1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic waiting primitives. 4 * 5 * (C) 2004 Nadia Yvette Chambers, Oracle 6 */ 7 #include "sched.h" 8 9 void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key) 10 { 11 spin_lock_init(&wq_head->lock); 12 lockdep_set_class_and_name(&wq_head->lock, key, name); 13 INIT_LIST_HEAD(&wq_head->head); 14 } 15 16 EXPORT_SYMBOL(__init_waitqueue_head); 17 18 void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 19 { 20 unsigned long flags; 21 22 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE; 23 spin_lock_irqsave(&wq_head->lock, flags); 24 __add_wait_queue(wq_head, wq_entry); 25 spin_unlock_irqrestore(&wq_head->lock, flags); 26 } 27 EXPORT_SYMBOL(add_wait_queue); 28 29 void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 30 { 31 unsigned long flags; 32 33 wq_entry->flags |= WQ_FLAG_EXCLUSIVE; 34 spin_lock_irqsave(&wq_head->lock, flags); 35 __add_wait_queue_entry_tail(wq_head, wq_entry); 36 spin_unlock_irqrestore(&wq_head->lock, flags); 37 } 38 EXPORT_SYMBOL(add_wait_queue_exclusive); 39 40 void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 41 { 42 unsigned long flags; 43 44 wq_entry->flags |= WQ_FLAG_PRIORITY; 45 spin_lock_irqsave(&wq_head->lock, flags); 46 __add_wait_queue(wq_head, wq_entry); 47 spin_unlock_irqrestore(&wq_head->lock, flags); 48 } 49 EXPORT_SYMBOL_GPL(add_wait_queue_priority); 50 51 int add_wait_queue_priority_exclusive(struct wait_queue_head *wq_head, 52 struct wait_queue_entry *wq_entry) 53 { 54 struct list_head *head = &wq_head->head; 55 56 wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY; 57 58 guard(spinlock_irqsave)(&wq_head->lock); 59 60 if (!list_empty(head) && 61 (list_first_entry(head, typeof(*wq_entry), entry)->flags & WQ_FLAG_PRIORITY)) 62 return -EBUSY; 63 64 list_add(&wq_entry->entry, head); 65 return 0; 66 } 67 EXPORT_SYMBOL_GPL(add_wait_queue_priority_exclusive); 68 69 void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 70 { 71 unsigned long flags; 72 73 spin_lock_irqsave(&wq_head->lock, flags); 74 __remove_wait_queue(wq_head, wq_entry); 75 spin_unlock_irqrestore(&wq_head->lock, flags); 76 } 77 EXPORT_SYMBOL(remove_wait_queue); 78 79 /* 80 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 81 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 82 * number) then we wake that number of exclusive tasks, and potentially all 83 * the non-exclusive tasks. Normally, exclusive tasks will be at the end of 84 * the list and any non-exclusive tasks will be woken first. A priority task 85 * may be at the head of the list, and can consume the event without any other 86 * tasks being woken if it's also an exclusive task. 87 * 88 * There are circumstances in which we can try to wake a task which has already 89 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 90 * zero in this (rare) case, and we handle it by continuing to scan the queue. 91 */ 92 static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode, 93 int nr_exclusive, int wake_flags, void *key) 94 { 95 wait_queue_entry_t *curr, *next; 96 97 lockdep_assert_held(&wq_head->lock); 98 99 curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry); 100 101 if (&curr->entry == &wq_head->head) 102 return nr_exclusive; 103 104 list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) { 105 unsigned flags = curr->flags; 106 int ret; 107 108 ret = curr->func(curr, mode, wake_flags, key); 109 if (ret < 0) 110 break; 111 if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 112 break; 113 } 114 115 return nr_exclusive; 116 } 117 118 static int __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode, 119 int nr_exclusive, int wake_flags, void *key) 120 { 121 unsigned long flags; 122 int remaining; 123 124 spin_lock_irqsave(&wq_head->lock, flags); 125 remaining = __wake_up_common(wq_head, mode, nr_exclusive, wake_flags, 126 key); 127 spin_unlock_irqrestore(&wq_head->lock, flags); 128 129 return nr_exclusive - remaining; 130 } 131 132 /** 133 * __wake_up - wake up threads blocked on a waitqueue. 134 * @wq_head: the waitqueue 135 * @mode: which threads 136 * @nr_exclusive: how many wake-one or wake-many threads to wake up 137 * @key: is directly passed to the wakeup function 138 * 139 * If this function wakes up a task, it executes a full memory barrier 140 * before accessing the task state. Returns the number of exclusive 141 * tasks that were awaken. 142 */ 143 int __wake_up(struct wait_queue_head *wq_head, unsigned int mode, 144 int nr_exclusive, void *key) 145 { 146 return __wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key); 147 } 148 EXPORT_SYMBOL(__wake_up); 149 150 void __wake_up_on_current_cpu(struct wait_queue_head *wq_head, unsigned int mode, void *key) 151 { 152 __wake_up_common_lock(wq_head, mode, 1, WF_CURRENT_CPU, key); 153 } 154 155 /* 156 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 157 */ 158 void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr) 159 { 160 __wake_up_common(wq_head, mode, nr, 0, NULL); 161 } 162 EXPORT_SYMBOL_GPL(__wake_up_locked); 163 164 void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key) 165 { 166 __wake_up_common(wq_head, mode, 1, 0, key); 167 } 168 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 169 170 /** 171 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 172 * @wq_head: the waitqueue 173 * @mode: which threads 174 * @key: opaque value to be passed to wakeup targets 175 * 176 * The sync wakeup differs that the waker knows that it will schedule 177 * away soon, so while the target thread will be woken up, it will not 178 * be migrated to another CPU - ie. the two threads are 'synchronized' 179 * with each other. This can prevent needless bouncing between CPUs. 180 * 181 * On UP it can prevent extra preemption. 182 * 183 * If this function wakes up a task, it executes a full memory barrier before 184 * accessing the task state. 185 */ 186 void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode, 187 void *key) 188 { 189 if (unlikely(!wq_head)) 190 return; 191 192 __wake_up_common_lock(wq_head, mode, 1, WF_SYNC, key); 193 } 194 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 195 196 /** 197 * __wake_up_locked_sync_key - wake up a thread blocked on a locked waitqueue. 198 * @wq_head: the waitqueue 199 * @mode: which threads 200 * @key: opaque value to be passed to wakeup targets 201 * 202 * The sync wakeup differs in that the waker knows that it will schedule 203 * away soon, so while the target thread will be woken up, it will not 204 * be migrated to another CPU - ie. the two threads are 'synchronized' 205 * with each other. This can prevent needless bouncing between CPUs. 206 * 207 * On UP it can prevent extra preemption. 208 * 209 * If this function wakes up a task, it executes a full memory barrier before 210 * accessing the task state. 211 */ 212 void __wake_up_locked_sync_key(struct wait_queue_head *wq_head, 213 unsigned int mode, void *key) 214 { 215 __wake_up_common(wq_head, mode, 1, WF_SYNC, key); 216 } 217 EXPORT_SYMBOL_GPL(__wake_up_locked_sync_key); 218 219 /* 220 * __wake_up_sync - see __wake_up_sync_key() 221 */ 222 void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode) 223 { 224 __wake_up_sync_key(wq_head, mode, NULL); 225 } 226 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 227 228 void __wake_up_pollfree(struct wait_queue_head *wq_head) 229 { 230 __wake_up(wq_head, TASK_NORMAL, 0, poll_to_key(EPOLLHUP | POLLFREE)); 231 /* POLLFREE must have cleared the queue. */ 232 WARN_ON_ONCE(waitqueue_active(wq_head)); 233 } 234 235 /* 236 * Note: we use "set_current_state()" _after_ the wait-queue add, 237 * because we need a memory barrier there on SMP, so that any 238 * wake-function that tests for the wait-queue being active 239 * will be guaranteed to see waitqueue addition _or_ subsequent 240 * tests in this thread will see the wakeup having taken place. 241 * 242 * The spin_unlock() itself is semi-permeable and only protects 243 * one way (it only protects stuff inside the critical region and 244 * stops them from bleeding out - it would still allow subsequent 245 * loads to move into the critical region). 246 */ 247 void 248 prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 249 { 250 unsigned long flags; 251 252 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE; 253 spin_lock_irqsave(&wq_head->lock, flags); 254 if (list_empty(&wq_entry->entry)) 255 __add_wait_queue(wq_head, wq_entry); 256 set_current_state(state); 257 spin_unlock_irqrestore(&wq_head->lock, flags); 258 } 259 EXPORT_SYMBOL(prepare_to_wait); 260 261 /* Returns true if we are the first waiter in the queue, false otherwise. */ 262 bool 263 prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 264 { 265 unsigned long flags; 266 bool was_empty = false; 267 268 wq_entry->flags |= WQ_FLAG_EXCLUSIVE; 269 spin_lock_irqsave(&wq_head->lock, flags); 270 if (list_empty(&wq_entry->entry)) { 271 was_empty = list_empty(&wq_head->head); 272 __add_wait_queue_entry_tail(wq_head, wq_entry); 273 } 274 set_current_state(state); 275 spin_unlock_irqrestore(&wq_head->lock, flags); 276 return was_empty; 277 } 278 EXPORT_SYMBOL(prepare_to_wait_exclusive); 279 280 void init_wait_entry(struct wait_queue_entry *wq_entry, int flags) 281 { 282 wq_entry->flags = flags; 283 wq_entry->private = current; 284 wq_entry->func = autoremove_wake_function; 285 INIT_LIST_HEAD(&wq_entry->entry); 286 } 287 EXPORT_SYMBOL(init_wait_entry); 288 289 long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 290 { 291 unsigned long flags; 292 long ret = 0; 293 294 spin_lock_irqsave(&wq_head->lock, flags); 295 if (signal_pending_state(state, current)) { 296 /* 297 * Exclusive waiter must not fail if it was selected by wakeup, 298 * it should "consume" the condition we were waiting for. 299 * 300 * The caller will recheck the condition and return success if 301 * we were already woken up, we can not miss the event because 302 * wakeup locks/unlocks the same wq_head->lock. 303 * 304 * But we need to ensure that set-condition + wakeup after that 305 * can't see us, it should wake up another exclusive waiter if 306 * we fail. 307 */ 308 list_del_init(&wq_entry->entry); 309 ret = -ERESTARTSYS; 310 } else { 311 if (list_empty(&wq_entry->entry)) { 312 if (wq_entry->flags & WQ_FLAG_EXCLUSIVE) 313 __add_wait_queue_entry_tail(wq_head, wq_entry); 314 else 315 __add_wait_queue(wq_head, wq_entry); 316 } 317 set_current_state(state); 318 } 319 spin_unlock_irqrestore(&wq_head->lock, flags); 320 321 return ret; 322 } 323 EXPORT_SYMBOL(prepare_to_wait_event); 324 325 /* 326 * Note! These two wait functions are entered with the 327 * wait-queue lock held (and interrupts off in the _irq 328 * case), so there is no race with testing the wakeup 329 * condition in the caller before they add the wait 330 * entry to the wake queue. 331 */ 332 int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait) 333 { 334 if (likely(list_empty(&wait->entry))) 335 __add_wait_queue_entry_tail(wq, wait); 336 337 set_current_state(TASK_INTERRUPTIBLE); 338 if (signal_pending(current)) 339 return -ERESTARTSYS; 340 341 spin_unlock(&wq->lock); 342 schedule(); 343 spin_lock(&wq->lock); 344 345 return 0; 346 } 347 EXPORT_SYMBOL(do_wait_intr); 348 349 int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait) 350 { 351 if (likely(list_empty(&wait->entry))) 352 __add_wait_queue_entry_tail(wq, wait); 353 354 set_current_state(TASK_INTERRUPTIBLE); 355 if (signal_pending(current)) 356 return -ERESTARTSYS; 357 358 spin_unlock_irq(&wq->lock); 359 schedule(); 360 spin_lock_irq(&wq->lock); 361 362 return 0; 363 } 364 EXPORT_SYMBOL(do_wait_intr_irq); 365 366 /** 367 * finish_wait - clean up after waiting in a queue 368 * @wq_head: waitqueue waited on 369 * @wq_entry: wait descriptor 370 * 371 * Sets current thread back to running state and removes 372 * the wait descriptor from the given waitqueue if still 373 * queued. 374 */ 375 void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 376 { 377 unsigned long flags; 378 379 __set_current_state(TASK_RUNNING); 380 /* 381 * We can check for list emptiness outside the lock 382 * IFF: 383 * - we use the "careful" check that verifies both 384 * the next and prev pointers, so that there cannot 385 * be any half-pending updates in progress on other 386 * CPU's that we haven't seen yet (and that might 387 * still change the stack area. 388 * and 389 * - all other users take the lock (ie we can only 390 * have _one_ other CPU that looks at or modifies 391 * the list). 392 */ 393 if (!list_empty_careful(&wq_entry->entry)) { 394 spin_lock_irqsave(&wq_head->lock, flags); 395 list_del_init(&wq_entry->entry); 396 spin_unlock_irqrestore(&wq_head->lock, flags); 397 } 398 } 399 EXPORT_SYMBOL(finish_wait); 400 401 int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key) 402 { 403 int ret = default_wake_function(wq_entry, mode, sync, key); 404 405 if (ret) 406 list_del_init_careful(&wq_entry->entry); 407 408 return ret; 409 } 410 EXPORT_SYMBOL(autoremove_wake_function); 411 412 /* 413 * DEFINE_WAIT_FUNC(wait, woken_wake_func); 414 * 415 * add_wait_queue(&wq_head, &wait); 416 * for (;;) { 417 * if (condition) 418 * break; 419 * 420 * // in wait_woken() // in woken_wake_function() 421 * 422 * p->state = mode; wq_entry->flags |= WQ_FLAG_WOKEN; 423 * smp_mb(); // A try_to_wake_up(): 424 * if (!(wq_entry->flags & WQ_FLAG_WOKEN)) <full barrier> 425 * schedule() if (p->state & mode) 426 * p->state = TASK_RUNNING; p->state = TASK_RUNNING; 427 * wq_entry->flags &= ~WQ_FLAG_WOKEN; ~~~~~~~~~~~~~~~~~~ 428 * smp_mb(); // B condition = true; 429 * } smp_mb(); // C 430 * remove_wait_queue(&wq_head, &wait); wq_entry->flags |= WQ_FLAG_WOKEN; 431 */ 432 long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout) 433 { 434 /* 435 * The below executes an smp_mb(), which matches with the full barrier 436 * executed by the try_to_wake_up() in woken_wake_function() such that 437 * either we see the store to wq_entry->flags in woken_wake_function() 438 * or woken_wake_function() sees our store to current->state. 439 */ 440 set_current_state(mode); /* A */ 441 if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !kthread_should_stop_or_park()) 442 timeout = schedule_timeout(timeout); 443 __set_current_state(TASK_RUNNING); 444 445 /* 446 * The below executes an smp_mb(), which matches with the smp_mb() (C) 447 * in woken_wake_function() such that either we see the wait condition 448 * being true or the store to wq_entry->flags in woken_wake_function() 449 * follows ours in the coherence order. 450 */ 451 smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */ 452 453 return timeout; 454 } 455 EXPORT_SYMBOL(wait_woken); 456 457 int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key) 458 { 459 /* Pairs with the smp_store_mb() in wait_woken(). */ 460 smp_mb(); /* C */ 461 wq_entry->flags |= WQ_FLAG_WOKEN; 462 463 return default_wake_function(wq_entry, mode, sync, key); 464 } 465 EXPORT_SYMBOL(woken_wake_function); 466