1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/seccomp.c 4 * 5 * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com> 6 * 7 * Copyright (C) 2012 Google, Inc. 8 * Will Drewry <wad@chromium.org> 9 * 10 * This defines a simple but solid secure-computing facility. 11 * 12 * Mode 1 uses a fixed list of allowed system calls. 13 * Mode 2 allows user-defined system call filters in the form 14 * of Berkeley Packet Filters/Linux Socket Filters. 15 */ 16 #define pr_fmt(fmt) "seccomp: " fmt 17 18 #include <linux/refcount.h> 19 #include <linux/audit.h> 20 #include <linux/compat.h> 21 #include <linux/coredump.h> 22 #include <linux/kmemleak.h> 23 #include <linux/nospec.h> 24 #include <linux/prctl.h> 25 #include <linux/sched.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/seccomp.h> 28 #include <linux/slab.h> 29 #include <linux/syscalls.h> 30 #include <linux/sysctl.h> 31 32 /* Not exposed in headers: strictly internal use only. */ 33 #define SECCOMP_MODE_DEAD (SECCOMP_MODE_FILTER + 1) 34 35 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER 36 #include <asm/syscall.h> 37 #endif 38 39 #ifdef CONFIG_SECCOMP_FILTER 40 #include <linux/file.h> 41 #include <linux/filter.h> 42 #include <linux/pid.h> 43 #include <linux/ptrace.h> 44 #include <linux/capability.h> 45 #include <linux/uaccess.h> 46 #include <linux/anon_inodes.h> 47 #include <linux/lockdep.h> 48 49 /* 50 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the 51 * wrong direction flag in the ioctl number. This is the broken one, 52 * which the kernel needs to keep supporting until all userspaces stop 53 * using the wrong command number. 54 */ 55 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64) 56 57 enum notify_state { 58 SECCOMP_NOTIFY_INIT, 59 SECCOMP_NOTIFY_SENT, 60 SECCOMP_NOTIFY_REPLIED, 61 }; 62 63 struct seccomp_knotif { 64 /* The struct pid of the task whose filter triggered the notification */ 65 struct task_struct *task; 66 67 /* The "cookie" for this request; this is unique for this filter. */ 68 u64 id; 69 70 /* 71 * The seccomp data. This pointer is valid the entire time this 72 * notification is active, since it comes from __seccomp_filter which 73 * eclipses the entire lifecycle here. 74 */ 75 const struct seccomp_data *data; 76 77 /* 78 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a 79 * struct seccomp_knotif is created and starts out in INIT. Once the 80 * handler reads the notification off of an FD, it transitions to SENT. 81 * If a signal is received the state transitions back to INIT and 82 * another message is sent. When the userspace handler replies, state 83 * transitions to REPLIED. 84 */ 85 enum notify_state state; 86 87 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */ 88 int error; 89 long val; 90 u32 flags; 91 92 /* 93 * Signals when this has changed states, such as the listener 94 * dying, a new seccomp addfd message, or changing to REPLIED 95 */ 96 struct completion ready; 97 98 struct list_head list; 99 100 /* outstanding addfd requests */ 101 struct list_head addfd; 102 }; 103 104 /** 105 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages 106 * 107 * @file: A reference to the file to install in the other task 108 * @fd: The fd number to install it at. If the fd number is -1, it means the 109 * installing process should allocate the fd as normal. 110 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC 111 * is allowed. 112 * @ioctl_flags: The flags used for the seccomp_addfd ioctl. 113 * @setfd: whether or not SECCOMP_ADDFD_FLAG_SETFD was set during notify_addfd 114 * @ret: The return value of the installing process. It is set to the fd num 115 * upon success (>= 0). 116 * @completion: Indicates that the installing process has completed fd 117 * installation, or gone away (either due to successful 118 * reply, or signal) 119 * @list: list_head for chaining seccomp_kaddfd together. 120 * 121 */ 122 struct seccomp_kaddfd { 123 struct file *file; 124 int fd; 125 unsigned int flags; 126 __u32 ioctl_flags; 127 128 union { 129 bool setfd; 130 /* To only be set on reply */ 131 int ret; 132 }; 133 struct completion completion; 134 struct list_head list; 135 }; 136 137 /** 138 * struct notification - container for seccomp userspace notifications. Since 139 * most seccomp filters will not have notification listeners attached and this 140 * structure is fairly large, we store the notification-specific stuff in a 141 * separate structure. 142 * 143 * @requests: A semaphore that users of this notification can wait on for 144 * changes. Actual reads and writes are still controlled with 145 * filter->notify_lock. 146 * @flags: A set of SECCOMP_USER_NOTIF_FD_* flags. 147 * @next_id: The id of the next request. 148 * @notifications: A list of struct seccomp_knotif elements. 149 */ 150 151 struct notification { 152 atomic_t requests; 153 u32 flags; 154 u64 next_id; 155 struct list_head notifications; 156 }; 157 158 #ifdef SECCOMP_ARCH_NATIVE 159 /** 160 * struct action_cache - per-filter cache of seccomp actions per 161 * arch/syscall pair 162 * 163 * @allow_native: A bitmap where each bit represents whether the 164 * filter will always allow the syscall, for the 165 * native architecture. 166 * @allow_compat: A bitmap where each bit represents whether the 167 * filter will always allow the syscall, for the 168 * compat architecture. 169 */ 170 struct action_cache { 171 DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR); 172 #ifdef SECCOMP_ARCH_COMPAT 173 DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR); 174 #endif 175 }; 176 #else 177 struct action_cache { }; 178 179 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 180 const struct seccomp_data *sd) 181 { 182 return false; 183 } 184 185 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter) 186 { 187 } 188 #endif /* SECCOMP_ARCH_NATIVE */ 189 190 /** 191 * struct seccomp_filter - container for seccomp BPF programs 192 * 193 * @refs: Reference count to manage the object lifetime. 194 * A filter's reference count is incremented for each directly 195 * attached task, once for the dependent filter, and if 196 * requested for the user notifier. When @refs reaches zero, 197 * the filter can be freed. 198 * @users: A filter's @users count is incremented for each directly 199 * attached task (filter installation, fork(), thread_sync), 200 * and once for the dependent filter (tracked in filter->prev). 201 * When it reaches zero it indicates that no direct or indirect 202 * users of that filter exist. No new tasks can get associated with 203 * this filter after reaching 0. The @users count is always smaller 204 * or equal to @refs. Hence, reaching 0 for @users does not mean 205 * the filter can be freed. 206 * @cache: cache of arch/syscall mappings to actions 207 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged 208 * @wait_killable_recv: Put notifying process in killable state once the 209 * notification is received by the userspace listener. 210 * @prev: points to a previously installed, or inherited, filter 211 * @prog: the BPF program to evaluate 212 * @notif: the struct that holds all notification related information 213 * @notify_lock: A lock for all notification-related accesses. 214 * @wqh: A wait queue for poll if a notifier is in use. 215 * 216 * seccomp_filter objects are organized in a tree linked via the @prev 217 * pointer. For any task, it appears to be a singly-linked list starting 218 * with current->seccomp.filter, the most recently attached or inherited filter. 219 * However, multiple filters may share a @prev node, by way of fork(), which 220 * results in a unidirectional tree existing in memory. This is similar to 221 * how namespaces work. 222 * 223 * seccomp_filter objects should never be modified after being attached 224 * to a task_struct (other than @refs). 225 */ 226 struct seccomp_filter { 227 refcount_t refs; 228 refcount_t users; 229 bool log; 230 bool wait_killable_recv; 231 struct action_cache cache; 232 struct seccomp_filter *prev; 233 struct bpf_prog *prog; 234 struct notification *notif; 235 struct mutex notify_lock; 236 wait_queue_head_t wqh; 237 }; 238 239 /* Limit any path through the tree to 256KB worth of instructions. */ 240 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter)) 241 242 /* 243 * Endianness is explicitly ignored and left for BPF program authors to manage 244 * as per the specific architecture. 245 */ 246 static void populate_seccomp_data(struct seccomp_data *sd) 247 { 248 /* 249 * Instead of using current_pt_reg(), we're already doing the work 250 * to safely fetch "current", so just use "task" everywhere below. 251 */ 252 struct task_struct *task = current; 253 struct pt_regs *regs = task_pt_regs(task); 254 unsigned long args[6]; 255 256 sd->nr = syscall_get_nr(task, regs); 257 sd->arch = syscall_get_arch(task); 258 syscall_get_arguments(task, regs, args); 259 sd->args[0] = args[0]; 260 sd->args[1] = args[1]; 261 sd->args[2] = args[2]; 262 sd->args[3] = args[3]; 263 sd->args[4] = args[4]; 264 sd->args[5] = args[5]; 265 sd->instruction_pointer = KSTK_EIP(task); 266 } 267 268 /** 269 * seccomp_check_filter - verify seccomp filter code 270 * @filter: filter to verify 271 * @flen: length of filter 272 * 273 * Takes a previously checked filter (by bpf_check_classic) and 274 * redirects all filter code that loads struct sk_buff data 275 * and related data through seccomp_bpf_load. It also 276 * enforces length and alignment checking of those loads. 277 * 278 * Returns 0 if the rule set is legal or -EINVAL if not. 279 */ 280 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen) 281 { 282 int pc; 283 for (pc = 0; pc < flen; pc++) { 284 struct sock_filter *ftest = &filter[pc]; 285 u16 code = ftest->code; 286 u32 k = ftest->k; 287 288 switch (code) { 289 case BPF_LD | BPF_W | BPF_ABS: 290 ftest->code = BPF_LDX | BPF_W | BPF_ABS; 291 /* 32-bit aligned and not out of bounds. */ 292 if (k >= sizeof(struct seccomp_data) || k & 3) 293 return -EINVAL; 294 continue; 295 case BPF_LD | BPF_W | BPF_LEN: 296 ftest->code = BPF_LD | BPF_IMM; 297 ftest->k = sizeof(struct seccomp_data); 298 continue; 299 case BPF_LDX | BPF_W | BPF_LEN: 300 ftest->code = BPF_LDX | BPF_IMM; 301 ftest->k = sizeof(struct seccomp_data); 302 continue; 303 /* Explicitly include allowed calls. */ 304 case BPF_RET | BPF_K: 305 case BPF_RET | BPF_A: 306 case BPF_ALU | BPF_ADD | BPF_K: 307 case BPF_ALU | BPF_ADD | BPF_X: 308 case BPF_ALU | BPF_SUB | BPF_K: 309 case BPF_ALU | BPF_SUB | BPF_X: 310 case BPF_ALU | BPF_MUL | BPF_K: 311 case BPF_ALU | BPF_MUL | BPF_X: 312 case BPF_ALU | BPF_DIV | BPF_K: 313 case BPF_ALU | BPF_DIV | BPF_X: 314 case BPF_ALU | BPF_AND | BPF_K: 315 case BPF_ALU | BPF_AND | BPF_X: 316 case BPF_ALU | BPF_OR | BPF_K: 317 case BPF_ALU | BPF_OR | BPF_X: 318 case BPF_ALU | BPF_XOR | BPF_K: 319 case BPF_ALU | BPF_XOR | BPF_X: 320 case BPF_ALU | BPF_LSH | BPF_K: 321 case BPF_ALU | BPF_LSH | BPF_X: 322 case BPF_ALU | BPF_RSH | BPF_K: 323 case BPF_ALU | BPF_RSH | BPF_X: 324 case BPF_ALU | BPF_NEG: 325 case BPF_LD | BPF_IMM: 326 case BPF_LDX | BPF_IMM: 327 case BPF_MISC | BPF_TAX: 328 case BPF_MISC | BPF_TXA: 329 case BPF_LD | BPF_MEM: 330 case BPF_LDX | BPF_MEM: 331 case BPF_ST: 332 case BPF_STX: 333 case BPF_JMP | BPF_JA: 334 case BPF_JMP | BPF_JEQ | BPF_K: 335 case BPF_JMP | BPF_JEQ | BPF_X: 336 case BPF_JMP | BPF_JGE | BPF_K: 337 case BPF_JMP | BPF_JGE | BPF_X: 338 case BPF_JMP | BPF_JGT | BPF_K: 339 case BPF_JMP | BPF_JGT | BPF_X: 340 case BPF_JMP | BPF_JSET | BPF_K: 341 case BPF_JMP | BPF_JSET | BPF_X: 342 continue; 343 default: 344 return -EINVAL; 345 } 346 } 347 return 0; 348 } 349 350 #ifdef SECCOMP_ARCH_NATIVE 351 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap, 352 size_t bitmap_size, 353 int syscall_nr) 354 { 355 if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size)) 356 return false; 357 syscall_nr = array_index_nospec(syscall_nr, bitmap_size); 358 359 return test_bit(syscall_nr, bitmap); 360 } 361 362 /** 363 * seccomp_cache_check_allow - lookup seccomp cache 364 * @sfilter: The seccomp filter 365 * @sd: The seccomp data to lookup the cache with 366 * 367 * Returns true if the seccomp_data is cached and allowed. 368 */ 369 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 370 const struct seccomp_data *sd) 371 { 372 int syscall_nr = sd->nr; 373 const struct action_cache *cache = &sfilter->cache; 374 375 #ifndef SECCOMP_ARCH_COMPAT 376 /* A native-only architecture doesn't need to check sd->arch. */ 377 return seccomp_cache_check_allow_bitmap(cache->allow_native, 378 SECCOMP_ARCH_NATIVE_NR, 379 syscall_nr); 380 #else 381 if (likely(sd->arch == SECCOMP_ARCH_NATIVE)) 382 return seccomp_cache_check_allow_bitmap(cache->allow_native, 383 SECCOMP_ARCH_NATIVE_NR, 384 syscall_nr); 385 if (likely(sd->arch == SECCOMP_ARCH_COMPAT)) 386 return seccomp_cache_check_allow_bitmap(cache->allow_compat, 387 SECCOMP_ARCH_COMPAT_NR, 388 syscall_nr); 389 #endif /* SECCOMP_ARCH_COMPAT */ 390 391 WARN_ON_ONCE(true); 392 return false; 393 } 394 #endif /* SECCOMP_ARCH_NATIVE */ 395 396 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL))) 397 /** 398 * seccomp_run_filters - evaluates all seccomp filters against @sd 399 * @sd: optional seccomp data to be passed to filters 400 * @match: stores struct seccomp_filter that resulted in the return value, 401 * unless filter returned SECCOMP_RET_ALLOW, in which case it will 402 * be unchanged. 403 * 404 * Returns valid seccomp BPF response codes. 405 */ 406 static u32 seccomp_run_filters(const struct seccomp_data *sd, 407 struct seccomp_filter **match) 408 { 409 u32 ret = SECCOMP_RET_ALLOW; 410 /* Make sure cross-thread synced filter points somewhere sane. */ 411 struct seccomp_filter *f = 412 READ_ONCE(current->seccomp.filter); 413 414 /* Ensure unexpected behavior doesn't result in failing open. */ 415 if (WARN_ON(f == NULL)) 416 return SECCOMP_RET_KILL_PROCESS; 417 418 if (seccomp_cache_check_allow(f, sd)) 419 return SECCOMP_RET_ALLOW; 420 421 /* 422 * All filters in the list are evaluated and the lowest BPF return 423 * value always takes priority (ignoring the DATA). 424 */ 425 for (; f; f = f->prev) { 426 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd); 427 428 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) { 429 ret = cur_ret; 430 *match = f; 431 } 432 } 433 return ret; 434 } 435 #endif /* CONFIG_SECCOMP_FILTER */ 436 437 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode) 438 { 439 assert_spin_locked(¤t->sighand->siglock); 440 441 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode) 442 return false; 443 444 return true; 445 } 446 447 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { } 448 449 static inline void seccomp_assign_mode(struct task_struct *task, 450 unsigned long seccomp_mode, 451 unsigned long flags) 452 { 453 assert_spin_locked(&task->sighand->siglock); 454 455 task->seccomp.mode = seccomp_mode; 456 /* 457 * Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and 458 * filter) is set. 459 */ 460 smp_mb__before_atomic(); 461 /* Assume default seccomp processes want spec flaw mitigation. */ 462 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0) 463 arch_seccomp_spec_mitigate(task); 464 set_task_syscall_work(task, SECCOMP); 465 } 466 467 #ifdef CONFIG_SECCOMP_FILTER 468 /* Returns 1 if the parent is an ancestor of the child. */ 469 static int is_ancestor(struct seccomp_filter *parent, 470 struct seccomp_filter *child) 471 { 472 /* NULL is the root ancestor. */ 473 if (parent == NULL) 474 return 1; 475 for (; child; child = child->prev) 476 if (child == parent) 477 return 1; 478 return 0; 479 } 480 481 /** 482 * seccomp_can_sync_threads: checks if all threads can be synchronized 483 * 484 * Expects sighand and cred_guard_mutex locks to be held. 485 * 486 * Returns 0 on success, -ve on error, or the pid of a thread which was 487 * either not in the correct seccomp mode or did not have an ancestral 488 * seccomp filter. 489 */ 490 static inline pid_t seccomp_can_sync_threads(void) 491 { 492 struct task_struct *thread, *caller; 493 494 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 495 assert_spin_locked(¤t->sighand->siglock); 496 497 /* Validate all threads being eligible for synchronization. */ 498 caller = current; 499 for_each_thread(caller, thread) { 500 pid_t failed; 501 502 /* Skip current, since it is initiating the sync. */ 503 if (thread == caller) 504 continue; 505 /* Skip exited threads. */ 506 if (thread->flags & PF_EXITING) 507 continue; 508 509 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED || 510 (thread->seccomp.mode == SECCOMP_MODE_FILTER && 511 is_ancestor(thread->seccomp.filter, 512 caller->seccomp.filter))) 513 continue; 514 515 /* Return the first thread that cannot be synchronized. */ 516 failed = task_pid_vnr(thread); 517 /* If the pid cannot be resolved, then return -ESRCH */ 518 if (WARN_ON(failed == 0)) 519 failed = -ESRCH; 520 return failed; 521 } 522 523 return 0; 524 } 525 526 static inline void seccomp_filter_free(struct seccomp_filter *filter) 527 { 528 if (filter) { 529 bpf_prog_destroy(filter->prog); 530 kfree(filter); 531 } 532 } 533 534 static void __seccomp_filter_orphan(struct seccomp_filter *orig) 535 { 536 while (orig && refcount_dec_and_test(&orig->users)) { 537 if (waitqueue_active(&orig->wqh)) 538 wake_up_poll(&orig->wqh, EPOLLHUP); 539 orig = orig->prev; 540 } 541 } 542 543 static void __put_seccomp_filter(struct seccomp_filter *orig) 544 { 545 /* Clean up single-reference branches iteratively. */ 546 while (orig && refcount_dec_and_test(&orig->refs)) { 547 struct seccomp_filter *freeme = orig; 548 orig = orig->prev; 549 seccomp_filter_free(freeme); 550 } 551 } 552 553 static void __seccomp_filter_release(struct seccomp_filter *orig) 554 { 555 /* Notify about any unused filters in the task's former filter tree. */ 556 __seccomp_filter_orphan(orig); 557 /* Finally drop all references to the task's former tree. */ 558 __put_seccomp_filter(orig); 559 } 560 561 /** 562 * seccomp_filter_release - Detach the task from its filter tree, 563 * drop its reference count, and notify 564 * about unused filters 565 * 566 * @tsk: task the filter should be released from. 567 * 568 * This function should only be called when the task is exiting as 569 * it detaches it from its filter tree. PF_EXITING has to be set 570 * for the task. 571 */ 572 void seccomp_filter_release(struct task_struct *tsk) 573 { 574 struct seccomp_filter *orig; 575 576 if (WARN_ON((tsk->flags & PF_EXITING) == 0)) 577 return; 578 579 spin_lock_irq(&tsk->sighand->siglock); 580 orig = tsk->seccomp.filter; 581 /* Detach task from its filter tree. */ 582 tsk->seccomp.filter = NULL; 583 spin_unlock_irq(&tsk->sighand->siglock); 584 __seccomp_filter_release(orig); 585 } 586 587 /** 588 * seccomp_sync_threads: sets all threads to use current's filter 589 * 590 * @flags: SECCOMP_FILTER_FLAG_* flags to set during sync. 591 * 592 * Expects sighand and cred_guard_mutex locks to be held, and for 593 * seccomp_can_sync_threads() to have returned success already 594 * without dropping the locks. 595 * 596 */ 597 static inline void seccomp_sync_threads(unsigned long flags) 598 { 599 struct task_struct *thread, *caller; 600 601 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 602 assert_spin_locked(¤t->sighand->siglock); 603 604 /* Synchronize all threads. */ 605 caller = current; 606 for_each_thread(caller, thread) { 607 /* Skip current, since it needs no changes. */ 608 if (thread == caller) 609 continue; 610 611 /* 612 * Skip exited threads. seccomp_filter_release could have 613 * been already called for this task. 614 */ 615 if (thread->flags & PF_EXITING) 616 continue; 617 618 /* Get a task reference for the new leaf node. */ 619 get_seccomp_filter(caller); 620 621 /* 622 * Drop the task reference to the shared ancestor since 623 * current's path will hold a reference. (This also 624 * allows a put before the assignment.) 625 */ 626 __seccomp_filter_release(thread->seccomp.filter); 627 628 /* Make our new filter tree visible. */ 629 smp_store_release(&thread->seccomp.filter, 630 caller->seccomp.filter); 631 atomic_set(&thread->seccomp.filter_count, 632 atomic_read(&caller->seccomp.filter_count)); 633 634 /* 635 * Don't let an unprivileged task work around 636 * the no_new_privs restriction by creating 637 * a thread that sets it up, enters seccomp, 638 * then dies. 639 */ 640 if (task_no_new_privs(caller)) 641 task_set_no_new_privs(thread); 642 643 /* 644 * Opt the other thread into seccomp if needed. 645 * As threads are considered to be trust-realm 646 * equivalent (see ptrace_may_access), it is safe to 647 * allow one thread to transition the other. 648 */ 649 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED) 650 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER, 651 flags); 652 } 653 } 654 655 /** 656 * seccomp_prepare_filter: Prepares a seccomp filter for use. 657 * @fprog: BPF program to install 658 * 659 * Returns filter on success or an ERR_PTR on failure. 660 */ 661 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog) 662 { 663 struct seccomp_filter *sfilter; 664 int ret; 665 const bool save_orig = 666 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE) 667 true; 668 #else 669 false; 670 #endif 671 672 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS) 673 return ERR_PTR(-EINVAL); 674 675 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter)); 676 677 /* 678 * Installing a seccomp filter requires that the task has 679 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs. 680 * This avoids scenarios where unprivileged tasks can affect the 681 * behavior of privileged children. 682 */ 683 if (!task_no_new_privs(current) && 684 !ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN)) 685 return ERR_PTR(-EACCES); 686 687 /* Allocate a new seccomp_filter */ 688 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN); 689 if (!sfilter) 690 return ERR_PTR(-ENOMEM); 691 692 mutex_init(&sfilter->notify_lock); 693 ret = bpf_prog_create_from_user(&sfilter->prog, fprog, 694 seccomp_check_filter, save_orig); 695 if (ret < 0) { 696 kfree(sfilter); 697 return ERR_PTR(ret); 698 } 699 700 refcount_set(&sfilter->refs, 1); 701 refcount_set(&sfilter->users, 1); 702 init_waitqueue_head(&sfilter->wqh); 703 704 return sfilter; 705 } 706 707 /** 708 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog 709 * @user_filter: pointer to the user data containing a sock_fprog. 710 * 711 * Returns 0 on success and non-zero otherwise. 712 */ 713 static struct seccomp_filter * 714 seccomp_prepare_user_filter(const char __user *user_filter) 715 { 716 struct sock_fprog fprog; 717 struct seccomp_filter *filter = ERR_PTR(-EFAULT); 718 719 #ifdef CONFIG_COMPAT 720 if (in_compat_syscall()) { 721 struct compat_sock_fprog fprog32; 722 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32))) 723 goto out; 724 fprog.len = fprog32.len; 725 fprog.filter = compat_ptr(fprog32.filter); 726 } else /* falls through to the if below. */ 727 #endif 728 if (copy_from_user(&fprog, user_filter, sizeof(fprog))) 729 goto out; 730 filter = seccomp_prepare_filter(&fprog); 731 out: 732 return filter; 733 } 734 735 #ifdef SECCOMP_ARCH_NATIVE 736 /** 737 * seccomp_is_const_allow - check if filter is constant allow with given data 738 * @fprog: The BPF programs 739 * @sd: The seccomp data to check against, only syscall number and arch 740 * number are considered constant. 741 */ 742 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog, 743 struct seccomp_data *sd) 744 { 745 unsigned int reg_value = 0; 746 unsigned int pc; 747 bool op_res; 748 749 if (WARN_ON_ONCE(!fprog)) 750 return false; 751 752 /* Our single exception to filtering. */ 753 #ifdef __NR_uretprobe 754 #ifdef SECCOMP_ARCH_COMPAT 755 if (sd->arch == SECCOMP_ARCH_NATIVE) 756 #endif 757 if (sd->nr == __NR_uretprobe) 758 return true; 759 #endif 760 761 for (pc = 0; pc < fprog->len; pc++) { 762 struct sock_filter *insn = &fprog->filter[pc]; 763 u16 code = insn->code; 764 u32 k = insn->k; 765 766 switch (code) { 767 case BPF_LD | BPF_W | BPF_ABS: 768 switch (k) { 769 case offsetof(struct seccomp_data, nr): 770 reg_value = sd->nr; 771 break; 772 case offsetof(struct seccomp_data, arch): 773 reg_value = sd->arch; 774 break; 775 default: 776 /* can't optimize (non-constant value load) */ 777 return false; 778 } 779 break; 780 case BPF_RET | BPF_K: 781 /* reached return with constant values only, check allow */ 782 return k == SECCOMP_RET_ALLOW; 783 case BPF_JMP | BPF_JA: 784 pc += insn->k; 785 break; 786 case BPF_JMP | BPF_JEQ | BPF_K: 787 case BPF_JMP | BPF_JGE | BPF_K: 788 case BPF_JMP | BPF_JGT | BPF_K: 789 case BPF_JMP | BPF_JSET | BPF_K: 790 switch (BPF_OP(code)) { 791 case BPF_JEQ: 792 op_res = reg_value == k; 793 break; 794 case BPF_JGE: 795 op_res = reg_value >= k; 796 break; 797 case BPF_JGT: 798 op_res = reg_value > k; 799 break; 800 case BPF_JSET: 801 op_res = !!(reg_value & k); 802 break; 803 default: 804 /* can't optimize (unknown jump) */ 805 return false; 806 } 807 808 pc += op_res ? insn->jt : insn->jf; 809 break; 810 case BPF_ALU | BPF_AND | BPF_K: 811 reg_value &= k; 812 break; 813 default: 814 /* can't optimize (unknown insn) */ 815 return false; 816 } 817 } 818 819 /* ran off the end of the filter?! */ 820 WARN_ON(1); 821 return false; 822 } 823 824 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter, 825 void *bitmap, const void *bitmap_prev, 826 size_t bitmap_size, int arch) 827 { 828 struct sock_fprog_kern *fprog = sfilter->prog->orig_prog; 829 struct seccomp_data sd; 830 int nr; 831 832 if (bitmap_prev) { 833 /* The new filter must be as restrictive as the last. */ 834 bitmap_copy(bitmap, bitmap_prev, bitmap_size); 835 } else { 836 /* Before any filters, all syscalls are always allowed. */ 837 bitmap_fill(bitmap, bitmap_size); 838 } 839 840 for (nr = 0; nr < bitmap_size; nr++) { 841 /* No bitmap change: not a cacheable action. */ 842 if (!test_bit(nr, bitmap)) 843 continue; 844 845 sd.nr = nr; 846 sd.arch = arch; 847 848 /* No bitmap change: continue to always allow. */ 849 if (seccomp_is_const_allow(fprog, &sd)) 850 continue; 851 852 /* 853 * Not a cacheable action: always run filters. 854 * atomic clear_bit() not needed, filter not visible yet. 855 */ 856 __clear_bit(nr, bitmap); 857 } 858 } 859 860 /** 861 * seccomp_cache_prepare - emulate the filter to find cacheable syscalls 862 * @sfilter: The seccomp filter 863 * 864 * Returns 0 if successful or -errno if error occurred. 865 */ 866 static void seccomp_cache_prepare(struct seccomp_filter *sfilter) 867 { 868 struct action_cache *cache = &sfilter->cache; 869 const struct action_cache *cache_prev = 870 sfilter->prev ? &sfilter->prev->cache : NULL; 871 872 seccomp_cache_prepare_bitmap(sfilter, cache->allow_native, 873 cache_prev ? cache_prev->allow_native : NULL, 874 SECCOMP_ARCH_NATIVE_NR, 875 SECCOMP_ARCH_NATIVE); 876 877 #ifdef SECCOMP_ARCH_COMPAT 878 seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat, 879 cache_prev ? cache_prev->allow_compat : NULL, 880 SECCOMP_ARCH_COMPAT_NR, 881 SECCOMP_ARCH_COMPAT); 882 #endif /* SECCOMP_ARCH_COMPAT */ 883 } 884 #endif /* SECCOMP_ARCH_NATIVE */ 885 886 /** 887 * seccomp_attach_filter: validate and attach filter 888 * @flags: flags to change filter behavior 889 * @filter: seccomp filter to add to the current process 890 * 891 * Caller must be holding current->sighand->siglock lock. 892 * 893 * Returns 0 on success, -ve on error, or 894 * - in TSYNC mode: the pid of a thread which was either not in the correct 895 * seccomp mode or did not have an ancestral seccomp filter 896 * - in NEW_LISTENER mode: the fd of the new listener 897 */ 898 static long seccomp_attach_filter(unsigned int flags, 899 struct seccomp_filter *filter) 900 { 901 unsigned long total_insns; 902 struct seccomp_filter *walker; 903 904 assert_spin_locked(¤t->sighand->siglock); 905 906 /* Validate resulting filter length. */ 907 total_insns = filter->prog->len; 908 for (walker = current->seccomp.filter; walker; walker = walker->prev) 909 total_insns += walker->prog->len + 4; /* 4 instr penalty */ 910 if (total_insns > MAX_INSNS_PER_PATH) 911 return -ENOMEM; 912 913 /* If thread sync has been requested, check that it is possible. */ 914 if (flags & SECCOMP_FILTER_FLAG_TSYNC) { 915 int ret; 916 917 ret = seccomp_can_sync_threads(); 918 if (ret) { 919 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) 920 return -ESRCH; 921 else 922 return ret; 923 } 924 } 925 926 /* Set log flag, if present. */ 927 if (flags & SECCOMP_FILTER_FLAG_LOG) 928 filter->log = true; 929 930 /* Set wait killable flag, if present. */ 931 if (flags & SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV) 932 filter->wait_killable_recv = true; 933 934 /* 935 * If there is an existing filter, make it the prev and don't drop its 936 * task reference. 937 */ 938 filter->prev = current->seccomp.filter; 939 seccomp_cache_prepare(filter); 940 current->seccomp.filter = filter; 941 atomic_inc(¤t->seccomp.filter_count); 942 943 /* Now that the new filter is in place, synchronize to all threads. */ 944 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 945 seccomp_sync_threads(flags); 946 947 return 0; 948 } 949 950 static void __get_seccomp_filter(struct seccomp_filter *filter) 951 { 952 refcount_inc(&filter->refs); 953 } 954 955 /* get_seccomp_filter - increments the reference count of the filter on @tsk */ 956 void get_seccomp_filter(struct task_struct *tsk) 957 { 958 struct seccomp_filter *orig = tsk->seccomp.filter; 959 if (!orig) 960 return; 961 __get_seccomp_filter(orig); 962 refcount_inc(&orig->users); 963 } 964 965 #endif /* CONFIG_SECCOMP_FILTER */ 966 967 /* For use with seccomp_actions_logged */ 968 #define SECCOMP_LOG_KILL_PROCESS (1 << 0) 969 #define SECCOMP_LOG_KILL_THREAD (1 << 1) 970 #define SECCOMP_LOG_TRAP (1 << 2) 971 #define SECCOMP_LOG_ERRNO (1 << 3) 972 #define SECCOMP_LOG_TRACE (1 << 4) 973 #define SECCOMP_LOG_LOG (1 << 5) 974 #define SECCOMP_LOG_ALLOW (1 << 6) 975 #define SECCOMP_LOG_USER_NOTIF (1 << 7) 976 977 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS | 978 SECCOMP_LOG_KILL_THREAD | 979 SECCOMP_LOG_TRAP | 980 SECCOMP_LOG_ERRNO | 981 SECCOMP_LOG_USER_NOTIF | 982 SECCOMP_LOG_TRACE | 983 SECCOMP_LOG_LOG; 984 985 static inline void seccomp_log(unsigned long syscall, long signr, u32 action, 986 bool requested) 987 { 988 bool log = false; 989 990 switch (action) { 991 case SECCOMP_RET_ALLOW: 992 break; 993 case SECCOMP_RET_TRAP: 994 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP; 995 break; 996 case SECCOMP_RET_ERRNO: 997 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO; 998 break; 999 case SECCOMP_RET_TRACE: 1000 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE; 1001 break; 1002 case SECCOMP_RET_USER_NOTIF: 1003 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF; 1004 break; 1005 case SECCOMP_RET_LOG: 1006 log = seccomp_actions_logged & SECCOMP_LOG_LOG; 1007 break; 1008 case SECCOMP_RET_KILL_THREAD: 1009 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD; 1010 break; 1011 case SECCOMP_RET_KILL_PROCESS: 1012 default: 1013 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS; 1014 } 1015 1016 /* 1017 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the 1018 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence 1019 * any action from being logged by removing the action name from the 1020 * seccomp_actions_logged sysctl. 1021 */ 1022 if (!log) 1023 return; 1024 1025 audit_seccomp(syscall, signr, action); 1026 } 1027 1028 /* 1029 * Secure computing mode 1 allows only read/write/exit/sigreturn. 1030 * To be fully secure this must be combined with rlimit 1031 * to limit the stack allocations too. 1032 */ 1033 static const int mode1_syscalls[] = { 1034 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn, 1035 #ifdef __NR_uretprobe 1036 __NR_uretprobe, 1037 #endif 1038 -1, /* negative terminated */ 1039 }; 1040 1041 static void __secure_computing_strict(int this_syscall) 1042 { 1043 const int *allowed_syscalls = mode1_syscalls; 1044 #ifdef CONFIG_COMPAT 1045 if (in_compat_syscall()) 1046 allowed_syscalls = get_compat_mode1_syscalls(); 1047 #endif 1048 do { 1049 if (*allowed_syscalls == this_syscall) 1050 return; 1051 } while (*++allowed_syscalls != -1); 1052 1053 #ifdef SECCOMP_DEBUG 1054 dump_stack(); 1055 #endif 1056 current->seccomp.mode = SECCOMP_MODE_DEAD; 1057 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true); 1058 do_exit(SIGKILL); 1059 } 1060 1061 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER 1062 void secure_computing_strict(int this_syscall) 1063 { 1064 int mode = current->seccomp.mode; 1065 1066 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1067 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1068 return; 1069 1070 if (mode == SECCOMP_MODE_DISABLED) 1071 return; 1072 else if (mode == SECCOMP_MODE_STRICT) 1073 __secure_computing_strict(this_syscall); 1074 else 1075 BUG(); 1076 } 1077 #else 1078 1079 #ifdef CONFIG_SECCOMP_FILTER 1080 static u64 seccomp_next_notify_id(struct seccomp_filter *filter) 1081 { 1082 /* 1083 * Note: overflow is ok here, the id just needs to be unique per 1084 * filter. 1085 */ 1086 lockdep_assert_held(&filter->notify_lock); 1087 return filter->notif->next_id++; 1088 } 1089 1090 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd, struct seccomp_knotif *n) 1091 { 1092 int fd; 1093 1094 /* 1095 * Remove the notification, and reset the list pointers, indicating 1096 * that it has been handled. 1097 */ 1098 list_del_init(&addfd->list); 1099 if (!addfd->setfd) 1100 fd = receive_fd(addfd->file, NULL, addfd->flags); 1101 else 1102 fd = receive_fd_replace(addfd->fd, addfd->file, addfd->flags); 1103 addfd->ret = fd; 1104 1105 if (addfd->ioctl_flags & SECCOMP_ADDFD_FLAG_SEND) { 1106 /* If we fail reset and return an error to the notifier */ 1107 if (fd < 0) { 1108 n->state = SECCOMP_NOTIFY_SENT; 1109 } else { 1110 /* Return the FD we just added */ 1111 n->flags = 0; 1112 n->error = 0; 1113 n->val = fd; 1114 } 1115 } 1116 1117 /* 1118 * Mark the notification as completed. From this point, addfd mem 1119 * might be invalidated and we can't safely read it anymore. 1120 */ 1121 complete(&addfd->completion); 1122 } 1123 1124 static bool should_sleep_killable(struct seccomp_filter *match, 1125 struct seccomp_knotif *n) 1126 { 1127 return match->wait_killable_recv && n->state == SECCOMP_NOTIFY_SENT; 1128 } 1129 1130 static int seccomp_do_user_notification(int this_syscall, 1131 struct seccomp_filter *match, 1132 const struct seccomp_data *sd) 1133 { 1134 int err; 1135 u32 flags = 0; 1136 long ret = 0; 1137 struct seccomp_knotif n = {}; 1138 struct seccomp_kaddfd *addfd, *tmp; 1139 1140 mutex_lock(&match->notify_lock); 1141 err = -ENOSYS; 1142 if (!match->notif) 1143 goto out; 1144 1145 n.task = current; 1146 n.state = SECCOMP_NOTIFY_INIT; 1147 n.data = sd; 1148 n.id = seccomp_next_notify_id(match); 1149 init_completion(&n.ready); 1150 list_add_tail(&n.list, &match->notif->notifications); 1151 INIT_LIST_HEAD(&n.addfd); 1152 1153 atomic_inc(&match->notif->requests); 1154 if (match->notif->flags & SECCOMP_USER_NOTIF_FD_SYNC_WAKE_UP) 1155 wake_up_poll_on_current_cpu(&match->wqh, EPOLLIN | EPOLLRDNORM); 1156 else 1157 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM); 1158 1159 /* 1160 * This is where we wait for a reply from userspace. 1161 */ 1162 do { 1163 bool wait_killable = should_sleep_killable(match, &n); 1164 1165 mutex_unlock(&match->notify_lock); 1166 if (wait_killable) 1167 err = wait_for_completion_killable(&n.ready); 1168 else 1169 err = wait_for_completion_interruptible(&n.ready); 1170 mutex_lock(&match->notify_lock); 1171 1172 if (err != 0) { 1173 /* 1174 * Check to see if the notifcation got picked up and 1175 * whether we should switch to wait killable. 1176 */ 1177 if (!wait_killable && should_sleep_killable(match, &n)) 1178 continue; 1179 1180 goto interrupted; 1181 } 1182 1183 addfd = list_first_entry_or_null(&n.addfd, 1184 struct seccomp_kaddfd, list); 1185 /* Check if we were woken up by a addfd message */ 1186 if (addfd) 1187 seccomp_handle_addfd(addfd, &n); 1188 1189 } while (n.state != SECCOMP_NOTIFY_REPLIED); 1190 1191 ret = n.val; 1192 err = n.error; 1193 flags = n.flags; 1194 1195 interrupted: 1196 /* If there were any pending addfd calls, clear them out */ 1197 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) { 1198 /* The process went away before we got a chance to handle it */ 1199 addfd->ret = -ESRCH; 1200 list_del_init(&addfd->list); 1201 complete(&addfd->completion); 1202 } 1203 1204 /* 1205 * Note that it's possible the listener died in between the time when 1206 * we were notified of a response (or a signal) and when we were able to 1207 * re-acquire the lock, so only delete from the list if the 1208 * notification actually exists. 1209 * 1210 * Also note that this test is only valid because there's no way to 1211 * *reattach* to a notifier right now. If one is added, we'll need to 1212 * keep track of the notif itself and make sure they match here. 1213 */ 1214 if (match->notif) 1215 list_del(&n.list); 1216 out: 1217 mutex_unlock(&match->notify_lock); 1218 1219 /* Userspace requests to continue the syscall. */ 1220 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1221 return 0; 1222 1223 syscall_set_return_value(current, current_pt_regs(), 1224 err, ret); 1225 return -1; 1226 } 1227 1228 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1229 const bool recheck_after_trace) 1230 { 1231 u32 filter_ret, action; 1232 struct seccomp_filter *match = NULL; 1233 int data; 1234 struct seccomp_data sd_local; 1235 1236 /* 1237 * Make sure that any changes to mode from another thread have 1238 * been seen after SYSCALL_WORK_SECCOMP was seen. 1239 */ 1240 smp_rmb(); 1241 1242 if (!sd) { 1243 populate_seccomp_data(&sd_local); 1244 sd = &sd_local; 1245 } 1246 1247 filter_ret = seccomp_run_filters(sd, &match); 1248 data = filter_ret & SECCOMP_RET_DATA; 1249 action = filter_ret & SECCOMP_RET_ACTION_FULL; 1250 1251 switch (action) { 1252 case SECCOMP_RET_ERRNO: 1253 /* Set low-order bits as an errno, capped at MAX_ERRNO. */ 1254 if (data > MAX_ERRNO) 1255 data = MAX_ERRNO; 1256 syscall_set_return_value(current, current_pt_regs(), 1257 -data, 0); 1258 goto skip; 1259 1260 case SECCOMP_RET_TRAP: 1261 /* Show the handler the original registers. */ 1262 syscall_rollback(current, current_pt_regs()); 1263 /* Let the filter pass back 16 bits of data. */ 1264 force_sig_seccomp(this_syscall, data, false); 1265 goto skip; 1266 1267 case SECCOMP_RET_TRACE: 1268 /* We've been put in this state by the ptracer already. */ 1269 if (recheck_after_trace) 1270 return 0; 1271 1272 /* ENOSYS these calls if there is no tracer attached. */ 1273 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) { 1274 syscall_set_return_value(current, 1275 current_pt_regs(), 1276 -ENOSYS, 0); 1277 goto skip; 1278 } 1279 1280 /* Allow the BPF to provide the event message */ 1281 ptrace_event(PTRACE_EVENT_SECCOMP, data); 1282 /* 1283 * The delivery of a fatal signal during event 1284 * notification may silently skip tracer notification, 1285 * which could leave us with a potentially unmodified 1286 * syscall that the tracer would have liked to have 1287 * changed. Since the process is about to die, we just 1288 * force the syscall to be skipped and let the signal 1289 * kill the process and correctly handle any tracer exit 1290 * notifications. 1291 */ 1292 if (fatal_signal_pending(current)) 1293 goto skip; 1294 /* Check if the tracer forced the syscall to be skipped. */ 1295 this_syscall = syscall_get_nr(current, current_pt_regs()); 1296 if (this_syscall < 0) 1297 goto skip; 1298 1299 /* 1300 * Recheck the syscall, since it may have changed. This 1301 * intentionally uses a NULL struct seccomp_data to force 1302 * a reload of all registers. This does not goto skip since 1303 * a skip would have already been reported. 1304 */ 1305 if (__seccomp_filter(this_syscall, NULL, true)) 1306 return -1; 1307 1308 return 0; 1309 1310 case SECCOMP_RET_USER_NOTIF: 1311 if (seccomp_do_user_notification(this_syscall, match, sd)) 1312 goto skip; 1313 1314 return 0; 1315 1316 case SECCOMP_RET_LOG: 1317 seccomp_log(this_syscall, 0, action, true); 1318 return 0; 1319 1320 case SECCOMP_RET_ALLOW: 1321 /* 1322 * Note that the "match" filter will always be NULL for 1323 * this action since SECCOMP_RET_ALLOW is the starting 1324 * state in seccomp_run_filters(). 1325 */ 1326 return 0; 1327 1328 case SECCOMP_RET_KILL_THREAD: 1329 case SECCOMP_RET_KILL_PROCESS: 1330 default: 1331 current->seccomp.mode = SECCOMP_MODE_DEAD; 1332 seccomp_log(this_syscall, SIGSYS, action, true); 1333 /* Dump core only if this is the last remaining thread. */ 1334 if (action != SECCOMP_RET_KILL_THREAD || 1335 (atomic_read(¤t->signal->live) == 1)) { 1336 /* Show the original registers in the dump. */ 1337 syscall_rollback(current, current_pt_regs()); 1338 /* Trigger a coredump with SIGSYS */ 1339 force_sig_seccomp(this_syscall, data, true); 1340 } else { 1341 do_exit(SIGSYS); 1342 } 1343 return -1; /* skip the syscall go directly to signal handling */ 1344 } 1345 1346 unreachable(); 1347 1348 skip: 1349 seccomp_log(this_syscall, 0, action, match ? match->log : false); 1350 return -1; 1351 } 1352 #else 1353 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1354 const bool recheck_after_trace) 1355 { 1356 BUG(); 1357 1358 return -1; 1359 } 1360 #endif 1361 1362 int __secure_computing(const struct seccomp_data *sd) 1363 { 1364 int mode = current->seccomp.mode; 1365 int this_syscall; 1366 1367 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1368 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1369 return 0; 1370 1371 this_syscall = sd ? sd->nr : 1372 syscall_get_nr(current, current_pt_regs()); 1373 1374 switch (mode) { 1375 case SECCOMP_MODE_STRICT: 1376 __secure_computing_strict(this_syscall); /* may call do_exit */ 1377 return 0; 1378 case SECCOMP_MODE_FILTER: 1379 return __seccomp_filter(this_syscall, sd, false); 1380 /* Surviving SECCOMP_RET_KILL_* must be proactively impossible. */ 1381 case SECCOMP_MODE_DEAD: 1382 WARN_ON_ONCE(1); 1383 do_exit(SIGKILL); 1384 return -1; 1385 default: 1386 BUG(); 1387 } 1388 } 1389 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */ 1390 1391 long prctl_get_seccomp(void) 1392 { 1393 return current->seccomp.mode; 1394 } 1395 1396 /** 1397 * seccomp_set_mode_strict: internal function for setting strict seccomp 1398 * 1399 * Once current->seccomp.mode is non-zero, it may not be changed. 1400 * 1401 * Returns 0 on success or -EINVAL on failure. 1402 */ 1403 static long seccomp_set_mode_strict(void) 1404 { 1405 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT; 1406 long ret = -EINVAL; 1407 1408 spin_lock_irq(¤t->sighand->siglock); 1409 1410 if (!seccomp_may_assign_mode(seccomp_mode)) 1411 goto out; 1412 1413 #ifdef TIF_NOTSC 1414 disable_TSC(); 1415 #endif 1416 seccomp_assign_mode(current, seccomp_mode, 0); 1417 ret = 0; 1418 1419 out: 1420 spin_unlock_irq(¤t->sighand->siglock); 1421 1422 return ret; 1423 } 1424 1425 #ifdef CONFIG_SECCOMP_FILTER 1426 static void seccomp_notify_free(struct seccomp_filter *filter) 1427 { 1428 kfree(filter->notif); 1429 filter->notif = NULL; 1430 } 1431 1432 static void seccomp_notify_detach(struct seccomp_filter *filter) 1433 { 1434 struct seccomp_knotif *knotif; 1435 1436 if (!filter) 1437 return; 1438 1439 mutex_lock(&filter->notify_lock); 1440 1441 /* 1442 * If this file is being closed because e.g. the task who owned it 1443 * died, let's wake everyone up who was waiting on us. 1444 */ 1445 list_for_each_entry(knotif, &filter->notif->notifications, list) { 1446 if (knotif->state == SECCOMP_NOTIFY_REPLIED) 1447 continue; 1448 1449 knotif->state = SECCOMP_NOTIFY_REPLIED; 1450 knotif->error = -ENOSYS; 1451 knotif->val = 0; 1452 1453 /* 1454 * We do not need to wake up any pending addfd messages, as 1455 * the notifier will do that for us, as this just looks 1456 * like a standard reply. 1457 */ 1458 complete(&knotif->ready); 1459 } 1460 1461 seccomp_notify_free(filter); 1462 mutex_unlock(&filter->notify_lock); 1463 } 1464 1465 static int seccomp_notify_release(struct inode *inode, struct file *file) 1466 { 1467 struct seccomp_filter *filter = file->private_data; 1468 1469 seccomp_notify_detach(filter); 1470 __put_seccomp_filter(filter); 1471 return 0; 1472 } 1473 1474 /* must be called with notif_lock held */ 1475 static inline struct seccomp_knotif * 1476 find_notification(struct seccomp_filter *filter, u64 id) 1477 { 1478 struct seccomp_knotif *cur; 1479 1480 lockdep_assert_held(&filter->notify_lock); 1481 1482 list_for_each_entry(cur, &filter->notif->notifications, list) { 1483 if (cur->id == id) 1484 return cur; 1485 } 1486 1487 return NULL; 1488 } 1489 1490 static int recv_wake_function(wait_queue_entry_t *wait, unsigned int mode, int sync, 1491 void *key) 1492 { 1493 /* Avoid a wakeup if event not interesting for us. */ 1494 if (key && !(key_to_poll(key) & (EPOLLIN | EPOLLERR | EPOLLHUP))) 1495 return 0; 1496 return autoremove_wake_function(wait, mode, sync, key); 1497 } 1498 1499 static int recv_wait_event(struct seccomp_filter *filter) 1500 { 1501 DEFINE_WAIT_FUNC(wait, recv_wake_function); 1502 int ret; 1503 1504 if (refcount_read(&filter->users) == 0) 1505 return 0; 1506 1507 if (atomic_dec_if_positive(&filter->notif->requests) >= 0) 1508 return 0; 1509 1510 for (;;) { 1511 ret = prepare_to_wait_event(&filter->wqh, &wait, TASK_INTERRUPTIBLE); 1512 1513 if (atomic_dec_if_positive(&filter->notif->requests) >= 0) 1514 break; 1515 if (refcount_read(&filter->users) == 0) 1516 break; 1517 1518 if (ret) 1519 return ret; 1520 1521 schedule(); 1522 } 1523 finish_wait(&filter->wqh, &wait); 1524 return 0; 1525 } 1526 1527 static long seccomp_notify_recv(struct seccomp_filter *filter, 1528 void __user *buf) 1529 { 1530 struct seccomp_knotif *knotif = NULL, *cur; 1531 struct seccomp_notif unotif; 1532 ssize_t ret; 1533 1534 /* Verify that we're not given garbage to keep struct extensible. */ 1535 ret = check_zeroed_user(buf, sizeof(unotif)); 1536 if (ret < 0) 1537 return ret; 1538 if (!ret) 1539 return -EINVAL; 1540 1541 memset(&unotif, 0, sizeof(unotif)); 1542 1543 ret = recv_wait_event(filter); 1544 if (ret < 0) 1545 return ret; 1546 1547 mutex_lock(&filter->notify_lock); 1548 list_for_each_entry(cur, &filter->notif->notifications, list) { 1549 if (cur->state == SECCOMP_NOTIFY_INIT) { 1550 knotif = cur; 1551 break; 1552 } 1553 } 1554 1555 /* 1556 * If we didn't find a notification, it could be that the task was 1557 * interrupted by a fatal signal between the time we were woken and 1558 * when we were able to acquire the rw lock. 1559 */ 1560 if (!knotif) { 1561 ret = -ENOENT; 1562 goto out; 1563 } 1564 1565 unotif.id = knotif->id; 1566 unotif.pid = task_pid_vnr(knotif->task); 1567 unotif.data = *(knotif->data); 1568 1569 knotif->state = SECCOMP_NOTIFY_SENT; 1570 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM); 1571 ret = 0; 1572 out: 1573 mutex_unlock(&filter->notify_lock); 1574 1575 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) { 1576 ret = -EFAULT; 1577 1578 /* 1579 * Userspace screwed up. To make sure that we keep this 1580 * notification alive, let's reset it back to INIT. It 1581 * may have died when we released the lock, so we need to make 1582 * sure it's still around. 1583 */ 1584 mutex_lock(&filter->notify_lock); 1585 knotif = find_notification(filter, unotif.id); 1586 if (knotif) { 1587 /* Reset the process to make sure it's not stuck */ 1588 if (should_sleep_killable(filter, knotif)) 1589 complete(&knotif->ready); 1590 knotif->state = SECCOMP_NOTIFY_INIT; 1591 atomic_inc(&filter->notif->requests); 1592 wake_up_poll(&filter->wqh, EPOLLIN | EPOLLRDNORM); 1593 } 1594 mutex_unlock(&filter->notify_lock); 1595 } 1596 1597 return ret; 1598 } 1599 1600 static long seccomp_notify_send(struct seccomp_filter *filter, 1601 void __user *buf) 1602 { 1603 struct seccomp_notif_resp resp = {}; 1604 struct seccomp_knotif *knotif; 1605 long ret; 1606 1607 if (copy_from_user(&resp, buf, sizeof(resp))) 1608 return -EFAULT; 1609 1610 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1611 return -EINVAL; 1612 1613 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) && 1614 (resp.error || resp.val)) 1615 return -EINVAL; 1616 1617 ret = mutex_lock_interruptible(&filter->notify_lock); 1618 if (ret < 0) 1619 return ret; 1620 1621 knotif = find_notification(filter, resp.id); 1622 if (!knotif) { 1623 ret = -ENOENT; 1624 goto out; 1625 } 1626 1627 /* Allow exactly one reply. */ 1628 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1629 ret = -EINPROGRESS; 1630 goto out; 1631 } 1632 1633 ret = 0; 1634 knotif->state = SECCOMP_NOTIFY_REPLIED; 1635 knotif->error = resp.error; 1636 knotif->val = resp.val; 1637 knotif->flags = resp.flags; 1638 if (filter->notif->flags & SECCOMP_USER_NOTIF_FD_SYNC_WAKE_UP) 1639 complete_on_current_cpu(&knotif->ready); 1640 else 1641 complete(&knotif->ready); 1642 out: 1643 mutex_unlock(&filter->notify_lock); 1644 return ret; 1645 } 1646 1647 static long seccomp_notify_id_valid(struct seccomp_filter *filter, 1648 void __user *buf) 1649 { 1650 struct seccomp_knotif *knotif; 1651 u64 id; 1652 long ret; 1653 1654 if (copy_from_user(&id, buf, sizeof(id))) 1655 return -EFAULT; 1656 1657 ret = mutex_lock_interruptible(&filter->notify_lock); 1658 if (ret < 0) 1659 return ret; 1660 1661 knotif = find_notification(filter, id); 1662 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT) 1663 ret = 0; 1664 else 1665 ret = -ENOENT; 1666 1667 mutex_unlock(&filter->notify_lock); 1668 return ret; 1669 } 1670 1671 static long seccomp_notify_set_flags(struct seccomp_filter *filter, 1672 unsigned long flags) 1673 { 1674 long ret; 1675 1676 if (flags & ~SECCOMP_USER_NOTIF_FD_SYNC_WAKE_UP) 1677 return -EINVAL; 1678 1679 ret = mutex_lock_interruptible(&filter->notify_lock); 1680 if (ret < 0) 1681 return ret; 1682 filter->notif->flags = flags; 1683 mutex_unlock(&filter->notify_lock); 1684 return 0; 1685 } 1686 1687 static long seccomp_notify_addfd(struct seccomp_filter *filter, 1688 struct seccomp_notif_addfd __user *uaddfd, 1689 unsigned int size) 1690 { 1691 struct seccomp_notif_addfd addfd; 1692 struct seccomp_knotif *knotif; 1693 struct seccomp_kaddfd kaddfd; 1694 int ret; 1695 1696 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0); 1697 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST); 1698 1699 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE) 1700 return -EINVAL; 1701 1702 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size); 1703 if (ret) 1704 return ret; 1705 1706 if (addfd.newfd_flags & ~O_CLOEXEC) 1707 return -EINVAL; 1708 1709 if (addfd.flags & ~(SECCOMP_ADDFD_FLAG_SETFD | SECCOMP_ADDFD_FLAG_SEND)) 1710 return -EINVAL; 1711 1712 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD)) 1713 return -EINVAL; 1714 1715 kaddfd.file = fget(addfd.srcfd); 1716 if (!kaddfd.file) 1717 return -EBADF; 1718 1719 kaddfd.ioctl_flags = addfd.flags; 1720 kaddfd.flags = addfd.newfd_flags; 1721 kaddfd.setfd = addfd.flags & SECCOMP_ADDFD_FLAG_SETFD; 1722 kaddfd.fd = addfd.newfd; 1723 init_completion(&kaddfd.completion); 1724 1725 ret = mutex_lock_interruptible(&filter->notify_lock); 1726 if (ret < 0) 1727 goto out; 1728 1729 knotif = find_notification(filter, addfd.id); 1730 if (!knotif) { 1731 ret = -ENOENT; 1732 goto out_unlock; 1733 } 1734 1735 /* 1736 * We do not want to allow for FD injection to occur before the 1737 * notification has been picked up by a userspace handler, or after 1738 * the notification has been replied to. 1739 */ 1740 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1741 ret = -EINPROGRESS; 1742 goto out_unlock; 1743 } 1744 1745 if (addfd.flags & SECCOMP_ADDFD_FLAG_SEND) { 1746 /* 1747 * Disallow queuing an atomic addfd + send reply while there are 1748 * some addfd requests still to process. 1749 * 1750 * There is no clear reason to support it and allows us to keep 1751 * the loop on the other side straight-forward. 1752 */ 1753 if (!list_empty(&knotif->addfd)) { 1754 ret = -EBUSY; 1755 goto out_unlock; 1756 } 1757 1758 /* Allow exactly only one reply */ 1759 knotif->state = SECCOMP_NOTIFY_REPLIED; 1760 } 1761 1762 list_add(&kaddfd.list, &knotif->addfd); 1763 complete(&knotif->ready); 1764 mutex_unlock(&filter->notify_lock); 1765 1766 /* Now we wait for it to be processed or be interrupted */ 1767 ret = wait_for_completion_interruptible(&kaddfd.completion); 1768 if (ret == 0) { 1769 /* 1770 * We had a successful completion. The other side has already 1771 * removed us from the addfd queue, and 1772 * wait_for_completion_interruptible has a memory barrier upon 1773 * success that lets us read this value directly without 1774 * locking. 1775 */ 1776 ret = kaddfd.ret; 1777 goto out; 1778 } 1779 1780 mutex_lock(&filter->notify_lock); 1781 /* 1782 * Even though we were woken up by a signal and not a successful 1783 * completion, a completion may have happened in the mean time. 1784 * 1785 * We need to check again if the addfd request has been handled, 1786 * and if not, we will remove it from the queue. 1787 */ 1788 if (list_empty(&kaddfd.list)) 1789 ret = kaddfd.ret; 1790 else 1791 list_del(&kaddfd.list); 1792 1793 out_unlock: 1794 mutex_unlock(&filter->notify_lock); 1795 out: 1796 fput(kaddfd.file); 1797 1798 return ret; 1799 } 1800 1801 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd, 1802 unsigned long arg) 1803 { 1804 struct seccomp_filter *filter = file->private_data; 1805 void __user *buf = (void __user *)arg; 1806 1807 /* Fixed-size ioctls */ 1808 switch (cmd) { 1809 case SECCOMP_IOCTL_NOTIF_RECV: 1810 return seccomp_notify_recv(filter, buf); 1811 case SECCOMP_IOCTL_NOTIF_SEND: 1812 return seccomp_notify_send(filter, buf); 1813 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR: 1814 case SECCOMP_IOCTL_NOTIF_ID_VALID: 1815 return seccomp_notify_id_valid(filter, buf); 1816 case SECCOMP_IOCTL_NOTIF_SET_FLAGS: 1817 return seccomp_notify_set_flags(filter, arg); 1818 } 1819 1820 /* Extensible Argument ioctls */ 1821 #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK)) 1822 switch (EA_IOCTL(cmd)) { 1823 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD): 1824 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd)); 1825 default: 1826 return -EINVAL; 1827 } 1828 } 1829 1830 static __poll_t seccomp_notify_poll(struct file *file, 1831 struct poll_table_struct *poll_tab) 1832 { 1833 struct seccomp_filter *filter = file->private_data; 1834 __poll_t ret = 0; 1835 struct seccomp_knotif *cur; 1836 1837 poll_wait(file, &filter->wqh, poll_tab); 1838 1839 if (mutex_lock_interruptible(&filter->notify_lock) < 0) 1840 return EPOLLERR; 1841 1842 list_for_each_entry(cur, &filter->notif->notifications, list) { 1843 if (cur->state == SECCOMP_NOTIFY_INIT) 1844 ret |= EPOLLIN | EPOLLRDNORM; 1845 if (cur->state == SECCOMP_NOTIFY_SENT) 1846 ret |= EPOLLOUT | EPOLLWRNORM; 1847 if ((ret & EPOLLIN) && (ret & EPOLLOUT)) 1848 break; 1849 } 1850 1851 mutex_unlock(&filter->notify_lock); 1852 1853 if (refcount_read(&filter->users) == 0) 1854 ret |= EPOLLHUP; 1855 1856 return ret; 1857 } 1858 1859 static const struct file_operations seccomp_notify_ops = { 1860 .poll = seccomp_notify_poll, 1861 .release = seccomp_notify_release, 1862 .unlocked_ioctl = seccomp_notify_ioctl, 1863 .compat_ioctl = seccomp_notify_ioctl, 1864 }; 1865 1866 static struct file *init_listener(struct seccomp_filter *filter) 1867 { 1868 struct file *ret; 1869 1870 ret = ERR_PTR(-ENOMEM); 1871 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL); 1872 if (!filter->notif) 1873 goto out; 1874 1875 filter->notif->next_id = get_random_u64(); 1876 INIT_LIST_HEAD(&filter->notif->notifications); 1877 1878 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops, 1879 filter, O_RDWR); 1880 if (IS_ERR(ret)) 1881 goto out_notif; 1882 1883 /* The file has a reference to it now */ 1884 __get_seccomp_filter(filter); 1885 1886 out_notif: 1887 if (IS_ERR(ret)) 1888 seccomp_notify_free(filter); 1889 out: 1890 return ret; 1891 } 1892 1893 /* 1894 * Does @new_child have a listener while an ancestor also has a listener? 1895 * If so, we'll want to reject this filter. 1896 * This only has to be tested for the current process, even in the TSYNC case, 1897 * because TSYNC installs @child with the same parent on all threads. 1898 * Note that @new_child is not hooked up to its parent at this point yet, so 1899 * we use current->seccomp.filter. 1900 */ 1901 static bool has_duplicate_listener(struct seccomp_filter *new_child) 1902 { 1903 struct seccomp_filter *cur; 1904 1905 /* must be protected against concurrent TSYNC */ 1906 lockdep_assert_held(¤t->sighand->siglock); 1907 1908 if (!new_child->notif) 1909 return false; 1910 for (cur = current->seccomp.filter; cur; cur = cur->prev) { 1911 if (cur->notif) 1912 return true; 1913 } 1914 1915 return false; 1916 } 1917 1918 /** 1919 * seccomp_set_mode_filter: internal function for setting seccomp filter 1920 * @flags: flags to change filter behavior 1921 * @filter: struct sock_fprog containing filter 1922 * 1923 * This function may be called repeatedly to install additional filters. 1924 * Every filter successfully installed will be evaluated (in reverse order) 1925 * for each system call the task makes. 1926 * 1927 * Once current->seccomp.mode is non-zero, it may not be changed. 1928 * 1929 * Returns 0 on success or -EINVAL on failure. 1930 */ 1931 static long seccomp_set_mode_filter(unsigned int flags, 1932 const char __user *filter) 1933 { 1934 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER; 1935 struct seccomp_filter *prepared = NULL; 1936 long ret = -EINVAL; 1937 int listener = -1; 1938 struct file *listener_f = NULL; 1939 1940 /* Validate flags. */ 1941 if (flags & ~SECCOMP_FILTER_FLAG_MASK) 1942 return -EINVAL; 1943 1944 /* 1945 * In the successful case, NEW_LISTENER returns the new listener fd. 1946 * But in the failure case, TSYNC returns the thread that died. If you 1947 * combine these two flags, there's no way to tell whether something 1948 * succeeded or failed. So, let's disallow this combination if the user 1949 * has not explicitly requested no errors from TSYNC. 1950 */ 1951 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) && 1952 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) && 1953 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0)) 1954 return -EINVAL; 1955 1956 /* 1957 * The SECCOMP_FILTER_FLAG_WAIT_KILLABLE_SENT flag doesn't make sense 1958 * without the SECCOMP_FILTER_FLAG_NEW_LISTENER flag. 1959 */ 1960 if ((flags & SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV) && 1961 ((flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) == 0)) 1962 return -EINVAL; 1963 1964 /* Prepare the new filter before holding any locks. */ 1965 prepared = seccomp_prepare_user_filter(filter); 1966 if (IS_ERR(prepared)) 1967 return PTR_ERR(prepared); 1968 1969 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1970 listener = get_unused_fd_flags(O_CLOEXEC); 1971 if (listener < 0) { 1972 ret = listener; 1973 goto out_free; 1974 } 1975 1976 listener_f = init_listener(prepared); 1977 if (IS_ERR(listener_f)) { 1978 put_unused_fd(listener); 1979 ret = PTR_ERR(listener_f); 1980 goto out_free; 1981 } 1982 } 1983 1984 /* 1985 * Make sure we cannot change seccomp or nnp state via TSYNC 1986 * while another thread is in the middle of calling exec. 1987 */ 1988 if (flags & SECCOMP_FILTER_FLAG_TSYNC && 1989 mutex_lock_killable(¤t->signal->cred_guard_mutex)) 1990 goto out_put_fd; 1991 1992 spin_lock_irq(¤t->sighand->siglock); 1993 1994 if (!seccomp_may_assign_mode(seccomp_mode)) 1995 goto out; 1996 1997 if (has_duplicate_listener(prepared)) { 1998 ret = -EBUSY; 1999 goto out; 2000 } 2001 2002 ret = seccomp_attach_filter(flags, prepared); 2003 if (ret) 2004 goto out; 2005 /* Do not free the successfully attached filter. */ 2006 prepared = NULL; 2007 2008 seccomp_assign_mode(current, seccomp_mode, flags); 2009 out: 2010 spin_unlock_irq(¤t->sighand->siglock); 2011 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 2012 mutex_unlock(¤t->signal->cred_guard_mutex); 2013 out_put_fd: 2014 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 2015 if (ret) { 2016 listener_f->private_data = NULL; 2017 fput(listener_f); 2018 put_unused_fd(listener); 2019 seccomp_notify_detach(prepared); 2020 } else { 2021 fd_install(listener, listener_f); 2022 ret = listener; 2023 } 2024 } 2025 out_free: 2026 seccomp_filter_free(prepared); 2027 return ret; 2028 } 2029 #else 2030 static inline long seccomp_set_mode_filter(unsigned int flags, 2031 const char __user *filter) 2032 { 2033 return -EINVAL; 2034 } 2035 #endif 2036 2037 static long seccomp_get_action_avail(const char __user *uaction) 2038 { 2039 u32 action; 2040 2041 if (copy_from_user(&action, uaction, sizeof(action))) 2042 return -EFAULT; 2043 2044 switch (action) { 2045 case SECCOMP_RET_KILL_PROCESS: 2046 case SECCOMP_RET_KILL_THREAD: 2047 case SECCOMP_RET_TRAP: 2048 case SECCOMP_RET_ERRNO: 2049 case SECCOMP_RET_USER_NOTIF: 2050 case SECCOMP_RET_TRACE: 2051 case SECCOMP_RET_LOG: 2052 case SECCOMP_RET_ALLOW: 2053 break; 2054 default: 2055 return -EOPNOTSUPP; 2056 } 2057 2058 return 0; 2059 } 2060 2061 static long seccomp_get_notif_sizes(void __user *usizes) 2062 { 2063 struct seccomp_notif_sizes sizes = { 2064 .seccomp_notif = sizeof(struct seccomp_notif), 2065 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp), 2066 .seccomp_data = sizeof(struct seccomp_data), 2067 }; 2068 2069 if (copy_to_user(usizes, &sizes, sizeof(sizes))) 2070 return -EFAULT; 2071 2072 return 0; 2073 } 2074 2075 /* Common entry point for both prctl and syscall. */ 2076 static long do_seccomp(unsigned int op, unsigned int flags, 2077 void __user *uargs) 2078 { 2079 switch (op) { 2080 case SECCOMP_SET_MODE_STRICT: 2081 if (flags != 0 || uargs != NULL) 2082 return -EINVAL; 2083 return seccomp_set_mode_strict(); 2084 case SECCOMP_SET_MODE_FILTER: 2085 return seccomp_set_mode_filter(flags, uargs); 2086 case SECCOMP_GET_ACTION_AVAIL: 2087 if (flags != 0) 2088 return -EINVAL; 2089 2090 return seccomp_get_action_avail(uargs); 2091 case SECCOMP_GET_NOTIF_SIZES: 2092 if (flags != 0) 2093 return -EINVAL; 2094 2095 return seccomp_get_notif_sizes(uargs); 2096 default: 2097 return -EINVAL; 2098 } 2099 } 2100 2101 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags, 2102 void __user *, uargs) 2103 { 2104 return do_seccomp(op, flags, uargs); 2105 } 2106 2107 /** 2108 * prctl_set_seccomp: configures current->seccomp.mode 2109 * @seccomp_mode: requested mode to use 2110 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER 2111 * 2112 * Returns 0 on success or -EINVAL on failure. 2113 */ 2114 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter) 2115 { 2116 unsigned int op; 2117 void __user *uargs; 2118 2119 switch (seccomp_mode) { 2120 case SECCOMP_MODE_STRICT: 2121 op = SECCOMP_SET_MODE_STRICT; 2122 /* 2123 * Setting strict mode through prctl always ignored filter, 2124 * so make sure it is always NULL here to pass the internal 2125 * check in do_seccomp(). 2126 */ 2127 uargs = NULL; 2128 break; 2129 case SECCOMP_MODE_FILTER: 2130 op = SECCOMP_SET_MODE_FILTER; 2131 uargs = filter; 2132 break; 2133 default: 2134 return -EINVAL; 2135 } 2136 2137 /* prctl interface doesn't have flags, so they are always zero. */ 2138 return do_seccomp(op, 0, uargs); 2139 } 2140 2141 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE) 2142 static struct seccomp_filter *get_nth_filter(struct task_struct *task, 2143 unsigned long filter_off) 2144 { 2145 struct seccomp_filter *orig, *filter; 2146 unsigned long count; 2147 2148 /* 2149 * Note: this is only correct because the caller should be the (ptrace) 2150 * tracer of the task, otherwise lock_task_sighand is needed. 2151 */ 2152 spin_lock_irq(&task->sighand->siglock); 2153 2154 if (task->seccomp.mode != SECCOMP_MODE_FILTER) { 2155 spin_unlock_irq(&task->sighand->siglock); 2156 return ERR_PTR(-EINVAL); 2157 } 2158 2159 orig = task->seccomp.filter; 2160 __get_seccomp_filter(orig); 2161 spin_unlock_irq(&task->sighand->siglock); 2162 2163 count = 0; 2164 for (filter = orig; filter; filter = filter->prev) 2165 count++; 2166 2167 if (filter_off >= count) { 2168 filter = ERR_PTR(-ENOENT); 2169 goto out; 2170 } 2171 2172 count -= filter_off; 2173 for (filter = orig; filter && count > 1; filter = filter->prev) 2174 count--; 2175 2176 if (WARN_ON(count != 1 || !filter)) { 2177 filter = ERR_PTR(-ENOENT); 2178 goto out; 2179 } 2180 2181 __get_seccomp_filter(filter); 2182 2183 out: 2184 __put_seccomp_filter(orig); 2185 return filter; 2186 } 2187 2188 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off, 2189 void __user *data) 2190 { 2191 struct seccomp_filter *filter; 2192 struct sock_fprog_kern *fprog; 2193 long ret; 2194 2195 if (!capable(CAP_SYS_ADMIN) || 2196 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2197 return -EACCES; 2198 } 2199 2200 filter = get_nth_filter(task, filter_off); 2201 if (IS_ERR(filter)) 2202 return PTR_ERR(filter); 2203 2204 fprog = filter->prog->orig_prog; 2205 if (!fprog) { 2206 /* This must be a new non-cBPF filter, since we save 2207 * every cBPF filter's orig_prog above when 2208 * CONFIG_CHECKPOINT_RESTORE is enabled. 2209 */ 2210 ret = -EMEDIUMTYPE; 2211 goto out; 2212 } 2213 2214 ret = fprog->len; 2215 if (!data) 2216 goto out; 2217 2218 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog))) 2219 ret = -EFAULT; 2220 2221 out: 2222 __put_seccomp_filter(filter); 2223 return ret; 2224 } 2225 2226 long seccomp_get_metadata(struct task_struct *task, 2227 unsigned long size, void __user *data) 2228 { 2229 long ret; 2230 struct seccomp_filter *filter; 2231 struct seccomp_metadata kmd = {}; 2232 2233 if (!capable(CAP_SYS_ADMIN) || 2234 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2235 return -EACCES; 2236 } 2237 2238 size = min_t(unsigned long, size, sizeof(kmd)); 2239 2240 if (size < sizeof(kmd.filter_off)) 2241 return -EINVAL; 2242 2243 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off))) 2244 return -EFAULT; 2245 2246 filter = get_nth_filter(task, kmd.filter_off); 2247 if (IS_ERR(filter)) 2248 return PTR_ERR(filter); 2249 2250 if (filter->log) 2251 kmd.flags |= SECCOMP_FILTER_FLAG_LOG; 2252 2253 ret = size; 2254 if (copy_to_user(data, &kmd, size)) 2255 ret = -EFAULT; 2256 2257 __put_seccomp_filter(filter); 2258 return ret; 2259 } 2260 #endif 2261 2262 #ifdef CONFIG_SYSCTL 2263 2264 /* Human readable action names for friendly sysctl interaction */ 2265 #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process" 2266 #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread" 2267 #define SECCOMP_RET_TRAP_NAME "trap" 2268 #define SECCOMP_RET_ERRNO_NAME "errno" 2269 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif" 2270 #define SECCOMP_RET_TRACE_NAME "trace" 2271 #define SECCOMP_RET_LOG_NAME "log" 2272 #define SECCOMP_RET_ALLOW_NAME "allow" 2273 2274 static const char seccomp_actions_avail[] = 2275 SECCOMP_RET_KILL_PROCESS_NAME " " 2276 SECCOMP_RET_KILL_THREAD_NAME " " 2277 SECCOMP_RET_TRAP_NAME " " 2278 SECCOMP_RET_ERRNO_NAME " " 2279 SECCOMP_RET_USER_NOTIF_NAME " " 2280 SECCOMP_RET_TRACE_NAME " " 2281 SECCOMP_RET_LOG_NAME " " 2282 SECCOMP_RET_ALLOW_NAME; 2283 2284 struct seccomp_log_name { 2285 u32 log; 2286 const char *name; 2287 }; 2288 2289 static const struct seccomp_log_name seccomp_log_names[] = { 2290 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME }, 2291 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME }, 2292 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME }, 2293 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME }, 2294 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME }, 2295 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME }, 2296 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME }, 2297 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME }, 2298 { } 2299 }; 2300 2301 static bool seccomp_names_from_actions_logged(char *names, size_t size, 2302 u32 actions_logged, 2303 const char *sep) 2304 { 2305 const struct seccomp_log_name *cur; 2306 bool append_sep = false; 2307 2308 for (cur = seccomp_log_names; cur->name && size; cur++) { 2309 ssize_t ret; 2310 2311 if (!(actions_logged & cur->log)) 2312 continue; 2313 2314 if (append_sep) { 2315 ret = strscpy(names, sep, size); 2316 if (ret < 0) 2317 return false; 2318 2319 names += ret; 2320 size -= ret; 2321 } else 2322 append_sep = true; 2323 2324 ret = strscpy(names, cur->name, size); 2325 if (ret < 0) 2326 return false; 2327 2328 names += ret; 2329 size -= ret; 2330 } 2331 2332 return true; 2333 } 2334 2335 static bool seccomp_action_logged_from_name(u32 *action_logged, 2336 const char *name) 2337 { 2338 const struct seccomp_log_name *cur; 2339 2340 for (cur = seccomp_log_names; cur->name; cur++) { 2341 if (!strcmp(cur->name, name)) { 2342 *action_logged = cur->log; 2343 return true; 2344 } 2345 } 2346 2347 return false; 2348 } 2349 2350 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names) 2351 { 2352 char *name; 2353 2354 *actions_logged = 0; 2355 while ((name = strsep(&names, " ")) && *name) { 2356 u32 action_logged = 0; 2357 2358 if (!seccomp_action_logged_from_name(&action_logged, name)) 2359 return false; 2360 2361 *actions_logged |= action_logged; 2362 } 2363 2364 return true; 2365 } 2366 2367 static int read_actions_logged(const struct ctl_table *ro_table, void *buffer, 2368 size_t *lenp, loff_t *ppos) 2369 { 2370 char names[sizeof(seccomp_actions_avail)]; 2371 struct ctl_table table; 2372 2373 memset(names, 0, sizeof(names)); 2374 2375 if (!seccomp_names_from_actions_logged(names, sizeof(names), 2376 seccomp_actions_logged, " ")) 2377 return -EINVAL; 2378 2379 table = *ro_table; 2380 table.data = names; 2381 table.maxlen = sizeof(names); 2382 return proc_dostring(&table, 0, buffer, lenp, ppos); 2383 } 2384 2385 static int write_actions_logged(const struct ctl_table *ro_table, void *buffer, 2386 size_t *lenp, loff_t *ppos, u32 *actions_logged) 2387 { 2388 char names[sizeof(seccomp_actions_avail)]; 2389 struct ctl_table table; 2390 int ret; 2391 2392 if (!capable(CAP_SYS_ADMIN)) 2393 return -EPERM; 2394 2395 memset(names, 0, sizeof(names)); 2396 2397 table = *ro_table; 2398 table.data = names; 2399 table.maxlen = sizeof(names); 2400 ret = proc_dostring(&table, 1, buffer, lenp, ppos); 2401 if (ret) 2402 return ret; 2403 2404 if (!seccomp_actions_logged_from_names(actions_logged, table.data)) 2405 return -EINVAL; 2406 2407 if (*actions_logged & SECCOMP_LOG_ALLOW) 2408 return -EINVAL; 2409 2410 seccomp_actions_logged = *actions_logged; 2411 return 0; 2412 } 2413 2414 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged, 2415 int ret) 2416 { 2417 char names[sizeof(seccomp_actions_avail)]; 2418 char old_names[sizeof(seccomp_actions_avail)]; 2419 const char *new = names; 2420 const char *old = old_names; 2421 2422 if (!audit_enabled) 2423 return; 2424 2425 memset(names, 0, sizeof(names)); 2426 memset(old_names, 0, sizeof(old_names)); 2427 2428 if (ret) 2429 new = "?"; 2430 else if (!actions_logged) 2431 new = "(none)"; 2432 else if (!seccomp_names_from_actions_logged(names, sizeof(names), 2433 actions_logged, ",")) 2434 new = "?"; 2435 2436 if (!old_actions_logged) 2437 old = "(none)"; 2438 else if (!seccomp_names_from_actions_logged(old_names, 2439 sizeof(old_names), 2440 old_actions_logged, ",")) 2441 old = "?"; 2442 2443 return audit_seccomp_actions_logged(new, old, !ret); 2444 } 2445 2446 static int seccomp_actions_logged_handler(const struct ctl_table *ro_table, int write, 2447 void *buffer, size_t *lenp, 2448 loff_t *ppos) 2449 { 2450 int ret; 2451 2452 if (write) { 2453 u32 actions_logged = 0; 2454 u32 old_actions_logged = seccomp_actions_logged; 2455 2456 ret = write_actions_logged(ro_table, buffer, lenp, ppos, 2457 &actions_logged); 2458 audit_actions_logged(actions_logged, old_actions_logged, ret); 2459 } else 2460 ret = read_actions_logged(ro_table, buffer, lenp, ppos); 2461 2462 return ret; 2463 } 2464 2465 static const struct ctl_table seccomp_sysctl_table[] = { 2466 { 2467 .procname = "actions_avail", 2468 .data = (void *) &seccomp_actions_avail, 2469 .maxlen = sizeof(seccomp_actions_avail), 2470 .mode = 0444, 2471 .proc_handler = proc_dostring, 2472 }, 2473 { 2474 .procname = "actions_logged", 2475 .mode = 0644, 2476 .proc_handler = seccomp_actions_logged_handler, 2477 }, 2478 }; 2479 2480 static int __init seccomp_sysctl_init(void) 2481 { 2482 register_sysctl_init("kernel/seccomp", seccomp_sysctl_table); 2483 return 0; 2484 } 2485 2486 device_initcall(seccomp_sysctl_init) 2487 2488 #endif /* CONFIG_SYSCTL */ 2489 2490 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 2491 /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */ 2492 static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name, 2493 const void *bitmap, size_t bitmap_size) 2494 { 2495 int nr; 2496 2497 for (nr = 0; nr < bitmap_size; nr++) { 2498 bool cached = test_bit(nr, bitmap); 2499 char *status = cached ? "ALLOW" : "FILTER"; 2500 2501 seq_printf(m, "%s %d %s\n", name, nr, status); 2502 } 2503 } 2504 2505 int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns, 2506 struct pid *pid, struct task_struct *task) 2507 { 2508 struct seccomp_filter *f; 2509 unsigned long flags; 2510 2511 /* 2512 * We don't want some sandboxed process to know what their seccomp 2513 * filters consist of. 2514 */ 2515 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 2516 return -EACCES; 2517 2518 if (!lock_task_sighand(task, &flags)) 2519 return -ESRCH; 2520 2521 f = READ_ONCE(task->seccomp.filter); 2522 if (!f) { 2523 unlock_task_sighand(task, &flags); 2524 return 0; 2525 } 2526 2527 /* prevent filter from being freed while we are printing it */ 2528 __get_seccomp_filter(f); 2529 unlock_task_sighand(task, &flags); 2530 2531 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME, 2532 f->cache.allow_native, 2533 SECCOMP_ARCH_NATIVE_NR); 2534 2535 #ifdef SECCOMP_ARCH_COMPAT 2536 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME, 2537 f->cache.allow_compat, 2538 SECCOMP_ARCH_COMPAT_NR); 2539 #endif /* SECCOMP_ARCH_COMPAT */ 2540 2541 __put_seccomp_filter(f); 2542 return 0; 2543 } 2544 #endif /* CONFIG_SECCOMP_CACHE_DEBUG */ 2545