1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic waiting primitives. 4 * 5 * (C) 2004 Nadia Yvette Chambers, Oracle 6 */ 7 #include "sched.h" 8 9 void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key) 10 { 11 spin_lock_init(&wq_head->lock); 12 lockdep_set_class_and_name(&wq_head->lock, key, name); 13 INIT_LIST_HEAD(&wq_head->head); 14 } 15 16 EXPORT_SYMBOL(__init_waitqueue_head); 17 18 void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 19 { 20 unsigned long flags; 21 22 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE; 23 spin_lock_irqsave(&wq_head->lock, flags); 24 __add_wait_queue(wq_head, wq_entry); 25 spin_unlock_irqrestore(&wq_head->lock, flags); 26 } 27 EXPORT_SYMBOL(add_wait_queue); 28 29 void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 30 { 31 unsigned long flags; 32 33 wq_entry->flags |= WQ_FLAG_EXCLUSIVE; 34 spin_lock_irqsave(&wq_head->lock, flags); 35 __add_wait_queue_entry_tail(wq_head, wq_entry); 36 spin_unlock_irqrestore(&wq_head->lock, flags); 37 } 38 EXPORT_SYMBOL(add_wait_queue_exclusive); 39 40 void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 41 { 42 unsigned long flags; 43 44 spin_lock_irqsave(&wq_head->lock, flags); 45 __remove_wait_queue(wq_head, wq_entry); 46 spin_unlock_irqrestore(&wq_head->lock, flags); 47 } 48 EXPORT_SYMBOL(remove_wait_queue); 49 50 /* 51 * Scan threshold to break wait queue walk. 52 * This allows a waker to take a break from holding the 53 * wait queue lock during the wait queue walk. 54 */ 55 #define WAITQUEUE_WALK_BREAK_CNT 64 56 57 /* 58 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 59 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 60 * number) then we wake all the non-exclusive tasks and one exclusive task. 61 * 62 * There are circumstances in which we can try to wake a task which has already 63 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 64 * zero in this (rare) case, and we handle it by continuing to scan the queue. 65 */ 66 static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode, 67 int nr_exclusive, int wake_flags, void *key, 68 wait_queue_entry_t *bookmark) 69 { 70 wait_queue_entry_t *curr, *next; 71 int cnt = 0; 72 73 lockdep_assert_held(&wq_head->lock); 74 75 if (bookmark && (bookmark->flags & WQ_FLAG_BOOKMARK)) { 76 curr = list_next_entry(bookmark, entry); 77 78 list_del(&bookmark->entry); 79 bookmark->flags = 0; 80 } else 81 curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry); 82 83 if (&curr->entry == &wq_head->head) 84 return nr_exclusive; 85 86 list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) { 87 unsigned flags = curr->flags; 88 int ret; 89 90 if (flags & WQ_FLAG_BOOKMARK) 91 continue; 92 93 ret = curr->func(curr, mode, wake_flags, key); 94 if (ret < 0) 95 break; 96 if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 97 break; 98 99 if (bookmark && (++cnt > WAITQUEUE_WALK_BREAK_CNT) && 100 (&next->entry != &wq_head->head)) { 101 bookmark->flags = WQ_FLAG_BOOKMARK; 102 list_add_tail(&bookmark->entry, &next->entry); 103 break; 104 } 105 } 106 107 return nr_exclusive; 108 } 109 110 static void __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode, 111 int nr_exclusive, int wake_flags, void *key) 112 { 113 unsigned long flags; 114 wait_queue_entry_t bookmark; 115 116 bookmark.flags = 0; 117 bookmark.private = NULL; 118 bookmark.func = NULL; 119 INIT_LIST_HEAD(&bookmark.entry); 120 121 do { 122 spin_lock_irqsave(&wq_head->lock, flags); 123 nr_exclusive = __wake_up_common(wq_head, mode, nr_exclusive, 124 wake_flags, key, &bookmark); 125 spin_unlock_irqrestore(&wq_head->lock, flags); 126 } while (bookmark.flags & WQ_FLAG_BOOKMARK); 127 } 128 129 /** 130 * __wake_up - wake up threads blocked on a waitqueue. 131 * @wq_head: the waitqueue 132 * @mode: which threads 133 * @nr_exclusive: how many wake-one or wake-many threads to wake up 134 * @key: is directly passed to the wakeup function 135 * 136 * If this function wakes up a task, it executes a full memory barrier before 137 * accessing the task state. 138 */ 139 void __wake_up(struct wait_queue_head *wq_head, unsigned int mode, 140 int nr_exclusive, void *key) 141 { 142 __wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key); 143 } 144 EXPORT_SYMBOL(__wake_up); 145 146 /* 147 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 148 */ 149 void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr) 150 { 151 __wake_up_common(wq_head, mode, nr, 0, NULL, NULL); 152 } 153 EXPORT_SYMBOL_GPL(__wake_up_locked); 154 155 void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key) 156 { 157 __wake_up_common(wq_head, mode, 1, 0, key, NULL); 158 } 159 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 160 161 void __wake_up_locked_key_bookmark(struct wait_queue_head *wq_head, 162 unsigned int mode, void *key, wait_queue_entry_t *bookmark) 163 { 164 __wake_up_common(wq_head, mode, 1, 0, key, bookmark); 165 } 166 EXPORT_SYMBOL_GPL(__wake_up_locked_key_bookmark); 167 168 /** 169 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 170 * @wq_head: the waitqueue 171 * @mode: which threads 172 * @nr_exclusive: how many wake-one or wake-many threads to wake up 173 * @key: opaque value to be passed to wakeup targets 174 * 175 * The sync wakeup differs that the waker knows that it will schedule 176 * away soon, so while the target thread will be woken up, it will not 177 * be migrated to another CPU - ie. the two threads are 'synchronized' 178 * with each other. This can prevent needless bouncing between CPUs. 179 * 180 * On UP it can prevent extra preemption. 181 * 182 * If this function wakes up a task, it executes a full memory barrier before 183 * accessing the task state. 184 */ 185 void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode, 186 int nr_exclusive, void *key) 187 { 188 int wake_flags = 1; /* XXX WF_SYNC */ 189 190 if (unlikely(!wq_head)) 191 return; 192 193 if (unlikely(nr_exclusive != 1)) 194 wake_flags = 0; 195 196 __wake_up_common_lock(wq_head, mode, nr_exclusive, wake_flags, key); 197 } 198 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 199 200 /* 201 * __wake_up_sync - see __wake_up_sync_key() 202 */ 203 void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode, int nr_exclusive) 204 { 205 __wake_up_sync_key(wq_head, mode, nr_exclusive, NULL); 206 } 207 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 208 209 /* 210 * Note: we use "set_current_state()" _after_ the wait-queue add, 211 * because we need a memory barrier there on SMP, so that any 212 * wake-function that tests for the wait-queue being active 213 * will be guaranteed to see waitqueue addition _or_ subsequent 214 * tests in this thread will see the wakeup having taken place. 215 * 216 * The spin_unlock() itself is semi-permeable and only protects 217 * one way (it only protects stuff inside the critical region and 218 * stops them from bleeding out - it would still allow subsequent 219 * loads to move into the critical region). 220 */ 221 void 222 prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 223 { 224 unsigned long flags; 225 226 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE; 227 spin_lock_irqsave(&wq_head->lock, flags); 228 if (list_empty(&wq_entry->entry)) 229 __add_wait_queue(wq_head, wq_entry); 230 set_current_state(state); 231 spin_unlock_irqrestore(&wq_head->lock, flags); 232 } 233 EXPORT_SYMBOL(prepare_to_wait); 234 235 void 236 prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 237 { 238 unsigned long flags; 239 240 wq_entry->flags |= WQ_FLAG_EXCLUSIVE; 241 spin_lock_irqsave(&wq_head->lock, flags); 242 if (list_empty(&wq_entry->entry)) 243 __add_wait_queue_entry_tail(wq_head, wq_entry); 244 set_current_state(state); 245 spin_unlock_irqrestore(&wq_head->lock, flags); 246 } 247 EXPORT_SYMBOL(prepare_to_wait_exclusive); 248 249 void init_wait_entry(struct wait_queue_entry *wq_entry, int flags) 250 { 251 wq_entry->flags = flags; 252 wq_entry->private = current; 253 wq_entry->func = autoremove_wake_function; 254 INIT_LIST_HEAD(&wq_entry->entry); 255 } 256 EXPORT_SYMBOL(init_wait_entry); 257 258 long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 259 { 260 unsigned long flags; 261 long ret = 0; 262 263 spin_lock_irqsave(&wq_head->lock, flags); 264 if (signal_pending_state(state, current)) { 265 /* 266 * Exclusive waiter must not fail if it was selected by wakeup, 267 * it should "consume" the condition we were waiting for. 268 * 269 * The caller will recheck the condition and return success if 270 * we were already woken up, we can not miss the event because 271 * wakeup locks/unlocks the same wq_head->lock. 272 * 273 * But we need to ensure that set-condition + wakeup after that 274 * can't see us, it should wake up another exclusive waiter if 275 * we fail. 276 */ 277 list_del_init(&wq_entry->entry); 278 ret = -ERESTARTSYS; 279 } else { 280 if (list_empty(&wq_entry->entry)) { 281 if (wq_entry->flags & WQ_FLAG_EXCLUSIVE) 282 __add_wait_queue_entry_tail(wq_head, wq_entry); 283 else 284 __add_wait_queue(wq_head, wq_entry); 285 } 286 set_current_state(state); 287 } 288 spin_unlock_irqrestore(&wq_head->lock, flags); 289 290 return ret; 291 } 292 EXPORT_SYMBOL(prepare_to_wait_event); 293 294 /* 295 * Note! These two wait functions are entered with the 296 * wait-queue lock held (and interrupts off in the _irq 297 * case), so there is no race with testing the wakeup 298 * condition in the caller before they add the wait 299 * entry to the wake queue. 300 */ 301 int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait) 302 { 303 if (likely(list_empty(&wait->entry))) 304 __add_wait_queue_entry_tail(wq, wait); 305 306 set_current_state(TASK_INTERRUPTIBLE); 307 if (signal_pending(current)) 308 return -ERESTARTSYS; 309 310 spin_unlock(&wq->lock); 311 schedule(); 312 spin_lock(&wq->lock); 313 314 return 0; 315 } 316 EXPORT_SYMBOL(do_wait_intr); 317 318 int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait) 319 { 320 if (likely(list_empty(&wait->entry))) 321 __add_wait_queue_entry_tail(wq, wait); 322 323 set_current_state(TASK_INTERRUPTIBLE); 324 if (signal_pending(current)) 325 return -ERESTARTSYS; 326 327 spin_unlock_irq(&wq->lock); 328 schedule(); 329 spin_lock_irq(&wq->lock); 330 331 return 0; 332 } 333 EXPORT_SYMBOL(do_wait_intr_irq); 334 335 /** 336 * finish_wait - clean up after waiting in a queue 337 * @wq_head: waitqueue waited on 338 * @wq_entry: wait descriptor 339 * 340 * Sets current thread back to running state and removes 341 * the wait descriptor from the given waitqueue if still 342 * queued. 343 */ 344 void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 345 { 346 unsigned long flags; 347 348 __set_current_state(TASK_RUNNING); 349 /* 350 * We can check for list emptiness outside the lock 351 * IFF: 352 * - we use the "careful" check that verifies both 353 * the next and prev pointers, so that there cannot 354 * be any half-pending updates in progress on other 355 * CPU's that we haven't seen yet (and that might 356 * still change the stack area. 357 * and 358 * - all other users take the lock (ie we can only 359 * have _one_ other CPU that looks at or modifies 360 * the list). 361 */ 362 if (!list_empty_careful(&wq_entry->entry)) { 363 spin_lock_irqsave(&wq_head->lock, flags); 364 list_del_init(&wq_entry->entry); 365 spin_unlock_irqrestore(&wq_head->lock, flags); 366 } 367 } 368 EXPORT_SYMBOL(finish_wait); 369 370 int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key) 371 { 372 int ret = default_wake_function(wq_entry, mode, sync, key); 373 374 if (ret) 375 list_del_init(&wq_entry->entry); 376 377 return ret; 378 } 379 EXPORT_SYMBOL(autoremove_wake_function); 380 381 static inline bool is_kthread_should_stop(void) 382 { 383 return (current->flags & PF_KTHREAD) && kthread_should_stop(); 384 } 385 386 /* 387 * DEFINE_WAIT_FUNC(wait, woken_wake_func); 388 * 389 * add_wait_queue(&wq_head, &wait); 390 * for (;;) { 391 * if (condition) 392 * break; 393 * 394 * // in wait_woken() // in woken_wake_function() 395 * 396 * p->state = mode; wq_entry->flags |= WQ_FLAG_WOKEN; 397 * smp_mb(); // A try_to_wake_up(): 398 * if (!(wq_entry->flags & WQ_FLAG_WOKEN)) <full barrier> 399 * schedule() if (p->state & mode) 400 * p->state = TASK_RUNNING; p->state = TASK_RUNNING; 401 * wq_entry->flags &= ~WQ_FLAG_WOKEN; ~~~~~~~~~~~~~~~~~~ 402 * smp_mb(); // B condition = true; 403 * } smp_mb(); // C 404 * remove_wait_queue(&wq_head, &wait); wq_entry->flags |= WQ_FLAG_WOKEN; 405 */ 406 long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout) 407 { 408 /* 409 * The below executes an smp_mb(), which matches with the full barrier 410 * executed by the try_to_wake_up() in woken_wake_function() such that 411 * either we see the store to wq_entry->flags in woken_wake_function() 412 * or woken_wake_function() sees our store to current->state. 413 */ 414 set_current_state(mode); /* A */ 415 if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop()) 416 timeout = schedule_timeout(timeout); 417 __set_current_state(TASK_RUNNING); 418 419 /* 420 * The below executes an smp_mb(), which matches with the smp_mb() (C) 421 * in woken_wake_function() such that either we see the wait condition 422 * being true or the store to wq_entry->flags in woken_wake_function() 423 * follows ours in the coherence order. 424 */ 425 smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */ 426 427 return timeout; 428 } 429 EXPORT_SYMBOL(wait_woken); 430 431 int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key) 432 { 433 /* Pairs with the smp_store_mb() in wait_woken(). */ 434 smp_mb(); /* C */ 435 wq_entry->flags |= WQ_FLAG_WOKEN; 436 437 return default_wake_function(wq_entry, mode, sync, key); 438 } 439 EXPORT_SYMBOL(woken_wake_function); 440