1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Scheduler topology setup/handling methods 4 */ 5 6 #include <linux/bsearch.h> 7 8 DEFINE_MUTEX(sched_domains_mutex); 9 10 /* Protected by sched_domains_mutex: */ 11 static cpumask_var_t sched_domains_tmpmask; 12 static cpumask_var_t sched_domains_tmpmask2; 13 14 #ifdef CONFIG_SCHED_DEBUG 15 16 static int __init sched_debug_setup(char *str) 17 { 18 sched_debug_verbose = true; 19 20 return 0; 21 } 22 early_param("sched_verbose", sched_debug_setup); 23 24 static inline bool sched_debug(void) 25 { 26 return sched_debug_verbose; 27 } 28 29 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name }, 30 const struct sd_flag_debug sd_flag_debug[] = { 31 #include <linux/sched/sd_flags.h> 32 }; 33 #undef SD_FLAG 34 35 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 36 struct cpumask *groupmask) 37 { 38 struct sched_group *group = sd->groups; 39 unsigned long flags = sd->flags; 40 unsigned int idx; 41 42 cpumask_clear(groupmask); 43 44 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 45 printk(KERN_CONT "span=%*pbl level=%s\n", 46 cpumask_pr_args(sched_domain_span(sd)), sd->name); 47 48 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 49 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 50 } 51 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 52 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 53 } 54 55 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 56 unsigned int flag = BIT(idx); 57 unsigned int meta_flags = sd_flag_debug[idx].meta_flags; 58 59 if ((meta_flags & SDF_SHARED_CHILD) && sd->child && 60 !(sd->child->flags & flag)) 61 printk(KERN_ERR "ERROR: flag %s set here but not in child\n", 62 sd_flag_debug[idx].name); 63 64 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && 65 !(sd->parent->flags & flag)) 66 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n", 67 sd_flag_debug[idx].name); 68 } 69 70 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 71 do { 72 if (!group) { 73 printk("\n"); 74 printk(KERN_ERR "ERROR: group is NULL\n"); 75 break; 76 } 77 78 if (cpumask_empty(sched_group_span(group))) { 79 printk(KERN_CONT "\n"); 80 printk(KERN_ERR "ERROR: empty group\n"); 81 break; 82 } 83 84 if (!(sd->flags & SD_OVERLAP) && 85 cpumask_intersects(groupmask, sched_group_span(group))) { 86 printk(KERN_CONT "\n"); 87 printk(KERN_ERR "ERROR: repeated CPUs\n"); 88 break; 89 } 90 91 cpumask_or(groupmask, groupmask, sched_group_span(group)); 92 93 printk(KERN_CONT " %d:{ span=%*pbl", 94 group->sgc->id, 95 cpumask_pr_args(sched_group_span(group))); 96 97 if ((sd->flags & SD_OVERLAP) && 98 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 99 printk(KERN_CONT " mask=%*pbl", 100 cpumask_pr_args(group_balance_mask(group))); 101 } 102 103 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 104 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 105 106 if (group == sd->groups && sd->child && 107 !cpumask_equal(sched_domain_span(sd->child), 108 sched_group_span(group))) { 109 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 110 } 111 112 printk(KERN_CONT " }"); 113 114 group = group->next; 115 116 if (group != sd->groups) 117 printk(KERN_CONT ","); 118 119 } while (group != sd->groups); 120 printk(KERN_CONT "\n"); 121 122 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 123 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 124 125 if (sd->parent && 126 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 127 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 128 return 0; 129 } 130 131 static void sched_domain_debug(struct sched_domain *sd, int cpu) 132 { 133 int level = 0; 134 135 if (!sched_debug_verbose) 136 return; 137 138 if (!sd) { 139 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 140 return; 141 } 142 143 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 144 145 for (;;) { 146 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 147 break; 148 level++; 149 sd = sd->parent; 150 if (!sd) 151 break; 152 } 153 } 154 #else /* !CONFIG_SCHED_DEBUG */ 155 156 # define sched_debug_verbose 0 157 # define sched_domain_debug(sd, cpu) do { } while (0) 158 static inline bool sched_debug(void) 159 { 160 return false; 161 } 162 #endif /* CONFIG_SCHED_DEBUG */ 163 164 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */ 165 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) | 166 static const unsigned int SD_DEGENERATE_GROUPS_MASK = 167 #include <linux/sched/sd_flags.h> 168 0; 169 #undef SD_FLAG 170 171 static int sd_degenerate(struct sched_domain *sd) 172 { 173 if (cpumask_weight(sched_domain_span(sd)) == 1) 174 return 1; 175 176 /* Following flags need at least 2 groups */ 177 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) && 178 (sd->groups != sd->groups->next)) 179 return 0; 180 181 /* Following flags don't use groups */ 182 if (sd->flags & (SD_WAKE_AFFINE)) 183 return 0; 184 185 return 1; 186 } 187 188 static int 189 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 190 { 191 unsigned long cflags = sd->flags, pflags = parent->flags; 192 193 if (sd_degenerate(parent)) 194 return 1; 195 196 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 197 return 0; 198 199 /* Flags needing groups don't count if only 1 group in parent */ 200 if (parent->groups == parent->groups->next) 201 pflags &= ~SD_DEGENERATE_GROUPS_MASK; 202 203 if (~cflags & pflags) 204 return 0; 205 206 return 1; 207 } 208 209 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 210 DEFINE_STATIC_KEY_FALSE(sched_energy_present); 211 static unsigned int sysctl_sched_energy_aware = 1; 212 static DEFINE_MUTEX(sched_energy_mutex); 213 static bool sched_energy_update; 214 215 void rebuild_sched_domains_energy(void) 216 { 217 mutex_lock(&sched_energy_mutex); 218 sched_energy_update = true; 219 rebuild_sched_domains(); 220 sched_energy_update = false; 221 mutex_unlock(&sched_energy_mutex); 222 } 223 224 #ifdef CONFIG_PROC_SYSCTL 225 static int sched_energy_aware_handler(struct ctl_table *table, int write, 226 void *buffer, size_t *lenp, loff_t *ppos) 227 { 228 int ret, state; 229 230 if (write && !capable(CAP_SYS_ADMIN)) 231 return -EPERM; 232 233 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 234 if (!ret && write) { 235 state = static_branch_unlikely(&sched_energy_present); 236 if (state != sysctl_sched_energy_aware) 237 rebuild_sched_domains_energy(); 238 } 239 240 return ret; 241 } 242 243 static struct ctl_table sched_energy_aware_sysctls[] = { 244 { 245 .procname = "sched_energy_aware", 246 .data = &sysctl_sched_energy_aware, 247 .maxlen = sizeof(unsigned int), 248 .mode = 0644, 249 .proc_handler = sched_energy_aware_handler, 250 .extra1 = SYSCTL_ZERO, 251 .extra2 = SYSCTL_ONE, 252 }, 253 {} 254 }; 255 256 static int __init sched_energy_aware_sysctl_init(void) 257 { 258 register_sysctl_init("kernel", sched_energy_aware_sysctls); 259 return 0; 260 } 261 262 late_initcall(sched_energy_aware_sysctl_init); 263 #endif 264 265 static void free_pd(struct perf_domain *pd) 266 { 267 struct perf_domain *tmp; 268 269 while (pd) { 270 tmp = pd->next; 271 kfree(pd); 272 pd = tmp; 273 } 274 } 275 276 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 277 { 278 while (pd) { 279 if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 280 return pd; 281 pd = pd->next; 282 } 283 284 return NULL; 285 } 286 287 static struct perf_domain *pd_init(int cpu) 288 { 289 struct em_perf_domain *obj = em_cpu_get(cpu); 290 struct perf_domain *pd; 291 292 if (!obj) { 293 if (sched_debug()) 294 pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 295 return NULL; 296 } 297 298 pd = kzalloc(sizeof(*pd), GFP_KERNEL); 299 if (!pd) 300 return NULL; 301 pd->em_pd = obj; 302 303 return pd; 304 } 305 306 static void perf_domain_debug(const struct cpumask *cpu_map, 307 struct perf_domain *pd) 308 { 309 if (!sched_debug() || !pd) 310 return; 311 312 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 313 314 while (pd) { 315 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }", 316 cpumask_first(perf_domain_span(pd)), 317 cpumask_pr_args(perf_domain_span(pd)), 318 em_pd_nr_perf_states(pd->em_pd)); 319 pd = pd->next; 320 } 321 322 printk(KERN_CONT "\n"); 323 } 324 325 static void destroy_perf_domain_rcu(struct rcu_head *rp) 326 { 327 struct perf_domain *pd; 328 329 pd = container_of(rp, struct perf_domain, rcu); 330 free_pd(pd); 331 } 332 333 static void sched_energy_set(bool has_eas) 334 { 335 if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 336 if (sched_debug()) 337 pr_info("%s: stopping EAS\n", __func__); 338 static_branch_disable_cpuslocked(&sched_energy_present); 339 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 340 if (sched_debug()) 341 pr_info("%s: starting EAS\n", __func__); 342 static_branch_enable_cpuslocked(&sched_energy_present); 343 } 344 } 345 346 /* 347 * EAS can be used on a root domain if it meets all the following conditions: 348 * 1. an Energy Model (EM) is available; 349 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 350 * 3. no SMT is detected. 351 * 4. the EM complexity is low enough to keep scheduling overheads low; 352 * 5. schedutil is driving the frequency of all CPUs of the rd; 353 * 6. frequency invariance support is present; 354 * 355 * The complexity of the Energy Model is defined as: 356 * 357 * C = nr_pd * (nr_cpus + nr_ps) 358 * 359 * with parameters defined as: 360 * - nr_pd: the number of performance domains 361 * - nr_cpus: the number of CPUs 362 * - nr_ps: the sum of the number of performance states of all performance 363 * domains (for example, on a system with 2 performance domains, 364 * with 10 performance states each, nr_ps = 2 * 10 = 20). 365 * 366 * It is generally not a good idea to use such a model in the wake-up path on 367 * very complex platforms because of the associated scheduling overheads. The 368 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs 369 * with per-CPU DVFS and less than 8 performance states each, for example. 370 */ 371 #define EM_MAX_COMPLEXITY 2048 372 373 extern struct cpufreq_governor schedutil_gov; 374 static bool build_perf_domains(const struct cpumask *cpu_map) 375 { 376 int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map); 377 struct perf_domain *pd = NULL, *tmp; 378 int cpu = cpumask_first(cpu_map); 379 struct root_domain *rd = cpu_rq(cpu)->rd; 380 struct cpufreq_policy *policy; 381 struct cpufreq_governor *gov; 382 383 if (!sysctl_sched_energy_aware) 384 goto free; 385 386 /* EAS is enabled for asymmetric CPU capacity topologies. */ 387 if (!per_cpu(sd_asym_cpucapacity, cpu)) { 388 if (sched_debug()) { 389 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n", 390 cpumask_pr_args(cpu_map)); 391 } 392 goto free; 393 } 394 395 /* EAS definitely does *not* handle SMT */ 396 if (sched_smt_active()) { 397 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n", 398 cpumask_pr_args(cpu_map)); 399 goto free; 400 } 401 402 if (!arch_scale_freq_invariant()) { 403 if (sched_debug()) { 404 pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported", 405 cpumask_pr_args(cpu_map)); 406 } 407 goto free; 408 } 409 410 for_each_cpu(i, cpu_map) { 411 /* Skip already covered CPUs. */ 412 if (find_pd(pd, i)) 413 continue; 414 415 /* Do not attempt EAS if schedutil is not being used. */ 416 policy = cpufreq_cpu_get(i); 417 if (!policy) 418 goto free; 419 gov = policy->governor; 420 cpufreq_cpu_put(policy); 421 if (gov != &schedutil_gov) { 422 if (rd->pd) 423 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n", 424 cpumask_pr_args(cpu_map)); 425 goto free; 426 } 427 428 /* Create the new pd and add it to the local list. */ 429 tmp = pd_init(i); 430 if (!tmp) 431 goto free; 432 tmp->next = pd; 433 pd = tmp; 434 435 /* 436 * Count performance domains and performance states for the 437 * complexity check. 438 */ 439 nr_pd++; 440 nr_ps += em_pd_nr_perf_states(pd->em_pd); 441 } 442 443 /* Bail out if the Energy Model complexity is too high. */ 444 if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) { 445 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n", 446 cpumask_pr_args(cpu_map)); 447 goto free; 448 } 449 450 perf_domain_debug(cpu_map, pd); 451 452 /* Attach the new list of performance domains to the root domain. */ 453 tmp = rd->pd; 454 rcu_assign_pointer(rd->pd, pd); 455 if (tmp) 456 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 457 458 return !!pd; 459 460 free: 461 free_pd(pd); 462 tmp = rd->pd; 463 rcu_assign_pointer(rd->pd, NULL); 464 if (tmp) 465 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 466 467 return false; 468 } 469 #else 470 static void free_pd(struct perf_domain *pd) { } 471 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 472 473 static void free_rootdomain(struct rcu_head *rcu) 474 { 475 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 476 477 cpupri_cleanup(&rd->cpupri); 478 cpudl_cleanup(&rd->cpudl); 479 free_cpumask_var(rd->dlo_mask); 480 free_cpumask_var(rd->rto_mask); 481 free_cpumask_var(rd->online); 482 free_cpumask_var(rd->span); 483 free_pd(rd->pd); 484 kfree(rd); 485 } 486 487 void rq_attach_root(struct rq *rq, struct root_domain *rd) 488 { 489 struct root_domain *old_rd = NULL; 490 unsigned long flags; 491 492 raw_spin_rq_lock_irqsave(rq, flags); 493 494 if (rq->rd) { 495 old_rd = rq->rd; 496 497 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 498 set_rq_offline(rq); 499 500 cpumask_clear_cpu(rq->cpu, old_rd->span); 501 502 /* 503 * If we dont want to free the old_rd yet then 504 * set old_rd to NULL to skip the freeing later 505 * in this function: 506 */ 507 if (!atomic_dec_and_test(&old_rd->refcount)) 508 old_rd = NULL; 509 } 510 511 atomic_inc(&rd->refcount); 512 rq->rd = rd; 513 514 cpumask_set_cpu(rq->cpu, rd->span); 515 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 516 set_rq_online(rq); 517 518 raw_spin_rq_unlock_irqrestore(rq, flags); 519 520 if (old_rd) 521 call_rcu(&old_rd->rcu, free_rootdomain); 522 } 523 524 void sched_get_rd(struct root_domain *rd) 525 { 526 atomic_inc(&rd->refcount); 527 } 528 529 void sched_put_rd(struct root_domain *rd) 530 { 531 if (!atomic_dec_and_test(&rd->refcount)) 532 return; 533 534 call_rcu(&rd->rcu, free_rootdomain); 535 } 536 537 static int init_rootdomain(struct root_domain *rd) 538 { 539 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 540 goto out; 541 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 542 goto free_span; 543 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 544 goto free_online; 545 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 546 goto free_dlo_mask; 547 548 #ifdef HAVE_RT_PUSH_IPI 549 rd->rto_cpu = -1; 550 raw_spin_lock_init(&rd->rto_lock); 551 rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func); 552 #endif 553 554 rd->visit_gen = 0; 555 init_dl_bw(&rd->dl_bw); 556 if (cpudl_init(&rd->cpudl) != 0) 557 goto free_rto_mask; 558 559 if (cpupri_init(&rd->cpupri) != 0) 560 goto free_cpudl; 561 return 0; 562 563 free_cpudl: 564 cpudl_cleanup(&rd->cpudl); 565 free_rto_mask: 566 free_cpumask_var(rd->rto_mask); 567 free_dlo_mask: 568 free_cpumask_var(rd->dlo_mask); 569 free_online: 570 free_cpumask_var(rd->online); 571 free_span: 572 free_cpumask_var(rd->span); 573 out: 574 return -ENOMEM; 575 } 576 577 /* 578 * By default the system creates a single root-domain with all CPUs as 579 * members (mimicking the global state we have today). 580 */ 581 struct root_domain def_root_domain; 582 583 void __init init_defrootdomain(void) 584 { 585 init_rootdomain(&def_root_domain); 586 587 atomic_set(&def_root_domain.refcount, 1); 588 } 589 590 static struct root_domain *alloc_rootdomain(void) 591 { 592 struct root_domain *rd; 593 594 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 595 if (!rd) 596 return NULL; 597 598 if (init_rootdomain(rd) != 0) { 599 kfree(rd); 600 return NULL; 601 } 602 603 return rd; 604 } 605 606 static void free_sched_groups(struct sched_group *sg, int free_sgc) 607 { 608 struct sched_group *tmp, *first; 609 610 if (!sg) 611 return; 612 613 first = sg; 614 do { 615 tmp = sg->next; 616 617 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 618 kfree(sg->sgc); 619 620 if (atomic_dec_and_test(&sg->ref)) 621 kfree(sg); 622 sg = tmp; 623 } while (sg != first); 624 } 625 626 static void destroy_sched_domain(struct sched_domain *sd) 627 { 628 /* 629 * A normal sched domain may have multiple group references, an 630 * overlapping domain, having private groups, only one. Iterate, 631 * dropping group/capacity references, freeing where none remain. 632 */ 633 free_sched_groups(sd->groups, 1); 634 635 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 636 kfree(sd->shared); 637 kfree(sd); 638 } 639 640 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 641 { 642 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 643 644 while (sd) { 645 struct sched_domain *parent = sd->parent; 646 destroy_sched_domain(sd); 647 sd = parent; 648 } 649 } 650 651 static void destroy_sched_domains(struct sched_domain *sd) 652 { 653 if (sd) 654 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 655 } 656 657 /* 658 * Keep a special pointer to the highest sched_domain that has 659 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 660 * allows us to avoid some pointer chasing select_idle_sibling(). 661 * 662 * Also keep a unique ID per domain (we use the first CPU number in 663 * the cpumask of the domain), this allows us to quickly tell if 664 * two CPUs are in the same cache domain, see cpus_share_cache(). 665 */ 666 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 667 DEFINE_PER_CPU(int, sd_llc_size); 668 DEFINE_PER_CPU(int, sd_llc_id); 669 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 670 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 671 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 672 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 673 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 674 675 static void update_top_cache_domain(int cpu) 676 { 677 struct sched_domain_shared *sds = NULL; 678 struct sched_domain *sd; 679 int id = cpu; 680 int size = 1; 681 682 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 683 if (sd) { 684 id = cpumask_first(sched_domain_span(sd)); 685 size = cpumask_weight(sched_domain_span(sd)); 686 sds = sd->shared; 687 } 688 689 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 690 per_cpu(sd_llc_size, cpu) = size; 691 per_cpu(sd_llc_id, cpu) = id; 692 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 693 694 sd = lowest_flag_domain(cpu, SD_NUMA); 695 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 696 697 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 698 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 699 700 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL); 701 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 702 } 703 704 /* 705 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 706 * hold the hotplug lock. 707 */ 708 static void 709 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 710 { 711 struct rq *rq = cpu_rq(cpu); 712 struct sched_domain *tmp; 713 714 /* Remove the sched domains which do not contribute to scheduling. */ 715 for (tmp = sd; tmp; ) { 716 struct sched_domain *parent = tmp->parent; 717 if (!parent) 718 break; 719 720 if (sd_parent_degenerate(tmp, parent)) { 721 tmp->parent = parent->parent; 722 if (parent->parent) 723 parent->parent->child = tmp; 724 /* 725 * Transfer SD_PREFER_SIBLING down in case of a 726 * degenerate parent; the spans match for this 727 * so the property transfers. 728 */ 729 if (parent->flags & SD_PREFER_SIBLING) 730 tmp->flags |= SD_PREFER_SIBLING; 731 destroy_sched_domain(parent); 732 } else 733 tmp = tmp->parent; 734 } 735 736 if (sd && sd_degenerate(sd)) { 737 tmp = sd; 738 sd = sd->parent; 739 destroy_sched_domain(tmp); 740 if (sd) { 741 struct sched_group *sg = sd->groups; 742 743 /* 744 * sched groups hold the flags of the child sched 745 * domain for convenience. Clear such flags since 746 * the child is being destroyed. 747 */ 748 do { 749 sg->flags = 0; 750 } while (sg != sd->groups); 751 752 sd->child = NULL; 753 } 754 } 755 756 sched_domain_debug(sd, cpu); 757 758 rq_attach_root(rq, rd); 759 tmp = rq->sd; 760 rcu_assign_pointer(rq->sd, sd); 761 dirty_sched_domain_sysctl(cpu); 762 destroy_sched_domains(tmp); 763 764 update_top_cache_domain(cpu); 765 } 766 767 struct s_data { 768 struct sched_domain * __percpu *sd; 769 struct root_domain *rd; 770 }; 771 772 enum s_alloc { 773 sa_rootdomain, 774 sa_sd, 775 sa_sd_storage, 776 sa_none, 777 }; 778 779 /* 780 * Return the canonical balance CPU for this group, this is the first CPU 781 * of this group that's also in the balance mask. 782 * 783 * The balance mask are all those CPUs that could actually end up at this 784 * group. See build_balance_mask(). 785 * 786 * Also see should_we_balance(). 787 */ 788 int group_balance_cpu(struct sched_group *sg) 789 { 790 return cpumask_first(group_balance_mask(sg)); 791 } 792 793 794 /* 795 * NUMA topology (first read the regular topology blurb below) 796 * 797 * Given a node-distance table, for example: 798 * 799 * node 0 1 2 3 800 * 0: 10 20 30 20 801 * 1: 20 10 20 30 802 * 2: 30 20 10 20 803 * 3: 20 30 20 10 804 * 805 * which represents a 4 node ring topology like: 806 * 807 * 0 ----- 1 808 * | | 809 * | | 810 * | | 811 * 3 ----- 2 812 * 813 * We want to construct domains and groups to represent this. The way we go 814 * about doing this is to build the domains on 'hops'. For each NUMA level we 815 * construct the mask of all nodes reachable in @level hops. 816 * 817 * For the above NUMA topology that gives 3 levels: 818 * 819 * NUMA-2 0-3 0-3 0-3 0-3 820 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 821 * 822 * NUMA-1 0-1,3 0-2 1-3 0,2-3 823 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 824 * 825 * NUMA-0 0 1 2 3 826 * 827 * 828 * As can be seen; things don't nicely line up as with the regular topology. 829 * When we iterate a domain in child domain chunks some nodes can be 830 * represented multiple times -- hence the "overlap" naming for this part of 831 * the topology. 832 * 833 * In order to minimize this overlap, we only build enough groups to cover the 834 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 835 * 836 * Because: 837 * 838 * - the first group of each domain is its child domain; this 839 * gets us the first 0-1,3 840 * - the only uncovered node is 2, who's child domain is 1-3. 841 * 842 * However, because of the overlap, computing a unique CPU for each group is 843 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 844 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 845 * end up at those groups (they would end up in group: 0-1,3). 846 * 847 * To correct this we have to introduce the group balance mask. This mask 848 * will contain those CPUs in the group that can reach this group given the 849 * (child) domain tree. 850 * 851 * With this we can once again compute balance_cpu and sched_group_capacity 852 * relations. 853 * 854 * XXX include words on how balance_cpu is unique and therefore can be 855 * used for sched_group_capacity links. 856 * 857 * 858 * Another 'interesting' topology is: 859 * 860 * node 0 1 2 3 861 * 0: 10 20 20 30 862 * 1: 20 10 20 20 863 * 2: 20 20 10 20 864 * 3: 30 20 20 10 865 * 866 * Which looks a little like: 867 * 868 * 0 ----- 1 869 * | / | 870 * | / | 871 * | / | 872 * 2 ----- 3 873 * 874 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 875 * are not. 876 * 877 * This leads to a few particularly weird cases where the sched_domain's are 878 * not of the same number for each CPU. Consider: 879 * 880 * NUMA-2 0-3 0-3 881 * groups: {0-2},{1-3} {1-3},{0-2} 882 * 883 * NUMA-1 0-2 0-3 0-3 1-3 884 * 885 * NUMA-0 0 1 2 3 886 * 887 */ 888 889 890 /* 891 * Build the balance mask; it contains only those CPUs that can arrive at this 892 * group and should be considered to continue balancing. 893 * 894 * We do this during the group creation pass, therefore the group information 895 * isn't complete yet, however since each group represents a (child) domain we 896 * can fully construct this using the sched_domain bits (which are already 897 * complete). 898 */ 899 static void 900 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 901 { 902 const struct cpumask *sg_span = sched_group_span(sg); 903 struct sd_data *sdd = sd->private; 904 struct sched_domain *sibling; 905 int i; 906 907 cpumask_clear(mask); 908 909 for_each_cpu(i, sg_span) { 910 sibling = *per_cpu_ptr(sdd->sd, i); 911 912 /* 913 * Can happen in the asymmetric case, where these siblings are 914 * unused. The mask will not be empty because those CPUs that 915 * do have the top domain _should_ span the domain. 916 */ 917 if (!sibling->child) 918 continue; 919 920 /* If we would not end up here, we can't continue from here */ 921 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 922 continue; 923 924 cpumask_set_cpu(i, mask); 925 } 926 927 /* We must not have empty masks here */ 928 WARN_ON_ONCE(cpumask_empty(mask)); 929 } 930 931 /* 932 * XXX: This creates per-node group entries; since the load-balancer will 933 * immediately access remote memory to construct this group's load-balance 934 * statistics having the groups node local is of dubious benefit. 935 */ 936 static struct sched_group * 937 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 938 { 939 struct sched_group *sg; 940 struct cpumask *sg_span; 941 942 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 943 GFP_KERNEL, cpu_to_node(cpu)); 944 945 if (!sg) 946 return NULL; 947 948 sg_span = sched_group_span(sg); 949 if (sd->child) { 950 cpumask_copy(sg_span, sched_domain_span(sd->child)); 951 sg->flags = sd->child->flags; 952 } else { 953 cpumask_copy(sg_span, sched_domain_span(sd)); 954 } 955 956 atomic_inc(&sg->ref); 957 return sg; 958 } 959 960 static void init_overlap_sched_group(struct sched_domain *sd, 961 struct sched_group *sg) 962 { 963 struct cpumask *mask = sched_domains_tmpmask2; 964 struct sd_data *sdd = sd->private; 965 struct cpumask *sg_span; 966 int cpu; 967 968 build_balance_mask(sd, sg, mask); 969 cpu = cpumask_first(mask); 970 971 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 972 if (atomic_inc_return(&sg->sgc->ref) == 1) 973 cpumask_copy(group_balance_mask(sg), mask); 974 else 975 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 976 977 /* 978 * Initialize sgc->capacity such that even if we mess up the 979 * domains and no possible iteration will get us here, we won't 980 * die on a /0 trap. 981 */ 982 sg_span = sched_group_span(sg); 983 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 984 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 985 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 986 } 987 988 static struct sched_domain * 989 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling) 990 { 991 /* 992 * The proper descendant would be the one whose child won't span out 993 * of sd 994 */ 995 while (sibling->child && 996 !cpumask_subset(sched_domain_span(sibling->child), 997 sched_domain_span(sd))) 998 sibling = sibling->child; 999 1000 /* 1001 * As we are referencing sgc across different topology level, we need 1002 * to go down to skip those sched_domains which don't contribute to 1003 * scheduling because they will be degenerated in cpu_attach_domain 1004 */ 1005 while (sibling->child && 1006 cpumask_equal(sched_domain_span(sibling->child), 1007 sched_domain_span(sibling))) 1008 sibling = sibling->child; 1009 1010 return sibling; 1011 } 1012 1013 static int 1014 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 1015 { 1016 struct sched_group *first = NULL, *last = NULL, *sg; 1017 const struct cpumask *span = sched_domain_span(sd); 1018 struct cpumask *covered = sched_domains_tmpmask; 1019 struct sd_data *sdd = sd->private; 1020 struct sched_domain *sibling; 1021 int i; 1022 1023 cpumask_clear(covered); 1024 1025 for_each_cpu_wrap(i, span, cpu) { 1026 struct cpumask *sg_span; 1027 1028 if (cpumask_test_cpu(i, covered)) 1029 continue; 1030 1031 sibling = *per_cpu_ptr(sdd->sd, i); 1032 1033 /* 1034 * Asymmetric node setups can result in situations where the 1035 * domain tree is of unequal depth, make sure to skip domains 1036 * that already cover the entire range. 1037 * 1038 * In that case build_sched_domains() will have terminated the 1039 * iteration early and our sibling sd spans will be empty. 1040 * Domains should always include the CPU they're built on, so 1041 * check that. 1042 */ 1043 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 1044 continue; 1045 1046 /* 1047 * Usually we build sched_group by sibling's child sched_domain 1048 * But for machines whose NUMA diameter are 3 or above, we move 1049 * to build sched_group by sibling's proper descendant's child 1050 * domain because sibling's child sched_domain will span out of 1051 * the sched_domain being built as below. 1052 * 1053 * Smallest diameter=3 topology is: 1054 * 1055 * node 0 1 2 3 1056 * 0: 10 20 30 40 1057 * 1: 20 10 20 30 1058 * 2: 30 20 10 20 1059 * 3: 40 30 20 10 1060 * 1061 * 0 --- 1 --- 2 --- 3 1062 * 1063 * NUMA-3 0-3 N/A N/A 0-3 1064 * groups: {0-2},{1-3} {1-3},{0-2} 1065 * 1066 * NUMA-2 0-2 0-3 0-3 1-3 1067 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2} 1068 * 1069 * NUMA-1 0-1 0-2 1-3 2-3 1070 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2} 1071 * 1072 * NUMA-0 0 1 2 3 1073 * 1074 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the 1075 * group span isn't a subset of the domain span. 1076 */ 1077 if (sibling->child && 1078 !cpumask_subset(sched_domain_span(sibling->child), span)) 1079 sibling = find_descended_sibling(sd, sibling); 1080 1081 sg = build_group_from_child_sched_domain(sibling, cpu); 1082 if (!sg) 1083 goto fail; 1084 1085 sg_span = sched_group_span(sg); 1086 cpumask_or(covered, covered, sg_span); 1087 1088 init_overlap_sched_group(sibling, sg); 1089 1090 if (!first) 1091 first = sg; 1092 if (last) 1093 last->next = sg; 1094 last = sg; 1095 last->next = first; 1096 } 1097 sd->groups = first; 1098 1099 return 0; 1100 1101 fail: 1102 free_sched_groups(first, 0); 1103 1104 return -ENOMEM; 1105 } 1106 1107 1108 /* 1109 * Package topology (also see the load-balance blurb in fair.c) 1110 * 1111 * The scheduler builds a tree structure to represent a number of important 1112 * topology features. By default (default_topology[]) these include: 1113 * 1114 * - Simultaneous multithreading (SMT) 1115 * - Multi-Core Cache (MC) 1116 * - Package (DIE) 1117 * 1118 * Where the last one more or less denotes everything up to a NUMA node. 1119 * 1120 * The tree consists of 3 primary data structures: 1121 * 1122 * sched_domain -> sched_group -> sched_group_capacity 1123 * ^ ^ ^ ^ 1124 * `-' `-' 1125 * 1126 * The sched_domains are per-CPU and have a two way link (parent & child) and 1127 * denote the ever growing mask of CPUs belonging to that level of topology. 1128 * 1129 * Each sched_domain has a circular (double) linked list of sched_group's, each 1130 * denoting the domains of the level below (or individual CPUs in case of the 1131 * first domain level). The sched_group linked by a sched_domain includes the 1132 * CPU of that sched_domain [*]. 1133 * 1134 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 1135 * 1136 * CPU 0 1 2 3 4 5 6 7 1137 * 1138 * DIE [ ] 1139 * MC [ ] [ ] 1140 * SMT [ ] [ ] [ ] [ ] 1141 * 1142 * - or - 1143 * 1144 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 1145 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 1146 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 1147 * 1148 * CPU 0 1 2 3 4 5 6 7 1149 * 1150 * One way to think about it is: sched_domain moves you up and down among these 1151 * topology levels, while sched_group moves you sideways through it, at child 1152 * domain granularity. 1153 * 1154 * sched_group_capacity ensures each unique sched_group has shared storage. 1155 * 1156 * There are two related construction problems, both require a CPU that 1157 * uniquely identify each group (for a given domain): 1158 * 1159 * - The first is the balance_cpu (see should_we_balance() and the 1160 * load-balance blub in fair.c); for each group we only want 1 CPU to 1161 * continue balancing at a higher domain. 1162 * 1163 * - The second is the sched_group_capacity; we want all identical groups 1164 * to share a single sched_group_capacity. 1165 * 1166 * Since these topologies are exclusive by construction. That is, its 1167 * impossible for an SMT thread to belong to multiple cores, and cores to 1168 * be part of multiple caches. There is a very clear and unique location 1169 * for each CPU in the hierarchy. 1170 * 1171 * Therefore computing a unique CPU for each group is trivial (the iteration 1172 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 1173 * group), we can simply pick the first CPU in each group. 1174 * 1175 * 1176 * [*] in other words, the first group of each domain is its child domain. 1177 */ 1178 1179 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1180 { 1181 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1182 struct sched_domain *child = sd->child; 1183 struct sched_group *sg; 1184 bool already_visited; 1185 1186 if (child) 1187 cpu = cpumask_first(sched_domain_span(child)); 1188 1189 sg = *per_cpu_ptr(sdd->sg, cpu); 1190 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1191 1192 /* Increase refcounts for claim_allocations: */ 1193 already_visited = atomic_inc_return(&sg->ref) > 1; 1194 /* sgc visits should follow a similar trend as sg */ 1195 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 1196 1197 /* If we have already visited that group, it's already initialized. */ 1198 if (already_visited) 1199 return sg; 1200 1201 if (child) { 1202 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1203 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 1204 sg->flags = child->flags; 1205 } else { 1206 cpumask_set_cpu(cpu, sched_group_span(sg)); 1207 cpumask_set_cpu(cpu, group_balance_mask(sg)); 1208 } 1209 1210 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 1211 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1212 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1213 1214 return sg; 1215 } 1216 1217 /* 1218 * build_sched_groups will build a circular linked list of the groups 1219 * covered by the given span, will set each group's ->cpumask correctly, 1220 * and will initialize their ->sgc. 1221 * 1222 * Assumes the sched_domain tree is fully constructed 1223 */ 1224 static int 1225 build_sched_groups(struct sched_domain *sd, int cpu) 1226 { 1227 struct sched_group *first = NULL, *last = NULL; 1228 struct sd_data *sdd = sd->private; 1229 const struct cpumask *span = sched_domain_span(sd); 1230 struct cpumask *covered; 1231 int i; 1232 1233 lockdep_assert_held(&sched_domains_mutex); 1234 covered = sched_domains_tmpmask; 1235 1236 cpumask_clear(covered); 1237 1238 for_each_cpu_wrap(i, span, cpu) { 1239 struct sched_group *sg; 1240 1241 if (cpumask_test_cpu(i, covered)) 1242 continue; 1243 1244 sg = get_group(i, sdd); 1245 1246 cpumask_or(covered, covered, sched_group_span(sg)); 1247 1248 if (!first) 1249 first = sg; 1250 if (last) 1251 last->next = sg; 1252 last = sg; 1253 } 1254 last->next = first; 1255 sd->groups = first; 1256 1257 return 0; 1258 } 1259 1260 /* 1261 * Initialize sched groups cpu_capacity. 1262 * 1263 * cpu_capacity indicates the capacity of sched group, which is used while 1264 * distributing the load between different sched groups in a sched domain. 1265 * Typically cpu_capacity for all the groups in a sched domain will be same 1266 * unless there are asymmetries in the topology. If there are asymmetries, 1267 * group having more cpu_capacity will pickup more load compared to the 1268 * group having less cpu_capacity. 1269 */ 1270 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1271 { 1272 struct sched_group *sg = sd->groups; 1273 1274 WARN_ON(!sg); 1275 1276 do { 1277 int cpu, max_cpu = -1; 1278 1279 sg->group_weight = cpumask_weight(sched_group_span(sg)); 1280 1281 if (!(sd->flags & SD_ASYM_PACKING)) 1282 goto next; 1283 1284 for_each_cpu(cpu, sched_group_span(sg)) { 1285 if (max_cpu < 0) 1286 max_cpu = cpu; 1287 else if (sched_asym_prefer(cpu, max_cpu)) 1288 max_cpu = cpu; 1289 } 1290 sg->asym_prefer_cpu = max_cpu; 1291 1292 next: 1293 sg = sg->next; 1294 } while (sg != sd->groups); 1295 1296 if (cpu != group_balance_cpu(sg)) 1297 return; 1298 1299 update_group_capacity(sd, cpu); 1300 } 1301 1302 /* 1303 * Asymmetric CPU capacity bits 1304 */ 1305 struct asym_cap_data { 1306 struct list_head link; 1307 unsigned long capacity; 1308 unsigned long cpus[]; 1309 }; 1310 1311 /* 1312 * Set of available CPUs grouped by their corresponding capacities 1313 * Each list entry contains a CPU mask reflecting CPUs that share the same 1314 * capacity. 1315 * The lifespan of data is unlimited. 1316 */ 1317 static LIST_HEAD(asym_cap_list); 1318 1319 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 1320 1321 /* 1322 * Verify whether there is any CPU capacity asymmetry in a given sched domain. 1323 * Provides sd_flags reflecting the asymmetry scope. 1324 */ 1325 static inline int 1326 asym_cpu_capacity_classify(const struct cpumask *sd_span, 1327 const struct cpumask *cpu_map) 1328 { 1329 struct asym_cap_data *entry; 1330 int count = 0, miss = 0; 1331 1332 /* 1333 * Count how many unique CPU capacities this domain spans across 1334 * (compare sched_domain CPUs mask with ones representing available 1335 * CPUs capacities). Take into account CPUs that might be offline: 1336 * skip those. 1337 */ 1338 list_for_each_entry(entry, &asym_cap_list, link) { 1339 if (cpumask_intersects(sd_span, cpu_capacity_span(entry))) 1340 ++count; 1341 else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry))) 1342 ++miss; 1343 } 1344 1345 WARN_ON_ONCE(!count && !list_empty(&asym_cap_list)); 1346 1347 /* No asymmetry detected */ 1348 if (count < 2) 1349 return 0; 1350 /* Some of the available CPU capacity values have not been detected */ 1351 if (miss) 1352 return SD_ASYM_CPUCAPACITY; 1353 1354 /* Full asymmetry */ 1355 return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL; 1356 1357 } 1358 1359 static inline void asym_cpu_capacity_update_data(int cpu) 1360 { 1361 unsigned long capacity = arch_scale_cpu_capacity(cpu); 1362 struct asym_cap_data *entry = NULL; 1363 1364 list_for_each_entry(entry, &asym_cap_list, link) { 1365 if (capacity == entry->capacity) 1366 goto done; 1367 } 1368 1369 entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL); 1370 if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n")) 1371 return; 1372 entry->capacity = capacity; 1373 list_add(&entry->link, &asym_cap_list); 1374 done: 1375 __cpumask_set_cpu(cpu, cpu_capacity_span(entry)); 1376 } 1377 1378 /* 1379 * Build-up/update list of CPUs grouped by their capacities 1380 * An update requires explicit request to rebuild sched domains 1381 * with state indicating CPU topology changes. 1382 */ 1383 static void asym_cpu_capacity_scan(void) 1384 { 1385 struct asym_cap_data *entry, *next; 1386 int cpu; 1387 1388 list_for_each_entry(entry, &asym_cap_list, link) 1389 cpumask_clear(cpu_capacity_span(entry)); 1390 1391 for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) 1392 asym_cpu_capacity_update_data(cpu); 1393 1394 list_for_each_entry_safe(entry, next, &asym_cap_list, link) { 1395 if (cpumask_empty(cpu_capacity_span(entry))) { 1396 list_del(&entry->link); 1397 kfree(entry); 1398 } 1399 } 1400 1401 /* 1402 * Only one capacity value has been detected i.e. this system is symmetric. 1403 * No need to keep this data around. 1404 */ 1405 if (list_is_singular(&asym_cap_list)) { 1406 entry = list_first_entry(&asym_cap_list, typeof(*entry), link); 1407 list_del(&entry->link); 1408 kfree(entry); 1409 } 1410 } 1411 1412 /* 1413 * Initializers for schedule domains 1414 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1415 */ 1416 1417 static int default_relax_domain_level = -1; 1418 int sched_domain_level_max; 1419 1420 static int __init setup_relax_domain_level(char *str) 1421 { 1422 if (kstrtoint(str, 0, &default_relax_domain_level)) 1423 pr_warn("Unable to set relax_domain_level\n"); 1424 1425 return 1; 1426 } 1427 __setup("relax_domain_level=", setup_relax_domain_level); 1428 1429 static void set_domain_attribute(struct sched_domain *sd, 1430 struct sched_domain_attr *attr) 1431 { 1432 int request; 1433 1434 if (!attr || attr->relax_domain_level < 0) { 1435 if (default_relax_domain_level < 0) 1436 return; 1437 request = default_relax_domain_level; 1438 } else 1439 request = attr->relax_domain_level; 1440 1441 if (sd->level > request) { 1442 /* Turn off idle balance on this domain: */ 1443 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1444 } 1445 } 1446 1447 static void __sdt_free(const struct cpumask *cpu_map); 1448 static int __sdt_alloc(const struct cpumask *cpu_map); 1449 1450 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1451 const struct cpumask *cpu_map) 1452 { 1453 switch (what) { 1454 case sa_rootdomain: 1455 if (!atomic_read(&d->rd->refcount)) 1456 free_rootdomain(&d->rd->rcu); 1457 fallthrough; 1458 case sa_sd: 1459 free_percpu(d->sd); 1460 fallthrough; 1461 case sa_sd_storage: 1462 __sdt_free(cpu_map); 1463 fallthrough; 1464 case sa_none: 1465 break; 1466 } 1467 } 1468 1469 static enum s_alloc 1470 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1471 { 1472 memset(d, 0, sizeof(*d)); 1473 1474 if (__sdt_alloc(cpu_map)) 1475 return sa_sd_storage; 1476 d->sd = alloc_percpu(struct sched_domain *); 1477 if (!d->sd) 1478 return sa_sd_storage; 1479 d->rd = alloc_rootdomain(); 1480 if (!d->rd) 1481 return sa_sd; 1482 1483 return sa_rootdomain; 1484 } 1485 1486 /* 1487 * NULL the sd_data elements we've used to build the sched_domain and 1488 * sched_group structure so that the subsequent __free_domain_allocs() 1489 * will not free the data we're using. 1490 */ 1491 static void claim_allocations(int cpu, struct sched_domain *sd) 1492 { 1493 struct sd_data *sdd = sd->private; 1494 1495 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1496 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1497 1498 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1499 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1500 1501 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1502 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1503 1504 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1505 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1506 } 1507 1508 #ifdef CONFIG_NUMA 1509 enum numa_topology_type sched_numa_topology_type; 1510 1511 static int sched_domains_numa_levels; 1512 static int sched_domains_curr_level; 1513 1514 int sched_max_numa_distance; 1515 static int *sched_domains_numa_distance; 1516 static struct cpumask ***sched_domains_numa_masks; 1517 #endif 1518 1519 /* 1520 * SD_flags allowed in topology descriptions. 1521 * 1522 * These flags are purely descriptive of the topology and do not prescribe 1523 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1524 * function: 1525 * 1526 * SD_SHARE_CPUCAPACITY - describes SMT topologies 1527 * SD_SHARE_PKG_RESOURCES - describes shared caches 1528 * SD_NUMA - describes NUMA topologies 1529 * 1530 * Odd one out, which beside describing the topology has a quirk also 1531 * prescribes the desired behaviour that goes along with it: 1532 * 1533 * SD_ASYM_PACKING - describes SMT quirks 1534 */ 1535 #define TOPOLOGY_SD_FLAGS \ 1536 (SD_SHARE_CPUCAPACITY | \ 1537 SD_SHARE_PKG_RESOURCES | \ 1538 SD_NUMA | \ 1539 SD_ASYM_PACKING) 1540 1541 static struct sched_domain * 1542 sd_init(struct sched_domain_topology_level *tl, 1543 const struct cpumask *cpu_map, 1544 struct sched_domain *child, int cpu) 1545 { 1546 struct sd_data *sdd = &tl->data; 1547 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1548 int sd_id, sd_weight, sd_flags = 0; 1549 struct cpumask *sd_span; 1550 1551 #ifdef CONFIG_NUMA 1552 /* 1553 * Ugly hack to pass state to sd_numa_mask()... 1554 */ 1555 sched_domains_curr_level = tl->numa_level; 1556 #endif 1557 1558 sd_weight = cpumask_weight(tl->mask(cpu)); 1559 1560 if (tl->sd_flags) 1561 sd_flags = (*tl->sd_flags)(); 1562 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1563 "wrong sd_flags in topology description\n")) 1564 sd_flags &= TOPOLOGY_SD_FLAGS; 1565 1566 *sd = (struct sched_domain){ 1567 .min_interval = sd_weight, 1568 .max_interval = 2*sd_weight, 1569 .busy_factor = 16, 1570 .imbalance_pct = 117, 1571 1572 .cache_nice_tries = 0, 1573 1574 .flags = 1*SD_BALANCE_NEWIDLE 1575 | 1*SD_BALANCE_EXEC 1576 | 1*SD_BALANCE_FORK 1577 | 0*SD_BALANCE_WAKE 1578 | 1*SD_WAKE_AFFINE 1579 | 0*SD_SHARE_CPUCAPACITY 1580 | 0*SD_SHARE_PKG_RESOURCES 1581 | 0*SD_SERIALIZE 1582 | 1*SD_PREFER_SIBLING 1583 | 0*SD_NUMA 1584 | sd_flags 1585 , 1586 1587 .last_balance = jiffies, 1588 .balance_interval = sd_weight, 1589 .max_newidle_lb_cost = 0, 1590 .last_decay_max_lb_cost = jiffies, 1591 .child = child, 1592 #ifdef CONFIG_SCHED_DEBUG 1593 .name = tl->name, 1594 #endif 1595 }; 1596 1597 sd_span = sched_domain_span(sd); 1598 cpumask_and(sd_span, cpu_map, tl->mask(cpu)); 1599 sd_id = cpumask_first(sd_span); 1600 1601 sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map); 1602 1603 WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) == 1604 (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY), 1605 "CPU capacity asymmetry not supported on SMT\n"); 1606 1607 /* 1608 * Convert topological properties into behaviour. 1609 */ 1610 /* Don't attempt to spread across CPUs of different capacities. */ 1611 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 1612 sd->child->flags &= ~SD_PREFER_SIBLING; 1613 1614 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1615 sd->imbalance_pct = 110; 1616 1617 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1618 sd->imbalance_pct = 117; 1619 sd->cache_nice_tries = 1; 1620 1621 #ifdef CONFIG_NUMA 1622 } else if (sd->flags & SD_NUMA) { 1623 sd->cache_nice_tries = 2; 1624 1625 sd->flags &= ~SD_PREFER_SIBLING; 1626 sd->flags |= SD_SERIALIZE; 1627 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1628 sd->flags &= ~(SD_BALANCE_EXEC | 1629 SD_BALANCE_FORK | 1630 SD_WAKE_AFFINE); 1631 } 1632 1633 #endif 1634 } else { 1635 sd->cache_nice_tries = 1; 1636 } 1637 1638 /* 1639 * For all levels sharing cache; connect a sched_domain_shared 1640 * instance. 1641 */ 1642 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1643 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1644 atomic_inc(&sd->shared->ref); 1645 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1646 } 1647 1648 sd->private = sdd; 1649 1650 return sd; 1651 } 1652 1653 /* 1654 * Topology list, bottom-up. 1655 */ 1656 static struct sched_domain_topology_level default_topology[] = { 1657 #ifdef CONFIG_SCHED_SMT 1658 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1659 #endif 1660 1661 #ifdef CONFIG_SCHED_CLUSTER 1662 { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) }, 1663 #endif 1664 1665 #ifdef CONFIG_SCHED_MC 1666 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1667 #endif 1668 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1669 { NULL, }, 1670 }; 1671 1672 static struct sched_domain_topology_level *sched_domain_topology = 1673 default_topology; 1674 static struct sched_domain_topology_level *sched_domain_topology_saved; 1675 1676 #define for_each_sd_topology(tl) \ 1677 for (tl = sched_domain_topology; tl->mask; tl++) 1678 1679 void set_sched_topology(struct sched_domain_topology_level *tl) 1680 { 1681 if (WARN_ON_ONCE(sched_smp_initialized)) 1682 return; 1683 1684 sched_domain_topology = tl; 1685 sched_domain_topology_saved = NULL; 1686 } 1687 1688 #ifdef CONFIG_NUMA 1689 1690 static const struct cpumask *sd_numa_mask(int cpu) 1691 { 1692 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1693 } 1694 1695 static void sched_numa_warn(const char *str) 1696 { 1697 static int done = false; 1698 int i,j; 1699 1700 if (done) 1701 return; 1702 1703 done = true; 1704 1705 printk(KERN_WARNING "ERROR: %s\n\n", str); 1706 1707 for (i = 0; i < nr_node_ids; i++) { 1708 printk(KERN_WARNING " "); 1709 for (j = 0; j < nr_node_ids; j++) { 1710 if (!node_state(i, N_CPU) || !node_state(j, N_CPU)) 1711 printk(KERN_CONT "(%02d) ", node_distance(i,j)); 1712 else 1713 printk(KERN_CONT " %02d ", node_distance(i,j)); 1714 } 1715 printk(KERN_CONT "\n"); 1716 } 1717 printk(KERN_WARNING "\n"); 1718 } 1719 1720 bool find_numa_distance(int distance) 1721 { 1722 bool found = false; 1723 int i, *distances; 1724 1725 if (distance == node_distance(0, 0)) 1726 return true; 1727 1728 rcu_read_lock(); 1729 distances = rcu_dereference(sched_domains_numa_distance); 1730 if (!distances) 1731 goto unlock; 1732 for (i = 0; i < sched_domains_numa_levels; i++) { 1733 if (distances[i] == distance) { 1734 found = true; 1735 break; 1736 } 1737 } 1738 unlock: 1739 rcu_read_unlock(); 1740 1741 return found; 1742 } 1743 1744 #define for_each_cpu_node_but(n, nbut) \ 1745 for_each_node_state(n, N_CPU) \ 1746 if (n == nbut) \ 1747 continue; \ 1748 else 1749 1750 /* 1751 * A system can have three types of NUMA topology: 1752 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1753 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1754 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1755 * 1756 * The difference between a glueless mesh topology and a backplane 1757 * topology lies in whether communication between not directly 1758 * connected nodes goes through intermediary nodes (where programs 1759 * could run), or through backplane controllers. This affects 1760 * placement of programs. 1761 * 1762 * The type of topology can be discerned with the following tests: 1763 * - If the maximum distance between any nodes is 1 hop, the system 1764 * is directly connected. 1765 * - If for two nodes A and B, located N > 1 hops away from each other, 1766 * there is an intermediary node C, which is < N hops away from both 1767 * nodes A and B, the system is a glueless mesh. 1768 */ 1769 static void init_numa_topology_type(int offline_node) 1770 { 1771 int a, b, c, n; 1772 1773 n = sched_max_numa_distance; 1774 1775 if (sched_domains_numa_levels <= 2) { 1776 sched_numa_topology_type = NUMA_DIRECT; 1777 return; 1778 } 1779 1780 for_each_cpu_node_but(a, offline_node) { 1781 for_each_cpu_node_but(b, offline_node) { 1782 /* Find two nodes furthest removed from each other. */ 1783 if (node_distance(a, b) < n) 1784 continue; 1785 1786 /* Is there an intermediary node between a and b? */ 1787 for_each_cpu_node_but(c, offline_node) { 1788 if (node_distance(a, c) < n && 1789 node_distance(b, c) < n) { 1790 sched_numa_topology_type = 1791 NUMA_GLUELESS_MESH; 1792 return; 1793 } 1794 } 1795 1796 sched_numa_topology_type = NUMA_BACKPLANE; 1797 return; 1798 } 1799 } 1800 1801 pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n"); 1802 sched_numa_topology_type = NUMA_DIRECT; 1803 } 1804 1805 1806 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS) 1807 1808 void sched_init_numa(int offline_node) 1809 { 1810 struct sched_domain_topology_level *tl; 1811 unsigned long *distance_map; 1812 int nr_levels = 0; 1813 int i, j; 1814 int *distances; 1815 struct cpumask ***masks; 1816 1817 /* 1818 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1819 * unique distances in the node_distance() table. 1820 */ 1821 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL); 1822 if (!distance_map) 1823 return; 1824 1825 bitmap_zero(distance_map, NR_DISTANCE_VALUES); 1826 for_each_cpu_node_but(i, offline_node) { 1827 for_each_cpu_node_but(j, offline_node) { 1828 int distance = node_distance(i, j); 1829 1830 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) { 1831 sched_numa_warn("Invalid distance value range"); 1832 bitmap_free(distance_map); 1833 return; 1834 } 1835 1836 bitmap_set(distance_map, distance, 1); 1837 } 1838 } 1839 /* 1840 * We can now figure out how many unique distance values there are and 1841 * allocate memory accordingly. 1842 */ 1843 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES); 1844 1845 distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL); 1846 if (!distances) { 1847 bitmap_free(distance_map); 1848 return; 1849 } 1850 1851 for (i = 0, j = 0; i < nr_levels; i++, j++) { 1852 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j); 1853 distances[i] = j; 1854 } 1855 rcu_assign_pointer(sched_domains_numa_distance, distances); 1856 1857 bitmap_free(distance_map); 1858 1859 /* 1860 * 'nr_levels' contains the number of unique distances 1861 * 1862 * The sched_domains_numa_distance[] array includes the actual distance 1863 * numbers. 1864 */ 1865 1866 /* 1867 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1868 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1869 * the array will contain less then 'nr_levels' members. This could be 1870 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1871 * in other functions. 1872 * 1873 * We reset it to 'nr_levels' at the end of this function. 1874 */ 1875 sched_domains_numa_levels = 0; 1876 1877 masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL); 1878 if (!masks) 1879 return; 1880 1881 /* 1882 * Now for each level, construct a mask per node which contains all 1883 * CPUs of nodes that are that many hops away from us. 1884 */ 1885 for (i = 0; i < nr_levels; i++) { 1886 masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1887 if (!masks[i]) 1888 return; 1889 1890 for_each_cpu_node_but(j, offline_node) { 1891 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1892 int k; 1893 1894 if (!mask) 1895 return; 1896 1897 masks[i][j] = mask; 1898 1899 for_each_cpu_node_but(k, offline_node) { 1900 if (sched_debug() && (node_distance(j, k) != node_distance(k, j))) 1901 sched_numa_warn("Node-distance not symmetric"); 1902 1903 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1904 continue; 1905 1906 cpumask_or(mask, mask, cpumask_of_node(k)); 1907 } 1908 } 1909 } 1910 rcu_assign_pointer(sched_domains_numa_masks, masks); 1911 1912 /* Compute default topology size */ 1913 for (i = 0; sched_domain_topology[i].mask; i++); 1914 1915 tl = kzalloc((i + nr_levels + 1) * 1916 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1917 if (!tl) 1918 return; 1919 1920 /* 1921 * Copy the default topology bits.. 1922 */ 1923 for (i = 0; sched_domain_topology[i].mask; i++) 1924 tl[i] = sched_domain_topology[i]; 1925 1926 /* 1927 * Add the NUMA identity distance, aka single NODE. 1928 */ 1929 tl[i++] = (struct sched_domain_topology_level){ 1930 .mask = sd_numa_mask, 1931 .numa_level = 0, 1932 SD_INIT_NAME(NODE) 1933 }; 1934 1935 /* 1936 * .. and append 'j' levels of NUMA goodness. 1937 */ 1938 for (j = 1; j < nr_levels; i++, j++) { 1939 tl[i] = (struct sched_domain_topology_level){ 1940 .mask = sd_numa_mask, 1941 .sd_flags = cpu_numa_flags, 1942 .flags = SDTL_OVERLAP, 1943 .numa_level = j, 1944 SD_INIT_NAME(NUMA) 1945 }; 1946 } 1947 1948 sched_domain_topology_saved = sched_domain_topology; 1949 sched_domain_topology = tl; 1950 1951 sched_domains_numa_levels = nr_levels; 1952 WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]); 1953 1954 init_numa_topology_type(offline_node); 1955 } 1956 1957 1958 static void sched_reset_numa(void) 1959 { 1960 int nr_levels, *distances; 1961 struct cpumask ***masks; 1962 1963 nr_levels = sched_domains_numa_levels; 1964 sched_domains_numa_levels = 0; 1965 sched_max_numa_distance = 0; 1966 sched_numa_topology_type = NUMA_DIRECT; 1967 distances = sched_domains_numa_distance; 1968 rcu_assign_pointer(sched_domains_numa_distance, NULL); 1969 masks = sched_domains_numa_masks; 1970 rcu_assign_pointer(sched_domains_numa_masks, NULL); 1971 if (distances || masks) { 1972 int i, j; 1973 1974 synchronize_rcu(); 1975 kfree(distances); 1976 for (i = 0; i < nr_levels && masks; i++) { 1977 if (!masks[i]) 1978 continue; 1979 for_each_node(j) 1980 kfree(masks[i][j]); 1981 kfree(masks[i]); 1982 } 1983 kfree(masks); 1984 } 1985 if (sched_domain_topology_saved) { 1986 kfree(sched_domain_topology); 1987 sched_domain_topology = sched_domain_topology_saved; 1988 sched_domain_topology_saved = NULL; 1989 } 1990 } 1991 1992 /* 1993 * Call with hotplug lock held 1994 */ 1995 void sched_update_numa(int cpu, bool online) 1996 { 1997 int node; 1998 1999 node = cpu_to_node(cpu); 2000 /* 2001 * Scheduler NUMA topology is updated when the first CPU of a 2002 * node is onlined or the last CPU of a node is offlined. 2003 */ 2004 if (cpumask_weight(cpumask_of_node(node)) != 1) 2005 return; 2006 2007 sched_reset_numa(); 2008 sched_init_numa(online ? NUMA_NO_NODE : node); 2009 } 2010 2011 void sched_domains_numa_masks_set(unsigned int cpu) 2012 { 2013 int node = cpu_to_node(cpu); 2014 int i, j; 2015 2016 for (i = 0; i < sched_domains_numa_levels; i++) { 2017 for (j = 0; j < nr_node_ids; j++) { 2018 if (!node_state(j, N_CPU)) 2019 continue; 2020 2021 /* Set ourselves in the remote node's masks */ 2022 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 2023 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 2024 } 2025 } 2026 } 2027 2028 void sched_domains_numa_masks_clear(unsigned int cpu) 2029 { 2030 int i, j; 2031 2032 for (i = 0; i < sched_domains_numa_levels; i++) { 2033 for (j = 0; j < nr_node_ids; j++) { 2034 if (sched_domains_numa_masks[i][j]) 2035 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 2036 } 2037 } 2038 } 2039 2040 /* 2041 * sched_numa_find_closest() - given the NUMA topology, find the cpu 2042 * closest to @cpu from @cpumask. 2043 * cpumask: cpumask to find a cpu from 2044 * cpu: cpu to be close to 2045 * 2046 * returns: cpu, or nr_cpu_ids when nothing found. 2047 */ 2048 int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 2049 { 2050 int i, j = cpu_to_node(cpu), found = nr_cpu_ids; 2051 struct cpumask ***masks; 2052 2053 rcu_read_lock(); 2054 masks = rcu_dereference(sched_domains_numa_masks); 2055 if (!masks) 2056 goto unlock; 2057 for (i = 0; i < sched_domains_numa_levels; i++) { 2058 if (!masks[i][j]) 2059 break; 2060 cpu = cpumask_any_and(cpus, masks[i][j]); 2061 if (cpu < nr_cpu_ids) { 2062 found = cpu; 2063 break; 2064 } 2065 } 2066 unlock: 2067 rcu_read_unlock(); 2068 2069 return found; 2070 } 2071 2072 struct __cmp_key { 2073 const struct cpumask *cpus; 2074 struct cpumask ***masks; 2075 int node; 2076 int cpu; 2077 int w; 2078 }; 2079 2080 static int hop_cmp(const void *a, const void *b) 2081 { 2082 struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b; 2083 struct __cmp_key *k = (struct __cmp_key *)a; 2084 2085 if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu) 2086 return 1; 2087 2088 if (b == k->masks) { 2089 k->w = 0; 2090 return 0; 2091 } 2092 2093 prev_hop = *((struct cpumask ***)b - 1); 2094 k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]); 2095 if (k->w <= k->cpu) 2096 return 0; 2097 2098 return -1; 2099 } 2100 2101 /* 2102 * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth next cpu 2103 * closest to @cpu from @cpumask. 2104 * cpumask: cpumask to find a cpu from 2105 * cpu: Nth cpu to find 2106 * 2107 * returns: cpu, or nr_cpu_ids when nothing found. 2108 */ 2109 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node) 2110 { 2111 struct __cmp_key k = { .cpus = cpus, .node = node, .cpu = cpu }; 2112 struct cpumask ***hop_masks; 2113 int hop, ret = nr_cpu_ids; 2114 2115 rcu_read_lock(); 2116 2117 k.masks = rcu_dereference(sched_domains_numa_masks); 2118 if (!k.masks) 2119 goto unlock; 2120 2121 hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp); 2122 hop = hop_masks - k.masks; 2123 2124 ret = hop ? 2125 cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) : 2126 cpumask_nth_and(cpu, cpus, k.masks[0][node]); 2127 unlock: 2128 rcu_read_unlock(); 2129 return ret; 2130 } 2131 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu); 2132 2133 /** 2134 * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from 2135 * @node 2136 * @node: The node to count hops from. 2137 * @hops: Include CPUs up to that many hops away. 0 means local node. 2138 * 2139 * Return: On success, a pointer to a cpumask of CPUs at most @hops away from 2140 * @node, an error value otherwise. 2141 * 2142 * Requires rcu_lock to be held. Returned cpumask is only valid within that 2143 * read-side section, copy it if required beyond that. 2144 * 2145 * Note that not all hops are equal in distance; see sched_init_numa() for how 2146 * distances and masks are handled. 2147 * Also note that this is a reflection of sched_domains_numa_masks, which may change 2148 * during the lifetime of the system (offline nodes are taken out of the masks). 2149 */ 2150 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops) 2151 { 2152 struct cpumask ***masks; 2153 2154 if (node >= nr_node_ids || hops >= sched_domains_numa_levels) 2155 return ERR_PTR(-EINVAL); 2156 2157 masks = rcu_dereference(sched_domains_numa_masks); 2158 if (!masks) 2159 return ERR_PTR(-EBUSY); 2160 2161 return masks[hops][node]; 2162 } 2163 EXPORT_SYMBOL_GPL(sched_numa_hop_mask); 2164 2165 #endif /* CONFIG_NUMA */ 2166 2167 static int __sdt_alloc(const struct cpumask *cpu_map) 2168 { 2169 struct sched_domain_topology_level *tl; 2170 int j; 2171 2172 for_each_sd_topology(tl) { 2173 struct sd_data *sdd = &tl->data; 2174 2175 sdd->sd = alloc_percpu(struct sched_domain *); 2176 if (!sdd->sd) 2177 return -ENOMEM; 2178 2179 sdd->sds = alloc_percpu(struct sched_domain_shared *); 2180 if (!sdd->sds) 2181 return -ENOMEM; 2182 2183 sdd->sg = alloc_percpu(struct sched_group *); 2184 if (!sdd->sg) 2185 return -ENOMEM; 2186 2187 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 2188 if (!sdd->sgc) 2189 return -ENOMEM; 2190 2191 for_each_cpu(j, cpu_map) { 2192 struct sched_domain *sd; 2193 struct sched_domain_shared *sds; 2194 struct sched_group *sg; 2195 struct sched_group_capacity *sgc; 2196 2197 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 2198 GFP_KERNEL, cpu_to_node(j)); 2199 if (!sd) 2200 return -ENOMEM; 2201 2202 *per_cpu_ptr(sdd->sd, j) = sd; 2203 2204 sds = kzalloc_node(sizeof(struct sched_domain_shared), 2205 GFP_KERNEL, cpu_to_node(j)); 2206 if (!sds) 2207 return -ENOMEM; 2208 2209 *per_cpu_ptr(sdd->sds, j) = sds; 2210 2211 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 2212 GFP_KERNEL, cpu_to_node(j)); 2213 if (!sg) 2214 return -ENOMEM; 2215 2216 sg->next = sg; 2217 2218 *per_cpu_ptr(sdd->sg, j) = sg; 2219 2220 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 2221 GFP_KERNEL, cpu_to_node(j)); 2222 if (!sgc) 2223 return -ENOMEM; 2224 2225 #ifdef CONFIG_SCHED_DEBUG 2226 sgc->id = j; 2227 #endif 2228 2229 *per_cpu_ptr(sdd->sgc, j) = sgc; 2230 } 2231 } 2232 2233 return 0; 2234 } 2235 2236 static void __sdt_free(const struct cpumask *cpu_map) 2237 { 2238 struct sched_domain_topology_level *tl; 2239 int j; 2240 2241 for_each_sd_topology(tl) { 2242 struct sd_data *sdd = &tl->data; 2243 2244 for_each_cpu(j, cpu_map) { 2245 struct sched_domain *sd; 2246 2247 if (sdd->sd) { 2248 sd = *per_cpu_ptr(sdd->sd, j); 2249 if (sd && (sd->flags & SD_OVERLAP)) 2250 free_sched_groups(sd->groups, 0); 2251 kfree(*per_cpu_ptr(sdd->sd, j)); 2252 } 2253 2254 if (sdd->sds) 2255 kfree(*per_cpu_ptr(sdd->sds, j)); 2256 if (sdd->sg) 2257 kfree(*per_cpu_ptr(sdd->sg, j)); 2258 if (sdd->sgc) 2259 kfree(*per_cpu_ptr(sdd->sgc, j)); 2260 } 2261 free_percpu(sdd->sd); 2262 sdd->sd = NULL; 2263 free_percpu(sdd->sds); 2264 sdd->sds = NULL; 2265 free_percpu(sdd->sg); 2266 sdd->sg = NULL; 2267 free_percpu(sdd->sgc); 2268 sdd->sgc = NULL; 2269 } 2270 } 2271 2272 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 2273 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 2274 struct sched_domain *child, int cpu) 2275 { 2276 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 2277 2278 if (child) { 2279 sd->level = child->level + 1; 2280 sched_domain_level_max = max(sched_domain_level_max, sd->level); 2281 child->parent = sd; 2282 2283 if (!cpumask_subset(sched_domain_span(child), 2284 sched_domain_span(sd))) { 2285 pr_err("BUG: arch topology borken\n"); 2286 #ifdef CONFIG_SCHED_DEBUG 2287 pr_err(" the %s domain not a subset of the %s domain\n", 2288 child->name, sd->name); 2289 #endif 2290 /* Fixup, ensure @sd has at least @child CPUs. */ 2291 cpumask_or(sched_domain_span(sd), 2292 sched_domain_span(sd), 2293 sched_domain_span(child)); 2294 } 2295 2296 } 2297 set_domain_attribute(sd, attr); 2298 2299 return sd; 2300 } 2301 2302 /* 2303 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 2304 * any two given CPUs at this (non-NUMA) topology level. 2305 */ 2306 static bool topology_span_sane(struct sched_domain_topology_level *tl, 2307 const struct cpumask *cpu_map, int cpu) 2308 { 2309 int i; 2310 2311 /* NUMA levels are allowed to overlap */ 2312 if (tl->flags & SDTL_OVERLAP) 2313 return true; 2314 2315 /* 2316 * Non-NUMA levels cannot partially overlap - they must be either 2317 * completely equal or completely disjoint. Otherwise we can end up 2318 * breaking the sched_group lists - i.e. a later get_group() pass 2319 * breaks the linking done for an earlier span. 2320 */ 2321 for_each_cpu(i, cpu_map) { 2322 if (i == cpu) 2323 continue; 2324 /* 2325 * We should 'and' all those masks with 'cpu_map' to exactly 2326 * match the topology we're about to build, but that can only 2327 * remove CPUs, which only lessens our ability to detect 2328 * overlaps 2329 */ 2330 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && 2331 cpumask_intersects(tl->mask(cpu), tl->mask(i))) 2332 return false; 2333 } 2334 2335 return true; 2336 } 2337 2338 /* 2339 * Build sched domains for a given set of CPUs and attach the sched domains 2340 * to the individual CPUs 2341 */ 2342 static int 2343 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 2344 { 2345 enum s_alloc alloc_state = sa_none; 2346 struct sched_domain *sd; 2347 struct s_data d; 2348 struct rq *rq = NULL; 2349 int i, ret = -ENOMEM; 2350 bool has_asym = false; 2351 2352 if (WARN_ON(cpumask_empty(cpu_map))) 2353 goto error; 2354 2355 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 2356 if (alloc_state != sa_rootdomain) 2357 goto error; 2358 2359 /* Set up domains for CPUs specified by the cpu_map: */ 2360 for_each_cpu(i, cpu_map) { 2361 struct sched_domain_topology_level *tl; 2362 2363 sd = NULL; 2364 for_each_sd_topology(tl) { 2365 2366 if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) 2367 goto error; 2368 2369 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 2370 2371 has_asym |= sd->flags & SD_ASYM_CPUCAPACITY; 2372 2373 if (tl == sched_domain_topology) 2374 *per_cpu_ptr(d.sd, i) = sd; 2375 if (tl->flags & SDTL_OVERLAP) 2376 sd->flags |= SD_OVERLAP; 2377 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2378 break; 2379 } 2380 } 2381 2382 /* Build the groups for the domains */ 2383 for_each_cpu(i, cpu_map) { 2384 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2385 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2386 if (sd->flags & SD_OVERLAP) { 2387 if (build_overlap_sched_groups(sd, i)) 2388 goto error; 2389 } else { 2390 if (build_sched_groups(sd, i)) 2391 goto error; 2392 } 2393 } 2394 } 2395 2396 /* 2397 * Calculate an allowed NUMA imbalance such that LLCs do not get 2398 * imbalanced. 2399 */ 2400 for_each_cpu(i, cpu_map) { 2401 unsigned int imb = 0; 2402 unsigned int imb_span = 1; 2403 2404 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2405 struct sched_domain *child = sd->child; 2406 2407 if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child && 2408 (child->flags & SD_SHARE_PKG_RESOURCES)) { 2409 struct sched_domain __rcu *top_p; 2410 unsigned int nr_llcs; 2411 2412 /* 2413 * For a single LLC per node, allow an 2414 * imbalance up to 12.5% of the node. This is 2415 * arbitrary cutoff based two factors -- SMT and 2416 * memory channels. For SMT-2, the intent is to 2417 * avoid premature sharing of HT resources but 2418 * SMT-4 or SMT-8 *may* benefit from a different 2419 * cutoff. For memory channels, this is a very 2420 * rough estimate of how many channels may be 2421 * active and is based on recent CPUs with 2422 * many cores. 2423 * 2424 * For multiple LLCs, allow an imbalance 2425 * until multiple tasks would share an LLC 2426 * on one node while LLCs on another node 2427 * remain idle. This assumes that there are 2428 * enough logical CPUs per LLC to avoid SMT 2429 * factors and that there is a correlation 2430 * between LLCs and memory channels. 2431 */ 2432 nr_llcs = sd->span_weight / child->span_weight; 2433 if (nr_llcs == 1) 2434 imb = sd->span_weight >> 3; 2435 else 2436 imb = nr_llcs; 2437 imb = max(1U, imb); 2438 sd->imb_numa_nr = imb; 2439 2440 /* Set span based on the first NUMA domain. */ 2441 top_p = sd->parent; 2442 while (top_p && !(top_p->flags & SD_NUMA)) { 2443 top_p = top_p->parent; 2444 } 2445 imb_span = top_p ? top_p->span_weight : sd->span_weight; 2446 } else { 2447 int factor = max(1U, (sd->span_weight / imb_span)); 2448 2449 sd->imb_numa_nr = imb * factor; 2450 } 2451 } 2452 } 2453 2454 /* Calculate CPU capacity for physical packages and nodes */ 2455 for (i = nr_cpumask_bits-1; i >= 0; i--) { 2456 if (!cpumask_test_cpu(i, cpu_map)) 2457 continue; 2458 2459 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2460 claim_allocations(i, sd); 2461 init_sched_groups_capacity(i, sd); 2462 } 2463 } 2464 2465 /* Attach the domains */ 2466 rcu_read_lock(); 2467 for_each_cpu(i, cpu_map) { 2468 rq = cpu_rq(i); 2469 sd = *per_cpu_ptr(d.sd, i); 2470 2471 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 2472 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 2473 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 2474 2475 cpu_attach_domain(sd, d.rd, i); 2476 } 2477 rcu_read_unlock(); 2478 2479 if (has_asym) 2480 static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2481 2482 if (rq && sched_debug_verbose) { 2483 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 2484 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 2485 } 2486 2487 ret = 0; 2488 error: 2489 __free_domain_allocs(&d, alloc_state, cpu_map); 2490 2491 return ret; 2492 } 2493 2494 /* Current sched domains: */ 2495 static cpumask_var_t *doms_cur; 2496 2497 /* Number of sched domains in 'doms_cur': */ 2498 static int ndoms_cur; 2499 2500 /* Attributes of custom domains in 'doms_cur' */ 2501 static struct sched_domain_attr *dattr_cur; 2502 2503 /* 2504 * Special case: If a kmalloc() of a doms_cur partition (array of 2505 * cpumask) fails, then fallback to a single sched domain, 2506 * as determined by the single cpumask fallback_doms. 2507 */ 2508 static cpumask_var_t fallback_doms; 2509 2510 /* 2511 * arch_update_cpu_topology lets virtualized architectures update the 2512 * CPU core maps. It is supposed to return 1 if the topology changed 2513 * or 0 if it stayed the same. 2514 */ 2515 int __weak arch_update_cpu_topology(void) 2516 { 2517 return 0; 2518 } 2519 2520 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2521 { 2522 int i; 2523 cpumask_var_t *doms; 2524 2525 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2526 if (!doms) 2527 return NULL; 2528 for (i = 0; i < ndoms; i++) { 2529 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2530 free_sched_domains(doms, i); 2531 return NULL; 2532 } 2533 } 2534 return doms; 2535 } 2536 2537 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2538 { 2539 unsigned int i; 2540 for (i = 0; i < ndoms; i++) 2541 free_cpumask_var(doms[i]); 2542 kfree(doms); 2543 } 2544 2545 /* 2546 * Set up scheduler domains and groups. For now this just excludes isolated 2547 * CPUs, but could be used to exclude other special cases in the future. 2548 */ 2549 int __init sched_init_domains(const struct cpumask *cpu_map) 2550 { 2551 int err; 2552 2553 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 2554 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 2555 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 2556 2557 arch_update_cpu_topology(); 2558 asym_cpu_capacity_scan(); 2559 ndoms_cur = 1; 2560 doms_cur = alloc_sched_domains(ndoms_cur); 2561 if (!doms_cur) 2562 doms_cur = &fallback_doms; 2563 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN)); 2564 err = build_sched_domains(doms_cur[0], NULL); 2565 2566 return err; 2567 } 2568 2569 /* 2570 * Detach sched domains from a group of CPUs specified in cpu_map 2571 * These CPUs will now be attached to the NULL domain 2572 */ 2573 static void detach_destroy_domains(const struct cpumask *cpu_map) 2574 { 2575 unsigned int cpu = cpumask_any(cpu_map); 2576 int i; 2577 2578 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2579 static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2580 2581 rcu_read_lock(); 2582 for_each_cpu(i, cpu_map) 2583 cpu_attach_domain(NULL, &def_root_domain, i); 2584 rcu_read_unlock(); 2585 } 2586 2587 /* handle null as "default" */ 2588 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2589 struct sched_domain_attr *new, int idx_new) 2590 { 2591 struct sched_domain_attr tmp; 2592 2593 /* Fast path: */ 2594 if (!new && !cur) 2595 return 1; 2596 2597 tmp = SD_ATTR_INIT; 2598 2599 return !memcmp(cur ? (cur + idx_cur) : &tmp, 2600 new ? (new + idx_new) : &tmp, 2601 sizeof(struct sched_domain_attr)); 2602 } 2603 2604 /* 2605 * Partition sched domains as specified by the 'ndoms_new' 2606 * cpumasks in the array doms_new[] of cpumasks. This compares 2607 * doms_new[] to the current sched domain partitioning, doms_cur[]. 2608 * It destroys each deleted domain and builds each new domain. 2609 * 2610 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2611 * The masks don't intersect (don't overlap.) We should setup one 2612 * sched domain for each mask. CPUs not in any of the cpumasks will 2613 * not be load balanced. If the same cpumask appears both in the 2614 * current 'doms_cur' domains and in the new 'doms_new', we can leave 2615 * it as it is. 2616 * 2617 * The passed in 'doms_new' should be allocated using 2618 * alloc_sched_domains. This routine takes ownership of it and will 2619 * free_sched_domains it when done with it. If the caller failed the 2620 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2621 * and partition_sched_domains() will fallback to the single partition 2622 * 'fallback_doms', it also forces the domains to be rebuilt. 2623 * 2624 * If doms_new == NULL it will be replaced with cpu_online_mask. 2625 * ndoms_new == 0 is a special case for destroying existing domains, 2626 * and it will not create the default domain. 2627 * 2628 * Call with hotplug lock and sched_domains_mutex held 2629 */ 2630 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2631 struct sched_domain_attr *dattr_new) 2632 { 2633 bool __maybe_unused has_eas = false; 2634 int i, j, n; 2635 int new_topology; 2636 2637 lockdep_assert_held(&sched_domains_mutex); 2638 2639 /* Let the architecture update CPU core mappings: */ 2640 new_topology = arch_update_cpu_topology(); 2641 /* Trigger rebuilding CPU capacity asymmetry data */ 2642 if (new_topology) 2643 asym_cpu_capacity_scan(); 2644 2645 if (!doms_new) { 2646 WARN_ON_ONCE(dattr_new); 2647 n = 0; 2648 doms_new = alloc_sched_domains(1); 2649 if (doms_new) { 2650 n = 1; 2651 cpumask_and(doms_new[0], cpu_active_mask, 2652 housekeeping_cpumask(HK_TYPE_DOMAIN)); 2653 } 2654 } else { 2655 n = ndoms_new; 2656 } 2657 2658 /* Destroy deleted domains: */ 2659 for (i = 0; i < ndoms_cur; i++) { 2660 for (j = 0; j < n && !new_topology; j++) { 2661 if (cpumask_equal(doms_cur[i], doms_new[j]) && 2662 dattrs_equal(dattr_cur, i, dattr_new, j)) { 2663 struct root_domain *rd; 2664 2665 /* 2666 * This domain won't be destroyed and as such 2667 * its dl_bw->total_bw needs to be cleared. It 2668 * will be recomputed in function 2669 * update_tasks_root_domain(). 2670 */ 2671 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; 2672 dl_clear_root_domain(rd); 2673 goto match1; 2674 } 2675 } 2676 /* No match - a current sched domain not in new doms_new[] */ 2677 detach_destroy_domains(doms_cur[i]); 2678 match1: 2679 ; 2680 } 2681 2682 n = ndoms_cur; 2683 if (!doms_new) { 2684 n = 0; 2685 doms_new = &fallback_doms; 2686 cpumask_and(doms_new[0], cpu_active_mask, 2687 housekeeping_cpumask(HK_TYPE_DOMAIN)); 2688 } 2689 2690 /* Build new domains: */ 2691 for (i = 0; i < ndoms_new; i++) { 2692 for (j = 0; j < n && !new_topology; j++) { 2693 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2694 dattrs_equal(dattr_new, i, dattr_cur, j)) 2695 goto match2; 2696 } 2697 /* No match - add a new doms_new */ 2698 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2699 match2: 2700 ; 2701 } 2702 2703 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2704 /* Build perf. domains: */ 2705 for (i = 0; i < ndoms_new; i++) { 2706 for (j = 0; j < n && !sched_energy_update; j++) { 2707 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2708 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 2709 has_eas = true; 2710 goto match3; 2711 } 2712 } 2713 /* No match - add perf. domains for a new rd */ 2714 has_eas |= build_perf_domains(doms_new[i]); 2715 match3: 2716 ; 2717 } 2718 sched_energy_set(has_eas); 2719 #endif 2720 2721 /* Remember the new sched domains: */ 2722 if (doms_cur != &fallback_doms) 2723 free_sched_domains(doms_cur, ndoms_cur); 2724 2725 kfree(dattr_cur); 2726 doms_cur = doms_new; 2727 dattr_cur = dattr_new; 2728 ndoms_cur = ndoms_new; 2729 2730 update_sched_domain_debugfs(); 2731 } 2732 2733 /* 2734 * Call with hotplug lock held 2735 */ 2736 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2737 struct sched_domain_attr *dattr_new) 2738 { 2739 mutex_lock(&sched_domains_mutex); 2740 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2741 mutex_unlock(&sched_domains_mutex); 2742 } 2743