1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/seccomp.c 4 * 5 * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com> 6 * 7 * Copyright (C) 2012 Google, Inc. 8 * Will Drewry <wad@chromium.org> 9 * 10 * This defines a simple but solid secure-computing facility. 11 * 12 * Mode 1 uses a fixed list of allowed system calls. 13 * Mode 2 allows user-defined system call filters in the form 14 * of Berkeley Packet Filters/Linux Socket Filters. 15 */ 16 #define pr_fmt(fmt) "seccomp: " fmt 17 18 #include <linux/refcount.h> 19 #include <linux/audit.h> 20 #include <linux/compat.h> 21 #include <linux/coredump.h> 22 #include <linux/kmemleak.h> 23 #include <linux/nospec.h> 24 #include <linux/prctl.h> 25 #include <linux/sched.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/seccomp.h> 28 #include <linux/slab.h> 29 #include <linux/syscalls.h> 30 #include <linux/sysctl.h> 31 32 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER 33 #include <asm/syscall.h> 34 #endif 35 36 #ifdef CONFIG_SECCOMP_FILTER 37 #include <linux/file.h> 38 #include <linux/filter.h> 39 #include <linux/pid.h> 40 #include <linux/ptrace.h> 41 #include <linux/capability.h> 42 #include <linux/tracehook.h> 43 #include <linux/uaccess.h> 44 #include <linux/anon_inodes.h> 45 #include <linux/lockdep.h> 46 47 /* 48 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the 49 * wrong direction flag in the ioctl number. This is the broken one, 50 * which the kernel needs to keep supporting until all userspaces stop 51 * using the wrong command number. 52 */ 53 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64) 54 55 enum notify_state { 56 SECCOMP_NOTIFY_INIT, 57 SECCOMP_NOTIFY_SENT, 58 SECCOMP_NOTIFY_REPLIED, 59 }; 60 61 struct seccomp_knotif { 62 /* The struct pid of the task whose filter triggered the notification */ 63 struct task_struct *task; 64 65 /* The "cookie" for this request; this is unique for this filter. */ 66 u64 id; 67 68 /* 69 * The seccomp data. This pointer is valid the entire time this 70 * notification is active, since it comes from __seccomp_filter which 71 * eclipses the entire lifecycle here. 72 */ 73 const struct seccomp_data *data; 74 75 /* 76 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a 77 * struct seccomp_knotif is created and starts out in INIT. Once the 78 * handler reads the notification off of an FD, it transitions to SENT. 79 * If a signal is received the state transitions back to INIT and 80 * another message is sent. When the userspace handler replies, state 81 * transitions to REPLIED. 82 */ 83 enum notify_state state; 84 85 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */ 86 int error; 87 long val; 88 u32 flags; 89 90 /* 91 * Signals when this has changed states, such as the listener 92 * dying, a new seccomp addfd message, or changing to REPLIED 93 */ 94 struct completion ready; 95 96 struct list_head list; 97 98 /* outstanding addfd requests */ 99 struct list_head addfd; 100 }; 101 102 /** 103 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages 104 * 105 * @file: A reference to the file to install in the other task 106 * @fd: The fd number to install it at. If the fd number is -1, it means the 107 * installing process should allocate the fd as normal. 108 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC 109 * is allowed. 110 * @ret: The return value of the installing process. It is set to the fd num 111 * upon success (>= 0). 112 * @completion: Indicates that the installing process has completed fd 113 * installation, or gone away (either due to successful 114 * reply, or signal) 115 * 116 */ 117 struct seccomp_kaddfd { 118 struct file *file; 119 int fd; 120 unsigned int flags; 121 122 union { 123 bool setfd; 124 /* To only be set on reply */ 125 int ret; 126 }; 127 struct completion completion; 128 struct list_head list; 129 }; 130 131 /** 132 * struct notification - container for seccomp userspace notifications. Since 133 * most seccomp filters will not have notification listeners attached and this 134 * structure is fairly large, we store the notification-specific stuff in a 135 * separate structure. 136 * 137 * @request: A semaphore that users of this notification can wait on for 138 * changes. Actual reads and writes are still controlled with 139 * filter->notify_lock. 140 * @next_id: The id of the next request. 141 * @notifications: A list of struct seccomp_knotif elements. 142 */ 143 struct notification { 144 struct semaphore request; 145 u64 next_id; 146 struct list_head notifications; 147 }; 148 149 #ifdef SECCOMP_ARCH_NATIVE 150 /** 151 * struct action_cache - per-filter cache of seccomp actions per 152 * arch/syscall pair 153 * 154 * @allow_native: A bitmap where each bit represents whether the 155 * filter will always allow the syscall, for the 156 * native architecture. 157 * @allow_compat: A bitmap where each bit represents whether the 158 * filter will always allow the syscall, for the 159 * compat architecture. 160 */ 161 struct action_cache { 162 DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR); 163 #ifdef SECCOMP_ARCH_COMPAT 164 DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR); 165 #endif 166 }; 167 #else 168 struct action_cache { }; 169 170 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 171 const struct seccomp_data *sd) 172 { 173 return false; 174 } 175 176 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter) 177 { 178 } 179 #endif /* SECCOMP_ARCH_NATIVE */ 180 181 /** 182 * struct seccomp_filter - container for seccomp BPF programs 183 * 184 * @refs: Reference count to manage the object lifetime. 185 * A filter's reference count is incremented for each directly 186 * attached task, once for the dependent filter, and if 187 * requested for the user notifier. When @refs reaches zero, 188 * the filter can be freed. 189 * @users: A filter's @users count is incremented for each directly 190 * attached task (filter installation, fork(), thread_sync), 191 * and once for the dependent filter (tracked in filter->prev). 192 * When it reaches zero it indicates that no direct or indirect 193 * users of that filter exist. No new tasks can get associated with 194 * this filter after reaching 0. The @users count is always smaller 195 * or equal to @refs. Hence, reaching 0 for @users does not mean 196 * the filter can be freed. 197 * @cache: cache of arch/syscall mappings to actions 198 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged 199 * @prev: points to a previously installed, or inherited, filter 200 * @prog: the BPF program to evaluate 201 * @notif: the struct that holds all notification related information 202 * @notify_lock: A lock for all notification-related accesses. 203 * @wqh: A wait queue for poll if a notifier is in use. 204 * 205 * seccomp_filter objects are organized in a tree linked via the @prev 206 * pointer. For any task, it appears to be a singly-linked list starting 207 * with current->seccomp.filter, the most recently attached or inherited filter. 208 * However, multiple filters may share a @prev node, by way of fork(), which 209 * results in a unidirectional tree existing in memory. This is similar to 210 * how namespaces work. 211 * 212 * seccomp_filter objects should never be modified after being attached 213 * to a task_struct (other than @refs). 214 */ 215 struct seccomp_filter { 216 refcount_t refs; 217 refcount_t users; 218 bool log; 219 struct action_cache cache; 220 struct seccomp_filter *prev; 221 struct bpf_prog *prog; 222 struct notification *notif; 223 struct mutex notify_lock; 224 wait_queue_head_t wqh; 225 }; 226 227 /* Limit any path through the tree to 256KB worth of instructions. */ 228 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter)) 229 230 /* 231 * Endianness is explicitly ignored and left for BPF program authors to manage 232 * as per the specific architecture. 233 */ 234 static void populate_seccomp_data(struct seccomp_data *sd) 235 { 236 /* 237 * Instead of using current_pt_reg(), we're already doing the work 238 * to safely fetch "current", so just use "task" everywhere below. 239 */ 240 struct task_struct *task = current; 241 struct pt_regs *regs = task_pt_regs(task); 242 unsigned long args[6]; 243 244 sd->nr = syscall_get_nr(task, regs); 245 sd->arch = syscall_get_arch(task); 246 syscall_get_arguments(task, regs, args); 247 sd->args[0] = args[0]; 248 sd->args[1] = args[1]; 249 sd->args[2] = args[2]; 250 sd->args[3] = args[3]; 251 sd->args[4] = args[4]; 252 sd->args[5] = args[5]; 253 sd->instruction_pointer = KSTK_EIP(task); 254 } 255 256 /** 257 * seccomp_check_filter - verify seccomp filter code 258 * @filter: filter to verify 259 * @flen: length of filter 260 * 261 * Takes a previously checked filter (by bpf_check_classic) and 262 * redirects all filter code that loads struct sk_buff data 263 * and related data through seccomp_bpf_load. It also 264 * enforces length and alignment checking of those loads. 265 * 266 * Returns 0 if the rule set is legal or -EINVAL if not. 267 */ 268 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen) 269 { 270 int pc; 271 for (pc = 0; pc < flen; pc++) { 272 struct sock_filter *ftest = &filter[pc]; 273 u16 code = ftest->code; 274 u32 k = ftest->k; 275 276 switch (code) { 277 case BPF_LD | BPF_W | BPF_ABS: 278 ftest->code = BPF_LDX | BPF_W | BPF_ABS; 279 /* 32-bit aligned and not out of bounds. */ 280 if (k >= sizeof(struct seccomp_data) || k & 3) 281 return -EINVAL; 282 continue; 283 case BPF_LD | BPF_W | BPF_LEN: 284 ftest->code = BPF_LD | BPF_IMM; 285 ftest->k = sizeof(struct seccomp_data); 286 continue; 287 case BPF_LDX | BPF_W | BPF_LEN: 288 ftest->code = BPF_LDX | BPF_IMM; 289 ftest->k = sizeof(struct seccomp_data); 290 continue; 291 /* Explicitly include allowed calls. */ 292 case BPF_RET | BPF_K: 293 case BPF_RET | BPF_A: 294 case BPF_ALU | BPF_ADD | BPF_K: 295 case BPF_ALU | BPF_ADD | BPF_X: 296 case BPF_ALU | BPF_SUB | BPF_K: 297 case BPF_ALU | BPF_SUB | BPF_X: 298 case BPF_ALU | BPF_MUL | BPF_K: 299 case BPF_ALU | BPF_MUL | BPF_X: 300 case BPF_ALU | BPF_DIV | BPF_K: 301 case BPF_ALU | BPF_DIV | BPF_X: 302 case BPF_ALU | BPF_AND | BPF_K: 303 case BPF_ALU | BPF_AND | BPF_X: 304 case BPF_ALU | BPF_OR | BPF_K: 305 case BPF_ALU | BPF_OR | BPF_X: 306 case BPF_ALU | BPF_XOR | BPF_K: 307 case BPF_ALU | BPF_XOR | BPF_X: 308 case BPF_ALU | BPF_LSH | BPF_K: 309 case BPF_ALU | BPF_LSH | BPF_X: 310 case BPF_ALU | BPF_RSH | BPF_K: 311 case BPF_ALU | BPF_RSH | BPF_X: 312 case BPF_ALU | BPF_NEG: 313 case BPF_LD | BPF_IMM: 314 case BPF_LDX | BPF_IMM: 315 case BPF_MISC | BPF_TAX: 316 case BPF_MISC | BPF_TXA: 317 case BPF_LD | BPF_MEM: 318 case BPF_LDX | BPF_MEM: 319 case BPF_ST: 320 case BPF_STX: 321 case BPF_JMP | BPF_JA: 322 case BPF_JMP | BPF_JEQ | BPF_K: 323 case BPF_JMP | BPF_JEQ | BPF_X: 324 case BPF_JMP | BPF_JGE | BPF_K: 325 case BPF_JMP | BPF_JGE | BPF_X: 326 case BPF_JMP | BPF_JGT | BPF_K: 327 case BPF_JMP | BPF_JGT | BPF_X: 328 case BPF_JMP | BPF_JSET | BPF_K: 329 case BPF_JMP | BPF_JSET | BPF_X: 330 continue; 331 default: 332 return -EINVAL; 333 } 334 } 335 return 0; 336 } 337 338 #ifdef SECCOMP_ARCH_NATIVE 339 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap, 340 size_t bitmap_size, 341 int syscall_nr) 342 { 343 if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size)) 344 return false; 345 syscall_nr = array_index_nospec(syscall_nr, bitmap_size); 346 347 return test_bit(syscall_nr, bitmap); 348 } 349 350 /** 351 * seccomp_cache_check_allow - lookup seccomp cache 352 * @sfilter: The seccomp filter 353 * @sd: The seccomp data to lookup the cache with 354 * 355 * Returns true if the seccomp_data is cached and allowed. 356 */ 357 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 358 const struct seccomp_data *sd) 359 { 360 int syscall_nr = sd->nr; 361 const struct action_cache *cache = &sfilter->cache; 362 363 #ifndef SECCOMP_ARCH_COMPAT 364 /* A native-only architecture doesn't need to check sd->arch. */ 365 return seccomp_cache_check_allow_bitmap(cache->allow_native, 366 SECCOMP_ARCH_NATIVE_NR, 367 syscall_nr); 368 #else 369 if (likely(sd->arch == SECCOMP_ARCH_NATIVE)) 370 return seccomp_cache_check_allow_bitmap(cache->allow_native, 371 SECCOMP_ARCH_NATIVE_NR, 372 syscall_nr); 373 if (likely(sd->arch == SECCOMP_ARCH_COMPAT)) 374 return seccomp_cache_check_allow_bitmap(cache->allow_compat, 375 SECCOMP_ARCH_COMPAT_NR, 376 syscall_nr); 377 #endif /* SECCOMP_ARCH_COMPAT */ 378 379 WARN_ON_ONCE(true); 380 return false; 381 } 382 #endif /* SECCOMP_ARCH_NATIVE */ 383 384 /** 385 * seccomp_run_filters - evaluates all seccomp filters against @sd 386 * @sd: optional seccomp data to be passed to filters 387 * @match: stores struct seccomp_filter that resulted in the return value, 388 * unless filter returned SECCOMP_RET_ALLOW, in which case it will 389 * be unchanged. 390 * 391 * Returns valid seccomp BPF response codes. 392 */ 393 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL))) 394 static u32 seccomp_run_filters(const struct seccomp_data *sd, 395 struct seccomp_filter **match) 396 { 397 u32 ret = SECCOMP_RET_ALLOW; 398 /* Make sure cross-thread synced filter points somewhere sane. */ 399 struct seccomp_filter *f = 400 READ_ONCE(current->seccomp.filter); 401 402 /* Ensure unexpected behavior doesn't result in failing open. */ 403 if (WARN_ON(f == NULL)) 404 return SECCOMP_RET_KILL_PROCESS; 405 406 if (seccomp_cache_check_allow(f, sd)) 407 return SECCOMP_RET_ALLOW; 408 409 /* 410 * All filters in the list are evaluated and the lowest BPF return 411 * value always takes priority (ignoring the DATA). 412 */ 413 for (; f; f = f->prev) { 414 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd); 415 416 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) { 417 ret = cur_ret; 418 *match = f; 419 } 420 } 421 return ret; 422 } 423 #endif /* CONFIG_SECCOMP_FILTER */ 424 425 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode) 426 { 427 assert_spin_locked(¤t->sighand->siglock); 428 429 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode) 430 return false; 431 432 return true; 433 } 434 435 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { } 436 437 static inline void seccomp_assign_mode(struct task_struct *task, 438 unsigned long seccomp_mode, 439 unsigned long flags) 440 { 441 assert_spin_locked(&task->sighand->siglock); 442 443 task->seccomp.mode = seccomp_mode; 444 /* 445 * Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and 446 * filter) is set. 447 */ 448 smp_mb__before_atomic(); 449 /* Assume default seccomp processes want spec flaw mitigation. */ 450 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0) 451 arch_seccomp_spec_mitigate(task); 452 set_task_syscall_work(task, SECCOMP); 453 } 454 455 #ifdef CONFIG_SECCOMP_FILTER 456 /* Returns 1 if the parent is an ancestor of the child. */ 457 static int is_ancestor(struct seccomp_filter *parent, 458 struct seccomp_filter *child) 459 { 460 /* NULL is the root ancestor. */ 461 if (parent == NULL) 462 return 1; 463 for (; child; child = child->prev) 464 if (child == parent) 465 return 1; 466 return 0; 467 } 468 469 /** 470 * seccomp_can_sync_threads: checks if all threads can be synchronized 471 * 472 * Expects sighand and cred_guard_mutex locks to be held. 473 * 474 * Returns 0 on success, -ve on error, or the pid of a thread which was 475 * either not in the correct seccomp mode or did not have an ancestral 476 * seccomp filter. 477 */ 478 static inline pid_t seccomp_can_sync_threads(void) 479 { 480 struct task_struct *thread, *caller; 481 482 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 483 assert_spin_locked(¤t->sighand->siglock); 484 485 /* Validate all threads being eligible for synchronization. */ 486 caller = current; 487 for_each_thread(caller, thread) { 488 pid_t failed; 489 490 /* Skip current, since it is initiating the sync. */ 491 if (thread == caller) 492 continue; 493 494 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED || 495 (thread->seccomp.mode == SECCOMP_MODE_FILTER && 496 is_ancestor(thread->seccomp.filter, 497 caller->seccomp.filter))) 498 continue; 499 500 /* Return the first thread that cannot be synchronized. */ 501 failed = task_pid_vnr(thread); 502 /* If the pid cannot be resolved, then return -ESRCH */ 503 if (WARN_ON(failed == 0)) 504 failed = -ESRCH; 505 return failed; 506 } 507 508 return 0; 509 } 510 511 static inline void seccomp_filter_free(struct seccomp_filter *filter) 512 { 513 if (filter) { 514 bpf_prog_destroy(filter->prog); 515 kfree(filter); 516 } 517 } 518 519 static void __seccomp_filter_orphan(struct seccomp_filter *orig) 520 { 521 while (orig && refcount_dec_and_test(&orig->users)) { 522 if (waitqueue_active(&orig->wqh)) 523 wake_up_poll(&orig->wqh, EPOLLHUP); 524 orig = orig->prev; 525 } 526 } 527 528 static void __put_seccomp_filter(struct seccomp_filter *orig) 529 { 530 /* Clean up single-reference branches iteratively. */ 531 while (orig && refcount_dec_and_test(&orig->refs)) { 532 struct seccomp_filter *freeme = orig; 533 orig = orig->prev; 534 seccomp_filter_free(freeme); 535 } 536 } 537 538 static void __seccomp_filter_release(struct seccomp_filter *orig) 539 { 540 /* Notify about any unused filters in the task's former filter tree. */ 541 __seccomp_filter_orphan(orig); 542 /* Finally drop all references to the task's former tree. */ 543 __put_seccomp_filter(orig); 544 } 545 546 /** 547 * seccomp_filter_release - Detach the task from its filter tree, 548 * drop its reference count, and notify 549 * about unused filters 550 * 551 * This function should only be called when the task is exiting as 552 * it detaches it from its filter tree. As such, READ_ONCE() and 553 * barriers are not needed here, as would normally be needed. 554 */ 555 void seccomp_filter_release(struct task_struct *tsk) 556 { 557 struct seccomp_filter *orig = tsk->seccomp.filter; 558 559 /* We are effectively holding the siglock by not having any sighand. */ 560 WARN_ON(tsk->sighand != NULL); 561 562 /* Detach task from its filter tree. */ 563 tsk->seccomp.filter = NULL; 564 __seccomp_filter_release(orig); 565 } 566 567 /** 568 * seccomp_sync_threads: sets all threads to use current's filter 569 * 570 * Expects sighand and cred_guard_mutex locks to be held, and for 571 * seccomp_can_sync_threads() to have returned success already 572 * without dropping the locks. 573 * 574 */ 575 static inline void seccomp_sync_threads(unsigned long flags) 576 { 577 struct task_struct *thread, *caller; 578 579 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 580 assert_spin_locked(¤t->sighand->siglock); 581 582 /* Synchronize all threads. */ 583 caller = current; 584 for_each_thread(caller, thread) { 585 /* Skip current, since it needs no changes. */ 586 if (thread == caller) 587 continue; 588 589 /* Get a task reference for the new leaf node. */ 590 get_seccomp_filter(caller); 591 592 /* 593 * Drop the task reference to the shared ancestor since 594 * current's path will hold a reference. (This also 595 * allows a put before the assignment.) 596 */ 597 __seccomp_filter_release(thread->seccomp.filter); 598 599 /* Make our new filter tree visible. */ 600 smp_store_release(&thread->seccomp.filter, 601 caller->seccomp.filter); 602 atomic_set(&thread->seccomp.filter_count, 603 atomic_read(&thread->seccomp.filter_count)); 604 605 /* 606 * Don't let an unprivileged task work around 607 * the no_new_privs restriction by creating 608 * a thread that sets it up, enters seccomp, 609 * then dies. 610 */ 611 if (task_no_new_privs(caller)) 612 task_set_no_new_privs(thread); 613 614 /* 615 * Opt the other thread into seccomp if needed. 616 * As threads are considered to be trust-realm 617 * equivalent (see ptrace_may_access), it is safe to 618 * allow one thread to transition the other. 619 */ 620 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED) 621 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER, 622 flags); 623 } 624 } 625 626 /** 627 * seccomp_prepare_filter: Prepares a seccomp filter for use. 628 * @fprog: BPF program to install 629 * 630 * Returns filter on success or an ERR_PTR on failure. 631 */ 632 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog) 633 { 634 struct seccomp_filter *sfilter; 635 int ret; 636 const bool save_orig = 637 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE) 638 true; 639 #else 640 false; 641 #endif 642 643 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS) 644 return ERR_PTR(-EINVAL); 645 646 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter)); 647 648 /* 649 * Installing a seccomp filter requires that the task has 650 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs. 651 * This avoids scenarios where unprivileged tasks can affect the 652 * behavior of privileged children. 653 */ 654 if (!task_no_new_privs(current) && 655 !ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN)) 656 return ERR_PTR(-EACCES); 657 658 /* Allocate a new seccomp_filter */ 659 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN); 660 if (!sfilter) 661 return ERR_PTR(-ENOMEM); 662 663 mutex_init(&sfilter->notify_lock); 664 ret = bpf_prog_create_from_user(&sfilter->prog, fprog, 665 seccomp_check_filter, save_orig); 666 if (ret < 0) { 667 kfree(sfilter); 668 return ERR_PTR(ret); 669 } 670 671 refcount_set(&sfilter->refs, 1); 672 refcount_set(&sfilter->users, 1); 673 init_waitqueue_head(&sfilter->wqh); 674 675 return sfilter; 676 } 677 678 /** 679 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog 680 * @user_filter: pointer to the user data containing a sock_fprog. 681 * 682 * Returns 0 on success and non-zero otherwise. 683 */ 684 static struct seccomp_filter * 685 seccomp_prepare_user_filter(const char __user *user_filter) 686 { 687 struct sock_fprog fprog; 688 struct seccomp_filter *filter = ERR_PTR(-EFAULT); 689 690 #ifdef CONFIG_COMPAT 691 if (in_compat_syscall()) { 692 struct compat_sock_fprog fprog32; 693 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32))) 694 goto out; 695 fprog.len = fprog32.len; 696 fprog.filter = compat_ptr(fprog32.filter); 697 } else /* falls through to the if below. */ 698 #endif 699 if (copy_from_user(&fprog, user_filter, sizeof(fprog))) 700 goto out; 701 filter = seccomp_prepare_filter(&fprog); 702 out: 703 return filter; 704 } 705 706 #ifdef SECCOMP_ARCH_NATIVE 707 /** 708 * seccomp_is_const_allow - check if filter is constant allow with given data 709 * @fprog: The BPF programs 710 * @sd: The seccomp data to check against, only syscall number and arch 711 * number are considered constant. 712 */ 713 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog, 714 struct seccomp_data *sd) 715 { 716 unsigned int reg_value = 0; 717 unsigned int pc; 718 bool op_res; 719 720 if (WARN_ON_ONCE(!fprog)) 721 return false; 722 723 for (pc = 0; pc < fprog->len; pc++) { 724 struct sock_filter *insn = &fprog->filter[pc]; 725 u16 code = insn->code; 726 u32 k = insn->k; 727 728 switch (code) { 729 case BPF_LD | BPF_W | BPF_ABS: 730 switch (k) { 731 case offsetof(struct seccomp_data, nr): 732 reg_value = sd->nr; 733 break; 734 case offsetof(struct seccomp_data, arch): 735 reg_value = sd->arch; 736 break; 737 default: 738 /* can't optimize (non-constant value load) */ 739 return false; 740 } 741 break; 742 case BPF_RET | BPF_K: 743 /* reached return with constant values only, check allow */ 744 return k == SECCOMP_RET_ALLOW; 745 case BPF_JMP | BPF_JA: 746 pc += insn->k; 747 break; 748 case BPF_JMP | BPF_JEQ | BPF_K: 749 case BPF_JMP | BPF_JGE | BPF_K: 750 case BPF_JMP | BPF_JGT | BPF_K: 751 case BPF_JMP | BPF_JSET | BPF_K: 752 switch (BPF_OP(code)) { 753 case BPF_JEQ: 754 op_res = reg_value == k; 755 break; 756 case BPF_JGE: 757 op_res = reg_value >= k; 758 break; 759 case BPF_JGT: 760 op_res = reg_value > k; 761 break; 762 case BPF_JSET: 763 op_res = !!(reg_value & k); 764 break; 765 default: 766 /* can't optimize (unknown jump) */ 767 return false; 768 } 769 770 pc += op_res ? insn->jt : insn->jf; 771 break; 772 case BPF_ALU | BPF_AND | BPF_K: 773 reg_value &= k; 774 break; 775 default: 776 /* can't optimize (unknown insn) */ 777 return false; 778 } 779 } 780 781 /* ran off the end of the filter?! */ 782 WARN_ON(1); 783 return false; 784 } 785 786 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter, 787 void *bitmap, const void *bitmap_prev, 788 size_t bitmap_size, int arch) 789 { 790 struct sock_fprog_kern *fprog = sfilter->prog->orig_prog; 791 struct seccomp_data sd; 792 int nr; 793 794 if (bitmap_prev) { 795 /* The new filter must be as restrictive as the last. */ 796 bitmap_copy(bitmap, bitmap_prev, bitmap_size); 797 } else { 798 /* Before any filters, all syscalls are always allowed. */ 799 bitmap_fill(bitmap, bitmap_size); 800 } 801 802 for (nr = 0; nr < bitmap_size; nr++) { 803 /* No bitmap change: not a cacheable action. */ 804 if (!test_bit(nr, bitmap)) 805 continue; 806 807 sd.nr = nr; 808 sd.arch = arch; 809 810 /* No bitmap change: continue to always allow. */ 811 if (seccomp_is_const_allow(fprog, &sd)) 812 continue; 813 814 /* 815 * Not a cacheable action: always run filters. 816 * atomic clear_bit() not needed, filter not visible yet. 817 */ 818 __clear_bit(nr, bitmap); 819 } 820 } 821 822 /** 823 * seccomp_cache_prepare - emulate the filter to find cacheable syscalls 824 * @sfilter: The seccomp filter 825 * 826 * Returns 0 if successful or -errno if error occurred. 827 */ 828 static void seccomp_cache_prepare(struct seccomp_filter *sfilter) 829 { 830 struct action_cache *cache = &sfilter->cache; 831 const struct action_cache *cache_prev = 832 sfilter->prev ? &sfilter->prev->cache : NULL; 833 834 seccomp_cache_prepare_bitmap(sfilter, cache->allow_native, 835 cache_prev ? cache_prev->allow_native : NULL, 836 SECCOMP_ARCH_NATIVE_NR, 837 SECCOMP_ARCH_NATIVE); 838 839 #ifdef SECCOMP_ARCH_COMPAT 840 seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat, 841 cache_prev ? cache_prev->allow_compat : NULL, 842 SECCOMP_ARCH_COMPAT_NR, 843 SECCOMP_ARCH_COMPAT); 844 #endif /* SECCOMP_ARCH_COMPAT */ 845 } 846 #endif /* SECCOMP_ARCH_NATIVE */ 847 848 /** 849 * seccomp_attach_filter: validate and attach filter 850 * @flags: flags to change filter behavior 851 * @filter: seccomp filter to add to the current process 852 * 853 * Caller must be holding current->sighand->siglock lock. 854 * 855 * Returns 0 on success, -ve on error, or 856 * - in TSYNC mode: the pid of a thread which was either not in the correct 857 * seccomp mode or did not have an ancestral seccomp filter 858 * - in NEW_LISTENER mode: the fd of the new listener 859 */ 860 static long seccomp_attach_filter(unsigned int flags, 861 struct seccomp_filter *filter) 862 { 863 unsigned long total_insns; 864 struct seccomp_filter *walker; 865 866 assert_spin_locked(¤t->sighand->siglock); 867 868 /* Validate resulting filter length. */ 869 total_insns = filter->prog->len; 870 for (walker = current->seccomp.filter; walker; walker = walker->prev) 871 total_insns += walker->prog->len + 4; /* 4 instr penalty */ 872 if (total_insns > MAX_INSNS_PER_PATH) 873 return -ENOMEM; 874 875 /* If thread sync has been requested, check that it is possible. */ 876 if (flags & SECCOMP_FILTER_FLAG_TSYNC) { 877 int ret; 878 879 ret = seccomp_can_sync_threads(); 880 if (ret) { 881 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) 882 return -ESRCH; 883 else 884 return ret; 885 } 886 } 887 888 /* Set log flag, if present. */ 889 if (flags & SECCOMP_FILTER_FLAG_LOG) 890 filter->log = true; 891 892 /* 893 * If there is an existing filter, make it the prev and don't drop its 894 * task reference. 895 */ 896 filter->prev = current->seccomp.filter; 897 seccomp_cache_prepare(filter); 898 current->seccomp.filter = filter; 899 atomic_inc(¤t->seccomp.filter_count); 900 901 /* Now that the new filter is in place, synchronize to all threads. */ 902 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 903 seccomp_sync_threads(flags); 904 905 return 0; 906 } 907 908 static void __get_seccomp_filter(struct seccomp_filter *filter) 909 { 910 refcount_inc(&filter->refs); 911 } 912 913 /* get_seccomp_filter - increments the reference count of the filter on @tsk */ 914 void get_seccomp_filter(struct task_struct *tsk) 915 { 916 struct seccomp_filter *orig = tsk->seccomp.filter; 917 if (!orig) 918 return; 919 __get_seccomp_filter(orig); 920 refcount_inc(&orig->users); 921 } 922 923 static void seccomp_init_siginfo(kernel_siginfo_t *info, int syscall, int reason) 924 { 925 clear_siginfo(info); 926 info->si_signo = SIGSYS; 927 info->si_code = SYS_SECCOMP; 928 info->si_call_addr = (void __user *)KSTK_EIP(current); 929 info->si_errno = reason; 930 info->si_arch = syscall_get_arch(current); 931 info->si_syscall = syscall; 932 } 933 934 /** 935 * seccomp_send_sigsys - signals the task to allow in-process syscall emulation 936 * @syscall: syscall number to send to userland 937 * @reason: filter-supplied reason code to send to userland (via si_errno) 938 * 939 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 940 */ 941 static void seccomp_send_sigsys(int syscall, int reason) 942 { 943 struct kernel_siginfo info; 944 seccomp_init_siginfo(&info, syscall, reason); 945 force_sig_info(&info); 946 } 947 #endif /* CONFIG_SECCOMP_FILTER */ 948 949 /* For use with seccomp_actions_logged */ 950 #define SECCOMP_LOG_KILL_PROCESS (1 << 0) 951 #define SECCOMP_LOG_KILL_THREAD (1 << 1) 952 #define SECCOMP_LOG_TRAP (1 << 2) 953 #define SECCOMP_LOG_ERRNO (1 << 3) 954 #define SECCOMP_LOG_TRACE (1 << 4) 955 #define SECCOMP_LOG_LOG (1 << 5) 956 #define SECCOMP_LOG_ALLOW (1 << 6) 957 #define SECCOMP_LOG_USER_NOTIF (1 << 7) 958 959 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS | 960 SECCOMP_LOG_KILL_THREAD | 961 SECCOMP_LOG_TRAP | 962 SECCOMP_LOG_ERRNO | 963 SECCOMP_LOG_USER_NOTIF | 964 SECCOMP_LOG_TRACE | 965 SECCOMP_LOG_LOG; 966 967 static inline void seccomp_log(unsigned long syscall, long signr, u32 action, 968 bool requested) 969 { 970 bool log = false; 971 972 switch (action) { 973 case SECCOMP_RET_ALLOW: 974 break; 975 case SECCOMP_RET_TRAP: 976 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP; 977 break; 978 case SECCOMP_RET_ERRNO: 979 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO; 980 break; 981 case SECCOMP_RET_TRACE: 982 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE; 983 break; 984 case SECCOMP_RET_USER_NOTIF: 985 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF; 986 break; 987 case SECCOMP_RET_LOG: 988 log = seccomp_actions_logged & SECCOMP_LOG_LOG; 989 break; 990 case SECCOMP_RET_KILL_THREAD: 991 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD; 992 break; 993 case SECCOMP_RET_KILL_PROCESS: 994 default: 995 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS; 996 } 997 998 /* 999 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the 1000 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence 1001 * any action from being logged by removing the action name from the 1002 * seccomp_actions_logged sysctl. 1003 */ 1004 if (!log) 1005 return; 1006 1007 audit_seccomp(syscall, signr, action); 1008 } 1009 1010 /* 1011 * Secure computing mode 1 allows only read/write/exit/sigreturn. 1012 * To be fully secure this must be combined with rlimit 1013 * to limit the stack allocations too. 1014 */ 1015 static const int mode1_syscalls[] = { 1016 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn, 1017 -1, /* negative terminated */ 1018 }; 1019 1020 static void __secure_computing_strict(int this_syscall) 1021 { 1022 const int *allowed_syscalls = mode1_syscalls; 1023 #ifdef CONFIG_COMPAT 1024 if (in_compat_syscall()) 1025 allowed_syscalls = get_compat_mode1_syscalls(); 1026 #endif 1027 do { 1028 if (*allowed_syscalls == this_syscall) 1029 return; 1030 } while (*++allowed_syscalls != -1); 1031 1032 #ifdef SECCOMP_DEBUG 1033 dump_stack(); 1034 #endif 1035 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true); 1036 do_exit(SIGKILL); 1037 } 1038 1039 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER 1040 void secure_computing_strict(int this_syscall) 1041 { 1042 int mode = current->seccomp.mode; 1043 1044 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1045 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1046 return; 1047 1048 if (mode == SECCOMP_MODE_DISABLED) 1049 return; 1050 else if (mode == SECCOMP_MODE_STRICT) 1051 __secure_computing_strict(this_syscall); 1052 else 1053 BUG(); 1054 } 1055 #else 1056 1057 #ifdef CONFIG_SECCOMP_FILTER 1058 static u64 seccomp_next_notify_id(struct seccomp_filter *filter) 1059 { 1060 /* 1061 * Note: overflow is ok here, the id just needs to be unique per 1062 * filter. 1063 */ 1064 lockdep_assert_held(&filter->notify_lock); 1065 return filter->notif->next_id++; 1066 } 1067 1068 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd) 1069 { 1070 /* 1071 * Remove the notification, and reset the list pointers, indicating 1072 * that it has been handled. 1073 */ 1074 list_del_init(&addfd->list); 1075 if (!addfd->setfd) 1076 addfd->ret = receive_fd(addfd->file, addfd->flags); 1077 else 1078 addfd->ret = receive_fd_replace(addfd->fd, addfd->file, 1079 addfd->flags); 1080 complete(&addfd->completion); 1081 } 1082 1083 static int seccomp_do_user_notification(int this_syscall, 1084 struct seccomp_filter *match, 1085 const struct seccomp_data *sd) 1086 { 1087 int err; 1088 u32 flags = 0; 1089 long ret = 0; 1090 struct seccomp_knotif n = {}; 1091 struct seccomp_kaddfd *addfd, *tmp; 1092 1093 mutex_lock(&match->notify_lock); 1094 err = -ENOSYS; 1095 if (!match->notif) 1096 goto out; 1097 1098 n.task = current; 1099 n.state = SECCOMP_NOTIFY_INIT; 1100 n.data = sd; 1101 n.id = seccomp_next_notify_id(match); 1102 init_completion(&n.ready); 1103 list_add(&n.list, &match->notif->notifications); 1104 INIT_LIST_HEAD(&n.addfd); 1105 1106 up(&match->notif->request); 1107 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM); 1108 1109 /* 1110 * This is where we wait for a reply from userspace. 1111 */ 1112 do { 1113 mutex_unlock(&match->notify_lock); 1114 err = wait_for_completion_interruptible(&n.ready); 1115 mutex_lock(&match->notify_lock); 1116 if (err != 0) 1117 goto interrupted; 1118 1119 addfd = list_first_entry_or_null(&n.addfd, 1120 struct seccomp_kaddfd, list); 1121 /* Check if we were woken up by a addfd message */ 1122 if (addfd) 1123 seccomp_handle_addfd(addfd); 1124 1125 } while (n.state != SECCOMP_NOTIFY_REPLIED); 1126 1127 ret = n.val; 1128 err = n.error; 1129 flags = n.flags; 1130 1131 interrupted: 1132 /* If there were any pending addfd calls, clear them out */ 1133 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) { 1134 /* The process went away before we got a chance to handle it */ 1135 addfd->ret = -ESRCH; 1136 list_del_init(&addfd->list); 1137 complete(&addfd->completion); 1138 } 1139 1140 /* 1141 * Note that it's possible the listener died in between the time when 1142 * we were notified of a response (or a signal) and when we were able to 1143 * re-acquire the lock, so only delete from the list if the 1144 * notification actually exists. 1145 * 1146 * Also note that this test is only valid because there's no way to 1147 * *reattach* to a notifier right now. If one is added, we'll need to 1148 * keep track of the notif itself and make sure they match here. 1149 */ 1150 if (match->notif) 1151 list_del(&n.list); 1152 out: 1153 mutex_unlock(&match->notify_lock); 1154 1155 /* Userspace requests to continue the syscall. */ 1156 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1157 return 0; 1158 1159 syscall_set_return_value(current, current_pt_regs(), 1160 err, ret); 1161 return -1; 1162 } 1163 1164 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1165 const bool recheck_after_trace) 1166 { 1167 u32 filter_ret, action; 1168 struct seccomp_filter *match = NULL; 1169 int data; 1170 struct seccomp_data sd_local; 1171 1172 /* 1173 * Make sure that any changes to mode from another thread have 1174 * been seen after SYSCALL_WORK_SECCOMP was seen. 1175 */ 1176 smp_rmb(); 1177 1178 if (!sd) { 1179 populate_seccomp_data(&sd_local); 1180 sd = &sd_local; 1181 } 1182 1183 filter_ret = seccomp_run_filters(sd, &match); 1184 data = filter_ret & SECCOMP_RET_DATA; 1185 action = filter_ret & SECCOMP_RET_ACTION_FULL; 1186 1187 switch (action) { 1188 case SECCOMP_RET_ERRNO: 1189 /* Set low-order bits as an errno, capped at MAX_ERRNO. */ 1190 if (data > MAX_ERRNO) 1191 data = MAX_ERRNO; 1192 syscall_set_return_value(current, current_pt_regs(), 1193 -data, 0); 1194 goto skip; 1195 1196 case SECCOMP_RET_TRAP: 1197 /* Show the handler the original registers. */ 1198 syscall_rollback(current, current_pt_regs()); 1199 /* Let the filter pass back 16 bits of data. */ 1200 seccomp_send_sigsys(this_syscall, data); 1201 goto skip; 1202 1203 case SECCOMP_RET_TRACE: 1204 /* We've been put in this state by the ptracer already. */ 1205 if (recheck_after_trace) 1206 return 0; 1207 1208 /* ENOSYS these calls if there is no tracer attached. */ 1209 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) { 1210 syscall_set_return_value(current, 1211 current_pt_regs(), 1212 -ENOSYS, 0); 1213 goto skip; 1214 } 1215 1216 /* Allow the BPF to provide the event message */ 1217 ptrace_event(PTRACE_EVENT_SECCOMP, data); 1218 /* 1219 * The delivery of a fatal signal during event 1220 * notification may silently skip tracer notification, 1221 * which could leave us with a potentially unmodified 1222 * syscall that the tracer would have liked to have 1223 * changed. Since the process is about to die, we just 1224 * force the syscall to be skipped and let the signal 1225 * kill the process and correctly handle any tracer exit 1226 * notifications. 1227 */ 1228 if (fatal_signal_pending(current)) 1229 goto skip; 1230 /* Check if the tracer forced the syscall to be skipped. */ 1231 this_syscall = syscall_get_nr(current, current_pt_regs()); 1232 if (this_syscall < 0) 1233 goto skip; 1234 1235 /* 1236 * Recheck the syscall, since it may have changed. This 1237 * intentionally uses a NULL struct seccomp_data to force 1238 * a reload of all registers. This does not goto skip since 1239 * a skip would have already been reported. 1240 */ 1241 if (__seccomp_filter(this_syscall, NULL, true)) 1242 return -1; 1243 1244 return 0; 1245 1246 case SECCOMP_RET_USER_NOTIF: 1247 if (seccomp_do_user_notification(this_syscall, match, sd)) 1248 goto skip; 1249 1250 return 0; 1251 1252 case SECCOMP_RET_LOG: 1253 seccomp_log(this_syscall, 0, action, true); 1254 return 0; 1255 1256 case SECCOMP_RET_ALLOW: 1257 /* 1258 * Note that the "match" filter will always be NULL for 1259 * this action since SECCOMP_RET_ALLOW is the starting 1260 * state in seccomp_run_filters(). 1261 */ 1262 return 0; 1263 1264 case SECCOMP_RET_KILL_THREAD: 1265 case SECCOMP_RET_KILL_PROCESS: 1266 default: 1267 seccomp_log(this_syscall, SIGSYS, action, true); 1268 /* Dump core only if this is the last remaining thread. */ 1269 if (action != SECCOMP_RET_KILL_THREAD || 1270 get_nr_threads(current) == 1) { 1271 kernel_siginfo_t info; 1272 1273 /* Show the original registers in the dump. */ 1274 syscall_rollback(current, current_pt_regs()); 1275 /* Trigger a manual coredump since do_exit skips it. */ 1276 seccomp_init_siginfo(&info, this_syscall, data); 1277 do_coredump(&info); 1278 } 1279 if (action == SECCOMP_RET_KILL_THREAD) 1280 do_exit(SIGSYS); 1281 else 1282 do_group_exit(SIGSYS); 1283 } 1284 1285 unreachable(); 1286 1287 skip: 1288 seccomp_log(this_syscall, 0, action, match ? match->log : false); 1289 return -1; 1290 } 1291 #else 1292 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1293 const bool recheck_after_trace) 1294 { 1295 BUG(); 1296 1297 return -1; 1298 } 1299 #endif 1300 1301 int __secure_computing(const struct seccomp_data *sd) 1302 { 1303 int mode = current->seccomp.mode; 1304 int this_syscall; 1305 1306 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1307 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1308 return 0; 1309 1310 this_syscall = sd ? sd->nr : 1311 syscall_get_nr(current, current_pt_regs()); 1312 1313 switch (mode) { 1314 case SECCOMP_MODE_STRICT: 1315 __secure_computing_strict(this_syscall); /* may call do_exit */ 1316 return 0; 1317 case SECCOMP_MODE_FILTER: 1318 return __seccomp_filter(this_syscall, sd, false); 1319 default: 1320 BUG(); 1321 } 1322 } 1323 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */ 1324 1325 long prctl_get_seccomp(void) 1326 { 1327 return current->seccomp.mode; 1328 } 1329 1330 /** 1331 * seccomp_set_mode_strict: internal function for setting strict seccomp 1332 * 1333 * Once current->seccomp.mode is non-zero, it may not be changed. 1334 * 1335 * Returns 0 on success or -EINVAL on failure. 1336 */ 1337 static long seccomp_set_mode_strict(void) 1338 { 1339 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT; 1340 long ret = -EINVAL; 1341 1342 spin_lock_irq(¤t->sighand->siglock); 1343 1344 if (!seccomp_may_assign_mode(seccomp_mode)) 1345 goto out; 1346 1347 #ifdef TIF_NOTSC 1348 disable_TSC(); 1349 #endif 1350 seccomp_assign_mode(current, seccomp_mode, 0); 1351 ret = 0; 1352 1353 out: 1354 spin_unlock_irq(¤t->sighand->siglock); 1355 1356 return ret; 1357 } 1358 1359 #ifdef CONFIG_SECCOMP_FILTER 1360 static void seccomp_notify_free(struct seccomp_filter *filter) 1361 { 1362 kfree(filter->notif); 1363 filter->notif = NULL; 1364 } 1365 1366 static void seccomp_notify_detach(struct seccomp_filter *filter) 1367 { 1368 struct seccomp_knotif *knotif; 1369 1370 if (!filter) 1371 return; 1372 1373 mutex_lock(&filter->notify_lock); 1374 1375 /* 1376 * If this file is being closed because e.g. the task who owned it 1377 * died, let's wake everyone up who was waiting on us. 1378 */ 1379 list_for_each_entry(knotif, &filter->notif->notifications, list) { 1380 if (knotif->state == SECCOMP_NOTIFY_REPLIED) 1381 continue; 1382 1383 knotif->state = SECCOMP_NOTIFY_REPLIED; 1384 knotif->error = -ENOSYS; 1385 knotif->val = 0; 1386 1387 /* 1388 * We do not need to wake up any pending addfd messages, as 1389 * the notifier will do that for us, as this just looks 1390 * like a standard reply. 1391 */ 1392 complete(&knotif->ready); 1393 } 1394 1395 seccomp_notify_free(filter); 1396 mutex_unlock(&filter->notify_lock); 1397 } 1398 1399 static int seccomp_notify_release(struct inode *inode, struct file *file) 1400 { 1401 struct seccomp_filter *filter = file->private_data; 1402 1403 seccomp_notify_detach(filter); 1404 __put_seccomp_filter(filter); 1405 return 0; 1406 } 1407 1408 /* must be called with notif_lock held */ 1409 static inline struct seccomp_knotif * 1410 find_notification(struct seccomp_filter *filter, u64 id) 1411 { 1412 struct seccomp_knotif *cur; 1413 1414 lockdep_assert_held(&filter->notify_lock); 1415 1416 list_for_each_entry(cur, &filter->notif->notifications, list) { 1417 if (cur->id == id) 1418 return cur; 1419 } 1420 1421 return NULL; 1422 } 1423 1424 1425 static long seccomp_notify_recv(struct seccomp_filter *filter, 1426 void __user *buf) 1427 { 1428 struct seccomp_knotif *knotif = NULL, *cur; 1429 struct seccomp_notif unotif; 1430 ssize_t ret; 1431 1432 /* Verify that we're not given garbage to keep struct extensible. */ 1433 ret = check_zeroed_user(buf, sizeof(unotif)); 1434 if (ret < 0) 1435 return ret; 1436 if (!ret) 1437 return -EINVAL; 1438 1439 memset(&unotif, 0, sizeof(unotif)); 1440 1441 ret = down_interruptible(&filter->notif->request); 1442 if (ret < 0) 1443 return ret; 1444 1445 mutex_lock(&filter->notify_lock); 1446 list_for_each_entry(cur, &filter->notif->notifications, list) { 1447 if (cur->state == SECCOMP_NOTIFY_INIT) { 1448 knotif = cur; 1449 break; 1450 } 1451 } 1452 1453 /* 1454 * If we didn't find a notification, it could be that the task was 1455 * interrupted by a fatal signal between the time we were woken and 1456 * when we were able to acquire the rw lock. 1457 */ 1458 if (!knotif) { 1459 ret = -ENOENT; 1460 goto out; 1461 } 1462 1463 unotif.id = knotif->id; 1464 unotif.pid = task_pid_vnr(knotif->task); 1465 unotif.data = *(knotif->data); 1466 1467 knotif->state = SECCOMP_NOTIFY_SENT; 1468 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM); 1469 ret = 0; 1470 out: 1471 mutex_unlock(&filter->notify_lock); 1472 1473 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) { 1474 ret = -EFAULT; 1475 1476 /* 1477 * Userspace screwed up. To make sure that we keep this 1478 * notification alive, let's reset it back to INIT. It 1479 * may have died when we released the lock, so we need to make 1480 * sure it's still around. 1481 */ 1482 mutex_lock(&filter->notify_lock); 1483 knotif = find_notification(filter, unotif.id); 1484 if (knotif) { 1485 knotif->state = SECCOMP_NOTIFY_INIT; 1486 up(&filter->notif->request); 1487 } 1488 mutex_unlock(&filter->notify_lock); 1489 } 1490 1491 return ret; 1492 } 1493 1494 static long seccomp_notify_send(struct seccomp_filter *filter, 1495 void __user *buf) 1496 { 1497 struct seccomp_notif_resp resp = {}; 1498 struct seccomp_knotif *knotif; 1499 long ret; 1500 1501 if (copy_from_user(&resp, buf, sizeof(resp))) 1502 return -EFAULT; 1503 1504 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1505 return -EINVAL; 1506 1507 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) && 1508 (resp.error || resp.val)) 1509 return -EINVAL; 1510 1511 ret = mutex_lock_interruptible(&filter->notify_lock); 1512 if (ret < 0) 1513 return ret; 1514 1515 knotif = find_notification(filter, resp.id); 1516 if (!knotif) { 1517 ret = -ENOENT; 1518 goto out; 1519 } 1520 1521 /* Allow exactly one reply. */ 1522 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1523 ret = -EINPROGRESS; 1524 goto out; 1525 } 1526 1527 ret = 0; 1528 knotif->state = SECCOMP_NOTIFY_REPLIED; 1529 knotif->error = resp.error; 1530 knotif->val = resp.val; 1531 knotif->flags = resp.flags; 1532 complete(&knotif->ready); 1533 out: 1534 mutex_unlock(&filter->notify_lock); 1535 return ret; 1536 } 1537 1538 static long seccomp_notify_id_valid(struct seccomp_filter *filter, 1539 void __user *buf) 1540 { 1541 struct seccomp_knotif *knotif; 1542 u64 id; 1543 long ret; 1544 1545 if (copy_from_user(&id, buf, sizeof(id))) 1546 return -EFAULT; 1547 1548 ret = mutex_lock_interruptible(&filter->notify_lock); 1549 if (ret < 0) 1550 return ret; 1551 1552 knotif = find_notification(filter, id); 1553 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT) 1554 ret = 0; 1555 else 1556 ret = -ENOENT; 1557 1558 mutex_unlock(&filter->notify_lock); 1559 return ret; 1560 } 1561 1562 static long seccomp_notify_addfd(struct seccomp_filter *filter, 1563 struct seccomp_notif_addfd __user *uaddfd, 1564 unsigned int size) 1565 { 1566 struct seccomp_notif_addfd addfd; 1567 struct seccomp_knotif *knotif; 1568 struct seccomp_kaddfd kaddfd; 1569 int ret; 1570 1571 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0); 1572 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST); 1573 1574 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE) 1575 return -EINVAL; 1576 1577 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size); 1578 if (ret) 1579 return ret; 1580 1581 if (addfd.newfd_flags & ~O_CLOEXEC) 1582 return -EINVAL; 1583 1584 if (addfd.flags & ~SECCOMP_ADDFD_FLAG_SETFD) 1585 return -EINVAL; 1586 1587 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD)) 1588 return -EINVAL; 1589 1590 kaddfd.file = fget(addfd.srcfd); 1591 if (!kaddfd.file) 1592 return -EBADF; 1593 1594 kaddfd.flags = addfd.newfd_flags; 1595 kaddfd.setfd = addfd.flags & SECCOMP_ADDFD_FLAG_SETFD; 1596 kaddfd.fd = addfd.newfd; 1597 init_completion(&kaddfd.completion); 1598 1599 ret = mutex_lock_interruptible(&filter->notify_lock); 1600 if (ret < 0) 1601 goto out; 1602 1603 knotif = find_notification(filter, addfd.id); 1604 if (!knotif) { 1605 ret = -ENOENT; 1606 goto out_unlock; 1607 } 1608 1609 /* 1610 * We do not want to allow for FD injection to occur before the 1611 * notification has been picked up by a userspace handler, or after 1612 * the notification has been replied to. 1613 */ 1614 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1615 ret = -EINPROGRESS; 1616 goto out_unlock; 1617 } 1618 1619 list_add(&kaddfd.list, &knotif->addfd); 1620 complete(&knotif->ready); 1621 mutex_unlock(&filter->notify_lock); 1622 1623 /* Now we wait for it to be processed or be interrupted */ 1624 ret = wait_for_completion_interruptible(&kaddfd.completion); 1625 if (ret == 0) { 1626 /* 1627 * We had a successful completion. The other side has already 1628 * removed us from the addfd queue, and 1629 * wait_for_completion_interruptible has a memory barrier upon 1630 * success that lets us read this value directly without 1631 * locking. 1632 */ 1633 ret = kaddfd.ret; 1634 goto out; 1635 } 1636 1637 mutex_lock(&filter->notify_lock); 1638 /* 1639 * Even though we were woken up by a signal and not a successful 1640 * completion, a completion may have happened in the mean time. 1641 * 1642 * We need to check again if the addfd request has been handled, 1643 * and if not, we will remove it from the queue. 1644 */ 1645 if (list_empty(&kaddfd.list)) 1646 ret = kaddfd.ret; 1647 else 1648 list_del(&kaddfd.list); 1649 1650 out_unlock: 1651 mutex_unlock(&filter->notify_lock); 1652 out: 1653 fput(kaddfd.file); 1654 1655 return ret; 1656 } 1657 1658 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd, 1659 unsigned long arg) 1660 { 1661 struct seccomp_filter *filter = file->private_data; 1662 void __user *buf = (void __user *)arg; 1663 1664 /* Fixed-size ioctls */ 1665 switch (cmd) { 1666 case SECCOMP_IOCTL_NOTIF_RECV: 1667 return seccomp_notify_recv(filter, buf); 1668 case SECCOMP_IOCTL_NOTIF_SEND: 1669 return seccomp_notify_send(filter, buf); 1670 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR: 1671 case SECCOMP_IOCTL_NOTIF_ID_VALID: 1672 return seccomp_notify_id_valid(filter, buf); 1673 } 1674 1675 /* Extensible Argument ioctls */ 1676 #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK)) 1677 switch (EA_IOCTL(cmd)) { 1678 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD): 1679 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd)); 1680 default: 1681 return -EINVAL; 1682 } 1683 } 1684 1685 static __poll_t seccomp_notify_poll(struct file *file, 1686 struct poll_table_struct *poll_tab) 1687 { 1688 struct seccomp_filter *filter = file->private_data; 1689 __poll_t ret = 0; 1690 struct seccomp_knotif *cur; 1691 1692 poll_wait(file, &filter->wqh, poll_tab); 1693 1694 if (mutex_lock_interruptible(&filter->notify_lock) < 0) 1695 return EPOLLERR; 1696 1697 list_for_each_entry(cur, &filter->notif->notifications, list) { 1698 if (cur->state == SECCOMP_NOTIFY_INIT) 1699 ret |= EPOLLIN | EPOLLRDNORM; 1700 if (cur->state == SECCOMP_NOTIFY_SENT) 1701 ret |= EPOLLOUT | EPOLLWRNORM; 1702 if ((ret & EPOLLIN) && (ret & EPOLLOUT)) 1703 break; 1704 } 1705 1706 mutex_unlock(&filter->notify_lock); 1707 1708 if (refcount_read(&filter->users) == 0) 1709 ret |= EPOLLHUP; 1710 1711 return ret; 1712 } 1713 1714 static const struct file_operations seccomp_notify_ops = { 1715 .poll = seccomp_notify_poll, 1716 .release = seccomp_notify_release, 1717 .unlocked_ioctl = seccomp_notify_ioctl, 1718 .compat_ioctl = seccomp_notify_ioctl, 1719 }; 1720 1721 static struct file *init_listener(struct seccomp_filter *filter) 1722 { 1723 struct file *ret; 1724 1725 ret = ERR_PTR(-ENOMEM); 1726 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL); 1727 if (!filter->notif) 1728 goto out; 1729 1730 sema_init(&filter->notif->request, 0); 1731 filter->notif->next_id = get_random_u64(); 1732 INIT_LIST_HEAD(&filter->notif->notifications); 1733 1734 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops, 1735 filter, O_RDWR); 1736 if (IS_ERR(ret)) 1737 goto out_notif; 1738 1739 /* The file has a reference to it now */ 1740 __get_seccomp_filter(filter); 1741 1742 out_notif: 1743 if (IS_ERR(ret)) 1744 seccomp_notify_free(filter); 1745 out: 1746 return ret; 1747 } 1748 1749 /* 1750 * Does @new_child have a listener while an ancestor also has a listener? 1751 * If so, we'll want to reject this filter. 1752 * This only has to be tested for the current process, even in the TSYNC case, 1753 * because TSYNC installs @child with the same parent on all threads. 1754 * Note that @new_child is not hooked up to its parent at this point yet, so 1755 * we use current->seccomp.filter. 1756 */ 1757 static bool has_duplicate_listener(struct seccomp_filter *new_child) 1758 { 1759 struct seccomp_filter *cur; 1760 1761 /* must be protected against concurrent TSYNC */ 1762 lockdep_assert_held(¤t->sighand->siglock); 1763 1764 if (!new_child->notif) 1765 return false; 1766 for (cur = current->seccomp.filter; cur; cur = cur->prev) { 1767 if (cur->notif) 1768 return true; 1769 } 1770 1771 return false; 1772 } 1773 1774 /** 1775 * seccomp_set_mode_filter: internal function for setting seccomp filter 1776 * @flags: flags to change filter behavior 1777 * @filter: struct sock_fprog containing filter 1778 * 1779 * This function may be called repeatedly to install additional filters. 1780 * Every filter successfully installed will be evaluated (in reverse order) 1781 * for each system call the task makes. 1782 * 1783 * Once current->seccomp.mode is non-zero, it may not be changed. 1784 * 1785 * Returns 0 on success or -EINVAL on failure. 1786 */ 1787 static long seccomp_set_mode_filter(unsigned int flags, 1788 const char __user *filter) 1789 { 1790 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER; 1791 struct seccomp_filter *prepared = NULL; 1792 long ret = -EINVAL; 1793 int listener = -1; 1794 struct file *listener_f = NULL; 1795 1796 /* Validate flags. */ 1797 if (flags & ~SECCOMP_FILTER_FLAG_MASK) 1798 return -EINVAL; 1799 1800 /* 1801 * In the successful case, NEW_LISTENER returns the new listener fd. 1802 * But in the failure case, TSYNC returns the thread that died. If you 1803 * combine these two flags, there's no way to tell whether something 1804 * succeeded or failed. So, let's disallow this combination if the user 1805 * has not explicitly requested no errors from TSYNC. 1806 */ 1807 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) && 1808 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) && 1809 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0)) 1810 return -EINVAL; 1811 1812 /* Prepare the new filter before holding any locks. */ 1813 prepared = seccomp_prepare_user_filter(filter); 1814 if (IS_ERR(prepared)) 1815 return PTR_ERR(prepared); 1816 1817 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1818 listener = get_unused_fd_flags(O_CLOEXEC); 1819 if (listener < 0) { 1820 ret = listener; 1821 goto out_free; 1822 } 1823 1824 listener_f = init_listener(prepared); 1825 if (IS_ERR(listener_f)) { 1826 put_unused_fd(listener); 1827 ret = PTR_ERR(listener_f); 1828 goto out_free; 1829 } 1830 } 1831 1832 /* 1833 * Make sure we cannot change seccomp or nnp state via TSYNC 1834 * while another thread is in the middle of calling exec. 1835 */ 1836 if (flags & SECCOMP_FILTER_FLAG_TSYNC && 1837 mutex_lock_killable(¤t->signal->cred_guard_mutex)) 1838 goto out_put_fd; 1839 1840 spin_lock_irq(¤t->sighand->siglock); 1841 1842 if (!seccomp_may_assign_mode(seccomp_mode)) 1843 goto out; 1844 1845 if (has_duplicate_listener(prepared)) { 1846 ret = -EBUSY; 1847 goto out; 1848 } 1849 1850 ret = seccomp_attach_filter(flags, prepared); 1851 if (ret) 1852 goto out; 1853 /* Do not free the successfully attached filter. */ 1854 prepared = NULL; 1855 1856 seccomp_assign_mode(current, seccomp_mode, flags); 1857 out: 1858 spin_unlock_irq(¤t->sighand->siglock); 1859 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 1860 mutex_unlock(¤t->signal->cred_guard_mutex); 1861 out_put_fd: 1862 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1863 if (ret) { 1864 listener_f->private_data = NULL; 1865 fput(listener_f); 1866 put_unused_fd(listener); 1867 seccomp_notify_detach(prepared); 1868 } else { 1869 fd_install(listener, listener_f); 1870 ret = listener; 1871 } 1872 } 1873 out_free: 1874 seccomp_filter_free(prepared); 1875 return ret; 1876 } 1877 #else 1878 static inline long seccomp_set_mode_filter(unsigned int flags, 1879 const char __user *filter) 1880 { 1881 return -EINVAL; 1882 } 1883 #endif 1884 1885 static long seccomp_get_action_avail(const char __user *uaction) 1886 { 1887 u32 action; 1888 1889 if (copy_from_user(&action, uaction, sizeof(action))) 1890 return -EFAULT; 1891 1892 switch (action) { 1893 case SECCOMP_RET_KILL_PROCESS: 1894 case SECCOMP_RET_KILL_THREAD: 1895 case SECCOMP_RET_TRAP: 1896 case SECCOMP_RET_ERRNO: 1897 case SECCOMP_RET_USER_NOTIF: 1898 case SECCOMP_RET_TRACE: 1899 case SECCOMP_RET_LOG: 1900 case SECCOMP_RET_ALLOW: 1901 break; 1902 default: 1903 return -EOPNOTSUPP; 1904 } 1905 1906 return 0; 1907 } 1908 1909 static long seccomp_get_notif_sizes(void __user *usizes) 1910 { 1911 struct seccomp_notif_sizes sizes = { 1912 .seccomp_notif = sizeof(struct seccomp_notif), 1913 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp), 1914 .seccomp_data = sizeof(struct seccomp_data), 1915 }; 1916 1917 if (copy_to_user(usizes, &sizes, sizeof(sizes))) 1918 return -EFAULT; 1919 1920 return 0; 1921 } 1922 1923 /* Common entry point for both prctl and syscall. */ 1924 static long do_seccomp(unsigned int op, unsigned int flags, 1925 void __user *uargs) 1926 { 1927 switch (op) { 1928 case SECCOMP_SET_MODE_STRICT: 1929 if (flags != 0 || uargs != NULL) 1930 return -EINVAL; 1931 return seccomp_set_mode_strict(); 1932 case SECCOMP_SET_MODE_FILTER: 1933 return seccomp_set_mode_filter(flags, uargs); 1934 case SECCOMP_GET_ACTION_AVAIL: 1935 if (flags != 0) 1936 return -EINVAL; 1937 1938 return seccomp_get_action_avail(uargs); 1939 case SECCOMP_GET_NOTIF_SIZES: 1940 if (flags != 0) 1941 return -EINVAL; 1942 1943 return seccomp_get_notif_sizes(uargs); 1944 default: 1945 return -EINVAL; 1946 } 1947 } 1948 1949 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags, 1950 void __user *, uargs) 1951 { 1952 return do_seccomp(op, flags, uargs); 1953 } 1954 1955 /** 1956 * prctl_set_seccomp: configures current->seccomp.mode 1957 * @seccomp_mode: requested mode to use 1958 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER 1959 * 1960 * Returns 0 on success or -EINVAL on failure. 1961 */ 1962 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter) 1963 { 1964 unsigned int op; 1965 void __user *uargs; 1966 1967 switch (seccomp_mode) { 1968 case SECCOMP_MODE_STRICT: 1969 op = SECCOMP_SET_MODE_STRICT; 1970 /* 1971 * Setting strict mode through prctl always ignored filter, 1972 * so make sure it is always NULL here to pass the internal 1973 * check in do_seccomp(). 1974 */ 1975 uargs = NULL; 1976 break; 1977 case SECCOMP_MODE_FILTER: 1978 op = SECCOMP_SET_MODE_FILTER; 1979 uargs = filter; 1980 break; 1981 default: 1982 return -EINVAL; 1983 } 1984 1985 /* prctl interface doesn't have flags, so they are always zero. */ 1986 return do_seccomp(op, 0, uargs); 1987 } 1988 1989 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE) 1990 static struct seccomp_filter *get_nth_filter(struct task_struct *task, 1991 unsigned long filter_off) 1992 { 1993 struct seccomp_filter *orig, *filter; 1994 unsigned long count; 1995 1996 /* 1997 * Note: this is only correct because the caller should be the (ptrace) 1998 * tracer of the task, otherwise lock_task_sighand is needed. 1999 */ 2000 spin_lock_irq(&task->sighand->siglock); 2001 2002 if (task->seccomp.mode != SECCOMP_MODE_FILTER) { 2003 spin_unlock_irq(&task->sighand->siglock); 2004 return ERR_PTR(-EINVAL); 2005 } 2006 2007 orig = task->seccomp.filter; 2008 __get_seccomp_filter(orig); 2009 spin_unlock_irq(&task->sighand->siglock); 2010 2011 count = 0; 2012 for (filter = orig; filter; filter = filter->prev) 2013 count++; 2014 2015 if (filter_off >= count) { 2016 filter = ERR_PTR(-ENOENT); 2017 goto out; 2018 } 2019 2020 count -= filter_off; 2021 for (filter = orig; filter && count > 1; filter = filter->prev) 2022 count--; 2023 2024 if (WARN_ON(count != 1 || !filter)) { 2025 filter = ERR_PTR(-ENOENT); 2026 goto out; 2027 } 2028 2029 __get_seccomp_filter(filter); 2030 2031 out: 2032 __put_seccomp_filter(orig); 2033 return filter; 2034 } 2035 2036 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off, 2037 void __user *data) 2038 { 2039 struct seccomp_filter *filter; 2040 struct sock_fprog_kern *fprog; 2041 long ret; 2042 2043 if (!capable(CAP_SYS_ADMIN) || 2044 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2045 return -EACCES; 2046 } 2047 2048 filter = get_nth_filter(task, filter_off); 2049 if (IS_ERR(filter)) 2050 return PTR_ERR(filter); 2051 2052 fprog = filter->prog->orig_prog; 2053 if (!fprog) { 2054 /* This must be a new non-cBPF filter, since we save 2055 * every cBPF filter's orig_prog above when 2056 * CONFIG_CHECKPOINT_RESTORE is enabled. 2057 */ 2058 ret = -EMEDIUMTYPE; 2059 goto out; 2060 } 2061 2062 ret = fprog->len; 2063 if (!data) 2064 goto out; 2065 2066 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog))) 2067 ret = -EFAULT; 2068 2069 out: 2070 __put_seccomp_filter(filter); 2071 return ret; 2072 } 2073 2074 long seccomp_get_metadata(struct task_struct *task, 2075 unsigned long size, void __user *data) 2076 { 2077 long ret; 2078 struct seccomp_filter *filter; 2079 struct seccomp_metadata kmd = {}; 2080 2081 if (!capable(CAP_SYS_ADMIN) || 2082 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2083 return -EACCES; 2084 } 2085 2086 size = min_t(unsigned long, size, sizeof(kmd)); 2087 2088 if (size < sizeof(kmd.filter_off)) 2089 return -EINVAL; 2090 2091 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off))) 2092 return -EFAULT; 2093 2094 filter = get_nth_filter(task, kmd.filter_off); 2095 if (IS_ERR(filter)) 2096 return PTR_ERR(filter); 2097 2098 if (filter->log) 2099 kmd.flags |= SECCOMP_FILTER_FLAG_LOG; 2100 2101 ret = size; 2102 if (copy_to_user(data, &kmd, size)) 2103 ret = -EFAULT; 2104 2105 __put_seccomp_filter(filter); 2106 return ret; 2107 } 2108 #endif 2109 2110 #ifdef CONFIG_SYSCTL 2111 2112 /* Human readable action names for friendly sysctl interaction */ 2113 #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process" 2114 #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread" 2115 #define SECCOMP_RET_TRAP_NAME "trap" 2116 #define SECCOMP_RET_ERRNO_NAME "errno" 2117 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif" 2118 #define SECCOMP_RET_TRACE_NAME "trace" 2119 #define SECCOMP_RET_LOG_NAME "log" 2120 #define SECCOMP_RET_ALLOW_NAME "allow" 2121 2122 static const char seccomp_actions_avail[] = 2123 SECCOMP_RET_KILL_PROCESS_NAME " " 2124 SECCOMP_RET_KILL_THREAD_NAME " " 2125 SECCOMP_RET_TRAP_NAME " " 2126 SECCOMP_RET_ERRNO_NAME " " 2127 SECCOMP_RET_USER_NOTIF_NAME " " 2128 SECCOMP_RET_TRACE_NAME " " 2129 SECCOMP_RET_LOG_NAME " " 2130 SECCOMP_RET_ALLOW_NAME; 2131 2132 struct seccomp_log_name { 2133 u32 log; 2134 const char *name; 2135 }; 2136 2137 static const struct seccomp_log_name seccomp_log_names[] = { 2138 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME }, 2139 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME }, 2140 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME }, 2141 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME }, 2142 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME }, 2143 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME }, 2144 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME }, 2145 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME }, 2146 { } 2147 }; 2148 2149 static bool seccomp_names_from_actions_logged(char *names, size_t size, 2150 u32 actions_logged, 2151 const char *sep) 2152 { 2153 const struct seccomp_log_name *cur; 2154 bool append_sep = false; 2155 2156 for (cur = seccomp_log_names; cur->name && size; cur++) { 2157 ssize_t ret; 2158 2159 if (!(actions_logged & cur->log)) 2160 continue; 2161 2162 if (append_sep) { 2163 ret = strscpy(names, sep, size); 2164 if (ret < 0) 2165 return false; 2166 2167 names += ret; 2168 size -= ret; 2169 } else 2170 append_sep = true; 2171 2172 ret = strscpy(names, cur->name, size); 2173 if (ret < 0) 2174 return false; 2175 2176 names += ret; 2177 size -= ret; 2178 } 2179 2180 return true; 2181 } 2182 2183 static bool seccomp_action_logged_from_name(u32 *action_logged, 2184 const char *name) 2185 { 2186 const struct seccomp_log_name *cur; 2187 2188 for (cur = seccomp_log_names; cur->name; cur++) { 2189 if (!strcmp(cur->name, name)) { 2190 *action_logged = cur->log; 2191 return true; 2192 } 2193 } 2194 2195 return false; 2196 } 2197 2198 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names) 2199 { 2200 char *name; 2201 2202 *actions_logged = 0; 2203 while ((name = strsep(&names, " ")) && *name) { 2204 u32 action_logged = 0; 2205 2206 if (!seccomp_action_logged_from_name(&action_logged, name)) 2207 return false; 2208 2209 *actions_logged |= action_logged; 2210 } 2211 2212 return true; 2213 } 2214 2215 static int read_actions_logged(struct ctl_table *ro_table, void *buffer, 2216 size_t *lenp, loff_t *ppos) 2217 { 2218 char names[sizeof(seccomp_actions_avail)]; 2219 struct ctl_table table; 2220 2221 memset(names, 0, sizeof(names)); 2222 2223 if (!seccomp_names_from_actions_logged(names, sizeof(names), 2224 seccomp_actions_logged, " ")) 2225 return -EINVAL; 2226 2227 table = *ro_table; 2228 table.data = names; 2229 table.maxlen = sizeof(names); 2230 return proc_dostring(&table, 0, buffer, lenp, ppos); 2231 } 2232 2233 static int write_actions_logged(struct ctl_table *ro_table, void *buffer, 2234 size_t *lenp, loff_t *ppos, u32 *actions_logged) 2235 { 2236 char names[sizeof(seccomp_actions_avail)]; 2237 struct ctl_table table; 2238 int ret; 2239 2240 if (!capable(CAP_SYS_ADMIN)) 2241 return -EPERM; 2242 2243 memset(names, 0, sizeof(names)); 2244 2245 table = *ro_table; 2246 table.data = names; 2247 table.maxlen = sizeof(names); 2248 ret = proc_dostring(&table, 1, buffer, lenp, ppos); 2249 if (ret) 2250 return ret; 2251 2252 if (!seccomp_actions_logged_from_names(actions_logged, table.data)) 2253 return -EINVAL; 2254 2255 if (*actions_logged & SECCOMP_LOG_ALLOW) 2256 return -EINVAL; 2257 2258 seccomp_actions_logged = *actions_logged; 2259 return 0; 2260 } 2261 2262 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged, 2263 int ret) 2264 { 2265 char names[sizeof(seccomp_actions_avail)]; 2266 char old_names[sizeof(seccomp_actions_avail)]; 2267 const char *new = names; 2268 const char *old = old_names; 2269 2270 if (!audit_enabled) 2271 return; 2272 2273 memset(names, 0, sizeof(names)); 2274 memset(old_names, 0, sizeof(old_names)); 2275 2276 if (ret) 2277 new = "?"; 2278 else if (!actions_logged) 2279 new = "(none)"; 2280 else if (!seccomp_names_from_actions_logged(names, sizeof(names), 2281 actions_logged, ",")) 2282 new = "?"; 2283 2284 if (!old_actions_logged) 2285 old = "(none)"; 2286 else if (!seccomp_names_from_actions_logged(old_names, 2287 sizeof(old_names), 2288 old_actions_logged, ",")) 2289 old = "?"; 2290 2291 return audit_seccomp_actions_logged(new, old, !ret); 2292 } 2293 2294 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write, 2295 void *buffer, size_t *lenp, 2296 loff_t *ppos) 2297 { 2298 int ret; 2299 2300 if (write) { 2301 u32 actions_logged = 0; 2302 u32 old_actions_logged = seccomp_actions_logged; 2303 2304 ret = write_actions_logged(ro_table, buffer, lenp, ppos, 2305 &actions_logged); 2306 audit_actions_logged(actions_logged, old_actions_logged, ret); 2307 } else 2308 ret = read_actions_logged(ro_table, buffer, lenp, ppos); 2309 2310 return ret; 2311 } 2312 2313 static struct ctl_path seccomp_sysctl_path[] = { 2314 { .procname = "kernel", }, 2315 { .procname = "seccomp", }, 2316 { } 2317 }; 2318 2319 static struct ctl_table seccomp_sysctl_table[] = { 2320 { 2321 .procname = "actions_avail", 2322 .data = (void *) &seccomp_actions_avail, 2323 .maxlen = sizeof(seccomp_actions_avail), 2324 .mode = 0444, 2325 .proc_handler = proc_dostring, 2326 }, 2327 { 2328 .procname = "actions_logged", 2329 .mode = 0644, 2330 .proc_handler = seccomp_actions_logged_handler, 2331 }, 2332 { } 2333 }; 2334 2335 static int __init seccomp_sysctl_init(void) 2336 { 2337 struct ctl_table_header *hdr; 2338 2339 hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table); 2340 if (!hdr) 2341 pr_warn("sysctl registration failed\n"); 2342 else 2343 kmemleak_not_leak(hdr); 2344 2345 return 0; 2346 } 2347 2348 device_initcall(seccomp_sysctl_init) 2349 2350 #endif /* CONFIG_SYSCTL */ 2351 2352 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 2353 /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */ 2354 static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name, 2355 const void *bitmap, size_t bitmap_size) 2356 { 2357 int nr; 2358 2359 for (nr = 0; nr < bitmap_size; nr++) { 2360 bool cached = test_bit(nr, bitmap); 2361 char *status = cached ? "ALLOW" : "FILTER"; 2362 2363 seq_printf(m, "%s %d %s\n", name, nr, status); 2364 } 2365 } 2366 2367 int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns, 2368 struct pid *pid, struct task_struct *task) 2369 { 2370 struct seccomp_filter *f; 2371 unsigned long flags; 2372 2373 /* 2374 * We don't want some sandboxed process to know what their seccomp 2375 * filters consist of. 2376 */ 2377 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 2378 return -EACCES; 2379 2380 if (!lock_task_sighand(task, &flags)) 2381 return -ESRCH; 2382 2383 f = READ_ONCE(task->seccomp.filter); 2384 if (!f) { 2385 unlock_task_sighand(task, &flags); 2386 return 0; 2387 } 2388 2389 /* prevent filter from being freed while we are printing it */ 2390 __get_seccomp_filter(f); 2391 unlock_task_sighand(task, &flags); 2392 2393 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME, 2394 f->cache.allow_native, 2395 SECCOMP_ARCH_NATIVE_NR); 2396 2397 #ifdef SECCOMP_ARCH_COMPAT 2398 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME, 2399 f->cache.allow_compat, 2400 SECCOMP_ARCH_COMPAT_NR); 2401 #endif /* SECCOMP_ARCH_COMPAT */ 2402 2403 __put_seccomp_filter(f); 2404 return 0; 2405 } 2406 #endif /* CONFIG_SECCOMP_CACHE_DEBUG */ 2407