xref: /linux/kernel/sched/wait.c (revision 04eeb606a8383b306f4bc6991da8231b5f3924b0)
1 /*
2  * Generic waiting primitives.
3  *
4  * (C) 2004 Nadia Yvette Chambers, Oracle
5  */
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/wait.h>
11 #include <linux/hash.h>
12 
13 void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
14 {
15 	spin_lock_init(&q->lock);
16 	lockdep_set_class_and_name(&q->lock, key, name);
17 	INIT_LIST_HEAD(&q->task_list);
18 }
19 
20 EXPORT_SYMBOL(__init_waitqueue_head);
21 
22 void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
23 {
24 	unsigned long flags;
25 
26 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
27 	spin_lock_irqsave(&q->lock, flags);
28 	__add_wait_queue(q, wait);
29 	spin_unlock_irqrestore(&q->lock, flags);
30 }
31 EXPORT_SYMBOL(add_wait_queue);
32 
33 void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
34 {
35 	unsigned long flags;
36 
37 	wait->flags |= WQ_FLAG_EXCLUSIVE;
38 	spin_lock_irqsave(&q->lock, flags);
39 	__add_wait_queue_tail(q, wait);
40 	spin_unlock_irqrestore(&q->lock, flags);
41 }
42 EXPORT_SYMBOL(add_wait_queue_exclusive);
43 
44 void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
45 {
46 	unsigned long flags;
47 
48 	spin_lock_irqsave(&q->lock, flags);
49 	__remove_wait_queue(q, wait);
50 	spin_unlock_irqrestore(&q->lock, flags);
51 }
52 EXPORT_SYMBOL(remove_wait_queue);
53 
54 
55 /*
56  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
57  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
58  * number) then we wake all the non-exclusive tasks and one exclusive task.
59  *
60  * There are circumstances in which we can try to wake a task which has already
61  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
62  * zero in this (rare) case, and we handle it by continuing to scan the queue.
63  */
64 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
65 			int nr_exclusive, int wake_flags, void *key)
66 {
67 	wait_queue_t *curr, *next;
68 
69 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
70 		unsigned flags = curr->flags;
71 
72 		if (curr->func(curr, mode, wake_flags, key) &&
73 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
74 			break;
75 	}
76 }
77 
78 /**
79  * __wake_up - wake up threads blocked on a waitqueue.
80  * @q: the waitqueue
81  * @mode: which threads
82  * @nr_exclusive: how many wake-one or wake-many threads to wake up
83  * @key: is directly passed to the wakeup function
84  *
85  * It may be assumed that this function implies a write memory barrier before
86  * changing the task state if and only if any tasks are woken up.
87  */
88 void __wake_up(wait_queue_head_t *q, unsigned int mode,
89 			int nr_exclusive, void *key)
90 {
91 	unsigned long flags;
92 
93 	spin_lock_irqsave(&q->lock, flags);
94 	__wake_up_common(q, mode, nr_exclusive, 0, key);
95 	spin_unlock_irqrestore(&q->lock, flags);
96 }
97 EXPORT_SYMBOL(__wake_up);
98 
99 /*
100  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
101  */
102 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
103 {
104 	__wake_up_common(q, mode, nr, 0, NULL);
105 }
106 EXPORT_SYMBOL_GPL(__wake_up_locked);
107 
108 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
109 {
110 	__wake_up_common(q, mode, 1, 0, key);
111 }
112 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
113 
114 /**
115  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
116  * @q: the waitqueue
117  * @mode: which threads
118  * @nr_exclusive: how many wake-one or wake-many threads to wake up
119  * @key: opaque value to be passed to wakeup targets
120  *
121  * The sync wakeup differs that the waker knows that it will schedule
122  * away soon, so while the target thread will be woken up, it will not
123  * be migrated to another CPU - ie. the two threads are 'synchronized'
124  * with each other. This can prevent needless bouncing between CPUs.
125  *
126  * On UP it can prevent extra preemption.
127  *
128  * It may be assumed that this function implies a write memory barrier before
129  * changing the task state if and only if any tasks are woken up.
130  */
131 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
132 			int nr_exclusive, void *key)
133 {
134 	unsigned long flags;
135 	int wake_flags = 1; /* XXX WF_SYNC */
136 
137 	if (unlikely(!q))
138 		return;
139 
140 	if (unlikely(nr_exclusive != 1))
141 		wake_flags = 0;
142 
143 	spin_lock_irqsave(&q->lock, flags);
144 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
145 	spin_unlock_irqrestore(&q->lock, flags);
146 }
147 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
148 
149 /*
150  * __wake_up_sync - see __wake_up_sync_key()
151  */
152 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
153 {
154 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
155 }
156 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
157 
158 /*
159  * Note: we use "set_current_state()" _after_ the wait-queue add,
160  * because we need a memory barrier there on SMP, so that any
161  * wake-function that tests for the wait-queue being active
162  * will be guaranteed to see waitqueue addition _or_ subsequent
163  * tests in this thread will see the wakeup having taken place.
164  *
165  * The spin_unlock() itself is semi-permeable and only protects
166  * one way (it only protects stuff inside the critical region and
167  * stops them from bleeding out - it would still allow subsequent
168  * loads to move into the critical region).
169  */
170 void
171 prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
172 {
173 	unsigned long flags;
174 
175 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
176 	spin_lock_irqsave(&q->lock, flags);
177 	if (list_empty(&wait->task_list))
178 		__add_wait_queue(q, wait);
179 	set_current_state(state);
180 	spin_unlock_irqrestore(&q->lock, flags);
181 }
182 EXPORT_SYMBOL(prepare_to_wait);
183 
184 void
185 prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
186 {
187 	unsigned long flags;
188 
189 	wait->flags |= WQ_FLAG_EXCLUSIVE;
190 	spin_lock_irqsave(&q->lock, flags);
191 	if (list_empty(&wait->task_list))
192 		__add_wait_queue_tail(q, wait);
193 	set_current_state(state);
194 	spin_unlock_irqrestore(&q->lock, flags);
195 }
196 EXPORT_SYMBOL(prepare_to_wait_exclusive);
197 
198 long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
199 {
200 	unsigned long flags;
201 
202 	if (signal_pending_state(state, current))
203 		return -ERESTARTSYS;
204 
205 	wait->private = current;
206 	wait->func = autoremove_wake_function;
207 
208 	spin_lock_irqsave(&q->lock, flags);
209 	if (list_empty(&wait->task_list)) {
210 		if (wait->flags & WQ_FLAG_EXCLUSIVE)
211 			__add_wait_queue_tail(q, wait);
212 		else
213 			__add_wait_queue(q, wait);
214 	}
215 	set_current_state(state);
216 	spin_unlock_irqrestore(&q->lock, flags);
217 
218 	return 0;
219 }
220 EXPORT_SYMBOL(prepare_to_wait_event);
221 
222 /**
223  * finish_wait - clean up after waiting in a queue
224  * @q: waitqueue waited on
225  * @wait: wait descriptor
226  *
227  * Sets current thread back to running state and removes
228  * the wait descriptor from the given waitqueue if still
229  * queued.
230  */
231 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
232 {
233 	unsigned long flags;
234 
235 	__set_current_state(TASK_RUNNING);
236 	/*
237 	 * We can check for list emptiness outside the lock
238 	 * IFF:
239 	 *  - we use the "careful" check that verifies both
240 	 *    the next and prev pointers, so that there cannot
241 	 *    be any half-pending updates in progress on other
242 	 *    CPU's that we haven't seen yet (and that might
243 	 *    still change the stack area.
244 	 * and
245 	 *  - all other users take the lock (ie we can only
246 	 *    have _one_ other CPU that looks at or modifies
247 	 *    the list).
248 	 */
249 	if (!list_empty_careful(&wait->task_list)) {
250 		spin_lock_irqsave(&q->lock, flags);
251 		list_del_init(&wait->task_list);
252 		spin_unlock_irqrestore(&q->lock, flags);
253 	}
254 }
255 EXPORT_SYMBOL(finish_wait);
256 
257 /**
258  * abort_exclusive_wait - abort exclusive waiting in a queue
259  * @q: waitqueue waited on
260  * @wait: wait descriptor
261  * @mode: runstate of the waiter to be woken
262  * @key: key to identify a wait bit queue or %NULL
263  *
264  * Sets current thread back to running state and removes
265  * the wait descriptor from the given waitqueue if still
266  * queued.
267  *
268  * Wakes up the next waiter if the caller is concurrently
269  * woken up through the queue.
270  *
271  * This prevents waiter starvation where an exclusive waiter
272  * aborts and is woken up concurrently and no one wakes up
273  * the next waiter.
274  */
275 void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait,
276 			unsigned int mode, void *key)
277 {
278 	unsigned long flags;
279 
280 	__set_current_state(TASK_RUNNING);
281 	spin_lock_irqsave(&q->lock, flags);
282 	if (!list_empty(&wait->task_list))
283 		list_del_init(&wait->task_list);
284 	else if (waitqueue_active(q))
285 		__wake_up_locked_key(q, mode, key);
286 	spin_unlock_irqrestore(&q->lock, flags);
287 }
288 EXPORT_SYMBOL(abort_exclusive_wait);
289 
290 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
291 {
292 	int ret = default_wake_function(wait, mode, sync, key);
293 
294 	if (ret)
295 		list_del_init(&wait->task_list);
296 	return ret;
297 }
298 EXPORT_SYMBOL(autoremove_wake_function);
299 
300 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
301 {
302 	struct wait_bit_key *key = arg;
303 	struct wait_bit_queue *wait_bit
304 		= container_of(wait, struct wait_bit_queue, wait);
305 
306 	if (wait_bit->key.flags != key->flags ||
307 			wait_bit->key.bit_nr != key->bit_nr ||
308 			test_bit(key->bit_nr, key->flags))
309 		return 0;
310 	else
311 		return autoremove_wake_function(wait, mode, sync, key);
312 }
313 EXPORT_SYMBOL(wake_bit_function);
314 
315 /*
316  * To allow interruptible waiting and asynchronous (i.e. nonblocking)
317  * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
318  * permitted return codes. Nonzero return codes halt waiting and return.
319  */
320 int __sched
321 __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
322 	      wait_bit_action_f *action, unsigned mode)
323 {
324 	int ret = 0;
325 
326 	do {
327 		prepare_to_wait(wq, &q->wait, mode);
328 		if (test_bit(q->key.bit_nr, q->key.flags))
329 			ret = (*action)(&q->key);
330 	} while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
331 	finish_wait(wq, &q->wait);
332 	return ret;
333 }
334 EXPORT_SYMBOL(__wait_on_bit);
335 
336 int __sched out_of_line_wait_on_bit(void *word, int bit,
337 				    wait_bit_action_f *action, unsigned mode)
338 {
339 	wait_queue_head_t *wq = bit_waitqueue(word, bit);
340 	DEFINE_WAIT_BIT(wait, word, bit);
341 
342 	return __wait_on_bit(wq, &wait, action, mode);
343 }
344 EXPORT_SYMBOL(out_of_line_wait_on_bit);
345 
346 int __sched out_of_line_wait_on_bit_timeout(
347 	void *word, int bit, wait_bit_action_f *action,
348 	unsigned mode, unsigned long timeout)
349 {
350 	wait_queue_head_t *wq = bit_waitqueue(word, bit);
351 	DEFINE_WAIT_BIT(wait, word, bit);
352 
353 	wait.key.timeout = jiffies + timeout;
354 	return __wait_on_bit(wq, &wait, action, mode);
355 }
356 EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
357 
358 int __sched
359 __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
360 			wait_bit_action_f *action, unsigned mode)
361 {
362 	do {
363 		int ret;
364 
365 		prepare_to_wait_exclusive(wq, &q->wait, mode);
366 		if (!test_bit(q->key.bit_nr, q->key.flags))
367 			continue;
368 		ret = action(&q->key);
369 		if (!ret)
370 			continue;
371 		abort_exclusive_wait(wq, &q->wait, mode, &q->key);
372 		return ret;
373 	} while (test_and_set_bit(q->key.bit_nr, q->key.flags));
374 	finish_wait(wq, &q->wait);
375 	return 0;
376 }
377 EXPORT_SYMBOL(__wait_on_bit_lock);
378 
379 int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
380 					 wait_bit_action_f *action, unsigned mode)
381 {
382 	wait_queue_head_t *wq = bit_waitqueue(word, bit);
383 	DEFINE_WAIT_BIT(wait, word, bit);
384 
385 	return __wait_on_bit_lock(wq, &wait, action, mode);
386 }
387 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
388 
389 void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
390 {
391 	struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
392 	if (waitqueue_active(wq))
393 		__wake_up(wq, TASK_NORMAL, 1, &key);
394 }
395 EXPORT_SYMBOL(__wake_up_bit);
396 
397 /**
398  * wake_up_bit - wake up a waiter on a bit
399  * @word: the word being waited on, a kernel virtual address
400  * @bit: the bit of the word being waited on
401  *
402  * There is a standard hashed waitqueue table for generic use. This
403  * is the part of the hashtable's accessor API that wakes up waiters
404  * on a bit. For instance, if one were to have waiters on a bitflag,
405  * one would call wake_up_bit() after clearing the bit.
406  *
407  * In order for this to function properly, as it uses waitqueue_active()
408  * internally, some kind of memory barrier must be done prior to calling
409  * this. Typically, this will be smp_mb__after_atomic(), but in some
410  * cases where bitflags are manipulated non-atomically under a lock, one
411  * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
412  * because spin_unlock() does not guarantee a memory barrier.
413  */
414 void wake_up_bit(void *word, int bit)
415 {
416 	__wake_up_bit(bit_waitqueue(word, bit), word, bit);
417 }
418 EXPORT_SYMBOL(wake_up_bit);
419 
420 wait_queue_head_t *bit_waitqueue(void *word, int bit)
421 {
422 	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
423 	const struct zone *zone = page_zone(virt_to_page(word));
424 	unsigned long val = (unsigned long)word << shift | bit;
425 
426 	return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
427 }
428 EXPORT_SYMBOL(bit_waitqueue);
429 
430 /*
431  * Manipulate the atomic_t address to produce a better bit waitqueue table hash
432  * index (we're keying off bit -1, but that would produce a horrible hash
433  * value).
434  */
435 static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
436 {
437 	if (BITS_PER_LONG == 64) {
438 		unsigned long q = (unsigned long)p;
439 		return bit_waitqueue((void *)(q & ~1), q & 1);
440 	}
441 	return bit_waitqueue(p, 0);
442 }
443 
444 static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
445 				  void *arg)
446 {
447 	struct wait_bit_key *key = arg;
448 	struct wait_bit_queue *wait_bit
449 		= container_of(wait, struct wait_bit_queue, wait);
450 	atomic_t *val = key->flags;
451 
452 	if (wait_bit->key.flags != key->flags ||
453 	    wait_bit->key.bit_nr != key->bit_nr ||
454 	    atomic_read(val) != 0)
455 		return 0;
456 	return autoremove_wake_function(wait, mode, sync, key);
457 }
458 
459 /*
460  * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
461  * the actions of __wait_on_atomic_t() are permitted return codes.  Nonzero
462  * return codes halt waiting and return.
463  */
464 static __sched
465 int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
466 		       int (*action)(atomic_t *), unsigned mode)
467 {
468 	atomic_t *val;
469 	int ret = 0;
470 
471 	do {
472 		prepare_to_wait(wq, &q->wait, mode);
473 		val = q->key.flags;
474 		if (atomic_read(val) == 0)
475 			break;
476 		ret = (*action)(val);
477 	} while (!ret && atomic_read(val) != 0);
478 	finish_wait(wq, &q->wait);
479 	return ret;
480 }
481 
482 #define DEFINE_WAIT_ATOMIC_T(name, p)					\
483 	struct wait_bit_queue name = {					\
484 		.key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p),		\
485 		.wait	= {						\
486 			.private	= current,			\
487 			.func		= wake_atomic_t_function,	\
488 			.task_list	=				\
489 				LIST_HEAD_INIT((name).wait.task_list),	\
490 		},							\
491 	}
492 
493 __sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
494 					 unsigned mode)
495 {
496 	wait_queue_head_t *wq = atomic_t_waitqueue(p);
497 	DEFINE_WAIT_ATOMIC_T(wait, p);
498 
499 	return __wait_on_atomic_t(wq, &wait, action, mode);
500 }
501 EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
502 
503 /**
504  * wake_up_atomic_t - Wake up a waiter on a atomic_t
505  * @p: The atomic_t being waited on, a kernel virtual address
506  *
507  * Wake up anyone waiting for the atomic_t to go to zero.
508  *
509  * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
510  * check is done by the waiter's wake function, not the by the waker itself).
511  */
512 void wake_up_atomic_t(atomic_t *p)
513 {
514 	__wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
515 }
516 EXPORT_SYMBOL(wake_up_atomic_t);
517 
518 __sched int bit_wait(struct wait_bit_key *word)
519 {
520 	if (signal_pending_state(current->state, current))
521 		return 1;
522 	schedule();
523 	return 0;
524 }
525 EXPORT_SYMBOL(bit_wait);
526 
527 __sched int bit_wait_io(struct wait_bit_key *word)
528 {
529 	if (signal_pending_state(current->state, current))
530 		return 1;
531 	io_schedule();
532 	return 0;
533 }
534 EXPORT_SYMBOL(bit_wait_io);
535 
536 __sched int bit_wait_timeout(struct wait_bit_key *word)
537 {
538 	unsigned long now = ACCESS_ONCE(jiffies);
539 	if (signal_pending_state(current->state, current))
540 		return 1;
541 	if (time_after_eq(now, word->timeout))
542 		return -EAGAIN;
543 	schedule_timeout(word->timeout - now);
544 	return 0;
545 }
546 EXPORT_SYMBOL_GPL(bit_wait_timeout);
547 
548 __sched int bit_wait_io_timeout(struct wait_bit_key *word)
549 {
550 	unsigned long now = ACCESS_ONCE(jiffies);
551 	if (signal_pending_state(current->state, current))
552 		return 1;
553 	if (time_after_eq(now, word->timeout))
554 		return -EAGAIN;
555 	io_schedule_timeout(word->timeout - now);
556 	return 0;
557 }
558 EXPORT_SYMBOL_GPL(bit_wait_io_timeout);
559