xref: /linux/kernel/sched/topology.c (revision f96a974170b749e3a56844e25b31d46a7233b6f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 
6 #include <linux/bsearch.h>
7 
8 DEFINE_MUTEX(sched_domains_mutex);
9 
10 /* Protected by sched_domains_mutex: */
11 static cpumask_var_t sched_domains_tmpmask;
12 static cpumask_var_t sched_domains_tmpmask2;
13 
14 #ifdef CONFIG_SCHED_DEBUG
15 
16 static int __init sched_debug_setup(char *str)
17 {
18 	sched_debug_verbose = true;
19 
20 	return 0;
21 }
22 early_param("sched_verbose", sched_debug_setup);
23 
24 static inline bool sched_debug(void)
25 {
26 	return sched_debug_verbose;
27 }
28 
29 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
30 const struct sd_flag_debug sd_flag_debug[] = {
31 #include <linux/sched/sd_flags.h>
32 };
33 #undef SD_FLAG
34 
35 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
36 				  struct cpumask *groupmask)
37 {
38 	struct sched_group *group = sd->groups;
39 	unsigned long flags = sd->flags;
40 	unsigned int idx;
41 
42 	cpumask_clear(groupmask);
43 
44 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
45 	printk(KERN_CONT "span=%*pbl level=%s\n",
46 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
47 
48 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
49 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
50 	}
51 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
52 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
53 	}
54 
55 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
56 		unsigned int flag = BIT(idx);
57 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
58 
59 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
60 		    !(sd->child->flags & flag))
61 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
62 			       sd_flag_debug[idx].name);
63 
64 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
65 		    !(sd->parent->flags & flag))
66 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
67 			       sd_flag_debug[idx].name);
68 	}
69 
70 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
71 	do {
72 		if (!group) {
73 			printk("\n");
74 			printk(KERN_ERR "ERROR: group is NULL\n");
75 			break;
76 		}
77 
78 		if (cpumask_empty(sched_group_span(group))) {
79 			printk(KERN_CONT "\n");
80 			printk(KERN_ERR "ERROR: empty group\n");
81 			break;
82 		}
83 
84 		if (!(sd->flags & SD_OVERLAP) &&
85 		    cpumask_intersects(groupmask, sched_group_span(group))) {
86 			printk(KERN_CONT "\n");
87 			printk(KERN_ERR "ERROR: repeated CPUs\n");
88 			break;
89 		}
90 
91 		cpumask_or(groupmask, groupmask, sched_group_span(group));
92 
93 		printk(KERN_CONT " %d:{ span=%*pbl",
94 				group->sgc->id,
95 				cpumask_pr_args(sched_group_span(group)));
96 
97 		if ((sd->flags & SD_OVERLAP) &&
98 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
99 			printk(KERN_CONT " mask=%*pbl",
100 				cpumask_pr_args(group_balance_mask(group)));
101 		}
102 
103 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
104 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
105 
106 		if (group == sd->groups && sd->child &&
107 		    !cpumask_equal(sched_domain_span(sd->child),
108 				   sched_group_span(group))) {
109 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
110 		}
111 
112 		printk(KERN_CONT " }");
113 
114 		group = group->next;
115 
116 		if (group != sd->groups)
117 			printk(KERN_CONT ",");
118 
119 	} while (group != sd->groups);
120 	printk(KERN_CONT "\n");
121 
122 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
123 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
124 
125 	if (sd->parent &&
126 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
127 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
128 	return 0;
129 }
130 
131 static void sched_domain_debug(struct sched_domain *sd, int cpu)
132 {
133 	int level = 0;
134 
135 	if (!sched_debug_verbose)
136 		return;
137 
138 	if (!sd) {
139 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
140 		return;
141 	}
142 
143 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
144 
145 	for (;;) {
146 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
147 			break;
148 		level++;
149 		sd = sd->parent;
150 		if (!sd)
151 			break;
152 	}
153 }
154 #else /* !CONFIG_SCHED_DEBUG */
155 
156 # define sched_debug_verbose 0
157 # define sched_domain_debug(sd, cpu) do { } while (0)
158 static inline bool sched_debug(void)
159 {
160 	return false;
161 }
162 #endif /* CONFIG_SCHED_DEBUG */
163 
164 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
165 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
166 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
167 #include <linux/sched/sd_flags.h>
168 0;
169 #undef SD_FLAG
170 
171 static int sd_degenerate(struct sched_domain *sd)
172 {
173 	if (cpumask_weight(sched_domain_span(sd)) == 1)
174 		return 1;
175 
176 	/* Following flags need at least 2 groups */
177 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
178 	    (sd->groups != sd->groups->next))
179 		return 0;
180 
181 	/* Following flags don't use groups */
182 	if (sd->flags & (SD_WAKE_AFFINE))
183 		return 0;
184 
185 	return 1;
186 }
187 
188 static int
189 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
190 {
191 	unsigned long cflags = sd->flags, pflags = parent->flags;
192 
193 	if (sd_degenerate(parent))
194 		return 1;
195 
196 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
197 		return 0;
198 
199 	/* Flags needing groups don't count if only 1 group in parent */
200 	if (parent->groups == parent->groups->next)
201 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
202 
203 	if (~cflags & pflags)
204 		return 0;
205 
206 	return 1;
207 }
208 
209 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
210 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
211 static unsigned int sysctl_sched_energy_aware = 1;
212 static DEFINE_MUTEX(sched_energy_mutex);
213 static bool sched_energy_update;
214 
215 static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
216 {
217 	bool any_asym_capacity = false;
218 	struct cpufreq_policy *policy;
219 	struct cpufreq_governor *gov;
220 	int i;
221 
222 	/* EAS is enabled for asymmetric CPU capacity topologies. */
223 	for_each_cpu(i, cpu_mask) {
224 		if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
225 			any_asym_capacity = true;
226 			break;
227 		}
228 	}
229 	if (!any_asym_capacity) {
230 		if (sched_debug()) {
231 			pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
232 				cpumask_pr_args(cpu_mask));
233 		}
234 		return false;
235 	}
236 
237 	/* EAS definitely does *not* handle SMT */
238 	if (sched_smt_active()) {
239 		if (sched_debug()) {
240 			pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
241 				cpumask_pr_args(cpu_mask));
242 		}
243 		return false;
244 	}
245 
246 	if (!arch_scale_freq_invariant()) {
247 		if (sched_debug()) {
248 			pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
249 				cpumask_pr_args(cpu_mask));
250 		}
251 		return false;
252 	}
253 
254 	/* Do not attempt EAS if schedutil is not being used. */
255 	for_each_cpu(i, cpu_mask) {
256 		policy = cpufreq_cpu_get(i);
257 		if (!policy) {
258 			if (sched_debug()) {
259 				pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d",
260 					cpumask_pr_args(cpu_mask), i);
261 			}
262 			return false;
263 		}
264 		gov = policy->governor;
265 		cpufreq_cpu_put(policy);
266 		if (gov != &schedutil_gov) {
267 			if (sched_debug()) {
268 				pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n",
269 					cpumask_pr_args(cpu_mask));
270 			}
271 			return false;
272 		}
273 	}
274 
275 	return true;
276 }
277 
278 void rebuild_sched_domains_energy(void)
279 {
280 	mutex_lock(&sched_energy_mutex);
281 	sched_energy_update = true;
282 	rebuild_sched_domains();
283 	sched_energy_update = false;
284 	mutex_unlock(&sched_energy_mutex);
285 }
286 
287 #ifdef CONFIG_PROC_SYSCTL
288 static int sched_energy_aware_handler(const struct ctl_table *table, int write,
289 		void *buffer, size_t *lenp, loff_t *ppos)
290 {
291 	int ret, state;
292 
293 	if (write && !capable(CAP_SYS_ADMIN))
294 		return -EPERM;
295 
296 	if (!sched_is_eas_possible(cpu_active_mask)) {
297 		if (write) {
298 			return -EOPNOTSUPP;
299 		} else {
300 			*lenp = 0;
301 			return 0;
302 		}
303 	}
304 
305 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
306 	if (!ret && write) {
307 		state = static_branch_unlikely(&sched_energy_present);
308 		if (state != sysctl_sched_energy_aware)
309 			rebuild_sched_domains_energy();
310 	}
311 
312 	return ret;
313 }
314 
315 static struct ctl_table sched_energy_aware_sysctls[] = {
316 	{
317 		.procname       = "sched_energy_aware",
318 		.data           = &sysctl_sched_energy_aware,
319 		.maxlen         = sizeof(unsigned int),
320 		.mode           = 0644,
321 		.proc_handler   = sched_energy_aware_handler,
322 		.extra1         = SYSCTL_ZERO,
323 		.extra2         = SYSCTL_ONE,
324 	},
325 };
326 
327 static int __init sched_energy_aware_sysctl_init(void)
328 {
329 	register_sysctl_init("kernel", sched_energy_aware_sysctls);
330 	return 0;
331 }
332 
333 late_initcall(sched_energy_aware_sysctl_init);
334 #endif
335 
336 static void free_pd(struct perf_domain *pd)
337 {
338 	struct perf_domain *tmp;
339 
340 	while (pd) {
341 		tmp = pd->next;
342 		kfree(pd);
343 		pd = tmp;
344 	}
345 }
346 
347 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
348 {
349 	while (pd) {
350 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
351 			return pd;
352 		pd = pd->next;
353 	}
354 
355 	return NULL;
356 }
357 
358 static struct perf_domain *pd_init(int cpu)
359 {
360 	struct em_perf_domain *obj = em_cpu_get(cpu);
361 	struct perf_domain *pd;
362 
363 	if (!obj) {
364 		if (sched_debug())
365 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
366 		return NULL;
367 	}
368 
369 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
370 	if (!pd)
371 		return NULL;
372 	pd->em_pd = obj;
373 
374 	return pd;
375 }
376 
377 static void perf_domain_debug(const struct cpumask *cpu_map,
378 						struct perf_domain *pd)
379 {
380 	if (!sched_debug() || !pd)
381 		return;
382 
383 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
384 
385 	while (pd) {
386 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
387 				cpumask_first(perf_domain_span(pd)),
388 				cpumask_pr_args(perf_domain_span(pd)),
389 				em_pd_nr_perf_states(pd->em_pd));
390 		pd = pd->next;
391 	}
392 
393 	printk(KERN_CONT "\n");
394 }
395 
396 static void destroy_perf_domain_rcu(struct rcu_head *rp)
397 {
398 	struct perf_domain *pd;
399 
400 	pd = container_of(rp, struct perf_domain, rcu);
401 	free_pd(pd);
402 }
403 
404 static void sched_energy_set(bool has_eas)
405 {
406 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
407 		if (sched_debug())
408 			pr_info("%s: stopping EAS\n", __func__);
409 		static_branch_disable_cpuslocked(&sched_energy_present);
410 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
411 		if (sched_debug())
412 			pr_info("%s: starting EAS\n", __func__);
413 		static_branch_enable_cpuslocked(&sched_energy_present);
414 	}
415 }
416 
417 /*
418  * EAS can be used on a root domain if it meets all the following conditions:
419  *    1. an Energy Model (EM) is available;
420  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
421  *    3. no SMT is detected.
422  *    4. schedutil is driving the frequency of all CPUs of the rd;
423  *    5. frequency invariance support is present;
424  */
425 static bool build_perf_domains(const struct cpumask *cpu_map)
426 {
427 	int i;
428 	struct perf_domain *pd = NULL, *tmp;
429 	int cpu = cpumask_first(cpu_map);
430 	struct root_domain *rd = cpu_rq(cpu)->rd;
431 
432 	if (!sysctl_sched_energy_aware)
433 		goto free;
434 
435 	if (!sched_is_eas_possible(cpu_map))
436 		goto free;
437 
438 	for_each_cpu(i, cpu_map) {
439 		/* Skip already covered CPUs. */
440 		if (find_pd(pd, i))
441 			continue;
442 
443 		/* Create the new pd and add it to the local list. */
444 		tmp = pd_init(i);
445 		if (!tmp)
446 			goto free;
447 		tmp->next = pd;
448 		pd = tmp;
449 	}
450 
451 	perf_domain_debug(cpu_map, pd);
452 
453 	/* Attach the new list of performance domains to the root domain. */
454 	tmp = rd->pd;
455 	rcu_assign_pointer(rd->pd, pd);
456 	if (tmp)
457 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
458 
459 	return !!pd;
460 
461 free:
462 	free_pd(pd);
463 	tmp = rd->pd;
464 	rcu_assign_pointer(rd->pd, NULL);
465 	if (tmp)
466 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
467 
468 	return false;
469 }
470 #else
471 static void free_pd(struct perf_domain *pd) { }
472 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
473 
474 static void free_rootdomain(struct rcu_head *rcu)
475 {
476 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
477 
478 	cpupri_cleanup(&rd->cpupri);
479 	cpudl_cleanup(&rd->cpudl);
480 	free_cpumask_var(rd->dlo_mask);
481 	free_cpumask_var(rd->rto_mask);
482 	free_cpumask_var(rd->online);
483 	free_cpumask_var(rd->span);
484 	free_pd(rd->pd);
485 	kfree(rd);
486 }
487 
488 void rq_attach_root(struct rq *rq, struct root_domain *rd)
489 {
490 	struct root_domain *old_rd = NULL;
491 	struct rq_flags rf;
492 
493 	rq_lock_irqsave(rq, &rf);
494 
495 	if (rq->rd) {
496 		old_rd = rq->rd;
497 
498 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
499 			set_rq_offline(rq);
500 
501 		cpumask_clear_cpu(rq->cpu, old_rd->span);
502 
503 		/*
504 		 * If we don't want to free the old_rd yet then
505 		 * set old_rd to NULL to skip the freeing later
506 		 * in this function:
507 		 */
508 		if (!atomic_dec_and_test(&old_rd->refcount))
509 			old_rd = NULL;
510 	}
511 
512 	atomic_inc(&rd->refcount);
513 	rq->rd = rd;
514 
515 	cpumask_set_cpu(rq->cpu, rd->span);
516 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
517 		set_rq_online(rq);
518 
519 	/*
520 	 * Because the rq is not a task, dl_add_task_root_domain() did not
521 	 * move the fair server bw to the rd if it already started.
522 	 * Add it now.
523 	 */
524 	if (rq->fair_server.dl_server)
525 		__dl_server_attach_root(&rq->fair_server, rq);
526 
527 	rq_unlock_irqrestore(rq, &rf);
528 
529 	if (old_rd)
530 		call_rcu(&old_rd->rcu, free_rootdomain);
531 }
532 
533 void sched_get_rd(struct root_domain *rd)
534 {
535 	atomic_inc(&rd->refcount);
536 }
537 
538 void sched_put_rd(struct root_domain *rd)
539 {
540 	if (!atomic_dec_and_test(&rd->refcount))
541 		return;
542 
543 	call_rcu(&rd->rcu, free_rootdomain);
544 }
545 
546 static int init_rootdomain(struct root_domain *rd)
547 {
548 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
549 		goto out;
550 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
551 		goto free_span;
552 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
553 		goto free_online;
554 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
555 		goto free_dlo_mask;
556 
557 #ifdef HAVE_RT_PUSH_IPI
558 	rd->rto_cpu = -1;
559 	raw_spin_lock_init(&rd->rto_lock);
560 	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
561 #endif
562 
563 	rd->visit_gen = 0;
564 	init_dl_bw(&rd->dl_bw);
565 	if (cpudl_init(&rd->cpudl) != 0)
566 		goto free_rto_mask;
567 
568 	if (cpupri_init(&rd->cpupri) != 0)
569 		goto free_cpudl;
570 	return 0;
571 
572 free_cpudl:
573 	cpudl_cleanup(&rd->cpudl);
574 free_rto_mask:
575 	free_cpumask_var(rd->rto_mask);
576 free_dlo_mask:
577 	free_cpumask_var(rd->dlo_mask);
578 free_online:
579 	free_cpumask_var(rd->online);
580 free_span:
581 	free_cpumask_var(rd->span);
582 out:
583 	return -ENOMEM;
584 }
585 
586 /*
587  * By default the system creates a single root-domain with all CPUs as
588  * members (mimicking the global state we have today).
589  */
590 struct root_domain def_root_domain;
591 
592 void __init init_defrootdomain(void)
593 {
594 	init_rootdomain(&def_root_domain);
595 
596 	atomic_set(&def_root_domain.refcount, 1);
597 }
598 
599 static struct root_domain *alloc_rootdomain(void)
600 {
601 	struct root_domain *rd;
602 
603 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
604 	if (!rd)
605 		return NULL;
606 
607 	if (init_rootdomain(rd) != 0) {
608 		kfree(rd);
609 		return NULL;
610 	}
611 
612 	return rd;
613 }
614 
615 static void free_sched_groups(struct sched_group *sg, int free_sgc)
616 {
617 	struct sched_group *tmp, *first;
618 
619 	if (!sg)
620 		return;
621 
622 	first = sg;
623 	do {
624 		tmp = sg->next;
625 
626 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
627 			kfree(sg->sgc);
628 
629 		if (atomic_dec_and_test(&sg->ref))
630 			kfree(sg);
631 		sg = tmp;
632 	} while (sg != first);
633 }
634 
635 static void destroy_sched_domain(struct sched_domain *sd)
636 {
637 	/*
638 	 * A normal sched domain may have multiple group references, an
639 	 * overlapping domain, having private groups, only one.  Iterate,
640 	 * dropping group/capacity references, freeing where none remain.
641 	 */
642 	free_sched_groups(sd->groups, 1);
643 
644 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
645 		kfree(sd->shared);
646 	kfree(sd);
647 }
648 
649 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
650 {
651 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
652 
653 	while (sd) {
654 		struct sched_domain *parent = sd->parent;
655 		destroy_sched_domain(sd);
656 		sd = parent;
657 	}
658 }
659 
660 static void destroy_sched_domains(struct sched_domain *sd)
661 {
662 	if (sd)
663 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
664 }
665 
666 /*
667  * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set
668  * (Last Level Cache Domain) for this allows us to avoid some pointer chasing
669  * select_idle_sibling().
670  *
671  * Also keep a unique ID per domain (we use the first CPU number in the cpumask
672  * of the domain), this allows us to quickly tell if two CPUs are in the same
673  * cache domain, see cpus_share_cache().
674  */
675 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
676 DEFINE_PER_CPU(int, sd_llc_size);
677 DEFINE_PER_CPU(int, sd_llc_id);
678 DEFINE_PER_CPU(int, sd_share_id);
679 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
680 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
681 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
682 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
683 
684 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
685 DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
686 
687 static void update_top_cache_domain(int cpu)
688 {
689 	struct sched_domain_shared *sds = NULL;
690 	struct sched_domain *sd;
691 	int id = cpu;
692 	int size = 1;
693 
694 	sd = highest_flag_domain(cpu, SD_SHARE_LLC);
695 	if (sd) {
696 		id = cpumask_first(sched_domain_span(sd));
697 		size = cpumask_weight(sched_domain_span(sd));
698 		sds = sd->shared;
699 	}
700 
701 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
702 	per_cpu(sd_llc_size, cpu) = size;
703 	per_cpu(sd_llc_id, cpu) = id;
704 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
705 
706 	sd = lowest_flag_domain(cpu, SD_CLUSTER);
707 	if (sd)
708 		id = cpumask_first(sched_domain_span(sd));
709 
710 	/*
711 	 * This assignment should be placed after the sd_llc_id as
712 	 * we want this id equals to cluster id on cluster machines
713 	 * but equals to LLC id on non-Cluster machines.
714 	 */
715 	per_cpu(sd_share_id, cpu) = id;
716 
717 	sd = lowest_flag_domain(cpu, SD_NUMA);
718 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
719 
720 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
721 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
722 
723 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
724 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
725 }
726 
727 /*
728  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
729  * hold the hotplug lock.
730  */
731 static void
732 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
733 {
734 	struct rq *rq = cpu_rq(cpu);
735 	struct sched_domain *tmp;
736 
737 	/* Remove the sched domains which do not contribute to scheduling. */
738 	for (tmp = sd; tmp; ) {
739 		struct sched_domain *parent = tmp->parent;
740 		if (!parent)
741 			break;
742 
743 		if (sd_parent_degenerate(tmp, parent)) {
744 			tmp->parent = parent->parent;
745 
746 			if (parent->parent) {
747 				parent->parent->child = tmp;
748 				parent->parent->groups->flags = tmp->flags;
749 			}
750 
751 			/*
752 			 * Transfer SD_PREFER_SIBLING down in case of a
753 			 * degenerate parent; the spans match for this
754 			 * so the property transfers.
755 			 */
756 			if (parent->flags & SD_PREFER_SIBLING)
757 				tmp->flags |= SD_PREFER_SIBLING;
758 			destroy_sched_domain(parent);
759 		} else
760 			tmp = tmp->parent;
761 	}
762 
763 	if (sd && sd_degenerate(sd)) {
764 		tmp = sd;
765 		sd = sd->parent;
766 		destroy_sched_domain(tmp);
767 		if (sd) {
768 			struct sched_group *sg = sd->groups;
769 
770 			/*
771 			 * sched groups hold the flags of the child sched
772 			 * domain for convenience. Clear such flags since
773 			 * the child is being destroyed.
774 			 */
775 			do {
776 				sg->flags = 0;
777 			} while (sg != sd->groups);
778 
779 			sd->child = NULL;
780 		}
781 	}
782 
783 	sched_domain_debug(sd, cpu);
784 
785 	rq_attach_root(rq, rd);
786 	tmp = rq->sd;
787 	rcu_assign_pointer(rq->sd, sd);
788 	dirty_sched_domain_sysctl(cpu);
789 	destroy_sched_domains(tmp);
790 
791 	update_top_cache_domain(cpu);
792 }
793 
794 struct s_data {
795 	struct sched_domain * __percpu *sd;
796 	struct root_domain	*rd;
797 };
798 
799 enum s_alloc {
800 	sa_rootdomain,
801 	sa_sd,
802 	sa_sd_storage,
803 	sa_none,
804 };
805 
806 /*
807  * Return the canonical balance CPU for this group, this is the first CPU
808  * of this group that's also in the balance mask.
809  *
810  * The balance mask are all those CPUs that could actually end up at this
811  * group. See build_balance_mask().
812  *
813  * Also see should_we_balance().
814  */
815 int group_balance_cpu(struct sched_group *sg)
816 {
817 	return cpumask_first(group_balance_mask(sg));
818 }
819 
820 
821 /*
822  * NUMA topology (first read the regular topology blurb below)
823  *
824  * Given a node-distance table, for example:
825  *
826  *   node   0   1   2   3
827  *     0:  10  20  30  20
828  *     1:  20  10  20  30
829  *     2:  30  20  10  20
830  *     3:  20  30  20  10
831  *
832  * which represents a 4 node ring topology like:
833  *
834  *   0 ----- 1
835  *   |       |
836  *   |       |
837  *   |       |
838  *   3 ----- 2
839  *
840  * We want to construct domains and groups to represent this. The way we go
841  * about doing this is to build the domains on 'hops'. For each NUMA level we
842  * construct the mask of all nodes reachable in @level hops.
843  *
844  * For the above NUMA topology that gives 3 levels:
845  *
846  * NUMA-2	0-3		0-3		0-3		0-3
847  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
848  *
849  * NUMA-1	0-1,3		0-2		1-3		0,2-3
850  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
851  *
852  * NUMA-0	0		1		2		3
853  *
854  *
855  * As can be seen; things don't nicely line up as with the regular topology.
856  * When we iterate a domain in child domain chunks some nodes can be
857  * represented multiple times -- hence the "overlap" naming for this part of
858  * the topology.
859  *
860  * In order to minimize this overlap, we only build enough groups to cover the
861  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
862  *
863  * Because:
864  *
865  *  - the first group of each domain is its child domain; this
866  *    gets us the first 0-1,3
867  *  - the only uncovered node is 2, who's child domain is 1-3.
868  *
869  * However, because of the overlap, computing a unique CPU for each group is
870  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
871  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
872  * end up at those groups (they would end up in group: 0-1,3).
873  *
874  * To correct this we have to introduce the group balance mask. This mask
875  * will contain those CPUs in the group that can reach this group given the
876  * (child) domain tree.
877  *
878  * With this we can once again compute balance_cpu and sched_group_capacity
879  * relations.
880  *
881  * XXX include words on how balance_cpu is unique and therefore can be
882  * used for sched_group_capacity links.
883  *
884  *
885  * Another 'interesting' topology is:
886  *
887  *   node   0   1   2   3
888  *     0:  10  20  20  30
889  *     1:  20  10  20  20
890  *     2:  20  20  10  20
891  *     3:  30  20  20  10
892  *
893  * Which looks a little like:
894  *
895  *   0 ----- 1
896  *   |     / |
897  *   |   /   |
898  *   | /     |
899  *   2 ----- 3
900  *
901  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
902  * are not.
903  *
904  * This leads to a few particularly weird cases where the sched_domain's are
905  * not of the same number for each CPU. Consider:
906  *
907  * NUMA-2	0-3						0-3
908  *  groups:	{0-2},{1-3}					{1-3},{0-2}
909  *
910  * NUMA-1	0-2		0-3		0-3		1-3
911  *
912  * NUMA-0	0		1		2		3
913  *
914  */
915 
916 
917 /*
918  * Build the balance mask; it contains only those CPUs that can arrive at this
919  * group and should be considered to continue balancing.
920  *
921  * We do this during the group creation pass, therefore the group information
922  * isn't complete yet, however since each group represents a (child) domain we
923  * can fully construct this using the sched_domain bits (which are already
924  * complete).
925  */
926 static void
927 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
928 {
929 	const struct cpumask *sg_span = sched_group_span(sg);
930 	struct sd_data *sdd = sd->private;
931 	struct sched_domain *sibling;
932 	int i;
933 
934 	cpumask_clear(mask);
935 
936 	for_each_cpu(i, sg_span) {
937 		sibling = *per_cpu_ptr(sdd->sd, i);
938 
939 		/*
940 		 * Can happen in the asymmetric case, where these siblings are
941 		 * unused. The mask will not be empty because those CPUs that
942 		 * do have the top domain _should_ span the domain.
943 		 */
944 		if (!sibling->child)
945 			continue;
946 
947 		/* If we would not end up here, we can't continue from here */
948 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
949 			continue;
950 
951 		cpumask_set_cpu(i, mask);
952 	}
953 
954 	/* We must not have empty masks here */
955 	WARN_ON_ONCE(cpumask_empty(mask));
956 }
957 
958 /*
959  * XXX: This creates per-node group entries; since the load-balancer will
960  * immediately access remote memory to construct this group's load-balance
961  * statistics having the groups node local is of dubious benefit.
962  */
963 static struct sched_group *
964 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
965 {
966 	struct sched_group *sg;
967 	struct cpumask *sg_span;
968 
969 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
970 			GFP_KERNEL, cpu_to_node(cpu));
971 
972 	if (!sg)
973 		return NULL;
974 
975 	sg_span = sched_group_span(sg);
976 	if (sd->child) {
977 		cpumask_copy(sg_span, sched_domain_span(sd->child));
978 		sg->flags = sd->child->flags;
979 	} else {
980 		cpumask_copy(sg_span, sched_domain_span(sd));
981 	}
982 
983 	atomic_inc(&sg->ref);
984 	return sg;
985 }
986 
987 static void init_overlap_sched_group(struct sched_domain *sd,
988 				     struct sched_group *sg)
989 {
990 	struct cpumask *mask = sched_domains_tmpmask2;
991 	struct sd_data *sdd = sd->private;
992 	struct cpumask *sg_span;
993 	int cpu;
994 
995 	build_balance_mask(sd, sg, mask);
996 	cpu = cpumask_first(mask);
997 
998 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
999 	if (atomic_inc_return(&sg->sgc->ref) == 1)
1000 		cpumask_copy(group_balance_mask(sg), mask);
1001 	else
1002 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
1003 
1004 	/*
1005 	 * Initialize sgc->capacity such that even if we mess up the
1006 	 * domains and no possible iteration will get us here, we won't
1007 	 * die on a /0 trap.
1008 	 */
1009 	sg_span = sched_group_span(sg);
1010 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
1011 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1012 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1013 }
1014 
1015 static struct sched_domain *
1016 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
1017 {
1018 	/*
1019 	 * The proper descendant would be the one whose child won't span out
1020 	 * of sd
1021 	 */
1022 	while (sibling->child &&
1023 	       !cpumask_subset(sched_domain_span(sibling->child),
1024 			       sched_domain_span(sd)))
1025 		sibling = sibling->child;
1026 
1027 	/*
1028 	 * As we are referencing sgc across different topology level, we need
1029 	 * to go down to skip those sched_domains which don't contribute to
1030 	 * scheduling because they will be degenerated in cpu_attach_domain
1031 	 */
1032 	while (sibling->child &&
1033 	       cpumask_equal(sched_domain_span(sibling->child),
1034 			     sched_domain_span(sibling)))
1035 		sibling = sibling->child;
1036 
1037 	return sibling;
1038 }
1039 
1040 static int
1041 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1042 {
1043 	struct sched_group *first = NULL, *last = NULL, *sg;
1044 	const struct cpumask *span = sched_domain_span(sd);
1045 	struct cpumask *covered = sched_domains_tmpmask;
1046 	struct sd_data *sdd = sd->private;
1047 	struct sched_domain *sibling;
1048 	int i;
1049 
1050 	cpumask_clear(covered);
1051 
1052 	for_each_cpu_wrap(i, span, cpu) {
1053 		struct cpumask *sg_span;
1054 
1055 		if (cpumask_test_cpu(i, covered))
1056 			continue;
1057 
1058 		sibling = *per_cpu_ptr(sdd->sd, i);
1059 
1060 		/*
1061 		 * Asymmetric node setups can result in situations where the
1062 		 * domain tree is of unequal depth, make sure to skip domains
1063 		 * that already cover the entire range.
1064 		 *
1065 		 * In that case build_sched_domains() will have terminated the
1066 		 * iteration early and our sibling sd spans will be empty.
1067 		 * Domains should always include the CPU they're built on, so
1068 		 * check that.
1069 		 */
1070 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1071 			continue;
1072 
1073 		/*
1074 		 * Usually we build sched_group by sibling's child sched_domain
1075 		 * But for machines whose NUMA diameter are 3 or above, we move
1076 		 * to build sched_group by sibling's proper descendant's child
1077 		 * domain because sibling's child sched_domain will span out of
1078 		 * the sched_domain being built as below.
1079 		 *
1080 		 * Smallest diameter=3 topology is:
1081 		 *
1082 		 *   node   0   1   2   3
1083 		 *     0:  10  20  30  40
1084 		 *     1:  20  10  20  30
1085 		 *     2:  30  20  10  20
1086 		 *     3:  40  30  20  10
1087 		 *
1088 		 *   0 --- 1 --- 2 --- 3
1089 		 *
1090 		 * NUMA-3       0-3             N/A             N/A             0-3
1091 		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1092 		 *
1093 		 * NUMA-2       0-2             0-3             0-3             1-3
1094 		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1095 		 *
1096 		 * NUMA-1       0-1             0-2             1-3             2-3
1097 		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1098 		 *
1099 		 * NUMA-0       0               1               2               3
1100 		 *
1101 		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1102 		 * group span isn't a subset of the domain span.
1103 		 */
1104 		if (sibling->child &&
1105 		    !cpumask_subset(sched_domain_span(sibling->child), span))
1106 			sibling = find_descended_sibling(sd, sibling);
1107 
1108 		sg = build_group_from_child_sched_domain(sibling, cpu);
1109 		if (!sg)
1110 			goto fail;
1111 
1112 		sg_span = sched_group_span(sg);
1113 		cpumask_or(covered, covered, sg_span);
1114 
1115 		init_overlap_sched_group(sibling, sg);
1116 
1117 		if (!first)
1118 			first = sg;
1119 		if (last)
1120 			last->next = sg;
1121 		last = sg;
1122 		last->next = first;
1123 	}
1124 	sd->groups = first;
1125 
1126 	return 0;
1127 
1128 fail:
1129 	free_sched_groups(first, 0);
1130 
1131 	return -ENOMEM;
1132 }
1133 
1134 
1135 /*
1136  * Package topology (also see the load-balance blurb in fair.c)
1137  *
1138  * The scheduler builds a tree structure to represent a number of important
1139  * topology features. By default (default_topology[]) these include:
1140  *
1141  *  - Simultaneous multithreading (SMT)
1142  *  - Multi-Core Cache (MC)
1143  *  - Package (PKG)
1144  *
1145  * Where the last one more or less denotes everything up to a NUMA node.
1146  *
1147  * The tree consists of 3 primary data structures:
1148  *
1149  *	sched_domain -> sched_group -> sched_group_capacity
1150  *	    ^ ^             ^ ^
1151  *          `-'             `-'
1152  *
1153  * The sched_domains are per-CPU and have a two way link (parent & child) and
1154  * denote the ever growing mask of CPUs belonging to that level of topology.
1155  *
1156  * Each sched_domain has a circular (double) linked list of sched_group's, each
1157  * denoting the domains of the level below (or individual CPUs in case of the
1158  * first domain level). The sched_group linked by a sched_domain includes the
1159  * CPU of that sched_domain [*].
1160  *
1161  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1162  *
1163  * CPU   0   1   2   3   4   5   6   7
1164  *
1165  * PKG  [                             ]
1166  * MC   [             ] [             ]
1167  * SMT  [     ] [     ] [     ] [     ]
1168  *
1169  *  - or -
1170  *
1171  * PKG  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1172  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1173  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1174  *
1175  * CPU   0   1   2   3   4   5   6   7
1176  *
1177  * One way to think about it is: sched_domain moves you up and down among these
1178  * topology levels, while sched_group moves you sideways through it, at child
1179  * domain granularity.
1180  *
1181  * sched_group_capacity ensures each unique sched_group has shared storage.
1182  *
1183  * There are two related construction problems, both require a CPU that
1184  * uniquely identify each group (for a given domain):
1185  *
1186  *  - The first is the balance_cpu (see should_we_balance() and the
1187  *    load-balance blurb in fair.c); for each group we only want 1 CPU to
1188  *    continue balancing at a higher domain.
1189  *
1190  *  - The second is the sched_group_capacity; we want all identical groups
1191  *    to share a single sched_group_capacity.
1192  *
1193  * Since these topologies are exclusive by construction. That is, its
1194  * impossible for an SMT thread to belong to multiple cores, and cores to
1195  * be part of multiple caches. There is a very clear and unique location
1196  * for each CPU in the hierarchy.
1197  *
1198  * Therefore computing a unique CPU for each group is trivial (the iteration
1199  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1200  * group), we can simply pick the first CPU in each group.
1201  *
1202  *
1203  * [*] in other words, the first group of each domain is its child domain.
1204  */
1205 
1206 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1207 {
1208 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1209 	struct sched_domain *child = sd->child;
1210 	struct sched_group *sg;
1211 	bool already_visited;
1212 
1213 	if (child)
1214 		cpu = cpumask_first(sched_domain_span(child));
1215 
1216 	sg = *per_cpu_ptr(sdd->sg, cpu);
1217 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1218 
1219 	/* Increase refcounts for claim_allocations: */
1220 	already_visited = atomic_inc_return(&sg->ref) > 1;
1221 	/* sgc visits should follow a similar trend as sg */
1222 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1223 
1224 	/* If we have already visited that group, it's already initialized. */
1225 	if (already_visited)
1226 		return sg;
1227 
1228 	if (child) {
1229 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1230 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1231 		sg->flags = child->flags;
1232 	} else {
1233 		cpumask_set_cpu(cpu, sched_group_span(sg));
1234 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1235 	}
1236 
1237 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1238 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1239 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1240 
1241 	return sg;
1242 }
1243 
1244 /*
1245  * build_sched_groups will build a circular linked list of the groups
1246  * covered by the given span, will set each group's ->cpumask correctly,
1247  * and will initialize their ->sgc.
1248  *
1249  * Assumes the sched_domain tree is fully constructed
1250  */
1251 static int
1252 build_sched_groups(struct sched_domain *sd, int cpu)
1253 {
1254 	struct sched_group *first = NULL, *last = NULL;
1255 	struct sd_data *sdd = sd->private;
1256 	const struct cpumask *span = sched_domain_span(sd);
1257 	struct cpumask *covered;
1258 	int i;
1259 
1260 	lockdep_assert_held(&sched_domains_mutex);
1261 	covered = sched_domains_tmpmask;
1262 
1263 	cpumask_clear(covered);
1264 
1265 	for_each_cpu_wrap(i, span, cpu) {
1266 		struct sched_group *sg;
1267 
1268 		if (cpumask_test_cpu(i, covered))
1269 			continue;
1270 
1271 		sg = get_group(i, sdd);
1272 
1273 		cpumask_or(covered, covered, sched_group_span(sg));
1274 
1275 		if (!first)
1276 			first = sg;
1277 		if (last)
1278 			last->next = sg;
1279 		last = sg;
1280 	}
1281 	last->next = first;
1282 	sd->groups = first;
1283 
1284 	return 0;
1285 }
1286 
1287 /*
1288  * Initialize sched groups cpu_capacity.
1289  *
1290  * cpu_capacity indicates the capacity of sched group, which is used while
1291  * distributing the load between different sched groups in a sched domain.
1292  * Typically cpu_capacity for all the groups in a sched domain will be same
1293  * unless there are asymmetries in the topology. If there are asymmetries,
1294  * group having more cpu_capacity will pickup more load compared to the
1295  * group having less cpu_capacity.
1296  */
1297 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1298 {
1299 	struct sched_group *sg = sd->groups;
1300 	struct cpumask *mask = sched_domains_tmpmask2;
1301 
1302 	WARN_ON(!sg);
1303 
1304 	do {
1305 		int cpu, cores = 0, max_cpu = -1;
1306 
1307 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1308 
1309 		cpumask_copy(mask, sched_group_span(sg));
1310 		for_each_cpu(cpu, mask) {
1311 			cores++;
1312 #ifdef CONFIG_SCHED_SMT
1313 			cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1314 #endif
1315 		}
1316 		sg->cores = cores;
1317 
1318 		if (!(sd->flags & SD_ASYM_PACKING))
1319 			goto next;
1320 
1321 		for_each_cpu(cpu, sched_group_span(sg)) {
1322 			if (max_cpu < 0)
1323 				max_cpu = cpu;
1324 			else if (sched_asym_prefer(cpu, max_cpu))
1325 				max_cpu = cpu;
1326 		}
1327 		sg->asym_prefer_cpu = max_cpu;
1328 
1329 next:
1330 		sg = sg->next;
1331 	} while (sg != sd->groups);
1332 
1333 	if (cpu != group_balance_cpu(sg))
1334 		return;
1335 
1336 	update_group_capacity(sd, cpu);
1337 }
1338 
1339 /*
1340  * Set of available CPUs grouped by their corresponding capacities
1341  * Each list entry contains a CPU mask reflecting CPUs that share the same
1342  * capacity.
1343  * The lifespan of data is unlimited.
1344  */
1345 LIST_HEAD(asym_cap_list);
1346 
1347 /*
1348  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1349  * Provides sd_flags reflecting the asymmetry scope.
1350  */
1351 static inline int
1352 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1353 			   const struct cpumask *cpu_map)
1354 {
1355 	struct asym_cap_data *entry;
1356 	int count = 0, miss = 0;
1357 
1358 	/*
1359 	 * Count how many unique CPU capacities this domain spans across
1360 	 * (compare sched_domain CPUs mask with ones representing  available
1361 	 * CPUs capacities). Take into account CPUs that might be offline:
1362 	 * skip those.
1363 	 */
1364 	list_for_each_entry(entry, &asym_cap_list, link) {
1365 		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1366 			++count;
1367 		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1368 			++miss;
1369 	}
1370 
1371 	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1372 
1373 	/* No asymmetry detected */
1374 	if (count < 2)
1375 		return 0;
1376 	/* Some of the available CPU capacity values have not been detected */
1377 	if (miss)
1378 		return SD_ASYM_CPUCAPACITY;
1379 
1380 	/* Full asymmetry */
1381 	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1382 
1383 }
1384 
1385 static void free_asym_cap_entry(struct rcu_head *head)
1386 {
1387 	struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu);
1388 	kfree(entry);
1389 }
1390 
1391 static inline void asym_cpu_capacity_update_data(int cpu)
1392 {
1393 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1394 	struct asym_cap_data *insert_entry = NULL;
1395 	struct asym_cap_data *entry;
1396 
1397 	/*
1398 	 * Search if capacity already exits. If not, track which the entry
1399 	 * where we should insert to keep the list ordered descending.
1400 	 */
1401 	list_for_each_entry(entry, &asym_cap_list, link) {
1402 		if (capacity == entry->capacity)
1403 			goto done;
1404 		else if (!insert_entry && capacity > entry->capacity)
1405 			insert_entry = list_prev_entry(entry, link);
1406 	}
1407 
1408 	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1409 	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1410 		return;
1411 	entry->capacity = capacity;
1412 
1413 	/* If NULL then the new capacity is the smallest, add last. */
1414 	if (!insert_entry)
1415 		list_add_tail_rcu(&entry->link, &asym_cap_list);
1416 	else
1417 		list_add_rcu(&entry->link, &insert_entry->link);
1418 done:
1419 	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1420 }
1421 
1422 /*
1423  * Build-up/update list of CPUs grouped by their capacities
1424  * An update requires explicit request to rebuild sched domains
1425  * with state indicating CPU topology changes.
1426  */
1427 static void asym_cpu_capacity_scan(void)
1428 {
1429 	struct asym_cap_data *entry, *next;
1430 	int cpu;
1431 
1432 	list_for_each_entry(entry, &asym_cap_list, link)
1433 		cpumask_clear(cpu_capacity_span(entry));
1434 
1435 	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1436 		asym_cpu_capacity_update_data(cpu);
1437 
1438 	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1439 		if (cpumask_empty(cpu_capacity_span(entry))) {
1440 			list_del_rcu(&entry->link);
1441 			call_rcu(&entry->rcu, free_asym_cap_entry);
1442 		}
1443 	}
1444 
1445 	/*
1446 	 * Only one capacity value has been detected i.e. this system is symmetric.
1447 	 * No need to keep this data around.
1448 	 */
1449 	if (list_is_singular(&asym_cap_list)) {
1450 		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1451 		list_del_rcu(&entry->link);
1452 		call_rcu(&entry->rcu, free_asym_cap_entry);
1453 	}
1454 }
1455 
1456 /*
1457  * Initializers for schedule domains
1458  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1459  */
1460 
1461 static int default_relax_domain_level = -1;
1462 int sched_domain_level_max;
1463 
1464 static int __init setup_relax_domain_level(char *str)
1465 {
1466 	if (kstrtoint(str, 0, &default_relax_domain_level))
1467 		pr_warn("Unable to set relax_domain_level\n");
1468 
1469 	return 1;
1470 }
1471 __setup("relax_domain_level=", setup_relax_domain_level);
1472 
1473 static void set_domain_attribute(struct sched_domain *sd,
1474 				 struct sched_domain_attr *attr)
1475 {
1476 	int request;
1477 
1478 	if (!attr || attr->relax_domain_level < 0) {
1479 		if (default_relax_domain_level < 0)
1480 			return;
1481 		request = default_relax_domain_level;
1482 	} else
1483 		request = attr->relax_domain_level;
1484 
1485 	if (sd->level >= request) {
1486 		/* Turn off idle balance on this domain: */
1487 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1488 	}
1489 }
1490 
1491 static void __sdt_free(const struct cpumask *cpu_map);
1492 static int __sdt_alloc(const struct cpumask *cpu_map);
1493 
1494 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1495 				 const struct cpumask *cpu_map)
1496 {
1497 	switch (what) {
1498 	case sa_rootdomain:
1499 		if (!atomic_read(&d->rd->refcount))
1500 			free_rootdomain(&d->rd->rcu);
1501 		fallthrough;
1502 	case sa_sd:
1503 		free_percpu(d->sd);
1504 		fallthrough;
1505 	case sa_sd_storage:
1506 		__sdt_free(cpu_map);
1507 		fallthrough;
1508 	case sa_none:
1509 		break;
1510 	}
1511 }
1512 
1513 static enum s_alloc
1514 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1515 {
1516 	memset(d, 0, sizeof(*d));
1517 
1518 	if (__sdt_alloc(cpu_map))
1519 		return sa_sd_storage;
1520 	d->sd = alloc_percpu(struct sched_domain *);
1521 	if (!d->sd)
1522 		return sa_sd_storage;
1523 	d->rd = alloc_rootdomain();
1524 	if (!d->rd)
1525 		return sa_sd;
1526 
1527 	return sa_rootdomain;
1528 }
1529 
1530 /*
1531  * NULL the sd_data elements we've used to build the sched_domain and
1532  * sched_group structure so that the subsequent __free_domain_allocs()
1533  * will not free the data we're using.
1534  */
1535 static void claim_allocations(int cpu, struct sched_domain *sd)
1536 {
1537 	struct sd_data *sdd = sd->private;
1538 
1539 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1540 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1541 
1542 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1543 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1544 
1545 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1546 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1547 
1548 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1549 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1550 }
1551 
1552 #ifdef CONFIG_NUMA
1553 enum numa_topology_type sched_numa_topology_type;
1554 
1555 static int			sched_domains_numa_levels;
1556 static int			sched_domains_curr_level;
1557 
1558 int				sched_max_numa_distance;
1559 static int			*sched_domains_numa_distance;
1560 static struct cpumask		***sched_domains_numa_masks;
1561 #endif
1562 
1563 /*
1564  * SD_flags allowed in topology descriptions.
1565  *
1566  * These flags are purely descriptive of the topology and do not prescribe
1567  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1568  * function. For details, see include/linux/sched/sd_flags.h.
1569  *
1570  *   SD_SHARE_CPUCAPACITY
1571  *   SD_SHARE_LLC
1572  *   SD_CLUSTER
1573  *   SD_NUMA
1574  *
1575  * Odd one out, which beside describing the topology has a quirk also
1576  * prescribes the desired behaviour that goes along with it:
1577  *
1578  *   SD_ASYM_PACKING        - describes SMT quirks
1579  */
1580 #define TOPOLOGY_SD_FLAGS		\
1581 	(SD_SHARE_CPUCAPACITY	|	\
1582 	 SD_CLUSTER		|	\
1583 	 SD_SHARE_LLC		|	\
1584 	 SD_NUMA		|	\
1585 	 SD_ASYM_PACKING)
1586 
1587 static struct sched_domain *
1588 sd_init(struct sched_domain_topology_level *tl,
1589 	const struct cpumask *cpu_map,
1590 	struct sched_domain *child, int cpu)
1591 {
1592 	struct sd_data *sdd = &tl->data;
1593 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1594 	int sd_id, sd_weight, sd_flags = 0;
1595 	struct cpumask *sd_span;
1596 
1597 #ifdef CONFIG_NUMA
1598 	/*
1599 	 * Ugly hack to pass state to sd_numa_mask()...
1600 	 */
1601 	sched_domains_curr_level = tl->numa_level;
1602 #endif
1603 
1604 	sd_weight = cpumask_weight(tl->mask(cpu));
1605 
1606 	if (tl->sd_flags)
1607 		sd_flags = (*tl->sd_flags)();
1608 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1609 			"wrong sd_flags in topology description\n"))
1610 		sd_flags &= TOPOLOGY_SD_FLAGS;
1611 
1612 	*sd = (struct sched_domain){
1613 		.min_interval		= sd_weight,
1614 		.max_interval		= 2*sd_weight,
1615 		.busy_factor		= 16,
1616 		.imbalance_pct		= 117,
1617 
1618 		.cache_nice_tries	= 0,
1619 
1620 		.flags			= 1*SD_BALANCE_NEWIDLE
1621 					| 1*SD_BALANCE_EXEC
1622 					| 1*SD_BALANCE_FORK
1623 					| 0*SD_BALANCE_WAKE
1624 					| 1*SD_WAKE_AFFINE
1625 					| 0*SD_SHARE_CPUCAPACITY
1626 					| 0*SD_SHARE_LLC
1627 					| 0*SD_SERIALIZE
1628 					| 1*SD_PREFER_SIBLING
1629 					| 0*SD_NUMA
1630 					| sd_flags
1631 					,
1632 
1633 		.last_balance		= jiffies,
1634 		.balance_interval	= sd_weight,
1635 		.max_newidle_lb_cost	= 0,
1636 		.last_decay_max_lb_cost	= jiffies,
1637 		.child			= child,
1638 		.name			= tl->name,
1639 	};
1640 
1641 	sd_span = sched_domain_span(sd);
1642 	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1643 	sd_id = cpumask_first(sd_span);
1644 
1645 	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1646 
1647 	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1648 		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1649 		  "CPU capacity asymmetry not supported on SMT\n");
1650 
1651 	/*
1652 	 * Convert topological properties into behaviour.
1653 	 */
1654 	/* Don't attempt to spread across CPUs of different capacities. */
1655 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1656 		sd->child->flags &= ~SD_PREFER_SIBLING;
1657 
1658 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1659 		sd->imbalance_pct = 110;
1660 
1661 	} else if (sd->flags & SD_SHARE_LLC) {
1662 		sd->imbalance_pct = 117;
1663 		sd->cache_nice_tries = 1;
1664 
1665 #ifdef CONFIG_NUMA
1666 	} else if (sd->flags & SD_NUMA) {
1667 		sd->cache_nice_tries = 2;
1668 
1669 		sd->flags &= ~SD_PREFER_SIBLING;
1670 		sd->flags |= SD_SERIALIZE;
1671 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1672 			sd->flags &= ~(SD_BALANCE_EXEC |
1673 				       SD_BALANCE_FORK |
1674 				       SD_WAKE_AFFINE);
1675 		}
1676 
1677 #endif
1678 	} else {
1679 		sd->cache_nice_tries = 1;
1680 	}
1681 
1682 	/*
1683 	 * For all levels sharing cache; connect a sched_domain_shared
1684 	 * instance.
1685 	 */
1686 	if (sd->flags & SD_SHARE_LLC) {
1687 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1688 		atomic_inc(&sd->shared->ref);
1689 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1690 	}
1691 
1692 	sd->private = sdd;
1693 
1694 	return sd;
1695 }
1696 
1697 /*
1698  * Topology list, bottom-up.
1699  */
1700 static struct sched_domain_topology_level default_topology[] = {
1701 #ifdef CONFIG_SCHED_SMT
1702 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1703 #endif
1704 
1705 #ifdef CONFIG_SCHED_CLUSTER
1706 	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1707 #endif
1708 
1709 #ifdef CONFIG_SCHED_MC
1710 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1711 #endif
1712 	{ cpu_cpu_mask, SD_INIT_NAME(PKG) },
1713 	{ NULL, },
1714 };
1715 
1716 static struct sched_domain_topology_level *sched_domain_topology =
1717 	default_topology;
1718 static struct sched_domain_topology_level *sched_domain_topology_saved;
1719 
1720 #define for_each_sd_topology(tl)			\
1721 	for (tl = sched_domain_topology; tl->mask; tl++)
1722 
1723 void __init set_sched_topology(struct sched_domain_topology_level *tl)
1724 {
1725 	if (WARN_ON_ONCE(sched_smp_initialized))
1726 		return;
1727 
1728 	sched_domain_topology = tl;
1729 	sched_domain_topology_saved = NULL;
1730 }
1731 
1732 #ifdef CONFIG_NUMA
1733 
1734 static const struct cpumask *sd_numa_mask(int cpu)
1735 {
1736 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1737 }
1738 
1739 static void sched_numa_warn(const char *str)
1740 {
1741 	static int done = false;
1742 	int i,j;
1743 
1744 	if (done)
1745 		return;
1746 
1747 	done = true;
1748 
1749 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1750 
1751 	for (i = 0; i < nr_node_ids; i++) {
1752 		printk(KERN_WARNING "  ");
1753 		for (j = 0; j < nr_node_ids; j++) {
1754 			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1755 				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1756 			else
1757 				printk(KERN_CONT " %02d  ", node_distance(i,j));
1758 		}
1759 		printk(KERN_CONT "\n");
1760 	}
1761 	printk(KERN_WARNING "\n");
1762 }
1763 
1764 bool find_numa_distance(int distance)
1765 {
1766 	bool found = false;
1767 	int i, *distances;
1768 
1769 	if (distance == node_distance(0, 0))
1770 		return true;
1771 
1772 	rcu_read_lock();
1773 	distances = rcu_dereference(sched_domains_numa_distance);
1774 	if (!distances)
1775 		goto unlock;
1776 	for (i = 0; i < sched_domains_numa_levels; i++) {
1777 		if (distances[i] == distance) {
1778 			found = true;
1779 			break;
1780 		}
1781 	}
1782 unlock:
1783 	rcu_read_unlock();
1784 
1785 	return found;
1786 }
1787 
1788 #define for_each_cpu_node_but(n, nbut)		\
1789 	for_each_node_state(n, N_CPU)		\
1790 		if (n == nbut)			\
1791 			continue;		\
1792 		else
1793 
1794 /*
1795  * A system can have three types of NUMA topology:
1796  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1797  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1798  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1799  *
1800  * The difference between a glueless mesh topology and a backplane
1801  * topology lies in whether communication between not directly
1802  * connected nodes goes through intermediary nodes (where programs
1803  * could run), or through backplane controllers. This affects
1804  * placement of programs.
1805  *
1806  * The type of topology can be discerned with the following tests:
1807  * - If the maximum distance between any nodes is 1 hop, the system
1808  *   is directly connected.
1809  * - If for two nodes A and B, located N > 1 hops away from each other,
1810  *   there is an intermediary node C, which is < N hops away from both
1811  *   nodes A and B, the system is a glueless mesh.
1812  */
1813 static void init_numa_topology_type(int offline_node)
1814 {
1815 	int a, b, c, n;
1816 
1817 	n = sched_max_numa_distance;
1818 
1819 	if (sched_domains_numa_levels <= 2) {
1820 		sched_numa_topology_type = NUMA_DIRECT;
1821 		return;
1822 	}
1823 
1824 	for_each_cpu_node_but(a, offline_node) {
1825 		for_each_cpu_node_but(b, offline_node) {
1826 			/* Find two nodes furthest removed from each other. */
1827 			if (node_distance(a, b) < n)
1828 				continue;
1829 
1830 			/* Is there an intermediary node between a and b? */
1831 			for_each_cpu_node_but(c, offline_node) {
1832 				if (node_distance(a, c) < n &&
1833 				    node_distance(b, c) < n) {
1834 					sched_numa_topology_type =
1835 							NUMA_GLUELESS_MESH;
1836 					return;
1837 				}
1838 			}
1839 
1840 			sched_numa_topology_type = NUMA_BACKPLANE;
1841 			return;
1842 		}
1843 	}
1844 
1845 	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1846 	sched_numa_topology_type = NUMA_DIRECT;
1847 }
1848 
1849 
1850 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1851 
1852 void sched_init_numa(int offline_node)
1853 {
1854 	struct sched_domain_topology_level *tl;
1855 	unsigned long *distance_map;
1856 	int nr_levels = 0;
1857 	int i, j;
1858 	int *distances;
1859 	struct cpumask ***masks;
1860 
1861 	/*
1862 	 * O(nr_nodes^2) de-duplicating selection sort -- in order to find the
1863 	 * unique distances in the node_distance() table.
1864 	 */
1865 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1866 	if (!distance_map)
1867 		return;
1868 
1869 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1870 	for_each_cpu_node_but(i, offline_node) {
1871 		for_each_cpu_node_but(j, offline_node) {
1872 			int distance = node_distance(i, j);
1873 
1874 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1875 				sched_numa_warn("Invalid distance value range");
1876 				bitmap_free(distance_map);
1877 				return;
1878 			}
1879 
1880 			bitmap_set(distance_map, distance, 1);
1881 		}
1882 	}
1883 	/*
1884 	 * We can now figure out how many unique distance values there are and
1885 	 * allocate memory accordingly.
1886 	 */
1887 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1888 
1889 	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1890 	if (!distances) {
1891 		bitmap_free(distance_map);
1892 		return;
1893 	}
1894 
1895 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1896 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1897 		distances[i] = j;
1898 	}
1899 	rcu_assign_pointer(sched_domains_numa_distance, distances);
1900 
1901 	bitmap_free(distance_map);
1902 
1903 	/*
1904 	 * 'nr_levels' contains the number of unique distances
1905 	 *
1906 	 * The sched_domains_numa_distance[] array includes the actual distance
1907 	 * numbers.
1908 	 */
1909 
1910 	/*
1911 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1912 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1913 	 * the array will contain less then 'nr_levels' members. This could be
1914 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1915 	 * in other functions.
1916 	 *
1917 	 * We reset it to 'nr_levels' at the end of this function.
1918 	 */
1919 	sched_domains_numa_levels = 0;
1920 
1921 	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1922 	if (!masks)
1923 		return;
1924 
1925 	/*
1926 	 * Now for each level, construct a mask per node which contains all
1927 	 * CPUs of nodes that are that many hops away from us.
1928 	 */
1929 	for (i = 0; i < nr_levels; i++) {
1930 		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1931 		if (!masks[i])
1932 			return;
1933 
1934 		for_each_cpu_node_but(j, offline_node) {
1935 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1936 			int k;
1937 
1938 			if (!mask)
1939 				return;
1940 
1941 			masks[i][j] = mask;
1942 
1943 			for_each_cpu_node_but(k, offline_node) {
1944 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1945 					sched_numa_warn("Node-distance not symmetric");
1946 
1947 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1948 					continue;
1949 
1950 				cpumask_or(mask, mask, cpumask_of_node(k));
1951 			}
1952 		}
1953 	}
1954 	rcu_assign_pointer(sched_domains_numa_masks, masks);
1955 
1956 	/* Compute default topology size */
1957 	for (i = 0; sched_domain_topology[i].mask; i++);
1958 
1959 	tl = kzalloc((i + nr_levels + 1) *
1960 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1961 	if (!tl)
1962 		return;
1963 
1964 	/*
1965 	 * Copy the default topology bits..
1966 	 */
1967 	for (i = 0; sched_domain_topology[i].mask; i++)
1968 		tl[i] = sched_domain_topology[i];
1969 
1970 	/*
1971 	 * Add the NUMA identity distance, aka single NODE.
1972 	 */
1973 	tl[i++] = (struct sched_domain_topology_level){
1974 		.mask = sd_numa_mask,
1975 		.numa_level = 0,
1976 		SD_INIT_NAME(NODE)
1977 	};
1978 
1979 	/*
1980 	 * .. and append 'j' levels of NUMA goodness.
1981 	 */
1982 	for (j = 1; j < nr_levels; i++, j++) {
1983 		tl[i] = (struct sched_domain_topology_level){
1984 			.mask = sd_numa_mask,
1985 			.sd_flags = cpu_numa_flags,
1986 			.flags = SDTL_OVERLAP,
1987 			.numa_level = j,
1988 			SD_INIT_NAME(NUMA)
1989 		};
1990 	}
1991 
1992 	sched_domain_topology_saved = sched_domain_topology;
1993 	sched_domain_topology = tl;
1994 
1995 	sched_domains_numa_levels = nr_levels;
1996 	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1997 
1998 	init_numa_topology_type(offline_node);
1999 }
2000 
2001 
2002 static void sched_reset_numa(void)
2003 {
2004 	int nr_levels, *distances;
2005 	struct cpumask ***masks;
2006 
2007 	nr_levels = sched_domains_numa_levels;
2008 	sched_domains_numa_levels = 0;
2009 	sched_max_numa_distance = 0;
2010 	sched_numa_topology_type = NUMA_DIRECT;
2011 	distances = sched_domains_numa_distance;
2012 	rcu_assign_pointer(sched_domains_numa_distance, NULL);
2013 	masks = sched_domains_numa_masks;
2014 	rcu_assign_pointer(sched_domains_numa_masks, NULL);
2015 	if (distances || masks) {
2016 		int i, j;
2017 
2018 		synchronize_rcu();
2019 		kfree(distances);
2020 		for (i = 0; i < nr_levels && masks; i++) {
2021 			if (!masks[i])
2022 				continue;
2023 			for_each_node(j)
2024 				kfree(masks[i][j]);
2025 			kfree(masks[i]);
2026 		}
2027 		kfree(masks);
2028 	}
2029 	if (sched_domain_topology_saved) {
2030 		kfree(sched_domain_topology);
2031 		sched_domain_topology = sched_domain_topology_saved;
2032 		sched_domain_topology_saved = NULL;
2033 	}
2034 }
2035 
2036 /*
2037  * Call with hotplug lock held
2038  */
2039 void sched_update_numa(int cpu, bool online)
2040 {
2041 	int node;
2042 
2043 	node = cpu_to_node(cpu);
2044 	/*
2045 	 * Scheduler NUMA topology is updated when the first CPU of a
2046 	 * node is onlined or the last CPU of a node is offlined.
2047 	 */
2048 	if (cpumask_weight(cpumask_of_node(node)) != 1)
2049 		return;
2050 
2051 	sched_reset_numa();
2052 	sched_init_numa(online ? NUMA_NO_NODE : node);
2053 }
2054 
2055 void sched_domains_numa_masks_set(unsigned int cpu)
2056 {
2057 	int node = cpu_to_node(cpu);
2058 	int i, j;
2059 
2060 	for (i = 0; i < sched_domains_numa_levels; i++) {
2061 		for (j = 0; j < nr_node_ids; j++) {
2062 			if (!node_state(j, N_CPU))
2063 				continue;
2064 
2065 			/* Set ourselves in the remote node's masks */
2066 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2067 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2068 		}
2069 	}
2070 }
2071 
2072 void sched_domains_numa_masks_clear(unsigned int cpu)
2073 {
2074 	int i, j;
2075 
2076 	for (i = 0; i < sched_domains_numa_levels; i++) {
2077 		for (j = 0; j < nr_node_ids; j++) {
2078 			if (sched_domains_numa_masks[i][j])
2079 				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2080 		}
2081 	}
2082 }
2083 
2084 /*
2085  * sched_numa_find_closest() - given the NUMA topology, find the cpu
2086  *                             closest to @cpu from @cpumask.
2087  * cpumask: cpumask to find a cpu from
2088  * cpu: cpu to be close to
2089  *
2090  * returns: cpu, or nr_cpu_ids when nothing found.
2091  */
2092 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2093 {
2094 	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2095 	struct cpumask ***masks;
2096 
2097 	rcu_read_lock();
2098 	masks = rcu_dereference(sched_domains_numa_masks);
2099 	if (!masks)
2100 		goto unlock;
2101 	for (i = 0; i < sched_domains_numa_levels; i++) {
2102 		if (!masks[i][j])
2103 			break;
2104 		cpu = cpumask_any_and(cpus, masks[i][j]);
2105 		if (cpu < nr_cpu_ids) {
2106 			found = cpu;
2107 			break;
2108 		}
2109 	}
2110 unlock:
2111 	rcu_read_unlock();
2112 
2113 	return found;
2114 }
2115 
2116 struct __cmp_key {
2117 	const struct cpumask *cpus;
2118 	struct cpumask ***masks;
2119 	int node;
2120 	int cpu;
2121 	int w;
2122 };
2123 
2124 static int hop_cmp(const void *a, const void *b)
2125 {
2126 	struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2127 	struct __cmp_key *k = (struct __cmp_key *)a;
2128 
2129 	if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2130 		return 1;
2131 
2132 	if (b == k->masks) {
2133 		k->w = 0;
2134 		return 0;
2135 	}
2136 
2137 	prev_hop = *((struct cpumask ***)b - 1);
2138 	k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2139 	if (k->w <= k->cpu)
2140 		return 0;
2141 
2142 	return -1;
2143 }
2144 
2145 /**
2146  * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2147  *                             from @cpus to @cpu, taking into account distance
2148  *                             from a given @node.
2149  * @cpus: cpumask to find a cpu from
2150  * @cpu: CPU to start searching
2151  * @node: NUMA node to order CPUs by distance
2152  *
2153  * Return: cpu, or nr_cpu_ids when nothing found.
2154  */
2155 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2156 {
2157 	struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2158 	struct cpumask ***hop_masks;
2159 	int hop, ret = nr_cpu_ids;
2160 
2161 	if (node == NUMA_NO_NODE)
2162 		return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2163 
2164 	rcu_read_lock();
2165 
2166 	/* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2167 	node = numa_nearest_node(node, N_CPU);
2168 	k.node = node;
2169 
2170 	k.masks = rcu_dereference(sched_domains_numa_masks);
2171 	if (!k.masks)
2172 		goto unlock;
2173 
2174 	hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2175 	hop = hop_masks	- k.masks;
2176 
2177 	ret = hop ?
2178 		cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2179 		cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2180 unlock:
2181 	rcu_read_unlock();
2182 	return ret;
2183 }
2184 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2185 
2186 /**
2187  * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2188  *                         @node
2189  * @node: The node to count hops from.
2190  * @hops: Include CPUs up to that many hops away. 0 means local node.
2191  *
2192  * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2193  * @node, an error value otherwise.
2194  *
2195  * Requires rcu_lock to be held. Returned cpumask is only valid within that
2196  * read-side section, copy it if required beyond that.
2197  *
2198  * Note that not all hops are equal in distance; see sched_init_numa() for how
2199  * distances and masks are handled.
2200  * Also note that this is a reflection of sched_domains_numa_masks, which may change
2201  * during the lifetime of the system (offline nodes are taken out of the masks).
2202  */
2203 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2204 {
2205 	struct cpumask ***masks;
2206 
2207 	if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2208 		return ERR_PTR(-EINVAL);
2209 
2210 	masks = rcu_dereference(sched_domains_numa_masks);
2211 	if (!masks)
2212 		return ERR_PTR(-EBUSY);
2213 
2214 	return masks[hops][node];
2215 }
2216 EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2217 
2218 #endif /* CONFIG_NUMA */
2219 
2220 static int __sdt_alloc(const struct cpumask *cpu_map)
2221 {
2222 	struct sched_domain_topology_level *tl;
2223 	int j;
2224 
2225 	for_each_sd_topology(tl) {
2226 		struct sd_data *sdd = &tl->data;
2227 
2228 		sdd->sd = alloc_percpu(struct sched_domain *);
2229 		if (!sdd->sd)
2230 			return -ENOMEM;
2231 
2232 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2233 		if (!sdd->sds)
2234 			return -ENOMEM;
2235 
2236 		sdd->sg = alloc_percpu(struct sched_group *);
2237 		if (!sdd->sg)
2238 			return -ENOMEM;
2239 
2240 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2241 		if (!sdd->sgc)
2242 			return -ENOMEM;
2243 
2244 		for_each_cpu(j, cpu_map) {
2245 			struct sched_domain *sd;
2246 			struct sched_domain_shared *sds;
2247 			struct sched_group *sg;
2248 			struct sched_group_capacity *sgc;
2249 
2250 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2251 					GFP_KERNEL, cpu_to_node(j));
2252 			if (!sd)
2253 				return -ENOMEM;
2254 
2255 			*per_cpu_ptr(sdd->sd, j) = sd;
2256 
2257 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2258 					GFP_KERNEL, cpu_to_node(j));
2259 			if (!sds)
2260 				return -ENOMEM;
2261 
2262 			*per_cpu_ptr(sdd->sds, j) = sds;
2263 
2264 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2265 					GFP_KERNEL, cpu_to_node(j));
2266 			if (!sg)
2267 				return -ENOMEM;
2268 
2269 			sg->next = sg;
2270 
2271 			*per_cpu_ptr(sdd->sg, j) = sg;
2272 
2273 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2274 					GFP_KERNEL, cpu_to_node(j));
2275 			if (!sgc)
2276 				return -ENOMEM;
2277 
2278 #ifdef CONFIG_SCHED_DEBUG
2279 			sgc->id = j;
2280 #endif
2281 
2282 			*per_cpu_ptr(sdd->sgc, j) = sgc;
2283 		}
2284 	}
2285 
2286 	return 0;
2287 }
2288 
2289 static void __sdt_free(const struct cpumask *cpu_map)
2290 {
2291 	struct sched_domain_topology_level *tl;
2292 	int j;
2293 
2294 	for_each_sd_topology(tl) {
2295 		struct sd_data *sdd = &tl->data;
2296 
2297 		for_each_cpu(j, cpu_map) {
2298 			struct sched_domain *sd;
2299 
2300 			if (sdd->sd) {
2301 				sd = *per_cpu_ptr(sdd->sd, j);
2302 				if (sd && (sd->flags & SD_OVERLAP))
2303 					free_sched_groups(sd->groups, 0);
2304 				kfree(*per_cpu_ptr(sdd->sd, j));
2305 			}
2306 
2307 			if (sdd->sds)
2308 				kfree(*per_cpu_ptr(sdd->sds, j));
2309 			if (sdd->sg)
2310 				kfree(*per_cpu_ptr(sdd->sg, j));
2311 			if (sdd->sgc)
2312 				kfree(*per_cpu_ptr(sdd->sgc, j));
2313 		}
2314 		free_percpu(sdd->sd);
2315 		sdd->sd = NULL;
2316 		free_percpu(sdd->sds);
2317 		sdd->sds = NULL;
2318 		free_percpu(sdd->sg);
2319 		sdd->sg = NULL;
2320 		free_percpu(sdd->sgc);
2321 		sdd->sgc = NULL;
2322 	}
2323 }
2324 
2325 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2326 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2327 		struct sched_domain *child, int cpu)
2328 {
2329 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2330 
2331 	if (child) {
2332 		sd->level = child->level + 1;
2333 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2334 		child->parent = sd;
2335 
2336 		if (!cpumask_subset(sched_domain_span(child),
2337 				    sched_domain_span(sd))) {
2338 			pr_err("BUG: arch topology borken\n");
2339 			pr_err("     the %s domain not a subset of the %s domain\n",
2340 					child->name, sd->name);
2341 			/* Fixup, ensure @sd has at least @child CPUs. */
2342 			cpumask_or(sched_domain_span(sd),
2343 				   sched_domain_span(sd),
2344 				   sched_domain_span(child));
2345 		}
2346 
2347 	}
2348 	set_domain_attribute(sd, attr);
2349 
2350 	return sd;
2351 }
2352 
2353 /*
2354  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2355  * any two given CPUs at this (non-NUMA) topology level.
2356  */
2357 static bool topology_span_sane(struct sched_domain_topology_level *tl,
2358 			      const struct cpumask *cpu_map, int cpu)
2359 {
2360 	int i = cpu + 1;
2361 
2362 	/* NUMA levels are allowed to overlap */
2363 	if (tl->flags & SDTL_OVERLAP)
2364 		return true;
2365 
2366 	/*
2367 	 * Non-NUMA levels cannot partially overlap - they must be either
2368 	 * completely equal or completely disjoint. Otherwise we can end up
2369 	 * breaking the sched_group lists - i.e. a later get_group() pass
2370 	 * breaks the linking done for an earlier span.
2371 	 */
2372 	for_each_cpu_from(i, cpu_map) {
2373 		/*
2374 		 * We should 'and' all those masks with 'cpu_map' to exactly
2375 		 * match the topology we're about to build, but that can only
2376 		 * remove CPUs, which only lessens our ability to detect
2377 		 * overlaps
2378 		 */
2379 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2380 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2381 			return false;
2382 	}
2383 
2384 	return true;
2385 }
2386 
2387 /*
2388  * Build sched domains for a given set of CPUs and attach the sched domains
2389  * to the individual CPUs
2390  */
2391 static int
2392 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2393 {
2394 	enum s_alloc alloc_state = sa_none;
2395 	struct sched_domain *sd;
2396 	struct s_data d;
2397 	struct rq *rq = NULL;
2398 	int i, ret = -ENOMEM;
2399 	bool has_asym = false;
2400 	bool has_cluster = false;
2401 
2402 	if (WARN_ON(cpumask_empty(cpu_map)))
2403 		goto error;
2404 
2405 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2406 	if (alloc_state != sa_rootdomain)
2407 		goto error;
2408 
2409 	/* Set up domains for CPUs specified by the cpu_map: */
2410 	for_each_cpu(i, cpu_map) {
2411 		struct sched_domain_topology_level *tl;
2412 
2413 		sd = NULL;
2414 		for_each_sd_topology(tl) {
2415 
2416 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2417 				goto error;
2418 
2419 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2420 
2421 			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2422 
2423 			if (tl == sched_domain_topology)
2424 				*per_cpu_ptr(d.sd, i) = sd;
2425 			if (tl->flags & SDTL_OVERLAP)
2426 				sd->flags |= SD_OVERLAP;
2427 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2428 				break;
2429 		}
2430 	}
2431 
2432 	/* Build the groups for the domains */
2433 	for_each_cpu(i, cpu_map) {
2434 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2435 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2436 			if (sd->flags & SD_OVERLAP) {
2437 				if (build_overlap_sched_groups(sd, i))
2438 					goto error;
2439 			} else {
2440 				if (build_sched_groups(sd, i))
2441 					goto error;
2442 			}
2443 		}
2444 	}
2445 
2446 	/*
2447 	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2448 	 * imbalanced.
2449 	 */
2450 	for_each_cpu(i, cpu_map) {
2451 		unsigned int imb = 0;
2452 		unsigned int imb_span = 1;
2453 
2454 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2455 			struct sched_domain *child = sd->child;
2456 
2457 			if (!(sd->flags & SD_SHARE_LLC) && child &&
2458 			    (child->flags & SD_SHARE_LLC)) {
2459 				struct sched_domain __rcu *top_p;
2460 				unsigned int nr_llcs;
2461 
2462 				/*
2463 				 * For a single LLC per node, allow an
2464 				 * imbalance up to 12.5% of the node. This is
2465 				 * arbitrary cutoff based two factors -- SMT and
2466 				 * memory channels. For SMT-2, the intent is to
2467 				 * avoid premature sharing of HT resources but
2468 				 * SMT-4 or SMT-8 *may* benefit from a different
2469 				 * cutoff. For memory channels, this is a very
2470 				 * rough estimate of how many channels may be
2471 				 * active and is based on recent CPUs with
2472 				 * many cores.
2473 				 *
2474 				 * For multiple LLCs, allow an imbalance
2475 				 * until multiple tasks would share an LLC
2476 				 * on one node while LLCs on another node
2477 				 * remain idle. This assumes that there are
2478 				 * enough logical CPUs per LLC to avoid SMT
2479 				 * factors and that there is a correlation
2480 				 * between LLCs and memory channels.
2481 				 */
2482 				nr_llcs = sd->span_weight / child->span_weight;
2483 				if (nr_llcs == 1)
2484 					imb = sd->span_weight >> 3;
2485 				else
2486 					imb = nr_llcs;
2487 				imb = max(1U, imb);
2488 				sd->imb_numa_nr = imb;
2489 
2490 				/* Set span based on the first NUMA domain. */
2491 				top_p = sd->parent;
2492 				while (top_p && !(top_p->flags & SD_NUMA)) {
2493 					top_p = top_p->parent;
2494 				}
2495 				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2496 			} else {
2497 				int factor = max(1U, (sd->span_weight / imb_span));
2498 
2499 				sd->imb_numa_nr = imb * factor;
2500 			}
2501 		}
2502 	}
2503 
2504 	/* Calculate CPU capacity for physical packages and nodes */
2505 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2506 		if (!cpumask_test_cpu(i, cpu_map))
2507 			continue;
2508 
2509 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2510 			claim_allocations(i, sd);
2511 			init_sched_groups_capacity(i, sd);
2512 		}
2513 	}
2514 
2515 	/* Attach the domains */
2516 	rcu_read_lock();
2517 	for_each_cpu(i, cpu_map) {
2518 		rq = cpu_rq(i);
2519 		sd = *per_cpu_ptr(d.sd, i);
2520 
2521 		cpu_attach_domain(sd, d.rd, i);
2522 
2523 		if (lowest_flag_domain(i, SD_CLUSTER))
2524 			has_cluster = true;
2525 	}
2526 	rcu_read_unlock();
2527 
2528 	if (has_asym)
2529 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2530 
2531 	if (has_cluster)
2532 		static_branch_inc_cpuslocked(&sched_cluster_active);
2533 
2534 	if (rq && sched_debug_verbose)
2535 		pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map));
2536 
2537 	ret = 0;
2538 error:
2539 	__free_domain_allocs(&d, alloc_state, cpu_map);
2540 
2541 	return ret;
2542 }
2543 
2544 /* Current sched domains: */
2545 static cpumask_var_t			*doms_cur;
2546 
2547 /* Number of sched domains in 'doms_cur': */
2548 static int				ndoms_cur;
2549 
2550 /* Attributes of custom domains in 'doms_cur' */
2551 static struct sched_domain_attr		*dattr_cur;
2552 
2553 /*
2554  * Special case: If a kmalloc() of a doms_cur partition (array of
2555  * cpumask) fails, then fallback to a single sched domain,
2556  * as determined by the single cpumask fallback_doms.
2557  */
2558 static cpumask_var_t			fallback_doms;
2559 
2560 /*
2561  * arch_update_cpu_topology lets virtualized architectures update the
2562  * CPU core maps. It is supposed to return 1 if the topology changed
2563  * or 0 if it stayed the same.
2564  */
2565 int __weak arch_update_cpu_topology(void)
2566 {
2567 	return 0;
2568 }
2569 
2570 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2571 {
2572 	int i;
2573 	cpumask_var_t *doms;
2574 
2575 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2576 	if (!doms)
2577 		return NULL;
2578 	for (i = 0; i < ndoms; i++) {
2579 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2580 			free_sched_domains(doms, i);
2581 			return NULL;
2582 		}
2583 	}
2584 	return doms;
2585 }
2586 
2587 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2588 {
2589 	unsigned int i;
2590 	for (i = 0; i < ndoms; i++)
2591 		free_cpumask_var(doms[i]);
2592 	kfree(doms);
2593 }
2594 
2595 /*
2596  * Set up scheduler domains and groups.  For now this just excludes isolated
2597  * CPUs, but could be used to exclude other special cases in the future.
2598  */
2599 int __init sched_init_domains(const struct cpumask *cpu_map)
2600 {
2601 	int err;
2602 
2603 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2604 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2605 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2606 
2607 	arch_update_cpu_topology();
2608 	asym_cpu_capacity_scan();
2609 	ndoms_cur = 1;
2610 	doms_cur = alloc_sched_domains(ndoms_cur);
2611 	if (!doms_cur)
2612 		doms_cur = &fallback_doms;
2613 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2614 	err = build_sched_domains(doms_cur[0], NULL);
2615 
2616 	return err;
2617 }
2618 
2619 /*
2620  * Detach sched domains from a group of CPUs specified in cpu_map
2621  * These CPUs will now be attached to the NULL domain
2622  */
2623 static void detach_destroy_domains(const struct cpumask *cpu_map)
2624 {
2625 	unsigned int cpu = cpumask_any(cpu_map);
2626 	int i;
2627 
2628 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2629 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2630 
2631 	if (static_branch_unlikely(&sched_cluster_active))
2632 		static_branch_dec_cpuslocked(&sched_cluster_active);
2633 
2634 	rcu_read_lock();
2635 	for_each_cpu(i, cpu_map)
2636 		cpu_attach_domain(NULL, &def_root_domain, i);
2637 	rcu_read_unlock();
2638 }
2639 
2640 /* handle null as "default" */
2641 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2642 			struct sched_domain_attr *new, int idx_new)
2643 {
2644 	struct sched_domain_attr tmp;
2645 
2646 	/* Fast path: */
2647 	if (!new && !cur)
2648 		return 1;
2649 
2650 	tmp = SD_ATTR_INIT;
2651 
2652 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2653 			new ? (new + idx_new) : &tmp,
2654 			sizeof(struct sched_domain_attr));
2655 }
2656 
2657 /*
2658  * Partition sched domains as specified by the 'ndoms_new'
2659  * cpumasks in the array doms_new[] of cpumasks. This compares
2660  * doms_new[] to the current sched domain partitioning, doms_cur[].
2661  * It destroys each deleted domain and builds each new domain.
2662  *
2663  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2664  * The masks don't intersect (don't overlap.) We should setup one
2665  * sched domain for each mask. CPUs not in any of the cpumasks will
2666  * not be load balanced. If the same cpumask appears both in the
2667  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2668  * it as it is.
2669  *
2670  * The passed in 'doms_new' should be allocated using
2671  * alloc_sched_domains.  This routine takes ownership of it and will
2672  * free_sched_domains it when done with it. If the caller failed the
2673  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2674  * and partition_sched_domains() will fallback to the single partition
2675  * 'fallback_doms', it also forces the domains to be rebuilt.
2676  *
2677  * If doms_new == NULL it will be replaced with cpu_online_mask.
2678  * ndoms_new == 0 is a special case for destroying existing domains,
2679  * and it will not create the default domain.
2680  *
2681  * Call with hotplug lock and sched_domains_mutex held
2682  */
2683 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2684 				    struct sched_domain_attr *dattr_new)
2685 {
2686 	bool __maybe_unused has_eas = false;
2687 	int i, j, n;
2688 	int new_topology;
2689 
2690 	lockdep_assert_held(&sched_domains_mutex);
2691 
2692 	/* Let the architecture update CPU core mappings: */
2693 	new_topology = arch_update_cpu_topology();
2694 	/* Trigger rebuilding CPU capacity asymmetry data */
2695 	if (new_topology)
2696 		asym_cpu_capacity_scan();
2697 
2698 	if (!doms_new) {
2699 		WARN_ON_ONCE(dattr_new);
2700 		n = 0;
2701 		doms_new = alloc_sched_domains(1);
2702 		if (doms_new) {
2703 			n = 1;
2704 			cpumask_and(doms_new[0], cpu_active_mask,
2705 				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2706 		}
2707 	} else {
2708 		n = ndoms_new;
2709 	}
2710 
2711 	/* Destroy deleted domains: */
2712 	for (i = 0; i < ndoms_cur; i++) {
2713 		for (j = 0; j < n && !new_topology; j++) {
2714 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2715 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2716 				struct root_domain *rd;
2717 
2718 				/*
2719 				 * This domain won't be destroyed and as such
2720 				 * its dl_bw->total_bw needs to be cleared.
2721 				 * Tasks contribution will be then recomputed
2722 				 * in function dl_update_tasks_root_domain(),
2723 				 * dl_servers contribution in function
2724 				 * dl_restore_server_root_domain().
2725 				 */
2726 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2727 				dl_clear_root_domain(rd);
2728 				goto match1;
2729 			}
2730 		}
2731 		/* No match - a current sched domain not in new doms_new[] */
2732 		detach_destroy_domains(doms_cur[i]);
2733 match1:
2734 		;
2735 	}
2736 
2737 	n = ndoms_cur;
2738 	if (!doms_new) {
2739 		n = 0;
2740 		doms_new = &fallback_doms;
2741 		cpumask_and(doms_new[0], cpu_active_mask,
2742 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2743 	}
2744 
2745 	/* Build new domains: */
2746 	for (i = 0; i < ndoms_new; i++) {
2747 		for (j = 0; j < n && !new_topology; j++) {
2748 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2749 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2750 				goto match2;
2751 		}
2752 		/* No match - add a new doms_new */
2753 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2754 match2:
2755 		;
2756 	}
2757 
2758 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2759 	/* Build perf domains: */
2760 	for (i = 0; i < ndoms_new; i++) {
2761 		for (j = 0; j < n && !sched_energy_update; j++) {
2762 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2763 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2764 				has_eas = true;
2765 				goto match3;
2766 			}
2767 		}
2768 		/* No match - add perf domains for a new rd */
2769 		has_eas |= build_perf_domains(doms_new[i]);
2770 match3:
2771 		;
2772 	}
2773 	sched_energy_set(has_eas);
2774 #endif
2775 
2776 	/* Remember the new sched domains: */
2777 	if (doms_cur != &fallback_doms)
2778 		free_sched_domains(doms_cur, ndoms_cur);
2779 
2780 	kfree(dattr_cur);
2781 	doms_cur = doms_new;
2782 	dattr_cur = dattr_new;
2783 	ndoms_cur = ndoms_new;
2784 
2785 	update_sched_domain_debugfs();
2786 }
2787 
2788 /*
2789  * Call with hotplug lock held
2790  */
2791 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2792 			     struct sched_domain_attr *dattr_new)
2793 {
2794 	mutex_lock(&sched_domains_mutex);
2795 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2796 	mutex_unlock(&sched_domains_mutex);
2797 }
2798