xref: /linux/kernel/sched/wait.c (revision 221013afb459e5deb8bd08e29b37050af5586d1c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic waiting primitives.
4  *
5  * (C) 2004 Nadia Yvette Chambers, Oracle
6  */
7 
8 void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key)
9 {
10 	spin_lock_init(&wq_head->lock);
11 	lockdep_set_class_and_name(&wq_head->lock, key, name);
12 	INIT_LIST_HEAD(&wq_head->head);
13 }
14 
15 EXPORT_SYMBOL(__init_waitqueue_head);
16 
17 void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
18 {
19 	unsigned long flags;
20 
21 	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
22 	spin_lock_irqsave(&wq_head->lock, flags);
23 	__add_wait_queue(wq_head, wq_entry);
24 	spin_unlock_irqrestore(&wq_head->lock, flags);
25 }
26 EXPORT_SYMBOL(add_wait_queue);
27 
28 void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
29 {
30 	unsigned long flags;
31 
32 	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
33 	spin_lock_irqsave(&wq_head->lock, flags);
34 	__add_wait_queue_entry_tail(wq_head, wq_entry);
35 	spin_unlock_irqrestore(&wq_head->lock, flags);
36 }
37 EXPORT_SYMBOL(add_wait_queue_exclusive);
38 
39 void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
40 {
41 	unsigned long flags;
42 
43 	wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY;
44 	spin_lock_irqsave(&wq_head->lock, flags);
45 	__add_wait_queue(wq_head, wq_entry);
46 	spin_unlock_irqrestore(&wq_head->lock, flags);
47 }
48 EXPORT_SYMBOL_GPL(add_wait_queue_priority);
49 
50 void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
51 {
52 	unsigned long flags;
53 
54 	spin_lock_irqsave(&wq_head->lock, flags);
55 	__remove_wait_queue(wq_head, wq_entry);
56 	spin_unlock_irqrestore(&wq_head->lock, flags);
57 }
58 EXPORT_SYMBOL(remove_wait_queue);
59 
60 /*
61  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
62  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
63  * number) then we wake that number of exclusive tasks, and potentially all
64  * the non-exclusive tasks. Normally, exclusive tasks will be at the end of
65  * the list and any non-exclusive tasks will be woken first. A priority task
66  * may be at the head of the list, and can consume the event without any other
67  * tasks being woken.
68  *
69  * There are circumstances in which we can try to wake a task which has already
70  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
71  * zero in this (rare) case, and we handle it by continuing to scan the queue.
72  */
73 static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode,
74 			int nr_exclusive, int wake_flags, void *key)
75 {
76 	wait_queue_entry_t *curr, *next;
77 
78 	lockdep_assert_held(&wq_head->lock);
79 
80 	curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry);
81 
82 	if (&curr->entry == &wq_head->head)
83 		return nr_exclusive;
84 
85 	list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) {
86 		unsigned flags = curr->flags;
87 		int ret;
88 
89 		ret = curr->func(curr, mode, wake_flags, key);
90 		if (ret < 0)
91 			break;
92 		if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
93 			break;
94 	}
95 
96 	return nr_exclusive;
97 }
98 
99 static int __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode,
100 			int nr_exclusive, int wake_flags, void *key)
101 {
102 	unsigned long flags;
103 	int remaining;
104 
105 	spin_lock_irqsave(&wq_head->lock, flags);
106 	remaining = __wake_up_common(wq_head, mode, nr_exclusive, wake_flags,
107 			key);
108 	spin_unlock_irqrestore(&wq_head->lock, flags);
109 
110 	return nr_exclusive - remaining;
111 }
112 
113 /**
114  * __wake_up - wake up threads blocked on a waitqueue.
115  * @wq_head: the waitqueue
116  * @mode: which threads
117  * @nr_exclusive: how many wake-one or wake-many threads to wake up
118  * @key: is directly passed to the wakeup function
119  *
120  * If this function wakes up a task, it executes a full memory barrier
121  * before accessing the task state.  Returns the number of exclusive
122  * tasks that were awaken.
123  */
124 int __wake_up(struct wait_queue_head *wq_head, unsigned int mode,
125 	      int nr_exclusive, void *key)
126 {
127 	return __wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key);
128 }
129 EXPORT_SYMBOL(__wake_up);
130 
131 void __wake_up_on_current_cpu(struct wait_queue_head *wq_head, unsigned int mode, void *key)
132 {
133 	__wake_up_common_lock(wq_head, mode, 1, WF_CURRENT_CPU, key);
134 }
135 
136 /*
137  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
138  */
139 void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr)
140 {
141 	__wake_up_common(wq_head, mode, nr, 0, NULL);
142 }
143 EXPORT_SYMBOL_GPL(__wake_up_locked);
144 
145 void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key)
146 {
147 	__wake_up_common(wq_head, mode, 1, 0, key);
148 }
149 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
150 
151 /**
152  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
153  * @wq_head: the waitqueue
154  * @mode: which threads
155  * @key: opaque value to be passed to wakeup targets
156  *
157  * The sync wakeup differs that the waker knows that it will schedule
158  * away soon, so while the target thread will be woken up, it will not
159  * be migrated to another CPU - ie. the two threads are 'synchronized'
160  * with each other. This can prevent needless bouncing between CPUs.
161  *
162  * On UP it can prevent extra preemption.
163  *
164  * If this function wakes up a task, it executes a full memory barrier before
165  * accessing the task state.
166  */
167 void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode,
168 			void *key)
169 {
170 	if (unlikely(!wq_head))
171 		return;
172 
173 	__wake_up_common_lock(wq_head, mode, 1, WF_SYNC, key);
174 }
175 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
176 
177 /**
178  * __wake_up_locked_sync_key - wake up a thread blocked on a locked waitqueue.
179  * @wq_head: the waitqueue
180  * @mode: which threads
181  * @key: opaque value to be passed to wakeup targets
182  *
183  * The sync wakeup differs in that the waker knows that it will schedule
184  * away soon, so while the target thread will be woken up, it will not
185  * be migrated to another CPU - ie. the two threads are 'synchronized'
186  * with each other. This can prevent needless bouncing between CPUs.
187  *
188  * On UP it can prevent extra preemption.
189  *
190  * If this function wakes up a task, it executes a full memory barrier before
191  * accessing the task state.
192  */
193 void __wake_up_locked_sync_key(struct wait_queue_head *wq_head,
194 			       unsigned int mode, void *key)
195 {
196         __wake_up_common(wq_head, mode, 1, WF_SYNC, key);
197 }
198 EXPORT_SYMBOL_GPL(__wake_up_locked_sync_key);
199 
200 /*
201  * __wake_up_sync - see __wake_up_sync_key()
202  */
203 void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode)
204 {
205 	__wake_up_sync_key(wq_head, mode, NULL);
206 }
207 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
208 
209 void __wake_up_pollfree(struct wait_queue_head *wq_head)
210 {
211 	__wake_up(wq_head, TASK_NORMAL, 0, poll_to_key(EPOLLHUP | POLLFREE));
212 	/* POLLFREE must have cleared the queue. */
213 	WARN_ON_ONCE(waitqueue_active(wq_head));
214 }
215 
216 /*
217  * Note: we use "set_current_state()" _after_ the wait-queue add,
218  * because we need a memory barrier there on SMP, so that any
219  * wake-function that tests for the wait-queue being active
220  * will be guaranteed to see waitqueue addition _or_ subsequent
221  * tests in this thread will see the wakeup having taken place.
222  *
223  * The spin_unlock() itself is semi-permeable and only protects
224  * one way (it only protects stuff inside the critical region and
225  * stops them from bleeding out - it would still allow subsequent
226  * loads to move into the critical region).
227  */
228 void
229 prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
230 {
231 	unsigned long flags;
232 
233 	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
234 	spin_lock_irqsave(&wq_head->lock, flags);
235 	if (list_empty(&wq_entry->entry))
236 		__add_wait_queue(wq_head, wq_entry);
237 	set_current_state(state);
238 	spin_unlock_irqrestore(&wq_head->lock, flags);
239 }
240 EXPORT_SYMBOL(prepare_to_wait);
241 
242 /* Returns true if we are the first waiter in the queue, false otherwise. */
243 bool
244 prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
245 {
246 	unsigned long flags;
247 	bool was_empty = false;
248 
249 	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
250 	spin_lock_irqsave(&wq_head->lock, flags);
251 	if (list_empty(&wq_entry->entry)) {
252 		was_empty = list_empty(&wq_head->head);
253 		__add_wait_queue_entry_tail(wq_head, wq_entry);
254 	}
255 	set_current_state(state);
256 	spin_unlock_irqrestore(&wq_head->lock, flags);
257 	return was_empty;
258 }
259 EXPORT_SYMBOL(prepare_to_wait_exclusive);
260 
261 void init_wait_entry(struct wait_queue_entry *wq_entry, int flags)
262 {
263 	wq_entry->flags = flags;
264 	wq_entry->private = current;
265 	wq_entry->func = autoremove_wake_function;
266 	INIT_LIST_HEAD(&wq_entry->entry);
267 }
268 EXPORT_SYMBOL(init_wait_entry);
269 
270 long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
271 {
272 	unsigned long flags;
273 	long ret = 0;
274 
275 	spin_lock_irqsave(&wq_head->lock, flags);
276 	if (signal_pending_state(state, current)) {
277 		/*
278 		 * Exclusive waiter must not fail if it was selected by wakeup,
279 		 * it should "consume" the condition we were waiting for.
280 		 *
281 		 * The caller will recheck the condition and return success if
282 		 * we were already woken up, we can not miss the event because
283 		 * wakeup locks/unlocks the same wq_head->lock.
284 		 *
285 		 * But we need to ensure that set-condition + wakeup after that
286 		 * can't see us, it should wake up another exclusive waiter if
287 		 * we fail.
288 		 */
289 		list_del_init(&wq_entry->entry);
290 		ret = -ERESTARTSYS;
291 	} else {
292 		if (list_empty(&wq_entry->entry)) {
293 			if (wq_entry->flags & WQ_FLAG_EXCLUSIVE)
294 				__add_wait_queue_entry_tail(wq_head, wq_entry);
295 			else
296 				__add_wait_queue(wq_head, wq_entry);
297 		}
298 		set_current_state(state);
299 	}
300 	spin_unlock_irqrestore(&wq_head->lock, flags);
301 
302 	return ret;
303 }
304 EXPORT_SYMBOL(prepare_to_wait_event);
305 
306 /*
307  * Note! These two wait functions are entered with the
308  * wait-queue lock held (and interrupts off in the _irq
309  * case), so there is no race with testing the wakeup
310  * condition in the caller before they add the wait
311  * entry to the wake queue.
312  */
313 int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait)
314 {
315 	if (likely(list_empty(&wait->entry)))
316 		__add_wait_queue_entry_tail(wq, wait);
317 
318 	set_current_state(TASK_INTERRUPTIBLE);
319 	if (signal_pending(current))
320 		return -ERESTARTSYS;
321 
322 	spin_unlock(&wq->lock);
323 	schedule();
324 	spin_lock(&wq->lock);
325 
326 	return 0;
327 }
328 EXPORT_SYMBOL(do_wait_intr);
329 
330 int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait)
331 {
332 	if (likely(list_empty(&wait->entry)))
333 		__add_wait_queue_entry_tail(wq, wait);
334 
335 	set_current_state(TASK_INTERRUPTIBLE);
336 	if (signal_pending(current))
337 		return -ERESTARTSYS;
338 
339 	spin_unlock_irq(&wq->lock);
340 	schedule();
341 	spin_lock_irq(&wq->lock);
342 
343 	return 0;
344 }
345 EXPORT_SYMBOL(do_wait_intr_irq);
346 
347 /**
348  * finish_wait - clean up after waiting in a queue
349  * @wq_head: waitqueue waited on
350  * @wq_entry: wait descriptor
351  *
352  * Sets current thread back to running state and removes
353  * the wait descriptor from the given waitqueue if still
354  * queued.
355  */
356 void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
357 {
358 	unsigned long flags;
359 
360 	__set_current_state(TASK_RUNNING);
361 	/*
362 	 * We can check for list emptiness outside the lock
363 	 * IFF:
364 	 *  - we use the "careful" check that verifies both
365 	 *    the next and prev pointers, so that there cannot
366 	 *    be any half-pending updates in progress on other
367 	 *    CPU's that we haven't seen yet (and that might
368 	 *    still change the stack area.
369 	 * and
370 	 *  - all other users take the lock (ie we can only
371 	 *    have _one_ other CPU that looks at or modifies
372 	 *    the list).
373 	 */
374 	if (!list_empty_careful(&wq_entry->entry)) {
375 		spin_lock_irqsave(&wq_head->lock, flags);
376 		list_del_init(&wq_entry->entry);
377 		spin_unlock_irqrestore(&wq_head->lock, flags);
378 	}
379 }
380 EXPORT_SYMBOL(finish_wait);
381 
382 int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
383 {
384 	int ret = default_wake_function(wq_entry, mode, sync, key);
385 
386 	if (ret)
387 		list_del_init_careful(&wq_entry->entry);
388 
389 	return ret;
390 }
391 EXPORT_SYMBOL(autoremove_wake_function);
392 
393 /*
394  * DEFINE_WAIT_FUNC(wait, woken_wake_func);
395  *
396  * add_wait_queue(&wq_head, &wait);
397  * for (;;) {
398  *     if (condition)
399  *         break;
400  *
401  *     // in wait_woken()			// in woken_wake_function()
402  *
403  *     p->state = mode;				wq_entry->flags |= WQ_FLAG_WOKEN;
404  *     smp_mb(); // A				try_to_wake_up():
405  *     if (!(wq_entry->flags & WQ_FLAG_WOKEN))	   <full barrier>
406  *         schedule()				   if (p->state & mode)
407  *     p->state = TASK_RUNNING;			      p->state = TASK_RUNNING;
408  *     wq_entry->flags &= ~WQ_FLAG_WOKEN;	~~~~~~~~~~~~~~~~~~
409  *     smp_mb(); // B				condition = true;
410  * }						smp_mb(); // C
411  * remove_wait_queue(&wq_head, &wait);		wq_entry->flags |= WQ_FLAG_WOKEN;
412  */
413 long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout)
414 {
415 	/*
416 	 * The below executes an smp_mb(), which matches with the full barrier
417 	 * executed by the try_to_wake_up() in woken_wake_function() such that
418 	 * either we see the store to wq_entry->flags in woken_wake_function()
419 	 * or woken_wake_function() sees our store to current->state.
420 	 */
421 	set_current_state(mode); /* A */
422 	if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !kthread_should_stop_or_park())
423 		timeout = schedule_timeout(timeout);
424 	__set_current_state(TASK_RUNNING);
425 
426 	/*
427 	 * The below executes an smp_mb(), which matches with the smp_mb() (C)
428 	 * in woken_wake_function() such that either we see the wait condition
429 	 * being true or the store to wq_entry->flags in woken_wake_function()
430 	 * follows ours in the coherence order.
431 	 */
432 	smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */
433 
434 	return timeout;
435 }
436 EXPORT_SYMBOL(wait_woken);
437 
438 int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
439 {
440 	/* Pairs with the smp_store_mb() in wait_woken(). */
441 	smp_mb(); /* C */
442 	wq_entry->flags |= WQ_FLAG_WOKEN;
443 
444 	return default_wake_function(wq_entry, mode, sync, key);
445 }
446 EXPORT_SYMBOL(woken_wake_function);
447