1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Scheduler topology setup/handling methods 4 */ 5 6 #include <linux/bsearch.h> 7 8 DEFINE_MUTEX(sched_domains_mutex); 9 10 /* Protected by sched_domains_mutex: */ 11 static cpumask_var_t sched_domains_tmpmask; 12 static cpumask_var_t sched_domains_tmpmask2; 13 14 #ifdef CONFIG_SCHED_DEBUG 15 16 static int __init sched_debug_setup(char *str) 17 { 18 sched_debug_verbose = true; 19 20 return 0; 21 } 22 early_param("sched_verbose", sched_debug_setup); 23 24 static inline bool sched_debug(void) 25 { 26 return sched_debug_verbose; 27 } 28 29 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name }, 30 const struct sd_flag_debug sd_flag_debug[] = { 31 #include <linux/sched/sd_flags.h> 32 }; 33 #undef SD_FLAG 34 35 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 36 struct cpumask *groupmask) 37 { 38 struct sched_group *group = sd->groups; 39 unsigned long flags = sd->flags; 40 unsigned int idx; 41 42 cpumask_clear(groupmask); 43 44 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 45 printk(KERN_CONT "span=%*pbl level=%s\n", 46 cpumask_pr_args(sched_domain_span(sd)), sd->name); 47 48 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 49 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 50 } 51 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 52 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 53 } 54 55 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 56 unsigned int flag = BIT(idx); 57 unsigned int meta_flags = sd_flag_debug[idx].meta_flags; 58 59 if ((meta_flags & SDF_SHARED_CHILD) && sd->child && 60 !(sd->child->flags & flag)) 61 printk(KERN_ERR "ERROR: flag %s set here but not in child\n", 62 sd_flag_debug[idx].name); 63 64 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && 65 !(sd->parent->flags & flag)) 66 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n", 67 sd_flag_debug[idx].name); 68 } 69 70 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 71 do { 72 if (!group) { 73 printk("\n"); 74 printk(KERN_ERR "ERROR: group is NULL\n"); 75 break; 76 } 77 78 if (cpumask_empty(sched_group_span(group))) { 79 printk(KERN_CONT "\n"); 80 printk(KERN_ERR "ERROR: empty group\n"); 81 break; 82 } 83 84 if (!(sd->flags & SD_OVERLAP) && 85 cpumask_intersects(groupmask, sched_group_span(group))) { 86 printk(KERN_CONT "\n"); 87 printk(KERN_ERR "ERROR: repeated CPUs\n"); 88 break; 89 } 90 91 cpumask_or(groupmask, groupmask, sched_group_span(group)); 92 93 printk(KERN_CONT " %d:{ span=%*pbl", 94 group->sgc->id, 95 cpumask_pr_args(sched_group_span(group))); 96 97 if ((sd->flags & SD_OVERLAP) && 98 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 99 printk(KERN_CONT " mask=%*pbl", 100 cpumask_pr_args(group_balance_mask(group))); 101 } 102 103 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 104 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 105 106 if (group == sd->groups && sd->child && 107 !cpumask_equal(sched_domain_span(sd->child), 108 sched_group_span(group))) { 109 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 110 } 111 112 printk(KERN_CONT " }"); 113 114 group = group->next; 115 116 if (group != sd->groups) 117 printk(KERN_CONT ","); 118 119 } while (group != sd->groups); 120 printk(KERN_CONT "\n"); 121 122 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 123 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 124 125 if (sd->parent && 126 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 127 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 128 return 0; 129 } 130 131 static void sched_domain_debug(struct sched_domain *sd, int cpu) 132 { 133 int level = 0; 134 135 if (!sched_debug_verbose) 136 return; 137 138 if (!sd) { 139 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 140 return; 141 } 142 143 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 144 145 for (;;) { 146 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 147 break; 148 level++; 149 sd = sd->parent; 150 if (!sd) 151 break; 152 } 153 } 154 #else /* !CONFIG_SCHED_DEBUG */ 155 156 # define sched_debug_verbose 0 157 # define sched_domain_debug(sd, cpu) do { } while (0) 158 static inline bool sched_debug(void) 159 { 160 return false; 161 } 162 #endif /* CONFIG_SCHED_DEBUG */ 163 164 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */ 165 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) | 166 static const unsigned int SD_DEGENERATE_GROUPS_MASK = 167 #include <linux/sched/sd_flags.h> 168 0; 169 #undef SD_FLAG 170 171 static int sd_degenerate(struct sched_domain *sd) 172 { 173 if (cpumask_weight(sched_domain_span(sd)) == 1) 174 return 1; 175 176 /* Following flags need at least 2 groups */ 177 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) && 178 (sd->groups != sd->groups->next)) 179 return 0; 180 181 /* Following flags don't use groups */ 182 if (sd->flags & (SD_WAKE_AFFINE)) 183 return 0; 184 185 return 1; 186 } 187 188 static int 189 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 190 { 191 unsigned long cflags = sd->flags, pflags = parent->flags; 192 193 if (sd_degenerate(parent)) 194 return 1; 195 196 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 197 return 0; 198 199 /* Flags needing groups don't count if only 1 group in parent */ 200 if (parent->groups == parent->groups->next) 201 pflags &= ~SD_DEGENERATE_GROUPS_MASK; 202 203 if (~cflags & pflags) 204 return 0; 205 206 return 1; 207 } 208 209 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 210 DEFINE_STATIC_KEY_FALSE(sched_energy_present); 211 static unsigned int sysctl_sched_energy_aware = 1; 212 static DEFINE_MUTEX(sched_energy_mutex); 213 static bool sched_energy_update; 214 215 static bool sched_is_eas_possible(const struct cpumask *cpu_mask) 216 { 217 bool any_asym_capacity = false; 218 struct cpufreq_policy *policy; 219 struct cpufreq_governor *gov; 220 int i; 221 222 /* EAS is enabled for asymmetric CPU capacity topologies. */ 223 for_each_cpu(i, cpu_mask) { 224 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) { 225 any_asym_capacity = true; 226 break; 227 } 228 } 229 if (!any_asym_capacity) { 230 if (sched_debug()) { 231 pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n", 232 cpumask_pr_args(cpu_mask)); 233 } 234 return false; 235 } 236 237 /* EAS definitely does *not* handle SMT */ 238 if (sched_smt_active()) { 239 if (sched_debug()) { 240 pr_info("rd %*pbl: Checking EAS, SMT is not supported\n", 241 cpumask_pr_args(cpu_mask)); 242 } 243 return false; 244 } 245 246 if (!arch_scale_freq_invariant()) { 247 if (sched_debug()) { 248 pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported", 249 cpumask_pr_args(cpu_mask)); 250 } 251 return false; 252 } 253 254 /* Do not attempt EAS if schedutil is not being used. */ 255 for_each_cpu(i, cpu_mask) { 256 policy = cpufreq_cpu_get(i); 257 if (!policy) { 258 if (sched_debug()) { 259 pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d", 260 cpumask_pr_args(cpu_mask), i); 261 } 262 return false; 263 } 264 gov = policy->governor; 265 cpufreq_cpu_put(policy); 266 if (gov != &schedutil_gov) { 267 if (sched_debug()) { 268 pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n", 269 cpumask_pr_args(cpu_mask)); 270 } 271 return false; 272 } 273 } 274 275 return true; 276 } 277 278 void rebuild_sched_domains_energy(void) 279 { 280 mutex_lock(&sched_energy_mutex); 281 sched_energy_update = true; 282 rebuild_sched_domains(); 283 sched_energy_update = false; 284 mutex_unlock(&sched_energy_mutex); 285 } 286 287 #ifdef CONFIG_PROC_SYSCTL 288 static int sched_energy_aware_handler(struct ctl_table *table, int write, 289 void *buffer, size_t *lenp, loff_t *ppos) 290 { 291 int ret, state; 292 293 if (write && !capable(CAP_SYS_ADMIN)) 294 return -EPERM; 295 296 if (!sched_is_eas_possible(cpu_active_mask)) { 297 if (write) { 298 return -EOPNOTSUPP; 299 } else { 300 *lenp = 0; 301 return 0; 302 } 303 } 304 305 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 306 if (!ret && write) { 307 state = static_branch_unlikely(&sched_energy_present); 308 if (state != sysctl_sched_energy_aware) 309 rebuild_sched_domains_energy(); 310 } 311 312 return ret; 313 } 314 315 static struct ctl_table sched_energy_aware_sysctls[] = { 316 { 317 .procname = "sched_energy_aware", 318 .data = &sysctl_sched_energy_aware, 319 .maxlen = sizeof(unsigned int), 320 .mode = 0644, 321 .proc_handler = sched_energy_aware_handler, 322 .extra1 = SYSCTL_ZERO, 323 .extra2 = SYSCTL_ONE, 324 }, 325 {} 326 }; 327 328 static int __init sched_energy_aware_sysctl_init(void) 329 { 330 register_sysctl_init("kernel", sched_energy_aware_sysctls); 331 return 0; 332 } 333 334 late_initcall(sched_energy_aware_sysctl_init); 335 #endif 336 337 static void free_pd(struct perf_domain *pd) 338 { 339 struct perf_domain *tmp; 340 341 while (pd) { 342 tmp = pd->next; 343 kfree(pd); 344 pd = tmp; 345 } 346 } 347 348 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 349 { 350 while (pd) { 351 if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 352 return pd; 353 pd = pd->next; 354 } 355 356 return NULL; 357 } 358 359 static struct perf_domain *pd_init(int cpu) 360 { 361 struct em_perf_domain *obj = em_cpu_get(cpu); 362 struct perf_domain *pd; 363 364 if (!obj) { 365 if (sched_debug()) 366 pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 367 return NULL; 368 } 369 370 pd = kzalloc(sizeof(*pd), GFP_KERNEL); 371 if (!pd) 372 return NULL; 373 pd->em_pd = obj; 374 375 return pd; 376 } 377 378 static void perf_domain_debug(const struct cpumask *cpu_map, 379 struct perf_domain *pd) 380 { 381 if (!sched_debug() || !pd) 382 return; 383 384 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 385 386 while (pd) { 387 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }", 388 cpumask_first(perf_domain_span(pd)), 389 cpumask_pr_args(perf_domain_span(pd)), 390 em_pd_nr_perf_states(pd->em_pd)); 391 pd = pd->next; 392 } 393 394 printk(KERN_CONT "\n"); 395 } 396 397 static void destroy_perf_domain_rcu(struct rcu_head *rp) 398 { 399 struct perf_domain *pd; 400 401 pd = container_of(rp, struct perf_domain, rcu); 402 free_pd(pd); 403 } 404 405 static void sched_energy_set(bool has_eas) 406 { 407 if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 408 if (sched_debug()) 409 pr_info("%s: stopping EAS\n", __func__); 410 static_branch_disable_cpuslocked(&sched_energy_present); 411 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 412 if (sched_debug()) 413 pr_info("%s: starting EAS\n", __func__); 414 static_branch_enable_cpuslocked(&sched_energy_present); 415 } 416 } 417 418 /* 419 * EAS can be used on a root domain if it meets all the following conditions: 420 * 1. an Energy Model (EM) is available; 421 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 422 * 3. no SMT is detected. 423 * 4. schedutil is driving the frequency of all CPUs of the rd; 424 * 5. frequency invariance support is present; 425 */ 426 static bool build_perf_domains(const struct cpumask *cpu_map) 427 { 428 int i; 429 struct perf_domain *pd = NULL, *tmp; 430 int cpu = cpumask_first(cpu_map); 431 struct root_domain *rd = cpu_rq(cpu)->rd; 432 433 if (!sysctl_sched_energy_aware) 434 goto free; 435 436 if (!sched_is_eas_possible(cpu_map)) 437 goto free; 438 439 for_each_cpu(i, cpu_map) { 440 /* Skip already covered CPUs. */ 441 if (find_pd(pd, i)) 442 continue; 443 444 /* Create the new pd and add it to the local list. */ 445 tmp = pd_init(i); 446 if (!tmp) 447 goto free; 448 tmp->next = pd; 449 pd = tmp; 450 } 451 452 perf_domain_debug(cpu_map, pd); 453 454 /* Attach the new list of performance domains to the root domain. */ 455 tmp = rd->pd; 456 rcu_assign_pointer(rd->pd, pd); 457 if (tmp) 458 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 459 460 return !!pd; 461 462 free: 463 free_pd(pd); 464 tmp = rd->pd; 465 rcu_assign_pointer(rd->pd, NULL); 466 if (tmp) 467 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 468 469 return false; 470 } 471 #else 472 static void free_pd(struct perf_domain *pd) { } 473 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 474 475 static void free_rootdomain(struct rcu_head *rcu) 476 { 477 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 478 479 cpupri_cleanup(&rd->cpupri); 480 cpudl_cleanup(&rd->cpudl); 481 free_cpumask_var(rd->dlo_mask); 482 free_cpumask_var(rd->rto_mask); 483 free_cpumask_var(rd->online); 484 free_cpumask_var(rd->span); 485 free_pd(rd->pd); 486 kfree(rd); 487 } 488 489 void rq_attach_root(struct rq *rq, struct root_domain *rd) 490 { 491 struct root_domain *old_rd = NULL; 492 struct rq_flags rf; 493 494 rq_lock_irqsave(rq, &rf); 495 496 if (rq->rd) { 497 old_rd = rq->rd; 498 499 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 500 set_rq_offline(rq); 501 502 cpumask_clear_cpu(rq->cpu, old_rd->span); 503 504 /* 505 * If we dont want to free the old_rd yet then 506 * set old_rd to NULL to skip the freeing later 507 * in this function: 508 */ 509 if (!atomic_dec_and_test(&old_rd->refcount)) 510 old_rd = NULL; 511 } 512 513 atomic_inc(&rd->refcount); 514 rq->rd = rd; 515 516 cpumask_set_cpu(rq->cpu, rd->span); 517 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 518 set_rq_online(rq); 519 520 rq_unlock_irqrestore(rq, &rf); 521 522 if (old_rd) 523 call_rcu(&old_rd->rcu, free_rootdomain); 524 } 525 526 void sched_get_rd(struct root_domain *rd) 527 { 528 atomic_inc(&rd->refcount); 529 } 530 531 void sched_put_rd(struct root_domain *rd) 532 { 533 if (!atomic_dec_and_test(&rd->refcount)) 534 return; 535 536 call_rcu(&rd->rcu, free_rootdomain); 537 } 538 539 static int init_rootdomain(struct root_domain *rd) 540 { 541 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 542 goto out; 543 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 544 goto free_span; 545 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 546 goto free_online; 547 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 548 goto free_dlo_mask; 549 550 #ifdef HAVE_RT_PUSH_IPI 551 rd->rto_cpu = -1; 552 raw_spin_lock_init(&rd->rto_lock); 553 rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func); 554 #endif 555 556 rd->visit_gen = 0; 557 init_dl_bw(&rd->dl_bw); 558 if (cpudl_init(&rd->cpudl) != 0) 559 goto free_rto_mask; 560 561 if (cpupri_init(&rd->cpupri) != 0) 562 goto free_cpudl; 563 return 0; 564 565 free_cpudl: 566 cpudl_cleanup(&rd->cpudl); 567 free_rto_mask: 568 free_cpumask_var(rd->rto_mask); 569 free_dlo_mask: 570 free_cpumask_var(rd->dlo_mask); 571 free_online: 572 free_cpumask_var(rd->online); 573 free_span: 574 free_cpumask_var(rd->span); 575 out: 576 return -ENOMEM; 577 } 578 579 /* 580 * By default the system creates a single root-domain with all CPUs as 581 * members (mimicking the global state we have today). 582 */ 583 struct root_domain def_root_domain; 584 585 void __init init_defrootdomain(void) 586 { 587 init_rootdomain(&def_root_domain); 588 589 atomic_set(&def_root_domain.refcount, 1); 590 } 591 592 static struct root_domain *alloc_rootdomain(void) 593 { 594 struct root_domain *rd; 595 596 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 597 if (!rd) 598 return NULL; 599 600 if (init_rootdomain(rd) != 0) { 601 kfree(rd); 602 return NULL; 603 } 604 605 return rd; 606 } 607 608 static void free_sched_groups(struct sched_group *sg, int free_sgc) 609 { 610 struct sched_group *tmp, *first; 611 612 if (!sg) 613 return; 614 615 first = sg; 616 do { 617 tmp = sg->next; 618 619 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 620 kfree(sg->sgc); 621 622 if (atomic_dec_and_test(&sg->ref)) 623 kfree(sg); 624 sg = tmp; 625 } while (sg != first); 626 } 627 628 static void destroy_sched_domain(struct sched_domain *sd) 629 { 630 /* 631 * A normal sched domain may have multiple group references, an 632 * overlapping domain, having private groups, only one. Iterate, 633 * dropping group/capacity references, freeing where none remain. 634 */ 635 free_sched_groups(sd->groups, 1); 636 637 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 638 kfree(sd->shared); 639 kfree(sd); 640 } 641 642 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 643 { 644 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 645 646 while (sd) { 647 struct sched_domain *parent = sd->parent; 648 destroy_sched_domain(sd); 649 sd = parent; 650 } 651 } 652 653 static void destroy_sched_domains(struct sched_domain *sd) 654 { 655 if (sd) 656 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 657 } 658 659 /* 660 * Keep a special pointer to the highest sched_domain that has 661 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 662 * allows us to avoid some pointer chasing select_idle_sibling(). 663 * 664 * Also keep a unique ID per domain (we use the first CPU number in 665 * the cpumask of the domain), this allows us to quickly tell if 666 * two CPUs are in the same cache domain, see cpus_share_cache(). 667 */ 668 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 669 DEFINE_PER_CPU(int, sd_llc_size); 670 DEFINE_PER_CPU(int, sd_llc_id); 671 DEFINE_PER_CPU(int, sd_share_id); 672 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 673 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 674 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 675 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 676 677 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 678 DEFINE_STATIC_KEY_FALSE(sched_cluster_active); 679 680 static void update_top_cache_domain(int cpu) 681 { 682 struct sched_domain_shared *sds = NULL; 683 struct sched_domain *sd; 684 int id = cpu; 685 int size = 1; 686 687 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 688 if (sd) { 689 id = cpumask_first(sched_domain_span(sd)); 690 size = cpumask_weight(sched_domain_span(sd)); 691 sds = sd->shared; 692 } 693 694 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 695 per_cpu(sd_llc_size, cpu) = size; 696 per_cpu(sd_llc_id, cpu) = id; 697 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 698 699 sd = lowest_flag_domain(cpu, SD_CLUSTER); 700 if (sd) 701 id = cpumask_first(sched_domain_span(sd)); 702 703 /* 704 * This assignment should be placed after the sd_llc_id as 705 * we want this id equals to cluster id on cluster machines 706 * but equals to LLC id on non-Cluster machines. 707 */ 708 per_cpu(sd_share_id, cpu) = id; 709 710 sd = lowest_flag_domain(cpu, SD_NUMA); 711 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 712 713 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 714 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 715 716 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL); 717 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 718 } 719 720 /* 721 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 722 * hold the hotplug lock. 723 */ 724 static void 725 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 726 { 727 struct rq *rq = cpu_rq(cpu); 728 struct sched_domain *tmp; 729 730 /* Remove the sched domains which do not contribute to scheduling. */ 731 for (tmp = sd; tmp; ) { 732 struct sched_domain *parent = tmp->parent; 733 if (!parent) 734 break; 735 736 if (sd_parent_degenerate(tmp, parent)) { 737 tmp->parent = parent->parent; 738 739 if (parent->parent) { 740 parent->parent->child = tmp; 741 parent->parent->groups->flags = tmp->flags; 742 } 743 744 /* 745 * Transfer SD_PREFER_SIBLING down in case of a 746 * degenerate parent; the spans match for this 747 * so the property transfers. 748 */ 749 if (parent->flags & SD_PREFER_SIBLING) 750 tmp->flags |= SD_PREFER_SIBLING; 751 destroy_sched_domain(parent); 752 } else 753 tmp = tmp->parent; 754 } 755 756 if (sd && sd_degenerate(sd)) { 757 tmp = sd; 758 sd = sd->parent; 759 destroy_sched_domain(tmp); 760 if (sd) { 761 struct sched_group *sg = sd->groups; 762 763 /* 764 * sched groups hold the flags of the child sched 765 * domain for convenience. Clear such flags since 766 * the child is being destroyed. 767 */ 768 do { 769 sg->flags = 0; 770 } while (sg != sd->groups); 771 772 sd->child = NULL; 773 } 774 } 775 776 sched_domain_debug(sd, cpu); 777 778 rq_attach_root(rq, rd); 779 tmp = rq->sd; 780 rcu_assign_pointer(rq->sd, sd); 781 dirty_sched_domain_sysctl(cpu); 782 destroy_sched_domains(tmp); 783 784 update_top_cache_domain(cpu); 785 } 786 787 struct s_data { 788 struct sched_domain * __percpu *sd; 789 struct root_domain *rd; 790 }; 791 792 enum s_alloc { 793 sa_rootdomain, 794 sa_sd, 795 sa_sd_storage, 796 sa_none, 797 }; 798 799 /* 800 * Return the canonical balance CPU for this group, this is the first CPU 801 * of this group that's also in the balance mask. 802 * 803 * The balance mask are all those CPUs that could actually end up at this 804 * group. See build_balance_mask(). 805 * 806 * Also see should_we_balance(). 807 */ 808 int group_balance_cpu(struct sched_group *sg) 809 { 810 return cpumask_first(group_balance_mask(sg)); 811 } 812 813 814 /* 815 * NUMA topology (first read the regular topology blurb below) 816 * 817 * Given a node-distance table, for example: 818 * 819 * node 0 1 2 3 820 * 0: 10 20 30 20 821 * 1: 20 10 20 30 822 * 2: 30 20 10 20 823 * 3: 20 30 20 10 824 * 825 * which represents a 4 node ring topology like: 826 * 827 * 0 ----- 1 828 * | | 829 * | | 830 * | | 831 * 3 ----- 2 832 * 833 * We want to construct domains and groups to represent this. The way we go 834 * about doing this is to build the domains on 'hops'. For each NUMA level we 835 * construct the mask of all nodes reachable in @level hops. 836 * 837 * For the above NUMA topology that gives 3 levels: 838 * 839 * NUMA-2 0-3 0-3 0-3 0-3 840 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 841 * 842 * NUMA-1 0-1,3 0-2 1-3 0,2-3 843 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 844 * 845 * NUMA-0 0 1 2 3 846 * 847 * 848 * As can be seen; things don't nicely line up as with the regular topology. 849 * When we iterate a domain in child domain chunks some nodes can be 850 * represented multiple times -- hence the "overlap" naming for this part of 851 * the topology. 852 * 853 * In order to minimize this overlap, we only build enough groups to cover the 854 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 855 * 856 * Because: 857 * 858 * - the first group of each domain is its child domain; this 859 * gets us the first 0-1,3 860 * - the only uncovered node is 2, who's child domain is 1-3. 861 * 862 * However, because of the overlap, computing a unique CPU for each group is 863 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 864 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 865 * end up at those groups (they would end up in group: 0-1,3). 866 * 867 * To correct this we have to introduce the group balance mask. This mask 868 * will contain those CPUs in the group that can reach this group given the 869 * (child) domain tree. 870 * 871 * With this we can once again compute balance_cpu and sched_group_capacity 872 * relations. 873 * 874 * XXX include words on how balance_cpu is unique and therefore can be 875 * used for sched_group_capacity links. 876 * 877 * 878 * Another 'interesting' topology is: 879 * 880 * node 0 1 2 3 881 * 0: 10 20 20 30 882 * 1: 20 10 20 20 883 * 2: 20 20 10 20 884 * 3: 30 20 20 10 885 * 886 * Which looks a little like: 887 * 888 * 0 ----- 1 889 * | / | 890 * | / | 891 * | / | 892 * 2 ----- 3 893 * 894 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 895 * are not. 896 * 897 * This leads to a few particularly weird cases where the sched_domain's are 898 * not of the same number for each CPU. Consider: 899 * 900 * NUMA-2 0-3 0-3 901 * groups: {0-2},{1-3} {1-3},{0-2} 902 * 903 * NUMA-1 0-2 0-3 0-3 1-3 904 * 905 * NUMA-0 0 1 2 3 906 * 907 */ 908 909 910 /* 911 * Build the balance mask; it contains only those CPUs that can arrive at this 912 * group and should be considered to continue balancing. 913 * 914 * We do this during the group creation pass, therefore the group information 915 * isn't complete yet, however since each group represents a (child) domain we 916 * can fully construct this using the sched_domain bits (which are already 917 * complete). 918 */ 919 static void 920 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 921 { 922 const struct cpumask *sg_span = sched_group_span(sg); 923 struct sd_data *sdd = sd->private; 924 struct sched_domain *sibling; 925 int i; 926 927 cpumask_clear(mask); 928 929 for_each_cpu(i, sg_span) { 930 sibling = *per_cpu_ptr(sdd->sd, i); 931 932 /* 933 * Can happen in the asymmetric case, where these siblings are 934 * unused. The mask will not be empty because those CPUs that 935 * do have the top domain _should_ span the domain. 936 */ 937 if (!sibling->child) 938 continue; 939 940 /* If we would not end up here, we can't continue from here */ 941 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 942 continue; 943 944 cpumask_set_cpu(i, mask); 945 } 946 947 /* We must not have empty masks here */ 948 WARN_ON_ONCE(cpumask_empty(mask)); 949 } 950 951 /* 952 * XXX: This creates per-node group entries; since the load-balancer will 953 * immediately access remote memory to construct this group's load-balance 954 * statistics having the groups node local is of dubious benefit. 955 */ 956 static struct sched_group * 957 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 958 { 959 struct sched_group *sg; 960 struct cpumask *sg_span; 961 962 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 963 GFP_KERNEL, cpu_to_node(cpu)); 964 965 if (!sg) 966 return NULL; 967 968 sg_span = sched_group_span(sg); 969 if (sd->child) { 970 cpumask_copy(sg_span, sched_domain_span(sd->child)); 971 sg->flags = sd->child->flags; 972 } else { 973 cpumask_copy(sg_span, sched_domain_span(sd)); 974 } 975 976 atomic_inc(&sg->ref); 977 return sg; 978 } 979 980 static void init_overlap_sched_group(struct sched_domain *sd, 981 struct sched_group *sg) 982 { 983 struct cpumask *mask = sched_domains_tmpmask2; 984 struct sd_data *sdd = sd->private; 985 struct cpumask *sg_span; 986 int cpu; 987 988 build_balance_mask(sd, sg, mask); 989 cpu = cpumask_first(mask); 990 991 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 992 if (atomic_inc_return(&sg->sgc->ref) == 1) 993 cpumask_copy(group_balance_mask(sg), mask); 994 else 995 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 996 997 /* 998 * Initialize sgc->capacity such that even if we mess up the 999 * domains and no possible iteration will get us here, we won't 1000 * die on a /0 trap. 1001 */ 1002 sg_span = sched_group_span(sg); 1003 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 1004 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1005 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1006 } 1007 1008 static struct sched_domain * 1009 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling) 1010 { 1011 /* 1012 * The proper descendant would be the one whose child won't span out 1013 * of sd 1014 */ 1015 while (sibling->child && 1016 !cpumask_subset(sched_domain_span(sibling->child), 1017 sched_domain_span(sd))) 1018 sibling = sibling->child; 1019 1020 /* 1021 * As we are referencing sgc across different topology level, we need 1022 * to go down to skip those sched_domains which don't contribute to 1023 * scheduling because they will be degenerated in cpu_attach_domain 1024 */ 1025 while (sibling->child && 1026 cpumask_equal(sched_domain_span(sibling->child), 1027 sched_domain_span(sibling))) 1028 sibling = sibling->child; 1029 1030 return sibling; 1031 } 1032 1033 static int 1034 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 1035 { 1036 struct sched_group *first = NULL, *last = NULL, *sg; 1037 const struct cpumask *span = sched_domain_span(sd); 1038 struct cpumask *covered = sched_domains_tmpmask; 1039 struct sd_data *sdd = sd->private; 1040 struct sched_domain *sibling; 1041 int i; 1042 1043 cpumask_clear(covered); 1044 1045 for_each_cpu_wrap(i, span, cpu) { 1046 struct cpumask *sg_span; 1047 1048 if (cpumask_test_cpu(i, covered)) 1049 continue; 1050 1051 sibling = *per_cpu_ptr(sdd->sd, i); 1052 1053 /* 1054 * Asymmetric node setups can result in situations where the 1055 * domain tree is of unequal depth, make sure to skip domains 1056 * that already cover the entire range. 1057 * 1058 * In that case build_sched_domains() will have terminated the 1059 * iteration early and our sibling sd spans will be empty. 1060 * Domains should always include the CPU they're built on, so 1061 * check that. 1062 */ 1063 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 1064 continue; 1065 1066 /* 1067 * Usually we build sched_group by sibling's child sched_domain 1068 * But for machines whose NUMA diameter are 3 or above, we move 1069 * to build sched_group by sibling's proper descendant's child 1070 * domain because sibling's child sched_domain will span out of 1071 * the sched_domain being built as below. 1072 * 1073 * Smallest diameter=3 topology is: 1074 * 1075 * node 0 1 2 3 1076 * 0: 10 20 30 40 1077 * 1: 20 10 20 30 1078 * 2: 30 20 10 20 1079 * 3: 40 30 20 10 1080 * 1081 * 0 --- 1 --- 2 --- 3 1082 * 1083 * NUMA-3 0-3 N/A N/A 0-3 1084 * groups: {0-2},{1-3} {1-3},{0-2} 1085 * 1086 * NUMA-2 0-2 0-3 0-3 1-3 1087 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2} 1088 * 1089 * NUMA-1 0-1 0-2 1-3 2-3 1090 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2} 1091 * 1092 * NUMA-0 0 1 2 3 1093 * 1094 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the 1095 * group span isn't a subset of the domain span. 1096 */ 1097 if (sibling->child && 1098 !cpumask_subset(sched_domain_span(sibling->child), span)) 1099 sibling = find_descended_sibling(sd, sibling); 1100 1101 sg = build_group_from_child_sched_domain(sibling, cpu); 1102 if (!sg) 1103 goto fail; 1104 1105 sg_span = sched_group_span(sg); 1106 cpumask_or(covered, covered, sg_span); 1107 1108 init_overlap_sched_group(sibling, sg); 1109 1110 if (!first) 1111 first = sg; 1112 if (last) 1113 last->next = sg; 1114 last = sg; 1115 last->next = first; 1116 } 1117 sd->groups = first; 1118 1119 return 0; 1120 1121 fail: 1122 free_sched_groups(first, 0); 1123 1124 return -ENOMEM; 1125 } 1126 1127 1128 /* 1129 * Package topology (also see the load-balance blurb in fair.c) 1130 * 1131 * The scheduler builds a tree structure to represent a number of important 1132 * topology features. By default (default_topology[]) these include: 1133 * 1134 * - Simultaneous multithreading (SMT) 1135 * - Multi-Core Cache (MC) 1136 * - Package (PKG) 1137 * 1138 * Where the last one more or less denotes everything up to a NUMA node. 1139 * 1140 * The tree consists of 3 primary data structures: 1141 * 1142 * sched_domain -> sched_group -> sched_group_capacity 1143 * ^ ^ ^ ^ 1144 * `-' `-' 1145 * 1146 * The sched_domains are per-CPU and have a two way link (parent & child) and 1147 * denote the ever growing mask of CPUs belonging to that level of topology. 1148 * 1149 * Each sched_domain has a circular (double) linked list of sched_group's, each 1150 * denoting the domains of the level below (or individual CPUs in case of the 1151 * first domain level). The sched_group linked by a sched_domain includes the 1152 * CPU of that sched_domain [*]. 1153 * 1154 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 1155 * 1156 * CPU 0 1 2 3 4 5 6 7 1157 * 1158 * PKG [ ] 1159 * MC [ ] [ ] 1160 * SMT [ ] [ ] [ ] [ ] 1161 * 1162 * - or - 1163 * 1164 * PKG 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 1165 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 1166 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 1167 * 1168 * CPU 0 1 2 3 4 5 6 7 1169 * 1170 * One way to think about it is: sched_domain moves you up and down among these 1171 * topology levels, while sched_group moves you sideways through it, at child 1172 * domain granularity. 1173 * 1174 * sched_group_capacity ensures each unique sched_group has shared storage. 1175 * 1176 * There are two related construction problems, both require a CPU that 1177 * uniquely identify each group (for a given domain): 1178 * 1179 * - The first is the balance_cpu (see should_we_balance() and the 1180 * load-balance blub in fair.c); for each group we only want 1 CPU to 1181 * continue balancing at a higher domain. 1182 * 1183 * - The second is the sched_group_capacity; we want all identical groups 1184 * to share a single sched_group_capacity. 1185 * 1186 * Since these topologies are exclusive by construction. That is, its 1187 * impossible for an SMT thread to belong to multiple cores, and cores to 1188 * be part of multiple caches. There is a very clear and unique location 1189 * for each CPU in the hierarchy. 1190 * 1191 * Therefore computing a unique CPU for each group is trivial (the iteration 1192 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 1193 * group), we can simply pick the first CPU in each group. 1194 * 1195 * 1196 * [*] in other words, the first group of each domain is its child domain. 1197 */ 1198 1199 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1200 { 1201 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1202 struct sched_domain *child = sd->child; 1203 struct sched_group *sg; 1204 bool already_visited; 1205 1206 if (child) 1207 cpu = cpumask_first(sched_domain_span(child)); 1208 1209 sg = *per_cpu_ptr(sdd->sg, cpu); 1210 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1211 1212 /* Increase refcounts for claim_allocations: */ 1213 already_visited = atomic_inc_return(&sg->ref) > 1; 1214 /* sgc visits should follow a similar trend as sg */ 1215 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 1216 1217 /* If we have already visited that group, it's already initialized. */ 1218 if (already_visited) 1219 return sg; 1220 1221 if (child) { 1222 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1223 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 1224 sg->flags = child->flags; 1225 } else { 1226 cpumask_set_cpu(cpu, sched_group_span(sg)); 1227 cpumask_set_cpu(cpu, group_balance_mask(sg)); 1228 } 1229 1230 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 1231 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1232 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1233 1234 return sg; 1235 } 1236 1237 /* 1238 * build_sched_groups will build a circular linked list of the groups 1239 * covered by the given span, will set each group's ->cpumask correctly, 1240 * and will initialize their ->sgc. 1241 * 1242 * Assumes the sched_domain tree is fully constructed 1243 */ 1244 static int 1245 build_sched_groups(struct sched_domain *sd, int cpu) 1246 { 1247 struct sched_group *first = NULL, *last = NULL; 1248 struct sd_data *sdd = sd->private; 1249 const struct cpumask *span = sched_domain_span(sd); 1250 struct cpumask *covered; 1251 int i; 1252 1253 lockdep_assert_held(&sched_domains_mutex); 1254 covered = sched_domains_tmpmask; 1255 1256 cpumask_clear(covered); 1257 1258 for_each_cpu_wrap(i, span, cpu) { 1259 struct sched_group *sg; 1260 1261 if (cpumask_test_cpu(i, covered)) 1262 continue; 1263 1264 sg = get_group(i, sdd); 1265 1266 cpumask_or(covered, covered, sched_group_span(sg)); 1267 1268 if (!first) 1269 first = sg; 1270 if (last) 1271 last->next = sg; 1272 last = sg; 1273 } 1274 last->next = first; 1275 sd->groups = first; 1276 1277 return 0; 1278 } 1279 1280 /* 1281 * Initialize sched groups cpu_capacity. 1282 * 1283 * cpu_capacity indicates the capacity of sched group, which is used while 1284 * distributing the load between different sched groups in a sched domain. 1285 * Typically cpu_capacity for all the groups in a sched domain will be same 1286 * unless there are asymmetries in the topology. If there are asymmetries, 1287 * group having more cpu_capacity will pickup more load compared to the 1288 * group having less cpu_capacity. 1289 */ 1290 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1291 { 1292 struct sched_group *sg = sd->groups; 1293 struct cpumask *mask = sched_domains_tmpmask2; 1294 1295 WARN_ON(!sg); 1296 1297 do { 1298 int cpu, cores = 0, max_cpu = -1; 1299 1300 sg->group_weight = cpumask_weight(sched_group_span(sg)); 1301 1302 cpumask_copy(mask, sched_group_span(sg)); 1303 for_each_cpu(cpu, mask) { 1304 cores++; 1305 #ifdef CONFIG_SCHED_SMT 1306 cpumask_andnot(mask, mask, cpu_smt_mask(cpu)); 1307 #endif 1308 } 1309 sg->cores = cores; 1310 1311 if (!(sd->flags & SD_ASYM_PACKING)) 1312 goto next; 1313 1314 for_each_cpu(cpu, sched_group_span(sg)) { 1315 if (max_cpu < 0) 1316 max_cpu = cpu; 1317 else if (sched_asym_prefer(cpu, max_cpu)) 1318 max_cpu = cpu; 1319 } 1320 sg->asym_prefer_cpu = max_cpu; 1321 1322 next: 1323 sg = sg->next; 1324 } while (sg != sd->groups); 1325 1326 if (cpu != group_balance_cpu(sg)) 1327 return; 1328 1329 update_group_capacity(sd, cpu); 1330 } 1331 1332 /* 1333 * Asymmetric CPU capacity bits 1334 */ 1335 struct asym_cap_data { 1336 struct list_head link; 1337 unsigned long capacity; 1338 unsigned long cpus[]; 1339 }; 1340 1341 /* 1342 * Set of available CPUs grouped by their corresponding capacities 1343 * Each list entry contains a CPU mask reflecting CPUs that share the same 1344 * capacity. 1345 * The lifespan of data is unlimited. 1346 */ 1347 static LIST_HEAD(asym_cap_list); 1348 1349 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 1350 1351 /* 1352 * Verify whether there is any CPU capacity asymmetry in a given sched domain. 1353 * Provides sd_flags reflecting the asymmetry scope. 1354 */ 1355 static inline int 1356 asym_cpu_capacity_classify(const struct cpumask *sd_span, 1357 const struct cpumask *cpu_map) 1358 { 1359 struct asym_cap_data *entry; 1360 int count = 0, miss = 0; 1361 1362 /* 1363 * Count how many unique CPU capacities this domain spans across 1364 * (compare sched_domain CPUs mask with ones representing available 1365 * CPUs capacities). Take into account CPUs that might be offline: 1366 * skip those. 1367 */ 1368 list_for_each_entry(entry, &asym_cap_list, link) { 1369 if (cpumask_intersects(sd_span, cpu_capacity_span(entry))) 1370 ++count; 1371 else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry))) 1372 ++miss; 1373 } 1374 1375 WARN_ON_ONCE(!count && !list_empty(&asym_cap_list)); 1376 1377 /* No asymmetry detected */ 1378 if (count < 2) 1379 return 0; 1380 /* Some of the available CPU capacity values have not been detected */ 1381 if (miss) 1382 return SD_ASYM_CPUCAPACITY; 1383 1384 /* Full asymmetry */ 1385 return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL; 1386 1387 } 1388 1389 static inline void asym_cpu_capacity_update_data(int cpu) 1390 { 1391 unsigned long capacity = arch_scale_cpu_capacity(cpu); 1392 struct asym_cap_data *entry = NULL; 1393 1394 list_for_each_entry(entry, &asym_cap_list, link) { 1395 if (capacity == entry->capacity) 1396 goto done; 1397 } 1398 1399 entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL); 1400 if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n")) 1401 return; 1402 entry->capacity = capacity; 1403 list_add(&entry->link, &asym_cap_list); 1404 done: 1405 __cpumask_set_cpu(cpu, cpu_capacity_span(entry)); 1406 } 1407 1408 /* 1409 * Build-up/update list of CPUs grouped by their capacities 1410 * An update requires explicit request to rebuild sched domains 1411 * with state indicating CPU topology changes. 1412 */ 1413 static void asym_cpu_capacity_scan(void) 1414 { 1415 struct asym_cap_data *entry, *next; 1416 int cpu; 1417 1418 list_for_each_entry(entry, &asym_cap_list, link) 1419 cpumask_clear(cpu_capacity_span(entry)); 1420 1421 for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) 1422 asym_cpu_capacity_update_data(cpu); 1423 1424 list_for_each_entry_safe(entry, next, &asym_cap_list, link) { 1425 if (cpumask_empty(cpu_capacity_span(entry))) { 1426 list_del(&entry->link); 1427 kfree(entry); 1428 } 1429 } 1430 1431 /* 1432 * Only one capacity value has been detected i.e. this system is symmetric. 1433 * No need to keep this data around. 1434 */ 1435 if (list_is_singular(&asym_cap_list)) { 1436 entry = list_first_entry(&asym_cap_list, typeof(*entry), link); 1437 list_del(&entry->link); 1438 kfree(entry); 1439 } 1440 } 1441 1442 /* 1443 * Initializers for schedule domains 1444 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1445 */ 1446 1447 static int default_relax_domain_level = -1; 1448 int sched_domain_level_max; 1449 1450 static int __init setup_relax_domain_level(char *str) 1451 { 1452 if (kstrtoint(str, 0, &default_relax_domain_level)) 1453 pr_warn("Unable to set relax_domain_level\n"); 1454 1455 return 1; 1456 } 1457 __setup("relax_domain_level=", setup_relax_domain_level); 1458 1459 static void set_domain_attribute(struct sched_domain *sd, 1460 struct sched_domain_attr *attr) 1461 { 1462 int request; 1463 1464 if (!attr || attr->relax_domain_level < 0) { 1465 if (default_relax_domain_level < 0) 1466 return; 1467 request = default_relax_domain_level; 1468 } else 1469 request = attr->relax_domain_level; 1470 1471 if (sd->level > request) { 1472 /* Turn off idle balance on this domain: */ 1473 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1474 } 1475 } 1476 1477 static void __sdt_free(const struct cpumask *cpu_map); 1478 static int __sdt_alloc(const struct cpumask *cpu_map); 1479 1480 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1481 const struct cpumask *cpu_map) 1482 { 1483 switch (what) { 1484 case sa_rootdomain: 1485 if (!atomic_read(&d->rd->refcount)) 1486 free_rootdomain(&d->rd->rcu); 1487 fallthrough; 1488 case sa_sd: 1489 free_percpu(d->sd); 1490 fallthrough; 1491 case sa_sd_storage: 1492 __sdt_free(cpu_map); 1493 fallthrough; 1494 case sa_none: 1495 break; 1496 } 1497 } 1498 1499 static enum s_alloc 1500 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1501 { 1502 memset(d, 0, sizeof(*d)); 1503 1504 if (__sdt_alloc(cpu_map)) 1505 return sa_sd_storage; 1506 d->sd = alloc_percpu(struct sched_domain *); 1507 if (!d->sd) 1508 return sa_sd_storage; 1509 d->rd = alloc_rootdomain(); 1510 if (!d->rd) 1511 return sa_sd; 1512 1513 return sa_rootdomain; 1514 } 1515 1516 /* 1517 * NULL the sd_data elements we've used to build the sched_domain and 1518 * sched_group structure so that the subsequent __free_domain_allocs() 1519 * will not free the data we're using. 1520 */ 1521 static void claim_allocations(int cpu, struct sched_domain *sd) 1522 { 1523 struct sd_data *sdd = sd->private; 1524 1525 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1526 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1527 1528 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1529 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1530 1531 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1532 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1533 1534 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1535 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1536 } 1537 1538 #ifdef CONFIG_NUMA 1539 enum numa_topology_type sched_numa_topology_type; 1540 1541 static int sched_domains_numa_levels; 1542 static int sched_domains_curr_level; 1543 1544 int sched_max_numa_distance; 1545 static int *sched_domains_numa_distance; 1546 static struct cpumask ***sched_domains_numa_masks; 1547 #endif 1548 1549 /* 1550 * SD_flags allowed in topology descriptions. 1551 * 1552 * These flags are purely descriptive of the topology and do not prescribe 1553 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1554 * function: 1555 * 1556 * SD_SHARE_CPUCAPACITY - describes SMT topologies 1557 * SD_SHARE_PKG_RESOURCES - describes shared caches 1558 * SD_NUMA - describes NUMA topologies 1559 * 1560 * Odd one out, which beside describing the topology has a quirk also 1561 * prescribes the desired behaviour that goes along with it: 1562 * 1563 * SD_ASYM_PACKING - describes SMT quirks 1564 */ 1565 #define TOPOLOGY_SD_FLAGS \ 1566 (SD_SHARE_CPUCAPACITY | \ 1567 SD_CLUSTER | \ 1568 SD_SHARE_PKG_RESOURCES | \ 1569 SD_NUMA | \ 1570 SD_ASYM_PACKING) 1571 1572 static struct sched_domain * 1573 sd_init(struct sched_domain_topology_level *tl, 1574 const struct cpumask *cpu_map, 1575 struct sched_domain *child, int cpu) 1576 { 1577 struct sd_data *sdd = &tl->data; 1578 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1579 int sd_id, sd_weight, sd_flags = 0; 1580 struct cpumask *sd_span; 1581 1582 #ifdef CONFIG_NUMA 1583 /* 1584 * Ugly hack to pass state to sd_numa_mask()... 1585 */ 1586 sched_domains_curr_level = tl->numa_level; 1587 #endif 1588 1589 sd_weight = cpumask_weight(tl->mask(cpu)); 1590 1591 if (tl->sd_flags) 1592 sd_flags = (*tl->sd_flags)(); 1593 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1594 "wrong sd_flags in topology description\n")) 1595 sd_flags &= TOPOLOGY_SD_FLAGS; 1596 1597 *sd = (struct sched_domain){ 1598 .min_interval = sd_weight, 1599 .max_interval = 2*sd_weight, 1600 .busy_factor = 16, 1601 .imbalance_pct = 117, 1602 1603 .cache_nice_tries = 0, 1604 1605 .flags = 1*SD_BALANCE_NEWIDLE 1606 | 1*SD_BALANCE_EXEC 1607 | 1*SD_BALANCE_FORK 1608 | 0*SD_BALANCE_WAKE 1609 | 1*SD_WAKE_AFFINE 1610 | 0*SD_SHARE_CPUCAPACITY 1611 | 0*SD_SHARE_PKG_RESOURCES 1612 | 0*SD_SERIALIZE 1613 | 1*SD_PREFER_SIBLING 1614 | 0*SD_NUMA 1615 | sd_flags 1616 , 1617 1618 .last_balance = jiffies, 1619 .balance_interval = sd_weight, 1620 .max_newidle_lb_cost = 0, 1621 .last_decay_max_lb_cost = jiffies, 1622 .child = child, 1623 #ifdef CONFIG_SCHED_DEBUG 1624 .name = tl->name, 1625 #endif 1626 }; 1627 1628 sd_span = sched_domain_span(sd); 1629 cpumask_and(sd_span, cpu_map, tl->mask(cpu)); 1630 sd_id = cpumask_first(sd_span); 1631 1632 sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map); 1633 1634 WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) == 1635 (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY), 1636 "CPU capacity asymmetry not supported on SMT\n"); 1637 1638 /* 1639 * Convert topological properties into behaviour. 1640 */ 1641 /* Don't attempt to spread across CPUs of different capacities. */ 1642 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 1643 sd->child->flags &= ~SD_PREFER_SIBLING; 1644 1645 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1646 sd->imbalance_pct = 110; 1647 1648 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1649 sd->imbalance_pct = 117; 1650 sd->cache_nice_tries = 1; 1651 1652 #ifdef CONFIG_NUMA 1653 } else if (sd->flags & SD_NUMA) { 1654 sd->cache_nice_tries = 2; 1655 1656 sd->flags &= ~SD_PREFER_SIBLING; 1657 sd->flags |= SD_SERIALIZE; 1658 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1659 sd->flags &= ~(SD_BALANCE_EXEC | 1660 SD_BALANCE_FORK | 1661 SD_WAKE_AFFINE); 1662 } 1663 1664 #endif 1665 } else { 1666 sd->cache_nice_tries = 1; 1667 } 1668 1669 /* 1670 * For all levels sharing cache; connect a sched_domain_shared 1671 * instance. 1672 */ 1673 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1674 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1675 atomic_inc(&sd->shared->ref); 1676 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1677 } 1678 1679 sd->private = sdd; 1680 1681 return sd; 1682 } 1683 1684 /* 1685 * Topology list, bottom-up. 1686 */ 1687 static struct sched_domain_topology_level default_topology[] = { 1688 #ifdef CONFIG_SCHED_SMT 1689 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1690 #endif 1691 1692 #ifdef CONFIG_SCHED_CLUSTER 1693 { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) }, 1694 #endif 1695 1696 #ifdef CONFIG_SCHED_MC 1697 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1698 #endif 1699 { cpu_cpu_mask, SD_INIT_NAME(PKG) }, 1700 { NULL, }, 1701 }; 1702 1703 static struct sched_domain_topology_level *sched_domain_topology = 1704 default_topology; 1705 static struct sched_domain_topology_level *sched_domain_topology_saved; 1706 1707 #define for_each_sd_topology(tl) \ 1708 for (tl = sched_domain_topology; tl->mask; tl++) 1709 1710 void __init set_sched_topology(struct sched_domain_topology_level *tl) 1711 { 1712 if (WARN_ON_ONCE(sched_smp_initialized)) 1713 return; 1714 1715 sched_domain_topology = tl; 1716 sched_domain_topology_saved = NULL; 1717 } 1718 1719 #ifdef CONFIG_NUMA 1720 1721 static const struct cpumask *sd_numa_mask(int cpu) 1722 { 1723 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1724 } 1725 1726 static void sched_numa_warn(const char *str) 1727 { 1728 static int done = false; 1729 int i,j; 1730 1731 if (done) 1732 return; 1733 1734 done = true; 1735 1736 printk(KERN_WARNING "ERROR: %s\n\n", str); 1737 1738 for (i = 0; i < nr_node_ids; i++) { 1739 printk(KERN_WARNING " "); 1740 for (j = 0; j < nr_node_ids; j++) { 1741 if (!node_state(i, N_CPU) || !node_state(j, N_CPU)) 1742 printk(KERN_CONT "(%02d) ", node_distance(i,j)); 1743 else 1744 printk(KERN_CONT " %02d ", node_distance(i,j)); 1745 } 1746 printk(KERN_CONT "\n"); 1747 } 1748 printk(KERN_WARNING "\n"); 1749 } 1750 1751 bool find_numa_distance(int distance) 1752 { 1753 bool found = false; 1754 int i, *distances; 1755 1756 if (distance == node_distance(0, 0)) 1757 return true; 1758 1759 rcu_read_lock(); 1760 distances = rcu_dereference(sched_domains_numa_distance); 1761 if (!distances) 1762 goto unlock; 1763 for (i = 0; i < sched_domains_numa_levels; i++) { 1764 if (distances[i] == distance) { 1765 found = true; 1766 break; 1767 } 1768 } 1769 unlock: 1770 rcu_read_unlock(); 1771 1772 return found; 1773 } 1774 1775 #define for_each_cpu_node_but(n, nbut) \ 1776 for_each_node_state(n, N_CPU) \ 1777 if (n == nbut) \ 1778 continue; \ 1779 else 1780 1781 /* 1782 * A system can have three types of NUMA topology: 1783 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1784 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1785 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1786 * 1787 * The difference between a glueless mesh topology and a backplane 1788 * topology lies in whether communication between not directly 1789 * connected nodes goes through intermediary nodes (where programs 1790 * could run), or through backplane controllers. This affects 1791 * placement of programs. 1792 * 1793 * The type of topology can be discerned with the following tests: 1794 * - If the maximum distance between any nodes is 1 hop, the system 1795 * is directly connected. 1796 * - If for two nodes A and B, located N > 1 hops away from each other, 1797 * there is an intermediary node C, which is < N hops away from both 1798 * nodes A and B, the system is a glueless mesh. 1799 */ 1800 static void init_numa_topology_type(int offline_node) 1801 { 1802 int a, b, c, n; 1803 1804 n = sched_max_numa_distance; 1805 1806 if (sched_domains_numa_levels <= 2) { 1807 sched_numa_topology_type = NUMA_DIRECT; 1808 return; 1809 } 1810 1811 for_each_cpu_node_but(a, offline_node) { 1812 for_each_cpu_node_but(b, offline_node) { 1813 /* Find two nodes furthest removed from each other. */ 1814 if (node_distance(a, b) < n) 1815 continue; 1816 1817 /* Is there an intermediary node between a and b? */ 1818 for_each_cpu_node_but(c, offline_node) { 1819 if (node_distance(a, c) < n && 1820 node_distance(b, c) < n) { 1821 sched_numa_topology_type = 1822 NUMA_GLUELESS_MESH; 1823 return; 1824 } 1825 } 1826 1827 sched_numa_topology_type = NUMA_BACKPLANE; 1828 return; 1829 } 1830 } 1831 1832 pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n"); 1833 sched_numa_topology_type = NUMA_DIRECT; 1834 } 1835 1836 1837 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS) 1838 1839 void sched_init_numa(int offline_node) 1840 { 1841 struct sched_domain_topology_level *tl; 1842 unsigned long *distance_map; 1843 int nr_levels = 0; 1844 int i, j; 1845 int *distances; 1846 struct cpumask ***masks; 1847 1848 /* 1849 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1850 * unique distances in the node_distance() table. 1851 */ 1852 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL); 1853 if (!distance_map) 1854 return; 1855 1856 bitmap_zero(distance_map, NR_DISTANCE_VALUES); 1857 for_each_cpu_node_but(i, offline_node) { 1858 for_each_cpu_node_but(j, offline_node) { 1859 int distance = node_distance(i, j); 1860 1861 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) { 1862 sched_numa_warn("Invalid distance value range"); 1863 bitmap_free(distance_map); 1864 return; 1865 } 1866 1867 bitmap_set(distance_map, distance, 1); 1868 } 1869 } 1870 /* 1871 * We can now figure out how many unique distance values there are and 1872 * allocate memory accordingly. 1873 */ 1874 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES); 1875 1876 distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL); 1877 if (!distances) { 1878 bitmap_free(distance_map); 1879 return; 1880 } 1881 1882 for (i = 0, j = 0; i < nr_levels; i++, j++) { 1883 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j); 1884 distances[i] = j; 1885 } 1886 rcu_assign_pointer(sched_domains_numa_distance, distances); 1887 1888 bitmap_free(distance_map); 1889 1890 /* 1891 * 'nr_levels' contains the number of unique distances 1892 * 1893 * The sched_domains_numa_distance[] array includes the actual distance 1894 * numbers. 1895 */ 1896 1897 /* 1898 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1899 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1900 * the array will contain less then 'nr_levels' members. This could be 1901 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1902 * in other functions. 1903 * 1904 * We reset it to 'nr_levels' at the end of this function. 1905 */ 1906 sched_domains_numa_levels = 0; 1907 1908 masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL); 1909 if (!masks) 1910 return; 1911 1912 /* 1913 * Now for each level, construct a mask per node which contains all 1914 * CPUs of nodes that are that many hops away from us. 1915 */ 1916 for (i = 0; i < nr_levels; i++) { 1917 masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1918 if (!masks[i]) 1919 return; 1920 1921 for_each_cpu_node_but(j, offline_node) { 1922 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1923 int k; 1924 1925 if (!mask) 1926 return; 1927 1928 masks[i][j] = mask; 1929 1930 for_each_cpu_node_but(k, offline_node) { 1931 if (sched_debug() && (node_distance(j, k) != node_distance(k, j))) 1932 sched_numa_warn("Node-distance not symmetric"); 1933 1934 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1935 continue; 1936 1937 cpumask_or(mask, mask, cpumask_of_node(k)); 1938 } 1939 } 1940 } 1941 rcu_assign_pointer(sched_domains_numa_masks, masks); 1942 1943 /* Compute default topology size */ 1944 for (i = 0; sched_domain_topology[i].mask; i++); 1945 1946 tl = kzalloc((i + nr_levels + 1) * 1947 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1948 if (!tl) 1949 return; 1950 1951 /* 1952 * Copy the default topology bits.. 1953 */ 1954 for (i = 0; sched_domain_topology[i].mask; i++) 1955 tl[i] = sched_domain_topology[i]; 1956 1957 /* 1958 * Add the NUMA identity distance, aka single NODE. 1959 */ 1960 tl[i++] = (struct sched_domain_topology_level){ 1961 .mask = sd_numa_mask, 1962 .numa_level = 0, 1963 SD_INIT_NAME(NODE) 1964 }; 1965 1966 /* 1967 * .. and append 'j' levels of NUMA goodness. 1968 */ 1969 for (j = 1; j < nr_levels; i++, j++) { 1970 tl[i] = (struct sched_domain_topology_level){ 1971 .mask = sd_numa_mask, 1972 .sd_flags = cpu_numa_flags, 1973 .flags = SDTL_OVERLAP, 1974 .numa_level = j, 1975 SD_INIT_NAME(NUMA) 1976 }; 1977 } 1978 1979 sched_domain_topology_saved = sched_domain_topology; 1980 sched_domain_topology = tl; 1981 1982 sched_domains_numa_levels = nr_levels; 1983 WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]); 1984 1985 init_numa_topology_type(offline_node); 1986 } 1987 1988 1989 static void sched_reset_numa(void) 1990 { 1991 int nr_levels, *distances; 1992 struct cpumask ***masks; 1993 1994 nr_levels = sched_domains_numa_levels; 1995 sched_domains_numa_levels = 0; 1996 sched_max_numa_distance = 0; 1997 sched_numa_topology_type = NUMA_DIRECT; 1998 distances = sched_domains_numa_distance; 1999 rcu_assign_pointer(sched_domains_numa_distance, NULL); 2000 masks = sched_domains_numa_masks; 2001 rcu_assign_pointer(sched_domains_numa_masks, NULL); 2002 if (distances || masks) { 2003 int i, j; 2004 2005 synchronize_rcu(); 2006 kfree(distances); 2007 for (i = 0; i < nr_levels && masks; i++) { 2008 if (!masks[i]) 2009 continue; 2010 for_each_node(j) 2011 kfree(masks[i][j]); 2012 kfree(masks[i]); 2013 } 2014 kfree(masks); 2015 } 2016 if (sched_domain_topology_saved) { 2017 kfree(sched_domain_topology); 2018 sched_domain_topology = sched_domain_topology_saved; 2019 sched_domain_topology_saved = NULL; 2020 } 2021 } 2022 2023 /* 2024 * Call with hotplug lock held 2025 */ 2026 void sched_update_numa(int cpu, bool online) 2027 { 2028 int node; 2029 2030 node = cpu_to_node(cpu); 2031 /* 2032 * Scheduler NUMA topology is updated when the first CPU of a 2033 * node is onlined or the last CPU of a node is offlined. 2034 */ 2035 if (cpumask_weight(cpumask_of_node(node)) != 1) 2036 return; 2037 2038 sched_reset_numa(); 2039 sched_init_numa(online ? NUMA_NO_NODE : node); 2040 } 2041 2042 void sched_domains_numa_masks_set(unsigned int cpu) 2043 { 2044 int node = cpu_to_node(cpu); 2045 int i, j; 2046 2047 for (i = 0; i < sched_domains_numa_levels; i++) { 2048 for (j = 0; j < nr_node_ids; j++) { 2049 if (!node_state(j, N_CPU)) 2050 continue; 2051 2052 /* Set ourselves in the remote node's masks */ 2053 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 2054 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 2055 } 2056 } 2057 } 2058 2059 void sched_domains_numa_masks_clear(unsigned int cpu) 2060 { 2061 int i, j; 2062 2063 for (i = 0; i < sched_domains_numa_levels; i++) { 2064 for (j = 0; j < nr_node_ids; j++) { 2065 if (sched_domains_numa_masks[i][j]) 2066 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 2067 } 2068 } 2069 } 2070 2071 /* 2072 * sched_numa_find_closest() - given the NUMA topology, find the cpu 2073 * closest to @cpu from @cpumask. 2074 * cpumask: cpumask to find a cpu from 2075 * cpu: cpu to be close to 2076 * 2077 * returns: cpu, or nr_cpu_ids when nothing found. 2078 */ 2079 int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 2080 { 2081 int i, j = cpu_to_node(cpu), found = nr_cpu_ids; 2082 struct cpumask ***masks; 2083 2084 rcu_read_lock(); 2085 masks = rcu_dereference(sched_domains_numa_masks); 2086 if (!masks) 2087 goto unlock; 2088 for (i = 0; i < sched_domains_numa_levels; i++) { 2089 if (!masks[i][j]) 2090 break; 2091 cpu = cpumask_any_and(cpus, masks[i][j]); 2092 if (cpu < nr_cpu_ids) { 2093 found = cpu; 2094 break; 2095 } 2096 } 2097 unlock: 2098 rcu_read_unlock(); 2099 2100 return found; 2101 } 2102 2103 struct __cmp_key { 2104 const struct cpumask *cpus; 2105 struct cpumask ***masks; 2106 int node; 2107 int cpu; 2108 int w; 2109 }; 2110 2111 static int hop_cmp(const void *a, const void *b) 2112 { 2113 struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b; 2114 struct __cmp_key *k = (struct __cmp_key *)a; 2115 2116 if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu) 2117 return 1; 2118 2119 if (b == k->masks) { 2120 k->w = 0; 2121 return 0; 2122 } 2123 2124 prev_hop = *((struct cpumask ***)b - 1); 2125 k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]); 2126 if (k->w <= k->cpu) 2127 return 0; 2128 2129 return -1; 2130 } 2131 2132 /** 2133 * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU 2134 * from @cpus to @cpu, taking into account distance 2135 * from a given @node. 2136 * @cpus: cpumask to find a cpu from 2137 * @cpu: CPU to start searching 2138 * @node: NUMA node to order CPUs by distance 2139 * 2140 * Return: cpu, or nr_cpu_ids when nothing found. 2141 */ 2142 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node) 2143 { 2144 struct __cmp_key k = { .cpus = cpus, .cpu = cpu }; 2145 struct cpumask ***hop_masks; 2146 int hop, ret = nr_cpu_ids; 2147 2148 if (node == NUMA_NO_NODE) 2149 return cpumask_nth_and(cpu, cpus, cpu_online_mask); 2150 2151 rcu_read_lock(); 2152 2153 /* CPU-less node entries are uninitialized in sched_domains_numa_masks */ 2154 node = numa_nearest_node(node, N_CPU); 2155 k.node = node; 2156 2157 k.masks = rcu_dereference(sched_domains_numa_masks); 2158 if (!k.masks) 2159 goto unlock; 2160 2161 hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp); 2162 hop = hop_masks - k.masks; 2163 2164 ret = hop ? 2165 cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) : 2166 cpumask_nth_and(cpu, cpus, k.masks[0][node]); 2167 unlock: 2168 rcu_read_unlock(); 2169 return ret; 2170 } 2171 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu); 2172 2173 /** 2174 * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from 2175 * @node 2176 * @node: The node to count hops from. 2177 * @hops: Include CPUs up to that many hops away. 0 means local node. 2178 * 2179 * Return: On success, a pointer to a cpumask of CPUs at most @hops away from 2180 * @node, an error value otherwise. 2181 * 2182 * Requires rcu_lock to be held. Returned cpumask is only valid within that 2183 * read-side section, copy it if required beyond that. 2184 * 2185 * Note that not all hops are equal in distance; see sched_init_numa() for how 2186 * distances and masks are handled. 2187 * Also note that this is a reflection of sched_domains_numa_masks, which may change 2188 * during the lifetime of the system (offline nodes are taken out of the masks). 2189 */ 2190 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops) 2191 { 2192 struct cpumask ***masks; 2193 2194 if (node >= nr_node_ids || hops >= sched_domains_numa_levels) 2195 return ERR_PTR(-EINVAL); 2196 2197 masks = rcu_dereference(sched_domains_numa_masks); 2198 if (!masks) 2199 return ERR_PTR(-EBUSY); 2200 2201 return masks[hops][node]; 2202 } 2203 EXPORT_SYMBOL_GPL(sched_numa_hop_mask); 2204 2205 #endif /* CONFIG_NUMA */ 2206 2207 static int __sdt_alloc(const struct cpumask *cpu_map) 2208 { 2209 struct sched_domain_topology_level *tl; 2210 int j; 2211 2212 for_each_sd_topology(tl) { 2213 struct sd_data *sdd = &tl->data; 2214 2215 sdd->sd = alloc_percpu(struct sched_domain *); 2216 if (!sdd->sd) 2217 return -ENOMEM; 2218 2219 sdd->sds = alloc_percpu(struct sched_domain_shared *); 2220 if (!sdd->sds) 2221 return -ENOMEM; 2222 2223 sdd->sg = alloc_percpu(struct sched_group *); 2224 if (!sdd->sg) 2225 return -ENOMEM; 2226 2227 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 2228 if (!sdd->sgc) 2229 return -ENOMEM; 2230 2231 for_each_cpu(j, cpu_map) { 2232 struct sched_domain *sd; 2233 struct sched_domain_shared *sds; 2234 struct sched_group *sg; 2235 struct sched_group_capacity *sgc; 2236 2237 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 2238 GFP_KERNEL, cpu_to_node(j)); 2239 if (!sd) 2240 return -ENOMEM; 2241 2242 *per_cpu_ptr(sdd->sd, j) = sd; 2243 2244 sds = kzalloc_node(sizeof(struct sched_domain_shared), 2245 GFP_KERNEL, cpu_to_node(j)); 2246 if (!sds) 2247 return -ENOMEM; 2248 2249 *per_cpu_ptr(sdd->sds, j) = sds; 2250 2251 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 2252 GFP_KERNEL, cpu_to_node(j)); 2253 if (!sg) 2254 return -ENOMEM; 2255 2256 sg->next = sg; 2257 2258 *per_cpu_ptr(sdd->sg, j) = sg; 2259 2260 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 2261 GFP_KERNEL, cpu_to_node(j)); 2262 if (!sgc) 2263 return -ENOMEM; 2264 2265 #ifdef CONFIG_SCHED_DEBUG 2266 sgc->id = j; 2267 #endif 2268 2269 *per_cpu_ptr(sdd->sgc, j) = sgc; 2270 } 2271 } 2272 2273 return 0; 2274 } 2275 2276 static void __sdt_free(const struct cpumask *cpu_map) 2277 { 2278 struct sched_domain_topology_level *tl; 2279 int j; 2280 2281 for_each_sd_topology(tl) { 2282 struct sd_data *sdd = &tl->data; 2283 2284 for_each_cpu(j, cpu_map) { 2285 struct sched_domain *sd; 2286 2287 if (sdd->sd) { 2288 sd = *per_cpu_ptr(sdd->sd, j); 2289 if (sd && (sd->flags & SD_OVERLAP)) 2290 free_sched_groups(sd->groups, 0); 2291 kfree(*per_cpu_ptr(sdd->sd, j)); 2292 } 2293 2294 if (sdd->sds) 2295 kfree(*per_cpu_ptr(sdd->sds, j)); 2296 if (sdd->sg) 2297 kfree(*per_cpu_ptr(sdd->sg, j)); 2298 if (sdd->sgc) 2299 kfree(*per_cpu_ptr(sdd->sgc, j)); 2300 } 2301 free_percpu(sdd->sd); 2302 sdd->sd = NULL; 2303 free_percpu(sdd->sds); 2304 sdd->sds = NULL; 2305 free_percpu(sdd->sg); 2306 sdd->sg = NULL; 2307 free_percpu(sdd->sgc); 2308 sdd->sgc = NULL; 2309 } 2310 } 2311 2312 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 2313 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 2314 struct sched_domain *child, int cpu) 2315 { 2316 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 2317 2318 if (child) { 2319 sd->level = child->level + 1; 2320 sched_domain_level_max = max(sched_domain_level_max, sd->level); 2321 child->parent = sd; 2322 2323 if (!cpumask_subset(sched_domain_span(child), 2324 sched_domain_span(sd))) { 2325 pr_err("BUG: arch topology borken\n"); 2326 #ifdef CONFIG_SCHED_DEBUG 2327 pr_err(" the %s domain not a subset of the %s domain\n", 2328 child->name, sd->name); 2329 #endif 2330 /* Fixup, ensure @sd has at least @child CPUs. */ 2331 cpumask_or(sched_domain_span(sd), 2332 sched_domain_span(sd), 2333 sched_domain_span(child)); 2334 } 2335 2336 } 2337 set_domain_attribute(sd, attr); 2338 2339 return sd; 2340 } 2341 2342 /* 2343 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 2344 * any two given CPUs at this (non-NUMA) topology level. 2345 */ 2346 static bool topology_span_sane(struct sched_domain_topology_level *tl, 2347 const struct cpumask *cpu_map, int cpu) 2348 { 2349 int i; 2350 2351 /* NUMA levels are allowed to overlap */ 2352 if (tl->flags & SDTL_OVERLAP) 2353 return true; 2354 2355 /* 2356 * Non-NUMA levels cannot partially overlap - they must be either 2357 * completely equal or completely disjoint. Otherwise we can end up 2358 * breaking the sched_group lists - i.e. a later get_group() pass 2359 * breaks the linking done for an earlier span. 2360 */ 2361 for_each_cpu(i, cpu_map) { 2362 if (i == cpu) 2363 continue; 2364 /* 2365 * We should 'and' all those masks with 'cpu_map' to exactly 2366 * match the topology we're about to build, but that can only 2367 * remove CPUs, which only lessens our ability to detect 2368 * overlaps 2369 */ 2370 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && 2371 cpumask_intersects(tl->mask(cpu), tl->mask(i))) 2372 return false; 2373 } 2374 2375 return true; 2376 } 2377 2378 /* 2379 * Build sched domains for a given set of CPUs and attach the sched domains 2380 * to the individual CPUs 2381 */ 2382 static int 2383 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 2384 { 2385 enum s_alloc alloc_state = sa_none; 2386 struct sched_domain *sd; 2387 struct s_data d; 2388 struct rq *rq = NULL; 2389 int i, ret = -ENOMEM; 2390 bool has_asym = false; 2391 bool has_cluster = false; 2392 2393 if (WARN_ON(cpumask_empty(cpu_map))) 2394 goto error; 2395 2396 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 2397 if (alloc_state != sa_rootdomain) 2398 goto error; 2399 2400 /* Set up domains for CPUs specified by the cpu_map: */ 2401 for_each_cpu(i, cpu_map) { 2402 struct sched_domain_topology_level *tl; 2403 2404 sd = NULL; 2405 for_each_sd_topology(tl) { 2406 2407 if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) 2408 goto error; 2409 2410 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 2411 2412 has_asym |= sd->flags & SD_ASYM_CPUCAPACITY; 2413 2414 if (tl == sched_domain_topology) 2415 *per_cpu_ptr(d.sd, i) = sd; 2416 if (tl->flags & SDTL_OVERLAP) 2417 sd->flags |= SD_OVERLAP; 2418 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2419 break; 2420 } 2421 } 2422 2423 /* Build the groups for the domains */ 2424 for_each_cpu(i, cpu_map) { 2425 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2426 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2427 if (sd->flags & SD_OVERLAP) { 2428 if (build_overlap_sched_groups(sd, i)) 2429 goto error; 2430 } else { 2431 if (build_sched_groups(sd, i)) 2432 goto error; 2433 } 2434 } 2435 } 2436 2437 /* 2438 * Calculate an allowed NUMA imbalance such that LLCs do not get 2439 * imbalanced. 2440 */ 2441 for_each_cpu(i, cpu_map) { 2442 unsigned int imb = 0; 2443 unsigned int imb_span = 1; 2444 2445 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2446 struct sched_domain *child = sd->child; 2447 2448 if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child && 2449 (child->flags & SD_SHARE_PKG_RESOURCES)) { 2450 struct sched_domain __rcu *top_p; 2451 unsigned int nr_llcs; 2452 2453 /* 2454 * For a single LLC per node, allow an 2455 * imbalance up to 12.5% of the node. This is 2456 * arbitrary cutoff based two factors -- SMT and 2457 * memory channels. For SMT-2, the intent is to 2458 * avoid premature sharing of HT resources but 2459 * SMT-4 or SMT-8 *may* benefit from a different 2460 * cutoff. For memory channels, this is a very 2461 * rough estimate of how many channels may be 2462 * active and is based on recent CPUs with 2463 * many cores. 2464 * 2465 * For multiple LLCs, allow an imbalance 2466 * until multiple tasks would share an LLC 2467 * on one node while LLCs on another node 2468 * remain idle. This assumes that there are 2469 * enough logical CPUs per LLC to avoid SMT 2470 * factors and that there is a correlation 2471 * between LLCs and memory channels. 2472 */ 2473 nr_llcs = sd->span_weight / child->span_weight; 2474 if (nr_llcs == 1) 2475 imb = sd->span_weight >> 3; 2476 else 2477 imb = nr_llcs; 2478 imb = max(1U, imb); 2479 sd->imb_numa_nr = imb; 2480 2481 /* Set span based on the first NUMA domain. */ 2482 top_p = sd->parent; 2483 while (top_p && !(top_p->flags & SD_NUMA)) { 2484 top_p = top_p->parent; 2485 } 2486 imb_span = top_p ? top_p->span_weight : sd->span_weight; 2487 } else { 2488 int factor = max(1U, (sd->span_weight / imb_span)); 2489 2490 sd->imb_numa_nr = imb * factor; 2491 } 2492 } 2493 } 2494 2495 /* Calculate CPU capacity for physical packages and nodes */ 2496 for (i = nr_cpumask_bits-1; i >= 0; i--) { 2497 if (!cpumask_test_cpu(i, cpu_map)) 2498 continue; 2499 2500 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2501 claim_allocations(i, sd); 2502 init_sched_groups_capacity(i, sd); 2503 } 2504 } 2505 2506 /* Attach the domains */ 2507 rcu_read_lock(); 2508 for_each_cpu(i, cpu_map) { 2509 unsigned long capacity; 2510 2511 rq = cpu_rq(i); 2512 sd = *per_cpu_ptr(d.sd, i); 2513 2514 capacity = arch_scale_cpu_capacity(i); 2515 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 2516 if (capacity > READ_ONCE(d.rd->max_cpu_capacity)) 2517 WRITE_ONCE(d.rd->max_cpu_capacity, capacity); 2518 2519 cpu_attach_domain(sd, d.rd, i); 2520 2521 if (lowest_flag_domain(i, SD_CLUSTER)) 2522 has_cluster = true; 2523 } 2524 rcu_read_unlock(); 2525 2526 if (has_asym) 2527 static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2528 2529 if (has_cluster) 2530 static_branch_inc_cpuslocked(&sched_cluster_active); 2531 2532 if (rq && sched_debug_verbose) { 2533 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 2534 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 2535 } 2536 2537 ret = 0; 2538 error: 2539 __free_domain_allocs(&d, alloc_state, cpu_map); 2540 2541 return ret; 2542 } 2543 2544 /* Current sched domains: */ 2545 static cpumask_var_t *doms_cur; 2546 2547 /* Number of sched domains in 'doms_cur': */ 2548 static int ndoms_cur; 2549 2550 /* Attributes of custom domains in 'doms_cur' */ 2551 static struct sched_domain_attr *dattr_cur; 2552 2553 /* 2554 * Special case: If a kmalloc() of a doms_cur partition (array of 2555 * cpumask) fails, then fallback to a single sched domain, 2556 * as determined by the single cpumask fallback_doms. 2557 */ 2558 static cpumask_var_t fallback_doms; 2559 2560 /* 2561 * arch_update_cpu_topology lets virtualized architectures update the 2562 * CPU core maps. It is supposed to return 1 if the topology changed 2563 * or 0 if it stayed the same. 2564 */ 2565 int __weak arch_update_cpu_topology(void) 2566 { 2567 return 0; 2568 } 2569 2570 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2571 { 2572 int i; 2573 cpumask_var_t *doms; 2574 2575 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2576 if (!doms) 2577 return NULL; 2578 for (i = 0; i < ndoms; i++) { 2579 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2580 free_sched_domains(doms, i); 2581 return NULL; 2582 } 2583 } 2584 return doms; 2585 } 2586 2587 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2588 { 2589 unsigned int i; 2590 for (i = 0; i < ndoms; i++) 2591 free_cpumask_var(doms[i]); 2592 kfree(doms); 2593 } 2594 2595 /* 2596 * Set up scheduler domains and groups. For now this just excludes isolated 2597 * CPUs, but could be used to exclude other special cases in the future. 2598 */ 2599 int __init sched_init_domains(const struct cpumask *cpu_map) 2600 { 2601 int err; 2602 2603 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 2604 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 2605 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 2606 2607 arch_update_cpu_topology(); 2608 asym_cpu_capacity_scan(); 2609 ndoms_cur = 1; 2610 doms_cur = alloc_sched_domains(ndoms_cur); 2611 if (!doms_cur) 2612 doms_cur = &fallback_doms; 2613 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN)); 2614 err = build_sched_domains(doms_cur[0], NULL); 2615 2616 return err; 2617 } 2618 2619 /* 2620 * Detach sched domains from a group of CPUs specified in cpu_map 2621 * These CPUs will now be attached to the NULL domain 2622 */ 2623 static void detach_destroy_domains(const struct cpumask *cpu_map) 2624 { 2625 unsigned int cpu = cpumask_any(cpu_map); 2626 int i; 2627 2628 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2629 static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2630 2631 if (static_branch_unlikely(&sched_cluster_active)) 2632 static_branch_dec_cpuslocked(&sched_cluster_active); 2633 2634 rcu_read_lock(); 2635 for_each_cpu(i, cpu_map) 2636 cpu_attach_domain(NULL, &def_root_domain, i); 2637 rcu_read_unlock(); 2638 } 2639 2640 /* handle null as "default" */ 2641 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2642 struct sched_domain_attr *new, int idx_new) 2643 { 2644 struct sched_domain_attr tmp; 2645 2646 /* Fast path: */ 2647 if (!new && !cur) 2648 return 1; 2649 2650 tmp = SD_ATTR_INIT; 2651 2652 return !memcmp(cur ? (cur + idx_cur) : &tmp, 2653 new ? (new + idx_new) : &tmp, 2654 sizeof(struct sched_domain_attr)); 2655 } 2656 2657 /* 2658 * Partition sched domains as specified by the 'ndoms_new' 2659 * cpumasks in the array doms_new[] of cpumasks. This compares 2660 * doms_new[] to the current sched domain partitioning, doms_cur[]. 2661 * It destroys each deleted domain and builds each new domain. 2662 * 2663 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2664 * The masks don't intersect (don't overlap.) We should setup one 2665 * sched domain for each mask. CPUs not in any of the cpumasks will 2666 * not be load balanced. If the same cpumask appears both in the 2667 * current 'doms_cur' domains and in the new 'doms_new', we can leave 2668 * it as it is. 2669 * 2670 * The passed in 'doms_new' should be allocated using 2671 * alloc_sched_domains. This routine takes ownership of it and will 2672 * free_sched_domains it when done with it. If the caller failed the 2673 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2674 * and partition_sched_domains() will fallback to the single partition 2675 * 'fallback_doms', it also forces the domains to be rebuilt. 2676 * 2677 * If doms_new == NULL it will be replaced with cpu_online_mask. 2678 * ndoms_new == 0 is a special case for destroying existing domains, 2679 * and it will not create the default domain. 2680 * 2681 * Call with hotplug lock and sched_domains_mutex held 2682 */ 2683 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2684 struct sched_domain_attr *dattr_new) 2685 { 2686 bool __maybe_unused has_eas = false; 2687 int i, j, n; 2688 int new_topology; 2689 2690 lockdep_assert_held(&sched_domains_mutex); 2691 2692 /* Let the architecture update CPU core mappings: */ 2693 new_topology = arch_update_cpu_topology(); 2694 /* Trigger rebuilding CPU capacity asymmetry data */ 2695 if (new_topology) 2696 asym_cpu_capacity_scan(); 2697 2698 if (!doms_new) { 2699 WARN_ON_ONCE(dattr_new); 2700 n = 0; 2701 doms_new = alloc_sched_domains(1); 2702 if (doms_new) { 2703 n = 1; 2704 cpumask_and(doms_new[0], cpu_active_mask, 2705 housekeeping_cpumask(HK_TYPE_DOMAIN)); 2706 } 2707 } else { 2708 n = ndoms_new; 2709 } 2710 2711 /* Destroy deleted domains: */ 2712 for (i = 0; i < ndoms_cur; i++) { 2713 for (j = 0; j < n && !new_topology; j++) { 2714 if (cpumask_equal(doms_cur[i], doms_new[j]) && 2715 dattrs_equal(dattr_cur, i, dattr_new, j)) { 2716 struct root_domain *rd; 2717 2718 /* 2719 * This domain won't be destroyed and as such 2720 * its dl_bw->total_bw needs to be cleared. It 2721 * will be recomputed in function 2722 * update_tasks_root_domain(). 2723 */ 2724 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; 2725 dl_clear_root_domain(rd); 2726 goto match1; 2727 } 2728 } 2729 /* No match - a current sched domain not in new doms_new[] */ 2730 detach_destroy_domains(doms_cur[i]); 2731 match1: 2732 ; 2733 } 2734 2735 n = ndoms_cur; 2736 if (!doms_new) { 2737 n = 0; 2738 doms_new = &fallback_doms; 2739 cpumask_and(doms_new[0], cpu_active_mask, 2740 housekeeping_cpumask(HK_TYPE_DOMAIN)); 2741 } 2742 2743 /* Build new domains: */ 2744 for (i = 0; i < ndoms_new; i++) { 2745 for (j = 0; j < n && !new_topology; j++) { 2746 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2747 dattrs_equal(dattr_new, i, dattr_cur, j)) 2748 goto match2; 2749 } 2750 /* No match - add a new doms_new */ 2751 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2752 match2: 2753 ; 2754 } 2755 2756 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2757 /* Build perf. domains: */ 2758 for (i = 0; i < ndoms_new; i++) { 2759 for (j = 0; j < n && !sched_energy_update; j++) { 2760 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2761 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 2762 has_eas = true; 2763 goto match3; 2764 } 2765 } 2766 /* No match - add perf. domains for a new rd */ 2767 has_eas |= build_perf_domains(doms_new[i]); 2768 match3: 2769 ; 2770 } 2771 sched_energy_set(has_eas); 2772 #endif 2773 2774 /* Remember the new sched domains: */ 2775 if (doms_cur != &fallback_doms) 2776 free_sched_domains(doms_cur, ndoms_cur); 2777 2778 kfree(dattr_cur); 2779 doms_cur = doms_new; 2780 dattr_cur = dattr_new; 2781 ndoms_cur = ndoms_new; 2782 2783 update_sched_domain_debugfs(); 2784 } 2785 2786 /* 2787 * Call with hotplug lock held 2788 */ 2789 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2790 struct sched_domain_attr *dattr_new) 2791 { 2792 mutex_lock(&sched_domains_mutex); 2793 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2794 mutex_unlock(&sched_domains_mutex); 2795 } 2796