1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/seccomp.c 4 * 5 * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com> 6 * 7 * Copyright (C) 2012 Google, Inc. 8 * Will Drewry <wad@chromium.org> 9 * 10 * This defines a simple but solid secure-computing facility. 11 * 12 * Mode 1 uses a fixed list of allowed system calls. 13 * Mode 2 allows user-defined system call filters in the form 14 * of Berkeley Packet Filters/Linux Socket Filters. 15 */ 16 #define pr_fmt(fmt) "seccomp: " fmt 17 18 #include <linux/refcount.h> 19 #include <linux/audit.h> 20 #include <linux/compat.h> 21 #include <linux/coredump.h> 22 #include <linux/kmemleak.h> 23 #include <linux/nospec.h> 24 #include <linux/prctl.h> 25 #include <linux/sched.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/seccomp.h> 28 #include <linux/slab.h> 29 #include <linux/syscalls.h> 30 #include <linux/sysctl.h> 31 32 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER 33 #include <asm/syscall.h> 34 #endif 35 36 #ifdef CONFIG_SECCOMP_FILTER 37 #include <linux/file.h> 38 #include <linux/filter.h> 39 #include <linux/pid.h> 40 #include <linux/ptrace.h> 41 #include <linux/capability.h> 42 #include <linux/tracehook.h> 43 #include <linux/uaccess.h> 44 #include <linux/anon_inodes.h> 45 #include <linux/lockdep.h> 46 47 /* 48 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the 49 * wrong direction flag in the ioctl number. This is the broken one, 50 * which the kernel needs to keep supporting until all userspaces stop 51 * using the wrong command number. 52 */ 53 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64) 54 55 enum notify_state { 56 SECCOMP_NOTIFY_INIT, 57 SECCOMP_NOTIFY_SENT, 58 SECCOMP_NOTIFY_REPLIED, 59 }; 60 61 struct seccomp_knotif { 62 /* The struct pid of the task whose filter triggered the notification */ 63 struct task_struct *task; 64 65 /* The "cookie" for this request; this is unique for this filter. */ 66 u64 id; 67 68 /* 69 * The seccomp data. This pointer is valid the entire time this 70 * notification is active, since it comes from __seccomp_filter which 71 * eclipses the entire lifecycle here. 72 */ 73 const struct seccomp_data *data; 74 75 /* 76 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a 77 * struct seccomp_knotif is created and starts out in INIT. Once the 78 * handler reads the notification off of an FD, it transitions to SENT. 79 * If a signal is received the state transitions back to INIT and 80 * another message is sent. When the userspace handler replies, state 81 * transitions to REPLIED. 82 */ 83 enum notify_state state; 84 85 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */ 86 int error; 87 long val; 88 u32 flags; 89 90 /* 91 * Signals when this has changed states, such as the listener 92 * dying, a new seccomp addfd message, or changing to REPLIED 93 */ 94 struct completion ready; 95 96 struct list_head list; 97 98 /* outstanding addfd requests */ 99 struct list_head addfd; 100 }; 101 102 /** 103 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages 104 * 105 * @file: A reference to the file to install in the other task 106 * @fd: The fd number to install it at. If the fd number is -1, it means the 107 * installing process should allocate the fd as normal. 108 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC 109 * is allowed. 110 * @ret: The return value of the installing process. It is set to the fd num 111 * upon success (>= 0). 112 * @completion: Indicates that the installing process has completed fd 113 * installation, or gone away (either due to successful 114 * reply, or signal) 115 * 116 */ 117 struct seccomp_kaddfd { 118 struct file *file; 119 int fd; 120 unsigned int flags; 121 122 /* To only be set on reply */ 123 int ret; 124 struct completion completion; 125 struct list_head list; 126 }; 127 128 /** 129 * struct notification - container for seccomp userspace notifications. Since 130 * most seccomp filters will not have notification listeners attached and this 131 * structure is fairly large, we store the notification-specific stuff in a 132 * separate structure. 133 * 134 * @request: A semaphore that users of this notification can wait on for 135 * changes. Actual reads and writes are still controlled with 136 * filter->notify_lock. 137 * @next_id: The id of the next request. 138 * @notifications: A list of struct seccomp_knotif elements. 139 */ 140 struct notification { 141 struct semaphore request; 142 u64 next_id; 143 struct list_head notifications; 144 }; 145 146 #ifdef SECCOMP_ARCH_NATIVE 147 /** 148 * struct action_cache - per-filter cache of seccomp actions per 149 * arch/syscall pair 150 * 151 * @allow_native: A bitmap where each bit represents whether the 152 * filter will always allow the syscall, for the 153 * native architecture. 154 * @allow_compat: A bitmap where each bit represents whether the 155 * filter will always allow the syscall, for the 156 * compat architecture. 157 */ 158 struct action_cache { 159 DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR); 160 #ifdef SECCOMP_ARCH_COMPAT 161 DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR); 162 #endif 163 }; 164 #else 165 struct action_cache { }; 166 167 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 168 const struct seccomp_data *sd) 169 { 170 return false; 171 } 172 173 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter) 174 { 175 } 176 #endif /* SECCOMP_ARCH_NATIVE */ 177 178 /** 179 * struct seccomp_filter - container for seccomp BPF programs 180 * 181 * @refs: Reference count to manage the object lifetime. 182 * A filter's reference count is incremented for each directly 183 * attached task, once for the dependent filter, and if 184 * requested for the user notifier. When @refs reaches zero, 185 * the filter can be freed. 186 * @users: A filter's @users count is incremented for each directly 187 * attached task (filter installation, fork(), thread_sync), 188 * and once for the dependent filter (tracked in filter->prev). 189 * When it reaches zero it indicates that no direct or indirect 190 * users of that filter exist. No new tasks can get associated with 191 * this filter after reaching 0. The @users count is always smaller 192 * or equal to @refs. Hence, reaching 0 for @users does not mean 193 * the filter can be freed. 194 * @cache: cache of arch/syscall mappings to actions 195 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged 196 * @prev: points to a previously installed, or inherited, filter 197 * @prog: the BPF program to evaluate 198 * @notif: the struct that holds all notification related information 199 * @notify_lock: A lock for all notification-related accesses. 200 * @wqh: A wait queue for poll if a notifier is in use. 201 * 202 * seccomp_filter objects are organized in a tree linked via the @prev 203 * pointer. For any task, it appears to be a singly-linked list starting 204 * with current->seccomp.filter, the most recently attached or inherited filter. 205 * However, multiple filters may share a @prev node, by way of fork(), which 206 * results in a unidirectional tree existing in memory. This is similar to 207 * how namespaces work. 208 * 209 * seccomp_filter objects should never be modified after being attached 210 * to a task_struct (other than @refs). 211 */ 212 struct seccomp_filter { 213 refcount_t refs; 214 refcount_t users; 215 bool log; 216 struct action_cache cache; 217 struct seccomp_filter *prev; 218 struct bpf_prog *prog; 219 struct notification *notif; 220 struct mutex notify_lock; 221 wait_queue_head_t wqh; 222 }; 223 224 /* Limit any path through the tree to 256KB worth of instructions. */ 225 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter)) 226 227 /* 228 * Endianness is explicitly ignored and left for BPF program authors to manage 229 * as per the specific architecture. 230 */ 231 static void populate_seccomp_data(struct seccomp_data *sd) 232 { 233 /* 234 * Instead of using current_pt_reg(), we're already doing the work 235 * to safely fetch "current", so just use "task" everywhere below. 236 */ 237 struct task_struct *task = current; 238 struct pt_regs *regs = task_pt_regs(task); 239 unsigned long args[6]; 240 241 sd->nr = syscall_get_nr(task, regs); 242 sd->arch = syscall_get_arch(task); 243 syscall_get_arguments(task, regs, args); 244 sd->args[0] = args[0]; 245 sd->args[1] = args[1]; 246 sd->args[2] = args[2]; 247 sd->args[3] = args[3]; 248 sd->args[4] = args[4]; 249 sd->args[5] = args[5]; 250 sd->instruction_pointer = KSTK_EIP(task); 251 } 252 253 /** 254 * seccomp_check_filter - verify seccomp filter code 255 * @filter: filter to verify 256 * @flen: length of filter 257 * 258 * Takes a previously checked filter (by bpf_check_classic) and 259 * redirects all filter code that loads struct sk_buff data 260 * and related data through seccomp_bpf_load. It also 261 * enforces length and alignment checking of those loads. 262 * 263 * Returns 0 if the rule set is legal or -EINVAL if not. 264 */ 265 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen) 266 { 267 int pc; 268 for (pc = 0; pc < flen; pc++) { 269 struct sock_filter *ftest = &filter[pc]; 270 u16 code = ftest->code; 271 u32 k = ftest->k; 272 273 switch (code) { 274 case BPF_LD | BPF_W | BPF_ABS: 275 ftest->code = BPF_LDX | BPF_W | BPF_ABS; 276 /* 32-bit aligned and not out of bounds. */ 277 if (k >= sizeof(struct seccomp_data) || k & 3) 278 return -EINVAL; 279 continue; 280 case BPF_LD | BPF_W | BPF_LEN: 281 ftest->code = BPF_LD | BPF_IMM; 282 ftest->k = sizeof(struct seccomp_data); 283 continue; 284 case BPF_LDX | BPF_W | BPF_LEN: 285 ftest->code = BPF_LDX | BPF_IMM; 286 ftest->k = sizeof(struct seccomp_data); 287 continue; 288 /* Explicitly include allowed calls. */ 289 case BPF_RET | BPF_K: 290 case BPF_RET | BPF_A: 291 case BPF_ALU | BPF_ADD | BPF_K: 292 case BPF_ALU | BPF_ADD | BPF_X: 293 case BPF_ALU | BPF_SUB | BPF_K: 294 case BPF_ALU | BPF_SUB | BPF_X: 295 case BPF_ALU | BPF_MUL | BPF_K: 296 case BPF_ALU | BPF_MUL | BPF_X: 297 case BPF_ALU | BPF_DIV | BPF_K: 298 case BPF_ALU | BPF_DIV | BPF_X: 299 case BPF_ALU | BPF_AND | BPF_K: 300 case BPF_ALU | BPF_AND | BPF_X: 301 case BPF_ALU | BPF_OR | BPF_K: 302 case BPF_ALU | BPF_OR | BPF_X: 303 case BPF_ALU | BPF_XOR | BPF_K: 304 case BPF_ALU | BPF_XOR | BPF_X: 305 case BPF_ALU | BPF_LSH | BPF_K: 306 case BPF_ALU | BPF_LSH | BPF_X: 307 case BPF_ALU | BPF_RSH | BPF_K: 308 case BPF_ALU | BPF_RSH | BPF_X: 309 case BPF_ALU | BPF_NEG: 310 case BPF_LD | BPF_IMM: 311 case BPF_LDX | BPF_IMM: 312 case BPF_MISC | BPF_TAX: 313 case BPF_MISC | BPF_TXA: 314 case BPF_LD | BPF_MEM: 315 case BPF_LDX | BPF_MEM: 316 case BPF_ST: 317 case BPF_STX: 318 case BPF_JMP | BPF_JA: 319 case BPF_JMP | BPF_JEQ | BPF_K: 320 case BPF_JMP | BPF_JEQ | BPF_X: 321 case BPF_JMP | BPF_JGE | BPF_K: 322 case BPF_JMP | BPF_JGE | BPF_X: 323 case BPF_JMP | BPF_JGT | BPF_K: 324 case BPF_JMP | BPF_JGT | BPF_X: 325 case BPF_JMP | BPF_JSET | BPF_K: 326 case BPF_JMP | BPF_JSET | BPF_X: 327 continue; 328 default: 329 return -EINVAL; 330 } 331 } 332 return 0; 333 } 334 335 #ifdef SECCOMP_ARCH_NATIVE 336 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap, 337 size_t bitmap_size, 338 int syscall_nr) 339 { 340 if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size)) 341 return false; 342 syscall_nr = array_index_nospec(syscall_nr, bitmap_size); 343 344 return test_bit(syscall_nr, bitmap); 345 } 346 347 /** 348 * seccomp_cache_check_allow - lookup seccomp cache 349 * @sfilter: The seccomp filter 350 * @sd: The seccomp data to lookup the cache with 351 * 352 * Returns true if the seccomp_data is cached and allowed. 353 */ 354 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 355 const struct seccomp_data *sd) 356 { 357 int syscall_nr = sd->nr; 358 const struct action_cache *cache = &sfilter->cache; 359 360 #ifndef SECCOMP_ARCH_COMPAT 361 /* A native-only architecture doesn't need to check sd->arch. */ 362 return seccomp_cache_check_allow_bitmap(cache->allow_native, 363 SECCOMP_ARCH_NATIVE_NR, 364 syscall_nr); 365 #else 366 if (likely(sd->arch == SECCOMP_ARCH_NATIVE)) 367 return seccomp_cache_check_allow_bitmap(cache->allow_native, 368 SECCOMP_ARCH_NATIVE_NR, 369 syscall_nr); 370 if (likely(sd->arch == SECCOMP_ARCH_COMPAT)) 371 return seccomp_cache_check_allow_bitmap(cache->allow_compat, 372 SECCOMP_ARCH_COMPAT_NR, 373 syscall_nr); 374 #endif /* SECCOMP_ARCH_COMPAT */ 375 376 WARN_ON_ONCE(true); 377 return false; 378 } 379 #endif /* SECCOMP_ARCH_NATIVE */ 380 381 /** 382 * seccomp_run_filters - evaluates all seccomp filters against @sd 383 * @sd: optional seccomp data to be passed to filters 384 * @match: stores struct seccomp_filter that resulted in the return value, 385 * unless filter returned SECCOMP_RET_ALLOW, in which case it will 386 * be unchanged. 387 * 388 * Returns valid seccomp BPF response codes. 389 */ 390 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL))) 391 static u32 seccomp_run_filters(const struct seccomp_data *sd, 392 struct seccomp_filter **match) 393 { 394 u32 ret = SECCOMP_RET_ALLOW; 395 /* Make sure cross-thread synced filter points somewhere sane. */ 396 struct seccomp_filter *f = 397 READ_ONCE(current->seccomp.filter); 398 399 /* Ensure unexpected behavior doesn't result in failing open. */ 400 if (WARN_ON(f == NULL)) 401 return SECCOMP_RET_KILL_PROCESS; 402 403 if (seccomp_cache_check_allow(f, sd)) 404 return SECCOMP_RET_ALLOW; 405 406 /* 407 * All filters in the list are evaluated and the lowest BPF return 408 * value always takes priority (ignoring the DATA). 409 */ 410 for (; f; f = f->prev) { 411 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd); 412 413 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) { 414 ret = cur_ret; 415 *match = f; 416 } 417 } 418 return ret; 419 } 420 #endif /* CONFIG_SECCOMP_FILTER */ 421 422 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode) 423 { 424 assert_spin_locked(¤t->sighand->siglock); 425 426 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode) 427 return false; 428 429 return true; 430 } 431 432 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { } 433 434 static inline void seccomp_assign_mode(struct task_struct *task, 435 unsigned long seccomp_mode, 436 unsigned long flags) 437 { 438 assert_spin_locked(&task->sighand->siglock); 439 440 task->seccomp.mode = seccomp_mode; 441 /* 442 * Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and 443 * filter) is set. 444 */ 445 smp_mb__before_atomic(); 446 /* Assume default seccomp processes want spec flaw mitigation. */ 447 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0) 448 arch_seccomp_spec_mitigate(task); 449 set_task_syscall_work(task, SECCOMP); 450 } 451 452 #ifdef CONFIG_SECCOMP_FILTER 453 /* Returns 1 if the parent is an ancestor of the child. */ 454 static int is_ancestor(struct seccomp_filter *parent, 455 struct seccomp_filter *child) 456 { 457 /* NULL is the root ancestor. */ 458 if (parent == NULL) 459 return 1; 460 for (; child; child = child->prev) 461 if (child == parent) 462 return 1; 463 return 0; 464 } 465 466 /** 467 * seccomp_can_sync_threads: checks if all threads can be synchronized 468 * 469 * Expects sighand and cred_guard_mutex locks to be held. 470 * 471 * Returns 0 on success, -ve on error, or the pid of a thread which was 472 * either not in the correct seccomp mode or did not have an ancestral 473 * seccomp filter. 474 */ 475 static inline pid_t seccomp_can_sync_threads(void) 476 { 477 struct task_struct *thread, *caller; 478 479 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 480 assert_spin_locked(¤t->sighand->siglock); 481 482 /* Validate all threads being eligible for synchronization. */ 483 caller = current; 484 for_each_thread(caller, thread) { 485 pid_t failed; 486 487 /* Skip current, since it is initiating the sync. */ 488 if (thread == caller) 489 continue; 490 491 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED || 492 (thread->seccomp.mode == SECCOMP_MODE_FILTER && 493 is_ancestor(thread->seccomp.filter, 494 caller->seccomp.filter))) 495 continue; 496 497 /* Return the first thread that cannot be synchronized. */ 498 failed = task_pid_vnr(thread); 499 /* If the pid cannot be resolved, then return -ESRCH */ 500 if (WARN_ON(failed == 0)) 501 failed = -ESRCH; 502 return failed; 503 } 504 505 return 0; 506 } 507 508 static inline void seccomp_filter_free(struct seccomp_filter *filter) 509 { 510 if (filter) { 511 bpf_prog_destroy(filter->prog); 512 kfree(filter); 513 } 514 } 515 516 static void __seccomp_filter_orphan(struct seccomp_filter *orig) 517 { 518 while (orig && refcount_dec_and_test(&orig->users)) { 519 if (waitqueue_active(&orig->wqh)) 520 wake_up_poll(&orig->wqh, EPOLLHUP); 521 orig = orig->prev; 522 } 523 } 524 525 static void __put_seccomp_filter(struct seccomp_filter *orig) 526 { 527 /* Clean up single-reference branches iteratively. */ 528 while (orig && refcount_dec_and_test(&orig->refs)) { 529 struct seccomp_filter *freeme = orig; 530 orig = orig->prev; 531 seccomp_filter_free(freeme); 532 } 533 } 534 535 static void __seccomp_filter_release(struct seccomp_filter *orig) 536 { 537 /* Notify about any unused filters in the task's former filter tree. */ 538 __seccomp_filter_orphan(orig); 539 /* Finally drop all references to the task's former tree. */ 540 __put_seccomp_filter(orig); 541 } 542 543 /** 544 * seccomp_filter_release - Detach the task from its filter tree, 545 * drop its reference count, and notify 546 * about unused filters 547 * 548 * This function should only be called when the task is exiting as 549 * it detaches it from its filter tree. As such, READ_ONCE() and 550 * barriers are not needed here, as would normally be needed. 551 */ 552 void seccomp_filter_release(struct task_struct *tsk) 553 { 554 struct seccomp_filter *orig = tsk->seccomp.filter; 555 556 /* We are effectively holding the siglock by not having any sighand. */ 557 WARN_ON(tsk->sighand != NULL); 558 559 /* Detach task from its filter tree. */ 560 tsk->seccomp.filter = NULL; 561 __seccomp_filter_release(orig); 562 } 563 564 /** 565 * seccomp_sync_threads: sets all threads to use current's filter 566 * 567 * Expects sighand and cred_guard_mutex locks to be held, and for 568 * seccomp_can_sync_threads() to have returned success already 569 * without dropping the locks. 570 * 571 */ 572 static inline void seccomp_sync_threads(unsigned long flags) 573 { 574 struct task_struct *thread, *caller; 575 576 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 577 assert_spin_locked(¤t->sighand->siglock); 578 579 /* Synchronize all threads. */ 580 caller = current; 581 for_each_thread(caller, thread) { 582 /* Skip current, since it needs no changes. */ 583 if (thread == caller) 584 continue; 585 586 /* Get a task reference for the new leaf node. */ 587 get_seccomp_filter(caller); 588 589 /* 590 * Drop the task reference to the shared ancestor since 591 * current's path will hold a reference. (This also 592 * allows a put before the assignment.) 593 */ 594 __seccomp_filter_release(thread->seccomp.filter); 595 596 /* Make our new filter tree visible. */ 597 smp_store_release(&thread->seccomp.filter, 598 caller->seccomp.filter); 599 atomic_set(&thread->seccomp.filter_count, 600 atomic_read(&thread->seccomp.filter_count)); 601 602 /* 603 * Don't let an unprivileged task work around 604 * the no_new_privs restriction by creating 605 * a thread that sets it up, enters seccomp, 606 * then dies. 607 */ 608 if (task_no_new_privs(caller)) 609 task_set_no_new_privs(thread); 610 611 /* 612 * Opt the other thread into seccomp if needed. 613 * As threads are considered to be trust-realm 614 * equivalent (see ptrace_may_access), it is safe to 615 * allow one thread to transition the other. 616 */ 617 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED) 618 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER, 619 flags); 620 } 621 } 622 623 /** 624 * seccomp_prepare_filter: Prepares a seccomp filter for use. 625 * @fprog: BPF program to install 626 * 627 * Returns filter on success or an ERR_PTR on failure. 628 */ 629 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog) 630 { 631 struct seccomp_filter *sfilter; 632 int ret; 633 const bool save_orig = 634 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE) 635 true; 636 #else 637 false; 638 #endif 639 640 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS) 641 return ERR_PTR(-EINVAL); 642 643 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter)); 644 645 /* 646 * Installing a seccomp filter requires that the task has 647 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs. 648 * This avoids scenarios where unprivileged tasks can affect the 649 * behavior of privileged children. 650 */ 651 if (!task_no_new_privs(current) && 652 !ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN)) 653 return ERR_PTR(-EACCES); 654 655 /* Allocate a new seccomp_filter */ 656 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN); 657 if (!sfilter) 658 return ERR_PTR(-ENOMEM); 659 660 mutex_init(&sfilter->notify_lock); 661 ret = bpf_prog_create_from_user(&sfilter->prog, fprog, 662 seccomp_check_filter, save_orig); 663 if (ret < 0) { 664 kfree(sfilter); 665 return ERR_PTR(ret); 666 } 667 668 refcount_set(&sfilter->refs, 1); 669 refcount_set(&sfilter->users, 1); 670 init_waitqueue_head(&sfilter->wqh); 671 672 return sfilter; 673 } 674 675 /** 676 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog 677 * @user_filter: pointer to the user data containing a sock_fprog. 678 * 679 * Returns 0 on success and non-zero otherwise. 680 */ 681 static struct seccomp_filter * 682 seccomp_prepare_user_filter(const char __user *user_filter) 683 { 684 struct sock_fprog fprog; 685 struct seccomp_filter *filter = ERR_PTR(-EFAULT); 686 687 #ifdef CONFIG_COMPAT 688 if (in_compat_syscall()) { 689 struct compat_sock_fprog fprog32; 690 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32))) 691 goto out; 692 fprog.len = fprog32.len; 693 fprog.filter = compat_ptr(fprog32.filter); 694 } else /* falls through to the if below. */ 695 #endif 696 if (copy_from_user(&fprog, user_filter, sizeof(fprog))) 697 goto out; 698 filter = seccomp_prepare_filter(&fprog); 699 out: 700 return filter; 701 } 702 703 #ifdef SECCOMP_ARCH_NATIVE 704 /** 705 * seccomp_is_const_allow - check if filter is constant allow with given data 706 * @fprog: The BPF programs 707 * @sd: The seccomp data to check against, only syscall number and arch 708 * number are considered constant. 709 */ 710 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog, 711 struct seccomp_data *sd) 712 { 713 unsigned int reg_value = 0; 714 unsigned int pc; 715 bool op_res; 716 717 if (WARN_ON_ONCE(!fprog)) 718 return false; 719 720 for (pc = 0; pc < fprog->len; pc++) { 721 struct sock_filter *insn = &fprog->filter[pc]; 722 u16 code = insn->code; 723 u32 k = insn->k; 724 725 switch (code) { 726 case BPF_LD | BPF_W | BPF_ABS: 727 switch (k) { 728 case offsetof(struct seccomp_data, nr): 729 reg_value = sd->nr; 730 break; 731 case offsetof(struct seccomp_data, arch): 732 reg_value = sd->arch; 733 break; 734 default: 735 /* can't optimize (non-constant value load) */ 736 return false; 737 } 738 break; 739 case BPF_RET | BPF_K: 740 /* reached return with constant values only, check allow */ 741 return k == SECCOMP_RET_ALLOW; 742 case BPF_JMP | BPF_JA: 743 pc += insn->k; 744 break; 745 case BPF_JMP | BPF_JEQ | BPF_K: 746 case BPF_JMP | BPF_JGE | BPF_K: 747 case BPF_JMP | BPF_JGT | BPF_K: 748 case BPF_JMP | BPF_JSET | BPF_K: 749 switch (BPF_OP(code)) { 750 case BPF_JEQ: 751 op_res = reg_value == k; 752 break; 753 case BPF_JGE: 754 op_res = reg_value >= k; 755 break; 756 case BPF_JGT: 757 op_res = reg_value > k; 758 break; 759 case BPF_JSET: 760 op_res = !!(reg_value & k); 761 break; 762 default: 763 /* can't optimize (unknown jump) */ 764 return false; 765 } 766 767 pc += op_res ? insn->jt : insn->jf; 768 break; 769 case BPF_ALU | BPF_AND | BPF_K: 770 reg_value &= k; 771 break; 772 default: 773 /* can't optimize (unknown insn) */ 774 return false; 775 } 776 } 777 778 /* ran off the end of the filter?! */ 779 WARN_ON(1); 780 return false; 781 } 782 783 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter, 784 void *bitmap, const void *bitmap_prev, 785 size_t bitmap_size, int arch) 786 { 787 struct sock_fprog_kern *fprog = sfilter->prog->orig_prog; 788 struct seccomp_data sd; 789 int nr; 790 791 if (bitmap_prev) { 792 /* The new filter must be as restrictive as the last. */ 793 bitmap_copy(bitmap, bitmap_prev, bitmap_size); 794 } else { 795 /* Before any filters, all syscalls are always allowed. */ 796 bitmap_fill(bitmap, bitmap_size); 797 } 798 799 for (nr = 0; nr < bitmap_size; nr++) { 800 /* No bitmap change: not a cacheable action. */ 801 if (!test_bit(nr, bitmap)) 802 continue; 803 804 sd.nr = nr; 805 sd.arch = arch; 806 807 /* No bitmap change: continue to always allow. */ 808 if (seccomp_is_const_allow(fprog, &sd)) 809 continue; 810 811 /* 812 * Not a cacheable action: always run filters. 813 * atomic clear_bit() not needed, filter not visible yet. 814 */ 815 __clear_bit(nr, bitmap); 816 } 817 } 818 819 /** 820 * seccomp_cache_prepare - emulate the filter to find cachable syscalls 821 * @sfilter: The seccomp filter 822 * 823 * Returns 0 if successful or -errno if error occurred. 824 */ 825 static void seccomp_cache_prepare(struct seccomp_filter *sfilter) 826 { 827 struct action_cache *cache = &sfilter->cache; 828 const struct action_cache *cache_prev = 829 sfilter->prev ? &sfilter->prev->cache : NULL; 830 831 seccomp_cache_prepare_bitmap(sfilter, cache->allow_native, 832 cache_prev ? cache_prev->allow_native : NULL, 833 SECCOMP_ARCH_NATIVE_NR, 834 SECCOMP_ARCH_NATIVE); 835 836 #ifdef SECCOMP_ARCH_COMPAT 837 seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat, 838 cache_prev ? cache_prev->allow_compat : NULL, 839 SECCOMP_ARCH_COMPAT_NR, 840 SECCOMP_ARCH_COMPAT); 841 #endif /* SECCOMP_ARCH_COMPAT */ 842 } 843 #endif /* SECCOMP_ARCH_NATIVE */ 844 845 /** 846 * seccomp_attach_filter: validate and attach filter 847 * @flags: flags to change filter behavior 848 * @filter: seccomp filter to add to the current process 849 * 850 * Caller must be holding current->sighand->siglock lock. 851 * 852 * Returns 0 on success, -ve on error, or 853 * - in TSYNC mode: the pid of a thread which was either not in the correct 854 * seccomp mode or did not have an ancestral seccomp filter 855 * - in NEW_LISTENER mode: the fd of the new listener 856 */ 857 static long seccomp_attach_filter(unsigned int flags, 858 struct seccomp_filter *filter) 859 { 860 unsigned long total_insns; 861 struct seccomp_filter *walker; 862 863 assert_spin_locked(¤t->sighand->siglock); 864 865 /* Validate resulting filter length. */ 866 total_insns = filter->prog->len; 867 for (walker = current->seccomp.filter; walker; walker = walker->prev) 868 total_insns += walker->prog->len + 4; /* 4 instr penalty */ 869 if (total_insns > MAX_INSNS_PER_PATH) 870 return -ENOMEM; 871 872 /* If thread sync has been requested, check that it is possible. */ 873 if (flags & SECCOMP_FILTER_FLAG_TSYNC) { 874 int ret; 875 876 ret = seccomp_can_sync_threads(); 877 if (ret) { 878 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) 879 return -ESRCH; 880 else 881 return ret; 882 } 883 } 884 885 /* Set log flag, if present. */ 886 if (flags & SECCOMP_FILTER_FLAG_LOG) 887 filter->log = true; 888 889 /* 890 * If there is an existing filter, make it the prev and don't drop its 891 * task reference. 892 */ 893 filter->prev = current->seccomp.filter; 894 seccomp_cache_prepare(filter); 895 current->seccomp.filter = filter; 896 atomic_inc(¤t->seccomp.filter_count); 897 898 /* Now that the new filter is in place, synchronize to all threads. */ 899 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 900 seccomp_sync_threads(flags); 901 902 return 0; 903 } 904 905 static void __get_seccomp_filter(struct seccomp_filter *filter) 906 { 907 refcount_inc(&filter->refs); 908 } 909 910 /* get_seccomp_filter - increments the reference count of the filter on @tsk */ 911 void get_seccomp_filter(struct task_struct *tsk) 912 { 913 struct seccomp_filter *orig = tsk->seccomp.filter; 914 if (!orig) 915 return; 916 __get_seccomp_filter(orig); 917 refcount_inc(&orig->users); 918 } 919 920 static void seccomp_init_siginfo(kernel_siginfo_t *info, int syscall, int reason) 921 { 922 clear_siginfo(info); 923 info->si_signo = SIGSYS; 924 info->si_code = SYS_SECCOMP; 925 info->si_call_addr = (void __user *)KSTK_EIP(current); 926 info->si_errno = reason; 927 info->si_arch = syscall_get_arch(current); 928 info->si_syscall = syscall; 929 } 930 931 /** 932 * seccomp_send_sigsys - signals the task to allow in-process syscall emulation 933 * @syscall: syscall number to send to userland 934 * @reason: filter-supplied reason code to send to userland (via si_errno) 935 * 936 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 937 */ 938 static void seccomp_send_sigsys(int syscall, int reason) 939 { 940 struct kernel_siginfo info; 941 seccomp_init_siginfo(&info, syscall, reason); 942 force_sig_info(&info); 943 } 944 #endif /* CONFIG_SECCOMP_FILTER */ 945 946 /* For use with seccomp_actions_logged */ 947 #define SECCOMP_LOG_KILL_PROCESS (1 << 0) 948 #define SECCOMP_LOG_KILL_THREAD (1 << 1) 949 #define SECCOMP_LOG_TRAP (1 << 2) 950 #define SECCOMP_LOG_ERRNO (1 << 3) 951 #define SECCOMP_LOG_TRACE (1 << 4) 952 #define SECCOMP_LOG_LOG (1 << 5) 953 #define SECCOMP_LOG_ALLOW (1 << 6) 954 #define SECCOMP_LOG_USER_NOTIF (1 << 7) 955 956 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS | 957 SECCOMP_LOG_KILL_THREAD | 958 SECCOMP_LOG_TRAP | 959 SECCOMP_LOG_ERRNO | 960 SECCOMP_LOG_USER_NOTIF | 961 SECCOMP_LOG_TRACE | 962 SECCOMP_LOG_LOG; 963 964 static inline void seccomp_log(unsigned long syscall, long signr, u32 action, 965 bool requested) 966 { 967 bool log = false; 968 969 switch (action) { 970 case SECCOMP_RET_ALLOW: 971 break; 972 case SECCOMP_RET_TRAP: 973 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP; 974 break; 975 case SECCOMP_RET_ERRNO: 976 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO; 977 break; 978 case SECCOMP_RET_TRACE: 979 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE; 980 break; 981 case SECCOMP_RET_USER_NOTIF: 982 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF; 983 break; 984 case SECCOMP_RET_LOG: 985 log = seccomp_actions_logged & SECCOMP_LOG_LOG; 986 break; 987 case SECCOMP_RET_KILL_THREAD: 988 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD; 989 break; 990 case SECCOMP_RET_KILL_PROCESS: 991 default: 992 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS; 993 } 994 995 /* 996 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the 997 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence 998 * any action from being logged by removing the action name from the 999 * seccomp_actions_logged sysctl. 1000 */ 1001 if (!log) 1002 return; 1003 1004 audit_seccomp(syscall, signr, action); 1005 } 1006 1007 /* 1008 * Secure computing mode 1 allows only read/write/exit/sigreturn. 1009 * To be fully secure this must be combined with rlimit 1010 * to limit the stack allocations too. 1011 */ 1012 static const int mode1_syscalls[] = { 1013 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn, 1014 -1, /* negative terminated */ 1015 }; 1016 1017 static void __secure_computing_strict(int this_syscall) 1018 { 1019 const int *allowed_syscalls = mode1_syscalls; 1020 #ifdef CONFIG_COMPAT 1021 if (in_compat_syscall()) 1022 allowed_syscalls = get_compat_mode1_syscalls(); 1023 #endif 1024 do { 1025 if (*allowed_syscalls == this_syscall) 1026 return; 1027 } while (*++allowed_syscalls != -1); 1028 1029 #ifdef SECCOMP_DEBUG 1030 dump_stack(); 1031 #endif 1032 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true); 1033 do_exit(SIGKILL); 1034 } 1035 1036 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER 1037 void secure_computing_strict(int this_syscall) 1038 { 1039 int mode = current->seccomp.mode; 1040 1041 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1042 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1043 return; 1044 1045 if (mode == SECCOMP_MODE_DISABLED) 1046 return; 1047 else if (mode == SECCOMP_MODE_STRICT) 1048 __secure_computing_strict(this_syscall); 1049 else 1050 BUG(); 1051 } 1052 #else 1053 1054 #ifdef CONFIG_SECCOMP_FILTER 1055 static u64 seccomp_next_notify_id(struct seccomp_filter *filter) 1056 { 1057 /* 1058 * Note: overflow is ok here, the id just needs to be unique per 1059 * filter. 1060 */ 1061 lockdep_assert_held(&filter->notify_lock); 1062 return filter->notif->next_id++; 1063 } 1064 1065 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd) 1066 { 1067 /* 1068 * Remove the notification, and reset the list pointers, indicating 1069 * that it has been handled. 1070 */ 1071 list_del_init(&addfd->list); 1072 addfd->ret = receive_fd_replace(addfd->fd, addfd->file, addfd->flags); 1073 complete(&addfd->completion); 1074 } 1075 1076 static int seccomp_do_user_notification(int this_syscall, 1077 struct seccomp_filter *match, 1078 const struct seccomp_data *sd) 1079 { 1080 int err; 1081 u32 flags = 0; 1082 long ret = 0; 1083 struct seccomp_knotif n = {}; 1084 struct seccomp_kaddfd *addfd, *tmp; 1085 1086 mutex_lock(&match->notify_lock); 1087 err = -ENOSYS; 1088 if (!match->notif) 1089 goto out; 1090 1091 n.task = current; 1092 n.state = SECCOMP_NOTIFY_INIT; 1093 n.data = sd; 1094 n.id = seccomp_next_notify_id(match); 1095 init_completion(&n.ready); 1096 list_add(&n.list, &match->notif->notifications); 1097 INIT_LIST_HEAD(&n.addfd); 1098 1099 up(&match->notif->request); 1100 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM); 1101 mutex_unlock(&match->notify_lock); 1102 1103 /* 1104 * This is where we wait for a reply from userspace. 1105 */ 1106 wait: 1107 err = wait_for_completion_interruptible(&n.ready); 1108 mutex_lock(&match->notify_lock); 1109 if (err == 0) { 1110 /* Check if we were woken up by a addfd message */ 1111 addfd = list_first_entry_or_null(&n.addfd, 1112 struct seccomp_kaddfd, list); 1113 if (addfd && n.state != SECCOMP_NOTIFY_REPLIED) { 1114 seccomp_handle_addfd(addfd); 1115 mutex_unlock(&match->notify_lock); 1116 goto wait; 1117 } 1118 ret = n.val; 1119 err = n.error; 1120 flags = n.flags; 1121 } 1122 1123 /* If there were any pending addfd calls, clear them out */ 1124 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) { 1125 /* The process went away before we got a chance to handle it */ 1126 addfd->ret = -ESRCH; 1127 list_del_init(&addfd->list); 1128 complete(&addfd->completion); 1129 } 1130 1131 /* 1132 * Note that it's possible the listener died in between the time when 1133 * we were notified of a response (or a signal) and when we were able to 1134 * re-acquire the lock, so only delete from the list if the 1135 * notification actually exists. 1136 * 1137 * Also note that this test is only valid because there's no way to 1138 * *reattach* to a notifier right now. If one is added, we'll need to 1139 * keep track of the notif itself and make sure they match here. 1140 */ 1141 if (match->notif) 1142 list_del(&n.list); 1143 out: 1144 mutex_unlock(&match->notify_lock); 1145 1146 /* Userspace requests to continue the syscall. */ 1147 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1148 return 0; 1149 1150 syscall_set_return_value(current, current_pt_regs(), 1151 err, ret); 1152 return -1; 1153 } 1154 1155 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1156 const bool recheck_after_trace) 1157 { 1158 u32 filter_ret, action; 1159 struct seccomp_filter *match = NULL; 1160 int data; 1161 struct seccomp_data sd_local; 1162 1163 /* 1164 * Make sure that any changes to mode from another thread have 1165 * been seen after SYSCALL_WORK_SECCOMP was seen. 1166 */ 1167 smp_rmb(); 1168 1169 if (!sd) { 1170 populate_seccomp_data(&sd_local); 1171 sd = &sd_local; 1172 } 1173 1174 filter_ret = seccomp_run_filters(sd, &match); 1175 data = filter_ret & SECCOMP_RET_DATA; 1176 action = filter_ret & SECCOMP_RET_ACTION_FULL; 1177 1178 switch (action) { 1179 case SECCOMP_RET_ERRNO: 1180 /* Set low-order bits as an errno, capped at MAX_ERRNO. */ 1181 if (data > MAX_ERRNO) 1182 data = MAX_ERRNO; 1183 syscall_set_return_value(current, current_pt_regs(), 1184 -data, 0); 1185 goto skip; 1186 1187 case SECCOMP_RET_TRAP: 1188 /* Show the handler the original registers. */ 1189 syscall_rollback(current, current_pt_regs()); 1190 /* Let the filter pass back 16 bits of data. */ 1191 seccomp_send_sigsys(this_syscall, data); 1192 goto skip; 1193 1194 case SECCOMP_RET_TRACE: 1195 /* We've been put in this state by the ptracer already. */ 1196 if (recheck_after_trace) 1197 return 0; 1198 1199 /* ENOSYS these calls if there is no tracer attached. */ 1200 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) { 1201 syscall_set_return_value(current, 1202 current_pt_regs(), 1203 -ENOSYS, 0); 1204 goto skip; 1205 } 1206 1207 /* Allow the BPF to provide the event message */ 1208 ptrace_event(PTRACE_EVENT_SECCOMP, data); 1209 /* 1210 * The delivery of a fatal signal during event 1211 * notification may silently skip tracer notification, 1212 * which could leave us with a potentially unmodified 1213 * syscall that the tracer would have liked to have 1214 * changed. Since the process is about to die, we just 1215 * force the syscall to be skipped and let the signal 1216 * kill the process and correctly handle any tracer exit 1217 * notifications. 1218 */ 1219 if (fatal_signal_pending(current)) 1220 goto skip; 1221 /* Check if the tracer forced the syscall to be skipped. */ 1222 this_syscall = syscall_get_nr(current, current_pt_regs()); 1223 if (this_syscall < 0) 1224 goto skip; 1225 1226 /* 1227 * Recheck the syscall, since it may have changed. This 1228 * intentionally uses a NULL struct seccomp_data to force 1229 * a reload of all registers. This does not goto skip since 1230 * a skip would have already been reported. 1231 */ 1232 if (__seccomp_filter(this_syscall, NULL, true)) 1233 return -1; 1234 1235 return 0; 1236 1237 case SECCOMP_RET_USER_NOTIF: 1238 if (seccomp_do_user_notification(this_syscall, match, sd)) 1239 goto skip; 1240 1241 return 0; 1242 1243 case SECCOMP_RET_LOG: 1244 seccomp_log(this_syscall, 0, action, true); 1245 return 0; 1246 1247 case SECCOMP_RET_ALLOW: 1248 /* 1249 * Note that the "match" filter will always be NULL for 1250 * this action since SECCOMP_RET_ALLOW is the starting 1251 * state in seccomp_run_filters(). 1252 */ 1253 return 0; 1254 1255 case SECCOMP_RET_KILL_THREAD: 1256 case SECCOMP_RET_KILL_PROCESS: 1257 default: 1258 seccomp_log(this_syscall, SIGSYS, action, true); 1259 /* Dump core only if this is the last remaining thread. */ 1260 if (action != SECCOMP_RET_KILL_THREAD || 1261 get_nr_threads(current) == 1) { 1262 kernel_siginfo_t info; 1263 1264 /* Show the original registers in the dump. */ 1265 syscall_rollback(current, current_pt_regs()); 1266 /* Trigger a manual coredump since do_exit skips it. */ 1267 seccomp_init_siginfo(&info, this_syscall, data); 1268 do_coredump(&info); 1269 } 1270 if (action == SECCOMP_RET_KILL_THREAD) 1271 do_exit(SIGSYS); 1272 else 1273 do_group_exit(SIGSYS); 1274 } 1275 1276 unreachable(); 1277 1278 skip: 1279 seccomp_log(this_syscall, 0, action, match ? match->log : false); 1280 return -1; 1281 } 1282 #else 1283 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1284 const bool recheck_after_trace) 1285 { 1286 BUG(); 1287 1288 return -1; 1289 } 1290 #endif 1291 1292 int __secure_computing(const struct seccomp_data *sd) 1293 { 1294 int mode = current->seccomp.mode; 1295 int this_syscall; 1296 1297 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1298 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1299 return 0; 1300 1301 this_syscall = sd ? sd->nr : 1302 syscall_get_nr(current, current_pt_regs()); 1303 1304 switch (mode) { 1305 case SECCOMP_MODE_STRICT: 1306 __secure_computing_strict(this_syscall); /* may call do_exit */ 1307 return 0; 1308 case SECCOMP_MODE_FILTER: 1309 return __seccomp_filter(this_syscall, sd, false); 1310 default: 1311 BUG(); 1312 } 1313 } 1314 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */ 1315 1316 long prctl_get_seccomp(void) 1317 { 1318 return current->seccomp.mode; 1319 } 1320 1321 /** 1322 * seccomp_set_mode_strict: internal function for setting strict seccomp 1323 * 1324 * Once current->seccomp.mode is non-zero, it may not be changed. 1325 * 1326 * Returns 0 on success or -EINVAL on failure. 1327 */ 1328 static long seccomp_set_mode_strict(void) 1329 { 1330 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT; 1331 long ret = -EINVAL; 1332 1333 spin_lock_irq(¤t->sighand->siglock); 1334 1335 if (!seccomp_may_assign_mode(seccomp_mode)) 1336 goto out; 1337 1338 #ifdef TIF_NOTSC 1339 disable_TSC(); 1340 #endif 1341 seccomp_assign_mode(current, seccomp_mode, 0); 1342 ret = 0; 1343 1344 out: 1345 spin_unlock_irq(¤t->sighand->siglock); 1346 1347 return ret; 1348 } 1349 1350 #ifdef CONFIG_SECCOMP_FILTER 1351 static void seccomp_notify_free(struct seccomp_filter *filter) 1352 { 1353 kfree(filter->notif); 1354 filter->notif = NULL; 1355 } 1356 1357 static void seccomp_notify_detach(struct seccomp_filter *filter) 1358 { 1359 struct seccomp_knotif *knotif; 1360 1361 if (!filter) 1362 return; 1363 1364 mutex_lock(&filter->notify_lock); 1365 1366 /* 1367 * If this file is being closed because e.g. the task who owned it 1368 * died, let's wake everyone up who was waiting on us. 1369 */ 1370 list_for_each_entry(knotif, &filter->notif->notifications, list) { 1371 if (knotif->state == SECCOMP_NOTIFY_REPLIED) 1372 continue; 1373 1374 knotif->state = SECCOMP_NOTIFY_REPLIED; 1375 knotif->error = -ENOSYS; 1376 knotif->val = 0; 1377 1378 /* 1379 * We do not need to wake up any pending addfd messages, as 1380 * the notifier will do that for us, as this just looks 1381 * like a standard reply. 1382 */ 1383 complete(&knotif->ready); 1384 } 1385 1386 seccomp_notify_free(filter); 1387 mutex_unlock(&filter->notify_lock); 1388 } 1389 1390 static int seccomp_notify_release(struct inode *inode, struct file *file) 1391 { 1392 struct seccomp_filter *filter = file->private_data; 1393 1394 seccomp_notify_detach(filter); 1395 __put_seccomp_filter(filter); 1396 return 0; 1397 } 1398 1399 /* must be called with notif_lock held */ 1400 static inline struct seccomp_knotif * 1401 find_notification(struct seccomp_filter *filter, u64 id) 1402 { 1403 struct seccomp_knotif *cur; 1404 1405 lockdep_assert_held(&filter->notify_lock); 1406 1407 list_for_each_entry(cur, &filter->notif->notifications, list) { 1408 if (cur->id == id) 1409 return cur; 1410 } 1411 1412 return NULL; 1413 } 1414 1415 1416 static long seccomp_notify_recv(struct seccomp_filter *filter, 1417 void __user *buf) 1418 { 1419 struct seccomp_knotif *knotif = NULL, *cur; 1420 struct seccomp_notif unotif; 1421 ssize_t ret; 1422 1423 /* Verify that we're not given garbage to keep struct extensible. */ 1424 ret = check_zeroed_user(buf, sizeof(unotif)); 1425 if (ret < 0) 1426 return ret; 1427 if (!ret) 1428 return -EINVAL; 1429 1430 memset(&unotif, 0, sizeof(unotif)); 1431 1432 ret = down_interruptible(&filter->notif->request); 1433 if (ret < 0) 1434 return ret; 1435 1436 mutex_lock(&filter->notify_lock); 1437 list_for_each_entry(cur, &filter->notif->notifications, list) { 1438 if (cur->state == SECCOMP_NOTIFY_INIT) { 1439 knotif = cur; 1440 break; 1441 } 1442 } 1443 1444 /* 1445 * If we didn't find a notification, it could be that the task was 1446 * interrupted by a fatal signal between the time we were woken and 1447 * when we were able to acquire the rw lock. 1448 */ 1449 if (!knotif) { 1450 ret = -ENOENT; 1451 goto out; 1452 } 1453 1454 unotif.id = knotif->id; 1455 unotif.pid = task_pid_vnr(knotif->task); 1456 unotif.data = *(knotif->data); 1457 1458 knotif->state = SECCOMP_NOTIFY_SENT; 1459 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM); 1460 ret = 0; 1461 out: 1462 mutex_unlock(&filter->notify_lock); 1463 1464 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) { 1465 ret = -EFAULT; 1466 1467 /* 1468 * Userspace screwed up. To make sure that we keep this 1469 * notification alive, let's reset it back to INIT. It 1470 * may have died when we released the lock, so we need to make 1471 * sure it's still around. 1472 */ 1473 mutex_lock(&filter->notify_lock); 1474 knotif = find_notification(filter, unotif.id); 1475 if (knotif) { 1476 knotif->state = SECCOMP_NOTIFY_INIT; 1477 up(&filter->notif->request); 1478 } 1479 mutex_unlock(&filter->notify_lock); 1480 } 1481 1482 return ret; 1483 } 1484 1485 static long seccomp_notify_send(struct seccomp_filter *filter, 1486 void __user *buf) 1487 { 1488 struct seccomp_notif_resp resp = {}; 1489 struct seccomp_knotif *knotif; 1490 long ret; 1491 1492 if (copy_from_user(&resp, buf, sizeof(resp))) 1493 return -EFAULT; 1494 1495 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1496 return -EINVAL; 1497 1498 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) && 1499 (resp.error || resp.val)) 1500 return -EINVAL; 1501 1502 ret = mutex_lock_interruptible(&filter->notify_lock); 1503 if (ret < 0) 1504 return ret; 1505 1506 knotif = find_notification(filter, resp.id); 1507 if (!knotif) { 1508 ret = -ENOENT; 1509 goto out; 1510 } 1511 1512 /* Allow exactly one reply. */ 1513 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1514 ret = -EINPROGRESS; 1515 goto out; 1516 } 1517 1518 ret = 0; 1519 knotif->state = SECCOMP_NOTIFY_REPLIED; 1520 knotif->error = resp.error; 1521 knotif->val = resp.val; 1522 knotif->flags = resp.flags; 1523 complete(&knotif->ready); 1524 out: 1525 mutex_unlock(&filter->notify_lock); 1526 return ret; 1527 } 1528 1529 static long seccomp_notify_id_valid(struct seccomp_filter *filter, 1530 void __user *buf) 1531 { 1532 struct seccomp_knotif *knotif; 1533 u64 id; 1534 long ret; 1535 1536 if (copy_from_user(&id, buf, sizeof(id))) 1537 return -EFAULT; 1538 1539 ret = mutex_lock_interruptible(&filter->notify_lock); 1540 if (ret < 0) 1541 return ret; 1542 1543 knotif = find_notification(filter, id); 1544 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT) 1545 ret = 0; 1546 else 1547 ret = -ENOENT; 1548 1549 mutex_unlock(&filter->notify_lock); 1550 return ret; 1551 } 1552 1553 static long seccomp_notify_addfd(struct seccomp_filter *filter, 1554 struct seccomp_notif_addfd __user *uaddfd, 1555 unsigned int size) 1556 { 1557 struct seccomp_notif_addfd addfd; 1558 struct seccomp_knotif *knotif; 1559 struct seccomp_kaddfd kaddfd; 1560 int ret; 1561 1562 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0); 1563 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST); 1564 1565 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE) 1566 return -EINVAL; 1567 1568 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size); 1569 if (ret) 1570 return ret; 1571 1572 if (addfd.newfd_flags & ~O_CLOEXEC) 1573 return -EINVAL; 1574 1575 if (addfd.flags & ~SECCOMP_ADDFD_FLAG_SETFD) 1576 return -EINVAL; 1577 1578 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD)) 1579 return -EINVAL; 1580 1581 kaddfd.file = fget(addfd.srcfd); 1582 if (!kaddfd.file) 1583 return -EBADF; 1584 1585 kaddfd.flags = addfd.newfd_flags; 1586 kaddfd.fd = (addfd.flags & SECCOMP_ADDFD_FLAG_SETFD) ? 1587 addfd.newfd : -1; 1588 init_completion(&kaddfd.completion); 1589 1590 ret = mutex_lock_interruptible(&filter->notify_lock); 1591 if (ret < 0) 1592 goto out; 1593 1594 knotif = find_notification(filter, addfd.id); 1595 if (!knotif) { 1596 ret = -ENOENT; 1597 goto out_unlock; 1598 } 1599 1600 /* 1601 * We do not want to allow for FD injection to occur before the 1602 * notification has been picked up by a userspace handler, or after 1603 * the notification has been replied to. 1604 */ 1605 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1606 ret = -EINPROGRESS; 1607 goto out_unlock; 1608 } 1609 1610 list_add(&kaddfd.list, &knotif->addfd); 1611 complete(&knotif->ready); 1612 mutex_unlock(&filter->notify_lock); 1613 1614 /* Now we wait for it to be processed or be interrupted */ 1615 ret = wait_for_completion_interruptible(&kaddfd.completion); 1616 if (ret == 0) { 1617 /* 1618 * We had a successful completion. The other side has already 1619 * removed us from the addfd queue, and 1620 * wait_for_completion_interruptible has a memory barrier upon 1621 * success that lets us read this value directly without 1622 * locking. 1623 */ 1624 ret = kaddfd.ret; 1625 goto out; 1626 } 1627 1628 mutex_lock(&filter->notify_lock); 1629 /* 1630 * Even though we were woken up by a signal and not a successful 1631 * completion, a completion may have happened in the mean time. 1632 * 1633 * We need to check again if the addfd request has been handled, 1634 * and if not, we will remove it from the queue. 1635 */ 1636 if (list_empty(&kaddfd.list)) 1637 ret = kaddfd.ret; 1638 else 1639 list_del(&kaddfd.list); 1640 1641 out_unlock: 1642 mutex_unlock(&filter->notify_lock); 1643 out: 1644 fput(kaddfd.file); 1645 1646 return ret; 1647 } 1648 1649 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd, 1650 unsigned long arg) 1651 { 1652 struct seccomp_filter *filter = file->private_data; 1653 void __user *buf = (void __user *)arg; 1654 1655 /* Fixed-size ioctls */ 1656 switch (cmd) { 1657 case SECCOMP_IOCTL_NOTIF_RECV: 1658 return seccomp_notify_recv(filter, buf); 1659 case SECCOMP_IOCTL_NOTIF_SEND: 1660 return seccomp_notify_send(filter, buf); 1661 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR: 1662 case SECCOMP_IOCTL_NOTIF_ID_VALID: 1663 return seccomp_notify_id_valid(filter, buf); 1664 } 1665 1666 /* Extensible Argument ioctls */ 1667 #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK)) 1668 switch (EA_IOCTL(cmd)) { 1669 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD): 1670 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd)); 1671 default: 1672 return -EINVAL; 1673 } 1674 } 1675 1676 static __poll_t seccomp_notify_poll(struct file *file, 1677 struct poll_table_struct *poll_tab) 1678 { 1679 struct seccomp_filter *filter = file->private_data; 1680 __poll_t ret = 0; 1681 struct seccomp_knotif *cur; 1682 1683 poll_wait(file, &filter->wqh, poll_tab); 1684 1685 if (mutex_lock_interruptible(&filter->notify_lock) < 0) 1686 return EPOLLERR; 1687 1688 list_for_each_entry(cur, &filter->notif->notifications, list) { 1689 if (cur->state == SECCOMP_NOTIFY_INIT) 1690 ret |= EPOLLIN | EPOLLRDNORM; 1691 if (cur->state == SECCOMP_NOTIFY_SENT) 1692 ret |= EPOLLOUT | EPOLLWRNORM; 1693 if ((ret & EPOLLIN) && (ret & EPOLLOUT)) 1694 break; 1695 } 1696 1697 mutex_unlock(&filter->notify_lock); 1698 1699 if (refcount_read(&filter->users) == 0) 1700 ret |= EPOLLHUP; 1701 1702 return ret; 1703 } 1704 1705 static const struct file_operations seccomp_notify_ops = { 1706 .poll = seccomp_notify_poll, 1707 .release = seccomp_notify_release, 1708 .unlocked_ioctl = seccomp_notify_ioctl, 1709 .compat_ioctl = seccomp_notify_ioctl, 1710 }; 1711 1712 static struct file *init_listener(struct seccomp_filter *filter) 1713 { 1714 struct file *ret; 1715 1716 ret = ERR_PTR(-ENOMEM); 1717 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL); 1718 if (!filter->notif) 1719 goto out; 1720 1721 sema_init(&filter->notif->request, 0); 1722 filter->notif->next_id = get_random_u64(); 1723 INIT_LIST_HEAD(&filter->notif->notifications); 1724 1725 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops, 1726 filter, O_RDWR); 1727 if (IS_ERR(ret)) 1728 goto out_notif; 1729 1730 /* The file has a reference to it now */ 1731 __get_seccomp_filter(filter); 1732 1733 out_notif: 1734 if (IS_ERR(ret)) 1735 seccomp_notify_free(filter); 1736 out: 1737 return ret; 1738 } 1739 1740 /* 1741 * Does @new_child have a listener while an ancestor also has a listener? 1742 * If so, we'll want to reject this filter. 1743 * This only has to be tested for the current process, even in the TSYNC case, 1744 * because TSYNC installs @child with the same parent on all threads. 1745 * Note that @new_child is not hooked up to its parent at this point yet, so 1746 * we use current->seccomp.filter. 1747 */ 1748 static bool has_duplicate_listener(struct seccomp_filter *new_child) 1749 { 1750 struct seccomp_filter *cur; 1751 1752 /* must be protected against concurrent TSYNC */ 1753 lockdep_assert_held(¤t->sighand->siglock); 1754 1755 if (!new_child->notif) 1756 return false; 1757 for (cur = current->seccomp.filter; cur; cur = cur->prev) { 1758 if (cur->notif) 1759 return true; 1760 } 1761 1762 return false; 1763 } 1764 1765 /** 1766 * seccomp_set_mode_filter: internal function for setting seccomp filter 1767 * @flags: flags to change filter behavior 1768 * @filter: struct sock_fprog containing filter 1769 * 1770 * This function may be called repeatedly to install additional filters. 1771 * Every filter successfully installed will be evaluated (in reverse order) 1772 * for each system call the task makes. 1773 * 1774 * Once current->seccomp.mode is non-zero, it may not be changed. 1775 * 1776 * Returns 0 on success or -EINVAL on failure. 1777 */ 1778 static long seccomp_set_mode_filter(unsigned int flags, 1779 const char __user *filter) 1780 { 1781 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER; 1782 struct seccomp_filter *prepared = NULL; 1783 long ret = -EINVAL; 1784 int listener = -1; 1785 struct file *listener_f = NULL; 1786 1787 /* Validate flags. */ 1788 if (flags & ~SECCOMP_FILTER_FLAG_MASK) 1789 return -EINVAL; 1790 1791 /* 1792 * In the successful case, NEW_LISTENER returns the new listener fd. 1793 * But in the failure case, TSYNC returns the thread that died. If you 1794 * combine these two flags, there's no way to tell whether something 1795 * succeeded or failed. So, let's disallow this combination if the user 1796 * has not explicitly requested no errors from TSYNC. 1797 */ 1798 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) && 1799 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) && 1800 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0)) 1801 return -EINVAL; 1802 1803 /* Prepare the new filter before holding any locks. */ 1804 prepared = seccomp_prepare_user_filter(filter); 1805 if (IS_ERR(prepared)) 1806 return PTR_ERR(prepared); 1807 1808 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1809 listener = get_unused_fd_flags(O_CLOEXEC); 1810 if (listener < 0) { 1811 ret = listener; 1812 goto out_free; 1813 } 1814 1815 listener_f = init_listener(prepared); 1816 if (IS_ERR(listener_f)) { 1817 put_unused_fd(listener); 1818 ret = PTR_ERR(listener_f); 1819 goto out_free; 1820 } 1821 } 1822 1823 /* 1824 * Make sure we cannot change seccomp or nnp state via TSYNC 1825 * while another thread is in the middle of calling exec. 1826 */ 1827 if (flags & SECCOMP_FILTER_FLAG_TSYNC && 1828 mutex_lock_killable(¤t->signal->cred_guard_mutex)) 1829 goto out_put_fd; 1830 1831 spin_lock_irq(¤t->sighand->siglock); 1832 1833 if (!seccomp_may_assign_mode(seccomp_mode)) 1834 goto out; 1835 1836 if (has_duplicate_listener(prepared)) { 1837 ret = -EBUSY; 1838 goto out; 1839 } 1840 1841 ret = seccomp_attach_filter(flags, prepared); 1842 if (ret) 1843 goto out; 1844 /* Do not free the successfully attached filter. */ 1845 prepared = NULL; 1846 1847 seccomp_assign_mode(current, seccomp_mode, flags); 1848 out: 1849 spin_unlock_irq(¤t->sighand->siglock); 1850 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 1851 mutex_unlock(¤t->signal->cred_guard_mutex); 1852 out_put_fd: 1853 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1854 if (ret) { 1855 listener_f->private_data = NULL; 1856 fput(listener_f); 1857 put_unused_fd(listener); 1858 seccomp_notify_detach(prepared); 1859 } else { 1860 fd_install(listener, listener_f); 1861 ret = listener; 1862 } 1863 } 1864 out_free: 1865 seccomp_filter_free(prepared); 1866 return ret; 1867 } 1868 #else 1869 static inline long seccomp_set_mode_filter(unsigned int flags, 1870 const char __user *filter) 1871 { 1872 return -EINVAL; 1873 } 1874 #endif 1875 1876 static long seccomp_get_action_avail(const char __user *uaction) 1877 { 1878 u32 action; 1879 1880 if (copy_from_user(&action, uaction, sizeof(action))) 1881 return -EFAULT; 1882 1883 switch (action) { 1884 case SECCOMP_RET_KILL_PROCESS: 1885 case SECCOMP_RET_KILL_THREAD: 1886 case SECCOMP_RET_TRAP: 1887 case SECCOMP_RET_ERRNO: 1888 case SECCOMP_RET_USER_NOTIF: 1889 case SECCOMP_RET_TRACE: 1890 case SECCOMP_RET_LOG: 1891 case SECCOMP_RET_ALLOW: 1892 break; 1893 default: 1894 return -EOPNOTSUPP; 1895 } 1896 1897 return 0; 1898 } 1899 1900 static long seccomp_get_notif_sizes(void __user *usizes) 1901 { 1902 struct seccomp_notif_sizes sizes = { 1903 .seccomp_notif = sizeof(struct seccomp_notif), 1904 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp), 1905 .seccomp_data = sizeof(struct seccomp_data), 1906 }; 1907 1908 if (copy_to_user(usizes, &sizes, sizeof(sizes))) 1909 return -EFAULT; 1910 1911 return 0; 1912 } 1913 1914 /* Common entry point for both prctl and syscall. */ 1915 static long do_seccomp(unsigned int op, unsigned int flags, 1916 void __user *uargs) 1917 { 1918 switch (op) { 1919 case SECCOMP_SET_MODE_STRICT: 1920 if (flags != 0 || uargs != NULL) 1921 return -EINVAL; 1922 return seccomp_set_mode_strict(); 1923 case SECCOMP_SET_MODE_FILTER: 1924 return seccomp_set_mode_filter(flags, uargs); 1925 case SECCOMP_GET_ACTION_AVAIL: 1926 if (flags != 0) 1927 return -EINVAL; 1928 1929 return seccomp_get_action_avail(uargs); 1930 case SECCOMP_GET_NOTIF_SIZES: 1931 if (flags != 0) 1932 return -EINVAL; 1933 1934 return seccomp_get_notif_sizes(uargs); 1935 default: 1936 return -EINVAL; 1937 } 1938 } 1939 1940 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags, 1941 void __user *, uargs) 1942 { 1943 return do_seccomp(op, flags, uargs); 1944 } 1945 1946 /** 1947 * prctl_set_seccomp: configures current->seccomp.mode 1948 * @seccomp_mode: requested mode to use 1949 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER 1950 * 1951 * Returns 0 on success or -EINVAL on failure. 1952 */ 1953 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter) 1954 { 1955 unsigned int op; 1956 void __user *uargs; 1957 1958 switch (seccomp_mode) { 1959 case SECCOMP_MODE_STRICT: 1960 op = SECCOMP_SET_MODE_STRICT; 1961 /* 1962 * Setting strict mode through prctl always ignored filter, 1963 * so make sure it is always NULL here to pass the internal 1964 * check in do_seccomp(). 1965 */ 1966 uargs = NULL; 1967 break; 1968 case SECCOMP_MODE_FILTER: 1969 op = SECCOMP_SET_MODE_FILTER; 1970 uargs = filter; 1971 break; 1972 default: 1973 return -EINVAL; 1974 } 1975 1976 /* prctl interface doesn't have flags, so they are always zero. */ 1977 return do_seccomp(op, 0, uargs); 1978 } 1979 1980 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE) 1981 static struct seccomp_filter *get_nth_filter(struct task_struct *task, 1982 unsigned long filter_off) 1983 { 1984 struct seccomp_filter *orig, *filter; 1985 unsigned long count; 1986 1987 /* 1988 * Note: this is only correct because the caller should be the (ptrace) 1989 * tracer of the task, otherwise lock_task_sighand is needed. 1990 */ 1991 spin_lock_irq(&task->sighand->siglock); 1992 1993 if (task->seccomp.mode != SECCOMP_MODE_FILTER) { 1994 spin_unlock_irq(&task->sighand->siglock); 1995 return ERR_PTR(-EINVAL); 1996 } 1997 1998 orig = task->seccomp.filter; 1999 __get_seccomp_filter(orig); 2000 spin_unlock_irq(&task->sighand->siglock); 2001 2002 count = 0; 2003 for (filter = orig; filter; filter = filter->prev) 2004 count++; 2005 2006 if (filter_off >= count) { 2007 filter = ERR_PTR(-ENOENT); 2008 goto out; 2009 } 2010 2011 count -= filter_off; 2012 for (filter = orig; filter && count > 1; filter = filter->prev) 2013 count--; 2014 2015 if (WARN_ON(count != 1 || !filter)) { 2016 filter = ERR_PTR(-ENOENT); 2017 goto out; 2018 } 2019 2020 __get_seccomp_filter(filter); 2021 2022 out: 2023 __put_seccomp_filter(orig); 2024 return filter; 2025 } 2026 2027 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off, 2028 void __user *data) 2029 { 2030 struct seccomp_filter *filter; 2031 struct sock_fprog_kern *fprog; 2032 long ret; 2033 2034 if (!capable(CAP_SYS_ADMIN) || 2035 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2036 return -EACCES; 2037 } 2038 2039 filter = get_nth_filter(task, filter_off); 2040 if (IS_ERR(filter)) 2041 return PTR_ERR(filter); 2042 2043 fprog = filter->prog->orig_prog; 2044 if (!fprog) { 2045 /* This must be a new non-cBPF filter, since we save 2046 * every cBPF filter's orig_prog above when 2047 * CONFIG_CHECKPOINT_RESTORE is enabled. 2048 */ 2049 ret = -EMEDIUMTYPE; 2050 goto out; 2051 } 2052 2053 ret = fprog->len; 2054 if (!data) 2055 goto out; 2056 2057 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog))) 2058 ret = -EFAULT; 2059 2060 out: 2061 __put_seccomp_filter(filter); 2062 return ret; 2063 } 2064 2065 long seccomp_get_metadata(struct task_struct *task, 2066 unsigned long size, void __user *data) 2067 { 2068 long ret; 2069 struct seccomp_filter *filter; 2070 struct seccomp_metadata kmd = {}; 2071 2072 if (!capable(CAP_SYS_ADMIN) || 2073 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2074 return -EACCES; 2075 } 2076 2077 size = min_t(unsigned long, size, sizeof(kmd)); 2078 2079 if (size < sizeof(kmd.filter_off)) 2080 return -EINVAL; 2081 2082 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off))) 2083 return -EFAULT; 2084 2085 filter = get_nth_filter(task, kmd.filter_off); 2086 if (IS_ERR(filter)) 2087 return PTR_ERR(filter); 2088 2089 if (filter->log) 2090 kmd.flags |= SECCOMP_FILTER_FLAG_LOG; 2091 2092 ret = size; 2093 if (copy_to_user(data, &kmd, size)) 2094 ret = -EFAULT; 2095 2096 __put_seccomp_filter(filter); 2097 return ret; 2098 } 2099 #endif 2100 2101 #ifdef CONFIG_SYSCTL 2102 2103 /* Human readable action names for friendly sysctl interaction */ 2104 #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process" 2105 #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread" 2106 #define SECCOMP_RET_TRAP_NAME "trap" 2107 #define SECCOMP_RET_ERRNO_NAME "errno" 2108 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif" 2109 #define SECCOMP_RET_TRACE_NAME "trace" 2110 #define SECCOMP_RET_LOG_NAME "log" 2111 #define SECCOMP_RET_ALLOW_NAME "allow" 2112 2113 static const char seccomp_actions_avail[] = 2114 SECCOMP_RET_KILL_PROCESS_NAME " " 2115 SECCOMP_RET_KILL_THREAD_NAME " " 2116 SECCOMP_RET_TRAP_NAME " " 2117 SECCOMP_RET_ERRNO_NAME " " 2118 SECCOMP_RET_USER_NOTIF_NAME " " 2119 SECCOMP_RET_TRACE_NAME " " 2120 SECCOMP_RET_LOG_NAME " " 2121 SECCOMP_RET_ALLOW_NAME; 2122 2123 struct seccomp_log_name { 2124 u32 log; 2125 const char *name; 2126 }; 2127 2128 static const struct seccomp_log_name seccomp_log_names[] = { 2129 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME }, 2130 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME }, 2131 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME }, 2132 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME }, 2133 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME }, 2134 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME }, 2135 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME }, 2136 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME }, 2137 { } 2138 }; 2139 2140 static bool seccomp_names_from_actions_logged(char *names, size_t size, 2141 u32 actions_logged, 2142 const char *sep) 2143 { 2144 const struct seccomp_log_name *cur; 2145 bool append_sep = false; 2146 2147 for (cur = seccomp_log_names; cur->name && size; cur++) { 2148 ssize_t ret; 2149 2150 if (!(actions_logged & cur->log)) 2151 continue; 2152 2153 if (append_sep) { 2154 ret = strscpy(names, sep, size); 2155 if (ret < 0) 2156 return false; 2157 2158 names += ret; 2159 size -= ret; 2160 } else 2161 append_sep = true; 2162 2163 ret = strscpy(names, cur->name, size); 2164 if (ret < 0) 2165 return false; 2166 2167 names += ret; 2168 size -= ret; 2169 } 2170 2171 return true; 2172 } 2173 2174 static bool seccomp_action_logged_from_name(u32 *action_logged, 2175 const char *name) 2176 { 2177 const struct seccomp_log_name *cur; 2178 2179 for (cur = seccomp_log_names; cur->name; cur++) { 2180 if (!strcmp(cur->name, name)) { 2181 *action_logged = cur->log; 2182 return true; 2183 } 2184 } 2185 2186 return false; 2187 } 2188 2189 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names) 2190 { 2191 char *name; 2192 2193 *actions_logged = 0; 2194 while ((name = strsep(&names, " ")) && *name) { 2195 u32 action_logged = 0; 2196 2197 if (!seccomp_action_logged_from_name(&action_logged, name)) 2198 return false; 2199 2200 *actions_logged |= action_logged; 2201 } 2202 2203 return true; 2204 } 2205 2206 static int read_actions_logged(struct ctl_table *ro_table, void *buffer, 2207 size_t *lenp, loff_t *ppos) 2208 { 2209 char names[sizeof(seccomp_actions_avail)]; 2210 struct ctl_table table; 2211 2212 memset(names, 0, sizeof(names)); 2213 2214 if (!seccomp_names_from_actions_logged(names, sizeof(names), 2215 seccomp_actions_logged, " ")) 2216 return -EINVAL; 2217 2218 table = *ro_table; 2219 table.data = names; 2220 table.maxlen = sizeof(names); 2221 return proc_dostring(&table, 0, buffer, lenp, ppos); 2222 } 2223 2224 static int write_actions_logged(struct ctl_table *ro_table, void *buffer, 2225 size_t *lenp, loff_t *ppos, u32 *actions_logged) 2226 { 2227 char names[sizeof(seccomp_actions_avail)]; 2228 struct ctl_table table; 2229 int ret; 2230 2231 if (!capable(CAP_SYS_ADMIN)) 2232 return -EPERM; 2233 2234 memset(names, 0, sizeof(names)); 2235 2236 table = *ro_table; 2237 table.data = names; 2238 table.maxlen = sizeof(names); 2239 ret = proc_dostring(&table, 1, buffer, lenp, ppos); 2240 if (ret) 2241 return ret; 2242 2243 if (!seccomp_actions_logged_from_names(actions_logged, table.data)) 2244 return -EINVAL; 2245 2246 if (*actions_logged & SECCOMP_LOG_ALLOW) 2247 return -EINVAL; 2248 2249 seccomp_actions_logged = *actions_logged; 2250 return 0; 2251 } 2252 2253 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged, 2254 int ret) 2255 { 2256 char names[sizeof(seccomp_actions_avail)]; 2257 char old_names[sizeof(seccomp_actions_avail)]; 2258 const char *new = names; 2259 const char *old = old_names; 2260 2261 if (!audit_enabled) 2262 return; 2263 2264 memset(names, 0, sizeof(names)); 2265 memset(old_names, 0, sizeof(old_names)); 2266 2267 if (ret) 2268 new = "?"; 2269 else if (!actions_logged) 2270 new = "(none)"; 2271 else if (!seccomp_names_from_actions_logged(names, sizeof(names), 2272 actions_logged, ",")) 2273 new = "?"; 2274 2275 if (!old_actions_logged) 2276 old = "(none)"; 2277 else if (!seccomp_names_from_actions_logged(old_names, 2278 sizeof(old_names), 2279 old_actions_logged, ",")) 2280 old = "?"; 2281 2282 return audit_seccomp_actions_logged(new, old, !ret); 2283 } 2284 2285 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write, 2286 void *buffer, size_t *lenp, 2287 loff_t *ppos) 2288 { 2289 int ret; 2290 2291 if (write) { 2292 u32 actions_logged = 0; 2293 u32 old_actions_logged = seccomp_actions_logged; 2294 2295 ret = write_actions_logged(ro_table, buffer, lenp, ppos, 2296 &actions_logged); 2297 audit_actions_logged(actions_logged, old_actions_logged, ret); 2298 } else 2299 ret = read_actions_logged(ro_table, buffer, lenp, ppos); 2300 2301 return ret; 2302 } 2303 2304 static struct ctl_path seccomp_sysctl_path[] = { 2305 { .procname = "kernel", }, 2306 { .procname = "seccomp", }, 2307 { } 2308 }; 2309 2310 static struct ctl_table seccomp_sysctl_table[] = { 2311 { 2312 .procname = "actions_avail", 2313 .data = (void *) &seccomp_actions_avail, 2314 .maxlen = sizeof(seccomp_actions_avail), 2315 .mode = 0444, 2316 .proc_handler = proc_dostring, 2317 }, 2318 { 2319 .procname = "actions_logged", 2320 .mode = 0644, 2321 .proc_handler = seccomp_actions_logged_handler, 2322 }, 2323 { } 2324 }; 2325 2326 static int __init seccomp_sysctl_init(void) 2327 { 2328 struct ctl_table_header *hdr; 2329 2330 hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table); 2331 if (!hdr) 2332 pr_warn("sysctl registration failed\n"); 2333 else 2334 kmemleak_not_leak(hdr); 2335 2336 return 0; 2337 } 2338 2339 device_initcall(seccomp_sysctl_init) 2340 2341 #endif /* CONFIG_SYSCTL */ 2342 2343 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 2344 /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */ 2345 static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name, 2346 const void *bitmap, size_t bitmap_size) 2347 { 2348 int nr; 2349 2350 for (nr = 0; nr < bitmap_size; nr++) { 2351 bool cached = test_bit(nr, bitmap); 2352 char *status = cached ? "ALLOW" : "FILTER"; 2353 2354 seq_printf(m, "%s %d %s\n", name, nr, status); 2355 } 2356 } 2357 2358 int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns, 2359 struct pid *pid, struct task_struct *task) 2360 { 2361 struct seccomp_filter *f; 2362 unsigned long flags; 2363 2364 /* 2365 * We don't want some sandboxed process to know what their seccomp 2366 * filters consist of. 2367 */ 2368 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 2369 return -EACCES; 2370 2371 if (!lock_task_sighand(task, &flags)) 2372 return -ESRCH; 2373 2374 f = READ_ONCE(task->seccomp.filter); 2375 if (!f) { 2376 unlock_task_sighand(task, &flags); 2377 return 0; 2378 } 2379 2380 /* prevent filter from being freed while we are printing it */ 2381 __get_seccomp_filter(f); 2382 unlock_task_sighand(task, &flags); 2383 2384 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME, 2385 f->cache.allow_native, 2386 SECCOMP_ARCH_NATIVE_NR); 2387 2388 #ifdef SECCOMP_ARCH_COMPAT 2389 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME, 2390 f->cache.allow_compat, 2391 SECCOMP_ARCH_COMPAT_NR); 2392 #endif /* SECCOMP_ARCH_COMPAT */ 2393 2394 __put_seccomp_filter(f); 2395 return 0; 2396 } 2397 #endif /* CONFIG_SECCOMP_CACHE_DEBUG */ 2398