xref: /linux/kernel/sched/topology.c (revision 666ed8bfd1de3b091cf32ca03b651757dd86cfff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 #include "sched.h"
6 
7 DEFINE_MUTEX(sched_domains_mutex);
8 
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
12 
13 #ifdef CONFIG_SCHED_DEBUG
14 
15 static int __init sched_debug_setup(char *str)
16 {
17 	sched_debug_enabled = true;
18 
19 	return 0;
20 }
21 early_param("sched_debug", sched_debug_setup);
22 
23 static inline bool sched_debug(void)
24 {
25 	return sched_debug_enabled;
26 }
27 
28 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29 				  struct cpumask *groupmask)
30 {
31 	struct sched_group *group = sd->groups;
32 
33 	cpumask_clear(groupmask);
34 
35 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
36 
37 	if (!(sd->flags & SD_LOAD_BALANCE)) {
38 		printk("does not load-balance\n");
39 		if (sd->parent)
40 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
41 		return -1;
42 	}
43 
44 	printk(KERN_CONT "span=%*pbl level=%s\n",
45 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
46 
47 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49 	}
50 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52 	}
53 
54 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
55 	do {
56 		if (!group) {
57 			printk("\n");
58 			printk(KERN_ERR "ERROR: group is NULL\n");
59 			break;
60 		}
61 
62 		if (!cpumask_weight(sched_group_span(group))) {
63 			printk(KERN_CONT "\n");
64 			printk(KERN_ERR "ERROR: empty group\n");
65 			break;
66 		}
67 
68 		if (!(sd->flags & SD_OVERLAP) &&
69 		    cpumask_intersects(groupmask, sched_group_span(group))) {
70 			printk(KERN_CONT "\n");
71 			printk(KERN_ERR "ERROR: repeated CPUs\n");
72 			break;
73 		}
74 
75 		cpumask_or(groupmask, groupmask, sched_group_span(group));
76 
77 		printk(KERN_CONT " %d:{ span=%*pbl",
78 				group->sgc->id,
79 				cpumask_pr_args(sched_group_span(group)));
80 
81 		if ((sd->flags & SD_OVERLAP) &&
82 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
83 			printk(KERN_CONT " mask=%*pbl",
84 				cpumask_pr_args(group_balance_mask(group)));
85 		}
86 
87 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
88 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
89 
90 		if (group == sd->groups && sd->child &&
91 		    !cpumask_equal(sched_domain_span(sd->child),
92 				   sched_group_span(group))) {
93 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
94 		}
95 
96 		printk(KERN_CONT " }");
97 
98 		group = group->next;
99 
100 		if (group != sd->groups)
101 			printk(KERN_CONT ",");
102 
103 	} while (group != sd->groups);
104 	printk(KERN_CONT "\n");
105 
106 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
107 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
108 
109 	if (sd->parent &&
110 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
111 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
112 	return 0;
113 }
114 
115 static void sched_domain_debug(struct sched_domain *sd, int cpu)
116 {
117 	int level = 0;
118 
119 	if (!sched_debug_enabled)
120 		return;
121 
122 	if (!sd) {
123 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
124 		return;
125 	}
126 
127 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
128 
129 	for (;;) {
130 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
131 			break;
132 		level++;
133 		sd = sd->parent;
134 		if (!sd)
135 			break;
136 	}
137 }
138 #else /* !CONFIG_SCHED_DEBUG */
139 
140 # define sched_debug_enabled 0
141 # define sched_domain_debug(sd, cpu) do { } while (0)
142 static inline bool sched_debug(void)
143 {
144 	return false;
145 }
146 #endif /* CONFIG_SCHED_DEBUG */
147 
148 static int sd_degenerate(struct sched_domain *sd)
149 {
150 	if (cpumask_weight(sched_domain_span(sd)) == 1)
151 		return 1;
152 
153 	/* Following flags need at least 2 groups */
154 	if (sd->flags & (SD_LOAD_BALANCE |
155 			 SD_BALANCE_NEWIDLE |
156 			 SD_BALANCE_FORK |
157 			 SD_BALANCE_EXEC |
158 			 SD_SHARE_CPUCAPACITY |
159 			 SD_ASYM_CPUCAPACITY |
160 			 SD_SHARE_PKG_RESOURCES |
161 			 SD_SHARE_POWERDOMAIN)) {
162 		if (sd->groups != sd->groups->next)
163 			return 0;
164 	}
165 
166 	/* Following flags don't use groups */
167 	if (sd->flags & (SD_WAKE_AFFINE))
168 		return 0;
169 
170 	return 1;
171 }
172 
173 static int
174 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
175 {
176 	unsigned long cflags = sd->flags, pflags = parent->flags;
177 
178 	if (sd_degenerate(parent))
179 		return 1;
180 
181 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
182 		return 0;
183 
184 	/* Flags needing groups don't count if only 1 group in parent */
185 	if (parent->groups == parent->groups->next) {
186 		pflags &= ~(SD_LOAD_BALANCE |
187 				SD_BALANCE_NEWIDLE |
188 				SD_BALANCE_FORK |
189 				SD_BALANCE_EXEC |
190 				SD_ASYM_CPUCAPACITY |
191 				SD_SHARE_CPUCAPACITY |
192 				SD_SHARE_PKG_RESOURCES |
193 				SD_PREFER_SIBLING |
194 				SD_SHARE_POWERDOMAIN);
195 		if (nr_node_ids == 1)
196 			pflags &= ~SD_SERIALIZE;
197 	}
198 	if (~cflags & pflags)
199 		return 0;
200 
201 	return 1;
202 }
203 
204 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
205 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
206 unsigned int sysctl_sched_energy_aware = 1;
207 DEFINE_MUTEX(sched_energy_mutex);
208 bool sched_energy_update;
209 
210 #ifdef CONFIG_PROC_SYSCTL
211 int sched_energy_aware_handler(struct ctl_table *table, int write,
212 			 void __user *buffer, size_t *lenp, loff_t *ppos)
213 {
214 	int ret, state;
215 
216 	if (write && !capable(CAP_SYS_ADMIN))
217 		return -EPERM;
218 
219 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
220 	if (!ret && write) {
221 		state = static_branch_unlikely(&sched_energy_present);
222 		if (state != sysctl_sched_energy_aware) {
223 			mutex_lock(&sched_energy_mutex);
224 			sched_energy_update = 1;
225 			rebuild_sched_domains();
226 			sched_energy_update = 0;
227 			mutex_unlock(&sched_energy_mutex);
228 		}
229 	}
230 
231 	return ret;
232 }
233 #endif
234 
235 static void free_pd(struct perf_domain *pd)
236 {
237 	struct perf_domain *tmp;
238 
239 	while (pd) {
240 		tmp = pd->next;
241 		kfree(pd);
242 		pd = tmp;
243 	}
244 }
245 
246 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
247 {
248 	while (pd) {
249 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
250 			return pd;
251 		pd = pd->next;
252 	}
253 
254 	return NULL;
255 }
256 
257 static struct perf_domain *pd_init(int cpu)
258 {
259 	struct em_perf_domain *obj = em_cpu_get(cpu);
260 	struct perf_domain *pd;
261 
262 	if (!obj) {
263 		if (sched_debug())
264 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
265 		return NULL;
266 	}
267 
268 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
269 	if (!pd)
270 		return NULL;
271 	pd->em_pd = obj;
272 
273 	return pd;
274 }
275 
276 static void perf_domain_debug(const struct cpumask *cpu_map,
277 						struct perf_domain *pd)
278 {
279 	if (!sched_debug() || !pd)
280 		return;
281 
282 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
283 
284 	while (pd) {
285 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }",
286 				cpumask_first(perf_domain_span(pd)),
287 				cpumask_pr_args(perf_domain_span(pd)),
288 				em_pd_nr_cap_states(pd->em_pd));
289 		pd = pd->next;
290 	}
291 
292 	printk(KERN_CONT "\n");
293 }
294 
295 static void destroy_perf_domain_rcu(struct rcu_head *rp)
296 {
297 	struct perf_domain *pd;
298 
299 	pd = container_of(rp, struct perf_domain, rcu);
300 	free_pd(pd);
301 }
302 
303 static void sched_energy_set(bool has_eas)
304 {
305 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
306 		if (sched_debug())
307 			pr_info("%s: stopping EAS\n", __func__);
308 		static_branch_disable_cpuslocked(&sched_energy_present);
309 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
310 		if (sched_debug())
311 			pr_info("%s: starting EAS\n", __func__);
312 		static_branch_enable_cpuslocked(&sched_energy_present);
313 	}
314 }
315 
316 /*
317  * EAS can be used on a root domain if it meets all the following conditions:
318  *    1. an Energy Model (EM) is available;
319  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
320  *    3. no SMT is detected.
321  *    4. the EM complexity is low enough to keep scheduling overheads low;
322  *    5. schedutil is driving the frequency of all CPUs of the rd;
323  *
324  * The complexity of the Energy Model is defined as:
325  *
326  *              C = nr_pd * (nr_cpus + nr_cs)
327  *
328  * with parameters defined as:
329  *  - nr_pd:    the number of performance domains
330  *  - nr_cpus:  the number of CPUs
331  *  - nr_cs:    the sum of the number of capacity states of all performance
332  *              domains (for example, on a system with 2 performance domains,
333  *              with 10 capacity states each, nr_cs = 2 * 10 = 20).
334  *
335  * It is generally not a good idea to use such a model in the wake-up path on
336  * very complex platforms because of the associated scheduling overheads. The
337  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
338  * with per-CPU DVFS and less than 8 capacity states each, for example.
339  */
340 #define EM_MAX_COMPLEXITY 2048
341 
342 extern struct cpufreq_governor schedutil_gov;
343 static bool build_perf_domains(const struct cpumask *cpu_map)
344 {
345 	int i, nr_pd = 0, nr_cs = 0, nr_cpus = cpumask_weight(cpu_map);
346 	struct perf_domain *pd = NULL, *tmp;
347 	int cpu = cpumask_first(cpu_map);
348 	struct root_domain *rd = cpu_rq(cpu)->rd;
349 	struct cpufreq_policy *policy;
350 	struct cpufreq_governor *gov;
351 
352 	if (!sysctl_sched_energy_aware)
353 		goto free;
354 
355 	/* EAS is enabled for asymmetric CPU capacity topologies. */
356 	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
357 		if (sched_debug()) {
358 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
359 					cpumask_pr_args(cpu_map));
360 		}
361 		goto free;
362 	}
363 
364 	/* EAS definitely does *not* handle SMT */
365 	if (sched_smt_active()) {
366 		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
367 			cpumask_pr_args(cpu_map));
368 		goto free;
369 	}
370 
371 	for_each_cpu(i, cpu_map) {
372 		/* Skip already covered CPUs. */
373 		if (find_pd(pd, i))
374 			continue;
375 
376 		/* Do not attempt EAS if schedutil is not being used. */
377 		policy = cpufreq_cpu_get(i);
378 		if (!policy)
379 			goto free;
380 		gov = policy->governor;
381 		cpufreq_cpu_put(policy);
382 		if (gov != &schedutil_gov) {
383 			if (rd->pd)
384 				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
385 						cpumask_pr_args(cpu_map));
386 			goto free;
387 		}
388 
389 		/* Create the new pd and add it to the local list. */
390 		tmp = pd_init(i);
391 		if (!tmp)
392 			goto free;
393 		tmp->next = pd;
394 		pd = tmp;
395 
396 		/*
397 		 * Count performance domains and capacity states for the
398 		 * complexity check.
399 		 */
400 		nr_pd++;
401 		nr_cs += em_pd_nr_cap_states(pd->em_pd);
402 	}
403 
404 	/* Bail out if the Energy Model complexity is too high. */
405 	if (nr_pd * (nr_cs + nr_cpus) > EM_MAX_COMPLEXITY) {
406 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
407 						cpumask_pr_args(cpu_map));
408 		goto free;
409 	}
410 
411 	perf_domain_debug(cpu_map, pd);
412 
413 	/* Attach the new list of performance domains to the root domain. */
414 	tmp = rd->pd;
415 	rcu_assign_pointer(rd->pd, pd);
416 	if (tmp)
417 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
418 
419 	return !!pd;
420 
421 free:
422 	free_pd(pd);
423 	tmp = rd->pd;
424 	rcu_assign_pointer(rd->pd, NULL);
425 	if (tmp)
426 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
427 
428 	return false;
429 }
430 #else
431 static void free_pd(struct perf_domain *pd) { }
432 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
433 
434 static void free_rootdomain(struct rcu_head *rcu)
435 {
436 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
437 
438 	cpupri_cleanup(&rd->cpupri);
439 	cpudl_cleanup(&rd->cpudl);
440 	free_cpumask_var(rd->dlo_mask);
441 	free_cpumask_var(rd->rto_mask);
442 	free_cpumask_var(rd->online);
443 	free_cpumask_var(rd->span);
444 	free_pd(rd->pd);
445 	kfree(rd);
446 }
447 
448 void rq_attach_root(struct rq *rq, struct root_domain *rd)
449 {
450 	struct root_domain *old_rd = NULL;
451 	unsigned long flags;
452 
453 	raw_spin_lock_irqsave(&rq->lock, flags);
454 
455 	if (rq->rd) {
456 		old_rd = rq->rd;
457 
458 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
459 			set_rq_offline(rq);
460 
461 		cpumask_clear_cpu(rq->cpu, old_rd->span);
462 
463 		/*
464 		 * If we dont want to free the old_rd yet then
465 		 * set old_rd to NULL to skip the freeing later
466 		 * in this function:
467 		 */
468 		if (!atomic_dec_and_test(&old_rd->refcount))
469 			old_rd = NULL;
470 	}
471 
472 	atomic_inc(&rd->refcount);
473 	rq->rd = rd;
474 
475 	cpumask_set_cpu(rq->cpu, rd->span);
476 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
477 		set_rq_online(rq);
478 
479 	raw_spin_unlock_irqrestore(&rq->lock, flags);
480 
481 	if (old_rd)
482 		call_rcu(&old_rd->rcu, free_rootdomain);
483 }
484 
485 void sched_get_rd(struct root_domain *rd)
486 {
487 	atomic_inc(&rd->refcount);
488 }
489 
490 void sched_put_rd(struct root_domain *rd)
491 {
492 	if (!atomic_dec_and_test(&rd->refcount))
493 		return;
494 
495 	call_rcu(&rd->rcu, free_rootdomain);
496 }
497 
498 static int init_rootdomain(struct root_domain *rd)
499 {
500 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
501 		goto out;
502 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
503 		goto free_span;
504 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
505 		goto free_online;
506 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
507 		goto free_dlo_mask;
508 
509 #ifdef HAVE_RT_PUSH_IPI
510 	rd->rto_cpu = -1;
511 	raw_spin_lock_init(&rd->rto_lock);
512 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
513 #endif
514 
515 	init_dl_bw(&rd->dl_bw);
516 	if (cpudl_init(&rd->cpudl) != 0)
517 		goto free_rto_mask;
518 
519 	if (cpupri_init(&rd->cpupri) != 0)
520 		goto free_cpudl;
521 	return 0;
522 
523 free_cpudl:
524 	cpudl_cleanup(&rd->cpudl);
525 free_rto_mask:
526 	free_cpumask_var(rd->rto_mask);
527 free_dlo_mask:
528 	free_cpumask_var(rd->dlo_mask);
529 free_online:
530 	free_cpumask_var(rd->online);
531 free_span:
532 	free_cpumask_var(rd->span);
533 out:
534 	return -ENOMEM;
535 }
536 
537 /*
538  * By default the system creates a single root-domain with all CPUs as
539  * members (mimicking the global state we have today).
540  */
541 struct root_domain def_root_domain;
542 
543 void init_defrootdomain(void)
544 {
545 	init_rootdomain(&def_root_domain);
546 
547 	atomic_set(&def_root_domain.refcount, 1);
548 }
549 
550 static struct root_domain *alloc_rootdomain(void)
551 {
552 	struct root_domain *rd;
553 
554 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
555 	if (!rd)
556 		return NULL;
557 
558 	if (init_rootdomain(rd) != 0) {
559 		kfree(rd);
560 		return NULL;
561 	}
562 
563 	return rd;
564 }
565 
566 static void free_sched_groups(struct sched_group *sg, int free_sgc)
567 {
568 	struct sched_group *tmp, *first;
569 
570 	if (!sg)
571 		return;
572 
573 	first = sg;
574 	do {
575 		tmp = sg->next;
576 
577 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
578 			kfree(sg->sgc);
579 
580 		if (atomic_dec_and_test(&sg->ref))
581 			kfree(sg);
582 		sg = tmp;
583 	} while (sg != first);
584 }
585 
586 static void destroy_sched_domain(struct sched_domain *sd)
587 {
588 	/*
589 	 * A normal sched domain may have multiple group references, an
590 	 * overlapping domain, having private groups, only one.  Iterate,
591 	 * dropping group/capacity references, freeing where none remain.
592 	 */
593 	free_sched_groups(sd->groups, 1);
594 
595 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
596 		kfree(sd->shared);
597 	kfree(sd);
598 }
599 
600 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
601 {
602 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
603 
604 	while (sd) {
605 		struct sched_domain *parent = sd->parent;
606 		destroy_sched_domain(sd);
607 		sd = parent;
608 	}
609 }
610 
611 static void destroy_sched_domains(struct sched_domain *sd)
612 {
613 	if (sd)
614 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
615 }
616 
617 /*
618  * Keep a special pointer to the highest sched_domain that has
619  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
620  * allows us to avoid some pointer chasing select_idle_sibling().
621  *
622  * Also keep a unique ID per domain (we use the first CPU number in
623  * the cpumask of the domain), this allows us to quickly tell if
624  * two CPUs are in the same cache domain, see cpus_share_cache().
625  */
626 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
627 DEFINE_PER_CPU(int, sd_llc_size);
628 DEFINE_PER_CPU(int, sd_llc_id);
629 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
630 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
631 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
632 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
633 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
634 
635 static void update_top_cache_domain(int cpu)
636 {
637 	struct sched_domain_shared *sds = NULL;
638 	struct sched_domain *sd;
639 	int id = cpu;
640 	int size = 1;
641 
642 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
643 	if (sd) {
644 		id = cpumask_first(sched_domain_span(sd));
645 		size = cpumask_weight(sched_domain_span(sd));
646 		sds = sd->shared;
647 	}
648 
649 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
650 	per_cpu(sd_llc_size, cpu) = size;
651 	per_cpu(sd_llc_id, cpu) = id;
652 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
653 
654 	sd = lowest_flag_domain(cpu, SD_NUMA);
655 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
656 
657 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
658 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
659 
660 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
661 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
662 }
663 
664 /*
665  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
666  * hold the hotplug lock.
667  */
668 static void
669 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
670 {
671 	struct rq *rq = cpu_rq(cpu);
672 	struct sched_domain *tmp;
673 
674 	/* Remove the sched domains which do not contribute to scheduling. */
675 	for (tmp = sd; tmp; ) {
676 		struct sched_domain *parent = tmp->parent;
677 		if (!parent)
678 			break;
679 
680 		if (sd_parent_degenerate(tmp, parent)) {
681 			tmp->parent = parent->parent;
682 			if (parent->parent)
683 				parent->parent->child = tmp;
684 			/*
685 			 * Transfer SD_PREFER_SIBLING down in case of a
686 			 * degenerate parent; the spans match for this
687 			 * so the property transfers.
688 			 */
689 			if (parent->flags & SD_PREFER_SIBLING)
690 				tmp->flags |= SD_PREFER_SIBLING;
691 			destroy_sched_domain(parent);
692 		} else
693 			tmp = tmp->parent;
694 	}
695 
696 	if (sd && sd_degenerate(sd)) {
697 		tmp = sd;
698 		sd = sd->parent;
699 		destroy_sched_domain(tmp);
700 		if (sd)
701 			sd->child = NULL;
702 	}
703 
704 	sched_domain_debug(sd, cpu);
705 
706 	rq_attach_root(rq, rd);
707 	tmp = rq->sd;
708 	rcu_assign_pointer(rq->sd, sd);
709 	dirty_sched_domain_sysctl(cpu);
710 	destroy_sched_domains(tmp);
711 
712 	update_top_cache_domain(cpu);
713 }
714 
715 struct s_data {
716 	struct sched_domain * __percpu *sd;
717 	struct root_domain	*rd;
718 };
719 
720 enum s_alloc {
721 	sa_rootdomain,
722 	sa_sd,
723 	sa_sd_storage,
724 	sa_none,
725 };
726 
727 /*
728  * Return the canonical balance CPU for this group, this is the first CPU
729  * of this group that's also in the balance mask.
730  *
731  * The balance mask are all those CPUs that could actually end up at this
732  * group. See build_balance_mask().
733  *
734  * Also see should_we_balance().
735  */
736 int group_balance_cpu(struct sched_group *sg)
737 {
738 	return cpumask_first(group_balance_mask(sg));
739 }
740 
741 
742 /*
743  * NUMA topology (first read the regular topology blurb below)
744  *
745  * Given a node-distance table, for example:
746  *
747  *   node   0   1   2   3
748  *     0:  10  20  30  20
749  *     1:  20  10  20  30
750  *     2:  30  20  10  20
751  *     3:  20  30  20  10
752  *
753  * which represents a 4 node ring topology like:
754  *
755  *   0 ----- 1
756  *   |       |
757  *   |       |
758  *   |       |
759  *   3 ----- 2
760  *
761  * We want to construct domains and groups to represent this. The way we go
762  * about doing this is to build the domains on 'hops'. For each NUMA level we
763  * construct the mask of all nodes reachable in @level hops.
764  *
765  * For the above NUMA topology that gives 3 levels:
766  *
767  * NUMA-2	0-3		0-3		0-3		0-3
768  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
769  *
770  * NUMA-1	0-1,3		0-2		1-3		0,2-3
771  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
772  *
773  * NUMA-0	0		1		2		3
774  *
775  *
776  * As can be seen; things don't nicely line up as with the regular topology.
777  * When we iterate a domain in child domain chunks some nodes can be
778  * represented multiple times -- hence the "overlap" naming for this part of
779  * the topology.
780  *
781  * In order to minimize this overlap, we only build enough groups to cover the
782  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
783  *
784  * Because:
785  *
786  *  - the first group of each domain is its child domain; this
787  *    gets us the first 0-1,3
788  *  - the only uncovered node is 2, who's child domain is 1-3.
789  *
790  * However, because of the overlap, computing a unique CPU for each group is
791  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
792  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
793  * end up at those groups (they would end up in group: 0-1,3).
794  *
795  * To correct this we have to introduce the group balance mask. This mask
796  * will contain those CPUs in the group that can reach this group given the
797  * (child) domain tree.
798  *
799  * With this we can once again compute balance_cpu and sched_group_capacity
800  * relations.
801  *
802  * XXX include words on how balance_cpu is unique and therefore can be
803  * used for sched_group_capacity links.
804  *
805  *
806  * Another 'interesting' topology is:
807  *
808  *   node   0   1   2   3
809  *     0:  10  20  20  30
810  *     1:  20  10  20  20
811  *     2:  20  20  10  20
812  *     3:  30  20  20  10
813  *
814  * Which looks a little like:
815  *
816  *   0 ----- 1
817  *   |     / |
818  *   |   /   |
819  *   | /     |
820  *   2 ----- 3
821  *
822  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
823  * are not.
824  *
825  * This leads to a few particularly weird cases where the sched_domain's are
826  * not of the same number for each CPU. Consider:
827  *
828  * NUMA-2	0-3						0-3
829  *  groups:	{0-2},{1-3}					{1-3},{0-2}
830  *
831  * NUMA-1	0-2		0-3		0-3		1-3
832  *
833  * NUMA-0	0		1		2		3
834  *
835  */
836 
837 
838 /*
839  * Build the balance mask; it contains only those CPUs that can arrive at this
840  * group and should be considered to continue balancing.
841  *
842  * We do this during the group creation pass, therefore the group information
843  * isn't complete yet, however since each group represents a (child) domain we
844  * can fully construct this using the sched_domain bits (which are already
845  * complete).
846  */
847 static void
848 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
849 {
850 	const struct cpumask *sg_span = sched_group_span(sg);
851 	struct sd_data *sdd = sd->private;
852 	struct sched_domain *sibling;
853 	int i;
854 
855 	cpumask_clear(mask);
856 
857 	for_each_cpu(i, sg_span) {
858 		sibling = *per_cpu_ptr(sdd->sd, i);
859 
860 		/*
861 		 * Can happen in the asymmetric case, where these siblings are
862 		 * unused. The mask will not be empty because those CPUs that
863 		 * do have the top domain _should_ span the domain.
864 		 */
865 		if (!sibling->child)
866 			continue;
867 
868 		/* If we would not end up here, we can't continue from here */
869 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
870 			continue;
871 
872 		cpumask_set_cpu(i, mask);
873 	}
874 
875 	/* We must not have empty masks here */
876 	WARN_ON_ONCE(cpumask_empty(mask));
877 }
878 
879 /*
880  * XXX: This creates per-node group entries; since the load-balancer will
881  * immediately access remote memory to construct this group's load-balance
882  * statistics having the groups node local is of dubious benefit.
883  */
884 static struct sched_group *
885 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
886 {
887 	struct sched_group *sg;
888 	struct cpumask *sg_span;
889 
890 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
891 			GFP_KERNEL, cpu_to_node(cpu));
892 
893 	if (!sg)
894 		return NULL;
895 
896 	sg_span = sched_group_span(sg);
897 	if (sd->child)
898 		cpumask_copy(sg_span, sched_domain_span(sd->child));
899 	else
900 		cpumask_copy(sg_span, sched_domain_span(sd));
901 
902 	atomic_inc(&sg->ref);
903 	return sg;
904 }
905 
906 static void init_overlap_sched_group(struct sched_domain *sd,
907 				     struct sched_group *sg)
908 {
909 	struct cpumask *mask = sched_domains_tmpmask2;
910 	struct sd_data *sdd = sd->private;
911 	struct cpumask *sg_span;
912 	int cpu;
913 
914 	build_balance_mask(sd, sg, mask);
915 	cpu = cpumask_first_and(sched_group_span(sg), mask);
916 
917 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
918 	if (atomic_inc_return(&sg->sgc->ref) == 1)
919 		cpumask_copy(group_balance_mask(sg), mask);
920 	else
921 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
922 
923 	/*
924 	 * Initialize sgc->capacity such that even if we mess up the
925 	 * domains and no possible iteration will get us here, we won't
926 	 * die on a /0 trap.
927 	 */
928 	sg_span = sched_group_span(sg);
929 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
930 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
931 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
932 }
933 
934 static int
935 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
936 {
937 	struct sched_group *first = NULL, *last = NULL, *sg;
938 	const struct cpumask *span = sched_domain_span(sd);
939 	struct cpumask *covered = sched_domains_tmpmask;
940 	struct sd_data *sdd = sd->private;
941 	struct sched_domain *sibling;
942 	int i;
943 
944 	cpumask_clear(covered);
945 
946 	for_each_cpu_wrap(i, span, cpu) {
947 		struct cpumask *sg_span;
948 
949 		if (cpumask_test_cpu(i, covered))
950 			continue;
951 
952 		sibling = *per_cpu_ptr(sdd->sd, i);
953 
954 		/*
955 		 * Asymmetric node setups can result in situations where the
956 		 * domain tree is of unequal depth, make sure to skip domains
957 		 * that already cover the entire range.
958 		 *
959 		 * In that case build_sched_domains() will have terminated the
960 		 * iteration early and our sibling sd spans will be empty.
961 		 * Domains should always include the CPU they're built on, so
962 		 * check that.
963 		 */
964 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
965 			continue;
966 
967 		sg = build_group_from_child_sched_domain(sibling, cpu);
968 		if (!sg)
969 			goto fail;
970 
971 		sg_span = sched_group_span(sg);
972 		cpumask_or(covered, covered, sg_span);
973 
974 		init_overlap_sched_group(sd, sg);
975 
976 		if (!first)
977 			first = sg;
978 		if (last)
979 			last->next = sg;
980 		last = sg;
981 		last->next = first;
982 	}
983 	sd->groups = first;
984 
985 	return 0;
986 
987 fail:
988 	free_sched_groups(first, 0);
989 
990 	return -ENOMEM;
991 }
992 
993 
994 /*
995  * Package topology (also see the load-balance blurb in fair.c)
996  *
997  * The scheduler builds a tree structure to represent a number of important
998  * topology features. By default (default_topology[]) these include:
999  *
1000  *  - Simultaneous multithreading (SMT)
1001  *  - Multi-Core Cache (MC)
1002  *  - Package (DIE)
1003  *
1004  * Where the last one more or less denotes everything up to a NUMA node.
1005  *
1006  * The tree consists of 3 primary data structures:
1007  *
1008  *	sched_domain -> sched_group -> sched_group_capacity
1009  *	    ^ ^             ^ ^
1010  *          `-'             `-'
1011  *
1012  * The sched_domains are per-CPU and have a two way link (parent & child) and
1013  * denote the ever growing mask of CPUs belonging to that level of topology.
1014  *
1015  * Each sched_domain has a circular (double) linked list of sched_group's, each
1016  * denoting the domains of the level below (or individual CPUs in case of the
1017  * first domain level). The sched_group linked by a sched_domain includes the
1018  * CPU of that sched_domain [*].
1019  *
1020  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1021  *
1022  * CPU   0   1   2   3   4   5   6   7
1023  *
1024  * DIE  [                             ]
1025  * MC   [             ] [             ]
1026  * SMT  [     ] [     ] [     ] [     ]
1027  *
1028  *  - or -
1029  *
1030  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1031  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1032  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1033  *
1034  * CPU   0   1   2   3   4   5   6   7
1035  *
1036  * One way to think about it is: sched_domain moves you up and down among these
1037  * topology levels, while sched_group moves you sideways through it, at child
1038  * domain granularity.
1039  *
1040  * sched_group_capacity ensures each unique sched_group has shared storage.
1041  *
1042  * There are two related construction problems, both require a CPU that
1043  * uniquely identify each group (for a given domain):
1044  *
1045  *  - The first is the balance_cpu (see should_we_balance() and the
1046  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1047  *    continue balancing at a higher domain.
1048  *
1049  *  - The second is the sched_group_capacity; we want all identical groups
1050  *    to share a single sched_group_capacity.
1051  *
1052  * Since these topologies are exclusive by construction. That is, its
1053  * impossible for an SMT thread to belong to multiple cores, and cores to
1054  * be part of multiple caches. There is a very clear and unique location
1055  * for each CPU in the hierarchy.
1056  *
1057  * Therefore computing a unique CPU for each group is trivial (the iteration
1058  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1059  * group), we can simply pick the first CPU in each group.
1060  *
1061  *
1062  * [*] in other words, the first group of each domain is its child domain.
1063  */
1064 
1065 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1066 {
1067 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1068 	struct sched_domain *child = sd->child;
1069 	struct sched_group *sg;
1070 	bool already_visited;
1071 
1072 	if (child)
1073 		cpu = cpumask_first(sched_domain_span(child));
1074 
1075 	sg = *per_cpu_ptr(sdd->sg, cpu);
1076 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1077 
1078 	/* Increase refcounts for claim_allocations: */
1079 	already_visited = atomic_inc_return(&sg->ref) > 1;
1080 	/* sgc visits should follow a similar trend as sg */
1081 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1082 
1083 	/* If we have already visited that group, it's already initialized. */
1084 	if (already_visited)
1085 		return sg;
1086 
1087 	if (child) {
1088 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1089 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1090 	} else {
1091 		cpumask_set_cpu(cpu, sched_group_span(sg));
1092 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1093 	}
1094 
1095 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1096 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1097 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1098 
1099 	return sg;
1100 }
1101 
1102 /*
1103  * build_sched_groups will build a circular linked list of the groups
1104  * covered by the given span, will set each group's ->cpumask correctly,
1105  * and will initialize their ->sgc.
1106  *
1107  * Assumes the sched_domain tree is fully constructed
1108  */
1109 static int
1110 build_sched_groups(struct sched_domain *sd, int cpu)
1111 {
1112 	struct sched_group *first = NULL, *last = NULL;
1113 	struct sd_data *sdd = sd->private;
1114 	const struct cpumask *span = sched_domain_span(sd);
1115 	struct cpumask *covered;
1116 	int i;
1117 
1118 	lockdep_assert_held(&sched_domains_mutex);
1119 	covered = sched_domains_tmpmask;
1120 
1121 	cpumask_clear(covered);
1122 
1123 	for_each_cpu_wrap(i, span, cpu) {
1124 		struct sched_group *sg;
1125 
1126 		if (cpumask_test_cpu(i, covered))
1127 			continue;
1128 
1129 		sg = get_group(i, sdd);
1130 
1131 		cpumask_or(covered, covered, sched_group_span(sg));
1132 
1133 		if (!first)
1134 			first = sg;
1135 		if (last)
1136 			last->next = sg;
1137 		last = sg;
1138 	}
1139 	last->next = first;
1140 	sd->groups = first;
1141 
1142 	return 0;
1143 }
1144 
1145 /*
1146  * Initialize sched groups cpu_capacity.
1147  *
1148  * cpu_capacity indicates the capacity of sched group, which is used while
1149  * distributing the load between different sched groups in a sched domain.
1150  * Typically cpu_capacity for all the groups in a sched domain will be same
1151  * unless there are asymmetries in the topology. If there are asymmetries,
1152  * group having more cpu_capacity will pickup more load compared to the
1153  * group having less cpu_capacity.
1154  */
1155 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1156 {
1157 	struct sched_group *sg = sd->groups;
1158 
1159 	WARN_ON(!sg);
1160 
1161 	do {
1162 		int cpu, max_cpu = -1;
1163 
1164 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1165 
1166 		if (!(sd->flags & SD_ASYM_PACKING))
1167 			goto next;
1168 
1169 		for_each_cpu(cpu, sched_group_span(sg)) {
1170 			if (max_cpu < 0)
1171 				max_cpu = cpu;
1172 			else if (sched_asym_prefer(cpu, max_cpu))
1173 				max_cpu = cpu;
1174 		}
1175 		sg->asym_prefer_cpu = max_cpu;
1176 
1177 next:
1178 		sg = sg->next;
1179 	} while (sg != sd->groups);
1180 
1181 	if (cpu != group_balance_cpu(sg))
1182 		return;
1183 
1184 	update_group_capacity(sd, cpu);
1185 }
1186 
1187 /*
1188  * Initializers for schedule domains
1189  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1190  */
1191 
1192 static int default_relax_domain_level = -1;
1193 int sched_domain_level_max;
1194 
1195 static int __init setup_relax_domain_level(char *str)
1196 {
1197 	if (kstrtoint(str, 0, &default_relax_domain_level))
1198 		pr_warn("Unable to set relax_domain_level\n");
1199 
1200 	return 1;
1201 }
1202 __setup("relax_domain_level=", setup_relax_domain_level);
1203 
1204 static void set_domain_attribute(struct sched_domain *sd,
1205 				 struct sched_domain_attr *attr)
1206 {
1207 	int request;
1208 
1209 	if (!attr || attr->relax_domain_level < 0) {
1210 		if (default_relax_domain_level < 0)
1211 			return;
1212 		request = default_relax_domain_level;
1213 	} else
1214 		request = attr->relax_domain_level;
1215 
1216 	if (sd->level > request) {
1217 		/* Turn off idle balance on this domain: */
1218 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1219 	}
1220 }
1221 
1222 static void __sdt_free(const struct cpumask *cpu_map);
1223 static int __sdt_alloc(const struct cpumask *cpu_map);
1224 
1225 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1226 				 const struct cpumask *cpu_map)
1227 {
1228 	switch (what) {
1229 	case sa_rootdomain:
1230 		if (!atomic_read(&d->rd->refcount))
1231 			free_rootdomain(&d->rd->rcu);
1232 		/* Fall through */
1233 	case sa_sd:
1234 		free_percpu(d->sd);
1235 		/* Fall through */
1236 	case sa_sd_storage:
1237 		__sdt_free(cpu_map);
1238 		/* Fall through */
1239 	case sa_none:
1240 		break;
1241 	}
1242 }
1243 
1244 static enum s_alloc
1245 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1246 {
1247 	memset(d, 0, sizeof(*d));
1248 
1249 	if (__sdt_alloc(cpu_map))
1250 		return sa_sd_storage;
1251 	d->sd = alloc_percpu(struct sched_domain *);
1252 	if (!d->sd)
1253 		return sa_sd_storage;
1254 	d->rd = alloc_rootdomain();
1255 	if (!d->rd)
1256 		return sa_sd;
1257 
1258 	return sa_rootdomain;
1259 }
1260 
1261 /*
1262  * NULL the sd_data elements we've used to build the sched_domain and
1263  * sched_group structure so that the subsequent __free_domain_allocs()
1264  * will not free the data we're using.
1265  */
1266 static void claim_allocations(int cpu, struct sched_domain *sd)
1267 {
1268 	struct sd_data *sdd = sd->private;
1269 
1270 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1271 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1272 
1273 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1274 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1275 
1276 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1277 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1278 
1279 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1280 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1281 }
1282 
1283 #ifdef CONFIG_NUMA
1284 enum numa_topology_type sched_numa_topology_type;
1285 
1286 static int			sched_domains_numa_levels;
1287 static int			sched_domains_curr_level;
1288 
1289 int				sched_max_numa_distance;
1290 static int			*sched_domains_numa_distance;
1291 static struct cpumask		***sched_domains_numa_masks;
1292 int __read_mostly		node_reclaim_distance = RECLAIM_DISTANCE;
1293 #endif
1294 
1295 /*
1296  * SD_flags allowed in topology descriptions.
1297  *
1298  * These flags are purely descriptive of the topology and do not prescribe
1299  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1300  * function:
1301  *
1302  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1303  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1304  *   SD_NUMA                - describes NUMA topologies
1305  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1306  *
1307  * Odd one out, which beside describing the topology has a quirk also
1308  * prescribes the desired behaviour that goes along with it:
1309  *
1310  *   SD_ASYM_PACKING        - describes SMT quirks
1311  */
1312 #define TOPOLOGY_SD_FLAGS		\
1313 	(SD_SHARE_CPUCAPACITY	|	\
1314 	 SD_SHARE_PKG_RESOURCES |	\
1315 	 SD_NUMA		|	\
1316 	 SD_ASYM_PACKING	|	\
1317 	 SD_SHARE_POWERDOMAIN)
1318 
1319 static struct sched_domain *
1320 sd_init(struct sched_domain_topology_level *tl,
1321 	const struct cpumask *cpu_map,
1322 	struct sched_domain *child, int dflags, int cpu)
1323 {
1324 	struct sd_data *sdd = &tl->data;
1325 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1326 	int sd_id, sd_weight, sd_flags = 0;
1327 
1328 #ifdef CONFIG_NUMA
1329 	/*
1330 	 * Ugly hack to pass state to sd_numa_mask()...
1331 	 */
1332 	sched_domains_curr_level = tl->numa_level;
1333 #endif
1334 
1335 	sd_weight = cpumask_weight(tl->mask(cpu));
1336 
1337 	if (tl->sd_flags)
1338 		sd_flags = (*tl->sd_flags)();
1339 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1340 			"wrong sd_flags in topology description\n"))
1341 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
1342 
1343 	/* Apply detected topology flags */
1344 	sd_flags |= dflags;
1345 
1346 	*sd = (struct sched_domain){
1347 		.min_interval		= sd_weight,
1348 		.max_interval		= 2*sd_weight,
1349 		.busy_factor		= 32,
1350 		.imbalance_pct		= 125,
1351 
1352 		.cache_nice_tries	= 0,
1353 
1354 		.flags			= 1*SD_LOAD_BALANCE
1355 					| 1*SD_BALANCE_NEWIDLE
1356 					| 1*SD_BALANCE_EXEC
1357 					| 1*SD_BALANCE_FORK
1358 					| 0*SD_BALANCE_WAKE
1359 					| 1*SD_WAKE_AFFINE
1360 					| 0*SD_SHARE_CPUCAPACITY
1361 					| 0*SD_SHARE_PKG_RESOURCES
1362 					| 0*SD_SERIALIZE
1363 					| 1*SD_PREFER_SIBLING
1364 					| 0*SD_NUMA
1365 					| sd_flags
1366 					,
1367 
1368 		.last_balance		= jiffies,
1369 		.balance_interval	= sd_weight,
1370 		.max_newidle_lb_cost	= 0,
1371 		.next_decay_max_lb_cost	= jiffies,
1372 		.child			= child,
1373 #ifdef CONFIG_SCHED_DEBUG
1374 		.name			= tl->name,
1375 #endif
1376 	};
1377 
1378 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1379 	sd_id = cpumask_first(sched_domain_span(sd));
1380 
1381 	/*
1382 	 * Convert topological properties into behaviour.
1383 	 */
1384 
1385 	/* Don't attempt to spread across CPUs of different capacities. */
1386 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1387 		sd->child->flags &= ~SD_PREFER_SIBLING;
1388 
1389 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1390 		sd->imbalance_pct = 110;
1391 
1392 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1393 		sd->imbalance_pct = 117;
1394 		sd->cache_nice_tries = 1;
1395 
1396 #ifdef CONFIG_NUMA
1397 	} else if (sd->flags & SD_NUMA) {
1398 		sd->cache_nice_tries = 2;
1399 
1400 		sd->flags &= ~SD_PREFER_SIBLING;
1401 		sd->flags |= SD_SERIALIZE;
1402 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1403 			sd->flags &= ~(SD_BALANCE_EXEC |
1404 				       SD_BALANCE_FORK |
1405 				       SD_WAKE_AFFINE);
1406 		}
1407 
1408 #endif
1409 	} else {
1410 		sd->cache_nice_tries = 1;
1411 	}
1412 
1413 	/*
1414 	 * For all levels sharing cache; connect a sched_domain_shared
1415 	 * instance.
1416 	 */
1417 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1418 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1419 		atomic_inc(&sd->shared->ref);
1420 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1421 	}
1422 
1423 	sd->private = sdd;
1424 
1425 	return sd;
1426 }
1427 
1428 /*
1429  * Topology list, bottom-up.
1430  */
1431 static struct sched_domain_topology_level default_topology[] = {
1432 #ifdef CONFIG_SCHED_SMT
1433 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1434 #endif
1435 #ifdef CONFIG_SCHED_MC
1436 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1437 #endif
1438 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1439 	{ NULL, },
1440 };
1441 
1442 static struct sched_domain_topology_level *sched_domain_topology =
1443 	default_topology;
1444 
1445 #define for_each_sd_topology(tl)			\
1446 	for (tl = sched_domain_topology; tl->mask; tl++)
1447 
1448 void set_sched_topology(struct sched_domain_topology_level *tl)
1449 {
1450 	if (WARN_ON_ONCE(sched_smp_initialized))
1451 		return;
1452 
1453 	sched_domain_topology = tl;
1454 }
1455 
1456 #ifdef CONFIG_NUMA
1457 
1458 static const struct cpumask *sd_numa_mask(int cpu)
1459 {
1460 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1461 }
1462 
1463 static void sched_numa_warn(const char *str)
1464 {
1465 	static int done = false;
1466 	int i,j;
1467 
1468 	if (done)
1469 		return;
1470 
1471 	done = true;
1472 
1473 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1474 
1475 	for (i = 0; i < nr_node_ids; i++) {
1476 		printk(KERN_WARNING "  ");
1477 		for (j = 0; j < nr_node_ids; j++)
1478 			printk(KERN_CONT "%02d ", node_distance(i,j));
1479 		printk(KERN_CONT "\n");
1480 	}
1481 	printk(KERN_WARNING "\n");
1482 }
1483 
1484 bool find_numa_distance(int distance)
1485 {
1486 	int i;
1487 
1488 	if (distance == node_distance(0, 0))
1489 		return true;
1490 
1491 	for (i = 0; i < sched_domains_numa_levels; i++) {
1492 		if (sched_domains_numa_distance[i] == distance)
1493 			return true;
1494 	}
1495 
1496 	return false;
1497 }
1498 
1499 /*
1500  * A system can have three types of NUMA topology:
1501  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1502  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1503  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1504  *
1505  * The difference between a glueless mesh topology and a backplane
1506  * topology lies in whether communication between not directly
1507  * connected nodes goes through intermediary nodes (where programs
1508  * could run), or through backplane controllers. This affects
1509  * placement of programs.
1510  *
1511  * The type of topology can be discerned with the following tests:
1512  * - If the maximum distance between any nodes is 1 hop, the system
1513  *   is directly connected.
1514  * - If for two nodes A and B, located N > 1 hops away from each other,
1515  *   there is an intermediary node C, which is < N hops away from both
1516  *   nodes A and B, the system is a glueless mesh.
1517  */
1518 static void init_numa_topology_type(void)
1519 {
1520 	int a, b, c, n;
1521 
1522 	n = sched_max_numa_distance;
1523 
1524 	if (sched_domains_numa_levels <= 2) {
1525 		sched_numa_topology_type = NUMA_DIRECT;
1526 		return;
1527 	}
1528 
1529 	for_each_online_node(a) {
1530 		for_each_online_node(b) {
1531 			/* Find two nodes furthest removed from each other. */
1532 			if (node_distance(a, b) < n)
1533 				continue;
1534 
1535 			/* Is there an intermediary node between a and b? */
1536 			for_each_online_node(c) {
1537 				if (node_distance(a, c) < n &&
1538 				    node_distance(b, c) < n) {
1539 					sched_numa_topology_type =
1540 							NUMA_GLUELESS_MESH;
1541 					return;
1542 				}
1543 			}
1544 
1545 			sched_numa_topology_type = NUMA_BACKPLANE;
1546 			return;
1547 		}
1548 	}
1549 }
1550 
1551 void sched_init_numa(void)
1552 {
1553 	int next_distance, curr_distance = node_distance(0, 0);
1554 	struct sched_domain_topology_level *tl;
1555 	int level = 0;
1556 	int i, j, k;
1557 
1558 	sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1559 	if (!sched_domains_numa_distance)
1560 		return;
1561 
1562 	/* Includes NUMA identity node at level 0. */
1563 	sched_domains_numa_distance[level++] = curr_distance;
1564 	sched_domains_numa_levels = level;
1565 
1566 	/*
1567 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1568 	 * unique distances in the node_distance() table.
1569 	 *
1570 	 * Assumes node_distance(0,j) includes all distances in
1571 	 * node_distance(i,j) in order to avoid cubic time.
1572 	 */
1573 	next_distance = curr_distance;
1574 	for (i = 0; i < nr_node_ids; i++) {
1575 		for (j = 0; j < nr_node_ids; j++) {
1576 			for (k = 0; k < nr_node_ids; k++) {
1577 				int distance = node_distance(i, k);
1578 
1579 				if (distance > curr_distance &&
1580 				    (distance < next_distance ||
1581 				     next_distance == curr_distance))
1582 					next_distance = distance;
1583 
1584 				/*
1585 				 * While not a strong assumption it would be nice to know
1586 				 * about cases where if node A is connected to B, B is not
1587 				 * equally connected to A.
1588 				 */
1589 				if (sched_debug() && node_distance(k, i) != distance)
1590 					sched_numa_warn("Node-distance not symmetric");
1591 
1592 				if (sched_debug() && i && !find_numa_distance(distance))
1593 					sched_numa_warn("Node-0 not representative");
1594 			}
1595 			if (next_distance != curr_distance) {
1596 				sched_domains_numa_distance[level++] = next_distance;
1597 				sched_domains_numa_levels = level;
1598 				curr_distance = next_distance;
1599 			} else break;
1600 		}
1601 
1602 		/*
1603 		 * In case of sched_debug() we verify the above assumption.
1604 		 */
1605 		if (!sched_debug())
1606 			break;
1607 	}
1608 
1609 	/*
1610 	 * 'level' contains the number of unique distances
1611 	 *
1612 	 * The sched_domains_numa_distance[] array includes the actual distance
1613 	 * numbers.
1614 	 */
1615 
1616 	/*
1617 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1618 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1619 	 * the array will contain less then 'level' members. This could be
1620 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1621 	 * in other functions.
1622 	 *
1623 	 * We reset it to 'level' at the end of this function.
1624 	 */
1625 	sched_domains_numa_levels = 0;
1626 
1627 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1628 	if (!sched_domains_numa_masks)
1629 		return;
1630 
1631 	/*
1632 	 * Now for each level, construct a mask per node which contains all
1633 	 * CPUs of nodes that are that many hops away from us.
1634 	 */
1635 	for (i = 0; i < level; i++) {
1636 		sched_domains_numa_masks[i] =
1637 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1638 		if (!sched_domains_numa_masks[i])
1639 			return;
1640 
1641 		for (j = 0; j < nr_node_ids; j++) {
1642 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1643 			if (!mask)
1644 				return;
1645 
1646 			sched_domains_numa_masks[i][j] = mask;
1647 
1648 			for_each_node(k) {
1649 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1650 					continue;
1651 
1652 				cpumask_or(mask, mask, cpumask_of_node(k));
1653 			}
1654 		}
1655 	}
1656 
1657 	/* Compute default topology size */
1658 	for (i = 0; sched_domain_topology[i].mask; i++);
1659 
1660 	tl = kzalloc((i + level + 1) *
1661 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1662 	if (!tl)
1663 		return;
1664 
1665 	/*
1666 	 * Copy the default topology bits..
1667 	 */
1668 	for (i = 0; sched_domain_topology[i].mask; i++)
1669 		tl[i] = sched_domain_topology[i];
1670 
1671 	/*
1672 	 * Add the NUMA identity distance, aka single NODE.
1673 	 */
1674 	tl[i++] = (struct sched_domain_topology_level){
1675 		.mask = sd_numa_mask,
1676 		.numa_level = 0,
1677 		SD_INIT_NAME(NODE)
1678 	};
1679 
1680 	/*
1681 	 * .. and append 'j' levels of NUMA goodness.
1682 	 */
1683 	for (j = 1; j < level; i++, j++) {
1684 		tl[i] = (struct sched_domain_topology_level){
1685 			.mask = sd_numa_mask,
1686 			.sd_flags = cpu_numa_flags,
1687 			.flags = SDTL_OVERLAP,
1688 			.numa_level = j,
1689 			SD_INIT_NAME(NUMA)
1690 		};
1691 	}
1692 
1693 	sched_domain_topology = tl;
1694 
1695 	sched_domains_numa_levels = level;
1696 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1697 
1698 	init_numa_topology_type();
1699 }
1700 
1701 void sched_domains_numa_masks_set(unsigned int cpu)
1702 {
1703 	int node = cpu_to_node(cpu);
1704 	int i, j;
1705 
1706 	for (i = 0; i < sched_domains_numa_levels; i++) {
1707 		for (j = 0; j < nr_node_ids; j++) {
1708 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1709 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1710 		}
1711 	}
1712 }
1713 
1714 void sched_domains_numa_masks_clear(unsigned int cpu)
1715 {
1716 	int i, j;
1717 
1718 	for (i = 0; i < sched_domains_numa_levels; i++) {
1719 		for (j = 0; j < nr_node_ids; j++)
1720 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1721 	}
1722 }
1723 
1724 /*
1725  * sched_numa_find_closest() - given the NUMA topology, find the cpu
1726  *                             closest to @cpu from @cpumask.
1727  * cpumask: cpumask to find a cpu from
1728  * cpu: cpu to be close to
1729  *
1730  * returns: cpu, or nr_cpu_ids when nothing found.
1731  */
1732 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1733 {
1734 	int i, j = cpu_to_node(cpu);
1735 
1736 	for (i = 0; i < sched_domains_numa_levels; i++) {
1737 		cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1738 		if (cpu < nr_cpu_ids)
1739 			return cpu;
1740 	}
1741 	return nr_cpu_ids;
1742 }
1743 
1744 #endif /* CONFIG_NUMA */
1745 
1746 static int __sdt_alloc(const struct cpumask *cpu_map)
1747 {
1748 	struct sched_domain_topology_level *tl;
1749 	int j;
1750 
1751 	for_each_sd_topology(tl) {
1752 		struct sd_data *sdd = &tl->data;
1753 
1754 		sdd->sd = alloc_percpu(struct sched_domain *);
1755 		if (!sdd->sd)
1756 			return -ENOMEM;
1757 
1758 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1759 		if (!sdd->sds)
1760 			return -ENOMEM;
1761 
1762 		sdd->sg = alloc_percpu(struct sched_group *);
1763 		if (!sdd->sg)
1764 			return -ENOMEM;
1765 
1766 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1767 		if (!sdd->sgc)
1768 			return -ENOMEM;
1769 
1770 		for_each_cpu(j, cpu_map) {
1771 			struct sched_domain *sd;
1772 			struct sched_domain_shared *sds;
1773 			struct sched_group *sg;
1774 			struct sched_group_capacity *sgc;
1775 
1776 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1777 					GFP_KERNEL, cpu_to_node(j));
1778 			if (!sd)
1779 				return -ENOMEM;
1780 
1781 			*per_cpu_ptr(sdd->sd, j) = sd;
1782 
1783 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1784 					GFP_KERNEL, cpu_to_node(j));
1785 			if (!sds)
1786 				return -ENOMEM;
1787 
1788 			*per_cpu_ptr(sdd->sds, j) = sds;
1789 
1790 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1791 					GFP_KERNEL, cpu_to_node(j));
1792 			if (!sg)
1793 				return -ENOMEM;
1794 
1795 			sg->next = sg;
1796 
1797 			*per_cpu_ptr(sdd->sg, j) = sg;
1798 
1799 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1800 					GFP_KERNEL, cpu_to_node(j));
1801 			if (!sgc)
1802 				return -ENOMEM;
1803 
1804 #ifdef CONFIG_SCHED_DEBUG
1805 			sgc->id = j;
1806 #endif
1807 
1808 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1809 		}
1810 	}
1811 
1812 	return 0;
1813 }
1814 
1815 static void __sdt_free(const struct cpumask *cpu_map)
1816 {
1817 	struct sched_domain_topology_level *tl;
1818 	int j;
1819 
1820 	for_each_sd_topology(tl) {
1821 		struct sd_data *sdd = &tl->data;
1822 
1823 		for_each_cpu(j, cpu_map) {
1824 			struct sched_domain *sd;
1825 
1826 			if (sdd->sd) {
1827 				sd = *per_cpu_ptr(sdd->sd, j);
1828 				if (sd && (sd->flags & SD_OVERLAP))
1829 					free_sched_groups(sd->groups, 0);
1830 				kfree(*per_cpu_ptr(sdd->sd, j));
1831 			}
1832 
1833 			if (sdd->sds)
1834 				kfree(*per_cpu_ptr(sdd->sds, j));
1835 			if (sdd->sg)
1836 				kfree(*per_cpu_ptr(sdd->sg, j));
1837 			if (sdd->sgc)
1838 				kfree(*per_cpu_ptr(sdd->sgc, j));
1839 		}
1840 		free_percpu(sdd->sd);
1841 		sdd->sd = NULL;
1842 		free_percpu(sdd->sds);
1843 		sdd->sds = NULL;
1844 		free_percpu(sdd->sg);
1845 		sdd->sg = NULL;
1846 		free_percpu(sdd->sgc);
1847 		sdd->sgc = NULL;
1848 	}
1849 }
1850 
1851 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1852 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1853 		struct sched_domain *child, int dflags, int cpu)
1854 {
1855 	struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1856 
1857 	if (child) {
1858 		sd->level = child->level + 1;
1859 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1860 		child->parent = sd;
1861 
1862 		if (!cpumask_subset(sched_domain_span(child),
1863 				    sched_domain_span(sd))) {
1864 			pr_err("BUG: arch topology borken\n");
1865 #ifdef CONFIG_SCHED_DEBUG
1866 			pr_err("     the %s domain not a subset of the %s domain\n",
1867 					child->name, sd->name);
1868 #endif
1869 			/* Fixup, ensure @sd has at least @child CPUs. */
1870 			cpumask_or(sched_domain_span(sd),
1871 				   sched_domain_span(sd),
1872 				   sched_domain_span(child));
1873 		}
1874 
1875 	}
1876 	set_domain_attribute(sd, attr);
1877 
1878 	return sd;
1879 }
1880 
1881 /*
1882  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1883  * any two given CPUs at this (non-NUMA) topology level.
1884  */
1885 static bool topology_span_sane(struct sched_domain_topology_level *tl,
1886 			      const struct cpumask *cpu_map, int cpu)
1887 {
1888 	int i;
1889 
1890 	/* NUMA levels are allowed to overlap */
1891 	if (tl->flags & SDTL_OVERLAP)
1892 		return true;
1893 
1894 	/*
1895 	 * Non-NUMA levels cannot partially overlap - they must be either
1896 	 * completely equal or completely disjoint. Otherwise we can end up
1897 	 * breaking the sched_group lists - i.e. a later get_group() pass
1898 	 * breaks the linking done for an earlier span.
1899 	 */
1900 	for_each_cpu(i, cpu_map) {
1901 		if (i == cpu)
1902 			continue;
1903 		/*
1904 		 * We should 'and' all those masks with 'cpu_map' to exactly
1905 		 * match the topology we're about to build, but that can only
1906 		 * remove CPUs, which only lessens our ability to detect
1907 		 * overlaps
1908 		 */
1909 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
1910 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
1911 			return false;
1912 	}
1913 
1914 	return true;
1915 }
1916 
1917 /*
1918  * Find the sched_domain_topology_level where all CPU capacities are visible
1919  * for all CPUs.
1920  */
1921 static struct sched_domain_topology_level
1922 *asym_cpu_capacity_level(const struct cpumask *cpu_map)
1923 {
1924 	int i, j, asym_level = 0;
1925 	bool asym = false;
1926 	struct sched_domain_topology_level *tl, *asym_tl = NULL;
1927 	unsigned long cap;
1928 
1929 	/* Is there any asymmetry? */
1930 	cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
1931 
1932 	for_each_cpu(i, cpu_map) {
1933 		if (arch_scale_cpu_capacity(i) != cap) {
1934 			asym = true;
1935 			break;
1936 		}
1937 	}
1938 
1939 	if (!asym)
1940 		return NULL;
1941 
1942 	/*
1943 	 * Examine topology from all CPU's point of views to detect the lowest
1944 	 * sched_domain_topology_level where a highest capacity CPU is visible
1945 	 * to everyone.
1946 	 */
1947 	for_each_cpu(i, cpu_map) {
1948 		unsigned long max_capacity = arch_scale_cpu_capacity(i);
1949 		int tl_id = 0;
1950 
1951 		for_each_sd_topology(tl) {
1952 			if (tl_id < asym_level)
1953 				goto next_level;
1954 
1955 			for_each_cpu_and(j, tl->mask(i), cpu_map) {
1956 				unsigned long capacity;
1957 
1958 				capacity = arch_scale_cpu_capacity(j);
1959 
1960 				if (capacity <= max_capacity)
1961 					continue;
1962 
1963 				max_capacity = capacity;
1964 				asym_level = tl_id;
1965 				asym_tl = tl;
1966 			}
1967 next_level:
1968 			tl_id++;
1969 		}
1970 	}
1971 
1972 	return asym_tl;
1973 }
1974 
1975 
1976 /*
1977  * Build sched domains for a given set of CPUs and attach the sched domains
1978  * to the individual CPUs
1979  */
1980 static int
1981 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1982 {
1983 	enum s_alloc alloc_state = sa_none;
1984 	struct sched_domain *sd;
1985 	struct s_data d;
1986 	struct rq *rq = NULL;
1987 	int i, ret = -ENOMEM;
1988 	struct sched_domain_topology_level *tl_asym;
1989 	bool has_asym = false;
1990 
1991 	if (WARN_ON(cpumask_empty(cpu_map)))
1992 		goto error;
1993 
1994 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1995 	if (alloc_state != sa_rootdomain)
1996 		goto error;
1997 
1998 	tl_asym = asym_cpu_capacity_level(cpu_map);
1999 
2000 	/* Set up domains for CPUs specified by the cpu_map: */
2001 	for_each_cpu(i, cpu_map) {
2002 		struct sched_domain_topology_level *tl;
2003 
2004 		sd = NULL;
2005 		for_each_sd_topology(tl) {
2006 			int dflags = 0;
2007 
2008 			if (tl == tl_asym) {
2009 				dflags |= SD_ASYM_CPUCAPACITY;
2010 				has_asym = true;
2011 			}
2012 
2013 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2014 				goto error;
2015 
2016 			sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
2017 
2018 			if (tl == sched_domain_topology)
2019 				*per_cpu_ptr(d.sd, i) = sd;
2020 			if (tl->flags & SDTL_OVERLAP)
2021 				sd->flags |= SD_OVERLAP;
2022 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2023 				break;
2024 		}
2025 	}
2026 
2027 	/* Build the groups for the domains */
2028 	for_each_cpu(i, cpu_map) {
2029 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2030 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2031 			if (sd->flags & SD_OVERLAP) {
2032 				if (build_overlap_sched_groups(sd, i))
2033 					goto error;
2034 			} else {
2035 				if (build_sched_groups(sd, i))
2036 					goto error;
2037 			}
2038 		}
2039 	}
2040 
2041 	/* Calculate CPU capacity for physical packages and nodes */
2042 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2043 		if (!cpumask_test_cpu(i, cpu_map))
2044 			continue;
2045 
2046 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2047 			claim_allocations(i, sd);
2048 			init_sched_groups_capacity(i, sd);
2049 		}
2050 	}
2051 
2052 	/* Attach the domains */
2053 	rcu_read_lock();
2054 	for_each_cpu(i, cpu_map) {
2055 		rq = cpu_rq(i);
2056 		sd = *per_cpu_ptr(d.sd, i);
2057 
2058 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2059 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2060 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2061 
2062 		cpu_attach_domain(sd, d.rd, i);
2063 	}
2064 	rcu_read_unlock();
2065 
2066 	if (has_asym)
2067 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2068 
2069 	if (rq && sched_debug_enabled) {
2070 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2071 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2072 	}
2073 
2074 	ret = 0;
2075 error:
2076 	__free_domain_allocs(&d, alloc_state, cpu_map);
2077 
2078 	return ret;
2079 }
2080 
2081 /* Current sched domains: */
2082 static cpumask_var_t			*doms_cur;
2083 
2084 /* Number of sched domains in 'doms_cur': */
2085 static int				ndoms_cur;
2086 
2087 /* Attribues of custom domains in 'doms_cur' */
2088 static struct sched_domain_attr		*dattr_cur;
2089 
2090 /*
2091  * Special case: If a kmalloc() of a doms_cur partition (array of
2092  * cpumask) fails, then fallback to a single sched domain,
2093  * as determined by the single cpumask fallback_doms.
2094  */
2095 static cpumask_var_t			fallback_doms;
2096 
2097 /*
2098  * arch_update_cpu_topology lets virtualized architectures update the
2099  * CPU core maps. It is supposed to return 1 if the topology changed
2100  * or 0 if it stayed the same.
2101  */
2102 int __weak arch_update_cpu_topology(void)
2103 {
2104 	return 0;
2105 }
2106 
2107 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2108 {
2109 	int i;
2110 	cpumask_var_t *doms;
2111 
2112 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2113 	if (!doms)
2114 		return NULL;
2115 	for (i = 0; i < ndoms; i++) {
2116 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2117 			free_sched_domains(doms, i);
2118 			return NULL;
2119 		}
2120 	}
2121 	return doms;
2122 }
2123 
2124 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2125 {
2126 	unsigned int i;
2127 	for (i = 0; i < ndoms; i++)
2128 		free_cpumask_var(doms[i]);
2129 	kfree(doms);
2130 }
2131 
2132 /*
2133  * Set up scheduler domains and groups.  For now this just excludes isolated
2134  * CPUs, but could be used to exclude other special cases in the future.
2135  */
2136 int sched_init_domains(const struct cpumask *cpu_map)
2137 {
2138 	int err;
2139 
2140 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2141 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2142 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2143 
2144 	arch_update_cpu_topology();
2145 	ndoms_cur = 1;
2146 	doms_cur = alloc_sched_domains(ndoms_cur);
2147 	if (!doms_cur)
2148 		doms_cur = &fallback_doms;
2149 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2150 	err = build_sched_domains(doms_cur[0], NULL);
2151 	register_sched_domain_sysctl();
2152 
2153 	return err;
2154 }
2155 
2156 /*
2157  * Detach sched domains from a group of CPUs specified in cpu_map
2158  * These CPUs will now be attached to the NULL domain
2159  */
2160 static void detach_destroy_domains(const struct cpumask *cpu_map)
2161 {
2162 	unsigned int cpu = cpumask_any(cpu_map);
2163 	int i;
2164 
2165 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2166 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2167 
2168 	rcu_read_lock();
2169 	for_each_cpu(i, cpu_map)
2170 		cpu_attach_domain(NULL, &def_root_domain, i);
2171 	rcu_read_unlock();
2172 }
2173 
2174 /* handle null as "default" */
2175 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2176 			struct sched_domain_attr *new, int idx_new)
2177 {
2178 	struct sched_domain_attr tmp;
2179 
2180 	/* Fast path: */
2181 	if (!new && !cur)
2182 		return 1;
2183 
2184 	tmp = SD_ATTR_INIT;
2185 
2186 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2187 			new ? (new + idx_new) : &tmp,
2188 			sizeof(struct sched_domain_attr));
2189 }
2190 
2191 /*
2192  * Partition sched domains as specified by the 'ndoms_new'
2193  * cpumasks in the array doms_new[] of cpumasks. This compares
2194  * doms_new[] to the current sched domain partitioning, doms_cur[].
2195  * It destroys each deleted domain and builds each new domain.
2196  *
2197  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2198  * The masks don't intersect (don't overlap.) We should setup one
2199  * sched domain for each mask. CPUs not in any of the cpumasks will
2200  * not be load balanced. If the same cpumask appears both in the
2201  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2202  * it as it is.
2203  *
2204  * The passed in 'doms_new' should be allocated using
2205  * alloc_sched_domains.  This routine takes ownership of it and will
2206  * free_sched_domains it when done with it. If the caller failed the
2207  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2208  * and partition_sched_domains() will fallback to the single partition
2209  * 'fallback_doms', it also forces the domains to be rebuilt.
2210  *
2211  * If doms_new == NULL it will be replaced with cpu_online_mask.
2212  * ndoms_new == 0 is a special case for destroying existing domains,
2213  * and it will not create the default domain.
2214  *
2215  * Call with hotplug lock and sched_domains_mutex held
2216  */
2217 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2218 				    struct sched_domain_attr *dattr_new)
2219 {
2220 	bool __maybe_unused has_eas = false;
2221 	int i, j, n;
2222 	int new_topology;
2223 
2224 	lockdep_assert_held(&sched_domains_mutex);
2225 
2226 	/* Always unregister in case we don't destroy any domains: */
2227 	unregister_sched_domain_sysctl();
2228 
2229 	/* Let the architecture update CPU core mappings: */
2230 	new_topology = arch_update_cpu_topology();
2231 
2232 	if (!doms_new) {
2233 		WARN_ON_ONCE(dattr_new);
2234 		n = 0;
2235 		doms_new = alloc_sched_domains(1);
2236 		if (doms_new) {
2237 			n = 1;
2238 			cpumask_and(doms_new[0], cpu_active_mask,
2239 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
2240 		}
2241 	} else {
2242 		n = ndoms_new;
2243 	}
2244 
2245 	/* Destroy deleted domains: */
2246 	for (i = 0; i < ndoms_cur; i++) {
2247 		for (j = 0; j < n && !new_topology; j++) {
2248 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2249 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2250 				struct root_domain *rd;
2251 
2252 				/*
2253 				 * This domain won't be destroyed and as such
2254 				 * its dl_bw->total_bw needs to be cleared.  It
2255 				 * will be recomputed in function
2256 				 * update_tasks_root_domain().
2257 				 */
2258 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2259 				dl_clear_root_domain(rd);
2260 				goto match1;
2261 			}
2262 		}
2263 		/* No match - a current sched domain not in new doms_new[] */
2264 		detach_destroy_domains(doms_cur[i]);
2265 match1:
2266 		;
2267 	}
2268 
2269 	n = ndoms_cur;
2270 	if (!doms_new) {
2271 		n = 0;
2272 		doms_new = &fallback_doms;
2273 		cpumask_and(doms_new[0], cpu_active_mask,
2274 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
2275 	}
2276 
2277 	/* Build new domains: */
2278 	for (i = 0; i < ndoms_new; i++) {
2279 		for (j = 0; j < n && !new_topology; j++) {
2280 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2281 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2282 				goto match2;
2283 		}
2284 		/* No match - add a new doms_new */
2285 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2286 match2:
2287 		;
2288 	}
2289 
2290 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2291 	/* Build perf. domains: */
2292 	for (i = 0; i < ndoms_new; i++) {
2293 		for (j = 0; j < n && !sched_energy_update; j++) {
2294 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2295 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2296 				has_eas = true;
2297 				goto match3;
2298 			}
2299 		}
2300 		/* No match - add perf. domains for a new rd */
2301 		has_eas |= build_perf_domains(doms_new[i]);
2302 match3:
2303 		;
2304 	}
2305 	sched_energy_set(has_eas);
2306 #endif
2307 
2308 	/* Remember the new sched domains: */
2309 	if (doms_cur != &fallback_doms)
2310 		free_sched_domains(doms_cur, ndoms_cur);
2311 
2312 	kfree(dattr_cur);
2313 	doms_cur = doms_new;
2314 	dattr_cur = dattr_new;
2315 	ndoms_cur = ndoms_new;
2316 
2317 	register_sched_domain_sysctl();
2318 }
2319 
2320 /*
2321  * Call with hotplug lock held
2322  */
2323 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2324 			     struct sched_domain_attr *dattr_new)
2325 {
2326 	mutex_lock(&sched_domains_mutex);
2327 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2328 	mutex_unlock(&sched_domains_mutex);
2329 }
2330