put_seccomp_filter(f);
2393 	return 0;
2394 }
2395 #endif /* CONFIG_SECCOMP_CACHE_DEBUG */
2396