1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #include <linux/sched/debug.h> 4 #include "sched.h" 5 6 /* 7 * The implementation of the wait_bit*() and related waiting APIs: 8 */ 9 10 #define WAIT_TABLE_BITS 8 11 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS) 12 13 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned; 14 15 wait_queue_head_t *bit_waitqueue(unsigned long *word, int bit) 16 { 17 const int shift = BITS_PER_LONG == 32 ? 5 : 6; 18 unsigned long val = (unsigned long)word << shift | bit; 19 20 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS); 21 } 22 EXPORT_SYMBOL(bit_waitqueue); 23 24 int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *arg) 25 { 26 struct wait_bit_key *key = arg; 27 struct wait_bit_queue_entry *wait_bit = container_of(wq_entry, struct wait_bit_queue_entry, wq_entry); 28 29 if (wait_bit->key.flags != key->flags || 30 wait_bit->key.bit_nr != key->bit_nr || 31 test_bit(key->bit_nr, key->flags)) 32 return 0; 33 34 return autoremove_wake_function(wq_entry, mode, sync, key); 35 } 36 EXPORT_SYMBOL(wake_bit_function); 37 38 /* 39 * To allow interruptible waiting and asynchronous (i.e. non-blocking) 40 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are 41 * permitted return codes. Nonzero return codes halt waiting and return. 42 */ 43 int __sched 44 __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, 45 wait_bit_action_f *action, unsigned mode) 46 { 47 int ret = 0; 48 49 do { 50 prepare_to_wait(wq_head, &wbq_entry->wq_entry, mode); 51 if (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) 52 ret = (*action)(&wbq_entry->key, mode); 53 } while (test_bit_acquire(wbq_entry->key.bit_nr, wbq_entry->key.flags) && !ret); 54 55 finish_wait(wq_head, &wbq_entry->wq_entry); 56 57 return ret; 58 } 59 EXPORT_SYMBOL(__wait_on_bit); 60 61 int __sched out_of_line_wait_on_bit(unsigned long *word, int bit, 62 wait_bit_action_f *action, unsigned mode) 63 { 64 struct wait_queue_head *wq_head = bit_waitqueue(word, bit); 65 DEFINE_WAIT_BIT(wq_entry, word, bit); 66 67 return __wait_on_bit(wq_head, &wq_entry, action, mode); 68 } 69 EXPORT_SYMBOL(out_of_line_wait_on_bit); 70 71 int __sched out_of_line_wait_on_bit_timeout( 72 unsigned long *word, int bit, wait_bit_action_f *action, 73 unsigned mode, unsigned long timeout) 74 { 75 struct wait_queue_head *wq_head = bit_waitqueue(word, bit); 76 DEFINE_WAIT_BIT(wq_entry, word, bit); 77 78 wq_entry.key.timeout = jiffies + timeout; 79 80 return __wait_on_bit(wq_head, &wq_entry, action, mode); 81 } 82 EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout); 83 84 int __sched 85 __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, 86 wait_bit_action_f *action, unsigned mode) 87 { 88 int ret = 0; 89 90 for (;;) { 91 prepare_to_wait_exclusive(wq_head, &wbq_entry->wq_entry, mode); 92 if (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) { 93 ret = action(&wbq_entry->key, mode); 94 /* 95 * See the comment in prepare_to_wait_event(). 96 * finish_wait() does not necessarily takes wwq_head->lock, 97 * but test_and_set_bit() implies mb() which pairs with 98 * smp_mb__after_atomic() before wake_up_page(). 99 */ 100 if (ret) 101 finish_wait(wq_head, &wbq_entry->wq_entry); 102 } 103 if (!test_and_set_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) { 104 if (!ret) 105 finish_wait(wq_head, &wbq_entry->wq_entry); 106 return 0; 107 } else if (ret) { 108 return ret; 109 } 110 } 111 } 112 EXPORT_SYMBOL(__wait_on_bit_lock); 113 114 int __sched out_of_line_wait_on_bit_lock(unsigned long *word, int bit, 115 wait_bit_action_f *action, unsigned mode) 116 { 117 struct wait_queue_head *wq_head = bit_waitqueue(word, bit); 118 DEFINE_WAIT_BIT(wq_entry, word, bit); 119 120 return __wait_on_bit_lock(wq_head, &wq_entry, action, mode); 121 } 122 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock); 123 124 void __wake_up_bit(struct wait_queue_head *wq_head, unsigned long *word, int bit) 125 { 126 struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); 127 128 if (waitqueue_active(wq_head)) 129 __wake_up(wq_head, TASK_NORMAL, 1, &key); 130 } 131 EXPORT_SYMBOL(__wake_up_bit); 132 133 /** 134 * wake_up_bit - wake up waiters on a bit 135 * @word: the address containing the bit being waited on 136 * @bit: the bit at that address being waited on 137 * 138 * Wake up any process waiting in wait_on_bit() or similar for the 139 * given bit to be cleared. 140 * 141 * The wake-up is sent to tasks in a waitqueue selected by hash from a 142 * shared pool. Only those tasks on that queue which have requested 143 * wake_up on this specific address and bit will be woken, and only if the 144 * bit is clear. 145 * 146 * In order for this to function properly there must be a full memory 147 * barrier after the bit is cleared and before this function is called. 148 * If the bit was cleared atomically, such as a by clear_bit() then 149 * smb_mb__after_atomic() can be used, othwewise smb_mb() is needed. 150 * If the bit was cleared with a fully-ordered operation, no further 151 * barrier is required. 152 * 153 * Normally the bit should be cleared by an operation with RELEASE 154 * semantics so that any changes to memory made before the bit is 155 * cleared are guaranteed to be visible after the matching wait_on_bit() 156 * completes. 157 */ 158 void wake_up_bit(unsigned long *word, int bit) 159 { 160 __wake_up_bit(bit_waitqueue(word, bit), word, bit); 161 } 162 EXPORT_SYMBOL(wake_up_bit); 163 164 wait_queue_head_t *__var_waitqueue(void *p) 165 { 166 return bit_wait_table + hash_ptr(p, WAIT_TABLE_BITS); 167 } 168 EXPORT_SYMBOL(__var_waitqueue); 169 170 static int 171 var_wake_function(struct wait_queue_entry *wq_entry, unsigned int mode, 172 int sync, void *arg) 173 { 174 struct wait_bit_key *key = arg; 175 struct wait_bit_queue_entry *wbq_entry = 176 container_of(wq_entry, struct wait_bit_queue_entry, wq_entry); 177 178 if (wbq_entry->key.flags != key->flags || 179 wbq_entry->key.bit_nr != key->bit_nr) 180 return 0; 181 182 return autoremove_wake_function(wq_entry, mode, sync, key); 183 } 184 185 void init_wait_var_entry(struct wait_bit_queue_entry *wbq_entry, void *var, int flags) 186 { 187 *wbq_entry = (struct wait_bit_queue_entry){ 188 .key = { 189 .flags = (var), 190 .bit_nr = -1, 191 }, 192 .wq_entry = { 193 .flags = flags, 194 .private = current, 195 .func = var_wake_function, 196 .entry = LIST_HEAD_INIT(wbq_entry->wq_entry.entry), 197 }, 198 }; 199 } 200 EXPORT_SYMBOL(init_wait_var_entry); 201 202 /** 203 * wake_up_var - wake up waiters on a variable (kernel address) 204 * @var: the address of the variable being waited on 205 * 206 * Wake up any process waiting in wait_var_event() or similar for the 207 * given variable to change. wait_var_event() can be waiting for an 208 * arbitrary condition to be true and associates that condition with an 209 * address. Calling wake_up_var() suggests that the condition has been 210 * made true, but does not strictly require the condtion to use the 211 * address given. 212 * 213 * The wake-up is sent to tasks in a waitqueue selected by hash from a 214 * shared pool. Only those tasks on that queue which have requested 215 * wake_up on this specific address will be woken. 216 * 217 * In order for this to function properly there must be a full memory 218 * barrier after the variable is updated (or more accurately, after the 219 * condition waited on has been made to be true) and before this function 220 * is called. If the variable was updated atomically, such as a by 221 * atomic_dec() then smb_mb__after_atomic() can be used. If the 222 * variable was updated by a fully ordered operation such as 223 * atomic_dec_and_test() then no extra barrier is required. Otherwise 224 * smb_mb() is needed. 225 * 226 * Normally the variable should be updated (the condition should be made 227 * to be true) by an operation with RELEASE semantics such as 228 * smp_store_release() so that any changes to memory made before the 229 * variable was updated are guaranteed to be visible after the matching 230 * wait_var_event() completes. 231 */ 232 void wake_up_var(void *var) 233 { 234 __wake_up_bit(__var_waitqueue(var), var, -1); 235 } 236 EXPORT_SYMBOL(wake_up_var); 237 238 __sched int bit_wait(struct wait_bit_key *word, int mode) 239 { 240 schedule(); 241 if (signal_pending_state(mode, current)) 242 return -EINTR; 243 244 return 0; 245 } 246 EXPORT_SYMBOL(bit_wait); 247 248 __sched int bit_wait_io(struct wait_bit_key *word, int mode) 249 { 250 io_schedule(); 251 if (signal_pending_state(mode, current)) 252 return -EINTR; 253 254 return 0; 255 } 256 EXPORT_SYMBOL(bit_wait_io); 257 258 __sched int bit_wait_timeout(struct wait_bit_key *word, int mode) 259 { 260 unsigned long now = READ_ONCE(jiffies); 261 262 if (time_after_eq(now, word->timeout)) 263 return -EAGAIN; 264 schedule_timeout(word->timeout - now); 265 if (signal_pending_state(mode, current)) 266 return -EINTR; 267 268 return 0; 269 } 270 EXPORT_SYMBOL_GPL(bit_wait_timeout); 271 272 void __init wait_bit_init(void) 273 { 274 int i; 275 276 for (i = 0; i < WAIT_TABLE_SIZE; i++) 277 init_waitqueue_head(bit_wait_table + i); 278 } 279