1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * The implementation of the wait_bit*() and related waiting APIs: 5 */ 6 7 #define WAIT_TABLE_BITS 8 8 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS) 9 10 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned; 11 12 wait_queue_head_t *bit_waitqueue(unsigned long *word, int bit) 13 { 14 const int shift = BITS_PER_LONG == 32 ? 5 : 6; 15 unsigned long val = (unsigned long)word << shift | bit; 16 17 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS); 18 } 19 EXPORT_SYMBOL(bit_waitqueue); 20 21 int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *arg) 22 { 23 struct wait_bit_key *key = arg; 24 struct wait_bit_queue_entry *wait_bit = container_of(wq_entry, struct wait_bit_queue_entry, wq_entry); 25 26 if (wait_bit->key.flags != key->flags || 27 wait_bit->key.bit_nr != key->bit_nr || 28 test_bit(key->bit_nr, key->flags)) 29 return 0; 30 31 return autoremove_wake_function(wq_entry, mode, sync, key); 32 } 33 EXPORT_SYMBOL(wake_bit_function); 34 35 /* 36 * To allow interruptible waiting and asynchronous (i.e. non-blocking) 37 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are 38 * permitted return codes. Nonzero return codes halt waiting and return. 39 */ 40 int __sched 41 __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, 42 wait_bit_action_f *action, unsigned mode) 43 { 44 int ret = 0; 45 46 do { 47 prepare_to_wait(wq_head, &wbq_entry->wq_entry, mode); 48 if (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) 49 ret = (*action)(&wbq_entry->key, mode); 50 } while (test_bit_acquire(wbq_entry->key.bit_nr, wbq_entry->key.flags) && !ret); 51 52 finish_wait(wq_head, &wbq_entry->wq_entry); 53 54 return ret; 55 } 56 EXPORT_SYMBOL(__wait_on_bit); 57 58 int __sched out_of_line_wait_on_bit(unsigned long *word, int bit, 59 wait_bit_action_f *action, unsigned mode) 60 { 61 struct wait_queue_head *wq_head = bit_waitqueue(word, bit); 62 DEFINE_WAIT_BIT(wq_entry, word, bit); 63 64 return __wait_on_bit(wq_head, &wq_entry, action, mode); 65 } 66 EXPORT_SYMBOL(out_of_line_wait_on_bit); 67 68 int __sched out_of_line_wait_on_bit_timeout( 69 unsigned long *word, int bit, wait_bit_action_f *action, 70 unsigned mode, unsigned long timeout) 71 { 72 struct wait_queue_head *wq_head = bit_waitqueue(word, bit); 73 DEFINE_WAIT_BIT(wq_entry, word, bit); 74 75 wq_entry.key.timeout = jiffies + timeout; 76 77 return __wait_on_bit(wq_head, &wq_entry, action, mode); 78 } 79 EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout); 80 81 int __sched 82 __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, 83 wait_bit_action_f *action, unsigned mode) 84 { 85 int ret = 0; 86 87 for (;;) { 88 prepare_to_wait_exclusive(wq_head, &wbq_entry->wq_entry, mode); 89 if (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) { 90 ret = action(&wbq_entry->key, mode); 91 /* 92 * See the comment in prepare_to_wait_event(). 93 * finish_wait() does not necessarily takes wwq_head->lock, 94 * but test_and_set_bit() implies mb() which pairs with 95 * smp_mb__after_atomic() before wake_up_page(). 96 */ 97 if (ret) 98 finish_wait(wq_head, &wbq_entry->wq_entry); 99 } 100 if (!test_and_set_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) { 101 if (!ret) 102 finish_wait(wq_head, &wbq_entry->wq_entry); 103 return 0; 104 } else if (ret) { 105 return ret; 106 } 107 } 108 } 109 EXPORT_SYMBOL(__wait_on_bit_lock); 110 111 int __sched out_of_line_wait_on_bit_lock(unsigned long *word, int bit, 112 wait_bit_action_f *action, unsigned mode) 113 { 114 struct wait_queue_head *wq_head = bit_waitqueue(word, bit); 115 DEFINE_WAIT_BIT(wq_entry, word, bit); 116 117 return __wait_on_bit_lock(wq_head, &wq_entry, action, mode); 118 } 119 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock); 120 121 void __wake_up_bit(struct wait_queue_head *wq_head, unsigned long *word, int bit) 122 { 123 struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); 124 125 if (waitqueue_active(wq_head)) 126 __wake_up(wq_head, TASK_NORMAL, 1, &key); 127 } 128 EXPORT_SYMBOL(__wake_up_bit); 129 130 /** 131 * wake_up_bit - wake up waiters on a bit 132 * @word: the address containing the bit being waited on 133 * @bit: the bit at that address being waited on 134 * 135 * Wake up any process waiting in wait_on_bit() or similar for the 136 * given bit to be cleared. 137 * 138 * The wake-up is sent to tasks in a waitqueue selected by hash from a 139 * shared pool. Only those tasks on that queue which have requested 140 * wake_up on this specific address and bit will be woken, and only if the 141 * bit is clear. 142 * 143 * In order for this to function properly there must be a full memory 144 * barrier after the bit is cleared and before this function is called. 145 * If the bit was cleared atomically, such as a by clear_bit() then 146 * smb_mb__after_atomic() can be used, othwewise smb_mb() is needed. 147 * If the bit was cleared with a fully-ordered operation, no further 148 * barrier is required. 149 * 150 * Normally the bit should be cleared by an operation with RELEASE 151 * semantics so that any changes to memory made before the bit is 152 * cleared are guaranteed to be visible after the matching wait_on_bit() 153 * completes. 154 */ 155 void wake_up_bit(unsigned long *word, int bit) 156 { 157 __wake_up_bit(bit_waitqueue(word, bit), word, bit); 158 } 159 EXPORT_SYMBOL(wake_up_bit); 160 161 wait_queue_head_t *__var_waitqueue(void *p) 162 { 163 return bit_wait_table + hash_ptr(p, WAIT_TABLE_BITS); 164 } 165 EXPORT_SYMBOL(__var_waitqueue); 166 167 static int 168 var_wake_function(struct wait_queue_entry *wq_entry, unsigned int mode, 169 int sync, void *arg) 170 { 171 struct wait_bit_key *key = arg; 172 struct wait_bit_queue_entry *wbq_entry = 173 container_of(wq_entry, struct wait_bit_queue_entry, wq_entry); 174 175 if (wbq_entry->key.flags != key->flags || 176 wbq_entry->key.bit_nr != key->bit_nr) 177 return 0; 178 179 return autoremove_wake_function(wq_entry, mode, sync, key); 180 } 181 182 void init_wait_var_entry(struct wait_bit_queue_entry *wbq_entry, void *var, int flags) 183 { 184 *wbq_entry = (struct wait_bit_queue_entry){ 185 .key = { 186 .flags = (var), 187 .bit_nr = -1, 188 }, 189 .wq_entry = { 190 .flags = flags, 191 .private = current, 192 .func = var_wake_function, 193 .entry = LIST_HEAD_INIT(wbq_entry->wq_entry.entry), 194 }, 195 }; 196 } 197 EXPORT_SYMBOL(init_wait_var_entry); 198 199 /** 200 * wake_up_var - wake up waiters on a variable (kernel address) 201 * @var: the address of the variable being waited on 202 * 203 * Wake up any process waiting in wait_var_event() or similar for the 204 * given variable to change. wait_var_event() can be waiting for an 205 * arbitrary condition to be true and associates that condition with an 206 * address. Calling wake_up_var() suggests that the condition has been 207 * made true, but does not strictly require the condtion to use the 208 * address given. 209 * 210 * The wake-up is sent to tasks in a waitqueue selected by hash from a 211 * shared pool. Only those tasks on that queue which have requested 212 * wake_up on this specific address will be woken. 213 * 214 * In order for this to function properly there must be a full memory 215 * barrier after the variable is updated (or more accurately, after the 216 * condition waited on has been made to be true) and before this function 217 * is called. If the variable was updated atomically, such as a by 218 * atomic_dec() then smb_mb__after_atomic() can be used. If the 219 * variable was updated by a fully ordered operation such as 220 * atomic_dec_and_test() then no extra barrier is required. Otherwise 221 * smb_mb() is needed. 222 * 223 * Normally the variable should be updated (the condition should be made 224 * to be true) by an operation with RELEASE semantics such as 225 * smp_store_release() so that any changes to memory made before the 226 * variable was updated are guaranteed to be visible after the matching 227 * wait_var_event() completes. 228 */ 229 void wake_up_var(void *var) 230 { 231 __wake_up_bit(__var_waitqueue(var), var, -1); 232 } 233 EXPORT_SYMBOL(wake_up_var); 234 235 __sched int bit_wait(struct wait_bit_key *word, int mode) 236 { 237 schedule(); 238 if (signal_pending_state(mode, current)) 239 return -EINTR; 240 241 return 0; 242 } 243 EXPORT_SYMBOL(bit_wait); 244 245 __sched int bit_wait_io(struct wait_bit_key *word, int mode) 246 { 247 io_schedule(); 248 if (signal_pending_state(mode, current)) 249 return -EINTR; 250 251 return 0; 252 } 253 EXPORT_SYMBOL(bit_wait_io); 254 255 __sched int bit_wait_timeout(struct wait_bit_key *word, int mode) 256 { 257 unsigned long now = READ_ONCE(jiffies); 258 259 if (time_after_eq(now, word->timeout)) 260 return -EAGAIN; 261 schedule_timeout(word->timeout - now); 262 if (signal_pending_state(mode, current)) 263 return -EINTR; 264 265 return 0; 266 } 267 EXPORT_SYMBOL_GPL(bit_wait_timeout); 268 269 void __init wait_bit_init(void) 270 { 271 int i; 272 273 for (i = 0; i < WAIT_TABLE_SIZE; i++) 274 init_waitqueue_head(bit_wait_table + i); 275 } 276