1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic waiting primitives. 4 * 5 * (C) 2004 Nadia Yvette Chambers, Oracle 6 */ 7 8 void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key) 9 { 10 spin_lock_init(&wq_head->lock); 11 lockdep_set_class_and_name(&wq_head->lock, key, name); 12 INIT_LIST_HEAD(&wq_head->head); 13 } 14 15 EXPORT_SYMBOL(__init_waitqueue_head); 16 17 void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 18 { 19 unsigned long flags; 20 21 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE; 22 spin_lock_irqsave(&wq_head->lock, flags); 23 __add_wait_queue(wq_head, wq_entry); 24 spin_unlock_irqrestore(&wq_head->lock, flags); 25 } 26 EXPORT_SYMBOL(add_wait_queue); 27 28 void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 29 { 30 unsigned long flags; 31 32 wq_entry->flags |= WQ_FLAG_EXCLUSIVE; 33 spin_lock_irqsave(&wq_head->lock, flags); 34 __add_wait_queue_entry_tail(wq_head, wq_entry); 35 spin_unlock_irqrestore(&wq_head->lock, flags); 36 } 37 EXPORT_SYMBOL(add_wait_queue_exclusive); 38 39 void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 40 { 41 unsigned long flags; 42 43 wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY; 44 spin_lock_irqsave(&wq_head->lock, flags); 45 __add_wait_queue(wq_head, wq_entry); 46 spin_unlock_irqrestore(&wq_head->lock, flags); 47 } 48 EXPORT_SYMBOL_GPL(add_wait_queue_priority); 49 50 void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 51 { 52 unsigned long flags; 53 54 spin_lock_irqsave(&wq_head->lock, flags); 55 __remove_wait_queue(wq_head, wq_entry); 56 spin_unlock_irqrestore(&wq_head->lock, flags); 57 } 58 EXPORT_SYMBOL(remove_wait_queue); 59 60 /* 61 * Scan threshold to break wait queue walk. 62 * This allows a waker to take a break from holding the 63 * wait queue lock during the wait queue walk. 64 */ 65 #define WAITQUEUE_WALK_BREAK_CNT 64 66 67 /* 68 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 69 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 70 * number) then we wake that number of exclusive tasks, and potentially all 71 * the non-exclusive tasks. Normally, exclusive tasks will be at the end of 72 * the list and any non-exclusive tasks will be woken first. A priority task 73 * may be at the head of the list, and can consume the event without any other 74 * tasks being woken. 75 * 76 * There are circumstances in which we can try to wake a task which has already 77 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 78 * zero in this (rare) case, and we handle it by continuing to scan the queue. 79 */ 80 static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode, 81 int nr_exclusive, int wake_flags, void *key, 82 wait_queue_entry_t *bookmark) 83 { 84 wait_queue_entry_t *curr, *next; 85 int cnt = 0; 86 87 lockdep_assert_held(&wq_head->lock); 88 89 if (bookmark && (bookmark->flags & WQ_FLAG_BOOKMARK)) { 90 curr = list_next_entry(bookmark, entry); 91 92 list_del(&bookmark->entry); 93 bookmark->flags = 0; 94 } else 95 curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry); 96 97 if (&curr->entry == &wq_head->head) 98 return nr_exclusive; 99 100 list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) { 101 unsigned flags = curr->flags; 102 int ret; 103 104 if (flags & WQ_FLAG_BOOKMARK) 105 continue; 106 107 ret = curr->func(curr, mode, wake_flags, key); 108 if (ret < 0) 109 break; 110 if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 111 break; 112 113 if (bookmark && (++cnt > WAITQUEUE_WALK_BREAK_CNT) && 114 (&next->entry != &wq_head->head)) { 115 bookmark->flags = WQ_FLAG_BOOKMARK; 116 list_add_tail(&bookmark->entry, &next->entry); 117 break; 118 } 119 } 120 121 return nr_exclusive; 122 } 123 124 static int __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode, 125 int nr_exclusive, int wake_flags, void *key) 126 { 127 unsigned long flags; 128 wait_queue_entry_t bookmark; 129 int remaining = nr_exclusive; 130 131 bookmark.flags = 0; 132 bookmark.private = NULL; 133 bookmark.func = NULL; 134 INIT_LIST_HEAD(&bookmark.entry); 135 136 do { 137 spin_lock_irqsave(&wq_head->lock, flags); 138 remaining = __wake_up_common(wq_head, mode, remaining, 139 wake_flags, key, &bookmark); 140 spin_unlock_irqrestore(&wq_head->lock, flags); 141 } while (bookmark.flags & WQ_FLAG_BOOKMARK); 142 143 return nr_exclusive - remaining; 144 } 145 146 /** 147 * __wake_up - wake up threads blocked on a waitqueue. 148 * @wq_head: the waitqueue 149 * @mode: which threads 150 * @nr_exclusive: how many wake-one or wake-many threads to wake up 151 * @key: is directly passed to the wakeup function 152 * 153 * If this function wakes up a task, it executes a full memory barrier 154 * before accessing the task state. Returns the number of exclusive 155 * tasks that were awaken. 156 */ 157 int __wake_up(struct wait_queue_head *wq_head, unsigned int mode, 158 int nr_exclusive, void *key) 159 { 160 return __wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key); 161 } 162 EXPORT_SYMBOL(__wake_up); 163 164 /* 165 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 166 */ 167 void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr) 168 { 169 __wake_up_common(wq_head, mode, nr, 0, NULL, NULL); 170 } 171 EXPORT_SYMBOL_GPL(__wake_up_locked); 172 173 void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key) 174 { 175 __wake_up_common(wq_head, mode, 1, 0, key, NULL); 176 } 177 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 178 179 void __wake_up_locked_key_bookmark(struct wait_queue_head *wq_head, 180 unsigned int mode, void *key, wait_queue_entry_t *bookmark) 181 { 182 __wake_up_common(wq_head, mode, 1, 0, key, bookmark); 183 } 184 EXPORT_SYMBOL_GPL(__wake_up_locked_key_bookmark); 185 186 /** 187 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 188 * @wq_head: the waitqueue 189 * @mode: which threads 190 * @key: opaque value to be passed to wakeup targets 191 * 192 * The sync wakeup differs that the waker knows that it will schedule 193 * away soon, so while the target thread will be woken up, it will not 194 * be migrated to another CPU - ie. the two threads are 'synchronized' 195 * with each other. This can prevent needless bouncing between CPUs. 196 * 197 * On UP it can prevent extra preemption. 198 * 199 * If this function wakes up a task, it executes a full memory barrier before 200 * accessing the task state. 201 */ 202 void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode, 203 void *key) 204 { 205 if (unlikely(!wq_head)) 206 return; 207 208 __wake_up_common_lock(wq_head, mode, 1, WF_SYNC, key); 209 } 210 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 211 212 /** 213 * __wake_up_locked_sync_key - wake up a thread blocked on a locked waitqueue. 214 * @wq_head: the waitqueue 215 * @mode: which threads 216 * @key: opaque value to be passed to wakeup targets 217 * 218 * The sync wakeup differs in that the waker knows that it will schedule 219 * away soon, so while the target thread will be woken up, it will not 220 * be migrated to another CPU - ie. the two threads are 'synchronized' 221 * with each other. This can prevent needless bouncing between CPUs. 222 * 223 * On UP it can prevent extra preemption. 224 * 225 * If this function wakes up a task, it executes a full memory barrier before 226 * accessing the task state. 227 */ 228 void __wake_up_locked_sync_key(struct wait_queue_head *wq_head, 229 unsigned int mode, void *key) 230 { 231 __wake_up_common(wq_head, mode, 1, WF_SYNC, key, NULL); 232 } 233 EXPORT_SYMBOL_GPL(__wake_up_locked_sync_key); 234 235 /* 236 * __wake_up_sync - see __wake_up_sync_key() 237 */ 238 void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode) 239 { 240 __wake_up_sync_key(wq_head, mode, NULL); 241 } 242 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 243 244 void __wake_up_pollfree(struct wait_queue_head *wq_head) 245 { 246 __wake_up(wq_head, TASK_NORMAL, 0, poll_to_key(EPOLLHUP | POLLFREE)); 247 /* POLLFREE must have cleared the queue. */ 248 WARN_ON_ONCE(waitqueue_active(wq_head)); 249 } 250 251 /* 252 * Note: we use "set_current_state()" _after_ the wait-queue add, 253 * because we need a memory barrier there on SMP, so that any 254 * wake-function that tests for the wait-queue being active 255 * will be guaranteed to see waitqueue addition _or_ subsequent 256 * tests in this thread will see the wakeup having taken place. 257 * 258 * The spin_unlock() itself is semi-permeable and only protects 259 * one way (it only protects stuff inside the critical region and 260 * stops them from bleeding out - it would still allow subsequent 261 * loads to move into the critical region). 262 */ 263 void 264 prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 265 { 266 unsigned long flags; 267 268 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE; 269 spin_lock_irqsave(&wq_head->lock, flags); 270 if (list_empty(&wq_entry->entry)) 271 __add_wait_queue(wq_head, wq_entry); 272 set_current_state(state); 273 spin_unlock_irqrestore(&wq_head->lock, flags); 274 } 275 EXPORT_SYMBOL(prepare_to_wait); 276 277 /* Returns true if we are the first waiter in the queue, false otherwise. */ 278 bool 279 prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 280 { 281 unsigned long flags; 282 bool was_empty = false; 283 284 wq_entry->flags |= WQ_FLAG_EXCLUSIVE; 285 spin_lock_irqsave(&wq_head->lock, flags); 286 if (list_empty(&wq_entry->entry)) { 287 was_empty = list_empty(&wq_head->head); 288 __add_wait_queue_entry_tail(wq_head, wq_entry); 289 } 290 set_current_state(state); 291 spin_unlock_irqrestore(&wq_head->lock, flags); 292 return was_empty; 293 } 294 EXPORT_SYMBOL(prepare_to_wait_exclusive); 295 296 void init_wait_entry(struct wait_queue_entry *wq_entry, int flags) 297 { 298 wq_entry->flags = flags; 299 wq_entry->private = current; 300 wq_entry->func = autoremove_wake_function; 301 INIT_LIST_HEAD(&wq_entry->entry); 302 } 303 EXPORT_SYMBOL(init_wait_entry); 304 305 long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 306 { 307 unsigned long flags; 308 long ret = 0; 309 310 spin_lock_irqsave(&wq_head->lock, flags); 311 if (signal_pending_state(state, current)) { 312 /* 313 * Exclusive waiter must not fail if it was selected by wakeup, 314 * it should "consume" the condition we were waiting for. 315 * 316 * The caller will recheck the condition and return success if 317 * we were already woken up, we can not miss the event because 318 * wakeup locks/unlocks the same wq_head->lock. 319 * 320 * But we need to ensure that set-condition + wakeup after that 321 * can't see us, it should wake up another exclusive waiter if 322 * we fail. 323 */ 324 list_del_init(&wq_entry->entry); 325 ret = -ERESTARTSYS; 326 } else { 327 if (list_empty(&wq_entry->entry)) { 328 if (wq_entry->flags & WQ_FLAG_EXCLUSIVE) 329 __add_wait_queue_entry_tail(wq_head, wq_entry); 330 else 331 __add_wait_queue(wq_head, wq_entry); 332 } 333 set_current_state(state); 334 } 335 spin_unlock_irqrestore(&wq_head->lock, flags); 336 337 return ret; 338 } 339 EXPORT_SYMBOL(prepare_to_wait_event); 340 341 /* 342 * Note! These two wait functions are entered with the 343 * wait-queue lock held (and interrupts off in the _irq 344 * case), so there is no race with testing the wakeup 345 * condition in the caller before they add the wait 346 * entry to the wake queue. 347 */ 348 int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait) 349 { 350 if (likely(list_empty(&wait->entry))) 351 __add_wait_queue_entry_tail(wq, wait); 352 353 set_current_state(TASK_INTERRUPTIBLE); 354 if (signal_pending(current)) 355 return -ERESTARTSYS; 356 357 spin_unlock(&wq->lock); 358 schedule(); 359 spin_lock(&wq->lock); 360 361 return 0; 362 } 363 EXPORT_SYMBOL(do_wait_intr); 364 365 int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait) 366 { 367 if (likely(list_empty(&wait->entry))) 368 __add_wait_queue_entry_tail(wq, wait); 369 370 set_current_state(TASK_INTERRUPTIBLE); 371 if (signal_pending(current)) 372 return -ERESTARTSYS; 373 374 spin_unlock_irq(&wq->lock); 375 schedule(); 376 spin_lock_irq(&wq->lock); 377 378 return 0; 379 } 380 EXPORT_SYMBOL(do_wait_intr_irq); 381 382 /** 383 * finish_wait - clean up after waiting in a queue 384 * @wq_head: waitqueue waited on 385 * @wq_entry: wait descriptor 386 * 387 * Sets current thread back to running state and removes 388 * the wait descriptor from the given waitqueue if still 389 * queued. 390 */ 391 void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 392 { 393 unsigned long flags; 394 395 __set_current_state(TASK_RUNNING); 396 /* 397 * We can check for list emptiness outside the lock 398 * IFF: 399 * - we use the "careful" check that verifies both 400 * the next and prev pointers, so that there cannot 401 * be any half-pending updates in progress on other 402 * CPU's that we haven't seen yet (and that might 403 * still change the stack area. 404 * and 405 * - all other users take the lock (ie we can only 406 * have _one_ other CPU that looks at or modifies 407 * the list). 408 */ 409 if (!list_empty_careful(&wq_entry->entry)) { 410 spin_lock_irqsave(&wq_head->lock, flags); 411 list_del_init(&wq_entry->entry); 412 spin_unlock_irqrestore(&wq_head->lock, flags); 413 } 414 } 415 EXPORT_SYMBOL(finish_wait); 416 417 int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key) 418 { 419 int ret = default_wake_function(wq_entry, mode, sync, key); 420 421 if (ret) 422 list_del_init_careful(&wq_entry->entry); 423 424 return ret; 425 } 426 EXPORT_SYMBOL(autoremove_wake_function); 427 428 static inline bool is_kthread_should_stop(void) 429 { 430 return (current->flags & PF_KTHREAD) && kthread_should_stop(); 431 } 432 433 /* 434 * DEFINE_WAIT_FUNC(wait, woken_wake_func); 435 * 436 * add_wait_queue(&wq_head, &wait); 437 * for (;;) { 438 * if (condition) 439 * break; 440 * 441 * // in wait_woken() // in woken_wake_function() 442 * 443 * p->state = mode; wq_entry->flags |= WQ_FLAG_WOKEN; 444 * smp_mb(); // A try_to_wake_up(): 445 * if (!(wq_entry->flags & WQ_FLAG_WOKEN)) <full barrier> 446 * schedule() if (p->state & mode) 447 * p->state = TASK_RUNNING; p->state = TASK_RUNNING; 448 * wq_entry->flags &= ~WQ_FLAG_WOKEN; ~~~~~~~~~~~~~~~~~~ 449 * smp_mb(); // B condition = true; 450 * } smp_mb(); // C 451 * remove_wait_queue(&wq_head, &wait); wq_entry->flags |= WQ_FLAG_WOKEN; 452 */ 453 long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout) 454 { 455 /* 456 * The below executes an smp_mb(), which matches with the full barrier 457 * executed by the try_to_wake_up() in woken_wake_function() such that 458 * either we see the store to wq_entry->flags in woken_wake_function() 459 * or woken_wake_function() sees our store to current->state. 460 */ 461 set_current_state(mode); /* A */ 462 if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop()) 463 timeout = schedule_timeout(timeout); 464 __set_current_state(TASK_RUNNING); 465 466 /* 467 * The below executes an smp_mb(), which matches with the smp_mb() (C) 468 * in woken_wake_function() such that either we see the wait condition 469 * being true or the store to wq_entry->flags in woken_wake_function() 470 * follows ours in the coherence order. 471 */ 472 smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */ 473 474 return timeout; 475 } 476 EXPORT_SYMBOL(wait_woken); 477 478 int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key) 479 { 480 /* Pairs with the smp_store_mb() in wait_woken(). */ 481 smp_mb(); /* C */ 482 wq_entry->flags |= WQ_FLAG_WOKEN; 483 484 return default_wake_function(wq_entry, mode, sync, key); 485 } 486 EXPORT_SYMBOL(woken_wake_function); 487