1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic waiting primitives. 4 * 5 * (C) 2004 Nadia Yvette Chambers, Oracle 6 */ 7 #include "sched.h" 8 9 void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key) 10 { 11 spin_lock_init(&wq_head->lock); 12 lockdep_set_class_and_name(&wq_head->lock, key, name); 13 INIT_LIST_HEAD(&wq_head->head); 14 } 15 16 EXPORT_SYMBOL(__init_waitqueue_head); 17 18 void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 19 { 20 unsigned long flags; 21 22 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE; 23 spin_lock_irqsave(&wq_head->lock, flags); 24 __add_wait_queue(wq_head, wq_entry); 25 spin_unlock_irqrestore(&wq_head->lock, flags); 26 } 27 EXPORT_SYMBOL(add_wait_queue); 28 29 void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 30 { 31 unsigned long flags; 32 33 wq_entry->flags |= WQ_FLAG_EXCLUSIVE; 34 spin_lock_irqsave(&wq_head->lock, flags); 35 __add_wait_queue_entry_tail(wq_head, wq_entry); 36 spin_unlock_irqrestore(&wq_head->lock, flags); 37 } 38 EXPORT_SYMBOL(add_wait_queue_exclusive); 39 40 void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 41 { 42 unsigned long flags; 43 44 wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY; 45 spin_lock_irqsave(&wq_head->lock, flags); 46 __add_wait_queue(wq_head, wq_entry); 47 spin_unlock_irqrestore(&wq_head->lock, flags); 48 } 49 EXPORT_SYMBOL_GPL(add_wait_queue_priority); 50 51 void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 52 { 53 unsigned long flags; 54 55 spin_lock_irqsave(&wq_head->lock, flags); 56 __remove_wait_queue(wq_head, wq_entry); 57 spin_unlock_irqrestore(&wq_head->lock, flags); 58 } 59 EXPORT_SYMBOL(remove_wait_queue); 60 61 /* 62 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 63 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 64 * number) then we wake that number of exclusive tasks, and potentially all 65 * the non-exclusive tasks. Normally, exclusive tasks will be at the end of 66 * the list and any non-exclusive tasks will be woken first. A priority task 67 * may be at the head of the list, and can consume the event without any other 68 * tasks being woken. 69 * 70 * There are circumstances in which we can try to wake a task which has already 71 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 72 * zero in this (rare) case, and we handle it by continuing to scan the queue. 73 */ 74 static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode, 75 int nr_exclusive, int wake_flags, void *key) 76 { 77 wait_queue_entry_t *curr, *next; 78 79 lockdep_assert_held(&wq_head->lock); 80 81 curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry); 82 83 if (&curr->entry == &wq_head->head) 84 return nr_exclusive; 85 86 list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) { 87 unsigned flags = curr->flags; 88 int ret; 89 90 ret = curr->func(curr, mode, wake_flags, key); 91 if (ret < 0) 92 break; 93 if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 94 break; 95 } 96 97 return nr_exclusive; 98 } 99 100 static int __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode, 101 int nr_exclusive, int wake_flags, void *key) 102 { 103 unsigned long flags; 104 int remaining; 105 106 spin_lock_irqsave(&wq_head->lock, flags); 107 remaining = __wake_up_common(wq_head, mode, nr_exclusive, wake_flags, 108 key); 109 spin_unlock_irqrestore(&wq_head->lock, flags); 110 111 return nr_exclusive - remaining; 112 } 113 114 /** 115 * __wake_up - wake up threads blocked on a waitqueue. 116 * @wq_head: the waitqueue 117 * @mode: which threads 118 * @nr_exclusive: how many wake-one or wake-many threads to wake up 119 * @key: is directly passed to the wakeup function 120 * 121 * If this function wakes up a task, it executes a full memory barrier 122 * before accessing the task state. Returns the number of exclusive 123 * tasks that were awaken. 124 */ 125 int __wake_up(struct wait_queue_head *wq_head, unsigned int mode, 126 int nr_exclusive, void *key) 127 { 128 return __wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key); 129 } 130 EXPORT_SYMBOL(__wake_up); 131 132 void __wake_up_on_current_cpu(struct wait_queue_head *wq_head, unsigned int mode, void *key) 133 { 134 __wake_up_common_lock(wq_head, mode, 1, WF_CURRENT_CPU, key); 135 } 136 137 /* 138 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 139 */ 140 void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr) 141 { 142 __wake_up_common(wq_head, mode, nr, 0, NULL); 143 } 144 EXPORT_SYMBOL_GPL(__wake_up_locked); 145 146 void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key) 147 { 148 __wake_up_common(wq_head, mode, 1, 0, key); 149 } 150 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 151 152 /** 153 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 154 * @wq_head: the waitqueue 155 * @mode: which threads 156 * @key: opaque value to be passed to wakeup targets 157 * 158 * The sync wakeup differs that the waker knows that it will schedule 159 * away soon, so while the target thread will be woken up, it will not 160 * be migrated to another CPU - ie. the two threads are 'synchronized' 161 * with each other. This can prevent needless bouncing between CPUs. 162 * 163 * On UP it can prevent extra preemption. 164 * 165 * If this function wakes up a task, it executes a full memory barrier before 166 * accessing the task state. 167 */ 168 void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode, 169 void *key) 170 { 171 if (unlikely(!wq_head)) 172 return; 173 174 __wake_up_common_lock(wq_head, mode, 1, WF_SYNC, key); 175 } 176 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 177 178 /** 179 * __wake_up_locked_sync_key - wake up a thread blocked on a locked waitqueue. 180 * @wq_head: the waitqueue 181 * @mode: which threads 182 * @key: opaque value to be passed to wakeup targets 183 * 184 * The sync wakeup differs in that the waker knows that it will schedule 185 * away soon, so while the target thread will be woken up, it will not 186 * be migrated to another CPU - ie. the two threads are 'synchronized' 187 * with each other. This can prevent needless bouncing between CPUs. 188 * 189 * On UP it can prevent extra preemption. 190 * 191 * If this function wakes up a task, it executes a full memory barrier before 192 * accessing the task state. 193 */ 194 void __wake_up_locked_sync_key(struct wait_queue_head *wq_head, 195 unsigned int mode, void *key) 196 { 197 __wake_up_common(wq_head, mode, 1, WF_SYNC, key); 198 } 199 EXPORT_SYMBOL_GPL(__wake_up_locked_sync_key); 200 201 /* 202 * __wake_up_sync - see __wake_up_sync_key() 203 */ 204 void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode) 205 { 206 __wake_up_sync_key(wq_head, mode, NULL); 207 } 208 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 209 210 void __wake_up_pollfree(struct wait_queue_head *wq_head) 211 { 212 __wake_up(wq_head, TASK_NORMAL, 0, poll_to_key(EPOLLHUP | POLLFREE)); 213 /* POLLFREE must have cleared the queue. */ 214 WARN_ON_ONCE(waitqueue_active(wq_head)); 215 } 216 217 /* 218 * Note: we use "set_current_state()" _after_ the wait-queue add, 219 * because we need a memory barrier there on SMP, so that any 220 * wake-function that tests for the wait-queue being active 221 * will be guaranteed to see waitqueue addition _or_ subsequent 222 * tests in this thread will see the wakeup having taken place. 223 * 224 * The spin_unlock() itself is semi-permeable and only protects 225 * one way (it only protects stuff inside the critical region and 226 * stops them from bleeding out - it would still allow subsequent 227 * loads to move into the critical region). 228 */ 229 void 230 prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 231 { 232 unsigned long flags; 233 234 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE; 235 spin_lock_irqsave(&wq_head->lock, flags); 236 if (list_empty(&wq_entry->entry)) 237 __add_wait_queue(wq_head, wq_entry); 238 set_current_state(state); 239 spin_unlock_irqrestore(&wq_head->lock, flags); 240 } 241 EXPORT_SYMBOL(prepare_to_wait); 242 243 /* Returns true if we are the first waiter in the queue, false otherwise. */ 244 bool 245 prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 246 { 247 unsigned long flags; 248 bool was_empty = false; 249 250 wq_entry->flags |= WQ_FLAG_EXCLUSIVE; 251 spin_lock_irqsave(&wq_head->lock, flags); 252 if (list_empty(&wq_entry->entry)) { 253 was_empty = list_empty(&wq_head->head); 254 __add_wait_queue_entry_tail(wq_head, wq_entry); 255 } 256 set_current_state(state); 257 spin_unlock_irqrestore(&wq_head->lock, flags); 258 return was_empty; 259 } 260 EXPORT_SYMBOL(prepare_to_wait_exclusive); 261 262 void init_wait_entry(struct wait_queue_entry *wq_entry, int flags) 263 { 264 wq_entry->flags = flags; 265 wq_entry->private = current; 266 wq_entry->func = autoremove_wake_function; 267 INIT_LIST_HEAD(&wq_entry->entry); 268 } 269 EXPORT_SYMBOL(init_wait_entry); 270 271 long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 272 { 273 unsigned long flags; 274 long ret = 0; 275 276 spin_lock_irqsave(&wq_head->lock, flags); 277 if (signal_pending_state(state, current)) { 278 /* 279 * Exclusive waiter must not fail if it was selected by wakeup, 280 * it should "consume" the condition we were waiting for. 281 * 282 * The caller will recheck the condition and return success if 283 * we were already woken up, we can not miss the event because 284 * wakeup locks/unlocks the same wq_head->lock. 285 * 286 * But we need to ensure that set-condition + wakeup after that 287 * can't see us, it should wake up another exclusive waiter if 288 * we fail. 289 */ 290 list_del_init(&wq_entry->entry); 291 ret = -ERESTARTSYS; 292 } else { 293 if (list_empty(&wq_entry->entry)) { 294 if (wq_entry->flags & WQ_FLAG_EXCLUSIVE) 295 __add_wait_queue_entry_tail(wq_head, wq_entry); 296 else 297 __add_wait_queue(wq_head, wq_entry); 298 } 299 set_current_state(state); 300 } 301 spin_unlock_irqrestore(&wq_head->lock, flags); 302 303 return ret; 304 } 305 EXPORT_SYMBOL(prepare_to_wait_event); 306 307 /* 308 * Note! These two wait functions are entered with the 309 * wait-queue lock held (and interrupts off in the _irq 310 * case), so there is no race with testing the wakeup 311 * condition in the caller before they add the wait 312 * entry to the wake queue. 313 */ 314 int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait) 315 { 316 if (likely(list_empty(&wait->entry))) 317 __add_wait_queue_entry_tail(wq, wait); 318 319 set_current_state(TASK_INTERRUPTIBLE); 320 if (signal_pending(current)) 321 return -ERESTARTSYS; 322 323 spin_unlock(&wq->lock); 324 schedule(); 325 spin_lock(&wq->lock); 326 327 return 0; 328 } 329 EXPORT_SYMBOL(do_wait_intr); 330 331 int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait) 332 { 333 if (likely(list_empty(&wait->entry))) 334 __add_wait_queue_entry_tail(wq, wait); 335 336 set_current_state(TASK_INTERRUPTIBLE); 337 if (signal_pending(current)) 338 return -ERESTARTSYS; 339 340 spin_unlock_irq(&wq->lock); 341 schedule(); 342 spin_lock_irq(&wq->lock); 343 344 return 0; 345 } 346 EXPORT_SYMBOL(do_wait_intr_irq); 347 348 /** 349 * finish_wait - clean up after waiting in a queue 350 * @wq_head: waitqueue waited on 351 * @wq_entry: wait descriptor 352 * 353 * Sets current thread back to running state and removes 354 * the wait descriptor from the given waitqueue if still 355 * queued. 356 */ 357 void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 358 { 359 unsigned long flags; 360 361 __set_current_state(TASK_RUNNING); 362 /* 363 * We can check for list emptiness outside the lock 364 * IFF: 365 * - we use the "careful" check that verifies both 366 * the next and prev pointers, so that there cannot 367 * be any half-pending updates in progress on other 368 * CPU's that we haven't seen yet (and that might 369 * still change the stack area. 370 * and 371 * - all other users take the lock (ie we can only 372 * have _one_ other CPU that looks at or modifies 373 * the list). 374 */ 375 if (!list_empty_careful(&wq_entry->entry)) { 376 spin_lock_irqsave(&wq_head->lock, flags); 377 list_del_init(&wq_entry->entry); 378 spin_unlock_irqrestore(&wq_head->lock, flags); 379 } 380 } 381 EXPORT_SYMBOL(finish_wait); 382 383 int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key) 384 { 385 int ret = default_wake_function(wq_entry, mode, sync, key); 386 387 if (ret) 388 list_del_init_careful(&wq_entry->entry); 389 390 return ret; 391 } 392 EXPORT_SYMBOL(autoremove_wake_function); 393 394 /* 395 * DEFINE_WAIT_FUNC(wait, woken_wake_func); 396 * 397 * add_wait_queue(&wq_head, &wait); 398 * for (;;) { 399 * if (condition) 400 * break; 401 * 402 * // in wait_woken() // in woken_wake_function() 403 * 404 * p->state = mode; wq_entry->flags |= WQ_FLAG_WOKEN; 405 * smp_mb(); // A try_to_wake_up(): 406 * if (!(wq_entry->flags & WQ_FLAG_WOKEN)) <full barrier> 407 * schedule() if (p->state & mode) 408 * p->state = TASK_RUNNING; p->state = TASK_RUNNING; 409 * wq_entry->flags &= ~WQ_FLAG_WOKEN; ~~~~~~~~~~~~~~~~~~ 410 * smp_mb(); // B condition = true; 411 * } smp_mb(); // C 412 * remove_wait_queue(&wq_head, &wait); wq_entry->flags |= WQ_FLAG_WOKEN; 413 */ 414 long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout) 415 { 416 /* 417 * The below executes an smp_mb(), which matches with the full barrier 418 * executed by the try_to_wake_up() in woken_wake_function() such that 419 * either we see the store to wq_entry->flags in woken_wake_function() 420 * or woken_wake_function() sees our store to current->state. 421 */ 422 set_current_state(mode); /* A */ 423 if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !kthread_should_stop_or_park()) 424 timeout = schedule_timeout(timeout); 425 __set_current_state(TASK_RUNNING); 426 427 /* 428 * The below executes an smp_mb(), which matches with the smp_mb() (C) 429 * in woken_wake_function() such that either we see the wait condition 430 * being true or the store to wq_entry->flags in woken_wake_function() 431 * follows ours in the coherence order. 432 */ 433 smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */ 434 435 return timeout; 436 } 437 EXPORT_SYMBOL(wait_woken); 438 439 int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key) 440 { 441 /* Pairs with the smp_store_mb() in wait_woken(). */ 442 smp_mb(); /* C */ 443 wq_entry->flags |= WQ_FLAG_WOKEN; 444 445 return default_wake_function(wq_entry, mode, sync, key); 446 } 447 EXPORT_SYMBOL(woken_wake_function); 448