1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/seccomp.c 4 * 5 * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com> 6 * 7 * Copyright (C) 2012 Google, Inc. 8 * Will Drewry <wad@chromium.org> 9 * 10 * This defines a simple but solid secure-computing facility. 11 * 12 * Mode 1 uses a fixed list of allowed system calls. 13 * Mode 2 allows user-defined system call filters in the form 14 * of Berkeley Packet Filters/Linux Socket Filters. 15 */ 16 #define pr_fmt(fmt) "seccomp: " fmt 17 18 #include <linux/refcount.h> 19 #include <linux/audit.h> 20 #include <linux/compat.h> 21 #include <linux/coredump.h> 22 #include <linux/kmemleak.h> 23 #include <linux/nospec.h> 24 #include <linux/prctl.h> 25 #include <linux/sched.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/seccomp.h> 28 #include <linux/slab.h> 29 #include <linux/syscalls.h> 30 #include <linux/sysctl.h> 31 32 /* Not exposed in headers: strictly internal use only. */ 33 #define SECCOMP_MODE_DEAD (SECCOMP_MODE_FILTER + 1) 34 35 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER 36 #include <asm/syscall.h> 37 #endif 38 39 #ifdef CONFIG_SECCOMP_FILTER 40 #include <linux/file.h> 41 #include <linux/filter.h> 42 #include <linux/pid.h> 43 #include <linux/ptrace.h> 44 #include <linux/capability.h> 45 #include <linux/uaccess.h> 46 #include <linux/anon_inodes.h> 47 #include <linux/lockdep.h> 48 49 /* 50 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the 51 * wrong direction flag in the ioctl number. This is the broken one, 52 * which the kernel needs to keep supporting until all userspaces stop 53 * using the wrong command number. 54 */ 55 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64) 56 57 enum notify_state { 58 SECCOMP_NOTIFY_INIT, 59 SECCOMP_NOTIFY_SENT, 60 SECCOMP_NOTIFY_REPLIED, 61 }; 62 63 struct seccomp_knotif { 64 /* The struct pid of the task whose filter triggered the notification */ 65 struct task_struct *task; 66 67 /* The "cookie" for this request; this is unique for this filter. */ 68 u64 id; 69 70 /* 71 * The seccomp data. This pointer is valid the entire time this 72 * notification is active, since it comes from __seccomp_filter which 73 * eclipses the entire lifecycle here. 74 */ 75 const struct seccomp_data *data; 76 77 /* 78 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a 79 * struct seccomp_knotif is created and starts out in INIT. Once the 80 * handler reads the notification off of an FD, it transitions to SENT. 81 * If a signal is received the state transitions back to INIT and 82 * another message is sent. When the userspace handler replies, state 83 * transitions to REPLIED. 84 */ 85 enum notify_state state; 86 87 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */ 88 int error; 89 long val; 90 u32 flags; 91 92 /* 93 * Signals when this has changed states, such as the listener 94 * dying, a new seccomp addfd message, or changing to REPLIED 95 */ 96 struct completion ready; 97 98 struct list_head list; 99 100 /* outstanding addfd requests */ 101 struct list_head addfd; 102 }; 103 104 /** 105 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages 106 * 107 * @file: A reference to the file to install in the other task 108 * @fd: The fd number to install it at. If the fd number is -1, it means the 109 * installing process should allocate the fd as normal. 110 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC 111 * is allowed. 112 * @ioctl_flags: The flags used for the seccomp_addfd ioctl. 113 * @setfd: whether or not SECCOMP_ADDFD_FLAG_SETFD was set during notify_addfd 114 * @ret: The return value of the installing process. It is set to the fd num 115 * upon success (>= 0). 116 * @completion: Indicates that the installing process has completed fd 117 * installation, or gone away (either due to successful 118 * reply, or signal) 119 * @list: list_head for chaining seccomp_kaddfd together. 120 * 121 */ 122 struct seccomp_kaddfd { 123 struct file *file; 124 int fd; 125 unsigned int flags; 126 __u32 ioctl_flags; 127 128 union { 129 bool setfd; 130 /* To only be set on reply */ 131 int ret; 132 }; 133 struct completion completion; 134 struct list_head list; 135 }; 136 137 /** 138 * struct notification - container for seccomp userspace notifications. Since 139 * most seccomp filters will not have notification listeners attached and this 140 * structure is fairly large, we store the notification-specific stuff in a 141 * separate structure. 142 * 143 * @requests: A semaphore that users of this notification can wait on for 144 * changes. Actual reads and writes are still controlled with 145 * filter->notify_lock. 146 * @flags: A set of SECCOMP_USER_NOTIF_FD_* flags. 147 * @next_id: The id of the next request. 148 * @notifications: A list of struct seccomp_knotif elements. 149 */ 150 151 struct notification { 152 atomic_t requests; 153 u32 flags; 154 u64 next_id; 155 struct list_head notifications; 156 }; 157 158 #ifdef SECCOMP_ARCH_NATIVE 159 /** 160 * struct action_cache - per-filter cache of seccomp actions per 161 * arch/syscall pair 162 * 163 * @allow_native: A bitmap where each bit represents whether the 164 * filter will always allow the syscall, for the 165 * native architecture. 166 * @allow_compat: A bitmap where each bit represents whether the 167 * filter will always allow the syscall, for the 168 * compat architecture. 169 */ 170 struct action_cache { 171 DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR); 172 #ifdef SECCOMP_ARCH_COMPAT 173 DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR); 174 #endif 175 }; 176 #else 177 struct action_cache { }; 178 179 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 180 const struct seccomp_data *sd) 181 { 182 return false; 183 } 184 185 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter) 186 { 187 } 188 #endif /* SECCOMP_ARCH_NATIVE */ 189 190 /** 191 * struct seccomp_filter - container for seccomp BPF programs 192 * 193 * @refs: Reference count to manage the object lifetime. 194 * A filter's reference count is incremented for each directly 195 * attached task, once for the dependent filter, and if 196 * requested for the user notifier. When @refs reaches zero, 197 * the filter can be freed. 198 * @users: A filter's @users count is incremented for each directly 199 * attached task (filter installation, fork(), thread_sync), 200 * and once for the dependent filter (tracked in filter->prev). 201 * When it reaches zero it indicates that no direct or indirect 202 * users of that filter exist. No new tasks can get associated with 203 * this filter after reaching 0. The @users count is always smaller 204 * or equal to @refs. Hence, reaching 0 for @users does not mean 205 * the filter can be freed. 206 * @cache: cache of arch/syscall mappings to actions 207 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged 208 * @wait_killable_recv: Put notifying process in killable state once the 209 * notification is received by the userspace listener. 210 * @prev: points to a previously installed, or inherited, filter 211 * @prog: the BPF program to evaluate 212 * @notif: the struct that holds all notification related information 213 * @notify_lock: A lock for all notification-related accesses. 214 * @wqh: A wait queue for poll if a notifier is in use. 215 * 216 * seccomp_filter objects are organized in a tree linked via the @prev 217 * pointer. For any task, it appears to be a singly-linked list starting 218 * with current->seccomp.filter, the most recently attached or inherited filter. 219 * However, multiple filters may share a @prev node, by way of fork(), which 220 * results in a unidirectional tree existing in memory. This is similar to 221 * how namespaces work. 222 * 223 * seccomp_filter objects should never be modified after being attached 224 * to a task_struct (other than @refs). 225 */ 226 struct seccomp_filter { 227 refcount_t refs; 228 refcount_t users; 229 bool log; 230 bool wait_killable_recv; 231 struct action_cache cache; 232 struct seccomp_filter *prev; 233 struct bpf_prog *prog; 234 struct notification *notif; 235 struct mutex notify_lock; 236 wait_queue_head_t wqh; 237 }; 238 239 /* Limit any path through the tree to 256KB worth of instructions. */ 240 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter)) 241 242 /* 243 * Endianness is explicitly ignored and left for BPF program authors to manage 244 * as per the specific architecture. 245 */ 246 static void populate_seccomp_data(struct seccomp_data *sd) 247 { 248 /* 249 * Instead of using current_pt_reg(), we're already doing the work 250 * to safely fetch "current", so just use "task" everywhere below. 251 */ 252 struct task_struct *task = current; 253 struct pt_regs *regs = task_pt_regs(task); 254 unsigned long args[6]; 255 256 sd->nr = syscall_get_nr(task, regs); 257 sd->arch = syscall_get_arch(task); 258 syscall_get_arguments(task, regs, args); 259 sd->args[0] = args[0]; 260 sd->args[1] = args[1]; 261 sd->args[2] = args[2]; 262 sd->args[3] = args[3]; 263 sd->args[4] = args[4]; 264 sd->args[5] = args[5]; 265 sd->instruction_pointer = KSTK_EIP(task); 266 } 267 268 /** 269 * seccomp_check_filter - verify seccomp filter code 270 * @filter: filter to verify 271 * @flen: length of filter 272 * 273 * Takes a previously checked filter (by bpf_check_classic) and 274 * redirects all filter code that loads struct sk_buff data 275 * and related data through seccomp_bpf_load. It also 276 * enforces length and alignment checking of those loads. 277 * 278 * Returns 0 if the rule set is legal or -EINVAL if not. 279 */ 280 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen) 281 { 282 int pc; 283 for (pc = 0; pc < flen; pc++) { 284 struct sock_filter *ftest = &filter[pc]; 285 u16 code = ftest->code; 286 u32 k = ftest->k; 287 288 switch (code) { 289 case BPF_LD | BPF_W | BPF_ABS: 290 ftest->code = BPF_LDX | BPF_W | BPF_ABS; 291 /* 32-bit aligned and not out of bounds. */ 292 if (k >= sizeof(struct seccomp_data) || k & 3) 293 return -EINVAL; 294 continue; 295 case BPF_LD | BPF_W | BPF_LEN: 296 ftest->code = BPF_LD | BPF_IMM; 297 ftest->k = sizeof(struct seccomp_data); 298 continue; 299 case BPF_LDX | BPF_W | BPF_LEN: 300 ftest->code = BPF_LDX | BPF_IMM; 301 ftest->k = sizeof(struct seccomp_data); 302 continue; 303 /* Explicitly include allowed calls. */ 304 case BPF_RET | BPF_K: 305 case BPF_RET | BPF_A: 306 case BPF_ALU | BPF_ADD | BPF_K: 307 case BPF_ALU | BPF_ADD | BPF_X: 308 case BPF_ALU | BPF_SUB | BPF_K: 309 case BPF_ALU | BPF_SUB | BPF_X: 310 case BPF_ALU | BPF_MUL | BPF_K: 311 case BPF_ALU | BPF_MUL | BPF_X: 312 case BPF_ALU | BPF_DIV | BPF_K: 313 case BPF_ALU | BPF_DIV | BPF_X: 314 case BPF_ALU | BPF_AND | BPF_K: 315 case BPF_ALU | BPF_AND | BPF_X: 316 case BPF_ALU | BPF_OR | BPF_K: 317 case BPF_ALU | BPF_OR | BPF_X: 318 case BPF_ALU | BPF_XOR | BPF_K: 319 case BPF_ALU | BPF_XOR | BPF_X: 320 case BPF_ALU | BPF_LSH | BPF_K: 321 case BPF_ALU | BPF_LSH | BPF_X: 322 case BPF_ALU | BPF_RSH | BPF_K: 323 case BPF_ALU | BPF_RSH | BPF_X: 324 case BPF_ALU | BPF_NEG: 325 case BPF_LD | BPF_IMM: 326 case BPF_LDX | BPF_IMM: 327 case BPF_MISC | BPF_TAX: 328 case BPF_MISC | BPF_TXA: 329 case BPF_LD | BPF_MEM: 330 case BPF_LDX | BPF_MEM: 331 case BPF_ST: 332 case BPF_STX: 333 case BPF_JMP | BPF_JA: 334 case BPF_JMP | BPF_JEQ | BPF_K: 335 case BPF_JMP | BPF_JEQ | BPF_X: 336 case BPF_JMP | BPF_JGE | BPF_K: 337 case BPF_JMP | BPF_JGE | BPF_X: 338 case BPF_JMP | BPF_JGT | BPF_K: 339 case BPF_JMP | BPF_JGT | BPF_X: 340 case BPF_JMP | BPF_JSET | BPF_K: 341 case BPF_JMP | BPF_JSET | BPF_X: 342 continue; 343 default: 344 return -EINVAL; 345 } 346 } 347 return 0; 348 } 349 350 #ifdef SECCOMP_ARCH_NATIVE 351 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap, 352 size_t bitmap_size, 353 int syscall_nr) 354 { 355 if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size)) 356 return false; 357 syscall_nr = array_index_nospec(syscall_nr, bitmap_size); 358 359 return test_bit(syscall_nr, bitmap); 360 } 361 362 /** 363 * seccomp_cache_check_allow - lookup seccomp cache 364 * @sfilter: The seccomp filter 365 * @sd: The seccomp data to lookup the cache with 366 * 367 * Returns true if the seccomp_data is cached and allowed. 368 */ 369 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 370 const struct seccomp_data *sd) 371 { 372 int syscall_nr = sd->nr; 373 const struct action_cache *cache = &sfilter->cache; 374 375 #ifndef SECCOMP_ARCH_COMPAT 376 /* A native-only architecture doesn't need to check sd->arch. */ 377 return seccomp_cache_check_allow_bitmap(cache->allow_native, 378 SECCOMP_ARCH_NATIVE_NR, 379 syscall_nr); 380 #else 381 if (likely(sd->arch == SECCOMP_ARCH_NATIVE)) 382 return seccomp_cache_check_allow_bitmap(cache->allow_native, 383 SECCOMP_ARCH_NATIVE_NR, 384 syscall_nr); 385 if (likely(sd->arch == SECCOMP_ARCH_COMPAT)) 386 return seccomp_cache_check_allow_bitmap(cache->allow_compat, 387 SECCOMP_ARCH_COMPAT_NR, 388 syscall_nr); 389 #endif /* SECCOMP_ARCH_COMPAT */ 390 391 WARN_ON_ONCE(true); 392 return false; 393 } 394 #endif /* SECCOMP_ARCH_NATIVE */ 395 396 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL))) 397 /** 398 * seccomp_run_filters - evaluates all seccomp filters against @sd 399 * @sd: optional seccomp data to be passed to filters 400 * @match: stores struct seccomp_filter that resulted in the return value, 401 * unless filter returned SECCOMP_RET_ALLOW, in which case it will 402 * be unchanged. 403 * 404 * Returns valid seccomp BPF response codes. 405 */ 406 static u32 seccomp_run_filters(const struct seccomp_data *sd, 407 struct seccomp_filter **match) 408 { 409 u32 ret = SECCOMP_RET_ALLOW; 410 /* Make sure cross-thread synced filter points somewhere sane. */ 411 struct seccomp_filter *f = 412 READ_ONCE(current->seccomp.filter); 413 414 /* Ensure unexpected behavior doesn't result in failing open. */ 415 if (WARN_ON(f == NULL)) 416 return SECCOMP_RET_KILL_PROCESS; 417 418 if (seccomp_cache_check_allow(f, sd)) 419 return SECCOMP_RET_ALLOW; 420 421 /* 422 * All filters in the list are evaluated and the lowest BPF return 423 * value always takes priority (ignoring the DATA). 424 */ 425 for (; f; f = f->prev) { 426 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd); 427 428 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) { 429 ret = cur_ret; 430 *match = f; 431 } 432 } 433 return ret; 434 } 435 #endif /* CONFIG_SECCOMP_FILTER */ 436 437 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode) 438 { 439 assert_spin_locked(¤t->sighand->siglock); 440 441 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode) 442 return false; 443 444 return true; 445 } 446 447 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { } 448 449 static inline void seccomp_assign_mode(struct task_struct *task, 450 unsigned long seccomp_mode, 451 unsigned long flags) 452 { 453 assert_spin_locked(&task->sighand->siglock); 454 455 task->seccomp.mode = seccomp_mode; 456 /* 457 * Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and 458 * filter) is set. 459 */ 460 smp_mb__before_atomic(); 461 /* Assume default seccomp processes want spec flaw mitigation. */ 462 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0) 463 arch_seccomp_spec_mitigate(task); 464 set_task_syscall_work(task, SECCOMP); 465 } 466 467 #ifdef CONFIG_SECCOMP_FILTER 468 /* Returns 1 if the parent is an ancestor of the child. */ 469 static int is_ancestor(struct seccomp_filter *parent, 470 struct seccomp_filter *child) 471 { 472 /* NULL is the root ancestor. */ 473 if (parent == NULL) 474 return 1; 475 for (; child; child = child->prev) 476 if (child == parent) 477 return 1; 478 return 0; 479 } 480 481 /** 482 * seccomp_can_sync_threads: checks if all threads can be synchronized 483 * 484 * Expects sighand and cred_guard_mutex locks to be held. 485 * 486 * Returns 0 on success, -ve on error, or the pid of a thread which was 487 * either not in the correct seccomp mode or did not have an ancestral 488 * seccomp filter. 489 */ 490 static inline pid_t seccomp_can_sync_threads(void) 491 { 492 struct task_struct *thread, *caller; 493 494 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 495 assert_spin_locked(¤t->sighand->siglock); 496 497 /* Validate all threads being eligible for synchronization. */ 498 caller = current; 499 for_each_thread(caller, thread) { 500 pid_t failed; 501 502 /* Skip current, since it is initiating the sync. */ 503 if (thread == caller) 504 continue; 505 506 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED || 507 (thread->seccomp.mode == SECCOMP_MODE_FILTER && 508 is_ancestor(thread->seccomp.filter, 509 caller->seccomp.filter))) 510 continue; 511 512 /* Return the first thread that cannot be synchronized. */ 513 failed = task_pid_vnr(thread); 514 /* If the pid cannot be resolved, then return -ESRCH */ 515 if (WARN_ON(failed == 0)) 516 failed = -ESRCH; 517 return failed; 518 } 519 520 return 0; 521 } 522 523 static inline void seccomp_filter_free(struct seccomp_filter *filter) 524 { 525 if (filter) { 526 bpf_prog_destroy(filter->prog); 527 kfree(filter); 528 } 529 } 530 531 static void __seccomp_filter_orphan(struct seccomp_filter *orig) 532 { 533 while (orig && refcount_dec_and_test(&orig->users)) { 534 if (waitqueue_active(&orig->wqh)) 535 wake_up_poll(&orig->wqh, EPOLLHUP); 536 orig = orig->prev; 537 } 538 } 539 540 static void __put_seccomp_filter(struct seccomp_filter *orig) 541 { 542 /* Clean up single-reference branches iteratively. */ 543 while (orig && refcount_dec_and_test(&orig->refs)) { 544 struct seccomp_filter *freeme = orig; 545 orig = orig->prev; 546 seccomp_filter_free(freeme); 547 } 548 } 549 550 static void __seccomp_filter_release(struct seccomp_filter *orig) 551 { 552 /* Notify about any unused filters in the task's former filter tree. */ 553 __seccomp_filter_orphan(orig); 554 /* Finally drop all references to the task's former tree. */ 555 __put_seccomp_filter(orig); 556 } 557 558 /** 559 * seccomp_filter_release - Detach the task from its filter tree, 560 * drop its reference count, and notify 561 * about unused filters 562 * 563 * @tsk: task the filter should be released from. 564 * 565 * This function should only be called when the task is exiting as 566 * it detaches it from its filter tree. As such, READ_ONCE() and 567 * barriers are not needed here, as would normally be needed. 568 */ 569 void seccomp_filter_release(struct task_struct *tsk) 570 { 571 struct seccomp_filter *orig = tsk->seccomp.filter; 572 573 /* We are effectively holding the siglock by not having any sighand. */ 574 WARN_ON(tsk->sighand != NULL); 575 576 /* Detach task from its filter tree. */ 577 tsk->seccomp.filter = NULL; 578 __seccomp_filter_release(orig); 579 } 580 581 /** 582 * seccomp_sync_threads: sets all threads to use current's filter 583 * 584 * @flags: SECCOMP_FILTER_FLAG_* flags to set during sync. 585 * 586 * Expects sighand and cred_guard_mutex locks to be held, and for 587 * seccomp_can_sync_threads() to have returned success already 588 * without dropping the locks. 589 * 590 */ 591 static inline void seccomp_sync_threads(unsigned long flags) 592 { 593 struct task_struct *thread, *caller; 594 595 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 596 assert_spin_locked(¤t->sighand->siglock); 597 598 /* Synchronize all threads. */ 599 caller = current; 600 for_each_thread(caller, thread) { 601 /* Skip current, since it needs no changes. */ 602 if (thread == caller) 603 continue; 604 605 /* Get a task reference for the new leaf node. */ 606 get_seccomp_filter(caller); 607 608 /* 609 * Drop the task reference to the shared ancestor since 610 * current's path will hold a reference. (This also 611 * allows a put before the assignment.) 612 */ 613 __seccomp_filter_release(thread->seccomp.filter); 614 615 /* Make our new filter tree visible. */ 616 smp_store_release(&thread->seccomp.filter, 617 caller->seccomp.filter); 618 atomic_set(&thread->seccomp.filter_count, 619 atomic_read(&caller->seccomp.filter_count)); 620 621 /* 622 * Don't let an unprivileged task work around 623 * the no_new_privs restriction by creating 624 * a thread that sets it up, enters seccomp, 625 * then dies. 626 */ 627 if (task_no_new_privs(caller)) 628 task_set_no_new_privs(thread); 629 630 /* 631 * Opt the other thread into seccomp if needed. 632 * As threads are considered to be trust-realm 633 * equivalent (see ptrace_may_access), it is safe to 634 * allow one thread to transition the other. 635 */ 636 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED) 637 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER, 638 flags); 639 } 640 } 641 642 /** 643 * seccomp_prepare_filter: Prepares a seccomp filter for use. 644 * @fprog: BPF program to install 645 * 646 * Returns filter on success or an ERR_PTR on failure. 647 */ 648 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog) 649 { 650 struct seccomp_filter *sfilter; 651 int ret; 652 const bool save_orig = 653 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE) 654 true; 655 #else 656 false; 657 #endif 658 659 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS) 660 return ERR_PTR(-EINVAL); 661 662 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter)); 663 664 /* 665 * Installing a seccomp filter requires that the task has 666 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs. 667 * This avoids scenarios where unprivileged tasks can affect the 668 * behavior of privileged children. 669 */ 670 if (!task_no_new_privs(current) && 671 !ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN)) 672 return ERR_PTR(-EACCES); 673 674 /* Allocate a new seccomp_filter */ 675 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN); 676 if (!sfilter) 677 return ERR_PTR(-ENOMEM); 678 679 mutex_init(&sfilter->notify_lock); 680 ret = bpf_prog_create_from_user(&sfilter->prog, fprog, 681 seccomp_check_filter, save_orig); 682 if (ret < 0) { 683 kfree(sfilter); 684 return ERR_PTR(ret); 685 } 686 687 refcount_set(&sfilter->refs, 1); 688 refcount_set(&sfilter->users, 1); 689 init_waitqueue_head(&sfilter->wqh); 690 691 return sfilter; 692 } 693 694 /** 695 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog 696 * @user_filter: pointer to the user data containing a sock_fprog. 697 * 698 * Returns 0 on success and non-zero otherwise. 699 */ 700 static struct seccomp_filter * 701 seccomp_prepare_user_filter(const char __user *user_filter) 702 { 703 struct sock_fprog fprog; 704 struct seccomp_filter *filter = ERR_PTR(-EFAULT); 705 706 #ifdef CONFIG_COMPAT 707 if (in_compat_syscall()) { 708 struct compat_sock_fprog fprog32; 709 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32))) 710 goto out; 711 fprog.len = fprog32.len; 712 fprog.filter = compat_ptr(fprog32.filter); 713 } else /* falls through to the if below. */ 714 #endif 715 if (copy_from_user(&fprog, user_filter, sizeof(fprog))) 716 goto out; 717 filter = seccomp_prepare_filter(&fprog); 718 out: 719 return filter; 720 } 721 722 #ifdef SECCOMP_ARCH_NATIVE 723 /** 724 * seccomp_is_const_allow - check if filter is constant allow with given data 725 * @fprog: The BPF programs 726 * @sd: The seccomp data to check against, only syscall number and arch 727 * number are considered constant. 728 */ 729 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog, 730 struct seccomp_data *sd) 731 { 732 unsigned int reg_value = 0; 733 unsigned int pc; 734 bool op_res; 735 736 if (WARN_ON_ONCE(!fprog)) 737 return false; 738 739 for (pc = 0; pc < fprog->len; pc++) { 740 struct sock_filter *insn = &fprog->filter[pc]; 741 u16 code = insn->code; 742 u32 k = insn->k; 743 744 switch (code) { 745 case BPF_LD | BPF_W | BPF_ABS: 746 switch (k) { 747 case offsetof(struct seccomp_data, nr): 748 reg_value = sd->nr; 749 break; 750 case offsetof(struct seccomp_data, arch): 751 reg_value = sd->arch; 752 break; 753 default: 754 /* can't optimize (non-constant value load) */ 755 return false; 756 } 757 break; 758 case BPF_RET | BPF_K: 759 /* reached return with constant values only, check allow */ 760 return k == SECCOMP_RET_ALLOW; 761 case BPF_JMP | BPF_JA: 762 pc += insn->k; 763 break; 764 case BPF_JMP | BPF_JEQ | BPF_K: 765 case BPF_JMP | BPF_JGE | BPF_K: 766 case BPF_JMP | BPF_JGT | BPF_K: 767 case BPF_JMP | BPF_JSET | BPF_K: 768 switch (BPF_OP(code)) { 769 case BPF_JEQ: 770 op_res = reg_value == k; 771 break; 772 case BPF_JGE: 773 op_res = reg_value >= k; 774 break; 775 case BPF_JGT: 776 op_res = reg_value > k; 777 break; 778 case BPF_JSET: 779 op_res = !!(reg_value & k); 780 break; 781 default: 782 /* can't optimize (unknown jump) */ 783 return false; 784 } 785 786 pc += op_res ? insn->jt : insn->jf; 787 break; 788 case BPF_ALU | BPF_AND | BPF_K: 789 reg_value &= k; 790 break; 791 default: 792 /* can't optimize (unknown insn) */ 793 return false; 794 } 795 } 796 797 /* ran off the end of the filter?! */ 798 WARN_ON(1); 799 return false; 800 } 801 802 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter, 803 void *bitmap, const void *bitmap_prev, 804 size_t bitmap_size, int arch) 805 { 806 struct sock_fprog_kern *fprog = sfilter->prog->orig_prog; 807 struct seccomp_data sd; 808 int nr; 809 810 if (bitmap_prev) { 811 /* The new filter must be as restrictive as the last. */ 812 bitmap_copy(bitmap, bitmap_prev, bitmap_size); 813 } else { 814 /* Before any filters, all syscalls are always allowed. */ 815 bitmap_fill(bitmap, bitmap_size); 816 } 817 818 for (nr = 0; nr < bitmap_size; nr++) { 819 /* No bitmap change: not a cacheable action. */ 820 if (!test_bit(nr, bitmap)) 821 continue; 822 823 sd.nr = nr; 824 sd.arch = arch; 825 826 /* No bitmap change: continue to always allow. */ 827 if (seccomp_is_const_allow(fprog, &sd)) 828 continue; 829 830 /* 831 * Not a cacheable action: always run filters. 832 * atomic clear_bit() not needed, filter not visible yet. 833 */ 834 __clear_bit(nr, bitmap); 835 } 836 } 837 838 /** 839 * seccomp_cache_prepare - emulate the filter to find cacheable syscalls 840 * @sfilter: The seccomp filter 841 * 842 * Returns 0 if successful or -errno if error occurred. 843 */ 844 static void seccomp_cache_prepare(struct seccomp_filter *sfilter) 845 { 846 struct action_cache *cache = &sfilter->cache; 847 const struct action_cache *cache_prev = 848 sfilter->prev ? &sfilter->prev->cache : NULL; 849 850 seccomp_cache_prepare_bitmap(sfilter, cache->allow_native, 851 cache_prev ? cache_prev->allow_native : NULL, 852 SECCOMP_ARCH_NATIVE_NR, 853 SECCOMP_ARCH_NATIVE); 854 855 #ifdef SECCOMP_ARCH_COMPAT 856 seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat, 857 cache_prev ? cache_prev->allow_compat : NULL, 858 SECCOMP_ARCH_COMPAT_NR, 859 SECCOMP_ARCH_COMPAT); 860 #endif /* SECCOMP_ARCH_COMPAT */ 861 } 862 #endif /* SECCOMP_ARCH_NATIVE */ 863 864 /** 865 * seccomp_attach_filter: validate and attach filter 866 * @flags: flags to change filter behavior 867 * @filter: seccomp filter to add to the current process 868 * 869 * Caller must be holding current->sighand->siglock lock. 870 * 871 * Returns 0 on success, -ve on error, or 872 * - in TSYNC mode: the pid of a thread which was either not in the correct 873 * seccomp mode or did not have an ancestral seccomp filter 874 * - in NEW_LISTENER mode: the fd of the new listener 875 */ 876 static long seccomp_attach_filter(unsigned int flags, 877 struct seccomp_filter *filter) 878 { 879 unsigned long total_insns; 880 struct seccomp_filter *walker; 881 882 assert_spin_locked(¤t->sighand->siglock); 883 884 /* Validate resulting filter length. */ 885 total_insns = filter->prog->len; 886 for (walker = current->seccomp.filter; walker; walker = walker->prev) 887 total_insns += walker->prog->len + 4; /* 4 instr penalty */ 888 if (total_insns > MAX_INSNS_PER_PATH) 889 return -ENOMEM; 890 891 /* If thread sync has been requested, check that it is possible. */ 892 if (flags & SECCOMP_FILTER_FLAG_TSYNC) { 893 int ret; 894 895 ret = seccomp_can_sync_threads(); 896 if (ret) { 897 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) 898 return -ESRCH; 899 else 900 return ret; 901 } 902 } 903 904 /* Set log flag, if present. */ 905 if (flags & SECCOMP_FILTER_FLAG_LOG) 906 filter->log = true; 907 908 /* Set wait killable flag, if present. */ 909 if (flags & SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV) 910 filter->wait_killable_recv = true; 911 912 /* 913 * If there is an existing filter, make it the prev and don't drop its 914 * task reference. 915 */ 916 filter->prev = current->seccomp.filter; 917 seccomp_cache_prepare(filter); 918 current->seccomp.filter = filter; 919 atomic_inc(¤t->seccomp.filter_count); 920 921 /* Now that the new filter is in place, synchronize to all threads. */ 922 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 923 seccomp_sync_threads(flags); 924 925 return 0; 926 } 927 928 static void __get_seccomp_filter(struct seccomp_filter *filter) 929 { 930 refcount_inc(&filter->refs); 931 } 932 933 /* get_seccomp_filter - increments the reference count of the filter on @tsk */ 934 void get_seccomp_filter(struct task_struct *tsk) 935 { 936 struct seccomp_filter *orig = tsk->seccomp.filter; 937 if (!orig) 938 return; 939 __get_seccomp_filter(orig); 940 refcount_inc(&orig->users); 941 } 942 943 #endif /* CONFIG_SECCOMP_FILTER */ 944 945 /* For use with seccomp_actions_logged */ 946 #define SECCOMP_LOG_KILL_PROCESS (1 << 0) 947 #define SECCOMP_LOG_KILL_THREAD (1 << 1) 948 #define SECCOMP_LOG_TRAP (1 << 2) 949 #define SECCOMP_LOG_ERRNO (1 << 3) 950 #define SECCOMP_LOG_TRACE (1 << 4) 951 #define SECCOMP_LOG_LOG (1 << 5) 952 #define SECCOMP_LOG_ALLOW (1 << 6) 953 #define SECCOMP_LOG_USER_NOTIF (1 << 7) 954 955 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS | 956 SECCOMP_LOG_KILL_THREAD | 957 SECCOMP_LOG_TRAP | 958 SECCOMP_LOG_ERRNO | 959 SECCOMP_LOG_USER_NOTIF | 960 SECCOMP_LOG_TRACE | 961 SECCOMP_LOG_LOG; 962 963 static inline void seccomp_log(unsigned long syscall, long signr, u32 action, 964 bool requested) 965 { 966 bool log = false; 967 968 switch (action) { 969 case SECCOMP_RET_ALLOW: 970 break; 971 case SECCOMP_RET_TRAP: 972 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP; 973 break; 974 case SECCOMP_RET_ERRNO: 975 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO; 976 break; 977 case SECCOMP_RET_TRACE: 978 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE; 979 break; 980 case SECCOMP_RET_USER_NOTIF: 981 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF; 982 break; 983 case SECCOMP_RET_LOG: 984 log = seccomp_actions_logged & SECCOMP_LOG_LOG; 985 break; 986 case SECCOMP_RET_KILL_THREAD: 987 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD; 988 break; 989 case SECCOMP_RET_KILL_PROCESS: 990 default: 991 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS; 992 } 993 994 /* 995 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the 996 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence 997 * any action from being logged by removing the action name from the 998 * seccomp_actions_logged sysctl. 999 */ 1000 if (!log) 1001 return; 1002 1003 audit_seccomp(syscall, signr, action); 1004 } 1005 1006 /* 1007 * Secure computing mode 1 allows only read/write/exit/sigreturn. 1008 * To be fully secure this must be combined with rlimit 1009 * to limit the stack allocations too. 1010 */ 1011 static const int mode1_syscalls[] = { 1012 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn, 1013 -1, /* negative terminated */ 1014 }; 1015 1016 static void __secure_computing_strict(int this_syscall) 1017 { 1018 const int *allowed_syscalls = mode1_syscalls; 1019 #ifdef CONFIG_COMPAT 1020 if (in_compat_syscall()) 1021 allowed_syscalls = get_compat_mode1_syscalls(); 1022 #endif 1023 do { 1024 if (*allowed_syscalls == this_syscall) 1025 return; 1026 } while (*++allowed_syscalls != -1); 1027 1028 #ifdef SECCOMP_DEBUG 1029 dump_stack(); 1030 #endif 1031 current->seccomp.mode = SECCOMP_MODE_DEAD; 1032 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true); 1033 do_exit(SIGKILL); 1034 } 1035 1036 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER 1037 void secure_computing_strict(int this_syscall) 1038 { 1039 int mode = current->seccomp.mode; 1040 1041 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1042 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1043 return; 1044 1045 if (mode == SECCOMP_MODE_DISABLED) 1046 return; 1047 else if (mode == SECCOMP_MODE_STRICT) 1048 __secure_computing_strict(this_syscall); 1049 else 1050 BUG(); 1051 } 1052 #else 1053 1054 #ifdef CONFIG_SECCOMP_FILTER 1055 static u64 seccomp_next_notify_id(struct seccomp_filter *filter) 1056 { 1057 /* 1058 * Note: overflow is ok here, the id just needs to be unique per 1059 * filter. 1060 */ 1061 lockdep_assert_held(&filter->notify_lock); 1062 return filter->notif->next_id++; 1063 } 1064 1065 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd, struct seccomp_knotif *n) 1066 { 1067 int fd; 1068 1069 /* 1070 * Remove the notification, and reset the list pointers, indicating 1071 * that it has been handled. 1072 */ 1073 list_del_init(&addfd->list); 1074 if (!addfd->setfd) 1075 fd = receive_fd(addfd->file, NULL, addfd->flags); 1076 else 1077 fd = receive_fd_replace(addfd->fd, addfd->file, addfd->flags); 1078 addfd->ret = fd; 1079 1080 if (addfd->ioctl_flags & SECCOMP_ADDFD_FLAG_SEND) { 1081 /* If we fail reset and return an error to the notifier */ 1082 if (fd < 0) { 1083 n->state = SECCOMP_NOTIFY_SENT; 1084 } else { 1085 /* Return the FD we just added */ 1086 n->flags = 0; 1087 n->error = 0; 1088 n->val = fd; 1089 } 1090 } 1091 1092 /* 1093 * Mark the notification as completed. From this point, addfd mem 1094 * might be invalidated and we can't safely read it anymore. 1095 */ 1096 complete(&addfd->completion); 1097 } 1098 1099 static bool should_sleep_killable(struct seccomp_filter *match, 1100 struct seccomp_knotif *n) 1101 { 1102 return match->wait_killable_recv && n->state == SECCOMP_NOTIFY_SENT; 1103 } 1104 1105 static int seccomp_do_user_notification(int this_syscall, 1106 struct seccomp_filter *match, 1107 const struct seccomp_data *sd) 1108 { 1109 int err; 1110 u32 flags = 0; 1111 long ret = 0; 1112 struct seccomp_knotif n = {}; 1113 struct seccomp_kaddfd *addfd, *tmp; 1114 1115 mutex_lock(&match->notify_lock); 1116 err = -ENOSYS; 1117 if (!match->notif) 1118 goto out; 1119 1120 n.task = current; 1121 n.state = SECCOMP_NOTIFY_INIT; 1122 n.data = sd; 1123 n.id = seccomp_next_notify_id(match); 1124 init_completion(&n.ready); 1125 list_add_tail(&n.list, &match->notif->notifications); 1126 INIT_LIST_HEAD(&n.addfd); 1127 1128 atomic_inc(&match->notif->requests); 1129 if (match->notif->flags & SECCOMP_USER_NOTIF_FD_SYNC_WAKE_UP) 1130 wake_up_poll_on_current_cpu(&match->wqh, EPOLLIN | EPOLLRDNORM); 1131 else 1132 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM); 1133 1134 /* 1135 * This is where we wait for a reply from userspace. 1136 */ 1137 do { 1138 bool wait_killable = should_sleep_killable(match, &n); 1139 1140 mutex_unlock(&match->notify_lock); 1141 if (wait_killable) 1142 err = wait_for_completion_killable(&n.ready); 1143 else 1144 err = wait_for_completion_interruptible(&n.ready); 1145 mutex_lock(&match->notify_lock); 1146 1147 if (err != 0) { 1148 /* 1149 * Check to see if the notifcation got picked up and 1150 * whether we should switch to wait killable. 1151 */ 1152 if (!wait_killable && should_sleep_killable(match, &n)) 1153 continue; 1154 1155 goto interrupted; 1156 } 1157 1158 addfd = list_first_entry_or_null(&n.addfd, 1159 struct seccomp_kaddfd, list); 1160 /* Check if we were woken up by a addfd message */ 1161 if (addfd) 1162 seccomp_handle_addfd(addfd, &n); 1163 1164 } while (n.state != SECCOMP_NOTIFY_REPLIED); 1165 1166 ret = n.val; 1167 err = n.error; 1168 flags = n.flags; 1169 1170 interrupted: 1171 /* If there were any pending addfd calls, clear them out */ 1172 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) { 1173 /* The process went away before we got a chance to handle it */ 1174 addfd->ret = -ESRCH; 1175 list_del_init(&addfd->list); 1176 complete(&addfd->completion); 1177 } 1178 1179 /* 1180 * Note that it's possible the listener died in between the time when 1181 * we were notified of a response (or a signal) and when we were able to 1182 * re-acquire the lock, so only delete from the list if the 1183 * notification actually exists. 1184 * 1185 * Also note that this test is only valid because there's no way to 1186 * *reattach* to a notifier right now. If one is added, we'll need to 1187 * keep track of the notif itself and make sure they match here. 1188 */ 1189 if (match->notif) 1190 list_del(&n.list); 1191 out: 1192 mutex_unlock(&match->notify_lock); 1193 1194 /* Userspace requests to continue the syscall. */ 1195 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1196 return 0; 1197 1198 syscall_set_return_value(current, current_pt_regs(), 1199 err, ret); 1200 return -1; 1201 } 1202 1203 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1204 const bool recheck_after_trace) 1205 { 1206 u32 filter_ret, action; 1207 struct seccomp_filter *match = NULL; 1208 int data; 1209 struct seccomp_data sd_local; 1210 1211 /* 1212 * Make sure that any changes to mode from another thread have 1213 * been seen after SYSCALL_WORK_SECCOMP was seen. 1214 */ 1215 smp_rmb(); 1216 1217 if (!sd) { 1218 populate_seccomp_data(&sd_local); 1219 sd = &sd_local; 1220 } 1221 1222 filter_ret = seccomp_run_filters(sd, &match); 1223 data = filter_ret & SECCOMP_RET_DATA; 1224 action = filter_ret & SECCOMP_RET_ACTION_FULL; 1225 1226 switch (action) { 1227 case SECCOMP_RET_ERRNO: 1228 /* Set low-order bits as an errno, capped at MAX_ERRNO. */ 1229 if (data > MAX_ERRNO) 1230 data = MAX_ERRNO; 1231 syscall_set_return_value(current, current_pt_regs(), 1232 -data, 0); 1233 goto skip; 1234 1235 case SECCOMP_RET_TRAP: 1236 /* Show the handler the original registers. */ 1237 syscall_rollback(current, current_pt_regs()); 1238 /* Let the filter pass back 16 bits of data. */ 1239 force_sig_seccomp(this_syscall, data, false); 1240 goto skip; 1241 1242 case SECCOMP_RET_TRACE: 1243 /* We've been put in this state by the ptracer already. */ 1244 if (recheck_after_trace) 1245 return 0; 1246 1247 /* ENOSYS these calls if there is no tracer attached. */ 1248 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) { 1249 syscall_set_return_value(current, 1250 current_pt_regs(), 1251 -ENOSYS, 0); 1252 goto skip; 1253 } 1254 1255 /* Allow the BPF to provide the event message */ 1256 ptrace_event(PTRACE_EVENT_SECCOMP, data); 1257 /* 1258 * The delivery of a fatal signal during event 1259 * notification may silently skip tracer notification, 1260 * which could leave us with a potentially unmodified 1261 * syscall that the tracer would have liked to have 1262 * changed. Since the process is about to die, we just 1263 * force the syscall to be skipped and let the signal 1264 * kill the process and correctly handle any tracer exit 1265 * notifications. 1266 */ 1267 if (fatal_signal_pending(current)) 1268 goto skip; 1269 /* Check if the tracer forced the syscall to be skipped. */ 1270 this_syscall = syscall_get_nr(current, current_pt_regs()); 1271 if (this_syscall < 0) 1272 goto skip; 1273 1274 /* 1275 * Recheck the syscall, since it may have changed. This 1276 * intentionally uses a NULL struct seccomp_data to force 1277 * a reload of all registers. This does not goto skip since 1278 * a skip would have already been reported. 1279 */ 1280 if (__seccomp_filter(this_syscall, NULL, true)) 1281 return -1; 1282 1283 return 0; 1284 1285 case SECCOMP_RET_USER_NOTIF: 1286 if (seccomp_do_user_notification(this_syscall, match, sd)) 1287 goto skip; 1288 1289 return 0; 1290 1291 case SECCOMP_RET_LOG: 1292 seccomp_log(this_syscall, 0, action, true); 1293 return 0; 1294 1295 case SECCOMP_RET_ALLOW: 1296 /* 1297 * Note that the "match" filter will always be NULL for 1298 * this action since SECCOMP_RET_ALLOW is the starting 1299 * state in seccomp_run_filters(). 1300 */ 1301 return 0; 1302 1303 case SECCOMP_RET_KILL_THREAD: 1304 case SECCOMP_RET_KILL_PROCESS: 1305 default: 1306 current->seccomp.mode = SECCOMP_MODE_DEAD; 1307 seccomp_log(this_syscall, SIGSYS, action, true); 1308 /* Dump core only if this is the last remaining thread. */ 1309 if (action != SECCOMP_RET_KILL_THREAD || 1310 (atomic_read(¤t->signal->live) == 1)) { 1311 /* Show the original registers in the dump. */ 1312 syscall_rollback(current, current_pt_regs()); 1313 /* Trigger a coredump with SIGSYS */ 1314 force_sig_seccomp(this_syscall, data, true); 1315 } else { 1316 do_exit(SIGSYS); 1317 } 1318 return -1; /* skip the syscall go directly to signal handling */ 1319 } 1320 1321 unreachable(); 1322 1323 skip: 1324 seccomp_log(this_syscall, 0, action, match ? match->log : false); 1325 return -1; 1326 } 1327 #else 1328 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1329 const bool recheck_after_trace) 1330 { 1331 BUG(); 1332 1333 return -1; 1334 } 1335 #endif 1336 1337 int __secure_computing(const struct seccomp_data *sd) 1338 { 1339 int mode = current->seccomp.mode; 1340 int this_syscall; 1341 1342 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1343 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1344 return 0; 1345 1346 this_syscall = sd ? sd->nr : 1347 syscall_get_nr(current, current_pt_regs()); 1348 1349 switch (mode) { 1350 case SECCOMP_MODE_STRICT: 1351 __secure_computing_strict(this_syscall); /* may call do_exit */ 1352 return 0; 1353 case SECCOMP_MODE_FILTER: 1354 return __seccomp_filter(this_syscall, sd, false); 1355 /* Surviving SECCOMP_RET_KILL_* must be proactively impossible. */ 1356 case SECCOMP_MODE_DEAD: 1357 WARN_ON_ONCE(1); 1358 do_exit(SIGKILL); 1359 return -1; 1360 default: 1361 BUG(); 1362 } 1363 } 1364 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */ 1365 1366 long prctl_get_seccomp(void) 1367 { 1368 return current->seccomp.mode; 1369 } 1370 1371 /** 1372 * seccomp_set_mode_strict: internal function for setting strict seccomp 1373 * 1374 * Once current->seccomp.mode is non-zero, it may not be changed. 1375 * 1376 * Returns 0 on success or -EINVAL on failure. 1377 */ 1378 static long seccomp_set_mode_strict(void) 1379 { 1380 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT; 1381 long ret = -EINVAL; 1382 1383 spin_lock_irq(¤t->sighand->siglock); 1384 1385 if (!seccomp_may_assign_mode(seccomp_mode)) 1386 goto out; 1387 1388 #ifdef TIF_NOTSC 1389 disable_TSC(); 1390 #endif 1391 seccomp_assign_mode(current, seccomp_mode, 0); 1392 ret = 0; 1393 1394 out: 1395 spin_unlock_irq(¤t->sighand->siglock); 1396 1397 return ret; 1398 } 1399 1400 #ifdef CONFIG_SECCOMP_FILTER 1401 static void seccomp_notify_free(struct seccomp_filter *filter) 1402 { 1403 kfree(filter->notif); 1404 filter->notif = NULL; 1405 } 1406 1407 static void seccomp_notify_detach(struct seccomp_filter *filter) 1408 { 1409 struct seccomp_knotif *knotif; 1410 1411 if (!filter) 1412 return; 1413 1414 mutex_lock(&filter->notify_lock); 1415 1416 /* 1417 * If this file is being closed because e.g. the task who owned it 1418 * died, let's wake everyone up who was waiting on us. 1419 */ 1420 list_for_each_entry(knotif, &filter->notif->notifications, list) { 1421 if (knotif->state == SECCOMP_NOTIFY_REPLIED) 1422 continue; 1423 1424 knotif->state = SECCOMP_NOTIFY_REPLIED; 1425 knotif->error = -ENOSYS; 1426 knotif->val = 0; 1427 1428 /* 1429 * We do not need to wake up any pending addfd messages, as 1430 * the notifier will do that for us, as this just looks 1431 * like a standard reply. 1432 */ 1433 complete(&knotif->ready); 1434 } 1435 1436 seccomp_notify_free(filter); 1437 mutex_unlock(&filter->notify_lock); 1438 } 1439 1440 static int seccomp_notify_release(struct inode *inode, struct file *file) 1441 { 1442 struct seccomp_filter *filter = file->private_data; 1443 1444 seccomp_notify_detach(filter); 1445 __put_seccomp_filter(filter); 1446 return 0; 1447 } 1448 1449 /* must be called with notif_lock held */ 1450 static inline struct seccomp_knotif * 1451 find_notification(struct seccomp_filter *filter, u64 id) 1452 { 1453 struct seccomp_knotif *cur; 1454 1455 lockdep_assert_held(&filter->notify_lock); 1456 1457 list_for_each_entry(cur, &filter->notif->notifications, list) { 1458 if (cur->id == id) 1459 return cur; 1460 } 1461 1462 return NULL; 1463 } 1464 1465 static int recv_wake_function(wait_queue_entry_t *wait, unsigned int mode, int sync, 1466 void *key) 1467 { 1468 /* Avoid a wakeup if event not interesting for us. */ 1469 if (key && !(key_to_poll(key) & (EPOLLIN | EPOLLERR))) 1470 return 0; 1471 return autoremove_wake_function(wait, mode, sync, key); 1472 } 1473 1474 static int recv_wait_event(struct seccomp_filter *filter) 1475 { 1476 DEFINE_WAIT_FUNC(wait, recv_wake_function); 1477 int ret; 1478 1479 if (atomic_dec_if_positive(&filter->notif->requests) >= 0) 1480 return 0; 1481 1482 for (;;) { 1483 ret = prepare_to_wait_event(&filter->wqh, &wait, TASK_INTERRUPTIBLE); 1484 1485 if (atomic_dec_if_positive(&filter->notif->requests) >= 0) 1486 break; 1487 1488 if (ret) 1489 return ret; 1490 1491 schedule(); 1492 } 1493 finish_wait(&filter->wqh, &wait); 1494 return 0; 1495 } 1496 1497 static long seccomp_notify_recv(struct seccomp_filter *filter, 1498 void __user *buf) 1499 { 1500 struct seccomp_knotif *knotif = NULL, *cur; 1501 struct seccomp_notif unotif; 1502 ssize_t ret; 1503 1504 /* Verify that we're not given garbage to keep struct extensible. */ 1505 ret = check_zeroed_user(buf, sizeof(unotif)); 1506 if (ret < 0) 1507 return ret; 1508 if (!ret) 1509 return -EINVAL; 1510 1511 memset(&unotif, 0, sizeof(unotif)); 1512 1513 ret = recv_wait_event(filter); 1514 if (ret < 0) 1515 return ret; 1516 1517 mutex_lock(&filter->notify_lock); 1518 list_for_each_entry(cur, &filter->notif->notifications, list) { 1519 if (cur->state == SECCOMP_NOTIFY_INIT) { 1520 knotif = cur; 1521 break; 1522 } 1523 } 1524 1525 /* 1526 * If we didn't find a notification, it could be that the task was 1527 * interrupted by a fatal signal between the time we were woken and 1528 * when we were able to acquire the rw lock. 1529 */ 1530 if (!knotif) { 1531 ret = -ENOENT; 1532 goto out; 1533 } 1534 1535 unotif.id = knotif->id; 1536 unotif.pid = task_pid_vnr(knotif->task); 1537 unotif.data = *(knotif->data); 1538 1539 knotif->state = SECCOMP_NOTIFY_SENT; 1540 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM); 1541 ret = 0; 1542 out: 1543 mutex_unlock(&filter->notify_lock); 1544 1545 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) { 1546 ret = -EFAULT; 1547 1548 /* 1549 * Userspace screwed up. To make sure that we keep this 1550 * notification alive, let's reset it back to INIT. It 1551 * may have died when we released the lock, so we need to make 1552 * sure it's still around. 1553 */ 1554 mutex_lock(&filter->notify_lock); 1555 knotif = find_notification(filter, unotif.id); 1556 if (knotif) { 1557 /* Reset the process to make sure it's not stuck */ 1558 if (should_sleep_killable(filter, knotif)) 1559 complete(&knotif->ready); 1560 knotif->state = SECCOMP_NOTIFY_INIT; 1561 atomic_inc(&filter->notif->requests); 1562 wake_up_poll(&filter->wqh, EPOLLIN | EPOLLRDNORM); 1563 } 1564 mutex_unlock(&filter->notify_lock); 1565 } 1566 1567 return ret; 1568 } 1569 1570 static long seccomp_notify_send(struct seccomp_filter *filter, 1571 void __user *buf) 1572 { 1573 struct seccomp_notif_resp resp = {}; 1574 struct seccomp_knotif *knotif; 1575 long ret; 1576 1577 if (copy_from_user(&resp, buf, sizeof(resp))) 1578 return -EFAULT; 1579 1580 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1581 return -EINVAL; 1582 1583 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) && 1584 (resp.error || resp.val)) 1585 return -EINVAL; 1586 1587 ret = mutex_lock_interruptible(&filter->notify_lock); 1588 if (ret < 0) 1589 return ret; 1590 1591 knotif = find_notification(filter, resp.id); 1592 if (!knotif) { 1593 ret = -ENOENT; 1594 goto out; 1595 } 1596 1597 /* Allow exactly one reply. */ 1598 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1599 ret = -EINPROGRESS; 1600 goto out; 1601 } 1602 1603 ret = 0; 1604 knotif->state = SECCOMP_NOTIFY_REPLIED; 1605 knotif->error = resp.error; 1606 knotif->val = resp.val; 1607 knotif->flags = resp.flags; 1608 if (filter->notif->flags & SECCOMP_USER_NOTIF_FD_SYNC_WAKE_UP) 1609 complete_on_current_cpu(&knotif->ready); 1610 else 1611 complete(&knotif->ready); 1612 out: 1613 mutex_unlock(&filter->notify_lock); 1614 return ret; 1615 } 1616 1617 static long seccomp_notify_id_valid(struct seccomp_filter *filter, 1618 void __user *buf) 1619 { 1620 struct seccomp_knotif *knotif; 1621 u64 id; 1622 long ret; 1623 1624 if (copy_from_user(&id, buf, sizeof(id))) 1625 return -EFAULT; 1626 1627 ret = mutex_lock_interruptible(&filter->notify_lock); 1628 if (ret < 0) 1629 return ret; 1630 1631 knotif = find_notification(filter, id); 1632 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT) 1633 ret = 0; 1634 else 1635 ret = -ENOENT; 1636 1637 mutex_unlock(&filter->notify_lock); 1638 return ret; 1639 } 1640 1641 static long seccomp_notify_set_flags(struct seccomp_filter *filter, 1642 unsigned long flags) 1643 { 1644 long ret; 1645 1646 if (flags & ~SECCOMP_USER_NOTIF_FD_SYNC_WAKE_UP) 1647 return -EINVAL; 1648 1649 ret = mutex_lock_interruptible(&filter->notify_lock); 1650 if (ret < 0) 1651 return ret; 1652 filter->notif->flags = flags; 1653 mutex_unlock(&filter->notify_lock); 1654 return 0; 1655 } 1656 1657 static long seccomp_notify_addfd(struct seccomp_filter *filter, 1658 struct seccomp_notif_addfd __user *uaddfd, 1659 unsigned int size) 1660 { 1661 struct seccomp_notif_addfd addfd; 1662 struct seccomp_knotif *knotif; 1663 struct seccomp_kaddfd kaddfd; 1664 int ret; 1665 1666 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0); 1667 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST); 1668 1669 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE) 1670 return -EINVAL; 1671 1672 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size); 1673 if (ret) 1674 return ret; 1675 1676 if (addfd.newfd_flags & ~O_CLOEXEC) 1677 return -EINVAL; 1678 1679 if (addfd.flags & ~(SECCOMP_ADDFD_FLAG_SETFD | SECCOMP_ADDFD_FLAG_SEND)) 1680 return -EINVAL; 1681 1682 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD)) 1683 return -EINVAL; 1684 1685 kaddfd.file = fget(addfd.srcfd); 1686 if (!kaddfd.file) 1687 return -EBADF; 1688 1689 kaddfd.ioctl_flags = addfd.flags; 1690 kaddfd.flags = addfd.newfd_flags; 1691 kaddfd.setfd = addfd.flags & SECCOMP_ADDFD_FLAG_SETFD; 1692 kaddfd.fd = addfd.newfd; 1693 init_completion(&kaddfd.completion); 1694 1695 ret = mutex_lock_interruptible(&filter->notify_lock); 1696 if (ret < 0) 1697 goto out; 1698 1699 knotif = find_notification(filter, addfd.id); 1700 if (!knotif) { 1701 ret = -ENOENT; 1702 goto out_unlock; 1703 } 1704 1705 /* 1706 * We do not want to allow for FD injection to occur before the 1707 * notification has been picked up by a userspace handler, or after 1708 * the notification has been replied to. 1709 */ 1710 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1711 ret = -EINPROGRESS; 1712 goto out_unlock; 1713 } 1714 1715 if (addfd.flags & SECCOMP_ADDFD_FLAG_SEND) { 1716 /* 1717 * Disallow queuing an atomic addfd + send reply while there are 1718 * some addfd requests still to process. 1719 * 1720 * There is no clear reason to support it and allows us to keep 1721 * the loop on the other side straight-forward. 1722 */ 1723 if (!list_empty(&knotif->addfd)) { 1724 ret = -EBUSY; 1725 goto out_unlock; 1726 } 1727 1728 /* Allow exactly only one reply */ 1729 knotif->state = SECCOMP_NOTIFY_REPLIED; 1730 } 1731 1732 list_add(&kaddfd.list, &knotif->addfd); 1733 complete(&knotif->ready); 1734 mutex_unlock(&filter->notify_lock); 1735 1736 /* Now we wait for it to be processed or be interrupted */ 1737 ret = wait_for_completion_interruptible(&kaddfd.completion); 1738 if (ret == 0) { 1739 /* 1740 * We had a successful completion. The other side has already 1741 * removed us from the addfd queue, and 1742 * wait_for_completion_interruptible has a memory barrier upon 1743 * success that lets us read this value directly without 1744 * locking. 1745 */ 1746 ret = kaddfd.ret; 1747 goto out; 1748 } 1749 1750 mutex_lock(&filter->notify_lock); 1751 /* 1752 * Even though we were woken up by a signal and not a successful 1753 * completion, a completion may have happened in the mean time. 1754 * 1755 * We need to check again if the addfd request has been handled, 1756 * and if not, we will remove it from the queue. 1757 */ 1758 if (list_empty(&kaddfd.list)) 1759 ret = kaddfd.ret; 1760 else 1761 list_del(&kaddfd.list); 1762 1763 out_unlock: 1764 mutex_unlock(&filter->notify_lock); 1765 out: 1766 fput(kaddfd.file); 1767 1768 return ret; 1769 } 1770 1771 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd, 1772 unsigned long arg) 1773 { 1774 struct seccomp_filter *filter = file->private_data; 1775 void __user *buf = (void __user *)arg; 1776 1777 /* Fixed-size ioctls */ 1778 switch (cmd) { 1779 case SECCOMP_IOCTL_NOTIF_RECV: 1780 return seccomp_notify_recv(filter, buf); 1781 case SECCOMP_IOCTL_NOTIF_SEND: 1782 return seccomp_notify_send(filter, buf); 1783 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR: 1784 case SECCOMP_IOCTL_NOTIF_ID_VALID: 1785 return seccomp_notify_id_valid(filter, buf); 1786 case SECCOMP_IOCTL_NOTIF_SET_FLAGS: 1787 return seccomp_notify_set_flags(filter, arg); 1788 } 1789 1790 /* Extensible Argument ioctls */ 1791 #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK)) 1792 switch (EA_IOCTL(cmd)) { 1793 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD): 1794 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd)); 1795 default: 1796 return -EINVAL; 1797 } 1798 } 1799 1800 static __poll_t seccomp_notify_poll(struct file *file, 1801 struct poll_table_struct *poll_tab) 1802 { 1803 struct seccomp_filter *filter = file->private_data; 1804 __poll_t ret = 0; 1805 struct seccomp_knotif *cur; 1806 1807 poll_wait(file, &filter->wqh, poll_tab); 1808 1809 if (mutex_lock_interruptible(&filter->notify_lock) < 0) 1810 return EPOLLERR; 1811 1812 list_for_each_entry(cur, &filter->notif->notifications, list) { 1813 if (cur->state == SECCOMP_NOTIFY_INIT) 1814 ret |= EPOLLIN | EPOLLRDNORM; 1815 if (cur->state == SECCOMP_NOTIFY_SENT) 1816 ret |= EPOLLOUT | EPOLLWRNORM; 1817 if ((ret & EPOLLIN) && (ret & EPOLLOUT)) 1818 break; 1819 } 1820 1821 mutex_unlock(&filter->notify_lock); 1822 1823 if (refcount_read(&filter->users) == 0) 1824 ret |= EPOLLHUP; 1825 1826 return ret; 1827 } 1828 1829 static const struct file_operations seccomp_notify_ops = { 1830 .poll = seccomp_notify_poll, 1831 .release = seccomp_notify_release, 1832 .unlocked_ioctl = seccomp_notify_ioctl, 1833 .compat_ioctl = seccomp_notify_ioctl, 1834 }; 1835 1836 static struct file *init_listener(struct seccomp_filter *filter) 1837 { 1838 struct file *ret; 1839 1840 ret = ERR_PTR(-ENOMEM); 1841 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL); 1842 if (!filter->notif) 1843 goto out; 1844 1845 filter->notif->next_id = get_random_u64(); 1846 INIT_LIST_HEAD(&filter->notif->notifications); 1847 1848 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops, 1849 filter, O_RDWR); 1850 if (IS_ERR(ret)) 1851 goto out_notif; 1852 1853 /* The file has a reference to it now */ 1854 __get_seccomp_filter(filter); 1855 1856 out_notif: 1857 if (IS_ERR(ret)) 1858 seccomp_notify_free(filter); 1859 out: 1860 return ret; 1861 } 1862 1863 /* 1864 * Does @new_child have a listener while an ancestor also has a listener? 1865 * If so, we'll want to reject this filter. 1866 * This only has to be tested for the current process, even in the TSYNC case, 1867 * because TSYNC installs @child with the same parent on all threads. 1868 * Note that @new_child is not hooked up to its parent at this point yet, so 1869 * we use current->seccomp.filter. 1870 */ 1871 static bool has_duplicate_listener(struct seccomp_filter *new_child) 1872 { 1873 struct seccomp_filter *cur; 1874 1875 /* must be protected against concurrent TSYNC */ 1876 lockdep_assert_held(¤t->sighand->siglock); 1877 1878 if (!new_child->notif) 1879 return false; 1880 for (cur = current->seccomp.filter; cur; cur = cur->prev) { 1881 if (cur->notif) 1882 return true; 1883 } 1884 1885 return false; 1886 } 1887 1888 /** 1889 * seccomp_set_mode_filter: internal function for setting seccomp filter 1890 * @flags: flags to change filter behavior 1891 * @filter: struct sock_fprog containing filter 1892 * 1893 * This function may be called repeatedly to install additional filters. 1894 * Every filter successfully installed will be evaluated (in reverse order) 1895 * for each system call the task makes. 1896 * 1897 * Once current->seccomp.mode is non-zero, it may not be changed. 1898 * 1899 * Returns 0 on success or -EINVAL on failure. 1900 */ 1901 static long seccomp_set_mode_filter(unsigned int flags, 1902 const char __user *filter) 1903 { 1904 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER; 1905 struct seccomp_filter *prepared = NULL; 1906 long ret = -EINVAL; 1907 int listener = -1; 1908 struct file *listener_f = NULL; 1909 1910 /* Validate flags. */ 1911 if (flags & ~SECCOMP_FILTER_FLAG_MASK) 1912 return -EINVAL; 1913 1914 /* 1915 * In the successful case, NEW_LISTENER returns the new listener fd. 1916 * But in the failure case, TSYNC returns the thread that died. If you 1917 * combine these two flags, there's no way to tell whether something 1918 * succeeded or failed. So, let's disallow this combination if the user 1919 * has not explicitly requested no errors from TSYNC. 1920 */ 1921 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) && 1922 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) && 1923 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0)) 1924 return -EINVAL; 1925 1926 /* 1927 * The SECCOMP_FILTER_FLAG_WAIT_KILLABLE_SENT flag doesn't make sense 1928 * without the SECCOMP_FILTER_FLAG_NEW_LISTENER flag. 1929 */ 1930 if ((flags & SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV) && 1931 ((flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) == 0)) 1932 return -EINVAL; 1933 1934 /* Prepare the new filter before holding any locks. */ 1935 prepared = seccomp_prepare_user_filter(filter); 1936 if (IS_ERR(prepared)) 1937 return PTR_ERR(prepared); 1938 1939 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1940 listener = get_unused_fd_flags(O_CLOEXEC); 1941 if (listener < 0) { 1942 ret = listener; 1943 goto out_free; 1944 } 1945 1946 listener_f = init_listener(prepared); 1947 if (IS_ERR(listener_f)) { 1948 put_unused_fd(listener); 1949 ret = PTR_ERR(listener_f); 1950 goto out_free; 1951 } 1952 } 1953 1954 /* 1955 * Make sure we cannot change seccomp or nnp state via TSYNC 1956 * while another thread is in the middle of calling exec. 1957 */ 1958 if (flags & SECCOMP_FILTER_FLAG_TSYNC && 1959 mutex_lock_killable(¤t->signal->cred_guard_mutex)) 1960 goto out_put_fd; 1961 1962 spin_lock_irq(¤t->sighand->siglock); 1963 1964 if (!seccomp_may_assign_mode(seccomp_mode)) 1965 goto out; 1966 1967 if (has_duplicate_listener(prepared)) { 1968 ret = -EBUSY; 1969 goto out; 1970 } 1971 1972 ret = seccomp_attach_filter(flags, prepared); 1973 if (ret) 1974 goto out; 1975 /* Do not free the successfully attached filter. */ 1976 prepared = NULL; 1977 1978 seccomp_assign_mode(current, seccomp_mode, flags); 1979 out: 1980 spin_unlock_irq(¤t->sighand->siglock); 1981 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 1982 mutex_unlock(¤t->signal->cred_guard_mutex); 1983 out_put_fd: 1984 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1985 if (ret) { 1986 listener_f->private_data = NULL; 1987 fput(listener_f); 1988 put_unused_fd(listener); 1989 seccomp_notify_detach(prepared); 1990 } else { 1991 fd_install(listener, listener_f); 1992 ret = listener; 1993 } 1994 } 1995 out_free: 1996 seccomp_filter_free(prepared); 1997 return ret; 1998 } 1999 #else 2000 static inline long seccomp_set_mode_filter(unsigned int flags, 2001 const char __user *filter) 2002 { 2003 return -EINVAL; 2004 } 2005 #endif 2006 2007 static long seccomp_get_action_avail(const char __user *uaction) 2008 { 2009 u32 action; 2010 2011 if (copy_from_user(&action, uaction, sizeof(action))) 2012 return -EFAULT; 2013 2014 switch (action) { 2015 case SECCOMP_RET_KILL_PROCESS: 2016 case SECCOMP_RET_KILL_THREAD: 2017 case SECCOMP_RET_TRAP: 2018 case SECCOMP_RET_ERRNO: 2019 case SECCOMP_RET_USER_NOTIF: 2020 case SECCOMP_RET_TRACE: 2021 case SECCOMP_RET_LOG: 2022 case SECCOMP_RET_ALLOW: 2023 break; 2024 default: 2025 return -EOPNOTSUPP; 2026 } 2027 2028 return 0; 2029 } 2030 2031 static long seccomp_get_notif_sizes(void __user *usizes) 2032 { 2033 struct seccomp_notif_sizes sizes = { 2034 .seccomp_notif = sizeof(struct seccomp_notif), 2035 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp), 2036 .seccomp_data = sizeof(struct seccomp_data), 2037 }; 2038 2039 if (copy_to_user(usizes, &sizes, sizeof(sizes))) 2040 return -EFAULT; 2041 2042 return 0; 2043 } 2044 2045 /* Common entry point for both prctl and syscall. */ 2046 static long do_seccomp(unsigned int op, unsigned int flags, 2047 void __user *uargs) 2048 { 2049 switch (op) { 2050 case SECCOMP_SET_MODE_STRICT: 2051 if (flags != 0 || uargs != NULL) 2052 return -EINVAL; 2053 return seccomp_set_mode_strict(); 2054 case SECCOMP_SET_MODE_FILTER: 2055 return seccomp_set_mode_filter(flags, uargs); 2056 case SECCOMP_GET_ACTION_AVAIL: 2057 if (flags != 0) 2058 return -EINVAL; 2059 2060 return seccomp_get_action_avail(uargs); 2061 case SECCOMP_GET_NOTIF_SIZES: 2062 if (flags != 0) 2063 return -EINVAL; 2064 2065 return seccomp_get_notif_sizes(uargs); 2066 default: 2067 return -EINVAL; 2068 } 2069 } 2070 2071 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags, 2072 void __user *, uargs) 2073 { 2074 return do_seccomp(op, flags, uargs); 2075 } 2076 2077 /** 2078 * prctl_set_seccomp: configures current->seccomp.mode 2079 * @seccomp_mode: requested mode to use 2080 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER 2081 * 2082 * Returns 0 on success or -EINVAL on failure. 2083 */ 2084 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter) 2085 { 2086 unsigned int op; 2087 void __user *uargs; 2088 2089 switch (seccomp_mode) { 2090 case SECCOMP_MODE_STRICT: 2091 op = SECCOMP_SET_MODE_STRICT; 2092 /* 2093 * Setting strict mode through prctl always ignored filter, 2094 * so make sure it is always NULL here to pass the internal 2095 * check in do_seccomp(). 2096 */ 2097 uargs = NULL; 2098 break; 2099 case SECCOMP_MODE_FILTER: 2100 op = SECCOMP_SET_MODE_FILTER; 2101 uargs = filter; 2102 break; 2103 default: 2104 return -EINVAL; 2105 } 2106 2107 /* prctl interface doesn't have flags, so they are always zero. */ 2108 return do_seccomp(op, 0, uargs); 2109 } 2110 2111 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE) 2112 static struct seccomp_filter *get_nth_filter(struct task_struct *task, 2113 unsigned long filter_off) 2114 { 2115 struct seccomp_filter *orig, *filter; 2116 unsigned long count; 2117 2118 /* 2119 * Note: this is only correct because the caller should be the (ptrace) 2120 * tracer of the task, otherwise lock_task_sighand is needed. 2121 */ 2122 spin_lock_irq(&task->sighand->siglock); 2123 2124 if (task->seccomp.mode != SECCOMP_MODE_FILTER) { 2125 spin_unlock_irq(&task->sighand->siglock); 2126 return ERR_PTR(-EINVAL); 2127 } 2128 2129 orig = task->seccomp.filter; 2130 __get_seccomp_filter(orig); 2131 spin_unlock_irq(&task->sighand->siglock); 2132 2133 count = 0; 2134 for (filter = orig; filter; filter = filter->prev) 2135 count++; 2136 2137 if (filter_off >= count) { 2138 filter = ERR_PTR(-ENOENT); 2139 goto out; 2140 } 2141 2142 count -= filter_off; 2143 for (filter = orig; filter && count > 1; filter = filter->prev) 2144 count--; 2145 2146 if (WARN_ON(count != 1 || !filter)) { 2147 filter = ERR_PTR(-ENOENT); 2148 goto out; 2149 } 2150 2151 __get_seccomp_filter(filter); 2152 2153 out: 2154 __put_seccomp_filter(orig); 2155 return filter; 2156 } 2157 2158 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off, 2159 void __user *data) 2160 { 2161 struct seccomp_filter *filter; 2162 struct sock_fprog_kern *fprog; 2163 long ret; 2164 2165 if (!capable(CAP_SYS_ADMIN) || 2166 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2167 return -EACCES; 2168 } 2169 2170 filter = get_nth_filter(task, filter_off); 2171 if (IS_ERR(filter)) 2172 return PTR_ERR(filter); 2173 2174 fprog = filter->prog->orig_prog; 2175 if (!fprog) { 2176 /* This must be a new non-cBPF filter, since we save 2177 * every cBPF filter's orig_prog above when 2178 * CONFIG_CHECKPOINT_RESTORE is enabled. 2179 */ 2180 ret = -EMEDIUMTYPE; 2181 goto out; 2182 } 2183 2184 ret = fprog->len; 2185 if (!data) 2186 goto out; 2187 2188 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog))) 2189 ret = -EFAULT; 2190 2191 out: 2192 __put_seccomp_filter(filter); 2193 return ret; 2194 } 2195 2196 long seccomp_get_metadata(struct task_struct *task, 2197 unsigned long size, void __user *data) 2198 { 2199 long ret; 2200 struct seccomp_filter *filter; 2201 struct seccomp_metadata kmd = {}; 2202 2203 if (!capable(CAP_SYS_ADMIN) || 2204 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2205 return -EACCES; 2206 } 2207 2208 size = min_t(unsigned long, size, sizeof(kmd)); 2209 2210 if (size < sizeof(kmd.filter_off)) 2211 return -EINVAL; 2212 2213 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off))) 2214 return -EFAULT; 2215 2216 filter = get_nth_filter(task, kmd.filter_off); 2217 if (IS_ERR(filter)) 2218 return PTR_ERR(filter); 2219 2220 if (filter->log) 2221 kmd.flags |= SECCOMP_FILTER_FLAG_LOG; 2222 2223 ret = size; 2224 if (copy_to_user(data, &kmd, size)) 2225 ret = -EFAULT; 2226 2227 __put_seccomp_filter(filter); 2228 return ret; 2229 } 2230 #endif 2231 2232 #ifdef CONFIG_SYSCTL 2233 2234 /* Human readable action names for friendly sysctl interaction */ 2235 #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process" 2236 #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread" 2237 #define SECCOMP_RET_TRAP_NAME "trap" 2238 #define SECCOMP_RET_ERRNO_NAME "errno" 2239 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif" 2240 #define SECCOMP_RET_TRACE_NAME "trace" 2241 #define SECCOMP_RET_LOG_NAME "log" 2242 #define SECCOMP_RET_ALLOW_NAME "allow" 2243 2244 static const char seccomp_actions_avail[] = 2245 SECCOMP_RET_KILL_PROCESS_NAME " " 2246 SECCOMP_RET_KILL_THREAD_NAME " " 2247 SECCOMP_RET_TRAP_NAME " " 2248 SECCOMP_RET_ERRNO_NAME " " 2249 SECCOMP_RET_USER_NOTIF_NAME " " 2250 SECCOMP_RET_TRACE_NAME " " 2251 SECCOMP_RET_LOG_NAME " " 2252 SECCOMP_RET_ALLOW_NAME; 2253 2254 struct seccomp_log_name { 2255 u32 log; 2256 const char *name; 2257 }; 2258 2259 static const struct seccomp_log_name seccomp_log_names[] = { 2260 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME }, 2261 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME }, 2262 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME }, 2263 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME }, 2264 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME }, 2265 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME }, 2266 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME }, 2267 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME }, 2268 { } 2269 }; 2270 2271 static bool seccomp_names_from_actions_logged(char *names, size_t size, 2272 u32 actions_logged, 2273 const char *sep) 2274 { 2275 const struct seccomp_log_name *cur; 2276 bool append_sep = false; 2277 2278 for (cur = seccomp_log_names; cur->name && size; cur++) { 2279 ssize_t ret; 2280 2281 if (!(actions_logged & cur->log)) 2282 continue; 2283 2284 if (append_sep) { 2285 ret = strscpy(names, sep, size); 2286 if (ret < 0) 2287 return false; 2288 2289 names += ret; 2290 size -= ret; 2291 } else 2292 append_sep = true; 2293 2294 ret = strscpy(names, cur->name, size); 2295 if (ret < 0) 2296 return false; 2297 2298 names += ret; 2299 size -= ret; 2300 } 2301 2302 return true; 2303 } 2304 2305 static bool seccomp_action_logged_from_name(u32 *action_logged, 2306 const char *name) 2307 { 2308 const struct seccomp_log_name *cur; 2309 2310 for (cur = seccomp_log_names; cur->name; cur++) { 2311 if (!strcmp(cur->name, name)) { 2312 *action_logged = cur->log; 2313 return true; 2314 } 2315 } 2316 2317 return false; 2318 } 2319 2320 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names) 2321 { 2322 char *name; 2323 2324 *actions_logged = 0; 2325 while ((name = strsep(&names, " ")) && *name) { 2326 u32 action_logged = 0; 2327 2328 if (!seccomp_action_logged_from_name(&action_logged, name)) 2329 return false; 2330 2331 *actions_logged |= action_logged; 2332 } 2333 2334 return true; 2335 } 2336 2337 static int read_actions_logged(struct ctl_table *ro_table, void *buffer, 2338 size_t *lenp, loff_t *ppos) 2339 { 2340 char names[sizeof(seccomp_actions_avail)]; 2341 struct ctl_table table; 2342 2343 memset(names, 0, sizeof(names)); 2344 2345 if (!seccomp_names_from_actions_logged(names, sizeof(names), 2346 seccomp_actions_logged, " ")) 2347 return -EINVAL; 2348 2349 table = *ro_table; 2350 table.data = names; 2351 table.maxlen = sizeof(names); 2352 return proc_dostring(&table, 0, buffer, lenp, ppos); 2353 } 2354 2355 static int write_actions_logged(struct ctl_table *ro_table, void *buffer, 2356 size_t *lenp, loff_t *ppos, u32 *actions_logged) 2357 { 2358 char names[sizeof(seccomp_actions_avail)]; 2359 struct ctl_table table; 2360 int ret; 2361 2362 if (!capable(CAP_SYS_ADMIN)) 2363 return -EPERM; 2364 2365 memset(names, 0, sizeof(names)); 2366 2367 table = *ro_table; 2368 table.data = names; 2369 table.maxlen = sizeof(names); 2370 ret = proc_dostring(&table, 1, buffer, lenp, ppos); 2371 if (ret) 2372 return ret; 2373 2374 if (!seccomp_actions_logged_from_names(actions_logged, table.data)) 2375 return -EINVAL; 2376 2377 if (*actions_logged & SECCOMP_LOG_ALLOW) 2378 return -EINVAL; 2379 2380 seccomp_actions_logged = *actions_logged; 2381 return 0; 2382 } 2383 2384 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged, 2385 int ret) 2386 { 2387 char names[sizeof(seccomp_actions_avail)]; 2388 char old_names[sizeof(seccomp_actions_avail)]; 2389 const char *new = names; 2390 const char *old = old_names; 2391 2392 if (!audit_enabled) 2393 return; 2394 2395 memset(names, 0, sizeof(names)); 2396 memset(old_names, 0, sizeof(old_names)); 2397 2398 if (ret) 2399 new = "?"; 2400 else if (!actions_logged) 2401 new = "(none)"; 2402 else if (!seccomp_names_from_actions_logged(names, sizeof(names), 2403 actions_logged, ",")) 2404 new = "?"; 2405 2406 if (!old_actions_logged) 2407 old = "(none)"; 2408 else if (!seccomp_names_from_actions_logged(old_names, 2409 sizeof(old_names), 2410 old_actions_logged, ",")) 2411 old = "?"; 2412 2413 return audit_seccomp_actions_logged(new, old, !ret); 2414 } 2415 2416 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write, 2417 void *buffer, size_t *lenp, 2418 loff_t *ppos) 2419 { 2420 int ret; 2421 2422 if (write) { 2423 u32 actions_logged = 0; 2424 u32 old_actions_logged = seccomp_actions_logged; 2425 2426 ret = write_actions_logged(ro_table, buffer, lenp, ppos, 2427 &actions_logged); 2428 audit_actions_logged(actions_logged, old_actions_logged, ret); 2429 } else 2430 ret = read_actions_logged(ro_table, buffer, lenp, ppos); 2431 2432 return ret; 2433 } 2434 2435 static struct ctl_table seccomp_sysctl_table[] = { 2436 { 2437 .procname = "actions_avail", 2438 .data = (void *) &seccomp_actions_avail, 2439 .maxlen = sizeof(seccomp_actions_avail), 2440 .mode = 0444, 2441 .proc_handler = proc_dostring, 2442 }, 2443 { 2444 .procname = "actions_logged", 2445 .mode = 0644, 2446 .proc_handler = seccomp_actions_logged_handler, 2447 }, 2448 { } 2449 }; 2450 2451 static int __init seccomp_sysctl_init(void) 2452 { 2453 register_sysctl_init("kernel/seccomp", seccomp_sysctl_table); 2454 return 0; 2455 } 2456 2457 device_initcall(seccomp_sysctl_init) 2458 2459 #endif /* CONFIG_SYSCTL */ 2460 2461 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 2462 /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */ 2463 static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name, 2464 const void *bitmap, size_t bitmap_size) 2465 { 2466 int nr; 2467 2468 for (nr = 0; nr < bitmap_size; nr++) { 2469 bool cached = test_bit(nr, bitmap); 2470 char *status = cached ? "ALLOW" : "FILTER"; 2471 2472 seq_printf(m, "%s %d %s\n", name, nr, status); 2473 } 2474 } 2475 2476 int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns, 2477 struct pid *pid, struct task_struct *task) 2478 { 2479 struct seccomp_filter *f; 2480 unsigned long flags; 2481 2482 /* 2483 * We don't want some sandboxed process to know what their seccomp 2484 * filters consist of. 2485 */ 2486 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 2487 return -EACCES; 2488 2489 if (!lock_task_sighand(task, &flags)) 2490 return -ESRCH; 2491 2492 f = READ_ONCE(task->seccomp.filter); 2493 if (!f) { 2494 unlock_task_sighand(task, &flags); 2495 return 0; 2496 } 2497 2498 /* prevent filter from being freed while we are printing it */ 2499 __get_seccomp_filter(f); 2500 unlock_task_sighand(task, &flags); 2501 2502 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME, 2503 f->cache.allow_native, 2504 SECCOMP_ARCH_NATIVE_NR); 2505 2506 #ifdef SECCOMP_ARCH_COMPAT 2507 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME, 2508 f->cache.allow_compat, 2509 SECCOMP_ARCH_COMPAT_NR); 2510 #endif /* SECCOMP_ARCH_COMPAT */ 2511 2512 __put_seccomp_filter(f); 2513 return 0; 2514 } 2515 #endif /* CONFIG_SECCOMP_CACHE_DEBUG */ 2516