1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/seccomp.c 4 * 5 * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com> 6 * 7 * Copyright (C) 2012 Google, Inc. 8 * Will Drewry <wad@chromium.org> 9 * 10 * This defines a simple but solid secure-computing facility. 11 * 12 * Mode 1 uses a fixed list of allowed system calls. 13 * Mode 2 allows user-defined system call filters in the form 14 * of Berkeley Packet Filters/Linux Socket Filters. 15 */ 16 #define pr_fmt(fmt) "seccomp: " fmt 17 18 #include <linux/refcount.h> 19 #include <linux/audit.h> 20 #include <linux/compat.h> 21 #include <linux/coredump.h> 22 #include <linux/kmemleak.h> 23 #include <linux/nospec.h> 24 #include <linux/prctl.h> 25 #include <linux/sched.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/seccomp.h> 28 #include <linux/slab.h> 29 #include <linux/syscalls.h> 30 #include <linux/sysctl.h> 31 32 #include <asm/syscall.h> 33 34 /* Not exposed in headers: strictly internal use only. */ 35 #define SECCOMP_MODE_DEAD (SECCOMP_MODE_FILTER + 1) 36 37 #ifdef CONFIG_SECCOMP_FILTER 38 #include <linux/file.h> 39 #include <linux/filter.h> 40 #include <linux/pid.h> 41 #include <linux/ptrace.h> 42 #include <linux/capability.h> 43 #include <linux/uaccess.h> 44 #include <linux/anon_inodes.h> 45 #include <linux/lockdep.h> 46 47 /* 48 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the 49 * wrong direction flag in the ioctl number. This is the broken one, 50 * which the kernel needs to keep supporting until all userspaces stop 51 * using the wrong command number. 52 */ 53 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64) 54 55 enum notify_state { 56 SECCOMP_NOTIFY_INIT, 57 SECCOMP_NOTIFY_SENT, 58 SECCOMP_NOTIFY_REPLIED, 59 }; 60 61 struct seccomp_knotif { 62 /* The struct pid of the task whose filter triggered the notification */ 63 struct task_struct *task; 64 65 /* The "cookie" for this request; this is unique for this filter. */ 66 u64 id; 67 68 /* 69 * The seccomp data. This pointer is valid the entire time this 70 * notification is active, since it comes from __seccomp_filter which 71 * eclipses the entire lifecycle here. 72 */ 73 const struct seccomp_data *data; 74 75 /* 76 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a 77 * struct seccomp_knotif is created and starts out in INIT. Once the 78 * handler reads the notification off of an FD, it transitions to SENT. 79 * If a signal is received the state transitions back to INIT and 80 * another message is sent. When the userspace handler replies, state 81 * transitions to REPLIED. 82 */ 83 enum notify_state state; 84 85 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */ 86 int error; 87 long val; 88 u32 flags; 89 90 /* 91 * Signals when this has changed states, such as the listener 92 * dying, a new seccomp addfd message, or changing to REPLIED 93 */ 94 struct completion ready; 95 96 struct list_head list; 97 98 /* outstanding addfd requests */ 99 struct list_head addfd; 100 }; 101 102 /** 103 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages 104 * 105 * @file: A reference to the file to install in the other task 106 * @fd: The fd number to install it at. If the fd number is -1, it means the 107 * installing process should allocate the fd as normal. 108 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC 109 * is allowed. 110 * @ioctl_flags: The flags used for the seccomp_addfd ioctl. 111 * @setfd: whether or not SECCOMP_ADDFD_FLAG_SETFD was set during notify_addfd 112 * @ret: The return value of the installing process. It is set to the fd num 113 * upon success (>= 0). 114 * @completion: Indicates that the installing process has completed fd 115 * installation, or gone away (either due to successful 116 * reply, or signal) 117 * @list: list_head for chaining seccomp_kaddfd together. 118 * 119 */ 120 struct seccomp_kaddfd { 121 struct file *file; 122 int fd; 123 unsigned int flags; 124 __u32 ioctl_flags; 125 126 union { 127 bool setfd; 128 /* To only be set on reply */ 129 int ret; 130 }; 131 struct completion completion; 132 struct list_head list; 133 }; 134 135 /** 136 * struct notification - container for seccomp userspace notifications. Since 137 * most seccomp filters will not have notification listeners attached and this 138 * structure is fairly large, we store the notification-specific stuff in a 139 * separate structure. 140 * 141 * @requests: A semaphore that users of this notification can wait on for 142 * changes. Actual reads and writes are still controlled with 143 * filter->notify_lock. 144 * @flags: A set of SECCOMP_USER_NOTIF_FD_* flags. 145 * @next_id: The id of the next request. 146 * @notifications: A list of struct seccomp_knotif elements. 147 */ 148 149 struct notification { 150 atomic_t requests; 151 u32 flags; 152 u64 next_id; 153 struct list_head notifications; 154 }; 155 156 #ifdef SECCOMP_ARCH_NATIVE 157 /** 158 * struct action_cache - per-filter cache of seccomp actions per 159 * arch/syscall pair 160 * 161 * @allow_native: A bitmap where each bit represents whether the 162 * filter will always allow the syscall, for the 163 * native architecture. 164 * @allow_compat: A bitmap where each bit represents whether the 165 * filter will always allow the syscall, for the 166 * compat architecture. 167 */ 168 struct action_cache { 169 DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR); 170 #ifdef SECCOMP_ARCH_COMPAT 171 DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR); 172 #endif 173 }; 174 #else 175 struct action_cache { }; 176 177 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 178 const struct seccomp_data *sd) 179 { 180 return false; 181 } 182 183 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter) 184 { 185 } 186 #endif /* SECCOMP_ARCH_NATIVE */ 187 188 /** 189 * struct seccomp_filter - container for seccomp BPF programs 190 * 191 * @refs: Reference count to manage the object lifetime. 192 * A filter's reference count is incremented for each directly 193 * attached task, once for the dependent filter, and if 194 * requested for the user notifier. When @refs reaches zero, 195 * the filter can be freed. 196 * @users: A filter's @users count is incremented for each directly 197 * attached task (filter installation, fork(), thread_sync), 198 * and once for the dependent filter (tracked in filter->prev). 199 * When it reaches zero it indicates that no direct or indirect 200 * users of that filter exist. No new tasks can get associated with 201 * this filter after reaching 0. The @users count is always smaller 202 * or equal to @refs. Hence, reaching 0 for @users does not mean 203 * the filter can be freed. 204 * @cache: cache of arch/syscall mappings to actions 205 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged 206 * @wait_killable_recv: Put notifying process in killable state once the 207 * notification is received by the userspace listener. 208 * @prev: points to a previously installed, or inherited, filter 209 * @prog: the BPF program to evaluate 210 * @notif: the struct that holds all notification related information 211 * @notify_lock: A lock for all notification-related accesses. 212 * @wqh: A wait queue for poll if a notifier is in use. 213 * 214 * seccomp_filter objects are organized in a tree linked via the @prev 215 * pointer. For any task, it appears to be a singly-linked list starting 216 * with current->seccomp.filter, the most recently attached or inherited filter. 217 * However, multiple filters may share a @prev node, by way of fork(), which 218 * results in a unidirectional tree existing in memory. This is similar to 219 * how namespaces work. 220 * 221 * seccomp_filter objects should never be modified after being attached 222 * to a task_struct (other than @refs). 223 */ 224 struct seccomp_filter { 225 refcount_t refs; 226 refcount_t users; 227 bool log; 228 bool wait_killable_recv; 229 struct action_cache cache; 230 struct seccomp_filter *prev; 231 struct bpf_prog *prog; 232 struct notification *notif; 233 struct mutex notify_lock; 234 wait_queue_head_t wqh; 235 }; 236 237 /* Limit any path through the tree to 256KB worth of instructions. */ 238 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter)) 239 240 /* 241 * Endianness is explicitly ignored and left for BPF program authors to manage 242 * as per the specific architecture. 243 */ 244 static void populate_seccomp_data(struct seccomp_data *sd) 245 { 246 /* 247 * Instead of using current_pt_reg(), we're already doing the work 248 * to safely fetch "current", so just use "task" everywhere below. 249 */ 250 struct task_struct *task = current; 251 struct pt_regs *regs = task_pt_regs(task); 252 unsigned long args[6]; 253 254 sd->nr = syscall_get_nr(task, regs); 255 sd->arch = syscall_get_arch(task); 256 syscall_get_arguments(task, regs, args); 257 sd->args[0] = args[0]; 258 sd->args[1] = args[1]; 259 sd->args[2] = args[2]; 260 sd->args[3] = args[3]; 261 sd->args[4] = args[4]; 262 sd->args[5] = args[5]; 263 sd->instruction_pointer = KSTK_EIP(task); 264 } 265 266 /** 267 * seccomp_check_filter - verify seccomp filter code 268 * @filter: filter to verify 269 * @flen: length of filter 270 * 271 * Takes a previously checked filter (by bpf_check_classic) and 272 * redirects all filter code that loads struct sk_buff data 273 * and related data through seccomp_bpf_load. It also 274 * enforces length and alignment checking of those loads. 275 * 276 * Returns 0 if the rule set is legal or -EINVAL if not. 277 */ 278 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen) 279 { 280 int pc; 281 for (pc = 0; pc < flen; pc++) { 282 struct sock_filter *ftest = &filter[pc]; 283 u16 code = ftest->code; 284 u32 k = ftest->k; 285 286 switch (code) { 287 case BPF_LD | BPF_W | BPF_ABS: 288 ftest->code = BPF_LDX | BPF_W | BPF_ABS; 289 /* 32-bit aligned and not out of bounds. */ 290 if (k >= sizeof(struct seccomp_data) || k & 3) 291 return -EINVAL; 292 continue; 293 case BPF_LD | BPF_W | BPF_LEN: 294 ftest->code = BPF_LD | BPF_IMM; 295 ftest->k = sizeof(struct seccomp_data); 296 continue; 297 case BPF_LDX | BPF_W | BPF_LEN: 298 ftest->code = BPF_LDX | BPF_IMM; 299 ftest->k = sizeof(struct seccomp_data); 300 continue; 301 /* Explicitly include allowed calls. */ 302 case BPF_RET | BPF_K: 303 case BPF_RET | BPF_A: 304 case BPF_ALU | BPF_ADD | BPF_K: 305 case BPF_ALU | BPF_ADD | BPF_X: 306 case BPF_ALU | BPF_SUB | BPF_K: 307 case BPF_ALU | BPF_SUB | BPF_X: 308 case BPF_ALU | BPF_MUL | BPF_K: 309 case BPF_ALU | BPF_MUL | BPF_X: 310 case BPF_ALU | BPF_DIV | BPF_K: 311 case BPF_ALU | BPF_DIV | BPF_X: 312 case BPF_ALU | BPF_AND | BPF_K: 313 case BPF_ALU | BPF_AND | BPF_X: 314 case BPF_ALU | BPF_OR | BPF_K: 315 case BPF_ALU | BPF_OR | BPF_X: 316 case BPF_ALU | BPF_XOR | BPF_K: 317 case BPF_ALU | BPF_XOR | BPF_X: 318 case BPF_ALU | BPF_LSH | BPF_K: 319 case BPF_ALU | BPF_LSH | BPF_X: 320 case BPF_ALU | BPF_RSH | BPF_K: 321 case BPF_ALU | BPF_RSH | BPF_X: 322 case BPF_ALU | BPF_NEG: 323 case BPF_LD | BPF_IMM: 324 case BPF_LDX | BPF_IMM: 325 case BPF_MISC | BPF_TAX: 326 case BPF_MISC | BPF_TXA: 327 case BPF_LD | BPF_MEM: 328 case BPF_LDX | BPF_MEM: 329 case BPF_ST: 330 case BPF_STX: 331 case BPF_JMP | BPF_JA: 332 case BPF_JMP | BPF_JEQ | BPF_K: 333 case BPF_JMP | BPF_JEQ | BPF_X: 334 case BPF_JMP | BPF_JGE | BPF_K: 335 case BPF_JMP | BPF_JGE | BPF_X: 336 case BPF_JMP | BPF_JGT | BPF_K: 337 case BPF_JMP | BPF_JGT | BPF_X: 338 case BPF_JMP | BPF_JSET | BPF_K: 339 case BPF_JMP | BPF_JSET | BPF_X: 340 continue; 341 default: 342 return -EINVAL; 343 } 344 } 345 return 0; 346 } 347 348 #ifdef SECCOMP_ARCH_NATIVE 349 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap, 350 size_t bitmap_size, 351 int syscall_nr) 352 { 353 if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size)) 354 return false; 355 syscall_nr = array_index_nospec(syscall_nr, bitmap_size); 356 357 return test_bit(syscall_nr, bitmap); 358 } 359 360 /** 361 * seccomp_cache_check_allow - lookup seccomp cache 362 * @sfilter: The seccomp filter 363 * @sd: The seccomp data to lookup the cache with 364 * 365 * Returns true if the seccomp_data is cached and allowed. 366 */ 367 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 368 const struct seccomp_data *sd) 369 { 370 int syscall_nr = sd->nr; 371 const struct action_cache *cache = &sfilter->cache; 372 373 #ifndef SECCOMP_ARCH_COMPAT 374 /* A native-only architecture doesn't need to check sd->arch. */ 375 return seccomp_cache_check_allow_bitmap(cache->allow_native, 376 SECCOMP_ARCH_NATIVE_NR, 377 syscall_nr); 378 #else 379 if (likely(sd->arch == SECCOMP_ARCH_NATIVE)) 380 return seccomp_cache_check_allow_bitmap(cache->allow_native, 381 SECCOMP_ARCH_NATIVE_NR, 382 syscall_nr); 383 if (likely(sd->arch == SECCOMP_ARCH_COMPAT)) 384 return seccomp_cache_check_allow_bitmap(cache->allow_compat, 385 SECCOMP_ARCH_COMPAT_NR, 386 syscall_nr); 387 #endif /* SECCOMP_ARCH_COMPAT */ 388 389 WARN_ON_ONCE(true); 390 return false; 391 } 392 #endif /* SECCOMP_ARCH_NATIVE */ 393 394 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL))) 395 /** 396 * seccomp_run_filters - evaluates all seccomp filters against @sd 397 * @sd: optional seccomp data to be passed to filters 398 * @match: stores struct seccomp_filter that resulted in the return value, 399 * unless filter returned SECCOMP_RET_ALLOW, in which case it will 400 * be unchanged. 401 * 402 * Returns valid seccomp BPF response codes. 403 */ 404 static u32 seccomp_run_filters(const struct seccomp_data *sd, 405 struct seccomp_filter **match) 406 { 407 u32 ret = SECCOMP_RET_ALLOW; 408 /* Make sure cross-thread synced filter points somewhere sane. */ 409 struct seccomp_filter *f = 410 READ_ONCE(current->seccomp.filter); 411 412 /* Ensure unexpected behavior doesn't result in failing open. */ 413 if (WARN_ON(f == NULL)) 414 return SECCOMP_RET_KILL_PROCESS; 415 416 if (seccomp_cache_check_allow(f, sd)) 417 return SECCOMP_RET_ALLOW; 418 419 /* 420 * All filters in the list are evaluated and the lowest BPF return 421 * value always takes priority (ignoring the DATA). 422 */ 423 for (; f; f = f->prev) { 424 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd); 425 426 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) { 427 ret = cur_ret; 428 *match = f; 429 } 430 } 431 return ret; 432 } 433 #endif /* CONFIG_SECCOMP_FILTER */ 434 435 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode) 436 { 437 assert_spin_locked(¤t->sighand->siglock); 438 439 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode) 440 return false; 441 442 return true; 443 } 444 445 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { } 446 447 static inline void seccomp_assign_mode(struct task_struct *task, 448 unsigned long seccomp_mode, 449 unsigned long flags) 450 { 451 assert_spin_locked(&task->sighand->siglock); 452 453 task->seccomp.mode = seccomp_mode; 454 /* 455 * Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and 456 * filter) is set. 457 */ 458 smp_mb__before_atomic(); 459 /* Assume default seccomp processes want spec flaw mitigation. */ 460 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0) 461 arch_seccomp_spec_mitigate(task); 462 set_task_syscall_work(task, SECCOMP); 463 } 464 465 #ifdef CONFIG_SECCOMP_FILTER 466 /* Returns 1 if the parent is an ancestor of the child. */ 467 static int is_ancestor(struct seccomp_filter *parent, 468 struct seccomp_filter *child) 469 { 470 /* NULL is the root ancestor. */ 471 if (parent == NULL) 472 return 1; 473 for (; child; child = child->prev) 474 if (child == parent) 475 return 1; 476 return 0; 477 } 478 479 /** 480 * seccomp_can_sync_threads: checks if all threads can be synchronized 481 * 482 * Expects sighand and cred_guard_mutex locks to be held. 483 * 484 * Returns 0 on success, -ve on error, or the pid of a thread which was 485 * either not in the correct seccomp mode or did not have an ancestral 486 * seccomp filter. 487 */ 488 static inline pid_t seccomp_can_sync_threads(void) 489 { 490 struct task_struct *thread, *caller; 491 492 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 493 assert_spin_locked(¤t->sighand->siglock); 494 495 /* Validate all threads being eligible for synchronization. */ 496 caller = current; 497 for_each_thread(caller, thread) { 498 pid_t failed; 499 500 /* Skip current, since it is initiating the sync. */ 501 if (thread == caller) 502 continue; 503 /* Skip exited threads. */ 504 if (thread->flags & PF_EXITING) 505 continue; 506 507 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED || 508 (thread->seccomp.mode == SECCOMP_MODE_FILTER && 509 is_ancestor(thread->seccomp.filter, 510 caller->seccomp.filter))) 511 continue; 512 513 /* Return the first thread that cannot be synchronized. */ 514 failed = task_pid_vnr(thread); 515 /* If the pid cannot be resolved, then return -ESRCH */ 516 if (WARN_ON(failed == 0)) 517 failed = -ESRCH; 518 return failed; 519 } 520 521 return 0; 522 } 523 524 static inline void seccomp_filter_free(struct seccomp_filter *filter) 525 { 526 if (filter) { 527 bpf_prog_destroy(filter->prog); 528 kfree(filter); 529 } 530 } 531 532 static void __seccomp_filter_orphan(struct seccomp_filter *orig) 533 { 534 while (orig && refcount_dec_and_test(&orig->users)) { 535 if (waitqueue_active(&orig->wqh)) 536 wake_up_poll(&orig->wqh, EPOLLHUP); 537 orig = orig->prev; 538 } 539 } 540 541 static void __put_seccomp_filter(struct seccomp_filter *orig) 542 { 543 /* Clean up single-reference branches iteratively. */ 544 while (orig && refcount_dec_and_test(&orig->refs)) { 545 struct seccomp_filter *freeme = orig; 546 orig = orig->prev; 547 seccomp_filter_free(freeme); 548 } 549 } 550 551 static void __seccomp_filter_release(struct seccomp_filter *orig) 552 { 553 /* Notify about any unused filters in the task's former filter tree. */ 554 __seccomp_filter_orphan(orig); 555 /* Finally drop all references to the task's former tree. */ 556 __put_seccomp_filter(orig); 557 } 558 559 /** 560 * seccomp_filter_release - Detach the task from its filter tree, 561 * drop its reference count, and notify 562 * about unused filters 563 * 564 * @tsk: task the filter should be released from. 565 * 566 * This function should only be called when the task is exiting as 567 * it detaches it from its filter tree. PF_EXITING has to be set 568 * for the task. 569 */ 570 void seccomp_filter_release(struct task_struct *tsk) 571 { 572 struct seccomp_filter *orig; 573 574 if (WARN_ON((tsk->flags & PF_EXITING) == 0)) 575 return; 576 577 if (READ_ONCE(tsk->seccomp.filter) == NULL) 578 return; 579 580 spin_lock_irq(&tsk->sighand->siglock); 581 orig = tsk->seccomp.filter; 582 /* Detach task from its filter tree. */ 583 tsk->seccomp.filter = NULL; 584 spin_unlock_irq(&tsk->sighand->siglock); 585 __seccomp_filter_release(orig); 586 } 587 588 /** 589 * seccomp_sync_threads: sets all threads to use current's filter 590 * 591 * @flags: SECCOMP_FILTER_FLAG_* flags to set during sync. 592 * 593 * Expects sighand and cred_guard_mutex locks to be held, and for 594 * seccomp_can_sync_threads() to have returned success already 595 * without dropping the locks. 596 * 597 */ 598 static inline void seccomp_sync_threads(unsigned long flags) 599 { 600 struct task_struct *thread, *caller; 601 602 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 603 assert_spin_locked(¤t->sighand->siglock); 604 605 /* 606 * Don't touch any of the threads if the process is being killed. 607 * This allows for a lockless check in seccomp_filter_release. 608 */ 609 if (current->signal->flags & SIGNAL_GROUP_EXIT) 610 return; 611 612 /* Synchronize all threads. */ 613 caller = current; 614 for_each_thread(caller, thread) { 615 /* Skip current, since it needs no changes. */ 616 if (thread == caller) 617 continue; 618 619 /* 620 * Skip exited threads. seccomp_filter_release could have 621 * been already called for this task. 622 */ 623 if (thread->flags & PF_EXITING) 624 continue; 625 626 /* Get a task reference for the new leaf node. */ 627 get_seccomp_filter(caller); 628 629 /* 630 * Drop the task reference to the shared ancestor since 631 * current's path will hold a reference. (This also 632 * allows a put before the assignment.) 633 */ 634 __seccomp_filter_release(thread->seccomp.filter); 635 636 /* Make our new filter tree visible. */ 637 smp_store_release(&thread->seccomp.filter, 638 caller->seccomp.filter); 639 atomic_set(&thread->seccomp.filter_count, 640 atomic_read(&caller->seccomp.filter_count)); 641 642 /* 643 * Don't let an unprivileged task work around 644 * the no_new_privs restriction by creating 645 * a thread that sets it up, enters seccomp, 646 * then dies. 647 */ 648 if (task_no_new_privs(caller)) 649 task_set_no_new_privs(thread); 650 651 /* 652 * Opt the other thread into seccomp if needed. 653 * As threads are considered to be trust-realm 654 * equivalent (see ptrace_may_access), it is safe to 655 * allow one thread to transition the other. 656 */ 657 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED) 658 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER, 659 flags); 660 } 661 } 662 663 /** 664 * seccomp_prepare_filter: Prepares a seccomp filter for use. 665 * @fprog: BPF program to install 666 * 667 * Returns filter on success or an ERR_PTR on failure. 668 */ 669 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog) 670 { 671 struct seccomp_filter *sfilter; 672 int ret; 673 const bool save_orig = 674 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE) 675 true; 676 #else 677 false; 678 #endif 679 680 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS) 681 return ERR_PTR(-EINVAL); 682 683 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter)); 684 685 /* 686 * Installing a seccomp filter requires that the task has 687 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs. 688 * This avoids scenarios where unprivileged tasks can affect the 689 * behavior of privileged children. 690 */ 691 if (!task_no_new_privs(current) && 692 !ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN)) 693 return ERR_PTR(-EACCES); 694 695 /* Allocate a new seccomp_filter */ 696 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN); 697 if (!sfilter) 698 return ERR_PTR(-ENOMEM); 699 700 mutex_init(&sfilter->notify_lock); 701 ret = bpf_prog_create_from_user(&sfilter->prog, fprog, 702 seccomp_check_filter, save_orig); 703 if (ret < 0) { 704 kfree(sfilter); 705 return ERR_PTR(ret); 706 } 707 708 refcount_set(&sfilter->refs, 1); 709 refcount_set(&sfilter->users, 1); 710 init_waitqueue_head(&sfilter->wqh); 711 712 return sfilter; 713 } 714 715 /** 716 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog 717 * @user_filter: pointer to the user data containing a sock_fprog. 718 * 719 * Returns 0 on success and non-zero otherwise. 720 */ 721 static struct seccomp_filter * 722 seccomp_prepare_user_filter(const char __user *user_filter) 723 { 724 struct sock_fprog fprog; 725 struct seccomp_filter *filter = ERR_PTR(-EFAULT); 726 727 #ifdef CONFIG_COMPAT 728 if (in_compat_syscall()) { 729 struct compat_sock_fprog fprog32; 730 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32))) 731 goto out; 732 fprog.len = fprog32.len; 733 fprog.filter = compat_ptr(fprog32.filter); 734 } else /* falls through to the if below. */ 735 #endif 736 if (copy_from_user(&fprog, user_filter, sizeof(fprog))) 737 goto out; 738 filter = seccomp_prepare_filter(&fprog); 739 out: 740 return filter; 741 } 742 743 #ifdef SECCOMP_ARCH_NATIVE 744 /** 745 * seccomp_is_const_allow - check if filter is constant allow with given data 746 * @fprog: The BPF programs 747 * @sd: The seccomp data to check against, only syscall number and arch 748 * number are considered constant. 749 */ 750 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog, 751 struct seccomp_data *sd) 752 { 753 unsigned int reg_value = 0; 754 unsigned int pc; 755 bool op_res; 756 757 if (WARN_ON_ONCE(!fprog)) 758 return false; 759 760 /* Our single exception to filtering. */ 761 #ifdef __NR_uretprobe 762 #ifdef SECCOMP_ARCH_COMPAT 763 if (sd->arch == SECCOMP_ARCH_NATIVE) 764 #endif 765 if (sd->nr == __NR_uretprobe) 766 return true; 767 #endif 768 769 for (pc = 0; pc < fprog->len; pc++) { 770 struct sock_filter *insn = &fprog->filter[pc]; 771 u16 code = insn->code; 772 u32 k = insn->k; 773 774 switch (code) { 775 case BPF_LD | BPF_W | BPF_ABS: 776 switch (k) { 777 case offsetof(struct seccomp_data, nr): 778 reg_value = sd->nr; 779 break; 780 case offsetof(struct seccomp_data, arch): 781 reg_value = sd->arch; 782 break; 783 default: 784 /* can't optimize (non-constant value load) */ 785 return false; 786 } 787 break; 788 case BPF_RET | BPF_K: 789 /* reached return with constant values only, check allow */ 790 return k == SECCOMP_RET_ALLOW; 791 case BPF_JMP | BPF_JA: 792 pc += insn->k; 793 break; 794 case BPF_JMP | BPF_JEQ | BPF_K: 795 case BPF_JMP | BPF_JGE | BPF_K: 796 case BPF_JMP | BPF_JGT | BPF_K: 797 case BPF_JMP | BPF_JSET | BPF_K: 798 switch (BPF_OP(code)) { 799 case BPF_JEQ: 800 op_res = reg_value == k; 801 break; 802 case BPF_JGE: 803 op_res = reg_value >= k; 804 break; 805 case BPF_JGT: 806 op_res = reg_value > k; 807 break; 808 case BPF_JSET: 809 op_res = !!(reg_value & k); 810 break; 811 default: 812 /* can't optimize (unknown jump) */ 813 return false; 814 } 815 816 pc += op_res ? insn->jt : insn->jf; 817 break; 818 case BPF_ALU | BPF_AND | BPF_K: 819 reg_value &= k; 820 break; 821 default: 822 /* can't optimize (unknown insn) */ 823 return false; 824 } 825 } 826 827 /* ran off the end of the filter?! */ 828 WARN_ON(1); 829 return false; 830 } 831 832 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter, 833 void *bitmap, const void *bitmap_prev, 834 size_t bitmap_size, int arch) 835 { 836 struct sock_fprog_kern *fprog = sfilter->prog->orig_prog; 837 struct seccomp_data sd; 838 int nr; 839 840 if (bitmap_prev) { 841 /* The new filter must be as restrictive as the last. */ 842 bitmap_copy(bitmap, bitmap_prev, bitmap_size); 843 } else { 844 /* Before any filters, all syscalls are always allowed. */ 845 bitmap_fill(bitmap, bitmap_size); 846 } 847 848 for (nr = 0; nr < bitmap_size; nr++) { 849 /* No bitmap change: not a cacheable action. */ 850 if (!test_bit(nr, bitmap)) 851 continue; 852 853 sd.nr = nr; 854 sd.arch = arch; 855 856 /* No bitmap change: continue to always allow. */ 857 if (seccomp_is_const_allow(fprog, &sd)) 858 continue; 859 860 /* 861 * Not a cacheable action: always run filters. 862 * atomic clear_bit() not needed, filter not visible yet. 863 */ 864 __clear_bit(nr, bitmap); 865 } 866 } 867 868 /** 869 * seccomp_cache_prepare - emulate the filter to find cacheable syscalls 870 * @sfilter: The seccomp filter 871 * 872 * Returns 0 if successful or -errno if error occurred. 873 */ 874 static void seccomp_cache_prepare(struct seccomp_filter *sfilter) 875 { 876 struct action_cache *cache = &sfilter->cache; 877 const struct action_cache *cache_prev = 878 sfilter->prev ? &sfilter->prev->cache : NULL; 879 880 seccomp_cache_prepare_bitmap(sfilter, cache->allow_native, 881 cache_prev ? cache_prev->allow_native : NULL, 882 SECCOMP_ARCH_NATIVE_NR, 883 SECCOMP_ARCH_NATIVE); 884 885 #ifdef SECCOMP_ARCH_COMPAT 886 seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat, 887 cache_prev ? cache_prev->allow_compat : NULL, 888 SECCOMP_ARCH_COMPAT_NR, 889 SECCOMP_ARCH_COMPAT); 890 #endif /* SECCOMP_ARCH_COMPAT */ 891 } 892 #endif /* SECCOMP_ARCH_NATIVE */ 893 894 /** 895 * seccomp_attach_filter: validate and attach filter 896 * @flags: flags to change filter behavior 897 * @filter: seccomp filter to add to the current process 898 * 899 * Caller must be holding current->sighand->siglock lock. 900 * 901 * Returns 0 on success, -ve on error, or 902 * - in TSYNC mode: the pid of a thread which was either not in the correct 903 * seccomp mode or did not have an ancestral seccomp filter 904 * - in NEW_LISTENER mode: the fd of the new listener 905 */ 906 static long seccomp_attach_filter(unsigned int flags, 907 struct seccomp_filter *filter) 908 { 909 unsigned long total_insns; 910 struct seccomp_filter *walker; 911 912 assert_spin_locked(¤t->sighand->siglock); 913 914 /* Validate resulting filter length. */ 915 total_insns = filter->prog->len; 916 for (walker = current->seccomp.filter; walker; walker = walker->prev) 917 total_insns += walker->prog->len + 4; /* 4 instr penalty */ 918 if (total_insns > MAX_INSNS_PER_PATH) 919 return -ENOMEM; 920 921 /* If thread sync has been requested, check that it is possible. */ 922 if (flags & SECCOMP_FILTER_FLAG_TSYNC) { 923 int ret; 924 925 ret = seccomp_can_sync_threads(); 926 if (ret) { 927 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) 928 return -ESRCH; 929 else 930 return ret; 931 } 932 } 933 934 /* Set log flag, if present. */ 935 if (flags & SECCOMP_FILTER_FLAG_LOG) 936 filter->log = true; 937 938 /* Set wait killable flag, if present. */ 939 if (flags & SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV) 940 filter->wait_killable_recv = true; 941 942 /* 943 * If there is an existing filter, make it the prev and don't drop its 944 * task reference. 945 */ 946 filter->prev = current->seccomp.filter; 947 seccomp_cache_prepare(filter); 948 current->seccomp.filter = filter; 949 atomic_inc(¤t->seccomp.filter_count); 950 951 /* Now that the new filter is in place, synchronize to all threads. */ 952 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 953 seccomp_sync_threads(flags); 954 955 return 0; 956 } 957 958 static void __get_seccomp_filter(struct seccomp_filter *filter) 959 { 960 refcount_inc(&filter->refs); 961 } 962 963 /* get_seccomp_filter - increments the reference count of the filter on @tsk */ 964 void get_seccomp_filter(struct task_struct *tsk) 965 { 966 struct seccomp_filter *orig = tsk->seccomp.filter; 967 if (!orig) 968 return; 969 __get_seccomp_filter(orig); 970 refcount_inc(&orig->users); 971 } 972 973 #endif /* CONFIG_SECCOMP_FILTER */ 974 975 /* For use with seccomp_actions_logged */ 976 #define SECCOMP_LOG_KILL_PROCESS (1 << 0) 977 #define SECCOMP_LOG_KILL_THREAD (1 << 1) 978 #define SECCOMP_LOG_TRAP (1 << 2) 979 #define SECCOMP_LOG_ERRNO (1 << 3) 980 #define SECCOMP_LOG_TRACE (1 << 4) 981 #define SECCOMP_LOG_LOG (1 << 5) 982 #define SECCOMP_LOG_ALLOW (1 << 6) 983 #define SECCOMP_LOG_USER_NOTIF (1 << 7) 984 985 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS | 986 SECCOMP_LOG_KILL_THREAD | 987 SECCOMP_LOG_TRAP | 988 SECCOMP_LOG_ERRNO | 989 SECCOMP_LOG_USER_NOTIF | 990 SECCOMP_LOG_TRACE | 991 SECCOMP_LOG_LOG; 992 993 static inline void seccomp_log(unsigned long syscall, long signr, u32 action, 994 bool requested) 995 { 996 bool log = false; 997 998 switch (action) { 999 case SECCOMP_RET_ALLOW: 1000 break; 1001 case SECCOMP_RET_TRAP: 1002 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP; 1003 break; 1004 case SECCOMP_RET_ERRNO: 1005 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO; 1006 break; 1007 case SECCOMP_RET_TRACE: 1008 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE; 1009 break; 1010 case SECCOMP_RET_USER_NOTIF: 1011 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF; 1012 break; 1013 case SECCOMP_RET_LOG: 1014 log = seccomp_actions_logged & SECCOMP_LOG_LOG; 1015 break; 1016 case SECCOMP_RET_KILL_THREAD: 1017 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD; 1018 break; 1019 case SECCOMP_RET_KILL_PROCESS: 1020 default: 1021 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS; 1022 } 1023 1024 /* 1025 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the 1026 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence 1027 * any action from being logged by removing the action name from the 1028 * seccomp_actions_logged sysctl. 1029 */ 1030 if (!log) 1031 return; 1032 1033 audit_seccomp(syscall, signr, action); 1034 } 1035 1036 /* 1037 * Secure computing mode 1 allows only read/write/exit/sigreturn. 1038 * To be fully secure this must be combined with rlimit 1039 * to limit the stack allocations too. 1040 */ 1041 static const int mode1_syscalls[] = { 1042 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn, 1043 #ifdef __NR_uretprobe 1044 __NR_uretprobe, 1045 #endif 1046 -1, /* negative terminated */ 1047 }; 1048 1049 static void __secure_computing_strict(int this_syscall) 1050 { 1051 const int *allowed_syscalls = mode1_syscalls; 1052 #ifdef CONFIG_COMPAT 1053 if (in_compat_syscall()) 1054 allowed_syscalls = get_compat_mode1_syscalls(); 1055 #endif 1056 do { 1057 if (*allowed_syscalls == this_syscall) 1058 return; 1059 } while (*++allowed_syscalls != -1); 1060 1061 #ifdef SECCOMP_DEBUG 1062 dump_stack(); 1063 #endif 1064 current->seccomp.mode = SECCOMP_MODE_DEAD; 1065 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true); 1066 do_exit(SIGKILL); 1067 } 1068 1069 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER 1070 void secure_computing_strict(int this_syscall) 1071 { 1072 int mode = current->seccomp.mode; 1073 1074 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1075 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1076 return; 1077 1078 if (mode == SECCOMP_MODE_DISABLED) 1079 return; 1080 else if (mode == SECCOMP_MODE_STRICT) 1081 __secure_computing_strict(this_syscall); 1082 else 1083 BUG(); 1084 } 1085 int __secure_computing(void) 1086 { 1087 int this_syscall = syscall_get_nr(current, current_pt_regs()); 1088 1089 secure_computing_strict(this_syscall); 1090 return 0; 1091 } 1092 #else 1093 1094 #ifdef CONFIG_SECCOMP_FILTER 1095 static u64 seccomp_next_notify_id(struct seccomp_filter *filter) 1096 { 1097 /* 1098 * Note: overflow is ok here, the id just needs to be unique per 1099 * filter. 1100 */ 1101 lockdep_assert_held(&filter->notify_lock); 1102 return filter->notif->next_id++; 1103 } 1104 1105 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd, struct seccomp_knotif *n) 1106 { 1107 int fd; 1108 1109 /* 1110 * Remove the notification, and reset the list pointers, indicating 1111 * that it has been handled. 1112 */ 1113 list_del_init(&addfd->list); 1114 if (!addfd->setfd) 1115 fd = receive_fd(addfd->file, NULL, addfd->flags); 1116 else 1117 fd = receive_fd_replace(addfd->fd, addfd->file, addfd->flags); 1118 addfd->ret = fd; 1119 1120 if (addfd->ioctl_flags & SECCOMP_ADDFD_FLAG_SEND) { 1121 /* If we fail reset and return an error to the notifier */ 1122 if (fd < 0) { 1123 n->state = SECCOMP_NOTIFY_SENT; 1124 } else { 1125 /* Return the FD we just added */ 1126 n->flags = 0; 1127 n->error = 0; 1128 n->val = fd; 1129 } 1130 } 1131 1132 /* 1133 * Mark the notification as completed. From this point, addfd mem 1134 * might be invalidated and we can't safely read it anymore. 1135 */ 1136 complete(&addfd->completion); 1137 } 1138 1139 static bool should_sleep_killable(struct seccomp_filter *match, 1140 struct seccomp_knotif *n) 1141 { 1142 return match->wait_killable_recv && n->state == SECCOMP_NOTIFY_SENT; 1143 } 1144 1145 static int seccomp_do_user_notification(int this_syscall, 1146 struct seccomp_filter *match, 1147 const struct seccomp_data *sd) 1148 { 1149 int err; 1150 u32 flags = 0; 1151 long ret = 0; 1152 struct seccomp_knotif n = {}; 1153 struct seccomp_kaddfd *addfd, *tmp; 1154 1155 mutex_lock(&match->notify_lock); 1156 err = -ENOSYS; 1157 if (!match->notif) 1158 goto out; 1159 1160 n.task = current; 1161 n.state = SECCOMP_NOTIFY_INIT; 1162 n.data = sd; 1163 n.id = seccomp_next_notify_id(match); 1164 init_completion(&n.ready); 1165 list_add_tail(&n.list, &match->notif->notifications); 1166 INIT_LIST_HEAD(&n.addfd); 1167 1168 atomic_inc(&match->notif->requests); 1169 if (match->notif->flags & SECCOMP_USER_NOTIF_FD_SYNC_WAKE_UP) 1170 wake_up_poll_on_current_cpu(&match->wqh, EPOLLIN | EPOLLRDNORM); 1171 else 1172 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM); 1173 1174 /* 1175 * This is where we wait for a reply from userspace. 1176 */ 1177 do { 1178 bool wait_killable = should_sleep_killable(match, &n); 1179 1180 mutex_unlock(&match->notify_lock); 1181 if (wait_killable) 1182 err = wait_for_completion_killable(&n.ready); 1183 else 1184 err = wait_for_completion_interruptible(&n.ready); 1185 mutex_lock(&match->notify_lock); 1186 1187 if (err != 0) { 1188 /* 1189 * Check to see if the notifcation got picked up and 1190 * whether we should switch to wait killable. 1191 */ 1192 if (!wait_killable && should_sleep_killable(match, &n)) 1193 continue; 1194 1195 goto interrupted; 1196 } 1197 1198 addfd = list_first_entry_or_null(&n.addfd, 1199 struct seccomp_kaddfd, list); 1200 /* Check if we were woken up by a addfd message */ 1201 if (addfd) 1202 seccomp_handle_addfd(addfd, &n); 1203 1204 } while (n.state != SECCOMP_NOTIFY_REPLIED); 1205 1206 ret = n.val; 1207 err = n.error; 1208 flags = n.flags; 1209 1210 interrupted: 1211 /* If there were any pending addfd calls, clear them out */ 1212 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) { 1213 /* The process went away before we got a chance to handle it */ 1214 addfd->ret = -ESRCH; 1215 list_del_init(&addfd->list); 1216 complete(&addfd->completion); 1217 } 1218 1219 /* 1220 * Note that it's possible the listener died in between the time when 1221 * we were notified of a response (or a signal) and when we were able to 1222 * re-acquire the lock, so only delete from the list if the 1223 * notification actually exists. 1224 * 1225 * Also note that this test is only valid because there's no way to 1226 * *reattach* to a notifier right now. If one is added, we'll need to 1227 * keep track of the notif itself and make sure they match here. 1228 */ 1229 if (match->notif) 1230 list_del(&n.list); 1231 out: 1232 mutex_unlock(&match->notify_lock); 1233 1234 /* Userspace requests to continue the syscall. */ 1235 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1236 return 0; 1237 1238 syscall_set_return_value(current, current_pt_regs(), 1239 err, ret); 1240 return -1; 1241 } 1242 1243 static int __seccomp_filter(int this_syscall, const bool recheck_after_trace) 1244 { 1245 u32 filter_ret, action; 1246 struct seccomp_data sd; 1247 struct seccomp_filter *match = NULL; 1248 int data; 1249 1250 /* 1251 * Make sure that any changes to mode from another thread have 1252 * been seen after SYSCALL_WORK_SECCOMP was seen. 1253 */ 1254 smp_rmb(); 1255 1256 populate_seccomp_data(&sd); 1257 1258 filter_ret = seccomp_run_filters(&sd, &match); 1259 data = filter_ret & SECCOMP_RET_DATA; 1260 action = filter_ret & SECCOMP_RET_ACTION_FULL; 1261 1262 switch (action) { 1263 case SECCOMP_RET_ERRNO: 1264 /* Set low-order bits as an errno, capped at MAX_ERRNO. */ 1265 if (data > MAX_ERRNO) 1266 data = MAX_ERRNO; 1267 syscall_set_return_value(current, current_pt_regs(), 1268 -data, 0); 1269 goto skip; 1270 1271 case SECCOMP_RET_TRAP: 1272 /* Show the handler the original registers. */ 1273 syscall_rollback(current, current_pt_regs()); 1274 /* Let the filter pass back 16 bits of data. */ 1275 force_sig_seccomp(this_syscall, data, false); 1276 goto skip; 1277 1278 case SECCOMP_RET_TRACE: 1279 /* We've been put in this state by the ptracer already. */ 1280 if (recheck_after_trace) 1281 return 0; 1282 1283 /* ENOSYS these calls if there is no tracer attached. */ 1284 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) { 1285 syscall_set_return_value(current, 1286 current_pt_regs(), 1287 -ENOSYS, 0); 1288 goto skip; 1289 } 1290 1291 /* Allow the BPF to provide the event message */ 1292 ptrace_event(PTRACE_EVENT_SECCOMP, data); 1293 /* 1294 * The delivery of a fatal signal during event 1295 * notification may silently skip tracer notification, 1296 * which could leave us with a potentially unmodified 1297 * syscall that the tracer would have liked to have 1298 * changed. Since the process is about to die, we just 1299 * force the syscall to be skipped and let the signal 1300 * kill the process and correctly handle any tracer exit 1301 * notifications. 1302 */ 1303 if (fatal_signal_pending(current)) 1304 goto skip; 1305 /* Check if the tracer forced the syscall to be skipped. */ 1306 this_syscall = syscall_get_nr(current, current_pt_regs()); 1307 if (this_syscall < 0) 1308 goto skip; 1309 1310 /* 1311 * Recheck the syscall, since it may have changed. This 1312 * intentionally uses a NULL struct seccomp_data to force 1313 * a reload of all registers. This does not goto skip since 1314 * a skip would have already been reported. 1315 */ 1316 if (__seccomp_filter(this_syscall, true)) 1317 return -1; 1318 1319 return 0; 1320 1321 case SECCOMP_RET_USER_NOTIF: 1322 if (seccomp_do_user_notification(this_syscall, match, &sd)) 1323 goto skip; 1324 1325 return 0; 1326 1327 case SECCOMP_RET_LOG: 1328 seccomp_log(this_syscall, 0, action, true); 1329 return 0; 1330 1331 case SECCOMP_RET_ALLOW: 1332 /* 1333 * Note that the "match" filter will always be NULL for 1334 * this action since SECCOMP_RET_ALLOW is the starting 1335 * state in seccomp_run_filters(). 1336 */ 1337 return 0; 1338 1339 case SECCOMP_RET_KILL_THREAD: 1340 case SECCOMP_RET_KILL_PROCESS: 1341 default: 1342 current->seccomp.mode = SECCOMP_MODE_DEAD; 1343 seccomp_log(this_syscall, SIGSYS, action, true); 1344 /* Dump core only if this is the last remaining thread. */ 1345 if (action != SECCOMP_RET_KILL_THREAD || 1346 (atomic_read(¤t->signal->live) == 1)) { 1347 /* Show the original registers in the dump. */ 1348 syscall_rollback(current, current_pt_regs()); 1349 /* Trigger a coredump with SIGSYS */ 1350 force_sig_seccomp(this_syscall, data, true); 1351 } else { 1352 do_exit(SIGSYS); 1353 } 1354 return -1; /* skip the syscall go directly to signal handling */ 1355 } 1356 1357 unreachable(); 1358 1359 skip: 1360 seccomp_log(this_syscall, 0, action, match ? match->log : false); 1361 return -1; 1362 } 1363 #else 1364 static int __seccomp_filter(int this_syscall, const bool recheck_after_trace) 1365 { 1366 BUG(); 1367 1368 return -1; 1369 } 1370 #endif 1371 1372 int __secure_computing(void) 1373 { 1374 int mode = current->seccomp.mode; 1375 int this_syscall; 1376 1377 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1378 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1379 return 0; 1380 1381 this_syscall = syscall_get_nr(current, current_pt_regs()); 1382 1383 switch (mode) { 1384 case SECCOMP_MODE_STRICT: 1385 __secure_computing_strict(this_syscall); /* may call do_exit */ 1386 return 0; 1387 case SECCOMP_MODE_FILTER: 1388 return __seccomp_filter(this_syscall, false); 1389 /* Surviving SECCOMP_RET_KILL_* must be proactively impossible. */ 1390 case SECCOMP_MODE_DEAD: 1391 WARN_ON_ONCE(1); 1392 do_exit(SIGKILL); 1393 return -1; 1394 default: 1395 BUG(); 1396 } 1397 } 1398 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */ 1399 1400 long prctl_get_seccomp(void) 1401 { 1402 return current->seccomp.mode; 1403 } 1404 1405 /** 1406 * seccomp_set_mode_strict: internal function for setting strict seccomp 1407 * 1408 * Once current->seccomp.mode is non-zero, it may not be changed. 1409 * 1410 * Returns 0 on success or -EINVAL on failure. 1411 */ 1412 static long seccomp_set_mode_strict(void) 1413 { 1414 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT; 1415 long ret = -EINVAL; 1416 1417 spin_lock_irq(¤t->sighand->siglock); 1418 1419 if (!seccomp_may_assign_mode(seccomp_mode)) 1420 goto out; 1421 1422 #ifdef TIF_NOTSC 1423 disable_TSC(); 1424 #endif 1425 seccomp_assign_mode(current, seccomp_mode, 0); 1426 ret = 0; 1427 1428 out: 1429 spin_unlock_irq(¤t->sighand->siglock); 1430 1431 return ret; 1432 } 1433 1434 #ifdef CONFIG_SECCOMP_FILTER 1435 static void seccomp_notify_free(struct seccomp_filter *filter) 1436 { 1437 kfree(filter->notif); 1438 filter->notif = NULL; 1439 } 1440 1441 static void seccomp_notify_detach(struct seccomp_filter *filter) 1442 { 1443 struct seccomp_knotif *knotif; 1444 1445 if (!filter) 1446 return; 1447 1448 mutex_lock(&filter->notify_lock); 1449 1450 /* 1451 * If this file is being closed because e.g. the task who owned it 1452 * died, let's wake everyone up who was waiting on us. 1453 */ 1454 list_for_each_entry(knotif, &filter->notif->notifications, list) { 1455 if (knotif->state == SECCOMP_NOTIFY_REPLIED) 1456 continue; 1457 1458 knotif->state = SECCOMP_NOTIFY_REPLIED; 1459 knotif->error = -ENOSYS; 1460 knotif->val = 0; 1461 1462 /* 1463 * We do not need to wake up any pending addfd messages, as 1464 * the notifier will do that for us, as this just looks 1465 * like a standard reply. 1466 */ 1467 complete(&knotif->ready); 1468 } 1469 1470 seccomp_notify_free(filter); 1471 mutex_unlock(&filter->notify_lock); 1472 } 1473 1474 static int seccomp_notify_release(struct inode *inode, struct file *file) 1475 { 1476 struct seccomp_filter *filter = file->private_data; 1477 1478 seccomp_notify_detach(filter); 1479 __put_seccomp_filter(filter); 1480 return 0; 1481 } 1482 1483 /* must be called with notif_lock held */ 1484 static inline struct seccomp_knotif * 1485 find_notification(struct seccomp_filter *filter, u64 id) 1486 { 1487 struct seccomp_knotif *cur; 1488 1489 lockdep_assert_held(&filter->notify_lock); 1490 1491 list_for_each_entry(cur, &filter->notif->notifications, list) { 1492 if (cur->id == id) 1493 return cur; 1494 } 1495 1496 return NULL; 1497 } 1498 1499 static int recv_wake_function(wait_queue_entry_t *wait, unsigned int mode, int sync, 1500 void *key) 1501 { 1502 /* Avoid a wakeup if event not interesting for us. */ 1503 if (key && !(key_to_poll(key) & (EPOLLIN | EPOLLERR | EPOLLHUP))) 1504 return 0; 1505 return autoremove_wake_function(wait, mode, sync, key); 1506 } 1507 1508 static int recv_wait_event(struct seccomp_filter *filter) 1509 { 1510 DEFINE_WAIT_FUNC(wait, recv_wake_function); 1511 int ret; 1512 1513 if (refcount_read(&filter->users) == 0) 1514 return 0; 1515 1516 if (atomic_dec_if_positive(&filter->notif->requests) >= 0) 1517 return 0; 1518 1519 for (;;) { 1520 ret = prepare_to_wait_event(&filter->wqh, &wait, TASK_INTERRUPTIBLE); 1521 1522 if (atomic_dec_if_positive(&filter->notif->requests) >= 0) 1523 break; 1524 if (refcount_read(&filter->users) == 0) 1525 break; 1526 1527 if (ret) 1528 return ret; 1529 1530 schedule(); 1531 } 1532 finish_wait(&filter->wqh, &wait); 1533 return 0; 1534 } 1535 1536 static long seccomp_notify_recv(struct seccomp_filter *filter, 1537 void __user *buf) 1538 { 1539 struct seccomp_knotif *knotif = NULL, *cur; 1540 struct seccomp_notif unotif; 1541 ssize_t ret; 1542 1543 /* Verify that we're not given garbage to keep struct extensible. */ 1544 ret = check_zeroed_user(buf, sizeof(unotif)); 1545 if (ret < 0) 1546 return ret; 1547 if (!ret) 1548 return -EINVAL; 1549 1550 memset(&unotif, 0, sizeof(unotif)); 1551 1552 ret = recv_wait_event(filter); 1553 if (ret < 0) 1554 return ret; 1555 1556 mutex_lock(&filter->notify_lock); 1557 list_for_each_entry(cur, &filter->notif->notifications, list) { 1558 if (cur->state == SECCOMP_NOTIFY_INIT) { 1559 knotif = cur; 1560 break; 1561 } 1562 } 1563 1564 /* 1565 * If we didn't find a notification, it could be that the task was 1566 * interrupted by a fatal signal between the time we were woken and 1567 * when we were able to acquire the rw lock. 1568 */ 1569 if (!knotif) { 1570 ret = -ENOENT; 1571 goto out; 1572 } 1573 1574 unotif.id = knotif->id; 1575 unotif.pid = task_pid_vnr(knotif->task); 1576 unotif.data = *(knotif->data); 1577 1578 knotif->state = SECCOMP_NOTIFY_SENT; 1579 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM); 1580 ret = 0; 1581 out: 1582 mutex_unlock(&filter->notify_lock); 1583 1584 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) { 1585 ret = -EFAULT; 1586 1587 /* 1588 * Userspace screwed up. To make sure that we keep this 1589 * notification alive, let's reset it back to INIT. It 1590 * may have died when we released the lock, so we need to make 1591 * sure it's still around. 1592 */ 1593 mutex_lock(&filter->notify_lock); 1594 knotif = find_notification(filter, unotif.id); 1595 if (knotif) { 1596 /* Reset the process to make sure it's not stuck */ 1597 if (should_sleep_killable(filter, knotif)) 1598 complete(&knotif->ready); 1599 knotif->state = SECCOMP_NOTIFY_INIT; 1600 atomic_inc(&filter->notif->requests); 1601 wake_up_poll(&filter->wqh, EPOLLIN | EPOLLRDNORM); 1602 } 1603 mutex_unlock(&filter->notify_lock); 1604 } 1605 1606 return ret; 1607 } 1608 1609 static long seccomp_notify_send(struct seccomp_filter *filter, 1610 void __user *buf) 1611 { 1612 struct seccomp_notif_resp resp = {}; 1613 struct seccomp_knotif *knotif; 1614 long ret; 1615 1616 if (copy_from_user(&resp, buf, sizeof(resp))) 1617 return -EFAULT; 1618 1619 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1620 return -EINVAL; 1621 1622 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) && 1623 (resp.error || resp.val)) 1624 return -EINVAL; 1625 1626 ret = mutex_lock_interruptible(&filter->notify_lock); 1627 if (ret < 0) 1628 return ret; 1629 1630 knotif = find_notification(filter, resp.id); 1631 if (!knotif) { 1632 ret = -ENOENT; 1633 goto out; 1634 } 1635 1636 /* Allow exactly one reply. */ 1637 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1638 ret = -EINPROGRESS; 1639 goto out; 1640 } 1641 1642 ret = 0; 1643 knotif->state = SECCOMP_NOTIFY_REPLIED; 1644 knotif->error = resp.error; 1645 knotif->val = resp.val; 1646 knotif->flags = resp.flags; 1647 if (filter->notif->flags & SECCOMP_USER_NOTIF_FD_SYNC_WAKE_UP) 1648 complete_on_current_cpu(&knotif->ready); 1649 else 1650 complete(&knotif->ready); 1651 out: 1652 mutex_unlock(&filter->notify_lock); 1653 return ret; 1654 } 1655 1656 static long seccomp_notify_id_valid(struct seccomp_filter *filter, 1657 void __user *buf) 1658 { 1659 struct seccomp_knotif *knotif; 1660 u64 id; 1661 long ret; 1662 1663 if (copy_from_user(&id, buf, sizeof(id))) 1664 return -EFAULT; 1665 1666 ret = mutex_lock_interruptible(&filter->notify_lock); 1667 if (ret < 0) 1668 return ret; 1669 1670 knotif = find_notification(filter, id); 1671 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT) 1672 ret = 0; 1673 else 1674 ret = -ENOENT; 1675 1676 mutex_unlock(&filter->notify_lock); 1677 return ret; 1678 } 1679 1680 static long seccomp_notify_set_flags(struct seccomp_filter *filter, 1681 unsigned long flags) 1682 { 1683 long ret; 1684 1685 if (flags & ~SECCOMP_USER_NOTIF_FD_SYNC_WAKE_UP) 1686 return -EINVAL; 1687 1688 ret = mutex_lock_interruptible(&filter->notify_lock); 1689 if (ret < 0) 1690 return ret; 1691 filter->notif->flags = flags; 1692 mutex_unlock(&filter->notify_lock); 1693 return 0; 1694 } 1695 1696 static long seccomp_notify_addfd(struct seccomp_filter *filter, 1697 struct seccomp_notif_addfd __user *uaddfd, 1698 unsigned int size) 1699 { 1700 struct seccomp_notif_addfd addfd; 1701 struct seccomp_knotif *knotif; 1702 struct seccomp_kaddfd kaddfd; 1703 int ret; 1704 1705 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0); 1706 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST); 1707 1708 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE) 1709 return -EINVAL; 1710 1711 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size); 1712 if (ret) 1713 return ret; 1714 1715 if (addfd.newfd_flags & ~O_CLOEXEC) 1716 return -EINVAL; 1717 1718 if (addfd.flags & ~(SECCOMP_ADDFD_FLAG_SETFD | SECCOMP_ADDFD_FLAG_SEND)) 1719 return -EINVAL; 1720 1721 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD)) 1722 return -EINVAL; 1723 1724 kaddfd.file = fget(addfd.srcfd); 1725 if (!kaddfd.file) 1726 return -EBADF; 1727 1728 kaddfd.ioctl_flags = addfd.flags; 1729 kaddfd.flags = addfd.newfd_flags; 1730 kaddfd.setfd = addfd.flags & SECCOMP_ADDFD_FLAG_SETFD; 1731 kaddfd.fd = addfd.newfd; 1732 init_completion(&kaddfd.completion); 1733 1734 ret = mutex_lock_interruptible(&filter->notify_lock); 1735 if (ret < 0) 1736 goto out; 1737 1738 knotif = find_notification(filter, addfd.id); 1739 if (!knotif) { 1740 ret = -ENOENT; 1741 goto out_unlock; 1742 } 1743 1744 /* 1745 * We do not want to allow for FD injection to occur before the 1746 * notification has been picked up by a userspace handler, or after 1747 * the notification has been replied to. 1748 */ 1749 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1750 ret = -EINPROGRESS; 1751 goto out_unlock; 1752 } 1753 1754 if (addfd.flags & SECCOMP_ADDFD_FLAG_SEND) { 1755 /* 1756 * Disallow queuing an atomic addfd + send reply while there are 1757 * some addfd requests still to process. 1758 * 1759 * There is no clear reason to support it and allows us to keep 1760 * the loop on the other side straight-forward. 1761 */ 1762 if (!list_empty(&knotif->addfd)) { 1763 ret = -EBUSY; 1764 goto out_unlock; 1765 } 1766 1767 /* Allow exactly only one reply */ 1768 knotif->state = SECCOMP_NOTIFY_REPLIED; 1769 } 1770 1771 list_add(&kaddfd.list, &knotif->addfd); 1772 complete(&knotif->ready); 1773 mutex_unlock(&filter->notify_lock); 1774 1775 /* Now we wait for it to be processed or be interrupted */ 1776 ret = wait_for_completion_interruptible(&kaddfd.completion); 1777 if (ret == 0) { 1778 /* 1779 * We had a successful completion. The other side has already 1780 * removed us from the addfd queue, and 1781 * wait_for_completion_interruptible has a memory barrier upon 1782 * success that lets us read this value directly without 1783 * locking. 1784 */ 1785 ret = kaddfd.ret; 1786 goto out; 1787 } 1788 1789 mutex_lock(&filter->notify_lock); 1790 /* 1791 * Even though we were woken up by a signal and not a successful 1792 * completion, a completion may have happened in the mean time. 1793 * 1794 * We need to check again if the addfd request has been handled, 1795 * and if not, we will remove it from the queue. 1796 */ 1797 if (list_empty(&kaddfd.list)) 1798 ret = kaddfd.ret; 1799 else 1800 list_del(&kaddfd.list); 1801 1802 out_unlock: 1803 mutex_unlock(&filter->notify_lock); 1804 out: 1805 fput(kaddfd.file); 1806 1807 return ret; 1808 } 1809 1810 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd, 1811 unsigned long arg) 1812 { 1813 struct seccomp_filter *filter = file->private_data; 1814 void __user *buf = (void __user *)arg; 1815 1816 /* Fixed-size ioctls */ 1817 switch (cmd) { 1818 case SECCOMP_IOCTL_NOTIF_RECV: 1819 return seccomp_notify_recv(filter, buf); 1820 case SECCOMP_IOCTL_NOTIF_SEND: 1821 return seccomp_notify_send(filter, buf); 1822 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR: 1823 case SECCOMP_IOCTL_NOTIF_ID_VALID: 1824 return seccomp_notify_id_valid(filter, buf); 1825 case SECCOMP_IOCTL_NOTIF_SET_FLAGS: 1826 return seccomp_notify_set_flags(filter, arg); 1827 } 1828 1829 /* Extensible Argument ioctls */ 1830 #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK)) 1831 switch (EA_IOCTL(cmd)) { 1832 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD): 1833 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd)); 1834 default: 1835 return -EINVAL; 1836 } 1837 } 1838 1839 static __poll_t seccomp_notify_poll(struct file *file, 1840 struct poll_table_struct *poll_tab) 1841 { 1842 struct seccomp_filter *filter = file->private_data; 1843 __poll_t ret = 0; 1844 struct seccomp_knotif *cur; 1845 1846 poll_wait(file, &filter->wqh, poll_tab); 1847 1848 if (mutex_lock_interruptible(&filter->notify_lock) < 0) 1849 return EPOLLERR; 1850 1851 list_for_each_entry(cur, &filter->notif->notifications, list) { 1852 if (cur->state == SECCOMP_NOTIFY_INIT) 1853 ret |= EPOLLIN | EPOLLRDNORM; 1854 if (cur->state == SECCOMP_NOTIFY_SENT) 1855 ret |= EPOLLOUT | EPOLLWRNORM; 1856 if ((ret & EPOLLIN) && (ret & EPOLLOUT)) 1857 break; 1858 } 1859 1860 mutex_unlock(&filter->notify_lock); 1861 1862 if (refcount_read(&filter->users) == 0) 1863 ret |= EPOLLHUP; 1864 1865 return ret; 1866 } 1867 1868 static const struct file_operations seccomp_notify_ops = { 1869 .poll = seccomp_notify_poll, 1870 .release = seccomp_notify_release, 1871 .unlocked_ioctl = seccomp_notify_ioctl, 1872 .compat_ioctl = seccomp_notify_ioctl, 1873 }; 1874 1875 static struct file *init_listener(struct seccomp_filter *filter) 1876 { 1877 struct file *ret; 1878 1879 ret = ERR_PTR(-ENOMEM); 1880 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL); 1881 if (!filter->notif) 1882 goto out; 1883 1884 filter->notif->next_id = get_random_u64(); 1885 INIT_LIST_HEAD(&filter->notif->notifications); 1886 1887 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops, 1888 filter, O_RDWR); 1889 if (IS_ERR(ret)) 1890 goto out_notif; 1891 1892 /* The file has a reference to it now */ 1893 __get_seccomp_filter(filter); 1894 1895 out_notif: 1896 if (IS_ERR(ret)) 1897 seccomp_notify_free(filter); 1898 out: 1899 return ret; 1900 } 1901 1902 /* 1903 * Does @new_child have a listener while an ancestor also has a listener? 1904 * If so, we'll want to reject this filter. 1905 * This only has to be tested for the current process, even in the TSYNC case, 1906 * because TSYNC installs @child with the same parent on all threads. 1907 * Note that @new_child is not hooked up to its parent at this point yet, so 1908 * we use current->seccomp.filter. 1909 */ 1910 static bool has_duplicate_listener(struct seccomp_filter *new_child) 1911 { 1912 struct seccomp_filter *cur; 1913 1914 /* must be protected against concurrent TSYNC */ 1915 lockdep_assert_held(¤t->sighand->siglock); 1916 1917 if (!new_child->notif) 1918 return false; 1919 for (cur = current->seccomp.filter; cur; cur = cur->prev) { 1920 if (cur->notif) 1921 return true; 1922 } 1923 1924 return false; 1925 } 1926 1927 /** 1928 * seccomp_set_mode_filter: internal function for setting seccomp filter 1929 * @flags: flags to change filter behavior 1930 * @filter: struct sock_fprog containing filter 1931 * 1932 * This function may be called repeatedly to install additional filters. 1933 * Every filter successfully installed will be evaluated (in reverse order) 1934 * for each system call the task makes. 1935 * 1936 * Once current->seccomp.mode is non-zero, it may not be changed. 1937 * 1938 * Returns 0 on success or -EINVAL on failure. 1939 */ 1940 static long seccomp_set_mode_filter(unsigned int flags, 1941 const char __user *filter) 1942 { 1943 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER; 1944 struct seccomp_filter *prepared = NULL; 1945 long ret = -EINVAL; 1946 int listener = -1; 1947 struct file *listener_f = NULL; 1948 1949 /* Validate flags. */ 1950 if (flags & ~SECCOMP_FILTER_FLAG_MASK) 1951 return -EINVAL; 1952 1953 /* 1954 * In the successful case, NEW_LISTENER returns the new listener fd. 1955 * But in the failure case, TSYNC returns the thread that died. If you 1956 * combine these two flags, there's no way to tell whether something 1957 * succeeded or failed. So, let's disallow this combination if the user 1958 * has not explicitly requested no errors from TSYNC. 1959 */ 1960 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) && 1961 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) && 1962 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0)) 1963 return -EINVAL; 1964 1965 /* 1966 * The SECCOMP_FILTER_FLAG_WAIT_KILLABLE_SENT flag doesn't make sense 1967 * without the SECCOMP_FILTER_FLAG_NEW_LISTENER flag. 1968 */ 1969 if ((flags & SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV) && 1970 ((flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) == 0)) 1971 return -EINVAL; 1972 1973 /* Prepare the new filter before holding any locks. */ 1974 prepared = seccomp_prepare_user_filter(filter); 1975 if (IS_ERR(prepared)) 1976 return PTR_ERR(prepared); 1977 1978 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1979 listener = get_unused_fd_flags(O_CLOEXEC); 1980 if (listener < 0) { 1981 ret = listener; 1982 goto out_free; 1983 } 1984 1985 listener_f = init_listener(prepared); 1986 if (IS_ERR(listener_f)) { 1987 put_unused_fd(listener); 1988 ret = PTR_ERR(listener_f); 1989 goto out_free; 1990 } 1991 } 1992 1993 /* 1994 * Make sure we cannot change seccomp or nnp state via TSYNC 1995 * while another thread is in the middle of calling exec. 1996 */ 1997 if (flags & SECCOMP_FILTER_FLAG_TSYNC && 1998 mutex_lock_killable(¤t->signal->cred_guard_mutex)) 1999 goto out_put_fd; 2000 2001 spin_lock_irq(¤t->sighand->siglock); 2002 2003 if (!seccomp_may_assign_mode(seccomp_mode)) 2004 goto out; 2005 2006 if (has_duplicate_listener(prepared)) { 2007 ret = -EBUSY; 2008 goto out; 2009 } 2010 2011 ret = seccomp_attach_filter(flags, prepared); 2012 if (ret) 2013 goto out; 2014 /* Do not free the successfully attached filter. */ 2015 prepared = NULL; 2016 2017 seccomp_assign_mode(current, seccomp_mode, flags); 2018 out: 2019 spin_unlock_irq(¤t->sighand->siglock); 2020 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 2021 mutex_unlock(¤t->signal->cred_guard_mutex); 2022 out_put_fd: 2023 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 2024 if (ret) { 2025 listener_f->private_data = NULL; 2026 fput(listener_f); 2027 put_unused_fd(listener); 2028 seccomp_notify_detach(prepared); 2029 } else { 2030 fd_install(listener, listener_f); 2031 ret = listener; 2032 } 2033 } 2034 out_free: 2035 seccomp_filter_free(prepared); 2036 return ret; 2037 } 2038 #else 2039 static inline long seccomp_set_mode_filter(unsigned int flags, 2040 const char __user *filter) 2041 { 2042 return -EINVAL; 2043 } 2044 #endif 2045 2046 static long seccomp_get_action_avail(const char __user *uaction) 2047 { 2048 u32 action; 2049 2050 if (copy_from_user(&action, uaction, sizeof(action))) 2051 return -EFAULT; 2052 2053 switch (action) { 2054 case SECCOMP_RET_KILL_PROCESS: 2055 case SECCOMP_RET_KILL_THREAD: 2056 case SECCOMP_RET_TRAP: 2057 case SECCOMP_RET_ERRNO: 2058 case SECCOMP_RET_USER_NOTIF: 2059 case SECCOMP_RET_TRACE: 2060 case SECCOMP_RET_LOG: 2061 case SECCOMP_RET_ALLOW: 2062 break; 2063 default: 2064 return -EOPNOTSUPP; 2065 } 2066 2067 return 0; 2068 } 2069 2070 static long seccomp_get_notif_sizes(void __user *usizes) 2071 { 2072 struct seccomp_notif_sizes sizes = { 2073 .seccomp_notif = sizeof(struct seccomp_notif), 2074 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp), 2075 .seccomp_data = sizeof(struct seccomp_data), 2076 }; 2077 2078 if (copy_to_user(usizes, &sizes, sizeof(sizes))) 2079 return -EFAULT; 2080 2081 return 0; 2082 } 2083 2084 /* Common entry point for both prctl and syscall. */ 2085 static long do_seccomp(unsigned int op, unsigned int flags, 2086 void __user *uargs) 2087 { 2088 switch (op) { 2089 case SECCOMP_SET_MODE_STRICT: 2090 if (flags != 0 || uargs != NULL) 2091 return -EINVAL; 2092 return seccomp_set_mode_strict(); 2093 case SECCOMP_SET_MODE_FILTER: 2094 return seccomp_set_mode_filter(flags, uargs); 2095 case SECCOMP_GET_ACTION_AVAIL: 2096 if (flags != 0) 2097 return -EINVAL; 2098 2099 return seccomp_get_action_avail(uargs); 2100 case SECCOMP_GET_NOTIF_SIZES: 2101 if (flags != 0) 2102 return -EINVAL; 2103 2104 return seccomp_get_notif_sizes(uargs); 2105 default: 2106 return -EINVAL; 2107 } 2108 } 2109 2110 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags, 2111 void __user *, uargs) 2112 { 2113 return do_seccomp(op, flags, uargs); 2114 } 2115 2116 /** 2117 * prctl_set_seccomp: configures current->seccomp.mode 2118 * @seccomp_mode: requested mode to use 2119 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER 2120 * 2121 * Returns 0 on success or -EINVAL on failure. 2122 */ 2123 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter) 2124 { 2125 unsigned int op; 2126 void __user *uargs; 2127 2128 switch (seccomp_mode) { 2129 case SECCOMP_MODE_STRICT: 2130 op = SECCOMP_SET_MODE_STRICT; 2131 /* 2132 * Setting strict mode through prctl always ignored filter, 2133 * so make sure it is always NULL here to pass the internal 2134 * check in do_seccomp(). 2135 */ 2136 uargs = NULL; 2137 break; 2138 case SECCOMP_MODE_FILTER: 2139 op = SECCOMP_SET_MODE_FILTER; 2140 uargs = filter; 2141 break; 2142 default: 2143 return -EINVAL; 2144 } 2145 2146 /* prctl interface doesn't have flags, so they are always zero. */ 2147 return do_seccomp(op, 0, uargs); 2148 } 2149 2150 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE) 2151 static struct seccomp_filter *get_nth_filter(struct task_struct *task, 2152 unsigned long filter_off) 2153 { 2154 struct seccomp_filter *orig, *filter; 2155 unsigned long count; 2156 2157 /* 2158 * Note: this is only correct because the caller should be the (ptrace) 2159 * tracer of the task, otherwise lock_task_sighand is needed. 2160 */ 2161 spin_lock_irq(&task->sighand->siglock); 2162 2163 if (task->seccomp.mode != SECCOMP_MODE_FILTER) { 2164 spin_unlock_irq(&task->sighand->siglock); 2165 return ERR_PTR(-EINVAL); 2166 } 2167 2168 orig = task->seccomp.filter; 2169 __get_seccomp_filter(orig); 2170 spin_unlock_irq(&task->sighand->siglock); 2171 2172 count = 0; 2173 for (filter = orig; filter; filter = filter->prev) 2174 count++; 2175 2176 if (filter_off >= count) { 2177 filter = ERR_PTR(-ENOENT); 2178 goto out; 2179 } 2180 2181 count -= filter_off; 2182 for (filter = orig; filter && count > 1; filter = filter->prev) 2183 count--; 2184 2185 if (WARN_ON(count != 1 || !filter)) { 2186 filter = ERR_PTR(-ENOENT); 2187 goto out; 2188 } 2189 2190 __get_seccomp_filter(filter); 2191 2192 out: 2193 __put_seccomp_filter(orig); 2194 return filter; 2195 } 2196 2197 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off, 2198 void __user *data) 2199 { 2200 struct seccomp_filter *filter; 2201 struct sock_fprog_kern *fprog; 2202 long ret; 2203 2204 if (!capable(CAP_SYS_ADMIN) || 2205 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2206 return -EACCES; 2207 } 2208 2209 filter = get_nth_filter(task, filter_off); 2210 if (IS_ERR(filter)) 2211 return PTR_ERR(filter); 2212 2213 fprog = filter->prog->orig_prog; 2214 if (!fprog) { 2215 /* This must be a new non-cBPF filter, since we save 2216 * every cBPF filter's orig_prog above when 2217 * CONFIG_CHECKPOINT_RESTORE is enabled. 2218 */ 2219 ret = -EMEDIUMTYPE; 2220 goto out; 2221 } 2222 2223 ret = fprog->len; 2224 if (!data) 2225 goto out; 2226 2227 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog))) 2228 ret = -EFAULT; 2229 2230 out: 2231 __put_seccomp_filter(filter); 2232 return ret; 2233 } 2234 2235 long seccomp_get_metadata(struct task_struct *task, 2236 unsigned long size, void __user *data) 2237 { 2238 long ret; 2239 struct seccomp_filter *filter; 2240 struct seccomp_metadata kmd = {}; 2241 2242 if (!capable(CAP_SYS_ADMIN) || 2243 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2244 return -EACCES; 2245 } 2246 2247 size = min_t(unsigned long, size, sizeof(kmd)); 2248 2249 if (size < sizeof(kmd.filter_off)) 2250 return -EINVAL; 2251 2252 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off))) 2253 return -EFAULT; 2254 2255 filter = get_nth_filter(task, kmd.filter_off); 2256 if (IS_ERR(filter)) 2257 return PTR_ERR(filter); 2258 2259 if (filter->log) 2260 kmd.flags |= SECCOMP_FILTER_FLAG_LOG; 2261 2262 ret = size; 2263 if (copy_to_user(data, &kmd, size)) 2264 ret = -EFAULT; 2265 2266 __put_seccomp_filter(filter); 2267 return ret; 2268 } 2269 #endif 2270 2271 #ifdef CONFIG_SYSCTL 2272 2273 /* Human readable action names for friendly sysctl interaction */ 2274 #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process" 2275 #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread" 2276 #define SECCOMP_RET_TRAP_NAME "trap" 2277 #define SECCOMP_RET_ERRNO_NAME "errno" 2278 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif" 2279 #define SECCOMP_RET_TRACE_NAME "trace" 2280 #define SECCOMP_RET_LOG_NAME "log" 2281 #define SECCOMP_RET_ALLOW_NAME "allow" 2282 2283 static const char seccomp_actions_avail[] = 2284 SECCOMP_RET_KILL_PROCESS_NAME " " 2285 SECCOMP_RET_KILL_THREAD_NAME " " 2286 SECCOMP_RET_TRAP_NAME " " 2287 SECCOMP_RET_ERRNO_NAME " " 2288 SECCOMP_RET_USER_NOTIF_NAME " " 2289 SECCOMP_RET_TRACE_NAME " " 2290 SECCOMP_RET_LOG_NAME " " 2291 SECCOMP_RET_ALLOW_NAME; 2292 2293 struct seccomp_log_name { 2294 u32 log; 2295 const char *name; 2296 }; 2297 2298 static const struct seccomp_log_name seccomp_log_names[] = { 2299 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME }, 2300 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME }, 2301 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME }, 2302 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME }, 2303 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME }, 2304 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME }, 2305 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME }, 2306 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME }, 2307 { } 2308 }; 2309 2310 static bool seccomp_names_from_actions_logged(char *names, size_t size, 2311 u32 actions_logged, 2312 const char *sep) 2313 { 2314 const struct seccomp_log_name *cur; 2315 bool append_sep = false; 2316 2317 for (cur = seccomp_log_names; cur->name && size; cur++) { 2318 ssize_t ret; 2319 2320 if (!(actions_logged & cur->log)) 2321 continue; 2322 2323 if (append_sep) { 2324 ret = strscpy(names, sep, size); 2325 if (ret < 0) 2326 return false; 2327 2328 names += ret; 2329 size -= ret; 2330 } else 2331 append_sep = true; 2332 2333 ret = strscpy(names, cur->name, size); 2334 if (ret < 0) 2335 return false; 2336 2337 names += ret; 2338 size -= ret; 2339 } 2340 2341 return true; 2342 } 2343 2344 static bool seccomp_action_logged_from_name(u32 *action_logged, 2345 const char *name) 2346 { 2347 const struct seccomp_log_name *cur; 2348 2349 for (cur = seccomp_log_names; cur->name; cur++) { 2350 if (!strcmp(cur->name, name)) { 2351 *action_logged = cur->log; 2352 return true; 2353 } 2354 } 2355 2356 return false; 2357 } 2358 2359 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names) 2360 { 2361 char *name; 2362 2363 *actions_logged = 0; 2364 while ((name = strsep(&names, " ")) && *name) { 2365 u32 action_logged = 0; 2366 2367 if (!seccomp_action_logged_from_name(&action_logged, name)) 2368 return false; 2369 2370 *actions_logged |= action_logged; 2371 } 2372 2373 return true; 2374 } 2375 2376 static int read_actions_logged(const struct ctl_table *ro_table, void *buffer, 2377 size_t *lenp, loff_t *ppos) 2378 { 2379 char names[sizeof(seccomp_actions_avail)]; 2380 struct ctl_table table; 2381 2382 memset(names, 0, sizeof(names)); 2383 2384 if (!seccomp_names_from_actions_logged(names, sizeof(names), 2385 seccomp_actions_logged, " ")) 2386 return -EINVAL; 2387 2388 table = *ro_table; 2389 table.data = names; 2390 table.maxlen = sizeof(names); 2391 return proc_dostring(&table, 0, buffer, lenp, ppos); 2392 } 2393 2394 static int write_actions_logged(const struct ctl_table *ro_table, void *buffer, 2395 size_t *lenp, loff_t *ppos, u32 *actions_logged) 2396 { 2397 char names[sizeof(seccomp_actions_avail)]; 2398 struct ctl_table table; 2399 int ret; 2400 2401 if (!capable(CAP_SYS_ADMIN)) 2402 return -EPERM; 2403 2404 memset(names, 0, sizeof(names)); 2405 2406 table = *ro_table; 2407 table.data = names; 2408 table.maxlen = sizeof(names); 2409 ret = proc_dostring(&table, 1, buffer, lenp, ppos); 2410 if (ret) 2411 return ret; 2412 2413 if (!seccomp_actions_logged_from_names(actions_logged, table.data)) 2414 return -EINVAL; 2415 2416 if (*actions_logged & SECCOMP_LOG_ALLOW) 2417 return -EINVAL; 2418 2419 seccomp_actions_logged = *actions_logged; 2420 return 0; 2421 } 2422 2423 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged, 2424 int ret) 2425 { 2426 char names[sizeof(seccomp_actions_avail)]; 2427 char old_names[sizeof(seccomp_actions_avail)]; 2428 const char *new = names; 2429 const char *old = old_names; 2430 2431 if (!audit_enabled) 2432 return; 2433 2434 memset(names, 0, sizeof(names)); 2435 memset(old_names, 0, sizeof(old_names)); 2436 2437 if (ret) 2438 new = "?"; 2439 else if (!actions_logged) 2440 new = "(none)"; 2441 else if (!seccomp_names_from_actions_logged(names, sizeof(names), 2442 actions_logged, ",")) 2443 new = "?"; 2444 2445 if (!old_actions_logged) 2446 old = "(none)"; 2447 else if (!seccomp_names_from_actions_logged(old_names, 2448 sizeof(old_names), 2449 old_actions_logged, ",")) 2450 old = "?"; 2451 2452 return audit_seccomp_actions_logged(new, old, !ret); 2453 } 2454 2455 static int seccomp_actions_logged_handler(const struct ctl_table *ro_table, int write, 2456 void *buffer, size_t *lenp, 2457 loff_t *ppos) 2458 { 2459 int ret; 2460 2461 if (write) { 2462 u32 actions_logged = 0; 2463 u32 old_actions_logged = seccomp_actions_logged; 2464 2465 ret = write_actions_logged(ro_table, buffer, lenp, ppos, 2466 &actions_logged); 2467 audit_actions_logged(actions_logged, old_actions_logged, ret); 2468 } else 2469 ret = read_actions_logged(ro_table, buffer, lenp, ppos); 2470 2471 return ret; 2472 } 2473 2474 static const struct ctl_table seccomp_sysctl_table[] = { 2475 { 2476 .procname = "actions_avail", 2477 .data = (void *) &seccomp_actions_avail, 2478 .maxlen = sizeof(seccomp_actions_avail), 2479 .mode = 0444, 2480 .proc_handler = proc_dostring, 2481 }, 2482 { 2483 .procname = "actions_logged", 2484 .mode = 0644, 2485 .proc_handler = seccomp_actions_logged_handler, 2486 }, 2487 }; 2488 2489 static int __init seccomp_sysctl_init(void) 2490 { 2491 register_sysctl_init("kernel/seccomp", seccomp_sysctl_table); 2492 return 0; 2493 } 2494 2495 device_initcall(seccomp_sysctl_init) 2496 2497 #endif /* CONFIG_SYSCTL */ 2498 2499 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 2500 /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */ 2501 static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name, 2502 const void *bitmap, size_t bitmap_size) 2503 { 2504 int nr; 2505 2506 for (nr = 0; nr < bitmap_size; nr++) { 2507 bool cached = test_bit(nr, bitmap); 2508 char *status = cached ? "ALLOW" : "FILTER"; 2509 2510 seq_printf(m, "%s %d %s\n", name, nr, status); 2511 } 2512 } 2513 2514 int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns, 2515 struct pid *pid, struct task_struct *task) 2516 { 2517 struct seccomp_filter *f; 2518 unsigned long flags; 2519 2520 /* 2521 * We don't want some sandboxed process to know what their seccomp 2522 * filters consist of. 2523 */ 2524 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 2525 return -EACCES; 2526 2527 if (!lock_task_sighand(task, &flags)) 2528 return -ESRCH; 2529 2530 f = READ_ONCE(task->seccomp.filter); 2531 if (!f) { 2532 unlock_task_sighand(task, &flags); 2533 return 0; 2534 } 2535 2536 /* prevent filter from being freed while we are printing it */ 2537 __get_seccomp_filter(f); 2538 unlock_task_sighand(task, &flags); 2539 2540 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME, 2541 f->cache.allow_native, 2542 SECCOMP_ARCH_NATIVE_NR); 2543 2544 #ifdef SECCOMP_ARCH_COMPAT 2545 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME, 2546 f->cache.allow_compat, 2547 SECCOMP_ARCH_COMPAT_NR); 2548 #endif /* SECCOMP_ARCH_COMPAT */ 2549 2550 __put_seccomp_filter(f); 2551 return 0; 2552 } 2553 #endif /* CONFIG_SECCOMP_CACHE_DEBUG */ 2554