1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Scheduler topology setup/handling methods 4 */ 5 #include "sched.h" 6 7 DEFINE_MUTEX(sched_domains_mutex); 8 9 /* Protected by sched_domains_mutex: */ 10 static cpumask_var_t sched_domains_tmpmask; 11 static cpumask_var_t sched_domains_tmpmask2; 12 13 #ifdef CONFIG_SCHED_DEBUG 14 15 static int __init sched_debug_setup(char *str) 16 { 17 sched_debug_enabled = true; 18 19 return 0; 20 } 21 early_param("sched_debug", sched_debug_setup); 22 23 static inline bool sched_debug(void) 24 { 25 return sched_debug_enabled; 26 } 27 28 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 29 struct cpumask *groupmask) 30 { 31 struct sched_group *group = sd->groups; 32 33 cpumask_clear(groupmask); 34 35 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 36 37 if (!(sd->flags & SD_LOAD_BALANCE)) { 38 printk("does not load-balance\n"); 39 if (sd->parent) 40 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent"); 41 return -1; 42 } 43 44 printk(KERN_CONT "span=%*pbl level=%s\n", 45 cpumask_pr_args(sched_domain_span(sd)), sd->name); 46 47 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 48 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 49 } 50 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 51 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 52 } 53 54 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 55 do { 56 if (!group) { 57 printk("\n"); 58 printk(KERN_ERR "ERROR: group is NULL\n"); 59 break; 60 } 61 62 if (!cpumask_weight(sched_group_span(group))) { 63 printk(KERN_CONT "\n"); 64 printk(KERN_ERR "ERROR: empty group\n"); 65 break; 66 } 67 68 if (!(sd->flags & SD_OVERLAP) && 69 cpumask_intersects(groupmask, sched_group_span(group))) { 70 printk(KERN_CONT "\n"); 71 printk(KERN_ERR "ERROR: repeated CPUs\n"); 72 break; 73 } 74 75 cpumask_or(groupmask, groupmask, sched_group_span(group)); 76 77 printk(KERN_CONT " %d:{ span=%*pbl", 78 group->sgc->id, 79 cpumask_pr_args(sched_group_span(group))); 80 81 if ((sd->flags & SD_OVERLAP) && 82 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 83 printk(KERN_CONT " mask=%*pbl", 84 cpumask_pr_args(group_balance_mask(group))); 85 } 86 87 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 88 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 89 90 if (group == sd->groups && sd->child && 91 !cpumask_equal(sched_domain_span(sd->child), 92 sched_group_span(group))) { 93 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 94 } 95 96 printk(KERN_CONT " }"); 97 98 group = group->next; 99 100 if (group != sd->groups) 101 printk(KERN_CONT ","); 102 103 } while (group != sd->groups); 104 printk(KERN_CONT "\n"); 105 106 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 107 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 108 109 if (sd->parent && 110 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 111 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 112 return 0; 113 } 114 115 static void sched_domain_debug(struct sched_domain *sd, int cpu) 116 { 117 int level = 0; 118 119 if (!sched_debug_enabled) 120 return; 121 122 if (!sd) { 123 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 124 return; 125 } 126 127 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 128 129 for (;;) { 130 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 131 break; 132 level++; 133 sd = sd->parent; 134 if (!sd) 135 break; 136 } 137 } 138 #else /* !CONFIG_SCHED_DEBUG */ 139 140 # define sched_debug_enabled 0 141 # define sched_domain_debug(sd, cpu) do { } while (0) 142 static inline bool sched_debug(void) 143 { 144 return false; 145 } 146 #endif /* CONFIG_SCHED_DEBUG */ 147 148 static int sd_degenerate(struct sched_domain *sd) 149 { 150 if (cpumask_weight(sched_domain_span(sd)) == 1) 151 return 1; 152 153 /* Following flags need at least 2 groups */ 154 if (sd->flags & (SD_LOAD_BALANCE | 155 SD_BALANCE_NEWIDLE | 156 SD_BALANCE_FORK | 157 SD_BALANCE_EXEC | 158 SD_SHARE_CPUCAPACITY | 159 SD_ASYM_CPUCAPACITY | 160 SD_SHARE_PKG_RESOURCES | 161 SD_SHARE_POWERDOMAIN)) { 162 if (sd->groups != sd->groups->next) 163 return 0; 164 } 165 166 /* Following flags don't use groups */ 167 if (sd->flags & (SD_WAKE_AFFINE)) 168 return 0; 169 170 return 1; 171 } 172 173 static int 174 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 175 { 176 unsigned long cflags = sd->flags, pflags = parent->flags; 177 178 if (sd_degenerate(parent)) 179 return 1; 180 181 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 182 return 0; 183 184 /* Flags needing groups don't count if only 1 group in parent */ 185 if (parent->groups == parent->groups->next) { 186 pflags &= ~(SD_LOAD_BALANCE | 187 SD_BALANCE_NEWIDLE | 188 SD_BALANCE_FORK | 189 SD_BALANCE_EXEC | 190 SD_ASYM_CPUCAPACITY | 191 SD_SHARE_CPUCAPACITY | 192 SD_SHARE_PKG_RESOURCES | 193 SD_PREFER_SIBLING | 194 SD_SHARE_POWERDOMAIN); 195 if (nr_node_ids == 1) 196 pflags &= ~SD_SERIALIZE; 197 } 198 if (~cflags & pflags) 199 return 0; 200 201 return 1; 202 } 203 204 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 205 DEFINE_STATIC_KEY_FALSE(sched_energy_present); 206 unsigned int sysctl_sched_energy_aware = 1; 207 DEFINE_MUTEX(sched_energy_mutex); 208 bool sched_energy_update; 209 210 #ifdef CONFIG_PROC_SYSCTL 211 int sched_energy_aware_handler(struct ctl_table *table, int write, 212 void __user *buffer, size_t *lenp, loff_t *ppos) 213 { 214 int ret, state; 215 216 if (write && !capable(CAP_SYS_ADMIN)) 217 return -EPERM; 218 219 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 220 if (!ret && write) { 221 state = static_branch_unlikely(&sched_energy_present); 222 if (state != sysctl_sched_energy_aware) { 223 mutex_lock(&sched_energy_mutex); 224 sched_energy_update = 1; 225 rebuild_sched_domains(); 226 sched_energy_update = 0; 227 mutex_unlock(&sched_energy_mutex); 228 } 229 } 230 231 return ret; 232 } 233 #endif 234 235 static void free_pd(struct perf_domain *pd) 236 { 237 struct perf_domain *tmp; 238 239 while (pd) { 240 tmp = pd->next; 241 kfree(pd); 242 pd = tmp; 243 } 244 } 245 246 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 247 { 248 while (pd) { 249 if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 250 return pd; 251 pd = pd->next; 252 } 253 254 return NULL; 255 } 256 257 static struct perf_domain *pd_init(int cpu) 258 { 259 struct em_perf_domain *obj = em_cpu_get(cpu); 260 struct perf_domain *pd; 261 262 if (!obj) { 263 if (sched_debug()) 264 pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 265 return NULL; 266 } 267 268 pd = kzalloc(sizeof(*pd), GFP_KERNEL); 269 if (!pd) 270 return NULL; 271 pd->em_pd = obj; 272 273 return pd; 274 } 275 276 static void perf_domain_debug(const struct cpumask *cpu_map, 277 struct perf_domain *pd) 278 { 279 if (!sched_debug() || !pd) 280 return; 281 282 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 283 284 while (pd) { 285 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }", 286 cpumask_first(perf_domain_span(pd)), 287 cpumask_pr_args(perf_domain_span(pd)), 288 em_pd_nr_cap_states(pd->em_pd)); 289 pd = pd->next; 290 } 291 292 printk(KERN_CONT "\n"); 293 } 294 295 static void destroy_perf_domain_rcu(struct rcu_head *rp) 296 { 297 struct perf_domain *pd; 298 299 pd = container_of(rp, struct perf_domain, rcu); 300 free_pd(pd); 301 } 302 303 static void sched_energy_set(bool has_eas) 304 { 305 if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 306 if (sched_debug()) 307 pr_info("%s: stopping EAS\n", __func__); 308 static_branch_disable_cpuslocked(&sched_energy_present); 309 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 310 if (sched_debug()) 311 pr_info("%s: starting EAS\n", __func__); 312 static_branch_enable_cpuslocked(&sched_energy_present); 313 } 314 } 315 316 /* 317 * EAS can be used on a root domain if it meets all the following conditions: 318 * 1. an Energy Model (EM) is available; 319 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 320 * 3. no SMT is detected. 321 * 4. the EM complexity is low enough to keep scheduling overheads low; 322 * 5. schedutil is driving the frequency of all CPUs of the rd; 323 * 324 * The complexity of the Energy Model is defined as: 325 * 326 * C = nr_pd * (nr_cpus + nr_cs) 327 * 328 * with parameters defined as: 329 * - nr_pd: the number of performance domains 330 * - nr_cpus: the number of CPUs 331 * - nr_cs: the sum of the number of capacity states of all performance 332 * domains (for example, on a system with 2 performance domains, 333 * with 10 capacity states each, nr_cs = 2 * 10 = 20). 334 * 335 * It is generally not a good idea to use such a model in the wake-up path on 336 * very complex platforms because of the associated scheduling overheads. The 337 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs 338 * with per-CPU DVFS and less than 8 capacity states each, for example. 339 */ 340 #define EM_MAX_COMPLEXITY 2048 341 342 extern struct cpufreq_governor schedutil_gov; 343 static bool build_perf_domains(const struct cpumask *cpu_map) 344 { 345 int i, nr_pd = 0, nr_cs = 0, nr_cpus = cpumask_weight(cpu_map); 346 struct perf_domain *pd = NULL, *tmp; 347 int cpu = cpumask_first(cpu_map); 348 struct root_domain *rd = cpu_rq(cpu)->rd; 349 struct cpufreq_policy *policy; 350 struct cpufreq_governor *gov; 351 352 if (!sysctl_sched_energy_aware) 353 goto free; 354 355 /* EAS is enabled for asymmetric CPU capacity topologies. */ 356 if (!per_cpu(sd_asym_cpucapacity, cpu)) { 357 if (sched_debug()) { 358 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n", 359 cpumask_pr_args(cpu_map)); 360 } 361 goto free; 362 } 363 364 /* EAS definitely does *not* handle SMT */ 365 if (sched_smt_active()) { 366 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n", 367 cpumask_pr_args(cpu_map)); 368 goto free; 369 } 370 371 for_each_cpu(i, cpu_map) { 372 /* Skip already covered CPUs. */ 373 if (find_pd(pd, i)) 374 continue; 375 376 /* Do not attempt EAS if schedutil is not being used. */ 377 policy = cpufreq_cpu_get(i); 378 if (!policy) 379 goto free; 380 gov = policy->governor; 381 cpufreq_cpu_put(policy); 382 if (gov != &schedutil_gov) { 383 if (rd->pd) 384 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n", 385 cpumask_pr_args(cpu_map)); 386 goto free; 387 } 388 389 /* Create the new pd and add it to the local list. */ 390 tmp = pd_init(i); 391 if (!tmp) 392 goto free; 393 tmp->next = pd; 394 pd = tmp; 395 396 /* 397 * Count performance domains and capacity states for the 398 * complexity check. 399 */ 400 nr_pd++; 401 nr_cs += em_pd_nr_cap_states(pd->em_pd); 402 } 403 404 /* Bail out if the Energy Model complexity is too high. */ 405 if (nr_pd * (nr_cs + nr_cpus) > EM_MAX_COMPLEXITY) { 406 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n", 407 cpumask_pr_args(cpu_map)); 408 goto free; 409 } 410 411 perf_domain_debug(cpu_map, pd); 412 413 /* Attach the new list of performance domains to the root domain. */ 414 tmp = rd->pd; 415 rcu_assign_pointer(rd->pd, pd); 416 if (tmp) 417 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 418 419 return !!pd; 420 421 free: 422 free_pd(pd); 423 tmp = rd->pd; 424 rcu_assign_pointer(rd->pd, NULL); 425 if (tmp) 426 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 427 428 return false; 429 } 430 #else 431 static void free_pd(struct perf_domain *pd) { } 432 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 433 434 static void free_rootdomain(struct rcu_head *rcu) 435 { 436 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 437 438 cpupri_cleanup(&rd->cpupri); 439 cpudl_cleanup(&rd->cpudl); 440 free_cpumask_var(rd->dlo_mask); 441 free_cpumask_var(rd->rto_mask); 442 free_cpumask_var(rd->online); 443 free_cpumask_var(rd->span); 444 free_pd(rd->pd); 445 kfree(rd); 446 } 447 448 void rq_attach_root(struct rq *rq, struct root_domain *rd) 449 { 450 struct root_domain *old_rd = NULL; 451 unsigned long flags; 452 453 raw_spin_lock_irqsave(&rq->lock, flags); 454 455 if (rq->rd) { 456 old_rd = rq->rd; 457 458 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 459 set_rq_offline(rq); 460 461 cpumask_clear_cpu(rq->cpu, old_rd->span); 462 463 /* 464 * If we dont want to free the old_rd yet then 465 * set old_rd to NULL to skip the freeing later 466 * in this function: 467 */ 468 if (!atomic_dec_and_test(&old_rd->refcount)) 469 old_rd = NULL; 470 } 471 472 atomic_inc(&rd->refcount); 473 rq->rd = rd; 474 475 cpumask_set_cpu(rq->cpu, rd->span); 476 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 477 set_rq_online(rq); 478 479 raw_spin_unlock_irqrestore(&rq->lock, flags); 480 481 if (old_rd) 482 call_rcu(&old_rd->rcu, free_rootdomain); 483 } 484 485 void sched_get_rd(struct root_domain *rd) 486 { 487 atomic_inc(&rd->refcount); 488 } 489 490 void sched_put_rd(struct root_domain *rd) 491 { 492 if (!atomic_dec_and_test(&rd->refcount)) 493 return; 494 495 call_rcu(&rd->rcu, free_rootdomain); 496 } 497 498 static int init_rootdomain(struct root_domain *rd) 499 { 500 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 501 goto out; 502 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 503 goto free_span; 504 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 505 goto free_online; 506 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 507 goto free_dlo_mask; 508 509 #ifdef HAVE_RT_PUSH_IPI 510 rd->rto_cpu = -1; 511 raw_spin_lock_init(&rd->rto_lock); 512 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func); 513 #endif 514 515 init_dl_bw(&rd->dl_bw); 516 if (cpudl_init(&rd->cpudl) != 0) 517 goto free_rto_mask; 518 519 if (cpupri_init(&rd->cpupri) != 0) 520 goto free_cpudl; 521 return 0; 522 523 free_cpudl: 524 cpudl_cleanup(&rd->cpudl); 525 free_rto_mask: 526 free_cpumask_var(rd->rto_mask); 527 free_dlo_mask: 528 free_cpumask_var(rd->dlo_mask); 529 free_online: 530 free_cpumask_var(rd->online); 531 free_span: 532 free_cpumask_var(rd->span); 533 out: 534 return -ENOMEM; 535 } 536 537 /* 538 * By default the system creates a single root-domain with all CPUs as 539 * members (mimicking the global state we have today). 540 */ 541 struct root_domain def_root_domain; 542 543 void init_defrootdomain(void) 544 { 545 init_rootdomain(&def_root_domain); 546 547 atomic_set(&def_root_domain.refcount, 1); 548 } 549 550 static struct root_domain *alloc_rootdomain(void) 551 { 552 struct root_domain *rd; 553 554 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 555 if (!rd) 556 return NULL; 557 558 if (init_rootdomain(rd) != 0) { 559 kfree(rd); 560 return NULL; 561 } 562 563 return rd; 564 } 565 566 static void free_sched_groups(struct sched_group *sg, int free_sgc) 567 { 568 struct sched_group *tmp, *first; 569 570 if (!sg) 571 return; 572 573 first = sg; 574 do { 575 tmp = sg->next; 576 577 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 578 kfree(sg->sgc); 579 580 if (atomic_dec_and_test(&sg->ref)) 581 kfree(sg); 582 sg = tmp; 583 } while (sg != first); 584 } 585 586 static void destroy_sched_domain(struct sched_domain *sd) 587 { 588 /* 589 * A normal sched domain may have multiple group references, an 590 * overlapping domain, having private groups, only one. Iterate, 591 * dropping group/capacity references, freeing where none remain. 592 */ 593 free_sched_groups(sd->groups, 1); 594 595 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 596 kfree(sd->shared); 597 kfree(sd); 598 } 599 600 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 601 { 602 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 603 604 while (sd) { 605 struct sched_domain *parent = sd->parent; 606 destroy_sched_domain(sd); 607 sd = parent; 608 } 609 } 610 611 static void destroy_sched_domains(struct sched_domain *sd) 612 { 613 if (sd) 614 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 615 } 616 617 /* 618 * Keep a special pointer to the highest sched_domain that has 619 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 620 * allows us to avoid some pointer chasing select_idle_sibling(). 621 * 622 * Also keep a unique ID per domain (we use the first CPU number in 623 * the cpumask of the domain), this allows us to quickly tell if 624 * two CPUs are in the same cache domain, see cpus_share_cache(). 625 */ 626 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 627 DEFINE_PER_CPU(int, sd_llc_size); 628 DEFINE_PER_CPU(int, sd_llc_id); 629 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 630 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 631 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 632 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 633 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 634 635 static void update_top_cache_domain(int cpu) 636 { 637 struct sched_domain_shared *sds = NULL; 638 struct sched_domain *sd; 639 int id = cpu; 640 int size = 1; 641 642 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 643 if (sd) { 644 id = cpumask_first(sched_domain_span(sd)); 645 size = cpumask_weight(sched_domain_span(sd)); 646 sds = sd->shared; 647 } 648 649 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 650 per_cpu(sd_llc_size, cpu) = size; 651 per_cpu(sd_llc_id, cpu) = id; 652 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 653 654 sd = lowest_flag_domain(cpu, SD_NUMA); 655 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 656 657 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 658 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 659 660 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY); 661 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 662 } 663 664 /* 665 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 666 * hold the hotplug lock. 667 */ 668 static void 669 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 670 { 671 struct rq *rq = cpu_rq(cpu); 672 struct sched_domain *tmp; 673 674 /* Remove the sched domains which do not contribute to scheduling. */ 675 for (tmp = sd; tmp; ) { 676 struct sched_domain *parent = tmp->parent; 677 if (!parent) 678 break; 679 680 if (sd_parent_degenerate(tmp, parent)) { 681 tmp->parent = parent->parent; 682 if (parent->parent) 683 parent->parent->child = tmp; 684 /* 685 * Transfer SD_PREFER_SIBLING down in case of a 686 * degenerate parent; the spans match for this 687 * so the property transfers. 688 */ 689 if (parent->flags & SD_PREFER_SIBLING) 690 tmp->flags |= SD_PREFER_SIBLING; 691 destroy_sched_domain(parent); 692 } else 693 tmp = tmp->parent; 694 } 695 696 if (sd && sd_degenerate(sd)) { 697 tmp = sd; 698 sd = sd->parent; 699 destroy_sched_domain(tmp); 700 if (sd) 701 sd->child = NULL; 702 } 703 704 sched_domain_debug(sd, cpu); 705 706 rq_attach_root(rq, rd); 707 tmp = rq->sd; 708 rcu_assign_pointer(rq->sd, sd); 709 dirty_sched_domain_sysctl(cpu); 710 destroy_sched_domains(tmp); 711 712 update_top_cache_domain(cpu); 713 } 714 715 struct s_data { 716 struct sched_domain * __percpu *sd; 717 struct root_domain *rd; 718 }; 719 720 enum s_alloc { 721 sa_rootdomain, 722 sa_sd, 723 sa_sd_storage, 724 sa_none, 725 }; 726 727 /* 728 * Return the canonical balance CPU for this group, this is the first CPU 729 * of this group that's also in the balance mask. 730 * 731 * The balance mask are all those CPUs that could actually end up at this 732 * group. See build_balance_mask(). 733 * 734 * Also see should_we_balance(). 735 */ 736 int group_balance_cpu(struct sched_group *sg) 737 { 738 return cpumask_first(group_balance_mask(sg)); 739 } 740 741 742 /* 743 * NUMA topology (first read the regular topology blurb below) 744 * 745 * Given a node-distance table, for example: 746 * 747 * node 0 1 2 3 748 * 0: 10 20 30 20 749 * 1: 20 10 20 30 750 * 2: 30 20 10 20 751 * 3: 20 30 20 10 752 * 753 * which represents a 4 node ring topology like: 754 * 755 * 0 ----- 1 756 * | | 757 * | | 758 * | | 759 * 3 ----- 2 760 * 761 * We want to construct domains and groups to represent this. The way we go 762 * about doing this is to build the domains on 'hops'. For each NUMA level we 763 * construct the mask of all nodes reachable in @level hops. 764 * 765 * For the above NUMA topology that gives 3 levels: 766 * 767 * NUMA-2 0-3 0-3 0-3 0-3 768 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 769 * 770 * NUMA-1 0-1,3 0-2 1-3 0,2-3 771 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 772 * 773 * NUMA-0 0 1 2 3 774 * 775 * 776 * As can be seen; things don't nicely line up as with the regular topology. 777 * When we iterate a domain in child domain chunks some nodes can be 778 * represented multiple times -- hence the "overlap" naming for this part of 779 * the topology. 780 * 781 * In order to minimize this overlap, we only build enough groups to cover the 782 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 783 * 784 * Because: 785 * 786 * - the first group of each domain is its child domain; this 787 * gets us the first 0-1,3 788 * - the only uncovered node is 2, who's child domain is 1-3. 789 * 790 * However, because of the overlap, computing a unique CPU for each group is 791 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 792 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 793 * end up at those groups (they would end up in group: 0-1,3). 794 * 795 * To correct this we have to introduce the group balance mask. This mask 796 * will contain those CPUs in the group that can reach this group given the 797 * (child) domain tree. 798 * 799 * With this we can once again compute balance_cpu and sched_group_capacity 800 * relations. 801 * 802 * XXX include words on how balance_cpu is unique and therefore can be 803 * used for sched_group_capacity links. 804 * 805 * 806 * Another 'interesting' topology is: 807 * 808 * node 0 1 2 3 809 * 0: 10 20 20 30 810 * 1: 20 10 20 20 811 * 2: 20 20 10 20 812 * 3: 30 20 20 10 813 * 814 * Which looks a little like: 815 * 816 * 0 ----- 1 817 * | / | 818 * | / | 819 * | / | 820 * 2 ----- 3 821 * 822 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 823 * are not. 824 * 825 * This leads to a few particularly weird cases where the sched_domain's are 826 * not of the same number for each CPU. Consider: 827 * 828 * NUMA-2 0-3 0-3 829 * groups: {0-2},{1-3} {1-3},{0-2} 830 * 831 * NUMA-1 0-2 0-3 0-3 1-3 832 * 833 * NUMA-0 0 1 2 3 834 * 835 */ 836 837 838 /* 839 * Build the balance mask; it contains only those CPUs that can arrive at this 840 * group and should be considered to continue balancing. 841 * 842 * We do this during the group creation pass, therefore the group information 843 * isn't complete yet, however since each group represents a (child) domain we 844 * can fully construct this using the sched_domain bits (which are already 845 * complete). 846 */ 847 static void 848 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 849 { 850 const struct cpumask *sg_span = sched_group_span(sg); 851 struct sd_data *sdd = sd->private; 852 struct sched_domain *sibling; 853 int i; 854 855 cpumask_clear(mask); 856 857 for_each_cpu(i, sg_span) { 858 sibling = *per_cpu_ptr(sdd->sd, i); 859 860 /* 861 * Can happen in the asymmetric case, where these siblings are 862 * unused. The mask will not be empty because those CPUs that 863 * do have the top domain _should_ span the domain. 864 */ 865 if (!sibling->child) 866 continue; 867 868 /* If we would not end up here, we can't continue from here */ 869 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 870 continue; 871 872 cpumask_set_cpu(i, mask); 873 } 874 875 /* We must not have empty masks here */ 876 WARN_ON_ONCE(cpumask_empty(mask)); 877 } 878 879 /* 880 * XXX: This creates per-node group entries; since the load-balancer will 881 * immediately access remote memory to construct this group's load-balance 882 * statistics having the groups node local is of dubious benefit. 883 */ 884 static struct sched_group * 885 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 886 { 887 struct sched_group *sg; 888 struct cpumask *sg_span; 889 890 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 891 GFP_KERNEL, cpu_to_node(cpu)); 892 893 if (!sg) 894 return NULL; 895 896 sg_span = sched_group_span(sg); 897 if (sd->child) 898 cpumask_copy(sg_span, sched_domain_span(sd->child)); 899 else 900 cpumask_copy(sg_span, sched_domain_span(sd)); 901 902 atomic_inc(&sg->ref); 903 return sg; 904 } 905 906 static void init_overlap_sched_group(struct sched_domain *sd, 907 struct sched_group *sg) 908 { 909 struct cpumask *mask = sched_domains_tmpmask2; 910 struct sd_data *sdd = sd->private; 911 struct cpumask *sg_span; 912 int cpu; 913 914 build_balance_mask(sd, sg, mask); 915 cpu = cpumask_first_and(sched_group_span(sg), mask); 916 917 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 918 if (atomic_inc_return(&sg->sgc->ref) == 1) 919 cpumask_copy(group_balance_mask(sg), mask); 920 else 921 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 922 923 /* 924 * Initialize sgc->capacity such that even if we mess up the 925 * domains and no possible iteration will get us here, we won't 926 * die on a /0 trap. 927 */ 928 sg_span = sched_group_span(sg); 929 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 930 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 931 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 932 } 933 934 static int 935 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 936 { 937 struct sched_group *first = NULL, *last = NULL, *sg; 938 const struct cpumask *span = sched_domain_span(sd); 939 struct cpumask *covered = sched_domains_tmpmask; 940 struct sd_data *sdd = sd->private; 941 struct sched_domain *sibling; 942 int i; 943 944 cpumask_clear(covered); 945 946 for_each_cpu_wrap(i, span, cpu) { 947 struct cpumask *sg_span; 948 949 if (cpumask_test_cpu(i, covered)) 950 continue; 951 952 sibling = *per_cpu_ptr(sdd->sd, i); 953 954 /* 955 * Asymmetric node setups can result in situations where the 956 * domain tree is of unequal depth, make sure to skip domains 957 * that already cover the entire range. 958 * 959 * In that case build_sched_domains() will have terminated the 960 * iteration early and our sibling sd spans will be empty. 961 * Domains should always include the CPU they're built on, so 962 * check that. 963 */ 964 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 965 continue; 966 967 sg = build_group_from_child_sched_domain(sibling, cpu); 968 if (!sg) 969 goto fail; 970 971 sg_span = sched_group_span(sg); 972 cpumask_or(covered, covered, sg_span); 973 974 init_overlap_sched_group(sd, sg); 975 976 if (!first) 977 first = sg; 978 if (last) 979 last->next = sg; 980 last = sg; 981 last->next = first; 982 } 983 sd->groups = first; 984 985 return 0; 986 987 fail: 988 free_sched_groups(first, 0); 989 990 return -ENOMEM; 991 } 992 993 994 /* 995 * Package topology (also see the load-balance blurb in fair.c) 996 * 997 * The scheduler builds a tree structure to represent a number of important 998 * topology features. By default (default_topology[]) these include: 999 * 1000 * - Simultaneous multithreading (SMT) 1001 * - Multi-Core Cache (MC) 1002 * - Package (DIE) 1003 * 1004 * Where the last one more or less denotes everything up to a NUMA node. 1005 * 1006 * The tree consists of 3 primary data structures: 1007 * 1008 * sched_domain -> sched_group -> sched_group_capacity 1009 * ^ ^ ^ ^ 1010 * `-' `-' 1011 * 1012 * The sched_domains are per-CPU and have a two way link (parent & child) and 1013 * denote the ever growing mask of CPUs belonging to that level of topology. 1014 * 1015 * Each sched_domain has a circular (double) linked list of sched_group's, each 1016 * denoting the domains of the level below (or individual CPUs in case of the 1017 * first domain level). The sched_group linked by a sched_domain includes the 1018 * CPU of that sched_domain [*]. 1019 * 1020 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 1021 * 1022 * CPU 0 1 2 3 4 5 6 7 1023 * 1024 * DIE [ ] 1025 * MC [ ] [ ] 1026 * SMT [ ] [ ] [ ] [ ] 1027 * 1028 * - or - 1029 * 1030 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 1031 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 1032 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 1033 * 1034 * CPU 0 1 2 3 4 5 6 7 1035 * 1036 * One way to think about it is: sched_domain moves you up and down among these 1037 * topology levels, while sched_group moves you sideways through it, at child 1038 * domain granularity. 1039 * 1040 * sched_group_capacity ensures each unique sched_group has shared storage. 1041 * 1042 * There are two related construction problems, both require a CPU that 1043 * uniquely identify each group (for a given domain): 1044 * 1045 * - The first is the balance_cpu (see should_we_balance() and the 1046 * load-balance blub in fair.c); for each group we only want 1 CPU to 1047 * continue balancing at a higher domain. 1048 * 1049 * - The second is the sched_group_capacity; we want all identical groups 1050 * to share a single sched_group_capacity. 1051 * 1052 * Since these topologies are exclusive by construction. That is, its 1053 * impossible for an SMT thread to belong to multiple cores, and cores to 1054 * be part of multiple caches. There is a very clear and unique location 1055 * for each CPU in the hierarchy. 1056 * 1057 * Therefore computing a unique CPU for each group is trivial (the iteration 1058 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 1059 * group), we can simply pick the first CPU in each group. 1060 * 1061 * 1062 * [*] in other words, the first group of each domain is its child domain. 1063 */ 1064 1065 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1066 { 1067 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1068 struct sched_domain *child = sd->child; 1069 struct sched_group *sg; 1070 bool already_visited; 1071 1072 if (child) 1073 cpu = cpumask_first(sched_domain_span(child)); 1074 1075 sg = *per_cpu_ptr(sdd->sg, cpu); 1076 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1077 1078 /* Increase refcounts for claim_allocations: */ 1079 already_visited = atomic_inc_return(&sg->ref) > 1; 1080 /* sgc visits should follow a similar trend as sg */ 1081 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 1082 1083 /* If we have already visited that group, it's already initialized. */ 1084 if (already_visited) 1085 return sg; 1086 1087 if (child) { 1088 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1089 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 1090 } else { 1091 cpumask_set_cpu(cpu, sched_group_span(sg)); 1092 cpumask_set_cpu(cpu, group_balance_mask(sg)); 1093 } 1094 1095 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 1096 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1097 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1098 1099 return sg; 1100 } 1101 1102 /* 1103 * build_sched_groups will build a circular linked list of the groups 1104 * covered by the given span, will set each group's ->cpumask correctly, 1105 * and will initialize their ->sgc. 1106 * 1107 * Assumes the sched_domain tree is fully constructed 1108 */ 1109 static int 1110 build_sched_groups(struct sched_domain *sd, int cpu) 1111 { 1112 struct sched_group *first = NULL, *last = NULL; 1113 struct sd_data *sdd = sd->private; 1114 const struct cpumask *span = sched_domain_span(sd); 1115 struct cpumask *covered; 1116 int i; 1117 1118 lockdep_assert_held(&sched_domains_mutex); 1119 covered = sched_domains_tmpmask; 1120 1121 cpumask_clear(covered); 1122 1123 for_each_cpu_wrap(i, span, cpu) { 1124 struct sched_group *sg; 1125 1126 if (cpumask_test_cpu(i, covered)) 1127 continue; 1128 1129 sg = get_group(i, sdd); 1130 1131 cpumask_or(covered, covered, sched_group_span(sg)); 1132 1133 if (!first) 1134 first = sg; 1135 if (last) 1136 last->next = sg; 1137 last = sg; 1138 } 1139 last->next = first; 1140 sd->groups = first; 1141 1142 return 0; 1143 } 1144 1145 /* 1146 * Initialize sched groups cpu_capacity. 1147 * 1148 * cpu_capacity indicates the capacity of sched group, which is used while 1149 * distributing the load between different sched groups in a sched domain. 1150 * Typically cpu_capacity for all the groups in a sched domain will be same 1151 * unless there are asymmetries in the topology. If there are asymmetries, 1152 * group having more cpu_capacity will pickup more load compared to the 1153 * group having less cpu_capacity. 1154 */ 1155 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1156 { 1157 struct sched_group *sg = sd->groups; 1158 1159 WARN_ON(!sg); 1160 1161 do { 1162 int cpu, max_cpu = -1; 1163 1164 sg->group_weight = cpumask_weight(sched_group_span(sg)); 1165 1166 if (!(sd->flags & SD_ASYM_PACKING)) 1167 goto next; 1168 1169 for_each_cpu(cpu, sched_group_span(sg)) { 1170 if (max_cpu < 0) 1171 max_cpu = cpu; 1172 else if (sched_asym_prefer(cpu, max_cpu)) 1173 max_cpu = cpu; 1174 } 1175 sg->asym_prefer_cpu = max_cpu; 1176 1177 next: 1178 sg = sg->next; 1179 } while (sg != sd->groups); 1180 1181 if (cpu != group_balance_cpu(sg)) 1182 return; 1183 1184 update_group_capacity(sd, cpu); 1185 } 1186 1187 /* 1188 * Initializers for schedule domains 1189 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1190 */ 1191 1192 static int default_relax_domain_level = -1; 1193 int sched_domain_level_max; 1194 1195 static int __init setup_relax_domain_level(char *str) 1196 { 1197 if (kstrtoint(str, 0, &default_relax_domain_level)) 1198 pr_warn("Unable to set relax_domain_level\n"); 1199 1200 return 1; 1201 } 1202 __setup("relax_domain_level=", setup_relax_domain_level); 1203 1204 static void set_domain_attribute(struct sched_domain *sd, 1205 struct sched_domain_attr *attr) 1206 { 1207 int request; 1208 1209 if (!attr || attr->relax_domain_level < 0) { 1210 if (default_relax_domain_level < 0) 1211 return; 1212 request = default_relax_domain_level; 1213 } else 1214 request = attr->relax_domain_level; 1215 1216 if (sd->level > request) { 1217 /* Turn off idle balance on this domain: */ 1218 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1219 } 1220 } 1221 1222 static void __sdt_free(const struct cpumask *cpu_map); 1223 static int __sdt_alloc(const struct cpumask *cpu_map); 1224 1225 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1226 const struct cpumask *cpu_map) 1227 { 1228 switch (what) { 1229 case sa_rootdomain: 1230 if (!atomic_read(&d->rd->refcount)) 1231 free_rootdomain(&d->rd->rcu); 1232 /* Fall through */ 1233 case sa_sd: 1234 free_percpu(d->sd); 1235 /* Fall through */ 1236 case sa_sd_storage: 1237 __sdt_free(cpu_map); 1238 /* Fall through */ 1239 case sa_none: 1240 break; 1241 } 1242 } 1243 1244 static enum s_alloc 1245 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1246 { 1247 memset(d, 0, sizeof(*d)); 1248 1249 if (__sdt_alloc(cpu_map)) 1250 return sa_sd_storage; 1251 d->sd = alloc_percpu(struct sched_domain *); 1252 if (!d->sd) 1253 return sa_sd_storage; 1254 d->rd = alloc_rootdomain(); 1255 if (!d->rd) 1256 return sa_sd; 1257 1258 return sa_rootdomain; 1259 } 1260 1261 /* 1262 * NULL the sd_data elements we've used to build the sched_domain and 1263 * sched_group structure so that the subsequent __free_domain_allocs() 1264 * will not free the data we're using. 1265 */ 1266 static void claim_allocations(int cpu, struct sched_domain *sd) 1267 { 1268 struct sd_data *sdd = sd->private; 1269 1270 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1271 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1272 1273 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1274 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1275 1276 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1277 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1278 1279 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1280 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1281 } 1282 1283 #ifdef CONFIG_NUMA 1284 enum numa_topology_type sched_numa_topology_type; 1285 1286 static int sched_domains_numa_levels; 1287 static int sched_domains_curr_level; 1288 1289 int sched_max_numa_distance; 1290 static int *sched_domains_numa_distance; 1291 static struct cpumask ***sched_domains_numa_masks; 1292 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 1293 #endif 1294 1295 /* 1296 * SD_flags allowed in topology descriptions. 1297 * 1298 * These flags are purely descriptive of the topology and do not prescribe 1299 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1300 * function: 1301 * 1302 * SD_SHARE_CPUCAPACITY - describes SMT topologies 1303 * SD_SHARE_PKG_RESOURCES - describes shared caches 1304 * SD_NUMA - describes NUMA topologies 1305 * SD_SHARE_POWERDOMAIN - describes shared power domain 1306 * 1307 * Odd one out, which beside describing the topology has a quirk also 1308 * prescribes the desired behaviour that goes along with it: 1309 * 1310 * SD_ASYM_PACKING - describes SMT quirks 1311 */ 1312 #define TOPOLOGY_SD_FLAGS \ 1313 (SD_SHARE_CPUCAPACITY | \ 1314 SD_SHARE_PKG_RESOURCES | \ 1315 SD_NUMA | \ 1316 SD_ASYM_PACKING | \ 1317 SD_SHARE_POWERDOMAIN) 1318 1319 static struct sched_domain * 1320 sd_init(struct sched_domain_topology_level *tl, 1321 const struct cpumask *cpu_map, 1322 struct sched_domain *child, int dflags, int cpu) 1323 { 1324 struct sd_data *sdd = &tl->data; 1325 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1326 int sd_id, sd_weight, sd_flags = 0; 1327 1328 #ifdef CONFIG_NUMA 1329 /* 1330 * Ugly hack to pass state to sd_numa_mask()... 1331 */ 1332 sched_domains_curr_level = tl->numa_level; 1333 #endif 1334 1335 sd_weight = cpumask_weight(tl->mask(cpu)); 1336 1337 if (tl->sd_flags) 1338 sd_flags = (*tl->sd_flags)(); 1339 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1340 "wrong sd_flags in topology description\n")) 1341 sd_flags &= ~TOPOLOGY_SD_FLAGS; 1342 1343 /* Apply detected topology flags */ 1344 sd_flags |= dflags; 1345 1346 *sd = (struct sched_domain){ 1347 .min_interval = sd_weight, 1348 .max_interval = 2*sd_weight, 1349 .busy_factor = 32, 1350 .imbalance_pct = 125, 1351 1352 .cache_nice_tries = 0, 1353 1354 .flags = 1*SD_LOAD_BALANCE 1355 | 1*SD_BALANCE_NEWIDLE 1356 | 1*SD_BALANCE_EXEC 1357 | 1*SD_BALANCE_FORK 1358 | 0*SD_BALANCE_WAKE 1359 | 1*SD_WAKE_AFFINE 1360 | 0*SD_SHARE_CPUCAPACITY 1361 | 0*SD_SHARE_PKG_RESOURCES 1362 | 0*SD_SERIALIZE 1363 | 1*SD_PREFER_SIBLING 1364 | 0*SD_NUMA 1365 | sd_flags 1366 , 1367 1368 .last_balance = jiffies, 1369 .balance_interval = sd_weight, 1370 .max_newidle_lb_cost = 0, 1371 .next_decay_max_lb_cost = jiffies, 1372 .child = child, 1373 #ifdef CONFIG_SCHED_DEBUG 1374 .name = tl->name, 1375 #endif 1376 }; 1377 1378 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1379 sd_id = cpumask_first(sched_domain_span(sd)); 1380 1381 /* 1382 * Convert topological properties into behaviour. 1383 */ 1384 1385 /* Don't attempt to spread across CPUs of different capacities. */ 1386 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 1387 sd->child->flags &= ~SD_PREFER_SIBLING; 1388 1389 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1390 sd->imbalance_pct = 110; 1391 1392 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1393 sd->imbalance_pct = 117; 1394 sd->cache_nice_tries = 1; 1395 1396 #ifdef CONFIG_NUMA 1397 } else if (sd->flags & SD_NUMA) { 1398 sd->cache_nice_tries = 2; 1399 1400 sd->flags &= ~SD_PREFER_SIBLING; 1401 sd->flags |= SD_SERIALIZE; 1402 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1403 sd->flags &= ~(SD_BALANCE_EXEC | 1404 SD_BALANCE_FORK | 1405 SD_WAKE_AFFINE); 1406 } 1407 1408 #endif 1409 } else { 1410 sd->cache_nice_tries = 1; 1411 } 1412 1413 /* 1414 * For all levels sharing cache; connect a sched_domain_shared 1415 * instance. 1416 */ 1417 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1418 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1419 atomic_inc(&sd->shared->ref); 1420 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1421 } 1422 1423 sd->private = sdd; 1424 1425 return sd; 1426 } 1427 1428 /* 1429 * Topology list, bottom-up. 1430 */ 1431 static struct sched_domain_topology_level default_topology[] = { 1432 #ifdef CONFIG_SCHED_SMT 1433 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1434 #endif 1435 #ifdef CONFIG_SCHED_MC 1436 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1437 #endif 1438 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1439 { NULL, }, 1440 }; 1441 1442 static struct sched_domain_topology_level *sched_domain_topology = 1443 default_topology; 1444 1445 #define for_each_sd_topology(tl) \ 1446 for (tl = sched_domain_topology; tl->mask; tl++) 1447 1448 void set_sched_topology(struct sched_domain_topology_level *tl) 1449 { 1450 if (WARN_ON_ONCE(sched_smp_initialized)) 1451 return; 1452 1453 sched_domain_topology = tl; 1454 } 1455 1456 #ifdef CONFIG_NUMA 1457 1458 static const struct cpumask *sd_numa_mask(int cpu) 1459 { 1460 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1461 } 1462 1463 static void sched_numa_warn(const char *str) 1464 { 1465 static int done = false; 1466 int i,j; 1467 1468 if (done) 1469 return; 1470 1471 done = true; 1472 1473 printk(KERN_WARNING "ERROR: %s\n\n", str); 1474 1475 for (i = 0; i < nr_node_ids; i++) { 1476 printk(KERN_WARNING " "); 1477 for (j = 0; j < nr_node_ids; j++) 1478 printk(KERN_CONT "%02d ", node_distance(i,j)); 1479 printk(KERN_CONT "\n"); 1480 } 1481 printk(KERN_WARNING "\n"); 1482 } 1483 1484 bool find_numa_distance(int distance) 1485 { 1486 int i; 1487 1488 if (distance == node_distance(0, 0)) 1489 return true; 1490 1491 for (i = 0; i < sched_domains_numa_levels; i++) { 1492 if (sched_domains_numa_distance[i] == distance) 1493 return true; 1494 } 1495 1496 return false; 1497 } 1498 1499 /* 1500 * A system can have three types of NUMA topology: 1501 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1502 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1503 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1504 * 1505 * The difference between a glueless mesh topology and a backplane 1506 * topology lies in whether communication between not directly 1507 * connected nodes goes through intermediary nodes (where programs 1508 * could run), or through backplane controllers. This affects 1509 * placement of programs. 1510 * 1511 * The type of topology can be discerned with the following tests: 1512 * - If the maximum distance between any nodes is 1 hop, the system 1513 * is directly connected. 1514 * - If for two nodes A and B, located N > 1 hops away from each other, 1515 * there is an intermediary node C, which is < N hops away from both 1516 * nodes A and B, the system is a glueless mesh. 1517 */ 1518 static void init_numa_topology_type(void) 1519 { 1520 int a, b, c, n; 1521 1522 n = sched_max_numa_distance; 1523 1524 if (sched_domains_numa_levels <= 2) { 1525 sched_numa_topology_type = NUMA_DIRECT; 1526 return; 1527 } 1528 1529 for_each_online_node(a) { 1530 for_each_online_node(b) { 1531 /* Find two nodes furthest removed from each other. */ 1532 if (node_distance(a, b) < n) 1533 continue; 1534 1535 /* Is there an intermediary node between a and b? */ 1536 for_each_online_node(c) { 1537 if (node_distance(a, c) < n && 1538 node_distance(b, c) < n) { 1539 sched_numa_topology_type = 1540 NUMA_GLUELESS_MESH; 1541 return; 1542 } 1543 } 1544 1545 sched_numa_topology_type = NUMA_BACKPLANE; 1546 return; 1547 } 1548 } 1549 } 1550 1551 void sched_init_numa(void) 1552 { 1553 int next_distance, curr_distance = node_distance(0, 0); 1554 struct sched_domain_topology_level *tl; 1555 int level = 0; 1556 int i, j, k; 1557 1558 sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL); 1559 if (!sched_domains_numa_distance) 1560 return; 1561 1562 /* Includes NUMA identity node at level 0. */ 1563 sched_domains_numa_distance[level++] = curr_distance; 1564 sched_domains_numa_levels = level; 1565 1566 /* 1567 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1568 * unique distances in the node_distance() table. 1569 * 1570 * Assumes node_distance(0,j) includes all distances in 1571 * node_distance(i,j) in order to avoid cubic time. 1572 */ 1573 next_distance = curr_distance; 1574 for (i = 0; i < nr_node_ids; i++) { 1575 for (j = 0; j < nr_node_ids; j++) { 1576 for (k = 0; k < nr_node_ids; k++) { 1577 int distance = node_distance(i, k); 1578 1579 if (distance > curr_distance && 1580 (distance < next_distance || 1581 next_distance == curr_distance)) 1582 next_distance = distance; 1583 1584 /* 1585 * While not a strong assumption it would be nice to know 1586 * about cases where if node A is connected to B, B is not 1587 * equally connected to A. 1588 */ 1589 if (sched_debug() && node_distance(k, i) != distance) 1590 sched_numa_warn("Node-distance not symmetric"); 1591 1592 if (sched_debug() && i && !find_numa_distance(distance)) 1593 sched_numa_warn("Node-0 not representative"); 1594 } 1595 if (next_distance != curr_distance) { 1596 sched_domains_numa_distance[level++] = next_distance; 1597 sched_domains_numa_levels = level; 1598 curr_distance = next_distance; 1599 } else break; 1600 } 1601 1602 /* 1603 * In case of sched_debug() we verify the above assumption. 1604 */ 1605 if (!sched_debug()) 1606 break; 1607 } 1608 1609 /* 1610 * 'level' contains the number of unique distances 1611 * 1612 * The sched_domains_numa_distance[] array includes the actual distance 1613 * numbers. 1614 */ 1615 1616 /* 1617 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1618 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1619 * the array will contain less then 'level' members. This could be 1620 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1621 * in other functions. 1622 * 1623 * We reset it to 'level' at the end of this function. 1624 */ 1625 sched_domains_numa_levels = 0; 1626 1627 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1628 if (!sched_domains_numa_masks) 1629 return; 1630 1631 /* 1632 * Now for each level, construct a mask per node which contains all 1633 * CPUs of nodes that are that many hops away from us. 1634 */ 1635 for (i = 0; i < level; i++) { 1636 sched_domains_numa_masks[i] = 1637 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1638 if (!sched_domains_numa_masks[i]) 1639 return; 1640 1641 for (j = 0; j < nr_node_ids; j++) { 1642 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1643 if (!mask) 1644 return; 1645 1646 sched_domains_numa_masks[i][j] = mask; 1647 1648 for_each_node(k) { 1649 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1650 continue; 1651 1652 cpumask_or(mask, mask, cpumask_of_node(k)); 1653 } 1654 } 1655 } 1656 1657 /* Compute default topology size */ 1658 for (i = 0; sched_domain_topology[i].mask; i++); 1659 1660 tl = kzalloc((i + level + 1) * 1661 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1662 if (!tl) 1663 return; 1664 1665 /* 1666 * Copy the default topology bits.. 1667 */ 1668 for (i = 0; sched_domain_topology[i].mask; i++) 1669 tl[i] = sched_domain_topology[i]; 1670 1671 /* 1672 * Add the NUMA identity distance, aka single NODE. 1673 */ 1674 tl[i++] = (struct sched_domain_topology_level){ 1675 .mask = sd_numa_mask, 1676 .numa_level = 0, 1677 SD_INIT_NAME(NODE) 1678 }; 1679 1680 /* 1681 * .. and append 'j' levels of NUMA goodness. 1682 */ 1683 for (j = 1; j < level; i++, j++) { 1684 tl[i] = (struct sched_domain_topology_level){ 1685 .mask = sd_numa_mask, 1686 .sd_flags = cpu_numa_flags, 1687 .flags = SDTL_OVERLAP, 1688 .numa_level = j, 1689 SD_INIT_NAME(NUMA) 1690 }; 1691 } 1692 1693 sched_domain_topology = tl; 1694 1695 sched_domains_numa_levels = level; 1696 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1697 1698 init_numa_topology_type(); 1699 } 1700 1701 void sched_domains_numa_masks_set(unsigned int cpu) 1702 { 1703 int node = cpu_to_node(cpu); 1704 int i, j; 1705 1706 for (i = 0; i < sched_domains_numa_levels; i++) { 1707 for (j = 0; j < nr_node_ids; j++) { 1708 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1709 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1710 } 1711 } 1712 } 1713 1714 void sched_domains_numa_masks_clear(unsigned int cpu) 1715 { 1716 int i, j; 1717 1718 for (i = 0; i < sched_domains_numa_levels; i++) { 1719 for (j = 0; j < nr_node_ids; j++) 1720 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1721 } 1722 } 1723 1724 /* 1725 * sched_numa_find_closest() - given the NUMA topology, find the cpu 1726 * closest to @cpu from @cpumask. 1727 * cpumask: cpumask to find a cpu from 1728 * cpu: cpu to be close to 1729 * 1730 * returns: cpu, or nr_cpu_ids when nothing found. 1731 */ 1732 int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1733 { 1734 int i, j = cpu_to_node(cpu); 1735 1736 for (i = 0; i < sched_domains_numa_levels; i++) { 1737 cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]); 1738 if (cpu < nr_cpu_ids) 1739 return cpu; 1740 } 1741 return nr_cpu_ids; 1742 } 1743 1744 #endif /* CONFIG_NUMA */ 1745 1746 static int __sdt_alloc(const struct cpumask *cpu_map) 1747 { 1748 struct sched_domain_topology_level *tl; 1749 int j; 1750 1751 for_each_sd_topology(tl) { 1752 struct sd_data *sdd = &tl->data; 1753 1754 sdd->sd = alloc_percpu(struct sched_domain *); 1755 if (!sdd->sd) 1756 return -ENOMEM; 1757 1758 sdd->sds = alloc_percpu(struct sched_domain_shared *); 1759 if (!sdd->sds) 1760 return -ENOMEM; 1761 1762 sdd->sg = alloc_percpu(struct sched_group *); 1763 if (!sdd->sg) 1764 return -ENOMEM; 1765 1766 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1767 if (!sdd->sgc) 1768 return -ENOMEM; 1769 1770 for_each_cpu(j, cpu_map) { 1771 struct sched_domain *sd; 1772 struct sched_domain_shared *sds; 1773 struct sched_group *sg; 1774 struct sched_group_capacity *sgc; 1775 1776 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1777 GFP_KERNEL, cpu_to_node(j)); 1778 if (!sd) 1779 return -ENOMEM; 1780 1781 *per_cpu_ptr(sdd->sd, j) = sd; 1782 1783 sds = kzalloc_node(sizeof(struct sched_domain_shared), 1784 GFP_KERNEL, cpu_to_node(j)); 1785 if (!sds) 1786 return -ENOMEM; 1787 1788 *per_cpu_ptr(sdd->sds, j) = sds; 1789 1790 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1791 GFP_KERNEL, cpu_to_node(j)); 1792 if (!sg) 1793 return -ENOMEM; 1794 1795 sg->next = sg; 1796 1797 *per_cpu_ptr(sdd->sg, j) = sg; 1798 1799 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1800 GFP_KERNEL, cpu_to_node(j)); 1801 if (!sgc) 1802 return -ENOMEM; 1803 1804 #ifdef CONFIG_SCHED_DEBUG 1805 sgc->id = j; 1806 #endif 1807 1808 *per_cpu_ptr(sdd->sgc, j) = sgc; 1809 } 1810 } 1811 1812 return 0; 1813 } 1814 1815 static void __sdt_free(const struct cpumask *cpu_map) 1816 { 1817 struct sched_domain_topology_level *tl; 1818 int j; 1819 1820 for_each_sd_topology(tl) { 1821 struct sd_data *sdd = &tl->data; 1822 1823 for_each_cpu(j, cpu_map) { 1824 struct sched_domain *sd; 1825 1826 if (sdd->sd) { 1827 sd = *per_cpu_ptr(sdd->sd, j); 1828 if (sd && (sd->flags & SD_OVERLAP)) 1829 free_sched_groups(sd->groups, 0); 1830 kfree(*per_cpu_ptr(sdd->sd, j)); 1831 } 1832 1833 if (sdd->sds) 1834 kfree(*per_cpu_ptr(sdd->sds, j)); 1835 if (sdd->sg) 1836 kfree(*per_cpu_ptr(sdd->sg, j)); 1837 if (sdd->sgc) 1838 kfree(*per_cpu_ptr(sdd->sgc, j)); 1839 } 1840 free_percpu(sdd->sd); 1841 sdd->sd = NULL; 1842 free_percpu(sdd->sds); 1843 sdd->sds = NULL; 1844 free_percpu(sdd->sg); 1845 sdd->sg = NULL; 1846 free_percpu(sdd->sgc); 1847 sdd->sgc = NULL; 1848 } 1849 } 1850 1851 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1852 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 1853 struct sched_domain *child, int dflags, int cpu) 1854 { 1855 struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu); 1856 1857 if (child) { 1858 sd->level = child->level + 1; 1859 sched_domain_level_max = max(sched_domain_level_max, sd->level); 1860 child->parent = sd; 1861 1862 if (!cpumask_subset(sched_domain_span(child), 1863 sched_domain_span(sd))) { 1864 pr_err("BUG: arch topology borken\n"); 1865 #ifdef CONFIG_SCHED_DEBUG 1866 pr_err(" the %s domain not a subset of the %s domain\n", 1867 child->name, sd->name); 1868 #endif 1869 /* Fixup, ensure @sd has at least @child CPUs. */ 1870 cpumask_or(sched_domain_span(sd), 1871 sched_domain_span(sd), 1872 sched_domain_span(child)); 1873 } 1874 1875 } 1876 set_domain_attribute(sd, attr); 1877 1878 return sd; 1879 } 1880 1881 /* 1882 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 1883 * any two given CPUs at this (non-NUMA) topology level. 1884 */ 1885 static bool topology_span_sane(struct sched_domain_topology_level *tl, 1886 const struct cpumask *cpu_map, int cpu) 1887 { 1888 int i; 1889 1890 /* NUMA levels are allowed to overlap */ 1891 if (tl->flags & SDTL_OVERLAP) 1892 return true; 1893 1894 /* 1895 * Non-NUMA levels cannot partially overlap - they must be either 1896 * completely equal or completely disjoint. Otherwise we can end up 1897 * breaking the sched_group lists - i.e. a later get_group() pass 1898 * breaks the linking done for an earlier span. 1899 */ 1900 for_each_cpu(i, cpu_map) { 1901 if (i == cpu) 1902 continue; 1903 /* 1904 * We should 'and' all those masks with 'cpu_map' to exactly 1905 * match the topology we're about to build, but that can only 1906 * remove CPUs, which only lessens our ability to detect 1907 * overlaps 1908 */ 1909 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && 1910 cpumask_intersects(tl->mask(cpu), tl->mask(i))) 1911 return false; 1912 } 1913 1914 return true; 1915 } 1916 1917 /* 1918 * Find the sched_domain_topology_level where all CPU capacities are visible 1919 * for all CPUs. 1920 */ 1921 static struct sched_domain_topology_level 1922 *asym_cpu_capacity_level(const struct cpumask *cpu_map) 1923 { 1924 int i, j, asym_level = 0; 1925 bool asym = false; 1926 struct sched_domain_topology_level *tl, *asym_tl = NULL; 1927 unsigned long cap; 1928 1929 /* Is there any asymmetry? */ 1930 cap = arch_scale_cpu_capacity(cpumask_first(cpu_map)); 1931 1932 for_each_cpu(i, cpu_map) { 1933 if (arch_scale_cpu_capacity(i) != cap) { 1934 asym = true; 1935 break; 1936 } 1937 } 1938 1939 if (!asym) 1940 return NULL; 1941 1942 /* 1943 * Examine topology from all CPU's point of views to detect the lowest 1944 * sched_domain_topology_level where a highest capacity CPU is visible 1945 * to everyone. 1946 */ 1947 for_each_cpu(i, cpu_map) { 1948 unsigned long max_capacity = arch_scale_cpu_capacity(i); 1949 int tl_id = 0; 1950 1951 for_each_sd_topology(tl) { 1952 if (tl_id < asym_level) 1953 goto next_level; 1954 1955 for_each_cpu_and(j, tl->mask(i), cpu_map) { 1956 unsigned long capacity; 1957 1958 capacity = arch_scale_cpu_capacity(j); 1959 1960 if (capacity <= max_capacity) 1961 continue; 1962 1963 max_capacity = capacity; 1964 asym_level = tl_id; 1965 asym_tl = tl; 1966 } 1967 next_level: 1968 tl_id++; 1969 } 1970 } 1971 1972 return asym_tl; 1973 } 1974 1975 1976 /* 1977 * Build sched domains for a given set of CPUs and attach the sched domains 1978 * to the individual CPUs 1979 */ 1980 static int 1981 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1982 { 1983 enum s_alloc alloc_state = sa_none; 1984 struct sched_domain *sd; 1985 struct s_data d; 1986 struct rq *rq = NULL; 1987 int i, ret = -ENOMEM; 1988 struct sched_domain_topology_level *tl_asym; 1989 bool has_asym = false; 1990 1991 if (WARN_ON(cpumask_empty(cpu_map))) 1992 goto error; 1993 1994 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1995 if (alloc_state != sa_rootdomain) 1996 goto error; 1997 1998 tl_asym = asym_cpu_capacity_level(cpu_map); 1999 2000 /* Set up domains for CPUs specified by the cpu_map: */ 2001 for_each_cpu(i, cpu_map) { 2002 struct sched_domain_topology_level *tl; 2003 2004 sd = NULL; 2005 for_each_sd_topology(tl) { 2006 int dflags = 0; 2007 2008 if (tl == tl_asym) { 2009 dflags |= SD_ASYM_CPUCAPACITY; 2010 has_asym = true; 2011 } 2012 2013 if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) 2014 goto error; 2015 2016 sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i); 2017 2018 if (tl == sched_domain_topology) 2019 *per_cpu_ptr(d.sd, i) = sd; 2020 if (tl->flags & SDTL_OVERLAP) 2021 sd->flags |= SD_OVERLAP; 2022 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2023 break; 2024 } 2025 } 2026 2027 /* Build the groups for the domains */ 2028 for_each_cpu(i, cpu_map) { 2029 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2030 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2031 if (sd->flags & SD_OVERLAP) { 2032 if (build_overlap_sched_groups(sd, i)) 2033 goto error; 2034 } else { 2035 if (build_sched_groups(sd, i)) 2036 goto error; 2037 } 2038 } 2039 } 2040 2041 /* Calculate CPU capacity for physical packages and nodes */ 2042 for (i = nr_cpumask_bits-1; i >= 0; i--) { 2043 if (!cpumask_test_cpu(i, cpu_map)) 2044 continue; 2045 2046 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2047 claim_allocations(i, sd); 2048 init_sched_groups_capacity(i, sd); 2049 } 2050 } 2051 2052 /* Attach the domains */ 2053 rcu_read_lock(); 2054 for_each_cpu(i, cpu_map) { 2055 rq = cpu_rq(i); 2056 sd = *per_cpu_ptr(d.sd, i); 2057 2058 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 2059 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 2060 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 2061 2062 cpu_attach_domain(sd, d.rd, i); 2063 } 2064 rcu_read_unlock(); 2065 2066 if (has_asym) 2067 static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2068 2069 if (rq && sched_debug_enabled) { 2070 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 2071 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 2072 } 2073 2074 ret = 0; 2075 error: 2076 __free_domain_allocs(&d, alloc_state, cpu_map); 2077 2078 return ret; 2079 } 2080 2081 /* Current sched domains: */ 2082 static cpumask_var_t *doms_cur; 2083 2084 /* Number of sched domains in 'doms_cur': */ 2085 static int ndoms_cur; 2086 2087 /* Attribues of custom domains in 'doms_cur' */ 2088 static struct sched_domain_attr *dattr_cur; 2089 2090 /* 2091 * Special case: If a kmalloc() of a doms_cur partition (array of 2092 * cpumask) fails, then fallback to a single sched domain, 2093 * as determined by the single cpumask fallback_doms. 2094 */ 2095 static cpumask_var_t fallback_doms; 2096 2097 /* 2098 * arch_update_cpu_topology lets virtualized architectures update the 2099 * CPU core maps. It is supposed to return 1 if the topology changed 2100 * or 0 if it stayed the same. 2101 */ 2102 int __weak arch_update_cpu_topology(void) 2103 { 2104 return 0; 2105 } 2106 2107 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2108 { 2109 int i; 2110 cpumask_var_t *doms; 2111 2112 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2113 if (!doms) 2114 return NULL; 2115 for (i = 0; i < ndoms; i++) { 2116 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2117 free_sched_domains(doms, i); 2118 return NULL; 2119 } 2120 } 2121 return doms; 2122 } 2123 2124 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2125 { 2126 unsigned int i; 2127 for (i = 0; i < ndoms; i++) 2128 free_cpumask_var(doms[i]); 2129 kfree(doms); 2130 } 2131 2132 /* 2133 * Set up scheduler domains and groups. For now this just excludes isolated 2134 * CPUs, but could be used to exclude other special cases in the future. 2135 */ 2136 int sched_init_domains(const struct cpumask *cpu_map) 2137 { 2138 int err; 2139 2140 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 2141 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 2142 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 2143 2144 arch_update_cpu_topology(); 2145 ndoms_cur = 1; 2146 doms_cur = alloc_sched_domains(ndoms_cur); 2147 if (!doms_cur) 2148 doms_cur = &fallback_doms; 2149 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN)); 2150 err = build_sched_domains(doms_cur[0], NULL); 2151 register_sched_domain_sysctl(); 2152 2153 return err; 2154 } 2155 2156 /* 2157 * Detach sched domains from a group of CPUs specified in cpu_map 2158 * These CPUs will now be attached to the NULL domain 2159 */ 2160 static void detach_destroy_domains(const struct cpumask *cpu_map) 2161 { 2162 unsigned int cpu = cpumask_any(cpu_map); 2163 int i; 2164 2165 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2166 static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2167 2168 rcu_read_lock(); 2169 for_each_cpu(i, cpu_map) 2170 cpu_attach_domain(NULL, &def_root_domain, i); 2171 rcu_read_unlock(); 2172 } 2173 2174 /* handle null as "default" */ 2175 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2176 struct sched_domain_attr *new, int idx_new) 2177 { 2178 struct sched_domain_attr tmp; 2179 2180 /* Fast path: */ 2181 if (!new && !cur) 2182 return 1; 2183 2184 tmp = SD_ATTR_INIT; 2185 2186 return !memcmp(cur ? (cur + idx_cur) : &tmp, 2187 new ? (new + idx_new) : &tmp, 2188 sizeof(struct sched_domain_attr)); 2189 } 2190 2191 /* 2192 * Partition sched domains as specified by the 'ndoms_new' 2193 * cpumasks in the array doms_new[] of cpumasks. This compares 2194 * doms_new[] to the current sched domain partitioning, doms_cur[]. 2195 * It destroys each deleted domain and builds each new domain. 2196 * 2197 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2198 * The masks don't intersect (don't overlap.) We should setup one 2199 * sched domain for each mask. CPUs not in any of the cpumasks will 2200 * not be load balanced. If the same cpumask appears both in the 2201 * current 'doms_cur' domains and in the new 'doms_new', we can leave 2202 * it as it is. 2203 * 2204 * The passed in 'doms_new' should be allocated using 2205 * alloc_sched_domains. This routine takes ownership of it and will 2206 * free_sched_domains it when done with it. If the caller failed the 2207 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2208 * and partition_sched_domains() will fallback to the single partition 2209 * 'fallback_doms', it also forces the domains to be rebuilt. 2210 * 2211 * If doms_new == NULL it will be replaced with cpu_online_mask. 2212 * ndoms_new == 0 is a special case for destroying existing domains, 2213 * and it will not create the default domain. 2214 * 2215 * Call with hotplug lock and sched_domains_mutex held 2216 */ 2217 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2218 struct sched_domain_attr *dattr_new) 2219 { 2220 bool __maybe_unused has_eas = false; 2221 int i, j, n; 2222 int new_topology; 2223 2224 lockdep_assert_held(&sched_domains_mutex); 2225 2226 /* Always unregister in case we don't destroy any domains: */ 2227 unregister_sched_domain_sysctl(); 2228 2229 /* Let the architecture update CPU core mappings: */ 2230 new_topology = arch_update_cpu_topology(); 2231 2232 if (!doms_new) { 2233 WARN_ON_ONCE(dattr_new); 2234 n = 0; 2235 doms_new = alloc_sched_domains(1); 2236 if (doms_new) { 2237 n = 1; 2238 cpumask_and(doms_new[0], cpu_active_mask, 2239 housekeeping_cpumask(HK_FLAG_DOMAIN)); 2240 } 2241 } else { 2242 n = ndoms_new; 2243 } 2244 2245 /* Destroy deleted domains: */ 2246 for (i = 0; i < ndoms_cur; i++) { 2247 for (j = 0; j < n && !new_topology; j++) { 2248 if (cpumask_equal(doms_cur[i], doms_new[j]) && 2249 dattrs_equal(dattr_cur, i, dattr_new, j)) { 2250 struct root_domain *rd; 2251 2252 /* 2253 * This domain won't be destroyed and as such 2254 * its dl_bw->total_bw needs to be cleared. It 2255 * will be recomputed in function 2256 * update_tasks_root_domain(). 2257 */ 2258 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; 2259 dl_clear_root_domain(rd); 2260 goto match1; 2261 } 2262 } 2263 /* No match - a current sched domain not in new doms_new[] */ 2264 detach_destroy_domains(doms_cur[i]); 2265 match1: 2266 ; 2267 } 2268 2269 n = ndoms_cur; 2270 if (!doms_new) { 2271 n = 0; 2272 doms_new = &fallback_doms; 2273 cpumask_and(doms_new[0], cpu_active_mask, 2274 housekeeping_cpumask(HK_FLAG_DOMAIN)); 2275 } 2276 2277 /* Build new domains: */ 2278 for (i = 0; i < ndoms_new; i++) { 2279 for (j = 0; j < n && !new_topology; j++) { 2280 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2281 dattrs_equal(dattr_new, i, dattr_cur, j)) 2282 goto match2; 2283 } 2284 /* No match - add a new doms_new */ 2285 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2286 match2: 2287 ; 2288 } 2289 2290 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2291 /* Build perf. domains: */ 2292 for (i = 0; i < ndoms_new; i++) { 2293 for (j = 0; j < n && !sched_energy_update; j++) { 2294 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2295 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 2296 has_eas = true; 2297 goto match3; 2298 } 2299 } 2300 /* No match - add perf. domains for a new rd */ 2301 has_eas |= build_perf_domains(doms_new[i]); 2302 match3: 2303 ; 2304 } 2305 sched_energy_set(has_eas); 2306 #endif 2307 2308 /* Remember the new sched domains: */ 2309 if (doms_cur != &fallback_doms) 2310 free_sched_domains(doms_cur, ndoms_cur); 2311 2312 kfree(dattr_cur); 2313 doms_cur = doms_new; 2314 dattr_cur = dattr_new; 2315 ndoms_cur = ndoms_new; 2316 2317 register_sched_domain_sysctl(); 2318 } 2319 2320 /* 2321 * Call with hotplug lock held 2322 */ 2323 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2324 struct sched_domain_attr *dattr_new) 2325 { 2326 mutex_lock(&sched_domains_mutex); 2327 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2328 mutex_unlock(&sched_domains_mutex); 2329 } 2330