xref: /linux/kernel/sched/topology.c (revision e04e2b760ddbe3d7b283a05898c3a029085cd8cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 
6 #include <linux/bsearch.h>
7 
8 DEFINE_MUTEX(sched_domains_mutex);
9 
10 /* Protected by sched_domains_mutex: */
11 static cpumask_var_t sched_domains_tmpmask;
12 static cpumask_var_t sched_domains_tmpmask2;
13 
14 #ifdef CONFIG_SCHED_DEBUG
15 
16 static int __init sched_debug_setup(char *str)
17 {
18 	sched_debug_verbose = true;
19 
20 	return 0;
21 }
22 early_param("sched_verbose", sched_debug_setup);
23 
24 static inline bool sched_debug(void)
25 {
26 	return sched_debug_verbose;
27 }
28 
29 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
30 const struct sd_flag_debug sd_flag_debug[] = {
31 #include <linux/sched/sd_flags.h>
32 };
33 #undef SD_FLAG
34 
35 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
36 				  struct cpumask *groupmask)
37 {
38 	struct sched_group *group = sd->groups;
39 	unsigned long flags = sd->flags;
40 	unsigned int idx;
41 
42 	cpumask_clear(groupmask);
43 
44 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
45 	printk(KERN_CONT "span=%*pbl level=%s\n",
46 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
47 
48 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
49 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
50 	}
51 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
52 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
53 	}
54 
55 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
56 		unsigned int flag = BIT(idx);
57 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
58 
59 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
60 		    !(sd->child->flags & flag))
61 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
62 			       sd_flag_debug[idx].name);
63 
64 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
65 		    !(sd->parent->flags & flag))
66 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
67 			       sd_flag_debug[idx].name);
68 	}
69 
70 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
71 	do {
72 		if (!group) {
73 			printk("\n");
74 			printk(KERN_ERR "ERROR: group is NULL\n");
75 			break;
76 		}
77 
78 		if (cpumask_empty(sched_group_span(group))) {
79 			printk(KERN_CONT "\n");
80 			printk(KERN_ERR "ERROR: empty group\n");
81 			break;
82 		}
83 
84 		if (!(sd->flags & SD_OVERLAP) &&
85 		    cpumask_intersects(groupmask, sched_group_span(group))) {
86 			printk(KERN_CONT "\n");
87 			printk(KERN_ERR "ERROR: repeated CPUs\n");
88 			break;
89 		}
90 
91 		cpumask_or(groupmask, groupmask, sched_group_span(group));
92 
93 		printk(KERN_CONT " %d:{ span=%*pbl",
94 				group->sgc->id,
95 				cpumask_pr_args(sched_group_span(group)));
96 
97 		if ((sd->flags & SD_OVERLAP) &&
98 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
99 			printk(KERN_CONT " mask=%*pbl",
100 				cpumask_pr_args(group_balance_mask(group)));
101 		}
102 
103 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
104 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
105 
106 		if (group == sd->groups && sd->child &&
107 		    !cpumask_equal(sched_domain_span(sd->child),
108 				   sched_group_span(group))) {
109 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
110 		}
111 
112 		printk(KERN_CONT " }");
113 
114 		group = group->next;
115 
116 		if (group != sd->groups)
117 			printk(KERN_CONT ",");
118 
119 	} while (group != sd->groups);
120 	printk(KERN_CONT "\n");
121 
122 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
123 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
124 
125 	if (sd->parent &&
126 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
127 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
128 	return 0;
129 }
130 
131 static void sched_domain_debug(struct sched_domain *sd, int cpu)
132 {
133 	int level = 0;
134 
135 	if (!sched_debug_verbose)
136 		return;
137 
138 	if (!sd) {
139 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
140 		return;
141 	}
142 
143 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
144 
145 	for (;;) {
146 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
147 			break;
148 		level++;
149 		sd = sd->parent;
150 		if (!sd)
151 			break;
152 	}
153 }
154 #else /* !CONFIG_SCHED_DEBUG */
155 
156 # define sched_debug_verbose 0
157 # define sched_domain_debug(sd, cpu) do { } while (0)
158 static inline bool sched_debug(void)
159 {
160 	return false;
161 }
162 #endif /* CONFIG_SCHED_DEBUG */
163 
164 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
165 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
166 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
167 #include <linux/sched/sd_flags.h>
168 0;
169 #undef SD_FLAG
170 
171 static int sd_degenerate(struct sched_domain *sd)
172 {
173 	if (cpumask_weight(sched_domain_span(sd)) == 1)
174 		return 1;
175 
176 	/* Following flags need at least 2 groups */
177 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
178 	    (sd->groups != sd->groups->next))
179 		return 0;
180 
181 	/* Following flags don't use groups */
182 	if (sd->flags & (SD_WAKE_AFFINE))
183 		return 0;
184 
185 	return 1;
186 }
187 
188 static int
189 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
190 {
191 	unsigned long cflags = sd->flags, pflags = parent->flags;
192 
193 	if (sd_degenerate(parent))
194 		return 1;
195 
196 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
197 		return 0;
198 
199 	/* Flags needing groups don't count if only 1 group in parent */
200 	if (parent->groups == parent->groups->next)
201 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
202 
203 	if (~cflags & pflags)
204 		return 0;
205 
206 	return 1;
207 }
208 
209 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
210 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
211 static unsigned int sysctl_sched_energy_aware = 1;
212 static DEFINE_MUTEX(sched_energy_mutex);
213 static bool sched_energy_update;
214 
215 static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
216 {
217 	bool any_asym_capacity = false;
218 	struct cpufreq_policy *policy;
219 	struct cpufreq_governor *gov;
220 	int i;
221 
222 	/* EAS is enabled for asymmetric CPU capacity topologies. */
223 	for_each_cpu(i, cpu_mask) {
224 		if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
225 			any_asym_capacity = true;
226 			break;
227 		}
228 	}
229 	if (!any_asym_capacity) {
230 		if (sched_debug()) {
231 			pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
232 				cpumask_pr_args(cpu_mask));
233 		}
234 		return false;
235 	}
236 
237 	/* EAS definitely does *not* handle SMT */
238 	if (sched_smt_active()) {
239 		if (sched_debug()) {
240 			pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
241 				cpumask_pr_args(cpu_mask));
242 		}
243 		return false;
244 	}
245 
246 	if (!arch_scale_freq_invariant()) {
247 		if (sched_debug()) {
248 			pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
249 				cpumask_pr_args(cpu_mask));
250 		}
251 		return false;
252 	}
253 
254 	/* Do not attempt EAS if schedutil is not being used. */
255 	for_each_cpu(i, cpu_mask) {
256 		policy = cpufreq_cpu_get(i);
257 		if (!policy) {
258 			if (sched_debug()) {
259 				pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d",
260 					cpumask_pr_args(cpu_mask), i);
261 			}
262 			return false;
263 		}
264 		gov = policy->governor;
265 		cpufreq_cpu_put(policy);
266 		if (gov != &schedutil_gov) {
267 			if (sched_debug()) {
268 				pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n",
269 					cpumask_pr_args(cpu_mask));
270 			}
271 			return false;
272 		}
273 	}
274 
275 	return true;
276 }
277 
278 void rebuild_sched_domains_energy(void)
279 {
280 	mutex_lock(&sched_energy_mutex);
281 	sched_energy_update = true;
282 	rebuild_sched_domains();
283 	sched_energy_update = false;
284 	mutex_unlock(&sched_energy_mutex);
285 }
286 
287 #ifdef CONFIG_PROC_SYSCTL
288 static int sched_energy_aware_handler(const struct ctl_table *table, int write,
289 		void *buffer, size_t *lenp, loff_t *ppos)
290 {
291 	int ret, state;
292 
293 	if (write && !capable(CAP_SYS_ADMIN))
294 		return -EPERM;
295 
296 	if (!sched_is_eas_possible(cpu_active_mask)) {
297 		if (write) {
298 			return -EOPNOTSUPP;
299 		} else {
300 			*lenp = 0;
301 			return 0;
302 		}
303 	}
304 
305 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
306 	if (!ret && write) {
307 		state = static_branch_unlikely(&sched_energy_present);
308 		if (state != sysctl_sched_energy_aware)
309 			rebuild_sched_domains_energy();
310 	}
311 
312 	return ret;
313 }
314 
315 static struct ctl_table sched_energy_aware_sysctls[] = {
316 	{
317 		.procname       = "sched_energy_aware",
318 		.data           = &sysctl_sched_energy_aware,
319 		.maxlen         = sizeof(unsigned int),
320 		.mode           = 0644,
321 		.proc_handler   = sched_energy_aware_handler,
322 		.extra1         = SYSCTL_ZERO,
323 		.extra2         = SYSCTL_ONE,
324 	},
325 };
326 
327 static int __init sched_energy_aware_sysctl_init(void)
328 {
329 	register_sysctl_init("kernel", sched_energy_aware_sysctls);
330 	return 0;
331 }
332 
333 late_initcall(sched_energy_aware_sysctl_init);
334 #endif
335 
336 static void free_pd(struct perf_domain *pd)
337 {
338 	struct perf_domain *tmp;
339 
340 	while (pd) {
341 		tmp = pd->next;
342 		kfree(pd);
343 		pd = tmp;
344 	}
345 }
346 
347 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
348 {
349 	while (pd) {
350 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
351 			return pd;
352 		pd = pd->next;
353 	}
354 
355 	return NULL;
356 }
357 
358 static struct perf_domain *pd_init(int cpu)
359 {
360 	struct em_perf_domain *obj = em_cpu_get(cpu);
361 	struct perf_domain *pd;
362 
363 	if (!obj) {
364 		if (sched_debug())
365 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
366 		return NULL;
367 	}
368 
369 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
370 	if (!pd)
371 		return NULL;
372 	pd->em_pd = obj;
373 
374 	return pd;
375 }
376 
377 static void perf_domain_debug(const struct cpumask *cpu_map,
378 						struct perf_domain *pd)
379 {
380 	if (!sched_debug() || !pd)
381 		return;
382 
383 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
384 
385 	while (pd) {
386 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
387 				cpumask_first(perf_domain_span(pd)),
388 				cpumask_pr_args(perf_domain_span(pd)),
389 				em_pd_nr_perf_states(pd->em_pd));
390 		pd = pd->next;
391 	}
392 
393 	printk(KERN_CONT "\n");
394 }
395 
396 static void destroy_perf_domain_rcu(struct rcu_head *rp)
397 {
398 	struct perf_domain *pd;
399 
400 	pd = container_of(rp, struct perf_domain, rcu);
401 	free_pd(pd);
402 }
403 
404 static void sched_energy_set(bool has_eas)
405 {
406 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
407 		if (sched_debug())
408 			pr_info("%s: stopping EAS\n", __func__);
409 		static_branch_disable_cpuslocked(&sched_energy_present);
410 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
411 		if (sched_debug())
412 			pr_info("%s: starting EAS\n", __func__);
413 		static_branch_enable_cpuslocked(&sched_energy_present);
414 	}
415 }
416 
417 /*
418  * EAS can be used on a root domain if it meets all the following conditions:
419  *    1. an Energy Model (EM) is available;
420  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
421  *    3. no SMT is detected.
422  *    4. schedutil is driving the frequency of all CPUs of the rd;
423  *    5. frequency invariance support is present;
424  */
425 static bool build_perf_domains(const struct cpumask *cpu_map)
426 {
427 	int i;
428 	struct perf_domain *pd = NULL, *tmp;
429 	int cpu = cpumask_first(cpu_map);
430 	struct root_domain *rd = cpu_rq(cpu)->rd;
431 
432 	if (!sysctl_sched_energy_aware)
433 		goto free;
434 
435 	if (!sched_is_eas_possible(cpu_map))
436 		goto free;
437 
438 	for_each_cpu(i, cpu_map) {
439 		/* Skip already covered CPUs. */
440 		if (find_pd(pd, i))
441 			continue;
442 
443 		/* Create the new pd and add it to the local list. */
444 		tmp = pd_init(i);
445 		if (!tmp)
446 			goto free;
447 		tmp->next = pd;
448 		pd = tmp;
449 	}
450 
451 	perf_domain_debug(cpu_map, pd);
452 
453 	/* Attach the new list of performance domains to the root domain. */
454 	tmp = rd->pd;
455 	rcu_assign_pointer(rd->pd, pd);
456 	if (tmp)
457 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
458 
459 	return !!pd;
460 
461 free:
462 	free_pd(pd);
463 	tmp = rd->pd;
464 	rcu_assign_pointer(rd->pd, NULL);
465 	if (tmp)
466 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
467 
468 	return false;
469 }
470 #else
471 static void free_pd(struct perf_domain *pd) { }
472 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
473 
474 static void free_rootdomain(struct rcu_head *rcu)
475 {
476 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
477 
478 	cpupri_cleanup(&rd->cpupri);
479 	cpudl_cleanup(&rd->cpudl);
480 	free_cpumask_var(rd->dlo_mask);
481 	free_cpumask_var(rd->rto_mask);
482 	free_cpumask_var(rd->online);
483 	free_cpumask_var(rd->span);
484 	free_pd(rd->pd);
485 	kfree(rd);
486 }
487 
488 void rq_attach_root(struct rq *rq, struct root_domain *rd)
489 {
490 	struct root_domain *old_rd = NULL;
491 	struct rq_flags rf;
492 
493 	rq_lock_irqsave(rq, &rf);
494 
495 	if (rq->rd) {
496 		old_rd = rq->rd;
497 
498 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
499 			set_rq_offline(rq);
500 
501 		cpumask_clear_cpu(rq->cpu, old_rd->span);
502 
503 		/*
504 		 * If we don't want to free the old_rd yet then
505 		 * set old_rd to NULL to skip the freeing later
506 		 * in this function:
507 		 */
508 		if (!atomic_dec_and_test(&old_rd->refcount))
509 			old_rd = NULL;
510 	}
511 
512 	atomic_inc(&rd->refcount);
513 	rq->rd = rd;
514 
515 	cpumask_set_cpu(rq->cpu, rd->span);
516 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
517 		set_rq_online(rq);
518 
519 	rq_unlock_irqrestore(rq, &rf);
520 
521 	if (old_rd)
522 		call_rcu(&old_rd->rcu, free_rootdomain);
523 }
524 
525 void sched_get_rd(struct root_domain *rd)
526 {
527 	atomic_inc(&rd->refcount);
528 }
529 
530 void sched_put_rd(struct root_domain *rd)
531 {
532 	if (!atomic_dec_and_test(&rd->refcount))
533 		return;
534 
535 	call_rcu(&rd->rcu, free_rootdomain);
536 }
537 
538 static int init_rootdomain(struct root_domain *rd)
539 {
540 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
541 		goto out;
542 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
543 		goto free_span;
544 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
545 		goto free_online;
546 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
547 		goto free_dlo_mask;
548 
549 #ifdef HAVE_RT_PUSH_IPI
550 	rd->rto_cpu = -1;
551 	raw_spin_lock_init(&rd->rto_lock);
552 	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
553 #endif
554 
555 	rd->visit_gen = 0;
556 	init_dl_bw(&rd->dl_bw);
557 	if (cpudl_init(&rd->cpudl) != 0)
558 		goto free_rto_mask;
559 
560 	if (cpupri_init(&rd->cpupri) != 0)
561 		goto free_cpudl;
562 	return 0;
563 
564 free_cpudl:
565 	cpudl_cleanup(&rd->cpudl);
566 free_rto_mask:
567 	free_cpumask_var(rd->rto_mask);
568 free_dlo_mask:
569 	free_cpumask_var(rd->dlo_mask);
570 free_online:
571 	free_cpumask_var(rd->online);
572 free_span:
573 	free_cpumask_var(rd->span);
574 out:
575 	return -ENOMEM;
576 }
577 
578 /*
579  * By default the system creates a single root-domain with all CPUs as
580  * members (mimicking the global state we have today).
581  */
582 struct root_domain def_root_domain;
583 
584 void __init init_defrootdomain(void)
585 {
586 	init_rootdomain(&def_root_domain);
587 
588 	atomic_set(&def_root_domain.refcount, 1);
589 }
590 
591 static struct root_domain *alloc_rootdomain(void)
592 {
593 	struct root_domain *rd;
594 
595 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
596 	if (!rd)
597 		return NULL;
598 
599 	if (init_rootdomain(rd) != 0) {
600 		kfree(rd);
601 		return NULL;
602 	}
603 
604 	return rd;
605 }
606 
607 static void free_sched_groups(struct sched_group *sg, int free_sgc)
608 {
609 	struct sched_group *tmp, *first;
610 
611 	if (!sg)
612 		return;
613 
614 	first = sg;
615 	do {
616 		tmp = sg->next;
617 
618 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
619 			kfree(sg->sgc);
620 
621 		if (atomic_dec_and_test(&sg->ref))
622 			kfree(sg);
623 		sg = tmp;
624 	} while (sg != first);
625 }
626 
627 static void destroy_sched_domain(struct sched_domain *sd)
628 {
629 	/*
630 	 * A normal sched domain may have multiple group references, an
631 	 * overlapping domain, having private groups, only one.  Iterate,
632 	 * dropping group/capacity references, freeing where none remain.
633 	 */
634 	free_sched_groups(sd->groups, 1);
635 
636 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
637 		kfree(sd->shared);
638 	kfree(sd);
639 }
640 
641 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
642 {
643 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
644 
645 	while (sd) {
646 		struct sched_domain *parent = sd->parent;
647 		destroy_sched_domain(sd);
648 		sd = parent;
649 	}
650 }
651 
652 static void destroy_sched_domains(struct sched_domain *sd)
653 {
654 	if (sd)
655 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
656 }
657 
658 /*
659  * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set
660  * (Last Level Cache Domain) for this allows us to avoid some pointer chasing
661  * select_idle_sibling().
662  *
663  * Also keep a unique ID per domain (we use the first CPU number in the cpumask
664  * of the domain), this allows us to quickly tell if two CPUs are in the same
665  * cache domain, see cpus_share_cache().
666  */
667 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
668 DEFINE_PER_CPU(int, sd_llc_size);
669 DEFINE_PER_CPU(int, sd_llc_id);
670 DEFINE_PER_CPU(int, sd_share_id);
671 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
672 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
673 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
674 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
675 
676 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
677 DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
678 
679 static void update_top_cache_domain(int cpu)
680 {
681 	struct sched_domain_shared *sds = NULL;
682 	struct sched_domain *sd;
683 	int id = cpu;
684 	int size = 1;
685 
686 	sd = highest_flag_domain(cpu, SD_SHARE_LLC);
687 	if (sd) {
688 		id = cpumask_first(sched_domain_span(sd));
689 		size = cpumask_weight(sched_domain_span(sd));
690 		sds = sd->shared;
691 	}
692 
693 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
694 	per_cpu(sd_llc_size, cpu) = size;
695 	per_cpu(sd_llc_id, cpu) = id;
696 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
697 
698 	sd = lowest_flag_domain(cpu, SD_CLUSTER);
699 	if (sd)
700 		id = cpumask_first(sched_domain_span(sd));
701 
702 	/*
703 	 * This assignment should be placed after the sd_llc_id as
704 	 * we want this id equals to cluster id on cluster machines
705 	 * but equals to LLC id on non-Cluster machines.
706 	 */
707 	per_cpu(sd_share_id, cpu) = id;
708 
709 	sd = lowest_flag_domain(cpu, SD_NUMA);
710 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
711 
712 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
713 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
714 
715 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
716 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
717 }
718 
719 /*
720  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
721  * hold the hotplug lock.
722  */
723 static void
724 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
725 {
726 	struct rq *rq = cpu_rq(cpu);
727 	struct sched_domain *tmp;
728 
729 	/* Remove the sched domains which do not contribute to scheduling. */
730 	for (tmp = sd; tmp; ) {
731 		struct sched_domain *parent = tmp->parent;
732 		if (!parent)
733 			break;
734 
735 		if (sd_parent_degenerate(tmp, parent)) {
736 			tmp->parent = parent->parent;
737 
738 			if (parent->parent) {
739 				parent->parent->child = tmp;
740 				parent->parent->groups->flags = tmp->flags;
741 			}
742 
743 			/*
744 			 * Transfer SD_PREFER_SIBLING down in case of a
745 			 * degenerate parent; the spans match for this
746 			 * so the property transfers.
747 			 */
748 			if (parent->flags & SD_PREFER_SIBLING)
749 				tmp->flags |= SD_PREFER_SIBLING;
750 			destroy_sched_domain(parent);
751 		} else
752 			tmp = tmp->parent;
753 	}
754 
755 	if (sd && sd_degenerate(sd)) {
756 		tmp = sd;
757 		sd = sd->parent;
758 		destroy_sched_domain(tmp);
759 		if (sd) {
760 			struct sched_group *sg = sd->groups;
761 
762 			/*
763 			 * sched groups hold the flags of the child sched
764 			 * domain for convenience. Clear such flags since
765 			 * the child is being destroyed.
766 			 */
767 			do {
768 				sg->flags = 0;
769 			} while (sg != sd->groups);
770 
771 			sd->child = NULL;
772 		}
773 	}
774 
775 	sched_domain_debug(sd, cpu);
776 
777 	rq_attach_root(rq, rd);
778 	tmp = rq->sd;
779 	rcu_assign_pointer(rq->sd, sd);
780 	dirty_sched_domain_sysctl(cpu);
781 	destroy_sched_domains(tmp);
782 
783 	update_top_cache_domain(cpu);
784 }
785 
786 struct s_data {
787 	struct sched_domain * __percpu *sd;
788 	struct root_domain	*rd;
789 };
790 
791 enum s_alloc {
792 	sa_rootdomain,
793 	sa_sd,
794 	sa_sd_storage,
795 	sa_none,
796 };
797 
798 /*
799  * Return the canonical balance CPU for this group, this is the first CPU
800  * of this group that's also in the balance mask.
801  *
802  * The balance mask are all those CPUs that could actually end up at this
803  * group. See build_balance_mask().
804  *
805  * Also see should_we_balance().
806  */
807 int group_balance_cpu(struct sched_group *sg)
808 {
809 	return cpumask_first(group_balance_mask(sg));
810 }
811 
812 
813 /*
814  * NUMA topology (first read the regular topology blurb below)
815  *
816  * Given a node-distance table, for example:
817  *
818  *   node   0   1   2   3
819  *     0:  10  20  30  20
820  *     1:  20  10  20  30
821  *     2:  30  20  10  20
822  *     3:  20  30  20  10
823  *
824  * which represents a 4 node ring topology like:
825  *
826  *   0 ----- 1
827  *   |       |
828  *   |       |
829  *   |       |
830  *   3 ----- 2
831  *
832  * We want to construct domains and groups to represent this. The way we go
833  * about doing this is to build the domains on 'hops'. For each NUMA level we
834  * construct the mask of all nodes reachable in @level hops.
835  *
836  * For the above NUMA topology that gives 3 levels:
837  *
838  * NUMA-2	0-3		0-3		0-3		0-3
839  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
840  *
841  * NUMA-1	0-1,3		0-2		1-3		0,2-3
842  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
843  *
844  * NUMA-0	0		1		2		3
845  *
846  *
847  * As can be seen; things don't nicely line up as with the regular topology.
848  * When we iterate a domain in child domain chunks some nodes can be
849  * represented multiple times -- hence the "overlap" naming for this part of
850  * the topology.
851  *
852  * In order to minimize this overlap, we only build enough groups to cover the
853  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
854  *
855  * Because:
856  *
857  *  - the first group of each domain is its child domain; this
858  *    gets us the first 0-1,3
859  *  - the only uncovered node is 2, who's child domain is 1-3.
860  *
861  * However, because of the overlap, computing a unique CPU for each group is
862  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
863  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
864  * end up at those groups (they would end up in group: 0-1,3).
865  *
866  * To correct this we have to introduce the group balance mask. This mask
867  * will contain those CPUs in the group that can reach this group given the
868  * (child) domain tree.
869  *
870  * With this we can once again compute balance_cpu and sched_group_capacity
871  * relations.
872  *
873  * XXX include words on how balance_cpu is unique and therefore can be
874  * used for sched_group_capacity links.
875  *
876  *
877  * Another 'interesting' topology is:
878  *
879  *   node   0   1   2   3
880  *     0:  10  20  20  30
881  *     1:  20  10  20  20
882  *     2:  20  20  10  20
883  *     3:  30  20  20  10
884  *
885  * Which looks a little like:
886  *
887  *   0 ----- 1
888  *   |     / |
889  *   |   /   |
890  *   | /     |
891  *   2 ----- 3
892  *
893  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
894  * are not.
895  *
896  * This leads to a few particularly weird cases where the sched_domain's are
897  * not of the same number for each CPU. Consider:
898  *
899  * NUMA-2	0-3						0-3
900  *  groups:	{0-2},{1-3}					{1-3},{0-2}
901  *
902  * NUMA-1	0-2		0-3		0-3		1-3
903  *
904  * NUMA-0	0		1		2		3
905  *
906  */
907 
908 
909 /*
910  * Build the balance mask; it contains only those CPUs that can arrive at this
911  * group and should be considered to continue balancing.
912  *
913  * We do this during the group creation pass, therefore the group information
914  * isn't complete yet, however since each group represents a (child) domain we
915  * can fully construct this using the sched_domain bits (which are already
916  * complete).
917  */
918 static void
919 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
920 {
921 	const struct cpumask *sg_span = sched_group_span(sg);
922 	struct sd_data *sdd = sd->private;
923 	struct sched_domain *sibling;
924 	int i;
925 
926 	cpumask_clear(mask);
927 
928 	for_each_cpu(i, sg_span) {
929 		sibling = *per_cpu_ptr(sdd->sd, i);
930 
931 		/*
932 		 * Can happen in the asymmetric case, where these siblings are
933 		 * unused. The mask will not be empty because those CPUs that
934 		 * do have the top domain _should_ span the domain.
935 		 */
936 		if (!sibling->child)
937 			continue;
938 
939 		/* If we would not end up here, we can't continue from here */
940 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
941 			continue;
942 
943 		cpumask_set_cpu(i, mask);
944 	}
945 
946 	/* We must not have empty masks here */
947 	WARN_ON_ONCE(cpumask_empty(mask));
948 }
949 
950 /*
951  * XXX: This creates per-node group entries; since the load-balancer will
952  * immediately access remote memory to construct this group's load-balance
953  * statistics having the groups node local is of dubious benefit.
954  */
955 static struct sched_group *
956 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
957 {
958 	struct sched_group *sg;
959 	struct cpumask *sg_span;
960 
961 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
962 			GFP_KERNEL, cpu_to_node(cpu));
963 
964 	if (!sg)
965 		return NULL;
966 
967 	sg_span = sched_group_span(sg);
968 	if (sd->child) {
969 		cpumask_copy(sg_span, sched_domain_span(sd->child));
970 		sg->flags = sd->child->flags;
971 	} else {
972 		cpumask_copy(sg_span, sched_domain_span(sd));
973 	}
974 
975 	atomic_inc(&sg->ref);
976 	return sg;
977 }
978 
979 static void init_overlap_sched_group(struct sched_domain *sd,
980 				     struct sched_group *sg)
981 {
982 	struct cpumask *mask = sched_domains_tmpmask2;
983 	struct sd_data *sdd = sd->private;
984 	struct cpumask *sg_span;
985 	int cpu;
986 
987 	build_balance_mask(sd, sg, mask);
988 	cpu = cpumask_first(mask);
989 
990 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
991 	if (atomic_inc_return(&sg->sgc->ref) == 1)
992 		cpumask_copy(group_balance_mask(sg), mask);
993 	else
994 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
995 
996 	/*
997 	 * Initialize sgc->capacity such that even if we mess up the
998 	 * domains and no possible iteration will get us here, we won't
999 	 * die on a /0 trap.
1000 	 */
1001 	sg_span = sched_group_span(sg);
1002 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
1003 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1004 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1005 }
1006 
1007 static struct sched_domain *
1008 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
1009 {
1010 	/*
1011 	 * The proper descendant would be the one whose child won't span out
1012 	 * of sd
1013 	 */
1014 	while (sibling->child &&
1015 	       !cpumask_subset(sched_domain_span(sibling->child),
1016 			       sched_domain_span(sd)))
1017 		sibling = sibling->child;
1018 
1019 	/*
1020 	 * As we are referencing sgc across different topology level, we need
1021 	 * to go down to skip those sched_domains which don't contribute to
1022 	 * scheduling because they will be degenerated in cpu_attach_domain
1023 	 */
1024 	while (sibling->child &&
1025 	       cpumask_equal(sched_domain_span(sibling->child),
1026 			     sched_domain_span(sibling)))
1027 		sibling = sibling->child;
1028 
1029 	return sibling;
1030 }
1031 
1032 static int
1033 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1034 {
1035 	struct sched_group *first = NULL, *last = NULL, *sg;
1036 	const struct cpumask *span = sched_domain_span(sd);
1037 	struct cpumask *covered = sched_domains_tmpmask;
1038 	struct sd_data *sdd = sd->private;
1039 	struct sched_domain *sibling;
1040 	int i;
1041 
1042 	cpumask_clear(covered);
1043 
1044 	for_each_cpu_wrap(i, span, cpu) {
1045 		struct cpumask *sg_span;
1046 
1047 		if (cpumask_test_cpu(i, covered))
1048 			continue;
1049 
1050 		sibling = *per_cpu_ptr(sdd->sd, i);
1051 
1052 		/*
1053 		 * Asymmetric node setups can result in situations where the
1054 		 * domain tree is of unequal depth, make sure to skip domains
1055 		 * that already cover the entire range.
1056 		 *
1057 		 * In that case build_sched_domains() will have terminated the
1058 		 * iteration early and our sibling sd spans will be empty.
1059 		 * Domains should always include the CPU they're built on, so
1060 		 * check that.
1061 		 */
1062 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1063 			continue;
1064 
1065 		/*
1066 		 * Usually we build sched_group by sibling's child sched_domain
1067 		 * But for machines whose NUMA diameter are 3 or above, we move
1068 		 * to build sched_group by sibling's proper descendant's child
1069 		 * domain because sibling's child sched_domain will span out of
1070 		 * the sched_domain being built as below.
1071 		 *
1072 		 * Smallest diameter=3 topology is:
1073 		 *
1074 		 *   node   0   1   2   3
1075 		 *     0:  10  20  30  40
1076 		 *     1:  20  10  20  30
1077 		 *     2:  30  20  10  20
1078 		 *     3:  40  30  20  10
1079 		 *
1080 		 *   0 --- 1 --- 2 --- 3
1081 		 *
1082 		 * NUMA-3       0-3             N/A             N/A             0-3
1083 		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1084 		 *
1085 		 * NUMA-2       0-2             0-3             0-3             1-3
1086 		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1087 		 *
1088 		 * NUMA-1       0-1             0-2             1-3             2-3
1089 		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1090 		 *
1091 		 * NUMA-0       0               1               2               3
1092 		 *
1093 		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1094 		 * group span isn't a subset of the domain span.
1095 		 */
1096 		if (sibling->child &&
1097 		    !cpumask_subset(sched_domain_span(sibling->child), span))
1098 			sibling = find_descended_sibling(sd, sibling);
1099 
1100 		sg = build_group_from_child_sched_domain(sibling, cpu);
1101 		if (!sg)
1102 			goto fail;
1103 
1104 		sg_span = sched_group_span(sg);
1105 		cpumask_or(covered, covered, sg_span);
1106 
1107 		init_overlap_sched_group(sibling, sg);
1108 
1109 		if (!first)
1110 			first = sg;
1111 		if (last)
1112 			last->next = sg;
1113 		last = sg;
1114 		last->next = first;
1115 	}
1116 	sd->groups = first;
1117 
1118 	return 0;
1119 
1120 fail:
1121 	free_sched_groups(first, 0);
1122 
1123 	return -ENOMEM;
1124 }
1125 
1126 
1127 /*
1128  * Package topology (also see the load-balance blurb in fair.c)
1129  *
1130  * The scheduler builds a tree structure to represent a number of important
1131  * topology features. By default (default_topology[]) these include:
1132  *
1133  *  - Simultaneous multithreading (SMT)
1134  *  - Multi-Core Cache (MC)
1135  *  - Package (PKG)
1136  *
1137  * Where the last one more or less denotes everything up to a NUMA node.
1138  *
1139  * The tree consists of 3 primary data structures:
1140  *
1141  *	sched_domain -> sched_group -> sched_group_capacity
1142  *	    ^ ^             ^ ^
1143  *          `-'             `-'
1144  *
1145  * The sched_domains are per-CPU and have a two way link (parent & child) and
1146  * denote the ever growing mask of CPUs belonging to that level of topology.
1147  *
1148  * Each sched_domain has a circular (double) linked list of sched_group's, each
1149  * denoting the domains of the level below (or individual CPUs in case of the
1150  * first domain level). The sched_group linked by a sched_domain includes the
1151  * CPU of that sched_domain [*].
1152  *
1153  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1154  *
1155  * CPU   0   1   2   3   4   5   6   7
1156  *
1157  * PKG  [                             ]
1158  * MC   [             ] [             ]
1159  * SMT  [     ] [     ] [     ] [     ]
1160  *
1161  *  - or -
1162  *
1163  * PKG  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1164  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1165  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1166  *
1167  * CPU   0   1   2   3   4   5   6   7
1168  *
1169  * One way to think about it is: sched_domain moves you up and down among these
1170  * topology levels, while sched_group moves you sideways through it, at child
1171  * domain granularity.
1172  *
1173  * sched_group_capacity ensures each unique sched_group has shared storage.
1174  *
1175  * There are two related construction problems, both require a CPU that
1176  * uniquely identify each group (for a given domain):
1177  *
1178  *  - The first is the balance_cpu (see should_we_balance() and the
1179  *    load-balance blurb in fair.c); for each group we only want 1 CPU to
1180  *    continue balancing at a higher domain.
1181  *
1182  *  - The second is the sched_group_capacity; we want all identical groups
1183  *    to share a single sched_group_capacity.
1184  *
1185  * Since these topologies are exclusive by construction. That is, its
1186  * impossible for an SMT thread to belong to multiple cores, and cores to
1187  * be part of multiple caches. There is a very clear and unique location
1188  * for each CPU in the hierarchy.
1189  *
1190  * Therefore computing a unique CPU for each group is trivial (the iteration
1191  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1192  * group), we can simply pick the first CPU in each group.
1193  *
1194  *
1195  * [*] in other words, the first group of each domain is its child domain.
1196  */
1197 
1198 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1199 {
1200 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1201 	struct sched_domain *child = sd->child;
1202 	struct sched_group *sg;
1203 	bool already_visited;
1204 
1205 	if (child)
1206 		cpu = cpumask_first(sched_domain_span(child));
1207 
1208 	sg = *per_cpu_ptr(sdd->sg, cpu);
1209 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1210 
1211 	/* Increase refcounts for claim_allocations: */
1212 	already_visited = atomic_inc_return(&sg->ref) > 1;
1213 	/* sgc visits should follow a similar trend as sg */
1214 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1215 
1216 	/* If we have already visited that group, it's already initialized. */
1217 	if (already_visited)
1218 		return sg;
1219 
1220 	if (child) {
1221 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1222 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1223 		sg->flags = child->flags;
1224 	} else {
1225 		cpumask_set_cpu(cpu, sched_group_span(sg));
1226 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1227 	}
1228 
1229 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1230 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1231 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1232 
1233 	return sg;
1234 }
1235 
1236 /*
1237  * build_sched_groups will build a circular linked list of the groups
1238  * covered by the given span, will set each group's ->cpumask correctly,
1239  * and will initialize their ->sgc.
1240  *
1241  * Assumes the sched_domain tree is fully constructed
1242  */
1243 static int
1244 build_sched_groups(struct sched_domain *sd, int cpu)
1245 {
1246 	struct sched_group *first = NULL, *last = NULL;
1247 	struct sd_data *sdd = sd->private;
1248 	const struct cpumask *span = sched_domain_span(sd);
1249 	struct cpumask *covered;
1250 	int i;
1251 
1252 	lockdep_assert_held(&sched_domains_mutex);
1253 	covered = sched_domains_tmpmask;
1254 
1255 	cpumask_clear(covered);
1256 
1257 	for_each_cpu_wrap(i, span, cpu) {
1258 		struct sched_group *sg;
1259 
1260 		if (cpumask_test_cpu(i, covered))
1261 			continue;
1262 
1263 		sg = get_group(i, sdd);
1264 
1265 		cpumask_or(covered, covered, sched_group_span(sg));
1266 
1267 		if (!first)
1268 			first = sg;
1269 		if (last)
1270 			last->next = sg;
1271 		last = sg;
1272 	}
1273 	last->next = first;
1274 	sd->groups = first;
1275 
1276 	return 0;
1277 }
1278 
1279 /*
1280  * Initialize sched groups cpu_capacity.
1281  *
1282  * cpu_capacity indicates the capacity of sched group, which is used while
1283  * distributing the load between different sched groups in a sched domain.
1284  * Typically cpu_capacity for all the groups in a sched domain will be same
1285  * unless there are asymmetries in the topology. If there are asymmetries,
1286  * group having more cpu_capacity will pickup more load compared to the
1287  * group having less cpu_capacity.
1288  */
1289 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1290 {
1291 	struct sched_group *sg = sd->groups;
1292 	struct cpumask *mask = sched_domains_tmpmask2;
1293 
1294 	WARN_ON(!sg);
1295 
1296 	do {
1297 		int cpu, cores = 0, max_cpu = -1;
1298 
1299 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1300 
1301 		cpumask_copy(mask, sched_group_span(sg));
1302 		for_each_cpu(cpu, mask) {
1303 			cores++;
1304 #ifdef CONFIG_SCHED_SMT
1305 			cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1306 #endif
1307 		}
1308 		sg->cores = cores;
1309 
1310 		if (!(sd->flags & SD_ASYM_PACKING))
1311 			goto next;
1312 
1313 		for_each_cpu(cpu, sched_group_span(sg)) {
1314 			if (max_cpu < 0)
1315 				max_cpu = cpu;
1316 			else if (sched_asym_prefer(cpu, max_cpu))
1317 				max_cpu = cpu;
1318 		}
1319 		sg->asym_prefer_cpu = max_cpu;
1320 
1321 next:
1322 		sg = sg->next;
1323 	} while (sg != sd->groups);
1324 
1325 	if (cpu != group_balance_cpu(sg))
1326 		return;
1327 
1328 	update_group_capacity(sd, cpu);
1329 }
1330 
1331 /*
1332  * Set of available CPUs grouped by their corresponding capacities
1333  * Each list entry contains a CPU mask reflecting CPUs that share the same
1334  * capacity.
1335  * The lifespan of data is unlimited.
1336  */
1337 LIST_HEAD(asym_cap_list);
1338 
1339 /*
1340  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1341  * Provides sd_flags reflecting the asymmetry scope.
1342  */
1343 static inline int
1344 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1345 			   const struct cpumask *cpu_map)
1346 {
1347 	struct asym_cap_data *entry;
1348 	int count = 0, miss = 0;
1349 
1350 	/*
1351 	 * Count how many unique CPU capacities this domain spans across
1352 	 * (compare sched_domain CPUs mask with ones representing  available
1353 	 * CPUs capacities). Take into account CPUs that might be offline:
1354 	 * skip those.
1355 	 */
1356 	list_for_each_entry(entry, &asym_cap_list, link) {
1357 		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1358 			++count;
1359 		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1360 			++miss;
1361 	}
1362 
1363 	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1364 
1365 	/* No asymmetry detected */
1366 	if (count < 2)
1367 		return 0;
1368 	/* Some of the available CPU capacity values have not been detected */
1369 	if (miss)
1370 		return SD_ASYM_CPUCAPACITY;
1371 
1372 	/* Full asymmetry */
1373 	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1374 
1375 }
1376 
1377 static void free_asym_cap_entry(struct rcu_head *head)
1378 {
1379 	struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu);
1380 	kfree(entry);
1381 }
1382 
1383 static inline void asym_cpu_capacity_update_data(int cpu)
1384 {
1385 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1386 	struct asym_cap_data *insert_entry = NULL;
1387 	struct asym_cap_data *entry;
1388 
1389 	/*
1390 	 * Search if capacity already exits. If not, track which the entry
1391 	 * where we should insert to keep the list ordered descending.
1392 	 */
1393 	list_for_each_entry(entry, &asym_cap_list, link) {
1394 		if (capacity == entry->capacity)
1395 			goto done;
1396 		else if (!insert_entry && capacity > entry->capacity)
1397 			insert_entry = list_prev_entry(entry, link);
1398 	}
1399 
1400 	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1401 	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1402 		return;
1403 	entry->capacity = capacity;
1404 
1405 	/* If NULL then the new capacity is the smallest, add last. */
1406 	if (!insert_entry)
1407 		list_add_tail_rcu(&entry->link, &asym_cap_list);
1408 	else
1409 		list_add_rcu(&entry->link, &insert_entry->link);
1410 done:
1411 	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1412 }
1413 
1414 /*
1415  * Build-up/update list of CPUs grouped by their capacities
1416  * An update requires explicit request to rebuild sched domains
1417  * with state indicating CPU topology changes.
1418  */
1419 static void asym_cpu_capacity_scan(void)
1420 {
1421 	struct asym_cap_data *entry, *next;
1422 	int cpu;
1423 
1424 	list_for_each_entry(entry, &asym_cap_list, link)
1425 		cpumask_clear(cpu_capacity_span(entry));
1426 
1427 	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1428 		asym_cpu_capacity_update_data(cpu);
1429 
1430 	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1431 		if (cpumask_empty(cpu_capacity_span(entry))) {
1432 			list_del_rcu(&entry->link);
1433 			call_rcu(&entry->rcu, free_asym_cap_entry);
1434 		}
1435 	}
1436 
1437 	/*
1438 	 * Only one capacity value has been detected i.e. this system is symmetric.
1439 	 * No need to keep this data around.
1440 	 */
1441 	if (list_is_singular(&asym_cap_list)) {
1442 		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1443 		list_del_rcu(&entry->link);
1444 		call_rcu(&entry->rcu, free_asym_cap_entry);
1445 	}
1446 }
1447 
1448 /*
1449  * Initializers for schedule domains
1450  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1451  */
1452 
1453 static int default_relax_domain_level = -1;
1454 int sched_domain_level_max;
1455 
1456 static int __init setup_relax_domain_level(char *str)
1457 {
1458 	if (kstrtoint(str, 0, &default_relax_domain_level))
1459 		pr_warn("Unable to set relax_domain_level\n");
1460 
1461 	return 1;
1462 }
1463 __setup("relax_domain_level=", setup_relax_domain_level);
1464 
1465 static void set_domain_attribute(struct sched_domain *sd,
1466 				 struct sched_domain_attr *attr)
1467 {
1468 	int request;
1469 
1470 	if (!attr || attr->relax_domain_level < 0) {
1471 		if (default_relax_domain_level < 0)
1472 			return;
1473 		request = default_relax_domain_level;
1474 	} else
1475 		request = attr->relax_domain_level;
1476 
1477 	if (sd->level >= request) {
1478 		/* Turn off idle balance on this domain: */
1479 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1480 	}
1481 }
1482 
1483 static void __sdt_free(const struct cpumask *cpu_map);
1484 static int __sdt_alloc(const struct cpumask *cpu_map);
1485 
1486 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1487 				 const struct cpumask *cpu_map)
1488 {
1489 	switch (what) {
1490 	case sa_rootdomain:
1491 		if (!atomic_read(&d->rd->refcount))
1492 			free_rootdomain(&d->rd->rcu);
1493 		fallthrough;
1494 	case sa_sd:
1495 		free_percpu(d->sd);
1496 		fallthrough;
1497 	case sa_sd_storage:
1498 		__sdt_free(cpu_map);
1499 		fallthrough;
1500 	case sa_none:
1501 		break;
1502 	}
1503 }
1504 
1505 static enum s_alloc
1506 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1507 {
1508 	memset(d, 0, sizeof(*d));
1509 
1510 	if (__sdt_alloc(cpu_map))
1511 		return sa_sd_storage;
1512 	d->sd = alloc_percpu(struct sched_domain *);
1513 	if (!d->sd)
1514 		return sa_sd_storage;
1515 	d->rd = alloc_rootdomain();
1516 	if (!d->rd)
1517 		return sa_sd;
1518 
1519 	return sa_rootdomain;
1520 }
1521 
1522 /*
1523  * NULL the sd_data elements we've used to build the sched_domain and
1524  * sched_group structure so that the subsequent __free_domain_allocs()
1525  * will not free the data we're using.
1526  */
1527 static void claim_allocations(int cpu, struct sched_domain *sd)
1528 {
1529 	struct sd_data *sdd = sd->private;
1530 
1531 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1532 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1533 
1534 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1535 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1536 
1537 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1538 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1539 
1540 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1541 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1542 }
1543 
1544 #ifdef CONFIG_NUMA
1545 enum numa_topology_type sched_numa_topology_type;
1546 
1547 static int			sched_domains_numa_levels;
1548 static int			sched_domains_curr_level;
1549 
1550 int				sched_max_numa_distance;
1551 static int			*sched_domains_numa_distance;
1552 static struct cpumask		***sched_domains_numa_masks;
1553 #endif
1554 
1555 /*
1556  * SD_flags allowed in topology descriptions.
1557  *
1558  * These flags are purely descriptive of the topology and do not prescribe
1559  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1560  * function. For details, see include/linux/sched/sd_flags.h.
1561  *
1562  *   SD_SHARE_CPUCAPACITY
1563  *   SD_SHARE_LLC
1564  *   SD_CLUSTER
1565  *   SD_NUMA
1566  *
1567  * Odd one out, which beside describing the topology has a quirk also
1568  * prescribes the desired behaviour that goes along with it:
1569  *
1570  *   SD_ASYM_PACKING        - describes SMT quirks
1571  */
1572 #define TOPOLOGY_SD_FLAGS		\
1573 	(SD_SHARE_CPUCAPACITY	|	\
1574 	 SD_CLUSTER		|	\
1575 	 SD_SHARE_LLC		|	\
1576 	 SD_NUMA		|	\
1577 	 SD_ASYM_PACKING)
1578 
1579 static struct sched_domain *
1580 sd_init(struct sched_domain_topology_level *tl,
1581 	const struct cpumask *cpu_map,
1582 	struct sched_domain *child, int cpu)
1583 {
1584 	struct sd_data *sdd = &tl->data;
1585 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1586 	int sd_id, sd_weight, sd_flags = 0;
1587 	struct cpumask *sd_span;
1588 
1589 #ifdef CONFIG_NUMA
1590 	/*
1591 	 * Ugly hack to pass state to sd_numa_mask()...
1592 	 */
1593 	sched_domains_curr_level = tl->numa_level;
1594 #endif
1595 
1596 	sd_weight = cpumask_weight(tl->mask(cpu));
1597 
1598 	if (tl->sd_flags)
1599 		sd_flags = (*tl->sd_flags)();
1600 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1601 			"wrong sd_flags in topology description\n"))
1602 		sd_flags &= TOPOLOGY_SD_FLAGS;
1603 
1604 	*sd = (struct sched_domain){
1605 		.min_interval		= sd_weight,
1606 		.max_interval		= 2*sd_weight,
1607 		.busy_factor		= 16,
1608 		.imbalance_pct		= 117,
1609 
1610 		.cache_nice_tries	= 0,
1611 
1612 		.flags			= 1*SD_BALANCE_NEWIDLE
1613 					| 1*SD_BALANCE_EXEC
1614 					| 1*SD_BALANCE_FORK
1615 					| 0*SD_BALANCE_WAKE
1616 					| 1*SD_WAKE_AFFINE
1617 					| 0*SD_SHARE_CPUCAPACITY
1618 					| 0*SD_SHARE_LLC
1619 					| 0*SD_SERIALIZE
1620 					| 1*SD_PREFER_SIBLING
1621 					| 0*SD_NUMA
1622 					| sd_flags
1623 					,
1624 
1625 		.last_balance		= jiffies,
1626 		.balance_interval	= sd_weight,
1627 		.max_newidle_lb_cost	= 0,
1628 		.last_decay_max_lb_cost	= jiffies,
1629 		.child			= child,
1630 #ifdef CONFIG_SCHED_DEBUG
1631 		.name			= tl->name,
1632 #endif
1633 	};
1634 
1635 	sd_span = sched_domain_span(sd);
1636 	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1637 	sd_id = cpumask_first(sd_span);
1638 
1639 	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1640 
1641 	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1642 		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1643 		  "CPU capacity asymmetry not supported on SMT\n");
1644 
1645 	/*
1646 	 * Convert topological properties into behaviour.
1647 	 */
1648 	/* Don't attempt to spread across CPUs of different capacities. */
1649 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1650 		sd->child->flags &= ~SD_PREFER_SIBLING;
1651 
1652 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1653 		sd->imbalance_pct = 110;
1654 
1655 	} else if (sd->flags & SD_SHARE_LLC) {
1656 		sd->imbalance_pct = 117;
1657 		sd->cache_nice_tries = 1;
1658 
1659 #ifdef CONFIG_NUMA
1660 	} else if (sd->flags & SD_NUMA) {
1661 		sd->cache_nice_tries = 2;
1662 
1663 		sd->flags &= ~SD_PREFER_SIBLING;
1664 		sd->flags |= SD_SERIALIZE;
1665 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1666 			sd->flags &= ~(SD_BALANCE_EXEC |
1667 				       SD_BALANCE_FORK |
1668 				       SD_WAKE_AFFINE);
1669 		}
1670 
1671 #endif
1672 	} else {
1673 		sd->cache_nice_tries = 1;
1674 	}
1675 
1676 	/*
1677 	 * For all levels sharing cache; connect a sched_domain_shared
1678 	 * instance.
1679 	 */
1680 	if (sd->flags & SD_SHARE_LLC) {
1681 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1682 		atomic_inc(&sd->shared->ref);
1683 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1684 	}
1685 
1686 	sd->private = sdd;
1687 
1688 	return sd;
1689 }
1690 
1691 /*
1692  * Topology list, bottom-up.
1693  */
1694 static struct sched_domain_topology_level default_topology[] = {
1695 #ifdef CONFIG_SCHED_SMT
1696 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1697 #endif
1698 
1699 #ifdef CONFIG_SCHED_CLUSTER
1700 	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1701 #endif
1702 
1703 #ifdef CONFIG_SCHED_MC
1704 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1705 #endif
1706 	{ cpu_cpu_mask, SD_INIT_NAME(PKG) },
1707 	{ NULL, },
1708 };
1709 
1710 static struct sched_domain_topology_level *sched_domain_topology =
1711 	default_topology;
1712 static struct sched_domain_topology_level *sched_domain_topology_saved;
1713 
1714 #define for_each_sd_topology(tl)			\
1715 	for (tl = sched_domain_topology; tl->mask; tl++)
1716 
1717 void __init set_sched_topology(struct sched_domain_topology_level *tl)
1718 {
1719 	if (WARN_ON_ONCE(sched_smp_initialized))
1720 		return;
1721 
1722 	sched_domain_topology = tl;
1723 	sched_domain_topology_saved = NULL;
1724 }
1725 
1726 #ifdef CONFIG_NUMA
1727 
1728 static const struct cpumask *sd_numa_mask(int cpu)
1729 {
1730 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1731 }
1732 
1733 static void sched_numa_warn(const char *str)
1734 {
1735 	static int done = false;
1736 	int i,j;
1737 
1738 	if (done)
1739 		return;
1740 
1741 	done = true;
1742 
1743 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1744 
1745 	for (i = 0; i < nr_node_ids; i++) {
1746 		printk(KERN_WARNING "  ");
1747 		for (j = 0; j < nr_node_ids; j++) {
1748 			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1749 				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1750 			else
1751 				printk(KERN_CONT " %02d  ", node_distance(i,j));
1752 		}
1753 		printk(KERN_CONT "\n");
1754 	}
1755 	printk(KERN_WARNING "\n");
1756 }
1757 
1758 bool find_numa_distance(int distance)
1759 {
1760 	bool found = false;
1761 	int i, *distances;
1762 
1763 	if (distance == node_distance(0, 0))
1764 		return true;
1765 
1766 	rcu_read_lock();
1767 	distances = rcu_dereference(sched_domains_numa_distance);
1768 	if (!distances)
1769 		goto unlock;
1770 	for (i = 0; i < sched_domains_numa_levels; i++) {
1771 		if (distances[i] == distance) {
1772 			found = true;
1773 			break;
1774 		}
1775 	}
1776 unlock:
1777 	rcu_read_unlock();
1778 
1779 	return found;
1780 }
1781 
1782 #define for_each_cpu_node_but(n, nbut)		\
1783 	for_each_node_state(n, N_CPU)		\
1784 		if (n == nbut)			\
1785 			continue;		\
1786 		else
1787 
1788 /*
1789  * A system can have three types of NUMA topology:
1790  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1791  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1792  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1793  *
1794  * The difference between a glueless mesh topology and a backplane
1795  * topology lies in whether communication between not directly
1796  * connected nodes goes through intermediary nodes (where programs
1797  * could run), or through backplane controllers. This affects
1798  * placement of programs.
1799  *
1800  * The type of topology can be discerned with the following tests:
1801  * - If the maximum distance between any nodes is 1 hop, the system
1802  *   is directly connected.
1803  * - If for two nodes A and B, located N > 1 hops away from each other,
1804  *   there is an intermediary node C, which is < N hops away from both
1805  *   nodes A and B, the system is a glueless mesh.
1806  */
1807 static void init_numa_topology_type(int offline_node)
1808 {
1809 	int a, b, c, n;
1810 
1811 	n = sched_max_numa_distance;
1812 
1813 	if (sched_domains_numa_levels <= 2) {
1814 		sched_numa_topology_type = NUMA_DIRECT;
1815 		return;
1816 	}
1817 
1818 	for_each_cpu_node_but(a, offline_node) {
1819 		for_each_cpu_node_but(b, offline_node) {
1820 			/* Find two nodes furthest removed from each other. */
1821 			if (node_distance(a, b) < n)
1822 				continue;
1823 
1824 			/* Is there an intermediary node between a and b? */
1825 			for_each_cpu_node_but(c, offline_node) {
1826 				if (node_distance(a, c) < n &&
1827 				    node_distance(b, c) < n) {
1828 					sched_numa_topology_type =
1829 							NUMA_GLUELESS_MESH;
1830 					return;
1831 				}
1832 			}
1833 
1834 			sched_numa_topology_type = NUMA_BACKPLANE;
1835 			return;
1836 		}
1837 	}
1838 
1839 	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1840 	sched_numa_topology_type = NUMA_DIRECT;
1841 }
1842 
1843 
1844 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1845 
1846 void sched_init_numa(int offline_node)
1847 {
1848 	struct sched_domain_topology_level *tl;
1849 	unsigned long *distance_map;
1850 	int nr_levels = 0;
1851 	int i, j;
1852 	int *distances;
1853 	struct cpumask ***masks;
1854 
1855 	/*
1856 	 * O(nr_nodes^2) de-duplicating selection sort -- in order to find the
1857 	 * unique distances in the node_distance() table.
1858 	 */
1859 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1860 	if (!distance_map)
1861 		return;
1862 
1863 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1864 	for_each_cpu_node_but(i, offline_node) {
1865 		for_each_cpu_node_but(j, offline_node) {
1866 			int distance = node_distance(i, j);
1867 
1868 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1869 				sched_numa_warn("Invalid distance value range");
1870 				bitmap_free(distance_map);
1871 				return;
1872 			}
1873 
1874 			bitmap_set(distance_map, distance, 1);
1875 		}
1876 	}
1877 	/*
1878 	 * We can now figure out how many unique distance values there are and
1879 	 * allocate memory accordingly.
1880 	 */
1881 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1882 
1883 	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1884 	if (!distances) {
1885 		bitmap_free(distance_map);
1886 		return;
1887 	}
1888 
1889 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1890 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1891 		distances[i] = j;
1892 	}
1893 	rcu_assign_pointer(sched_domains_numa_distance, distances);
1894 
1895 	bitmap_free(distance_map);
1896 
1897 	/*
1898 	 * 'nr_levels' contains the number of unique distances
1899 	 *
1900 	 * The sched_domains_numa_distance[] array includes the actual distance
1901 	 * numbers.
1902 	 */
1903 
1904 	/*
1905 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1906 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1907 	 * the array will contain less then 'nr_levels' members. This could be
1908 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1909 	 * in other functions.
1910 	 *
1911 	 * We reset it to 'nr_levels' at the end of this function.
1912 	 */
1913 	sched_domains_numa_levels = 0;
1914 
1915 	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1916 	if (!masks)
1917 		return;
1918 
1919 	/*
1920 	 * Now for each level, construct a mask per node which contains all
1921 	 * CPUs of nodes that are that many hops away from us.
1922 	 */
1923 	for (i = 0; i < nr_levels; i++) {
1924 		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1925 		if (!masks[i])
1926 			return;
1927 
1928 		for_each_cpu_node_but(j, offline_node) {
1929 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1930 			int k;
1931 
1932 			if (!mask)
1933 				return;
1934 
1935 			masks[i][j] = mask;
1936 
1937 			for_each_cpu_node_but(k, offline_node) {
1938 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1939 					sched_numa_warn("Node-distance not symmetric");
1940 
1941 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1942 					continue;
1943 
1944 				cpumask_or(mask, mask, cpumask_of_node(k));
1945 			}
1946 		}
1947 	}
1948 	rcu_assign_pointer(sched_domains_numa_masks, masks);
1949 
1950 	/* Compute default topology size */
1951 	for (i = 0; sched_domain_topology[i].mask; i++);
1952 
1953 	tl = kzalloc((i + nr_levels + 1) *
1954 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1955 	if (!tl)
1956 		return;
1957 
1958 	/*
1959 	 * Copy the default topology bits..
1960 	 */
1961 	for (i = 0; sched_domain_topology[i].mask; i++)
1962 		tl[i] = sched_domain_topology[i];
1963 
1964 	/*
1965 	 * Add the NUMA identity distance, aka single NODE.
1966 	 */
1967 	tl[i++] = (struct sched_domain_topology_level){
1968 		.mask = sd_numa_mask,
1969 		.numa_level = 0,
1970 		SD_INIT_NAME(NODE)
1971 	};
1972 
1973 	/*
1974 	 * .. and append 'j' levels of NUMA goodness.
1975 	 */
1976 	for (j = 1; j < nr_levels; i++, j++) {
1977 		tl[i] = (struct sched_domain_topology_level){
1978 			.mask = sd_numa_mask,
1979 			.sd_flags = cpu_numa_flags,
1980 			.flags = SDTL_OVERLAP,
1981 			.numa_level = j,
1982 			SD_INIT_NAME(NUMA)
1983 		};
1984 	}
1985 
1986 	sched_domain_topology_saved = sched_domain_topology;
1987 	sched_domain_topology = tl;
1988 
1989 	sched_domains_numa_levels = nr_levels;
1990 	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1991 
1992 	init_numa_topology_type(offline_node);
1993 }
1994 
1995 
1996 static void sched_reset_numa(void)
1997 {
1998 	int nr_levels, *distances;
1999 	struct cpumask ***masks;
2000 
2001 	nr_levels = sched_domains_numa_levels;
2002 	sched_domains_numa_levels = 0;
2003 	sched_max_numa_distance = 0;
2004 	sched_numa_topology_type = NUMA_DIRECT;
2005 	distances = sched_domains_numa_distance;
2006 	rcu_assign_pointer(sched_domains_numa_distance, NULL);
2007 	masks = sched_domains_numa_masks;
2008 	rcu_assign_pointer(sched_domains_numa_masks, NULL);
2009 	if (distances || masks) {
2010 		int i, j;
2011 
2012 		synchronize_rcu();
2013 		kfree(distances);
2014 		for (i = 0; i < nr_levels && masks; i++) {
2015 			if (!masks[i])
2016 				continue;
2017 			for_each_node(j)
2018 				kfree(masks[i][j]);
2019 			kfree(masks[i]);
2020 		}
2021 		kfree(masks);
2022 	}
2023 	if (sched_domain_topology_saved) {
2024 		kfree(sched_domain_topology);
2025 		sched_domain_topology = sched_domain_topology_saved;
2026 		sched_domain_topology_saved = NULL;
2027 	}
2028 }
2029 
2030 /*
2031  * Call with hotplug lock held
2032  */
2033 void sched_update_numa(int cpu, bool online)
2034 {
2035 	int node;
2036 
2037 	node = cpu_to_node(cpu);
2038 	/*
2039 	 * Scheduler NUMA topology is updated when the first CPU of a
2040 	 * node is onlined or the last CPU of a node is offlined.
2041 	 */
2042 	if (cpumask_weight(cpumask_of_node(node)) != 1)
2043 		return;
2044 
2045 	sched_reset_numa();
2046 	sched_init_numa(online ? NUMA_NO_NODE : node);
2047 }
2048 
2049 void sched_domains_numa_masks_set(unsigned int cpu)
2050 {
2051 	int node = cpu_to_node(cpu);
2052 	int i, j;
2053 
2054 	for (i = 0; i < sched_domains_numa_levels; i++) {
2055 		for (j = 0; j < nr_node_ids; j++) {
2056 			if (!node_state(j, N_CPU))
2057 				continue;
2058 
2059 			/* Set ourselves in the remote node's masks */
2060 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2061 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2062 		}
2063 	}
2064 }
2065 
2066 void sched_domains_numa_masks_clear(unsigned int cpu)
2067 {
2068 	int i, j;
2069 
2070 	for (i = 0; i < sched_domains_numa_levels; i++) {
2071 		for (j = 0; j < nr_node_ids; j++) {
2072 			if (sched_domains_numa_masks[i][j])
2073 				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2074 		}
2075 	}
2076 }
2077 
2078 /*
2079  * sched_numa_find_closest() - given the NUMA topology, find the cpu
2080  *                             closest to @cpu from @cpumask.
2081  * cpumask: cpumask to find a cpu from
2082  * cpu: cpu to be close to
2083  *
2084  * returns: cpu, or nr_cpu_ids when nothing found.
2085  */
2086 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2087 {
2088 	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2089 	struct cpumask ***masks;
2090 
2091 	rcu_read_lock();
2092 	masks = rcu_dereference(sched_domains_numa_masks);
2093 	if (!masks)
2094 		goto unlock;
2095 	for (i = 0; i < sched_domains_numa_levels; i++) {
2096 		if (!masks[i][j])
2097 			break;
2098 		cpu = cpumask_any_and(cpus, masks[i][j]);
2099 		if (cpu < nr_cpu_ids) {
2100 			found = cpu;
2101 			break;
2102 		}
2103 	}
2104 unlock:
2105 	rcu_read_unlock();
2106 
2107 	return found;
2108 }
2109 
2110 struct __cmp_key {
2111 	const struct cpumask *cpus;
2112 	struct cpumask ***masks;
2113 	int node;
2114 	int cpu;
2115 	int w;
2116 };
2117 
2118 static int hop_cmp(const void *a, const void *b)
2119 {
2120 	struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2121 	struct __cmp_key *k = (struct __cmp_key *)a;
2122 
2123 	if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2124 		return 1;
2125 
2126 	if (b == k->masks) {
2127 		k->w = 0;
2128 		return 0;
2129 	}
2130 
2131 	prev_hop = *((struct cpumask ***)b - 1);
2132 	k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2133 	if (k->w <= k->cpu)
2134 		return 0;
2135 
2136 	return -1;
2137 }
2138 
2139 /**
2140  * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2141  *                             from @cpus to @cpu, taking into account distance
2142  *                             from a given @node.
2143  * @cpus: cpumask to find a cpu from
2144  * @cpu: CPU to start searching
2145  * @node: NUMA node to order CPUs by distance
2146  *
2147  * Return: cpu, or nr_cpu_ids when nothing found.
2148  */
2149 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2150 {
2151 	struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2152 	struct cpumask ***hop_masks;
2153 	int hop, ret = nr_cpu_ids;
2154 
2155 	if (node == NUMA_NO_NODE)
2156 		return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2157 
2158 	rcu_read_lock();
2159 
2160 	/* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2161 	node = numa_nearest_node(node, N_CPU);
2162 	k.node = node;
2163 
2164 	k.masks = rcu_dereference(sched_domains_numa_masks);
2165 	if (!k.masks)
2166 		goto unlock;
2167 
2168 	hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2169 	hop = hop_masks	- k.masks;
2170 
2171 	ret = hop ?
2172 		cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2173 		cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2174 unlock:
2175 	rcu_read_unlock();
2176 	return ret;
2177 }
2178 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2179 
2180 /**
2181  * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2182  *                         @node
2183  * @node: The node to count hops from.
2184  * @hops: Include CPUs up to that many hops away. 0 means local node.
2185  *
2186  * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2187  * @node, an error value otherwise.
2188  *
2189  * Requires rcu_lock to be held. Returned cpumask is only valid within that
2190  * read-side section, copy it if required beyond that.
2191  *
2192  * Note that not all hops are equal in distance; see sched_init_numa() for how
2193  * distances and masks are handled.
2194  * Also note that this is a reflection of sched_domains_numa_masks, which may change
2195  * during the lifetime of the system (offline nodes are taken out of the masks).
2196  */
2197 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2198 {
2199 	struct cpumask ***masks;
2200 
2201 	if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2202 		return ERR_PTR(-EINVAL);
2203 
2204 	masks = rcu_dereference(sched_domains_numa_masks);
2205 	if (!masks)
2206 		return ERR_PTR(-EBUSY);
2207 
2208 	return masks[hops][node];
2209 }
2210 EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2211 
2212 #endif /* CONFIG_NUMA */
2213 
2214 static int __sdt_alloc(const struct cpumask *cpu_map)
2215 {
2216 	struct sched_domain_topology_level *tl;
2217 	int j;
2218 
2219 	for_each_sd_topology(tl) {
2220 		struct sd_data *sdd = &tl->data;
2221 
2222 		sdd->sd = alloc_percpu(struct sched_domain *);
2223 		if (!sdd->sd)
2224 			return -ENOMEM;
2225 
2226 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2227 		if (!sdd->sds)
2228 			return -ENOMEM;
2229 
2230 		sdd->sg = alloc_percpu(struct sched_group *);
2231 		if (!sdd->sg)
2232 			return -ENOMEM;
2233 
2234 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2235 		if (!sdd->sgc)
2236 			return -ENOMEM;
2237 
2238 		for_each_cpu(j, cpu_map) {
2239 			struct sched_domain *sd;
2240 			struct sched_domain_shared *sds;
2241 			struct sched_group *sg;
2242 			struct sched_group_capacity *sgc;
2243 
2244 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2245 					GFP_KERNEL, cpu_to_node(j));
2246 			if (!sd)
2247 				return -ENOMEM;
2248 
2249 			*per_cpu_ptr(sdd->sd, j) = sd;
2250 
2251 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2252 					GFP_KERNEL, cpu_to_node(j));
2253 			if (!sds)
2254 				return -ENOMEM;
2255 
2256 			*per_cpu_ptr(sdd->sds, j) = sds;
2257 
2258 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2259 					GFP_KERNEL, cpu_to_node(j));
2260 			if (!sg)
2261 				return -ENOMEM;
2262 
2263 			sg->next = sg;
2264 
2265 			*per_cpu_ptr(sdd->sg, j) = sg;
2266 
2267 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2268 					GFP_KERNEL, cpu_to_node(j));
2269 			if (!sgc)
2270 				return -ENOMEM;
2271 
2272 #ifdef CONFIG_SCHED_DEBUG
2273 			sgc->id = j;
2274 #endif
2275 
2276 			*per_cpu_ptr(sdd->sgc, j) = sgc;
2277 		}
2278 	}
2279 
2280 	return 0;
2281 }
2282 
2283 static void __sdt_free(const struct cpumask *cpu_map)
2284 {
2285 	struct sched_domain_topology_level *tl;
2286 	int j;
2287 
2288 	for_each_sd_topology(tl) {
2289 		struct sd_data *sdd = &tl->data;
2290 
2291 		for_each_cpu(j, cpu_map) {
2292 			struct sched_domain *sd;
2293 
2294 			if (sdd->sd) {
2295 				sd = *per_cpu_ptr(sdd->sd, j);
2296 				if (sd && (sd->flags & SD_OVERLAP))
2297 					free_sched_groups(sd->groups, 0);
2298 				kfree(*per_cpu_ptr(sdd->sd, j));
2299 			}
2300 
2301 			if (sdd->sds)
2302 				kfree(*per_cpu_ptr(sdd->sds, j));
2303 			if (sdd->sg)
2304 				kfree(*per_cpu_ptr(sdd->sg, j));
2305 			if (sdd->sgc)
2306 				kfree(*per_cpu_ptr(sdd->sgc, j));
2307 		}
2308 		free_percpu(sdd->sd);
2309 		sdd->sd = NULL;
2310 		free_percpu(sdd->sds);
2311 		sdd->sds = NULL;
2312 		free_percpu(sdd->sg);
2313 		sdd->sg = NULL;
2314 		free_percpu(sdd->sgc);
2315 		sdd->sgc = NULL;
2316 	}
2317 }
2318 
2319 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2320 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2321 		struct sched_domain *child, int cpu)
2322 {
2323 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2324 
2325 	if (child) {
2326 		sd->level = child->level + 1;
2327 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2328 		child->parent = sd;
2329 
2330 		if (!cpumask_subset(sched_domain_span(child),
2331 				    sched_domain_span(sd))) {
2332 			pr_err("BUG: arch topology borken\n");
2333 #ifdef CONFIG_SCHED_DEBUG
2334 			pr_err("     the %s domain not a subset of the %s domain\n",
2335 					child->name, sd->name);
2336 #endif
2337 			/* Fixup, ensure @sd has at least @child CPUs. */
2338 			cpumask_or(sched_domain_span(sd),
2339 				   sched_domain_span(sd),
2340 				   sched_domain_span(child));
2341 		}
2342 
2343 	}
2344 	set_domain_attribute(sd, attr);
2345 
2346 	return sd;
2347 }
2348 
2349 /*
2350  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2351  * any two given CPUs at this (non-NUMA) topology level.
2352  */
2353 static bool topology_span_sane(struct sched_domain_topology_level *tl,
2354 			      const struct cpumask *cpu_map, int cpu)
2355 {
2356 	int i = cpu + 1;
2357 
2358 	/* NUMA levels are allowed to overlap */
2359 	if (tl->flags & SDTL_OVERLAP)
2360 		return true;
2361 
2362 	/*
2363 	 * Non-NUMA levels cannot partially overlap - they must be either
2364 	 * completely equal or completely disjoint. Otherwise we can end up
2365 	 * breaking the sched_group lists - i.e. a later get_group() pass
2366 	 * breaks the linking done for an earlier span.
2367 	 */
2368 	for_each_cpu_from(i, cpu_map) {
2369 		/*
2370 		 * We should 'and' all those masks with 'cpu_map' to exactly
2371 		 * match the topology we're about to build, but that can only
2372 		 * remove CPUs, which only lessens our ability to detect
2373 		 * overlaps
2374 		 */
2375 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2376 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2377 			return false;
2378 	}
2379 
2380 	return true;
2381 }
2382 
2383 /*
2384  * Build sched domains for a given set of CPUs and attach the sched domains
2385  * to the individual CPUs
2386  */
2387 static int
2388 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2389 {
2390 	enum s_alloc alloc_state = sa_none;
2391 	struct sched_domain *sd;
2392 	struct s_data d;
2393 	struct rq *rq = NULL;
2394 	int i, ret = -ENOMEM;
2395 	bool has_asym = false;
2396 	bool has_cluster = false;
2397 
2398 	if (WARN_ON(cpumask_empty(cpu_map)))
2399 		goto error;
2400 
2401 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2402 	if (alloc_state != sa_rootdomain)
2403 		goto error;
2404 
2405 	/* Set up domains for CPUs specified by the cpu_map: */
2406 	for_each_cpu(i, cpu_map) {
2407 		struct sched_domain_topology_level *tl;
2408 
2409 		sd = NULL;
2410 		for_each_sd_topology(tl) {
2411 
2412 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2413 				goto error;
2414 
2415 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2416 
2417 			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2418 
2419 			if (tl == sched_domain_topology)
2420 				*per_cpu_ptr(d.sd, i) = sd;
2421 			if (tl->flags & SDTL_OVERLAP)
2422 				sd->flags |= SD_OVERLAP;
2423 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2424 				break;
2425 		}
2426 	}
2427 
2428 	/* Build the groups for the domains */
2429 	for_each_cpu(i, cpu_map) {
2430 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2431 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2432 			if (sd->flags & SD_OVERLAP) {
2433 				if (build_overlap_sched_groups(sd, i))
2434 					goto error;
2435 			} else {
2436 				if (build_sched_groups(sd, i))
2437 					goto error;
2438 			}
2439 		}
2440 	}
2441 
2442 	/*
2443 	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2444 	 * imbalanced.
2445 	 */
2446 	for_each_cpu(i, cpu_map) {
2447 		unsigned int imb = 0;
2448 		unsigned int imb_span = 1;
2449 
2450 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2451 			struct sched_domain *child = sd->child;
2452 
2453 			if (!(sd->flags & SD_SHARE_LLC) && child &&
2454 			    (child->flags & SD_SHARE_LLC)) {
2455 				struct sched_domain __rcu *top_p;
2456 				unsigned int nr_llcs;
2457 
2458 				/*
2459 				 * For a single LLC per node, allow an
2460 				 * imbalance up to 12.5% of the node. This is
2461 				 * arbitrary cutoff based two factors -- SMT and
2462 				 * memory channels. For SMT-2, the intent is to
2463 				 * avoid premature sharing of HT resources but
2464 				 * SMT-4 or SMT-8 *may* benefit from a different
2465 				 * cutoff. For memory channels, this is a very
2466 				 * rough estimate of how many channels may be
2467 				 * active and is based on recent CPUs with
2468 				 * many cores.
2469 				 *
2470 				 * For multiple LLCs, allow an imbalance
2471 				 * until multiple tasks would share an LLC
2472 				 * on one node while LLCs on another node
2473 				 * remain idle. This assumes that there are
2474 				 * enough logical CPUs per LLC to avoid SMT
2475 				 * factors and that there is a correlation
2476 				 * between LLCs and memory channels.
2477 				 */
2478 				nr_llcs = sd->span_weight / child->span_weight;
2479 				if (nr_llcs == 1)
2480 					imb = sd->span_weight >> 3;
2481 				else
2482 					imb = nr_llcs;
2483 				imb = max(1U, imb);
2484 				sd->imb_numa_nr = imb;
2485 
2486 				/* Set span based on the first NUMA domain. */
2487 				top_p = sd->parent;
2488 				while (top_p && !(top_p->flags & SD_NUMA)) {
2489 					top_p = top_p->parent;
2490 				}
2491 				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2492 			} else {
2493 				int factor = max(1U, (sd->span_weight / imb_span));
2494 
2495 				sd->imb_numa_nr = imb * factor;
2496 			}
2497 		}
2498 	}
2499 
2500 	/* Calculate CPU capacity for physical packages and nodes */
2501 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2502 		if (!cpumask_test_cpu(i, cpu_map))
2503 			continue;
2504 
2505 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2506 			claim_allocations(i, sd);
2507 			init_sched_groups_capacity(i, sd);
2508 		}
2509 	}
2510 
2511 	/* Attach the domains */
2512 	rcu_read_lock();
2513 	for_each_cpu(i, cpu_map) {
2514 		rq = cpu_rq(i);
2515 		sd = *per_cpu_ptr(d.sd, i);
2516 
2517 		cpu_attach_domain(sd, d.rd, i);
2518 
2519 		if (lowest_flag_domain(i, SD_CLUSTER))
2520 			has_cluster = true;
2521 	}
2522 	rcu_read_unlock();
2523 
2524 	if (has_asym)
2525 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2526 
2527 	if (has_cluster)
2528 		static_branch_inc_cpuslocked(&sched_cluster_active);
2529 
2530 	if (rq && sched_debug_verbose)
2531 		pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map));
2532 
2533 	ret = 0;
2534 error:
2535 	__free_domain_allocs(&d, alloc_state, cpu_map);
2536 
2537 	return ret;
2538 }
2539 
2540 /* Current sched domains: */
2541 static cpumask_var_t			*doms_cur;
2542 
2543 /* Number of sched domains in 'doms_cur': */
2544 static int				ndoms_cur;
2545 
2546 /* Attributes of custom domains in 'doms_cur' */
2547 static struct sched_domain_attr		*dattr_cur;
2548 
2549 /*
2550  * Special case: If a kmalloc() of a doms_cur partition (array of
2551  * cpumask) fails, then fallback to a single sched domain,
2552  * as determined by the single cpumask fallback_doms.
2553  */
2554 static cpumask_var_t			fallback_doms;
2555 
2556 /*
2557  * arch_update_cpu_topology lets virtualized architectures update the
2558  * CPU core maps. It is supposed to return 1 if the topology changed
2559  * or 0 if it stayed the same.
2560  */
2561 int __weak arch_update_cpu_topology(void)
2562 {
2563 	return 0;
2564 }
2565 
2566 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2567 {
2568 	int i;
2569 	cpumask_var_t *doms;
2570 
2571 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2572 	if (!doms)
2573 		return NULL;
2574 	for (i = 0; i < ndoms; i++) {
2575 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2576 			free_sched_domains(doms, i);
2577 			return NULL;
2578 		}
2579 	}
2580 	return doms;
2581 }
2582 
2583 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2584 {
2585 	unsigned int i;
2586 	for (i = 0; i < ndoms; i++)
2587 		free_cpumask_var(doms[i]);
2588 	kfree(doms);
2589 }
2590 
2591 /*
2592  * Set up scheduler domains and groups.  For now this just excludes isolated
2593  * CPUs, but could be used to exclude other special cases in the future.
2594  */
2595 int __init sched_init_domains(const struct cpumask *cpu_map)
2596 {
2597 	int err;
2598 
2599 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2600 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2601 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2602 
2603 	arch_update_cpu_topology();
2604 	asym_cpu_capacity_scan();
2605 	ndoms_cur = 1;
2606 	doms_cur = alloc_sched_domains(ndoms_cur);
2607 	if (!doms_cur)
2608 		doms_cur = &fallback_doms;
2609 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2610 	err = build_sched_domains(doms_cur[0], NULL);
2611 
2612 	return err;
2613 }
2614 
2615 /*
2616  * Detach sched domains from a group of CPUs specified in cpu_map
2617  * These CPUs will now be attached to the NULL domain
2618  */
2619 static void detach_destroy_domains(const struct cpumask *cpu_map)
2620 {
2621 	unsigned int cpu = cpumask_any(cpu_map);
2622 	int i;
2623 
2624 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2625 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2626 
2627 	if (static_branch_unlikely(&sched_cluster_active))
2628 		static_branch_dec_cpuslocked(&sched_cluster_active);
2629 
2630 	rcu_read_lock();
2631 	for_each_cpu(i, cpu_map)
2632 		cpu_attach_domain(NULL, &def_root_domain, i);
2633 	rcu_read_unlock();
2634 }
2635 
2636 /* handle null as "default" */
2637 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2638 			struct sched_domain_attr *new, int idx_new)
2639 {
2640 	struct sched_domain_attr tmp;
2641 
2642 	/* Fast path: */
2643 	if (!new && !cur)
2644 		return 1;
2645 
2646 	tmp = SD_ATTR_INIT;
2647 
2648 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2649 			new ? (new + idx_new) : &tmp,
2650 			sizeof(struct sched_domain_attr));
2651 }
2652 
2653 /*
2654  * Partition sched domains as specified by the 'ndoms_new'
2655  * cpumasks in the array doms_new[] of cpumasks. This compares
2656  * doms_new[] to the current sched domain partitioning, doms_cur[].
2657  * It destroys each deleted domain and builds each new domain.
2658  *
2659  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2660  * The masks don't intersect (don't overlap.) We should setup one
2661  * sched domain for each mask. CPUs not in any of the cpumasks will
2662  * not be load balanced. If the same cpumask appears both in the
2663  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2664  * it as it is.
2665  *
2666  * The passed in 'doms_new' should be allocated using
2667  * alloc_sched_domains.  This routine takes ownership of it and will
2668  * free_sched_domains it when done with it. If the caller failed the
2669  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2670  * and partition_sched_domains() will fallback to the single partition
2671  * 'fallback_doms', it also forces the domains to be rebuilt.
2672  *
2673  * If doms_new == NULL it will be replaced with cpu_online_mask.
2674  * ndoms_new == 0 is a special case for destroying existing domains,
2675  * and it will not create the default domain.
2676  *
2677  * Call with hotplug lock and sched_domains_mutex held
2678  */
2679 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2680 				    struct sched_domain_attr *dattr_new)
2681 {
2682 	bool __maybe_unused has_eas = false;
2683 	int i, j, n;
2684 	int new_topology;
2685 
2686 	lockdep_assert_held(&sched_domains_mutex);
2687 
2688 	/* Let the architecture update CPU core mappings: */
2689 	new_topology = arch_update_cpu_topology();
2690 	/* Trigger rebuilding CPU capacity asymmetry data */
2691 	if (new_topology)
2692 		asym_cpu_capacity_scan();
2693 
2694 	if (!doms_new) {
2695 		WARN_ON_ONCE(dattr_new);
2696 		n = 0;
2697 		doms_new = alloc_sched_domains(1);
2698 		if (doms_new) {
2699 			n = 1;
2700 			cpumask_and(doms_new[0], cpu_active_mask,
2701 				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2702 		}
2703 	} else {
2704 		n = ndoms_new;
2705 	}
2706 
2707 	/* Destroy deleted domains: */
2708 	for (i = 0; i < ndoms_cur; i++) {
2709 		for (j = 0; j < n && !new_topology; j++) {
2710 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2711 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2712 				struct root_domain *rd;
2713 
2714 				/*
2715 				 * This domain won't be destroyed and as such
2716 				 * its dl_bw->total_bw needs to be cleared.  It
2717 				 * will be recomputed in function
2718 				 * update_tasks_root_domain().
2719 				 */
2720 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2721 				dl_clear_root_domain(rd);
2722 				goto match1;
2723 			}
2724 		}
2725 		/* No match - a current sched domain not in new doms_new[] */
2726 		detach_destroy_domains(doms_cur[i]);
2727 match1:
2728 		;
2729 	}
2730 
2731 	n = ndoms_cur;
2732 	if (!doms_new) {
2733 		n = 0;
2734 		doms_new = &fallback_doms;
2735 		cpumask_and(doms_new[0], cpu_active_mask,
2736 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2737 	}
2738 
2739 	/* Build new domains: */
2740 	for (i = 0; i < ndoms_new; i++) {
2741 		for (j = 0; j < n && !new_topology; j++) {
2742 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2743 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2744 				goto match2;
2745 		}
2746 		/* No match - add a new doms_new */
2747 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2748 match2:
2749 		;
2750 	}
2751 
2752 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2753 	/* Build perf domains: */
2754 	for (i = 0; i < ndoms_new; i++) {
2755 		for (j = 0; j < n && !sched_energy_update; j++) {
2756 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2757 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2758 				has_eas = true;
2759 				goto match3;
2760 			}
2761 		}
2762 		/* No match - add perf domains for a new rd */
2763 		has_eas |= build_perf_domains(doms_new[i]);
2764 match3:
2765 		;
2766 	}
2767 	sched_energy_set(has_eas);
2768 #endif
2769 
2770 	/* Remember the new sched domains: */
2771 	if (doms_cur != &fallback_doms)
2772 		free_sched_domains(doms_cur, ndoms_cur);
2773 
2774 	kfree(dattr_cur);
2775 	doms_cur = doms_new;
2776 	dattr_cur = dattr_new;
2777 	ndoms_cur = ndoms_new;
2778 
2779 	update_sched_domain_debugfs();
2780 }
2781 
2782 /*
2783  * Call with hotplug lock held
2784  */
2785 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2786 			     struct sched_domain_attr *dattr_new)
2787 {
2788 	mutex_lock(&sched_domains_mutex);
2789 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2790 	mutex_unlock(&sched_domains_mutex);
2791 }
2792