1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Scheduler topology setup/handling methods 4 */ 5 6 #include <linux/bsearch.h> 7 8 DEFINE_MUTEX(sched_domains_mutex); 9 void sched_domains_mutex_lock(void) 10 { 11 mutex_lock(&sched_domains_mutex); 12 } 13 void sched_domains_mutex_unlock(void) 14 { 15 mutex_unlock(&sched_domains_mutex); 16 } 17 18 /* Protected by sched_domains_mutex: */ 19 static cpumask_var_t sched_domains_tmpmask; 20 static cpumask_var_t sched_domains_tmpmask2; 21 22 #ifdef CONFIG_SCHED_DEBUG 23 24 static int __init sched_debug_setup(char *str) 25 { 26 sched_debug_verbose = true; 27 28 return 0; 29 } 30 early_param("sched_verbose", sched_debug_setup); 31 32 static inline bool sched_debug(void) 33 { 34 return sched_debug_verbose; 35 } 36 37 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name }, 38 const struct sd_flag_debug sd_flag_debug[] = { 39 #include <linux/sched/sd_flags.h> 40 }; 41 #undef SD_FLAG 42 43 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 44 struct cpumask *groupmask) 45 { 46 struct sched_group *group = sd->groups; 47 unsigned long flags = sd->flags; 48 unsigned int idx; 49 50 cpumask_clear(groupmask); 51 52 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 53 printk(KERN_CONT "span=%*pbl level=%s\n", 54 cpumask_pr_args(sched_domain_span(sd)), sd->name); 55 56 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 57 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 58 } 59 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 60 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 61 } 62 63 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 64 unsigned int flag = BIT(idx); 65 unsigned int meta_flags = sd_flag_debug[idx].meta_flags; 66 67 if ((meta_flags & SDF_SHARED_CHILD) && sd->child && 68 !(sd->child->flags & flag)) 69 printk(KERN_ERR "ERROR: flag %s set here but not in child\n", 70 sd_flag_debug[idx].name); 71 72 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && 73 !(sd->parent->flags & flag)) 74 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n", 75 sd_flag_debug[idx].name); 76 } 77 78 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 79 do { 80 if (!group) { 81 printk("\n"); 82 printk(KERN_ERR "ERROR: group is NULL\n"); 83 break; 84 } 85 86 if (cpumask_empty(sched_group_span(group))) { 87 printk(KERN_CONT "\n"); 88 printk(KERN_ERR "ERROR: empty group\n"); 89 break; 90 } 91 92 if (!(sd->flags & SD_OVERLAP) && 93 cpumask_intersects(groupmask, sched_group_span(group))) { 94 printk(KERN_CONT "\n"); 95 printk(KERN_ERR "ERROR: repeated CPUs\n"); 96 break; 97 } 98 99 cpumask_or(groupmask, groupmask, sched_group_span(group)); 100 101 printk(KERN_CONT " %d:{ span=%*pbl", 102 group->sgc->id, 103 cpumask_pr_args(sched_group_span(group))); 104 105 if ((sd->flags & SD_OVERLAP) && 106 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 107 printk(KERN_CONT " mask=%*pbl", 108 cpumask_pr_args(group_balance_mask(group))); 109 } 110 111 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 112 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 113 114 if (group == sd->groups && sd->child && 115 !cpumask_equal(sched_domain_span(sd->child), 116 sched_group_span(group))) { 117 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 118 } 119 120 printk(KERN_CONT " }"); 121 122 group = group->next; 123 124 if (group != sd->groups) 125 printk(KERN_CONT ","); 126 127 } while (group != sd->groups); 128 printk(KERN_CONT "\n"); 129 130 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 131 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 132 133 if (sd->parent && 134 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 135 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 136 return 0; 137 } 138 139 static void sched_domain_debug(struct sched_domain *sd, int cpu) 140 { 141 int level = 0; 142 143 if (!sched_debug_verbose) 144 return; 145 146 if (!sd) { 147 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 148 return; 149 } 150 151 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 152 153 for (;;) { 154 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 155 break; 156 level++; 157 sd = sd->parent; 158 if (!sd) 159 break; 160 } 161 } 162 #else /* !CONFIG_SCHED_DEBUG */ 163 164 # define sched_debug_verbose 0 165 # define sched_domain_debug(sd, cpu) do { } while (0) 166 static inline bool sched_debug(void) 167 { 168 return false; 169 } 170 #endif /* CONFIG_SCHED_DEBUG */ 171 172 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */ 173 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) | 174 static const unsigned int SD_DEGENERATE_GROUPS_MASK = 175 #include <linux/sched/sd_flags.h> 176 0; 177 #undef SD_FLAG 178 179 static int sd_degenerate(struct sched_domain *sd) 180 { 181 if (cpumask_weight(sched_domain_span(sd)) == 1) 182 return 1; 183 184 /* Following flags need at least 2 groups */ 185 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) && 186 (sd->groups != sd->groups->next)) 187 return 0; 188 189 /* Following flags don't use groups */ 190 if (sd->flags & (SD_WAKE_AFFINE)) 191 return 0; 192 193 return 1; 194 } 195 196 static int 197 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 198 { 199 unsigned long cflags = sd->flags, pflags = parent->flags; 200 201 if (sd_degenerate(parent)) 202 return 1; 203 204 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 205 return 0; 206 207 /* Flags needing groups don't count if only 1 group in parent */ 208 if (parent->groups == parent->groups->next) 209 pflags &= ~SD_DEGENERATE_GROUPS_MASK; 210 211 if (~cflags & pflags) 212 return 0; 213 214 return 1; 215 } 216 217 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 218 DEFINE_STATIC_KEY_FALSE(sched_energy_present); 219 static unsigned int sysctl_sched_energy_aware = 1; 220 static DEFINE_MUTEX(sched_energy_mutex); 221 static bool sched_energy_update; 222 223 static bool sched_is_eas_possible(const struct cpumask *cpu_mask) 224 { 225 bool any_asym_capacity = false; 226 struct cpufreq_policy *policy; 227 struct cpufreq_governor *gov; 228 int i; 229 230 /* EAS is enabled for asymmetric CPU capacity topologies. */ 231 for_each_cpu(i, cpu_mask) { 232 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) { 233 any_asym_capacity = true; 234 break; 235 } 236 } 237 if (!any_asym_capacity) { 238 if (sched_debug()) { 239 pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n", 240 cpumask_pr_args(cpu_mask)); 241 } 242 return false; 243 } 244 245 /* EAS definitely does *not* handle SMT */ 246 if (sched_smt_active()) { 247 if (sched_debug()) { 248 pr_info("rd %*pbl: Checking EAS, SMT is not supported\n", 249 cpumask_pr_args(cpu_mask)); 250 } 251 return false; 252 } 253 254 if (!arch_scale_freq_invariant()) { 255 if (sched_debug()) { 256 pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported", 257 cpumask_pr_args(cpu_mask)); 258 } 259 return false; 260 } 261 262 /* Do not attempt EAS if schedutil is not being used. */ 263 for_each_cpu(i, cpu_mask) { 264 policy = cpufreq_cpu_get(i); 265 if (!policy) { 266 if (sched_debug()) { 267 pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d", 268 cpumask_pr_args(cpu_mask), i); 269 } 270 return false; 271 } 272 gov = policy->governor; 273 cpufreq_cpu_put(policy); 274 if (gov != &schedutil_gov) { 275 if (sched_debug()) { 276 pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n", 277 cpumask_pr_args(cpu_mask)); 278 } 279 return false; 280 } 281 } 282 283 return true; 284 } 285 286 void rebuild_sched_domains_energy(void) 287 { 288 mutex_lock(&sched_energy_mutex); 289 sched_energy_update = true; 290 rebuild_sched_domains(); 291 sched_energy_update = false; 292 mutex_unlock(&sched_energy_mutex); 293 } 294 295 #ifdef CONFIG_PROC_SYSCTL 296 static int sched_energy_aware_handler(const struct ctl_table *table, int write, 297 void *buffer, size_t *lenp, loff_t *ppos) 298 { 299 int ret, state; 300 301 if (write && !capable(CAP_SYS_ADMIN)) 302 return -EPERM; 303 304 if (!sched_is_eas_possible(cpu_active_mask)) { 305 if (write) { 306 return -EOPNOTSUPP; 307 } else { 308 *lenp = 0; 309 return 0; 310 } 311 } 312 313 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 314 if (!ret && write) { 315 state = static_branch_unlikely(&sched_energy_present); 316 if (state != sysctl_sched_energy_aware) 317 rebuild_sched_domains_energy(); 318 } 319 320 return ret; 321 } 322 323 static const struct ctl_table sched_energy_aware_sysctls[] = { 324 { 325 .procname = "sched_energy_aware", 326 .data = &sysctl_sched_energy_aware, 327 .maxlen = sizeof(unsigned int), 328 .mode = 0644, 329 .proc_handler = sched_energy_aware_handler, 330 .extra1 = SYSCTL_ZERO, 331 .extra2 = SYSCTL_ONE, 332 }, 333 }; 334 335 static int __init sched_energy_aware_sysctl_init(void) 336 { 337 register_sysctl_init("kernel", sched_energy_aware_sysctls); 338 return 0; 339 } 340 341 late_initcall(sched_energy_aware_sysctl_init); 342 #endif 343 344 static void free_pd(struct perf_domain *pd) 345 { 346 struct perf_domain *tmp; 347 348 while (pd) { 349 tmp = pd->next; 350 kfree(pd); 351 pd = tmp; 352 } 353 } 354 355 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 356 { 357 while (pd) { 358 if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 359 return pd; 360 pd = pd->next; 361 } 362 363 return NULL; 364 } 365 366 static struct perf_domain *pd_init(int cpu) 367 { 368 struct em_perf_domain *obj = em_cpu_get(cpu); 369 struct perf_domain *pd; 370 371 if (!obj) { 372 if (sched_debug()) 373 pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 374 return NULL; 375 } 376 377 pd = kzalloc(sizeof(*pd), GFP_KERNEL); 378 if (!pd) 379 return NULL; 380 pd->em_pd = obj; 381 382 return pd; 383 } 384 385 static void perf_domain_debug(const struct cpumask *cpu_map, 386 struct perf_domain *pd) 387 { 388 if (!sched_debug() || !pd) 389 return; 390 391 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 392 393 while (pd) { 394 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }", 395 cpumask_first(perf_domain_span(pd)), 396 cpumask_pr_args(perf_domain_span(pd)), 397 em_pd_nr_perf_states(pd->em_pd)); 398 pd = pd->next; 399 } 400 401 printk(KERN_CONT "\n"); 402 } 403 404 static void destroy_perf_domain_rcu(struct rcu_head *rp) 405 { 406 struct perf_domain *pd; 407 408 pd = container_of(rp, struct perf_domain, rcu); 409 free_pd(pd); 410 } 411 412 static void sched_energy_set(bool has_eas) 413 { 414 if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 415 if (sched_debug()) 416 pr_info("%s: stopping EAS\n", __func__); 417 static_branch_disable_cpuslocked(&sched_energy_present); 418 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 419 if (sched_debug()) 420 pr_info("%s: starting EAS\n", __func__); 421 static_branch_enable_cpuslocked(&sched_energy_present); 422 } 423 } 424 425 /* 426 * EAS can be used on a root domain if it meets all the following conditions: 427 * 1. an Energy Model (EM) is available; 428 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 429 * 3. no SMT is detected. 430 * 4. schedutil is driving the frequency of all CPUs of the rd; 431 * 5. frequency invariance support is present; 432 */ 433 static bool build_perf_domains(const struct cpumask *cpu_map) 434 { 435 int i; 436 struct perf_domain *pd = NULL, *tmp; 437 int cpu = cpumask_first(cpu_map); 438 struct root_domain *rd = cpu_rq(cpu)->rd; 439 440 if (!sysctl_sched_energy_aware) 441 goto free; 442 443 if (!sched_is_eas_possible(cpu_map)) 444 goto free; 445 446 for_each_cpu(i, cpu_map) { 447 /* Skip already covered CPUs. */ 448 if (find_pd(pd, i)) 449 continue; 450 451 /* Create the new pd and add it to the local list. */ 452 tmp = pd_init(i); 453 if (!tmp) 454 goto free; 455 tmp->next = pd; 456 pd = tmp; 457 } 458 459 perf_domain_debug(cpu_map, pd); 460 461 /* Attach the new list of performance domains to the root domain. */ 462 tmp = rd->pd; 463 rcu_assign_pointer(rd->pd, pd); 464 if (tmp) 465 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 466 467 return !!pd; 468 469 free: 470 free_pd(pd); 471 tmp = rd->pd; 472 rcu_assign_pointer(rd->pd, NULL); 473 if (tmp) 474 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 475 476 return false; 477 } 478 #else 479 static void free_pd(struct perf_domain *pd) { } 480 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 481 482 static void free_rootdomain(struct rcu_head *rcu) 483 { 484 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 485 486 cpupri_cleanup(&rd->cpupri); 487 cpudl_cleanup(&rd->cpudl); 488 free_cpumask_var(rd->dlo_mask); 489 free_cpumask_var(rd->rto_mask); 490 free_cpumask_var(rd->online); 491 free_cpumask_var(rd->span); 492 free_pd(rd->pd); 493 kfree(rd); 494 } 495 496 void rq_attach_root(struct rq *rq, struct root_domain *rd) 497 { 498 struct root_domain *old_rd = NULL; 499 struct rq_flags rf; 500 501 rq_lock_irqsave(rq, &rf); 502 503 if (rq->rd) { 504 old_rd = rq->rd; 505 506 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 507 set_rq_offline(rq); 508 509 cpumask_clear_cpu(rq->cpu, old_rd->span); 510 511 /* 512 * If we don't want to free the old_rd yet then 513 * set old_rd to NULL to skip the freeing later 514 * in this function: 515 */ 516 if (!atomic_dec_and_test(&old_rd->refcount)) 517 old_rd = NULL; 518 } 519 520 atomic_inc(&rd->refcount); 521 rq->rd = rd; 522 523 cpumask_set_cpu(rq->cpu, rd->span); 524 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 525 set_rq_online(rq); 526 527 /* 528 * Because the rq is not a task, dl_add_task_root_domain() did not 529 * move the fair server bw to the rd if it already started. 530 * Add it now. 531 */ 532 if (rq->fair_server.dl_server) 533 __dl_server_attach_root(&rq->fair_server, rq); 534 535 rq_unlock_irqrestore(rq, &rf); 536 537 if (old_rd) 538 call_rcu(&old_rd->rcu, free_rootdomain); 539 } 540 541 void sched_get_rd(struct root_domain *rd) 542 { 543 atomic_inc(&rd->refcount); 544 } 545 546 void sched_put_rd(struct root_domain *rd) 547 { 548 if (!atomic_dec_and_test(&rd->refcount)) 549 return; 550 551 call_rcu(&rd->rcu, free_rootdomain); 552 } 553 554 static int init_rootdomain(struct root_domain *rd) 555 { 556 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 557 goto out; 558 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 559 goto free_span; 560 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 561 goto free_online; 562 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 563 goto free_dlo_mask; 564 565 #ifdef HAVE_RT_PUSH_IPI 566 rd->rto_cpu = -1; 567 raw_spin_lock_init(&rd->rto_lock); 568 rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func); 569 #endif 570 571 rd->visit_cookie = 0; 572 init_dl_bw(&rd->dl_bw); 573 if (cpudl_init(&rd->cpudl) != 0) 574 goto free_rto_mask; 575 576 if (cpupri_init(&rd->cpupri) != 0) 577 goto free_cpudl; 578 return 0; 579 580 free_cpudl: 581 cpudl_cleanup(&rd->cpudl); 582 free_rto_mask: 583 free_cpumask_var(rd->rto_mask); 584 free_dlo_mask: 585 free_cpumask_var(rd->dlo_mask); 586 free_online: 587 free_cpumask_var(rd->online); 588 free_span: 589 free_cpumask_var(rd->span); 590 out: 591 return -ENOMEM; 592 } 593 594 /* 595 * By default the system creates a single root-domain with all CPUs as 596 * members (mimicking the global state we have today). 597 */ 598 struct root_domain def_root_domain; 599 600 void __init init_defrootdomain(void) 601 { 602 init_rootdomain(&def_root_domain); 603 604 atomic_set(&def_root_domain.refcount, 1); 605 } 606 607 static struct root_domain *alloc_rootdomain(void) 608 { 609 struct root_domain *rd; 610 611 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 612 if (!rd) 613 return NULL; 614 615 if (init_rootdomain(rd) != 0) { 616 kfree(rd); 617 return NULL; 618 } 619 620 return rd; 621 } 622 623 static void free_sched_groups(struct sched_group *sg, int free_sgc) 624 { 625 struct sched_group *tmp, *first; 626 627 if (!sg) 628 return; 629 630 first = sg; 631 do { 632 tmp = sg->next; 633 634 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 635 kfree(sg->sgc); 636 637 if (atomic_dec_and_test(&sg->ref)) 638 kfree(sg); 639 sg = tmp; 640 } while (sg != first); 641 } 642 643 static void destroy_sched_domain(struct sched_domain *sd) 644 { 645 /* 646 * A normal sched domain may have multiple group references, an 647 * overlapping domain, having private groups, only one. Iterate, 648 * dropping group/capacity references, freeing where none remain. 649 */ 650 free_sched_groups(sd->groups, 1); 651 652 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 653 kfree(sd->shared); 654 kfree(sd); 655 } 656 657 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 658 { 659 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 660 661 while (sd) { 662 struct sched_domain *parent = sd->parent; 663 destroy_sched_domain(sd); 664 sd = parent; 665 } 666 } 667 668 static void destroy_sched_domains(struct sched_domain *sd) 669 { 670 if (sd) 671 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 672 } 673 674 /* 675 * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set 676 * (Last Level Cache Domain) for this allows us to avoid some pointer chasing 677 * select_idle_sibling(). 678 * 679 * Also keep a unique ID per domain (we use the first CPU number in the cpumask 680 * of the domain), this allows us to quickly tell if two CPUs are in the same 681 * cache domain, see cpus_share_cache(). 682 */ 683 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 684 DEFINE_PER_CPU(int, sd_llc_size); 685 DEFINE_PER_CPU(int, sd_llc_id); 686 DEFINE_PER_CPU(int, sd_share_id); 687 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 688 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 689 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 690 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 691 692 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 693 DEFINE_STATIC_KEY_FALSE(sched_cluster_active); 694 695 static void update_top_cache_domain(int cpu) 696 { 697 struct sched_domain_shared *sds = NULL; 698 struct sched_domain *sd; 699 int id = cpu; 700 int size = 1; 701 702 sd = highest_flag_domain(cpu, SD_SHARE_LLC); 703 if (sd) { 704 id = cpumask_first(sched_domain_span(sd)); 705 size = cpumask_weight(sched_domain_span(sd)); 706 sds = sd->shared; 707 } 708 709 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 710 per_cpu(sd_llc_size, cpu) = size; 711 per_cpu(sd_llc_id, cpu) = id; 712 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 713 714 sd = lowest_flag_domain(cpu, SD_CLUSTER); 715 if (sd) 716 id = cpumask_first(sched_domain_span(sd)); 717 718 /* 719 * This assignment should be placed after the sd_llc_id as 720 * we want this id equals to cluster id on cluster machines 721 * but equals to LLC id on non-Cluster machines. 722 */ 723 per_cpu(sd_share_id, cpu) = id; 724 725 sd = lowest_flag_domain(cpu, SD_NUMA); 726 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 727 728 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 729 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 730 731 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL); 732 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 733 } 734 735 /* 736 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 737 * hold the hotplug lock. 738 */ 739 static void 740 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 741 { 742 struct rq *rq = cpu_rq(cpu); 743 struct sched_domain *tmp; 744 745 /* Remove the sched domains which do not contribute to scheduling. */ 746 for (tmp = sd; tmp; ) { 747 struct sched_domain *parent = tmp->parent; 748 if (!parent) 749 break; 750 751 if (sd_parent_degenerate(tmp, parent)) { 752 tmp->parent = parent->parent; 753 754 if (parent->parent) { 755 parent->parent->child = tmp; 756 parent->parent->groups->flags = tmp->flags; 757 } 758 759 /* 760 * Transfer SD_PREFER_SIBLING down in case of a 761 * degenerate parent; the spans match for this 762 * so the property transfers. 763 */ 764 if (parent->flags & SD_PREFER_SIBLING) 765 tmp->flags |= SD_PREFER_SIBLING; 766 destroy_sched_domain(parent); 767 } else 768 tmp = tmp->parent; 769 } 770 771 if (sd && sd_degenerate(sd)) { 772 tmp = sd; 773 sd = sd->parent; 774 destroy_sched_domain(tmp); 775 if (sd) { 776 struct sched_group *sg = sd->groups; 777 778 /* 779 * sched groups hold the flags of the child sched 780 * domain for convenience. Clear such flags since 781 * the child is being destroyed. 782 */ 783 do { 784 sg->flags = 0; 785 } while (sg != sd->groups); 786 787 sd->child = NULL; 788 } 789 } 790 791 sched_domain_debug(sd, cpu); 792 793 rq_attach_root(rq, rd); 794 tmp = rq->sd; 795 rcu_assign_pointer(rq->sd, sd); 796 dirty_sched_domain_sysctl(cpu); 797 destroy_sched_domains(tmp); 798 799 update_top_cache_domain(cpu); 800 } 801 802 struct s_data { 803 struct sched_domain * __percpu *sd; 804 struct root_domain *rd; 805 }; 806 807 enum s_alloc { 808 sa_rootdomain, 809 sa_sd, 810 sa_sd_storage, 811 sa_none, 812 }; 813 814 /* 815 * Return the canonical balance CPU for this group, this is the first CPU 816 * of this group that's also in the balance mask. 817 * 818 * The balance mask are all those CPUs that could actually end up at this 819 * group. See build_balance_mask(). 820 * 821 * Also see should_we_balance(). 822 */ 823 int group_balance_cpu(struct sched_group *sg) 824 { 825 return cpumask_first(group_balance_mask(sg)); 826 } 827 828 829 /* 830 * NUMA topology (first read the regular topology blurb below) 831 * 832 * Given a node-distance table, for example: 833 * 834 * node 0 1 2 3 835 * 0: 10 20 30 20 836 * 1: 20 10 20 30 837 * 2: 30 20 10 20 838 * 3: 20 30 20 10 839 * 840 * which represents a 4 node ring topology like: 841 * 842 * 0 ----- 1 843 * | | 844 * | | 845 * | | 846 * 3 ----- 2 847 * 848 * We want to construct domains and groups to represent this. The way we go 849 * about doing this is to build the domains on 'hops'. For each NUMA level we 850 * construct the mask of all nodes reachable in @level hops. 851 * 852 * For the above NUMA topology that gives 3 levels: 853 * 854 * NUMA-2 0-3 0-3 0-3 0-3 855 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 856 * 857 * NUMA-1 0-1,3 0-2 1-3 0,2-3 858 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 859 * 860 * NUMA-0 0 1 2 3 861 * 862 * 863 * As can be seen; things don't nicely line up as with the regular topology. 864 * When we iterate a domain in child domain chunks some nodes can be 865 * represented multiple times -- hence the "overlap" naming for this part of 866 * the topology. 867 * 868 * In order to minimize this overlap, we only build enough groups to cover the 869 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 870 * 871 * Because: 872 * 873 * - the first group of each domain is its child domain; this 874 * gets us the first 0-1,3 875 * - the only uncovered node is 2, who's child domain is 1-3. 876 * 877 * However, because of the overlap, computing a unique CPU for each group is 878 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 879 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 880 * end up at those groups (they would end up in group: 0-1,3). 881 * 882 * To correct this we have to introduce the group balance mask. This mask 883 * will contain those CPUs in the group that can reach this group given the 884 * (child) domain tree. 885 * 886 * With this we can once again compute balance_cpu and sched_group_capacity 887 * relations. 888 * 889 * XXX include words on how balance_cpu is unique and therefore can be 890 * used for sched_group_capacity links. 891 * 892 * 893 * Another 'interesting' topology is: 894 * 895 * node 0 1 2 3 896 * 0: 10 20 20 30 897 * 1: 20 10 20 20 898 * 2: 20 20 10 20 899 * 3: 30 20 20 10 900 * 901 * Which looks a little like: 902 * 903 * 0 ----- 1 904 * | / | 905 * | / | 906 * | / | 907 * 2 ----- 3 908 * 909 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 910 * are not. 911 * 912 * This leads to a few particularly weird cases where the sched_domain's are 913 * not of the same number for each CPU. Consider: 914 * 915 * NUMA-2 0-3 0-3 916 * groups: {0-2},{1-3} {1-3},{0-2} 917 * 918 * NUMA-1 0-2 0-3 0-3 1-3 919 * 920 * NUMA-0 0 1 2 3 921 * 922 */ 923 924 925 /* 926 * Build the balance mask; it contains only those CPUs that can arrive at this 927 * group and should be considered to continue balancing. 928 * 929 * We do this during the group creation pass, therefore the group information 930 * isn't complete yet, however since each group represents a (child) domain we 931 * can fully construct this using the sched_domain bits (which are already 932 * complete). 933 */ 934 static void 935 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 936 { 937 const struct cpumask *sg_span = sched_group_span(sg); 938 struct sd_data *sdd = sd->private; 939 struct sched_domain *sibling; 940 int i; 941 942 cpumask_clear(mask); 943 944 for_each_cpu(i, sg_span) { 945 sibling = *per_cpu_ptr(sdd->sd, i); 946 947 /* 948 * Can happen in the asymmetric case, where these siblings are 949 * unused. The mask will not be empty because those CPUs that 950 * do have the top domain _should_ span the domain. 951 */ 952 if (!sibling->child) 953 continue; 954 955 /* If we would not end up here, we can't continue from here */ 956 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 957 continue; 958 959 cpumask_set_cpu(i, mask); 960 } 961 962 /* We must not have empty masks here */ 963 WARN_ON_ONCE(cpumask_empty(mask)); 964 } 965 966 /* 967 * XXX: This creates per-node group entries; since the load-balancer will 968 * immediately access remote memory to construct this group's load-balance 969 * statistics having the groups node local is of dubious benefit. 970 */ 971 static struct sched_group * 972 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 973 { 974 struct sched_group *sg; 975 struct cpumask *sg_span; 976 977 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 978 GFP_KERNEL, cpu_to_node(cpu)); 979 980 if (!sg) 981 return NULL; 982 983 sg_span = sched_group_span(sg); 984 if (sd->child) { 985 cpumask_copy(sg_span, sched_domain_span(sd->child)); 986 sg->flags = sd->child->flags; 987 } else { 988 cpumask_copy(sg_span, sched_domain_span(sd)); 989 } 990 991 atomic_inc(&sg->ref); 992 return sg; 993 } 994 995 static void init_overlap_sched_group(struct sched_domain *sd, 996 struct sched_group *sg) 997 { 998 struct cpumask *mask = sched_domains_tmpmask2; 999 struct sd_data *sdd = sd->private; 1000 struct cpumask *sg_span; 1001 int cpu; 1002 1003 build_balance_mask(sd, sg, mask); 1004 cpu = cpumask_first(mask); 1005 1006 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1007 if (atomic_inc_return(&sg->sgc->ref) == 1) 1008 cpumask_copy(group_balance_mask(sg), mask); 1009 else 1010 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 1011 1012 /* 1013 * Initialize sgc->capacity such that even if we mess up the 1014 * domains and no possible iteration will get us here, we won't 1015 * die on a /0 trap. 1016 */ 1017 sg_span = sched_group_span(sg); 1018 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 1019 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1020 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1021 } 1022 1023 static struct sched_domain * 1024 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling) 1025 { 1026 /* 1027 * The proper descendant would be the one whose child won't span out 1028 * of sd 1029 */ 1030 while (sibling->child && 1031 !cpumask_subset(sched_domain_span(sibling->child), 1032 sched_domain_span(sd))) 1033 sibling = sibling->child; 1034 1035 /* 1036 * As we are referencing sgc across different topology level, we need 1037 * to go down to skip those sched_domains which don't contribute to 1038 * scheduling because they will be degenerated in cpu_attach_domain 1039 */ 1040 while (sibling->child && 1041 cpumask_equal(sched_domain_span(sibling->child), 1042 sched_domain_span(sibling))) 1043 sibling = sibling->child; 1044 1045 return sibling; 1046 } 1047 1048 static int 1049 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 1050 { 1051 struct sched_group *first = NULL, *last = NULL, *sg; 1052 const struct cpumask *span = sched_domain_span(sd); 1053 struct cpumask *covered = sched_domains_tmpmask; 1054 struct sd_data *sdd = sd->private; 1055 struct sched_domain *sibling; 1056 int i; 1057 1058 cpumask_clear(covered); 1059 1060 for_each_cpu_wrap(i, span, cpu) { 1061 struct cpumask *sg_span; 1062 1063 if (cpumask_test_cpu(i, covered)) 1064 continue; 1065 1066 sibling = *per_cpu_ptr(sdd->sd, i); 1067 1068 /* 1069 * Asymmetric node setups can result in situations where the 1070 * domain tree is of unequal depth, make sure to skip domains 1071 * that already cover the entire range. 1072 * 1073 * In that case build_sched_domains() will have terminated the 1074 * iteration early and our sibling sd spans will be empty. 1075 * Domains should always include the CPU they're built on, so 1076 * check that. 1077 */ 1078 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 1079 continue; 1080 1081 /* 1082 * Usually we build sched_group by sibling's child sched_domain 1083 * But for machines whose NUMA diameter are 3 or above, we move 1084 * to build sched_group by sibling's proper descendant's child 1085 * domain because sibling's child sched_domain will span out of 1086 * the sched_domain being built as below. 1087 * 1088 * Smallest diameter=3 topology is: 1089 * 1090 * node 0 1 2 3 1091 * 0: 10 20 30 40 1092 * 1: 20 10 20 30 1093 * 2: 30 20 10 20 1094 * 3: 40 30 20 10 1095 * 1096 * 0 --- 1 --- 2 --- 3 1097 * 1098 * NUMA-3 0-3 N/A N/A 0-3 1099 * groups: {0-2},{1-3} {1-3},{0-2} 1100 * 1101 * NUMA-2 0-2 0-3 0-3 1-3 1102 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2} 1103 * 1104 * NUMA-1 0-1 0-2 1-3 2-3 1105 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2} 1106 * 1107 * NUMA-0 0 1 2 3 1108 * 1109 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the 1110 * group span isn't a subset of the domain span. 1111 */ 1112 if (sibling->child && 1113 !cpumask_subset(sched_domain_span(sibling->child), span)) 1114 sibling = find_descended_sibling(sd, sibling); 1115 1116 sg = build_group_from_child_sched_domain(sibling, cpu); 1117 if (!sg) 1118 goto fail; 1119 1120 sg_span = sched_group_span(sg); 1121 cpumask_or(covered, covered, sg_span); 1122 1123 init_overlap_sched_group(sibling, sg); 1124 1125 if (!first) 1126 first = sg; 1127 if (last) 1128 last->next = sg; 1129 last = sg; 1130 last->next = first; 1131 } 1132 sd->groups = first; 1133 1134 return 0; 1135 1136 fail: 1137 free_sched_groups(first, 0); 1138 1139 return -ENOMEM; 1140 } 1141 1142 1143 /* 1144 * Package topology (also see the load-balance blurb in fair.c) 1145 * 1146 * The scheduler builds a tree structure to represent a number of important 1147 * topology features. By default (default_topology[]) these include: 1148 * 1149 * - Simultaneous multithreading (SMT) 1150 * - Multi-Core Cache (MC) 1151 * - Package (PKG) 1152 * 1153 * Where the last one more or less denotes everything up to a NUMA node. 1154 * 1155 * The tree consists of 3 primary data structures: 1156 * 1157 * sched_domain -> sched_group -> sched_group_capacity 1158 * ^ ^ ^ ^ 1159 * `-' `-' 1160 * 1161 * The sched_domains are per-CPU and have a two way link (parent & child) and 1162 * denote the ever growing mask of CPUs belonging to that level of topology. 1163 * 1164 * Each sched_domain has a circular (double) linked list of sched_group's, each 1165 * denoting the domains of the level below (or individual CPUs in case of the 1166 * first domain level). The sched_group linked by a sched_domain includes the 1167 * CPU of that sched_domain [*]. 1168 * 1169 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 1170 * 1171 * CPU 0 1 2 3 4 5 6 7 1172 * 1173 * PKG [ ] 1174 * MC [ ] [ ] 1175 * SMT [ ] [ ] [ ] [ ] 1176 * 1177 * - or - 1178 * 1179 * PKG 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 1180 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 1181 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 1182 * 1183 * CPU 0 1 2 3 4 5 6 7 1184 * 1185 * One way to think about it is: sched_domain moves you up and down among these 1186 * topology levels, while sched_group moves you sideways through it, at child 1187 * domain granularity. 1188 * 1189 * sched_group_capacity ensures each unique sched_group has shared storage. 1190 * 1191 * There are two related construction problems, both require a CPU that 1192 * uniquely identify each group (for a given domain): 1193 * 1194 * - The first is the balance_cpu (see should_we_balance() and the 1195 * load-balance blurb in fair.c); for each group we only want 1 CPU to 1196 * continue balancing at a higher domain. 1197 * 1198 * - The second is the sched_group_capacity; we want all identical groups 1199 * to share a single sched_group_capacity. 1200 * 1201 * Since these topologies are exclusive by construction. That is, its 1202 * impossible for an SMT thread to belong to multiple cores, and cores to 1203 * be part of multiple caches. There is a very clear and unique location 1204 * for each CPU in the hierarchy. 1205 * 1206 * Therefore computing a unique CPU for each group is trivial (the iteration 1207 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 1208 * group), we can simply pick the first CPU in each group. 1209 * 1210 * 1211 * [*] in other words, the first group of each domain is its child domain. 1212 */ 1213 1214 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1215 { 1216 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1217 struct sched_domain *child = sd->child; 1218 struct sched_group *sg; 1219 bool already_visited; 1220 1221 if (child) 1222 cpu = cpumask_first(sched_domain_span(child)); 1223 1224 sg = *per_cpu_ptr(sdd->sg, cpu); 1225 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1226 1227 /* Increase refcounts for claim_allocations: */ 1228 already_visited = atomic_inc_return(&sg->ref) > 1; 1229 /* sgc visits should follow a similar trend as sg */ 1230 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 1231 1232 /* If we have already visited that group, it's already initialized. */ 1233 if (already_visited) 1234 return sg; 1235 1236 if (child) { 1237 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1238 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 1239 sg->flags = child->flags; 1240 } else { 1241 cpumask_set_cpu(cpu, sched_group_span(sg)); 1242 cpumask_set_cpu(cpu, group_balance_mask(sg)); 1243 } 1244 1245 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 1246 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1247 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1248 1249 return sg; 1250 } 1251 1252 /* 1253 * build_sched_groups will build a circular linked list of the groups 1254 * covered by the given span, will set each group's ->cpumask correctly, 1255 * and will initialize their ->sgc. 1256 * 1257 * Assumes the sched_domain tree is fully constructed 1258 */ 1259 static int 1260 build_sched_groups(struct sched_domain *sd, int cpu) 1261 { 1262 struct sched_group *first = NULL, *last = NULL; 1263 struct sd_data *sdd = sd->private; 1264 const struct cpumask *span = sched_domain_span(sd); 1265 struct cpumask *covered; 1266 int i; 1267 1268 lockdep_assert_held(&sched_domains_mutex); 1269 covered = sched_domains_tmpmask; 1270 1271 cpumask_clear(covered); 1272 1273 for_each_cpu_wrap(i, span, cpu) { 1274 struct sched_group *sg; 1275 1276 if (cpumask_test_cpu(i, covered)) 1277 continue; 1278 1279 sg = get_group(i, sdd); 1280 1281 cpumask_or(covered, covered, sched_group_span(sg)); 1282 1283 if (!first) 1284 first = sg; 1285 if (last) 1286 last->next = sg; 1287 last = sg; 1288 } 1289 last->next = first; 1290 sd->groups = first; 1291 1292 return 0; 1293 } 1294 1295 /* 1296 * Initialize sched groups cpu_capacity. 1297 * 1298 * cpu_capacity indicates the capacity of sched group, which is used while 1299 * distributing the load between different sched groups in a sched domain. 1300 * Typically cpu_capacity for all the groups in a sched domain will be same 1301 * unless there are asymmetries in the topology. If there are asymmetries, 1302 * group having more cpu_capacity will pickup more load compared to the 1303 * group having less cpu_capacity. 1304 */ 1305 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1306 { 1307 struct sched_group *sg = sd->groups; 1308 struct cpumask *mask = sched_domains_tmpmask2; 1309 1310 WARN_ON(!sg); 1311 1312 do { 1313 int cpu, cores = 0, max_cpu = -1; 1314 1315 sg->group_weight = cpumask_weight(sched_group_span(sg)); 1316 1317 cpumask_copy(mask, sched_group_span(sg)); 1318 for_each_cpu(cpu, mask) { 1319 cores++; 1320 #ifdef CONFIG_SCHED_SMT 1321 cpumask_andnot(mask, mask, cpu_smt_mask(cpu)); 1322 #endif 1323 } 1324 sg->cores = cores; 1325 1326 if (!(sd->flags & SD_ASYM_PACKING)) 1327 goto next; 1328 1329 for_each_cpu(cpu, sched_group_span(sg)) { 1330 if (max_cpu < 0) 1331 max_cpu = cpu; 1332 else if (sched_asym_prefer(cpu, max_cpu)) 1333 max_cpu = cpu; 1334 } 1335 sg->asym_prefer_cpu = max_cpu; 1336 1337 next: 1338 sg = sg->next; 1339 } while (sg != sd->groups); 1340 1341 if (cpu != group_balance_cpu(sg)) 1342 return; 1343 1344 update_group_capacity(sd, cpu); 1345 } 1346 1347 /* 1348 * Set of available CPUs grouped by their corresponding capacities 1349 * Each list entry contains a CPU mask reflecting CPUs that share the same 1350 * capacity. 1351 * The lifespan of data is unlimited. 1352 */ 1353 LIST_HEAD(asym_cap_list); 1354 1355 /* 1356 * Verify whether there is any CPU capacity asymmetry in a given sched domain. 1357 * Provides sd_flags reflecting the asymmetry scope. 1358 */ 1359 static inline int 1360 asym_cpu_capacity_classify(const struct cpumask *sd_span, 1361 const struct cpumask *cpu_map) 1362 { 1363 struct asym_cap_data *entry; 1364 int count = 0, miss = 0; 1365 1366 /* 1367 * Count how many unique CPU capacities this domain spans across 1368 * (compare sched_domain CPUs mask with ones representing available 1369 * CPUs capacities). Take into account CPUs that might be offline: 1370 * skip those. 1371 */ 1372 list_for_each_entry(entry, &asym_cap_list, link) { 1373 if (cpumask_intersects(sd_span, cpu_capacity_span(entry))) 1374 ++count; 1375 else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry))) 1376 ++miss; 1377 } 1378 1379 WARN_ON_ONCE(!count && !list_empty(&asym_cap_list)); 1380 1381 /* No asymmetry detected */ 1382 if (count < 2) 1383 return 0; 1384 /* Some of the available CPU capacity values have not been detected */ 1385 if (miss) 1386 return SD_ASYM_CPUCAPACITY; 1387 1388 /* Full asymmetry */ 1389 return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL; 1390 1391 } 1392 1393 static void free_asym_cap_entry(struct rcu_head *head) 1394 { 1395 struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu); 1396 kfree(entry); 1397 } 1398 1399 static inline void asym_cpu_capacity_update_data(int cpu) 1400 { 1401 unsigned long capacity = arch_scale_cpu_capacity(cpu); 1402 struct asym_cap_data *insert_entry = NULL; 1403 struct asym_cap_data *entry; 1404 1405 /* 1406 * Search if capacity already exits. If not, track which the entry 1407 * where we should insert to keep the list ordered descending. 1408 */ 1409 list_for_each_entry(entry, &asym_cap_list, link) { 1410 if (capacity == entry->capacity) 1411 goto done; 1412 else if (!insert_entry && capacity > entry->capacity) 1413 insert_entry = list_prev_entry(entry, link); 1414 } 1415 1416 entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL); 1417 if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n")) 1418 return; 1419 entry->capacity = capacity; 1420 1421 /* If NULL then the new capacity is the smallest, add last. */ 1422 if (!insert_entry) 1423 list_add_tail_rcu(&entry->link, &asym_cap_list); 1424 else 1425 list_add_rcu(&entry->link, &insert_entry->link); 1426 done: 1427 __cpumask_set_cpu(cpu, cpu_capacity_span(entry)); 1428 } 1429 1430 /* 1431 * Build-up/update list of CPUs grouped by their capacities 1432 * An update requires explicit request to rebuild sched domains 1433 * with state indicating CPU topology changes. 1434 */ 1435 static void asym_cpu_capacity_scan(void) 1436 { 1437 struct asym_cap_data *entry, *next; 1438 int cpu; 1439 1440 list_for_each_entry(entry, &asym_cap_list, link) 1441 cpumask_clear(cpu_capacity_span(entry)); 1442 1443 for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) 1444 asym_cpu_capacity_update_data(cpu); 1445 1446 list_for_each_entry_safe(entry, next, &asym_cap_list, link) { 1447 if (cpumask_empty(cpu_capacity_span(entry))) { 1448 list_del_rcu(&entry->link); 1449 call_rcu(&entry->rcu, free_asym_cap_entry); 1450 } 1451 } 1452 1453 /* 1454 * Only one capacity value has been detected i.e. this system is symmetric. 1455 * No need to keep this data around. 1456 */ 1457 if (list_is_singular(&asym_cap_list)) { 1458 entry = list_first_entry(&asym_cap_list, typeof(*entry), link); 1459 list_del_rcu(&entry->link); 1460 call_rcu(&entry->rcu, free_asym_cap_entry); 1461 } 1462 } 1463 1464 /* 1465 * Initializers for schedule domains 1466 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1467 */ 1468 1469 static int default_relax_domain_level = -1; 1470 int sched_domain_level_max; 1471 1472 static int __init setup_relax_domain_level(char *str) 1473 { 1474 if (kstrtoint(str, 0, &default_relax_domain_level)) 1475 pr_warn("Unable to set relax_domain_level\n"); 1476 1477 return 1; 1478 } 1479 __setup("relax_domain_level=", setup_relax_domain_level); 1480 1481 static void set_domain_attribute(struct sched_domain *sd, 1482 struct sched_domain_attr *attr) 1483 { 1484 int request; 1485 1486 if (!attr || attr->relax_domain_level < 0) { 1487 if (default_relax_domain_level < 0) 1488 return; 1489 request = default_relax_domain_level; 1490 } else 1491 request = attr->relax_domain_level; 1492 1493 if (sd->level >= request) { 1494 /* Turn off idle balance on this domain: */ 1495 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1496 } 1497 } 1498 1499 static void __sdt_free(const struct cpumask *cpu_map); 1500 static int __sdt_alloc(const struct cpumask *cpu_map); 1501 1502 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1503 const struct cpumask *cpu_map) 1504 { 1505 switch (what) { 1506 case sa_rootdomain: 1507 if (!atomic_read(&d->rd->refcount)) 1508 free_rootdomain(&d->rd->rcu); 1509 fallthrough; 1510 case sa_sd: 1511 free_percpu(d->sd); 1512 fallthrough; 1513 case sa_sd_storage: 1514 __sdt_free(cpu_map); 1515 fallthrough; 1516 case sa_none: 1517 break; 1518 } 1519 } 1520 1521 static enum s_alloc 1522 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1523 { 1524 memset(d, 0, sizeof(*d)); 1525 1526 if (__sdt_alloc(cpu_map)) 1527 return sa_sd_storage; 1528 d->sd = alloc_percpu(struct sched_domain *); 1529 if (!d->sd) 1530 return sa_sd_storage; 1531 d->rd = alloc_rootdomain(); 1532 if (!d->rd) 1533 return sa_sd; 1534 1535 return sa_rootdomain; 1536 } 1537 1538 /* 1539 * NULL the sd_data elements we've used to build the sched_domain and 1540 * sched_group structure so that the subsequent __free_domain_allocs() 1541 * will not free the data we're using. 1542 */ 1543 static void claim_allocations(int cpu, struct sched_domain *sd) 1544 { 1545 struct sd_data *sdd = sd->private; 1546 1547 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1548 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1549 1550 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1551 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1552 1553 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1554 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1555 1556 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1557 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1558 } 1559 1560 #ifdef CONFIG_NUMA 1561 enum numa_topology_type sched_numa_topology_type; 1562 1563 static int sched_domains_numa_levels; 1564 static int sched_domains_curr_level; 1565 1566 int sched_max_numa_distance; 1567 static int *sched_domains_numa_distance; 1568 static struct cpumask ***sched_domains_numa_masks; 1569 #endif 1570 1571 /* 1572 * SD_flags allowed in topology descriptions. 1573 * 1574 * These flags are purely descriptive of the topology and do not prescribe 1575 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1576 * function. For details, see include/linux/sched/sd_flags.h. 1577 * 1578 * SD_SHARE_CPUCAPACITY 1579 * SD_SHARE_LLC 1580 * SD_CLUSTER 1581 * SD_NUMA 1582 * 1583 * Odd one out, which beside describing the topology has a quirk also 1584 * prescribes the desired behaviour that goes along with it: 1585 * 1586 * SD_ASYM_PACKING - describes SMT quirks 1587 */ 1588 #define TOPOLOGY_SD_FLAGS \ 1589 (SD_SHARE_CPUCAPACITY | \ 1590 SD_CLUSTER | \ 1591 SD_SHARE_LLC | \ 1592 SD_NUMA | \ 1593 SD_ASYM_PACKING) 1594 1595 static struct sched_domain * 1596 sd_init(struct sched_domain_topology_level *tl, 1597 const struct cpumask *cpu_map, 1598 struct sched_domain *child, int cpu) 1599 { 1600 struct sd_data *sdd = &tl->data; 1601 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1602 int sd_id, sd_weight, sd_flags = 0; 1603 struct cpumask *sd_span; 1604 1605 #ifdef CONFIG_NUMA 1606 /* 1607 * Ugly hack to pass state to sd_numa_mask()... 1608 */ 1609 sched_domains_curr_level = tl->numa_level; 1610 #endif 1611 1612 sd_weight = cpumask_weight(tl->mask(cpu)); 1613 1614 if (tl->sd_flags) 1615 sd_flags = (*tl->sd_flags)(); 1616 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1617 "wrong sd_flags in topology description\n")) 1618 sd_flags &= TOPOLOGY_SD_FLAGS; 1619 1620 *sd = (struct sched_domain){ 1621 .min_interval = sd_weight, 1622 .max_interval = 2*sd_weight, 1623 .busy_factor = 16, 1624 .imbalance_pct = 117, 1625 1626 .cache_nice_tries = 0, 1627 1628 .flags = 1*SD_BALANCE_NEWIDLE 1629 | 1*SD_BALANCE_EXEC 1630 | 1*SD_BALANCE_FORK 1631 | 0*SD_BALANCE_WAKE 1632 | 1*SD_WAKE_AFFINE 1633 | 0*SD_SHARE_CPUCAPACITY 1634 | 0*SD_SHARE_LLC 1635 | 0*SD_SERIALIZE 1636 | 1*SD_PREFER_SIBLING 1637 | 0*SD_NUMA 1638 | sd_flags 1639 , 1640 1641 .last_balance = jiffies, 1642 .balance_interval = sd_weight, 1643 .max_newidle_lb_cost = 0, 1644 .last_decay_max_lb_cost = jiffies, 1645 .child = child, 1646 .name = tl->name, 1647 }; 1648 1649 sd_span = sched_domain_span(sd); 1650 cpumask_and(sd_span, cpu_map, tl->mask(cpu)); 1651 sd_id = cpumask_first(sd_span); 1652 1653 sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map); 1654 1655 WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) == 1656 (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY), 1657 "CPU capacity asymmetry not supported on SMT\n"); 1658 1659 /* 1660 * Convert topological properties into behaviour. 1661 */ 1662 /* Don't attempt to spread across CPUs of different capacities. */ 1663 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 1664 sd->child->flags &= ~SD_PREFER_SIBLING; 1665 1666 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1667 sd->imbalance_pct = 110; 1668 1669 } else if (sd->flags & SD_SHARE_LLC) { 1670 sd->imbalance_pct = 117; 1671 sd->cache_nice_tries = 1; 1672 1673 #ifdef CONFIG_NUMA 1674 } else if (sd->flags & SD_NUMA) { 1675 sd->cache_nice_tries = 2; 1676 1677 sd->flags &= ~SD_PREFER_SIBLING; 1678 sd->flags |= SD_SERIALIZE; 1679 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1680 sd->flags &= ~(SD_BALANCE_EXEC | 1681 SD_BALANCE_FORK | 1682 SD_WAKE_AFFINE); 1683 } 1684 1685 #endif 1686 } else { 1687 sd->cache_nice_tries = 1; 1688 } 1689 1690 /* 1691 * For all levels sharing cache; connect a sched_domain_shared 1692 * instance. 1693 */ 1694 if (sd->flags & SD_SHARE_LLC) { 1695 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1696 atomic_inc(&sd->shared->ref); 1697 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1698 } 1699 1700 sd->private = sdd; 1701 1702 return sd; 1703 } 1704 1705 /* 1706 * Topology list, bottom-up. 1707 */ 1708 static struct sched_domain_topology_level default_topology[] = { 1709 #ifdef CONFIG_SCHED_SMT 1710 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1711 #endif 1712 1713 #ifdef CONFIG_SCHED_CLUSTER 1714 { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) }, 1715 #endif 1716 1717 #ifdef CONFIG_SCHED_MC 1718 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1719 #endif 1720 { cpu_cpu_mask, SD_INIT_NAME(PKG) }, 1721 { NULL, }, 1722 }; 1723 1724 static struct sched_domain_topology_level *sched_domain_topology = 1725 default_topology; 1726 static struct sched_domain_topology_level *sched_domain_topology_saved; 1727 1728 #define for_each_sd_topology(tl) \ 1729 for (tl = sched_domain_topology; tl->mask; tl++) 1730 1731 void __init set_sched_topology(struct sched_domain_topology_level *tl) 1732 { 1733 if (WARN_ON_ONCE(sched_smp_initialized)) 1734 return; 1735 1736 sched_domain_topology = tl; 1737 sched_domain_topology_saved = NULL; 1738 } 1739 1740 #ifdef CONFIG_NUMA 1741 1742 static const struct cpumask *sd_numa_mask(int cpu) 1743 { 1744 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1745 } 1746 1747 static void sched_numa_warn(const char *str) 1748 { 1749 static int done = false; 1750 int i,j; 1751 1752 if (done) 1753 return; 1754 1755 done = true; 1756 1757 printk(KERN_WARNING "ERROR: %s\n\n", str); 1758 1759 for (i = 0; i < nr_node_ids; i++) { 1760 printk(KERN_WARNING " "); 1761 for (j = 0; j < nr_node_ids; j++) { 1762 if (!node_state(i, N_CPU) || !node_state(j, N_CPU)) 1763 printk(KERN_CONT "(%02d) ", node_distance(i,j)); 1764 else 1765 printk(KERN_CONT " %02d ", node_distance(i,j)); 1766 } 1767 printk(KERN_CONT "\n"); 1768 } 1769 printk(KERN_WARNING "\n"); 1770 } 1771 1772 bool find_numa_distance(int distance) 1773 { 1774 bool found = false; 1775 int i, *distances; 1776 1777 if (distance == node_distance(0, 0)) 1778 return true; 1779 1780 rcu_read_lock(); 1781 distances = rcu_dereference(sched_domains_numa_distance); 1782 if (!distances) 1783 goto unlock; 1784 for (i = 0; i < sched_domains_numa_levels; i++) { 1785 if (distances[i] == distance) { 1786 found = true; 1787 break; 1788 } 1789 } 1790 unlock: 1791 rcu_read_unlock(); 1792 1793 return found; 1794 } 1795 1796 #define for_each_cpu_node_but(n, nbut) \ 1797 for_each_node_state(n, N_CPU) \ 1798 if (n == nbut) \ 1799 continue; \ 1800 else 1801 1802 /* 1803 * A system can have three types of NUMA topology: 1804 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1805 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1806 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1807 * 1808 * The difference between a glueless mesh topology and a backplane 1809 * topology lies in whether communication between not directly 1810 * connected nodes goes through intermediary nodes (where programs 1811 * could run), or through backplane controllers. This affects 1812 * placement of programs. 1813 * 1814 * The type of topology can be discerned with the following tests: 1815 * - If the maximum distance between any nodes is 1 hop, the system 1816 * is directly connected. 1817 * - If for two nodes A and B, located N > 1 hops away from each other, 1818 * there is an intermediary node C, which is < N hops away from both 1819 * nodes A and B, the system is a glueless mesh. 1820 */ 1821 static void init_numa_topology_type(int offline_node) 1822 { 1823 int a, b, c, n; 1824 1825 n = sched_max_numa_distance; 1826 1827 if (sched_domains_numa_levels <= 2) { 1828 sched_numa_topology_type = NUMA_DIRECT; 1829 return; 1830 } 1831 1832 for_each_cpu_node_but(a, offline_node) { 1833 for_each_cpu_node_but(b, offline_node) { 1834 /* Find two nodes furthest removed from each other. */ 1835 if (node_distance(a, b) < n) 1836 continue; 1837 1838 /* Is there an intermediary node between a and b? */ 1839 for_each_cpu_node_but(c, offline_node) { 1840 if (node_distance(a, c) < n && 1841 node_distance(b, c) < n) { 1842 sched_numa_topology_type = 1843 NUMA_GLUELESS_MESH; 1844 return; 1845 } 1846 } 1847 1848 sched_numa_topology_type = NUMA_BACKPLANE; 1849 return; 1850 } 1851 } 1852 1853 pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n"); 1854 sched_numa_topology_type = NUMA_DIRECT; 1855 } 1856 1857 1858 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS) 1859 1860 void sched_init_numa(int offline_node) 1861 { 1862 struct sched_domain_topology_level *tl; 1863 unsigned long *distance_map; 1864 int nr_levels = 0; 1865 int i, j; 1866 int *distances; 1867 struct cpumask ***masks; 1868 1869 /* 1870 * O(nr_nodes^2) de-duplicating selection sort -- in order to find the 1871 * unique distances in the node_distance() table. 1872 */ 1873 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL); 1874 if (!distance_map) 1875 return; 1876 1877 bitmap_zero(distance_map, NR_DISTANCE_VALUES); 1878 for_each_cpu_node_but(i, offline_node) { 1879 for_each_cpu_node_but(j, offline_node) { 1880 int distance = node_distance(i, j); 1881 1882 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) { 1883 sched_numa_warn("Invalid distance value range"); 1884 bitmap_free(distance_map); 1885 return; 1886 } 1887 1888 bitmap_set(distance_map, distance, 1); 1889 } 1890 } 1891 /* 1892 * We can now figure out how many unique distance values there are and 1893 * allocate memory accordingly. 1894 */ 1895 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES); 1896 1897 distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL); 1898 if (!distances) { 1899 bitmap_free(distance_map); 1900 return; 1901 } 1902 1903 for (i = 0, j = 0; i < nr_levels; i++, j++) { 1904 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j); 1905 distances[i] = j; 1906 } 1907 rcu_assign_pointer(sched_domains_numa_distance, distances); 1908 1909 bitmap_free(distance_map); 1910 1911 /* 1912 * 'nr_levels' contains the number of unique distances 1913 * 1914 * The sched_domains_numa_distance[] array includes the actual distance 1915 * numbers. 1916 */ 1917 1918 /* 1919 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1920 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1921 * the array will contain less then 'nr_levels' members. This could be 1922 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1923 * in other functions. 1924 * 1925 * We reset it to 'nr_levels' at the end of this function. 1926 */ 1927 sched_domains_numa_levels = 0; 1928 1929 masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL); 1930 if (!masks) 1931 return; 1932 1933 /* 1934 * Now for each level, construct a mask per node which contains all 1935 * CPUs of nodes that are that many hops away from us. 1936 */ 1937 for (i = 0; i < nr_levels; i++) { 1938 masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1939 if (!masks[i]) 1940 return; 1941 1942 for_each_cpu_node_but(j, offline_node) { 1943 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1944 int k; 1945 1946 if (!mask) 1947 return; 1948 1949 masks[i][j] = mask; 1950 1951 for_each_cpu_node_but(k, offline_node) { 1952 if (sched_debug() && (node_distance(j, k) != node_distance(k, j))) 1953 sched_numa_warn("Node-distance not symmetric"); 1954 1955 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1956 continue; 1957 1958 cpumask_or(mask, mask, cpumask_of_node(k)); 1959 } 1960 } 1961 } 1962 rcu_assign_pointer(sched_domains_numa_masks, masks); 1963 1964 /* Compute default topology size */ 1965 for (i = 0; sched_domain_topology[i].mask; i++); 1966 1967 tl = kzalloc((i + nr_levels + 1) * 1968 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1969 if (!tl) 1970 return; 1971 1972 /* 1973 * Copy the default topology bits.. 1974 */ 1975 for (i = 0; sched_domain_topology[i].mask; i++) 1976 tl[i] = sched_domain_topology[i]; 1977 1978 /* 1979 * Add the NUMA identity distance, aka single NODE. 1980 */ 1981 tl[i++] = (struct sched_domain_topology_level){ 1982 .mask = sd_numa_mask, 1983 .numa_level = 0, 1984 SD_INIT_NAME(NODE) 1985 }; 1986 1987 /* 1988 * .. and append 'j' levels of NUMA goodness. 1989 */ 1990 for (j = 1; j < nr_levels; i++, j++) { 1991 tl[i] = (struct sched_domain_topology_level){ 1992 .mask = sd_numa_mask, 1993 .sd_flags = cpu_numa_flags, 1994 .flags = SDTL_OVERLAP, 1995 .numa_level = j, 1996 SD_INIT_NAME(NUMA) 1997 }; 1998 } 1999 2000 sched_domain_topology_saved = sched_domain_topology; 2001 sched_domain_topology = tl; 2002 2003 sched_domains_numa_levels = nr_levels; 2004 WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]); 2005 2006 init_numa_topology_type(offline_node); 2007 } 2008 2009 2010 static void sched_reset_numa(void) 2011 { 2012 int nr_levels, *distances; 2013 struct cpumask ***masks; 2014 2015 nr_levels = sched_domains_numa_levels; 2016 sched_domains_numa_levels = 0; 2017 sched_max_numa_distance = 0; 2018 sched_numa_topology_type = NUMA_DIRECT; 2019 distances = sched_domains_numa_distance; 2020 rcu_assign_pointer(sched_domains_numa_distance, NULL); 2021 masks = sched_domains_numa_masks; 2022 rcu_assign_pointer(sched_domains_numa_masks, NULL); 2023 if (distances || masks) { 2024 int i, j; 2025 2026 synchronize_rcu(); 2027 kfree(distances); 2028 for (i = 0; i < nr_levels && masks; i++) { 2029 if (!masks[i]) 2030 continue; 2031 for_each_node(j) 2032 kfree(masks[i][j]); 2033 kfree(masks[i]); 2034 } 2035 kfree(masks); 2036 } 2037 if (sched_domain_topology_saved) { 2038 kfree(sched_domain_topology); 2039 sched_domain_topology = sched_domain_topology_saved; 2040 sched_domain_topology_saved = NULL; 2041 } 2042 } 2043 2044 /* 2045 * Call with hotplug lock held 2046 */ 2047 void sched_update_numa(int cpu, bool online) 2048 { 2049 int node; 2050 2051 node = cpu_to_node(cpu); 2052 /* 2053 * Scheduler NUMA topology is updated when the first CPU of a 2054 * node is onlined or the last CPU of a node is offlined. 2055 */ 2056 if (cpumask_weight(cpumask_of_node(node)) != 1) 2057 return; 2058 2059 sched_reset_numa(); 2060 sched_init_numa(online ? NUMA_NO_NODE : node); 2061 } 2062 2063 void sched_domains_numa_masks_set(unsigned int cpu) 2064 { 2065 int node = cpu_to_node(cpu); 2066 int i, j; 2067 2068 for (i = 0; i < sched_domains_numa_levels; i++) { 2069 for (j = 0; j < nr_node_ids; j++) { 2070 if (!node_state(j, N_CPU)) 2071 continue; 2072 2073 /* Set ourselves in the remote node's masks */ 2074 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 2075 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 2076 } 2077 } 2078 } 2079 2080 void sched_domains_numa_masks_clear(unsigned int cpu) 2081 { 2082 int i, j; 2083 2084 for (i = 0; i < sched_domains_numa_levels; i++) { 2085 for (j = 0; j < nr_node_ids; j++) { 2086 if (sched_domains_numa_masks[i][j]) 2087 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 2088 } 2089 } 2090 } 2091 2092 /* 2093 * sched_numa_find_closest() - given the NUMA topology, find the cpu 2094 * closest to @cpu from @cpumask. 2095 * cpumask: cpumask to find a cpu from 2096 * cpu: cpu to be close to 2097 * 2098 * returns: cpu, or nr_cpu_ids when nothing found. 2099 */ 2100 int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 2101 { 2102 int i, j = cpu_to_node(cpu), found = nr_cpu_ids; 2103 struct cpumask ***masks; 2104 2105 rcu_read_lock(); 2106 masks = rcu_dereference(sched_domains_numa_masks); 2107 if (!masks) 2108 goto unlock; 2109 for (i = 0; i < sched_domains_numa_levels; i++) { 2110 if (!masks[i][j]) 2111 break; 2112 cpu = cpumask_any_and(cpus, masks[i][j]); 2113 if (cpu < nr_cpu_ids) { 2114 found = cpu; 2115 break; 2116 } 2117 } 2118 unlock: 2119 rcu_read_unlock(); 2120 2121 return found; 2122 } 2123 2124 struct __cmp_key { 2125 const struct cpumask *cpus; 2126 struct cpumask ***masks; 2127 int node; 2128 int cpu; 2129 int w; 2130 }; 2131 2132 static int hop_cmp(const void *a, const void *b) 2133 { 2134 struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b; 2135 struct __cmp_key *k = (struct __cmp_key *)a; 2136 2137 if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu) 2138 return 1; 2139 2140 if (b == k->masks) { 2141 k->w = 0; 2142 return 0; 2143 } 2144 2145 prev_hop = *((struct cpumask ***)b - 1); 2146 k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]); 2147 if (k->w <= k->cpu) 2148 return 0; 2149 2150 return -1; 2151 } 2152 2153 /** 2154 * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU 2155 * from @cpus to @cpu, taking into account distance 2156 * from a given @node. 2157 * @cpus: cpumask to find a cpu from 2158 * @cpu: CPU to start searching 2159 * @node: NUMA node to order CPUs by distance 2160 * 2161 * Return: cpu, or nr_cpu_ids when nothing found. 2162 */ 2163 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node) 2164 { 2165 struct __cmp_key k = { .cpus = cpus, .cpu = cpu }; 2166 struct cpumask ***hop_masks; 2167 int hop, ret = nr_cpu_ids; 2168 2169 if (node == NUMA_NO_NODE) 2170 return cpumask_nth_and(cpu, cpus, cpu_online_mask); 2171 2172 rcu_read_lock(); 2173 2174 /* CPU-less node entries are uninitialized in sched_domains_numa_masks */ 2175 node = numa_nearest_node(node, N_CPU); 2176 k.node = node; 2177 2178 k.masks = rcu_dereference(sched_domains_numa_masks); 2179 if (!k.masks) 2180 goto unlock; 2181 2182 hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp); 2183 hop = hop_masks - k.masks; 2184 2185 ret = hop ? 2186 cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) : 2187 cpumask_nth_and(cpu, cpus, k.masks[0][node]); 2188 unlock: 2189 rcu_read_unlock(); 2190 return ret; 2191 } 2192 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu); 2193 2194 /** 2195 * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from 2196 * @node 2197 * @node: The node to count hops from. 2198 * @hops: Include CPUs up to that many hops away. 0 means local node. 2199 * 2200 * Return: On success, a pointer to a cpumask of CPUs at most @hops away from 2201 * @node, an error value otherwise. 2202 * 2203 * Requires rcu_lock to be held. Returned cpumask is only valid within that 2204 * read-side section, copy it if required beyond that. 2205 * 2206 * Note that not all hops are equal in distance; see sched_init_numa() for how 2207 * distances and masks are handled. 2208 * Also note that this is a reflection of sched_domains_numa_masks, which may change 2209 * during the lifetime of the system (offline nodes are taken out of the masks). 2210 */ 2211 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops) 2212 { 2213 struct cpumask ***masks; 2214 2215 if (node >= nr_node_ids || hops >= sched_domains_numa_levels) 2216 return ERR_PTR(-EINVAL); 2217 2218 masks = rcu_dereference(sched_domains_numa_masks); 2219 if (!masks) 2220 return ERR_PTR(-EBUSY); 2221 2222 return masks[hops][node]; 2223 } 2224 EXPORT_SYMBOL_GPL(sched_numa_hop_mask); 2225 2226 #endif /* CONFIG_NUMA */ 2227 2228 static int __sdt_alloc(const struct cpumask *cpu_map) 2229 { 2230 struct sched_domain_topology_level *tl; 2231 int j; 2232 2233 for_each_sd_topology(tl) { 2234 struct sd_data *sdd = &tl->data; 2235 2236 sdd->sd = alloc_percpu(struct sched_domain *); 2237 if (!sdd->sd) 2238 return -ENOMEM; 2239 2240 sdd->sds = alloc_percpu(struct sched_domain_shared *); 2241 if (!sdd->sds) 2242 return -ENOMEM; 2243 2244 sdd->sg = alloc_percpu(struct sched_group *); 2245 if (!sdd->sg) 2246 return -ENOMEM; 2247 2248 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 2249 if (!sdd->sgc) 2250 return -ENOMEM; 2251 2252 for_each_cpu(j, cpu_map) { 2253 struct sched_domain *sd; 2254 struct sched_domain_shared *sds; 2255 struct sched_group *sg; 2256 struct sched_group_capacity *sgc; 2257 2258 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 2259 GFP_KERNEL, cpu_to_node(j)); 2260 if (!sd) 2261 return -ENOMEM; 2262 2263 *per_cpu_ptr(sdd->sd, j) = sd; 2264 2265 sds = kzalloc_node(sizeof(struct sched_domain_shared), 2266 GFP_KERNEL, cpu_to_node(j)); 2267 if (!sds) 2268 return -ENOMEM; 2269 2270 *per_cpu_ptr(sdd->sds, j) = sds; 2271 2272 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 2273 GFP_KERNEL, cpu_to_node(j)); 2274 if (!sg) 2275 return -ENOMEM; 2276 2277 sg->next = sg; 2278 2279 *per_cpu_ptr(sdd->sg, j) = sg; 2280 2281 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 2282 GFP_KERNEL, cpu_to_node(j)); 2283 if (!sgc) 2284 return -ENOMEM; 2285 2286 #ifdef CONFIG_SCHED_DEBUG 2287 sgc->id = j; 2288 #endif 2289 2290 *per_cpu_ptr(sdd->sgc, j) = sgc; 2291 } 2292 } 2293 2294 return 0; 2295 } 2296 2297 static void __sdt_free(const struct cpumask *cpu_map) 2298 { 2299 struct sched_domain_topology_level *tl; 2300 int j; 2301 2302 for_each_sd_topology(tl) { 2303 struct sd_data *sdd = &tl->data; 2304 2305 for_each_cpu(j, cpu_map) { 2306 struct sched_domain *sd; 2307 2308 if (sdd->sd) { 2309 sd = *per_cpu_ptr(sdd->sd, j); 2310 if (sd && (sd->flags & SD_OVERLAP)) 2311 free_sched_groups(sd->groups, 0); 2312 kfree(*per_cpu_ptr(sdd->sd, j)); 2313 } 2314 2315 if (sdd->sds) 2316 kfree(*per_cpu_ptr(sdd->sds, j)); 2317 if (sdd->sg) 2318 kfree(*per_cpu_ptr(sdd->sg, j)); 2319 if (sdd->sgc) 2320 kfree(*per_cpu_ptr(sdd->sgc, j)); 2321 } 2322 free_percpu(sdd->sd); 2323 sdd->sd = NULL; 2324 free_percpu(sdd->sds); 2325 sdd->sds = NULL; 2326 free_percpu(sdd->sg); 2327 sdd->sg = NULL; 2328 free_percpu(sdd->sgc); 2329 sdd->sgc = NULL; 2330 } 2331 } 2332 2333 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 2334 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 2335 struct sched_domain *child, int cpu) 2336 { 2337 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 2338 2339 if (child) { 2340 sd->level = child->level + 1; 2341 sched_domain_level_max = max(sched_domain_level_max, sd->level); 2342 child->parent = sd; 2343 2344 if (!cpumask_subset(sched_domain_span(child), 2345 sched_domain_span(sd))) { 2346 pr_err("BUG: arch topology borken\n"); 2347 pr_err(" the %s domain not a subset of the %s domain\n", 2348 child->name, sd->name); 2349 /* Fixup, ensure @sd has at least @child CPUs. */ 2350 cpumask_or(sched_domain_span(sd), 2351 sched_domain_span(sd), 2352 sched_domain_span(child)); 2353 } 2354 2355 } 2356 set_domain_attribute(sd, attr); 2357 2358 return sd; 2359 } 2360 2361 /* 2362 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 2363 * any two given CPUs at this (non-NUMA) topology level. 2364 */ 2365 static bool topology_span_sane(struct sched_domain_topology_level *tl, 2366 const struct cpumask *cpu_map, int cpu) 2367 { 2368 int i = cpu + 1; 2369 2370 /* NUMA levels are allowed to overlap */ 2371 if (tl->flags & SDTL_OVERLAP) 2372 return true; 2373 2374 /* 2375 * Non-NUMA levels cannot partially overlap - they must be either 2376 * completely equal or completely disjoint. Otherwise we can end up 2377 * breaking the sched_group lists - i.e. a later get_group() pass 2378 * breaks the linking done for an earlier span. 2379 */ 2380 for_each_cpu_from(i, cpu_map) { 2381 /* 2382 * We should 'and' all those masks with 'cpu_map' to exactly 2383 * match the topology we're about to build, but that can only 2384 * remove CPUs, which only lessens our ability to detect 2385 * overlaps 2386 */ 2387 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && 2388 cpumask_intersects(tl->mask(cpu), tl->mask(i))) 2389 return false; 2390 } 2391 2392 return true; 2393 } 2394 2395 /* 2396 * Build sched domains for a given set of CPUs and attach the sched domains 2397 * to the individual CPUs 2398 */ 2399 static int 2400 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 2401 { 2402 enum s_alloc alloc_state = sa_none; 2403 struct sched_domain *sd; 2404 struct s_data d; 2405 struct rq *rq = NULL; 2406 int i, ret = -ENOMEM; 2407 bool has_asym = false; 2408 bool has_cluster = false; 2409 2410 if (WARN_ON(cpumask_empty(cpu_map))) 2411 goto error; 2412 2413 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 2414 if (alloc_state != sa_rootdomain) 2415 goto error; 2416 2417 /* Set up domains for CPUs specified by the cpu_map: */ 2418 for_each_cpu(i, cpu_map) { 2419 struct sched_domain_topology_level *tl; 2420 2421 sd = NULL; 2422 for_each_sd_topology(tl) { 2423 2424 if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) 2425 goto error; 2426 2427 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 2428 2429 has_asym |= sd->flags & SD_ASYM_CPUCAPACITY; 2430 2431 if (tl == sched_domain_topology) 2432 *per_cpu_ptr(d.sd, i) = sd; 2433 if (tl->flags & SDTL_OVERLAP) 2434 sd->flags |= SD_OVERLAP; 2435 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2436 break; 2437 } 2438 } 2439 2440 /* Build the groups for the domains */ 2441 for_each_cpu(i, cpu_map) { 2442 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2443 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2444 if (sd->flags & SD_OVERLAP) { 2445 if (build_overlap_sched_groups(sd, i)) 2446 goto error; 2447 } else { 2448 if (build_sched_groups(sd, i)) 2449 goto error; 2450 } 2451 } 2452 } 2453 2454 /* 2455 * Calculate an allowed NUMA imbalance such that LLCs do not get 2456 * imbalanced. 2457 */ 2458 for_each_cpu(i, cpu_map) { 2459 unsigned int imb = 0; 2460 unsigned int imb_span = 1; 2461 2462 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2463 struct sched_domain *child = sd->child; 2464 2465 if (!(sd->flags & SD_SHARE_LLC) && child && 2466 (child->flags & SD_SHARE_LLC)) { 2467 struct sched_domain __rcu *top_p; 2468 unsigned int nr_llcs; 2469 2470 /* 2471 * For a single LLC per node, allow an 2472 * imbalance up to 12.5% of the node. This is 2473 * arbitrary cutoff based two factors -- SMT and 2474 * memory channels. For SMT-2, the intent is to 2475 * avoid premature sharing of HT resources but 2476 * SMT-4 or SMT-8 *may* benefit from a different 2477 * cutoff. For memory channels, this is a very 2478 * rough estimate of how many channels may be 2479 * active and is based on recent CPUs with 2480 * many cores. 2481 * 2482 * For multiple LLCs, allow an imbalance 2483 * until multiple tasks would share an LLC 2484 * on one node while LLCs on another node 2485 * remain idle. This assumes that there are 2486 * enough logical CPUs per LLC to avoid SMT 2487 * factors and that there is a correlation 2488 * between LLCs and memory channels. 2489 */ 2490 nr_llcs = sd->span_weight / child->span_weight; 2491 if (nr_llcs == 1) 2492 imb = sd->span_weight >> 3; 2493 else 2494 imb = nr_llcs; 2495 imb = max(1U, imb); 2496 sd->imb_numa_nr = imb; 2497 2498 /* Set span based on the first NUMA domain. */ 2499 top_p = sd->parent; 2500 while (top_p && !(top_p->flags & SD_NUMA)) { 2501 top_p = top_p->parent; 2502 } 2503 imb_span = top_p ? top_p->span_weight : sd->span_weight; 2504 } else { 2505 int factor = max(1U, (sd->span_weight / imb_span)); 2506 2507 sd->imb_numa_nr = imb * factor; 2508 } 2509 } 2510 } 2511 2512 /* Calculate CPU capacity for physical packages and nodes */ 2513 for (i = nr_cpumask_bits-1; i >= 0; i--) { 2514 if (!cpumask_test_cpu(i, cpu_map)) 2515 continue; 2516 2517 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2518 claim_allocations(i, sd); 2519 init_sched_groups_capacity(i, sd); 2520 } 2521 } 2522 2523 /* Attach the domains */ 2524 rcu_read_lock(); 2525 for_each_cpu(i, cpu_map) { 2526 rq = cpu_rq(i); 2527 sd = *per_cpu_ptr(d.sd, i); 2528 2529 cpu_attach_domain(sd, d.rd, i); 2530 2531 if (lowest_flag_domain(i, SD_CLUSTER)) 2532 has_cluster = true; 2533 } 2534 rcu_read_unlock(); 2535 2536 if (has_asym) 2537 static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2538 2539 if (has_cluster) 2540 static_branch_inc_cpuslocked(&sched_cluster_active); 2541 2542 if (rq && sched_debug_verbose) 2543 pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map)); 2544 2545 ret = 0; 2546 error: 2547 __free_domain_allocs(&d, alloc_state, cpu_map); 2548 2549 return ret; 2550 } 2551 2552 /* Current sched domains: */ 2553 static cpumask_var_t *doms_cur; 2554 2555 /* Number of sched domains in 'doms_cur': */ 2556 static int ndoms_cur; 2557 2558 /* Attributes of custom domains in 'doms_cur' */ 2559 static struct sched_domain_attr *dattr_cur; 2560 2561 /* 2562 * Special case: If a kmalloc() of a doms_cur partition (array of 2563 * cpumask) fails, then fallback to a single sched domain, 2564 * as determined by the single cpumask fallback_doms. 2565 */ 2566 static cpumask_var_t fallback_doms; 2567 2568 /* 2569 * arch_update_cpu_topology lets virtualized architectures update the 2570 * CPU core maps. It is supposed to return 1 if the topology changed 2571 * or 0 if it stayed the same. 2572 */ 2573 int __weak arch_update_cpu_topology(void) 2574 { 2575 return 0; 2576 } 2577 2578 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2579 { 2580 int i; 2581 cpumask_var_t *doms; 2582 2583 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2584 if (!doms) 2585 return NULL; 2586 for (i = 0; i < ndoms; i++) { 2587 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2588 free_sched_domains(doms, i); 2589 return NULL; 2590 } 2591 } 2592 return doms; 2593 } 2594 2595 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2596 { 2597 unsigned int i; 2598 for (i = 0; i < ndoms; i++) 2599 free_cpumask_var(doms[i]); 2600 kfree(doms); 2601 } 2602 2603 /* 2604 * Set up scheduler domains and groups. For now this just excludes isolated 2605 * CPUs, but could be used to exclude other special cases in the future. 2606 */ 2607 int __init sched_init_domains(const struct cpumask *cpu_map) 2608 { 2609 int err; 2610 2611 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 2612 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 2613 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 2614 2615 arch_update_cpu_topology(); 2616 asym_cpu_capacity_scan(); 2617 ndoms_cur = 1; 2618 doms_cur = alloc_sched_domains(ndoms_cur); 2619 if (!doms_cur) 2620 doms_cur = &fallback_doms; 2621 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN)); 2622 err = build_sched_domains(doms_cur[0], NULL); 2623 2624 return err; 2625 } 2626 2627 /* 2628 * Detach sched domains from a group of CPUs specified in cpu_map 2629 * These CPUs will now be attached to the NULL domain 2630 */ 2631 static void detach_destroy_domains(const struct cpumask *cpu_map) 2632 { 2633 unsigned int cpu = cpumask_any(cpu_map); 2634 int i; 2635 2636 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2637 static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2638 2639 if (static_branch_unlikely(&sched_cluster_active)) 2640 static_branch_dec_cpuslocked(&sched_cluster_active); 2641 2642 rcu_read_lock(); 2643 for_each_cpu(i, cpu_map) 2644 cpu_attach_domain(NULL, &def_root_domain, i); 2645 rcu_read_unlock(); 2646 } 2647 2648 /* handle null as "default" */ 2649 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2650 struct sched_domain_attr *new, int idx_new) 2651 { 2652 struct sched_domain_attr tmp; 2653 2654 /* Fast path: */ 2655 if (!new && !cur) 2656 return 1; 2657 2658 tmp = SD_ATTR_INIT; 2659 2660 return !memcmp(cur ? (cur + idx_cur) : &tmp, 2661 new ? (new + idx_new) : &tmp, 2662 sizeof(struct sched_domain_attr)); 2663 } 2664 2665 /* 2666 * Partition sched domains as specified by the 'ndoms_new' 2667 * cpumasks in the array doms_new[] of cpumasks. This compares 2668 * doms_new[] to the current sched domain partitioning, doms_cur[]. 2669 * It destroys each deleted domain and builds each new domain. 2670 * 2671 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2672 * The masks don't intersect (don't overlap.) We should setup one 2673 * sched domain for each mask. CPUs not in any of the cpumasks will 2674 * not be load balanced. If the same cpumask appears both in the 2675 * current 'doms_cur' domains and in the new 'doms_new', we can leave 2676 * it as it is. 2677 * 2678 * The passed in 'doms_new' should be allocated using 2679 * alloc_sched_domains. This routine takes ownership of it and will 2680 * free_sched_domains it when done with it. If the caller failed the 2681 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2682 * and partition_sched_domains() will fallback to the single partition 2683 * 'fallback_doms', it also forces the domains to be rebuilt. 2684 * 2685 * If doms_new == NULL it will be replaced with cpu_online_mask. 2686 * ndoms_new == 0 is a special case for destroying existing domains, 2687 * and it will not create the default domain. 2688 * 2689 * Call with hotplug lock and sched_domains_mutex held 2690 */ 2691 static void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2692 struct sched_domain_attr *dattr_new) 2693 { 2694 bool __maybe_unused has_eas = false; 2695 int i, j, n; 2696 int new_topology; 2697 2698 lockdep_assert_held(&sched_domains_mutex); 2699 2700 /* Let the architecture update CPU core mappings: */ 2701 new_topology = arch_update_cpu_topology(); 2702 /* Trigger rebuilding CPU capacity asymmetry data */ 2703 if (new_topology) 2704 asym_cpu_capacity_scan(); 2705 2706 if (!doms_new) { 2707 WARN_ON_ONCE(dattr_new); 2708 n = 0; 2709 doms_new = alloc_sched_domains(1); 2710 if (doms_new) { 2711 n = 1; 2712 cpumask_and(doms_new[0], cpu_active_mask, 2713 housekeeping_cpumask(HK_TYPE_DOMAIN)); 2714 } 2715 } else { 2716 n = ndoms_new; 2717 } 2718 2719 /* Destroy deleted domains: */ 2720 for (i = 0; i < ndoms_cur; i++) { 2721 for (j = 0; j < n && !new_topology; j++) { 2722 if (cpumask_equal(doms_cur[i], doms_new[j]) && 2723 dattrs_equal(dattr_cur, i, dattr_new, j)) 2724 goto match1; 2725 } 2726 /* No match - a current sched domain not in new doms_new[] */ 2727 detach_destroy_domains(doms_cur[i]); 2728 match1: 2729 ; 2730 } 2731 2732 n = ndoms_cur; 2733 if (!doms_new) { 2734 n = 0; 2735 doms_new = &fallback_doms; 2736 cpumask_and(doms_new[0], cpu_active_mask, 2737 housekeeping_cpumask(HK_TYPE_DOMAIN)); 2738 } 2739 2740 /* Build new domains: */ 2741 for (i = 0; i < ndoms_new; i++) { 2742 for (j = 0; j < n && !new_topology; j++) { 2743 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2744 dattrs_equal(dattr_new, i, dattr_cur, j)) 2745 goto match2; 2746 } 2747 /* No match - add a new doms_new */ 2748 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2749 match2: 2750 ; 2751 } 2752 2753 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2754 /* Build perf domains: */ 2755 for (i = 0; i < ndoms_new; i++) { 2756 for (j = 0; j < n && !sched_energy_update; j++) { 2757 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2758 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 2759 has_eas = true; 2760 goto match3; 2761 } 2762 } 2763 /* No match - add perf domains for a new rd */ 2764 has_eas |= build_perf_domains(doms_new[i]); 2765 match3: 2766 ; 2767 } 2768 sched_energy_set(has_eas); 2769 #endif 2770 2771 /* Remember the new sched domains: */ 2772 if (doms_cur != &fallback_doms) 2773 free_sched_domains(doms_cur, ndoms_cur); 2774 2775 kfree(dattr_cur); 2776 doms_cur = doms_new; 2777 dattr_cur = dattr_new; 2778 ndoms_cur = ndoms_new; 2779 2780 update_sched_domain_debugfs(); 2781 dl_rebuild_rd_accounting(); 2782 } 2783 2784 /* 2785 * Call with hotplug lock held 2786 */ 2787 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2788 struct sched_domain_attr *dattr_new) 2789 { 2790 sched_domains_mutex_lock(); 2791 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2792 sched_domains_mutex_unlock(); 2793 } 2794