xref: /linux/kernel/sched/topology.c (revision 3d0fe49454652117522f60bfbefb978ba0e5300b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 
6 #include <linux/bsearch.h>
7 
8 DEFINE_MUTEX(sched_domains_mutex);
9 
10 /* Protected by sched_domains_mutex: */
11 static cpumask_var_t sched_domains_tmpmask;
12 static cpumask_var_t sched_domains_tmpmask2;
13 
14 #ifdef CONFIG_SCHED_DEBUG
15 
16 static int __init sched_debug_setup(char *str)
17 {
18 	sched_debug_verbose = true;
19 
20 	return 0;
21 }
22 early_param("sched_verbose", sched_debug_setup);
23 
24 static inline bool sched_debug(void)
25 {
26 	return sched_debug_verbose;
27 }
28 
29 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
30 const struct sd_flag_debug sd_flag_debug[] = {
31 #include <linux/sched/sd_flags.h>
32 };
33 #undef SD_FLAG
34 
35 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
36 				  struct cpumask *groupmask)
37 {
38 	struct sched_group *group = sd->groups;
39 	unsigned long flags = sd->flags;
40 	unsigned int idx;
41 
42 	cpumask_clear(groupmask);
43 
44 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
45 	printk(KERN_CONT "span=%*pbl level=%s\n",
46 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
47 
48 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
49 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
50 	}
51 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
52 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
53 	}
54 
55 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
56 		unsigned int flag = BIT(idx);
57 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
58 
59 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
60 		    !(sd->child->flags & flag))
61 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
62 			       sd_flag_debug[idx].name);
63 
64 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
65 		    !(sd->parent->flags & flag))
66 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
67 			       sd_flag_debug[idx].name);
68 	}
69 
70 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
71 	do {
72 		if (!group) {
73 			printk("\n");
74 			printk(KERN_ERR "ERROR: group is NULL\n");
75 			break;
76 		}
77 
78 		if (cpumask_empty(sched_group_span(group))) {
79 			printk(KERN_CONT "\n");
80 			printk(KERN_ERR "ERROR: empty group\n");
81 			break;
82 		}
83 
84 		if (!(sd->flags & SD_OVERLAP) &&
85 		    cpumask_intersects(groupmask, sched_group_span(group))) {
86 			printk(KERN_CONT "\n");
87 			printk(KERN_ERR "ERROR: repeated CPUs\n");
88 			break;
89 		}
90 
91 		cpumask_or(groupmask, groupmask, sched_group_span(group));
92 
93 		printk(KERN_CONT " %d:{ span=%*pbl",
94 				group->sgc->id,
95 				cpumask_pr_args(sched_group_span(group)));
96 
97 		if ((sd->flags & SD_OVERLAP) &&
98 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
99 			printk(KERN_CONT " mask=%*pbl",
100 				cpumask_pr_args(group_balance_mask(group)));
101 		}
102 
103 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
104 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
105 
106 		if (group == sd->groups && sd->child &&
107 		    !cpumask_equal(sched_domain_span(sd->child),
108 				   sched_group_span(group))) {
109 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
110 		}
111 
112 		printk(KERN_CONT " }");
113 
114 		group = group->next;
115 
116 		if (group != sd->groups)
117 			printk(KERN_CONT ",");
118 
119 	} while (group != sd->groups);
120 	printk(KERN_CONT "\n");
121 
122 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
123 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
124 
125 	if (sd->parent &&
126 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
127 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
128 	return 0;
129 }
130 
131 static void sched_domain_debug(struct sched_domain *sd, int cpu)
132 {
133 	int level = 0;
134 
135 	if (!sched_debug_verbose)
136 		return;
137 
138 	if (!sd) {
139 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
140 		return;
141 	}
142 
143 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
144 
145 	for (;;) {
146 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
147 			break;
148 		level++;
149 		sd = sd->parent;
150 		if (!sd)
151 			break;
152 	}
153 }
154 #else /* !CONFIG_SCHED_DEBUG */
155 
156 # define sched_debug_verbose 0
157 # define sched_domain_debug(sd, cpu) do { } while (0)
158 static inline bool sched_debug(void)
159 {
160 	return false;
161 }
162 #endif /* CONFIG_SCHED_DEBUG */
163 
164 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
165 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
166 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
167 #include <linux/sched/sd_flags.h>
168 0;
169 #undef SD_FLAG
170 
171 static int sd_degenerate(struct sched_domain *sd)
172 {
173 	if (cpumask_weight(sched_domain_span(sd)) == 1)
174 		return 1;
175 
176 	/* Following flags need at least 2 groups */
177 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
178 	    (sd->groups != sd->groups->next))
179 		return 0;
180 
181 	/* Following flags don't use groups */
182 	if (sd->flags & (SD_WAKE_AFFINE))
183 		return 0;
184 
185 	return 1;
186 }
187 
188 static int
189 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
190 {
191 	unsigned long cflags = sd->flags, pflags = parent->flags;
192 
193 	if (sd_degenerate(parent))
194 		return 1;
195 
196 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
197 		return 0;
198 
199 	/* Flags needing groups don't count if only 1 group in parent */
200 	if (parent->groups == parent->groups->next)
201 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
202 
203 	if (~cflags & pflags)
204 		return 0;
205 
206 	return 1;
207 }
208 
209 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
210 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
211 static unsigned int sysctl_sched_energy_aware = 1;
212 static DEFINE_MUTEX(sched_energy_mutex);
213 static bool sched_energy_update;
214 
215 static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
216 {
217 	bool any_asym_capacity = false;
218 	struct cpufreq_policy *policy;
219 	struct cpufreq_governor *gov;
220 	int i;
221 
222 	/* EAS is enabled for asymmetric CPU capacity topologies. */
223 	for_each_cpu(i, cpu_mask) {
224 		if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
225 			any_asym_capacity = true;
226 			break;
227 		}
228 	}
229 	if (!any_asym_capacity) {
230 		if (sched_debug()) {
231 			pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
232 				cpumask_pr_args(cpu_mask));
233 		}
234 		return false;
235 	}
236 
237 	/* EAS definitely does *not* handle SMT */
238 	if (sched_smt_active()) {
239 		if (sched_debug()) {
240 			pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
241 				cpumask_pr_args(cpu_mask));
242 		}
243 		return false;
244 	}
245 
246 	if (!arch_scale_freq_invariant()) {
247 		if (sched_debug()) {
248 			pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
249 				cpumask_pr_args(cpu_mask));
250 		}
251 		return false;
252 	}
253 
254 	/* Do not attempt EAS if schedutil is not being used. */
255 	for_each_cpu(i, cpu_mask) {
256 		policy = cpufreq_cpu_get(i);
257 		if (!policy) {
258 			if (sched_debug()) {
259 				pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d",
260 					cpumask_pr_args(cpu_mask), i);
261 			}
262 			return false;
263 		}
264 		gov = policy->governor;
265 		cpufreq_cpu_put(policy);
266 		if (gov != &schedutil_gov) {
267 			if (sched_debug()) {
268 				pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n",
269 					cpumask_pr_args(cpu_mask));
270 			}
271 			return false;
272 		}
273 	}
274 
275 	return true;
276 }
277 
278 void rebuild_sched_domains_energy(void)
279 {
280 	mutex_lock(&sched_energy_mutex);
281 	sched_energy_update = true;
282 	rebuild_sched_domains();
283 	sched_energy_update = false;
284 	mutex_unlock(&sched_energy_mutex);
285 }
286 
287 #ifdef CONFIG_PROC_SYSCTL
288 static int sched_energy_aware_handler(struct ctl_table *table, int write,
289 		void *buffer, size_t *lenp, loff_t *ppos)
290 {
291 	int ret, state;
292 
293 	if (write && !capable(CAP_SYS_ADMIN))
294 		return -EPERM;
295 
296 	if (!sched_is_eas_possible(cpu_active_mask)) {
297 		if (write) {
298 			return -EOPNOTSUPP;
299 		} else {
300 			*lenp = 0;
301 			return 0;
302 		}
303 	}
304 
305 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
306 	if (!ret && write) {
307 		state = static_branch_unlikely(&sched_energy_present);
308 		if (state != sysctl_sched_energy_aware)
309 			rebuild_sched_domains_energy();
310 	}
311 
312 	return ret;
313 }
314 
315 static struct ctl_table sched_energy_aware_sysctls[] = {
316 	{
317 		.procname       = "sched_energy_aware",
318 		.data           = &sysctl_sched_energy_aware,
319 		.maxlen         = sizeof(unsigned int),
320 		.mode           = 0644,
321 		.proc_handler   = sched_energy_aware_handler,
322 		.extra1         = SYSCTL_ZERO,
323 		.extra2         = SYSCTL_ONE,
324 	},
325 	{}
326 };
327 
328 static int __init sched_energy_aware_sysctl_init(void)
329 {
330 	register_sysctl_init("kernel", sched_energy_aware_sysctls);
331 	return 0;
332 }
333 
334 late_initcall(sched_energy_aware_sysctl_init);
335 #endif
336 
337 static void free_pd(struct perf_domain *pd)
338 {
339 	struct perf_domain *tmp;
340 
341 	while (pd) {
342 		tmp = pd->next;
343 		kfree(pd);
344 		pd = tmp;
345 	}
346 }
347 
348 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
349 {
350 	while (pd) {
351 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
352 			return pd;
353 		pd = pd->next;
354 	}
355 
356 	return NULL;
357 }
358 
359 static struct perf_domain *pd_init(int cpu)
360 {
361 	struct em_perf_domain *obj = em_cpu_get(cpu);
362 	struct perf_domain *pd;
363 
364 	if (!obj) {
365 		if (sched_debug())
366 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
367 		return NULL;
368 	}
369 
370 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
371 	if (!pd)
372 		return NULL;
373 	pd->em_pd = obj;
374 
375 	return pd;
376 }
377 
378 static void perf_domain_debug(const struct cpumask *cpu_map,
379 						struct perf_domain *pd)
380 {
381 	if (!sched_debug() || !pd)
382 		return;
383 
384 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
385 
386 	while (pd) {
387 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
388 				cpumask_first(perf_domain_span(pd)),
389 				cpumask_pr_args(perf_domain_span(pd)),
390 				em_pd_nr_perf_states(pd->em_pd));
391 		pd = pd->next;
392 	}
393 
394 	printk(KERN_CONT "\n");
395 }
396 
397 static void destroy_perf_domain_rcu(struct rcu_head *rp)
398 {
399 	struct perf_domain *pd;
400 
401 	pd = container_of(rp, struct perf_domain, rcu);
402 	free_pd(pd);
403 }
404 
405 static void sched_energy_set(bool has_eas)
406 {
407 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
408 		if (sched_debug())
409 			pr_info("%s: stopping EAS\n", __func__);
410 		static_branch_disable_cpuslocked(&sched_energy_present);
411 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
412 		if (sched_debug())
413 			pr_info("%s: starting EAS\n", __func__);
414 		static_branch_enable_cpuslocked(&sched_energy_present);
415 	}
416 }
417 
418 /*
419  * EAS can be used on a root domain if it meets all the following conditions:
420  *    1. an Energy Model (EM) is available;
421  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
422  *    3. no SMT is detected.
423  *    4. schedutil is driving the frequency of all CPUs of the rd;
424  *    5. frequency invariance support is present;
425  */
426 static bool build_perf_domains(const struct cpumask *cpu_map)
427 {
428 	int i;
429 	struct perf_domain *pd = NULL, *tmp;
430 	int cpu = cpumask_first(cpu_map);
431 	struct root_domain *rd = cpu_rq(cpu)->rd;
432 
433 	if (!sysctl_sched_energy_aware)
434 		goto free;
435 
436 	if (!sched_is_eas_possible(cpu_map))
437 		goto free;
438 
439 	for_each_cpu(i, cpu_map) {
440 		/* Skip already covered CPUs. */
441 		if (find_pd(pd, i))
442 			continue;
443 
444 		/* Create the new pd and add it to the local list. */
445 		tmp = pd_init(i);
446 		if (!tmp)
447 			goto free;
448 		tmp->next = pd;
449 		pd = tmp;
450 	}
451 
452 	perf_domain_debug(cpu_map, pd);
453 
454 	/* Attach the new list of performance domains to the root domain. */
455 	tmp = rd->pd;
456 	rcu_assign_pointer(rd->pd, pd);
457 	if (tmp)
458 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
459 
460 	return !!pd;
461 
462 free:
463 	free_pd(pd);
464 	tmp = rd->pd;
465 	rcu_assign_pointer(rd->pd, NULL);
466 	if (tmp)
467 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
468 
469 	return false;
470 }
471 #else
472 static void free_pd(struct perf_domain *pd) { }
473 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
474 
475 static void free_rootdomain(struct rcu_head *rcu)
476 {
477 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
478 
479 	cpupri_cleanup(&rd->cpupri);
480 	cpudl_cleanup(&rd->cpudl);
481 	free_cpumask_var(rd->dlo_mask);
482 	free_cpumask_var(rd->rto_mask);
483 	free_cpumask_var(rd->online);
484 	free_cpumask_var(rd->span);
485 	free_pd(rd->pd);
486 	kfree(rd);
487 }
488 
489 void rq_attach_root(struct rq *rq, struct root_domain *rd)
490 {
491 	struct root_domain *old_rd = NULL;
492 	struct rq_flags rf;
493 
494 	rq_lock_irqsave(rq, &rf);
495 
496 	if (rq->rd) {
497 		old_rd = rq->rd;
498 
499 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
500 			set_rq_offline(rq);
501 
502 		cpumask_clear_cpu(rq->cpu, old_rd->span);
503 
504 		/*
505 		 * If we dont want to free the old_rd yet then
506 		 * set old_rd to NULL to skip the freeing later
507 		 * in this function:
508 		 */
509 		if (!atomic_dec_and_test(&old_rd->refcount))
510 			old_rd = NULL;
511 	}
512 
513 	atomic_inc(&rd->refcount);
514 	rq->rd = rd;
515 
516 	cpumask_set_cpu(rq->cpu, rd->span);
517 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
518 		set_rq_online(rq);
519 
520 	rq_unlock_irqrestore(rq, &rf);
521 
522 	if (old_rd)
523 		call_rcu(&old_rd->rcu, free_rootdomain);
524 }
525 
526 void sched_get_rd(struct root_domain *rd)
527 {
528 	atomic_inc(&rd->refcount);
529 }
530 
531 void sched_put_rd(struct root_domain *rd)
532 {
533 	if (!atomic_dec_and_test(&rd->refcount))
534 		return;
535 
536 	call_rcu(&rd->rcu, free_rootdomain);
537 }
538 
539 static int init_rootdomain(struct root_domain *rd)
540 {
541 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
542 		goto out;
543 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
544 		goto free_span;
545 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
546 		goto free_online;
547 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
548 		goto free_dlo_mask;
549 
550 #ifdef HAVE_RT_PUSH_IPI
551 	rd->rto_cpu = -1;
552 	raw_spin_lock_init(&rd->rto_lock);
553 	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
554 #endif
555 
556 	rd->visit_gen = 0;
557 	init_dl_bw(&rd->dl_bw);
558 	if (cpudl_init(&rd->cpudl) != 0)
559 		goto free_rto_mask;
560 
561 	if (cpupri_init(&rd->cpupri) != 0)
562 		goto free_cpudl;
563 	return 0;
564 
565 free_cpudl:
566 	cpudl_cleanup(&rd->cpudl);
567 free_rto_mask:
568 	free_cpumask_var(rd->rto_mask);
569 free_dlo_mask:
570 	free_cpumask_var(rd->dlo_mask);
571 free_online:
572 	free_cpumask_var(rd->online);
573 free_span:
574 	free_cpumask_var(rd->span);
575 out:
576 	return -ENOMEM;
577 }
578 
579 /*
580  * By default the system creates a single root-domain with all CPUs as
581  * members (mimicking the global state we have today).
582  */
583 struct root_domain def_root_domain;
584 
585 void __init init_defrootdomain(void)
586 {
587 	init_rootdomain(&def_root_domain);
588 
589 	atomic_set(&def_root_domain.refcount, 1);
590 }
591 
592 static struct root_domain *alloc_rootdomain(void)
593 {
594 	struct root_domain *rd;
595 
596 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
597 	if (!rd)
598 		return NULL;
599 
600 	if (init_rootdomain(rd) != 0) {
601 		kfree(rd);
602 		return NULL;
603 	}
604 
605 	return rd;
606 }
607 
608 static void free_sched_groups(struct sched_group *sg, int free_sgc)
609 {
610 	struct sched_group *tmp, *first;
611 
612 	if (!sg)
613 		return;
614 
615 	first = sg;
616 	do {
617 		tmp = sg->next;
618 
619 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
620 			kfree(sg->sgc);
621 
622 		if (atomic_dec_and_test(&sg->ref))
623 			kfree(sg);
624 		sg = tmp;
625 	} while (sg != first);
626 }
627 
628 static void destroy_sched_domain(struct sched_domain *sd)
629 {
630 	/*
631 	 * A normal sched domain may have multiple group references, an
632 	 * overlapping domain, having private groups, only one.  Iterate,
633 	 * dropping group/capacity references, freeing where none remain.
634 	 */
635 	free_sched_groups(sd->groups, 1);
636 
637 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
638 		kfree(sd->shared);
639 	kfree(sd);
640 }
641 
642 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
643 {
644 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
645 
646 	while (sd) {
647 		struct sched_domain *parent = sd->parent;
648 		destroy_sched_domain(sd);
649 		sd = parent;
650 	}
651 }
652 
653 static void destroy_sched_domains(struct sched_domain *sd)
654 {
655 	if (sd)
656 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
657 }
658 
659 /*
660  * Keep a special pointer to the highest sched_domain that has
661  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
662  * allows us to avoid some pointer chasing select_idle_sibling().
663  *
664  * Also keep a unique ID per domain (we use the first CPU number in
665  * the cpumask of the domain), this allows us to quickly tell if
666  * two CPUs are in the same cache domain, see cpus_share_cache().
667  */
668 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
669 DEFINE_PER_CPU(int, sd_llc_size);
670 DEFINE_PER_CPU(int, sd_llc_id);
671 DEFINE_PER_CPU(int, sd_share_id);
672 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
673 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
674 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
675 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
676 
677 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
678 DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
679 
680 static void update_top_cache_domain(int cpu)
681 {
682 	struct sched_domain_shared *sds = NULL;
683 	struct sched_domain *sd;
684 	int id = cpu;
685 	int size = 1;
686 
687 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
688 	if (sd) {
689 		id = cpumask_first(sched_domain_span(sd));
690 		size = cpumask_weight(sched_domain_span(sd));
691 		sds = sd->shared;
692 	}
693 
694 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
695 	per_cpu(sd_llc_size, cpu) = size;
696 	per_cpu(sd_llc_id, cpu) = id;
697 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
698 
699 	sd = lowest_flag_domain(cpu, SD_CLUSTER);
700 	if (sd)
701 		id = cpumask_first(sched_domain_span(sd));
702 
703 	/*
704 	 * This assignment should be placed after the sd_llc_id as
705 	 * we want this id equals to cluster id on cluster machines
706 	 * but equals to LLC id on non-Cluster machines.
707 	 */
708 	per_cpu(sd_share_id, cpu) = id;
709 
710 	sd = lowest_flag_domain(cpu, SD_NUMA);
711 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
712 
713 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
714 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
715 
716 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
717 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
718 }
719 
720 /*
721  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
722  * hold the hotplug lock.
723  */
724 static void
725 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
726 {
727 	struct rq *rq = cpu_rq(cpu);
728 	struct sched_domain *tmp;
729 
730 	/* Remove the sched domains which do not contribute to scheduling. */
731 	for (tmp = sd; tmp; ) {
732 		struct sched_domain *parent = tmp->parent;
733 		if (!parent)
734 			break;
735 
736 		if (sd_parent_degenerate(tmp, parent)) {
737 			tmp->parent = parent->parent;
738 
739 			if (parent->parent) {
740 				parent->parent->child = tmp;
741 				parent->parent->groups->flags = tmp->flags;
742 			}
743 
744 			/*
745 			 * Transfer SD_PREFER_SIBLING down in case of a
746 			 * degenerate parent; the spans match for this
747 			 * so the property transfers.
748 			 */
749 			if (parent->flags & SD_PREFER_SIBLING)
750 				tmp->flags |= SD_PREFER_SIBLING;
751 			destroy_sched_domain(parent);
752 		} else
753 			tmp = tmp->parent;
754 	}
755 
756 	if (sd && sd_degenerate(sd)) {
757 		tmp = sd;
758 		sd = sd->parent;
759 		destroy_sched_domain(tmp);
760 		if (sd) {
761 			struct sched_group *sg = sd->groups;
762 
763 			/*
764 			 * sched groups hold the flags of the child sched
765 			 * domain for convenience. Clear such flags since
766 			 * the child is being destroyed.
767 			 */
768 			do {
769 				sg->flags = 0;
770 			} while (sg != sd->groups);
771 
772 			sd->child = NULL;
773 		}
774 	}
775 
776 	sched_domain_debug(sd, cpu);
777 
778 	rq_attach_root(rq, rd);
779 	tmp = rq->sd;
780 	rcu_assign_pointer(rq->sd, sd);
781 	dirty_sched_domain_sysctl(cpu);
782 	destroy_sched_domains(tmp);
783 
784 	update_top_cache_domain(cpu);
785 }
786 
787 struct s_data {
788 	struct sched_domain * __percpu *sd;
789 	struct root_domain	*rd;
790 };
791 
792 enum s_alloc {
793 	sa_rootdomain,
794 	sa_sd,
795 	sa_sd_storage,
796 	sa_none,
797 };
798 
799 /*
800  * Return the canonical balance CPU for this group, this is the first CPU
801  * of this group that's also in the balance mask.
802  *
803  * The balance mask are all those CPUs that could actually end up at this
804  * group. See build_balance_mask().
805  *
806  * Also see should_we_balance().
807  */
808 int group_balance_cpu(struct sched_group *sg)
809 {
810 	return cpumask_first(group_balance_mask(sg));
811 }
812 
813 
814 /*
815  * NUMA topology (first read the regular topology blurb below)
816  *
817  * Given a node-distance table, for example:
818  *
819  *   node   0   1   2   3
820  *     0:  10  20  30  20
821  *     1:  20  10  20  30
822  *     2:  30  20  10  20
823  *     3:  20  30  20  10
824  *
825  * which represents a 4 node ring topology like:
826  *
827  *   0 ----- 1
828  *   |       |
829  *   |       |
830  *   |       |
831  *   3 ----- 2
832  *
833  * We want to construct domains and groups to represent this. The way we go
834  * about doing this is to build the domains on 'hops'. For each NUMA level we
835  * construct the mask of all nodes reachable in @level hops.
836  *
837  * For the above NUMA topology that gives 3 levels:
838  *
839  * NUMA-2	0-3		0-3		0-3		0-3
840  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
841  *
842  * NUMA-1	0-1,3		0-2		1-3		0,2-3
843  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
844  *
845  * NUMA-0	0		1		2		3
846  *
847  *
848  * As can be seen; things don't nicely line up as with the regular topology.
849  * When we iterate a domain in child domain chunks some nodes can be
850  * represented multiple times -- hence the "overlap" naming for this part of
851  * the topology.
852  *
853  * In order to minimize this overlap, we only build enough groups to cover the
854  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
855  *
856  * Because:
857  *
858  *  - the first group of each domain is its child domain; this
859  *    gets us the first 0-1,3
860  *  - the only uncovered node is 2, who's child domain is 1-3.
861  *
862  * However, because of the overlap, computing a unique CPU for each group is
863  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
864  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
865  * end up at those groups (they would end up in group: 0-1,3).
866  *
867  * To correct this we have to introduce the group balance mask. This mask
868  * will contain those CPUs in the group that can reach this group given the
869  * (child) domain tree.
870  *
871  * With this we can once again compute balance_cpu and sched_group_capacity
872  * relations.
873  *
874  * XXX include words on how balance_cpu is unique and therefore can be
875  * used for sched_group_capacity links.
876  *
877  *
878  * Another 'interesting' topology is:
879  *
880  *   node   0   1   2   3
881  *     0:  10  20  20  30
882  *     1:  20  10  20  20
883  *     2:  20  20  10  20
884  *     3:  30  20  20  10
885  *
886  * Which looks a little like:
887  *
888  *   0 ----- 1
889  *   |     / |
890  *   |   /   |
891  *   | /     |
892  *   2 ----- 3
893  *
894  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
895  * are not.
896  *
897  * This leads to a few particularly weird cases where the sched_domain's are
898  * not of the same number for each CPU. Consider:
899  *
900  * NUMA-2	0-3						0-3
901  *  groups:	{0-2},{1-3}					{1-3},{0-2}
902  *
903  * NUMA-1	0-2		0-3		0-3		1-3
904  *
905  * NUMA-0	0		1		2		3
906  *
907  */
908 
909 
910 /*
911  * Build the balance mask; it contains only those CPUs that can arrive at this
912  * group and should be considered to continue balancing.
913  *
914  * We do this during the group creation pass, therefore the group information
915  * isn't complete yet, however since each group represents a (child) domain we
916  * can fully construct this using the sched_domain bits (which are already
917  * complete).
918  */
919 static void
920 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
921 {
922 	const struct cpumask *sg_span = sched_group_span(sg);
923 	struct sd_data *sdd = sd->private;
924 	struct sched_domain *sibling;
925 	int i;
926 
927 	cpumask_clear(mask);
928 
929 	for_each_cpu(i, sg_span) {
930 		sibling = *per_cpu_ptr(sdd->sd, i);
931 
932 		/*
933 		 * Can happen in the asymmetric case, where these siblings are
934 		 * unused. The mask will not be empty because those CPUs that
935 		 * do have the top domain _should_ span the domain.
936 		 */
937 		if (!sibling->child)
938 			continue;
939 
940 		/* If we would not end up here, we can't continue from here */
941 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
942 			continue;
943 
944 		cpumask_set_cpu(i, mask);
945 	}
946 
947 	/* We must not have empty masks here */
948 	WARN_ON_ONCE(cpumask_empty(mask));
949 }
950 
951 /*
952  * XXX: This creates per-node group entries; since the load-balancer will
953  * immediately access remote memory to construct this group's load-balance
954  * statistics having the groups node local is of dubious benefit.
955  */
956 static struct sched_group *
957 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
958 {
959 	struct sched_group *sg;
960 	struct cpumask *sg_span;
961 
962 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
963 			GFP_KERNEL, cpu_to_node(cpu));
964 
965 	if (!sg)
966 		return NULL;
967 
968 	sg_span = sched_group_span(sg);
969 	if (sd->child) {
970 		cpumask_copy(sg_span, sched_domain_span(sd->child));
971 		sg->flags = sd->child->flags;
972 	} else {
973 		cpumask_copy(sg_span, sched_domain_span(sd));
974 	}
975 
976 	atomic_inc(&sg->ref);
977 	return sg;
978 }
979 
980 static void init_overlap_sched_group(struct sched_domain *sd,
981 				     struct sched_group *sg)
982 {
983 	struct cpumask *mask = sched_domains_tmpmask2;
984 	struct sd_data *sdd = sd->private;
985 	struct cpumask *sg_span;
986 	int cpu;
987 
988 	build_balance_mask(sd, sg, mask);
989 	cpu = cpumask_first(mask);
990 
991 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
992 	if (atomic_inc_return(&sg->sgc->ref) == 1)
993 		cpumask_copy(group_balance_mask(sg), mask);
994 	else
995 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
996 
997 	/*
998 	 * Initialize sgc->capacity such that even if we mess up the
999 	 * domains and no possible iteration will get us here, we won't
1000 	 * die on a /0 trap.
1001 	 */
1002 	sg_span = sched_group_span(sg);
1003 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
1004 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1005 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1006 }
1007 
1008 static struct sched_domain *
1009 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
1010 {
1011 	/*
1012 	 * The proper descendant would be the one whose child won't span out
1013 	 * of sd
1014 	 */
1015 	while (sibling->child &&
1016 	       !cpumask_subset(sched_domain_span(sibling->child),
1017 			       sched_domain_span(sd)))
1018 		sibling = sibling->child;
1019 
1020 	/*
1021 	 * As we are referencing sgc across different topology level, we need
1022 	 * to go down to skip those sched_domains which don't contribute to
1023 	 * scheduling because they will be degenerated in cpu_attach_domain
1024 	 */
1025 	while (sibling->child &&
1026 	       cpumask_equal(sched_domain_span(sibling->child),
1027 			     sched_domain_span(sibling)))
1028 		sibling = sibling->child;
1029 
1030 	return sibling;
1031 }
1032 
1033 static int
1034 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1035 {
1036 	struct sched_group *first = NULL, *last = NULL, *sg;
1037 	const struct cpumask *span = sched_domain_span(sd);
1038 	struct cpumask *covered = sched_domains_tmpmask;
1039 	struct sd_data *sdd = sd->private;
1040 	struct sched_domain *sibling;
1041 	int i;
1042 
1043 	cpumask_clear(covered);
1044 
1045 	for_each_cpu_wrap(i, span, cpu) {
1046 		struct cpumask *sg_span;
1047 
1048 		if (cpumask_test_cpu(i, covered))
1049 			continue;
1050 
1051 		sibling = *per_cpu_ptr(sdd->sd, i);
1052 
1053 		/*
1054 		 * Asymmetric node setups can result in situations where the
1055 		 * domain tree is of unequal depth, make sure to skip domains
1056 		 * that already cover the entire range.
1057 		 *
1058 		 * In that case build_sched_domains() will have terminated the
1059 		 * iteration early and our sibling sd spans will be empty.
1060 		 * Domains should always include the CPU they're built on, so
1061 		 * check that.
1062 		 */
1063 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1064 			continue;
1065 
1066 		/*
1067 		 * Usually we build sched_group by sibling's child sched_domain
1068 		 * But for machines whose NUMA diameter are 3 or above, we move
1069 		 * to build sched_group by sibling's proper descendant's child
1070 		 * domain because sibling's child sched_domain will span out of
1071 		 * the sched_domain being built as below.
1072 		 *
1073 		 * Smallest diameter=3 topology is:
1074 		 *
1075 		 *   node   0   1   2   3
1076 		 *     0:  10  20  30  40
1077 		 *     1:  20  10  20  30
1078 		 *     2:  30  20  10  20
1079 		 *     3:  40  30  20  10
1080 		 *
1081 		 *   0 --- 1 --- 2 --- 3
1082 		 *
1083 		 * NUMA-3       0-3             N/A             N/A             0-3
1084 		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1085 		 *
1086 		 * NUMA-2       0-2             0-3             0-3             1-3
1087 		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1088 		 *
1089 		 * NUMA-1       0-1             0-2             1-3             2-3
1090 		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1091 		 *
1092 		 * NUMA-0       0               1               2               3
1093 		 *
1094 		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1095 		 * group span isn't a subset of the domain span.
1096 		 */
1097 		if (sibling->child &&
1098 		    !cpumask_subset(sched_domain_span(sibling->child), span))
1099 			sibling = find_descended_sibling(sd, sibling);
1100 
1101 		sg = build_group_from_child_sched_domain(sibling, cpu);
1102 		if (!sg)
1103 			goto fail;
1104 
1105 		sg_span = sched_group_span(sg);
1106 		cpumask_or(covered, covered, sg_span);
1107 
1108 		init_overlap_sched_group(sibling, sg);
1109 
1110 		if (!first)
1111 			first = sg;
1112 		if (last)
1113 			last->next = sg;
1114 		last = sg;
1115 		last->next = first;
1116 	}
1117 	sd->groups = first;
1118 
1119 	return 0;
1120 
1121 fail:
1122 	free_sched_groups(first, 0);
1123 
1124 	return -ENOMEM;
1125 }
1126 
1127 
1128 /*
1129  * Package topology (also see the load-balance blurb in fair.c)
1130  *
1131  * The scheduler builds a tree structure to represent a number of important
1132  * topology features. By default (default_topology[]) these include:
1133  *
1134  *  - Simultaneous multithreading (SMT)
1135  *  - Multi-Core Cache (MC)
1136  *  - Package (PKG)
1137  *
1138  * Where the last one more or less denotes everything up to a NUMA node.
1139  *
1140  * The tree consists of 3 primary data structures:
1141  *
1142  *	sched_domain -> sched_group -> sched_group_capacity
1143  *	    ^ ^             ^ ^
1144  *          `-'             `-'
1145  *
1146  * The sched_domains are per-CPU and have a two way link (parent & child) and
1147  * denote the ever growing mask of CPUs belonging to that level of topology.
1148  *
1149  * Each sched_domain has a circular (double) linked list of sched_group's, each
1150  * denoting the domains of the level below (or individual CPUs in case of the
1151  * first domain level). The sched_group linked by a sched_domain includes the
1152  * CPU of that sched_domain [*].
1153  *
1154  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1155  *
1156  * CPU   0   1   2   3   4   5   6   7
1157  *
1158  * PKG  [                             ]
1159  * MC   [             ] [             ]
1160  * SMT  [     ] [     ] [     ] [     ]
1161  *
1162  *  - or -
1163  *
1164  * PKG  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1165  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1166  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1167  *
1168  * CPU   0   1   2   3   4   5   6   7
1169  *
1170  * One way to think about it is: sched_domain moves you up and down among these
1171  * topology levels, while sched_group moves you sideways through it, at child
1172  * domain granularity.
1173  *
1174  * sched_group_capacity ensures each unique sched_group has shared storage.
1175  *
1176  * There are two related construction problems, both require a CPU that
1177  * uniquely identify each group (for a given domain):
1178  *
1179  *  - The first is the balance_cpu (see should_we_balance() and the
1180  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1181  *    continue balancing at a higher domain.
1182  *
1183  *  - The second is the sched_group_capacity; we want all identical groups
1184  *    to share a single sched_group_capacity.
1185  *
1186  * Since these topologies are exclusive by construction. That is, its
1187  * impossible for an SMT thread to belong to multiple cores, and cores to
1188  * be part of multiple caches. There is a very clear and unique location
1189  * for each CPU in the hierarchy.
1190  *
1191  * Therefore computing a unique CPU for each group is trivial (the iteration
1192  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1193  * group), we can simply pick the first CPU in each group.
1194  *
1195  *
1196  * [*] in other words, the first group of each domain is its child domain.
1197  */
1198 
1199 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1200 {
1201 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1202 	struct sched_domain *child = sd->child;
1203 	struct sched_group *sg;
1204 	bool already_visited;
1205 
1206 	if (child)
1207 		cpu = cpumask_first(sched_domain_span(child));
1208 
1209 	sg = *per_cpu_ptr(sdd->sg, cpu);
1210 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1211 
1212 	/* Increase refcounts for claim_allocations: */
1213 	already_visited = atomic_inc_return(&sg->ref) > 1;
1214 	/* sgc visits should follow a similar trend as sg */
1215 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1216 
1217 	/* If we have already visited that group, it's already initialized. */
1218 	if (already_visited)
1219 		return sg;
1220 
1221 	if (child) {
1222 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1223 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1224 		sg->flags = child->flags;
1225 	} else {
1226 		cpumask_set_cpu(cpu, sched_group_span(sg));
1227 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1228 	}
1229 
1230 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1231 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1232 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1233 
1234 	return sg;
1235 }
1236 
1237 /*
1238  * build_sched_groups will build a circular linked list of the groups
1239  * covered by the given span, will set each group's ->cpumask correctly,
1240  * and will initialize their ->sgc.
1241  *
1242  * Assumes the sched_domain tree is fully constructed
1243  */
1244 static int
1245 build_sched_groups(struct sched_domain *sd, int cpu)
1246 {
1247 	struct sched_group *first = NULL, *last = NULL;
1248 	struct sd_data *sdd = sd->private;
1249 	const struct cpumask *span = sched_domain_span(sd);
1250 	struct cpumask *covered;
1251 	int i;
1252 
1253 	lockdep_assert_held(&sched_domains_mutex);
1254 	covered = sched_domains_tmpmask;
1255 
1256 	cpumask_clear(covered);
1257 
1258 	for_each_cpu_wrap(i, span, cpu) {
1259 		struct sched_group *sg;
1260 
1261 		if (cpumask_test_cpu(i, covered))
1262 			continue;
1263 
1264 		sg = get_group(i, sdd);
1265 
1266 		cpumask_or(covered, covered, sched_group_span(sg));
1267 
1268 		if (!first)
1269 			first = sg;
1270 		if (last)
1271 			last->next = sg;
1272 		last = sg;
1273 	}
1274 	last->next = first;
1275 	sd->groups = first;
1276 
1277 	return 0;
1278 }
1279 
1280 /*
1281  * Initialize sched groups cpu_capacity.
1282  *
1283  * cpu_capacity indicates the capacity of sched group, which is used while
1284  * distributing the load between different sched groups in a sched domain.
1285  * Typically cpu_capacity for all the groups in a sched domain will be same
1286  * unless there are asymmetries in the topology. If there are asymmetries,
1287  * group having more cpu_capacity will pickup more load compared to the
1288  * group having less cpu_capacity.
1289  */
1290 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1291 {
1292 	struct sched_group *sg = sd->groups;
1293 	struct cpumask *mask = sched_domains_tmpmask2;
1294 
1295 	WARN_ON(!sg);
1296 
1297 	do {
1298 		int cpu, cores = 0, max_cpu = -1;
1299 
1300 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1301 
1302 		cpumask_copy(mask, sched_group_span(sg));
1303 		for_each_cpu(cpu, mask) {
1304 			cores++;
1305 #ifdef CONFIG_SCHED_SMT
1306 			cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1307 #endif
1308 		}
1309 		sg->cores = cores;
1310 
1311 		if (!(sd->flags & SD_ASYM_PACKING))
1312 			goto next;
1313 
1314 		for_each_cpu(cpu, sched_group_span(sg)) {
1315 			if (max_cpu < 0)
1316 				max_cpu = cpu;
1317 			else if (sched_asym_prefer(cpu, max_cpu))
1318 				max_cpu = cpu;
1319 		}
1320 		sg->asym_prefer_cpu = max_cpu;
1321 
1322 next:
1323 		sg = sg->next;
1324 	} while (sg != sd->groups);
1325 
1326 	if (cpu != group_balance_cpu(sg))
1327 		return;
1328 
1329 	update_group_capacity(sd, cpu);
1330 }
1331 
1332 /*
1333  * Asymmetric CPU capacity bits
1334  */
1335 struct asym_cap_data {
1336 	struct list_head link;
1337 	unsigned long capacity;
1338 	unsigned long cpus[];
1339 };
1340 
1341 /*
1342  * Set of available CPUs grouped by their corresponding capacities
1343  * Each list entry contains a CPU mask reflecting CPUs that share the same
1344  * capacity.
1345  * The lifespan of data is unlimited.
1346  */
1347 static LIST_HEAD(asym_cap_list);
1348 
1349 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1350 
1351 /*
1352  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1353  * Provides sd_flags reflecting the asymmetry scope.
1354  */
1355 static inline int
1356 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1357 			   const struct cpumask *cpu_map)
1358 {
1359 	struct asym_cap_data *entry;
1360 	int count = 0, miss = 0;
1361 
1362 	/*
1363 	 * Count how many unique CPU capacities this domain spans across
1364 	 * (compare sched_domain CPUs mask with ones representing  available
1365 	 * CPUs capacities). Take into account CPUs that might be offline:
1366 	 * skip those.
1367 	 */
1368 	list_for_each_entry(entry, &asym_cap_list, link) {
1369 		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1370 			++count;
1371 		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1372 			++miss;
1373 	}
1374 
1375 	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1376 
1377 	/* No asymmetry detected */
1378 	if (count < 2)
1379 		return 0;
1380 	/* Some of the available CPU capacity values have not been detected */
1381 	if (miss)
1382 		return SD_ASYM_CPUCAPACITY;
1383 
1384 	/* Full asymmetry */
1385 	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1386 
1387 }
1388 
1389 static inline void asym_cpu_capacity_update_data(int cpu)
1390 {
1391 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1392 	struct asym_cap_data *entry = NULL;
1393 
1394 	list_for_each_entry(entry, &asym_cap_list, link) {
1395 		if (capacity == entry->capacity)
1396 			goto done;
1397 	}
1398 
1399 	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1400 	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1401 		return;
1402 	entry->capacity = capacity;
1403 	list_add(&entry->link, &asym_cap_list);
1404 done:
1405 	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1406 }
1407 
1408 /*
1409  * Build-up/update list of CPUs grouped by their capacities
1410  * An update requires explicit request to rebuild sched domains
1411  * with state indicating CPU topology changes.
1412  */
1413 static void asym_cpu_capacity_scan(void)
1414 {
1415 	struct asym_cap_data *entry, *next;
1416 	int cpu;
1417 
1418 	list_for_each_entry(entry, &asym_cap_list, link)
1419 		cpumask_clear(cpu_capacity_span(entry));
1420 
1421 	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1422 		asym_cpu_capacity_update_data(cpu);
1423 
1424 	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1425 		if (cpumask_empty(cpu_capacity_span(entry))) {
1426 			list_del(&entry->link);
1427 			kfree(entry);
1428 		}
1429 	}
1430 
1431 	/*
1432 	 * Only one capacity value has been detected i.e. this system is symmetric.
1433 	 * No need to keep this data around.
1434 	 */
1435 	if (list_is_singular(&asym_cap_list)) {
1436 		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1437 		list_del(&entry->link);
1438 		kfree(entry);
1439 	}
1440 }
1441 
1442 /*
1443  * Initializers for schedule domains
1444  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1445  */
1446 
1447 static int default_relax_domain_level = -1;
1448 int sched_domain_level_max;
1449 
1450 static int __init setup_relax_domain_level(char *str)
1451 {
1452 	if (kstrtoint(str, 0, &default_relax_domain_level))
1453 		pr_warn("Unable to set relax_domain_level\n");
1454 
1455 	return 1;
1456 }
1457 __setup("relax_domain_level=", setup_relax_domain_level);
1458 
1459 static void set_domain_attribute(struct sched_domain *sd,
1460 				 struct sched_domain_attr *attr)
1461 {
1462 	int request;
1463 
1464 	if (!attr || attr->relax_domain_level < 0) {
1465 		if (default_relax_domain_level < 0)
1466 			return;
1467 		request = default_relax_domain_level;
1468 	} else
1469 		request = attr->relax_domain_level;
1470 
1471 	if (sd->level > request) {
1472 		/* Turn off idle balance on this domain: */
1473 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1474 	}
1475 }
1476 
1477 static void __sdt_free(const struct cpumask *cpu_map);
1478 static int __sdt_alloc(const struct cpumask *cpu_map);
1479 
1480 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1481 				 const struct cpumask *cpu_map)
1482 {
1483 	switch (what) {
1484 	case sa_rootdomain:
1485 		if (!atomic_read(&d->rd->refcount))
1486 			free_rootdomain(&d->rd->rcu);
1487 		fallthrough;
1488 	case sa_sd:
1489 		free_percpu(d->sd);
1490 		fallthrough;
1491 	case sa_sd_storage:
1492 		__sdt_free(cpu_map);
1493 		fallthrough;
1494 	case sa_none:
1495 		break;
1496 	}
1497 }
1498 
1499 static enum s_alloc
1500 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1501 {
1502 	memset(d, 0, sizeof(*d));
1503 
1504 	if (__sdt_alloc(cpu_map))
1505 		return sa_sd_storage;
1506 	d->sd = alloc_percpu(struct sched_domain *);
1507 	if (!d->sd)
1508 		return sa_sd_storage;
1509 	d->rd = alloc_rootdomain();
1510 	if (!d->rd)
1511 		return sa_sd;
1512 
1513 	return sa_rootdomain;
1514 }
1515 
1516 /*
1517  * NULL the sd_data elements we've used to build the sched_domain and
1518  * sched_group structure so that the subsequent __free_domain_allocs()
1519  * will not free the data we're using.
1520  */
1521 static void claim_allocations(int cpu, struct sched_domain *sd)
1522 {
1523 	struct sd_data *sdd = sd->private;
1524 
1525 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1526 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1527 
1528 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1529 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1530 
1531 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1532 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1533 
1534 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1535 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1536 }
1537 
1538 #ifdef CONFIG_NUMA
1539 enum numa_topology_type sched_numa_topology_type;
1540 
1541 static int			sched_domains_numa_levels;
1542 static int			sched_domains_curr_level;
1543 
1544 int				sched_max_numa_distance;
1545 static int			*sched_domains_numa_distance;
1546 static struct cpumask		***sched_domains_numa_masks;
1547 #endif
1548 
1549 /*
1550  * SD_flags allowed in topology descriptions.
1551  *
1552  * These flags are purely descriptive of the topology and do not prescribe
1553  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1554  * function:
1555  *
1556  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1557  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1558  *   SD_NUMA                - describes NUMA topologies
1559  *
1560  * Odd one out, which beside describing the topology has a quirk also
1561  * prescribes the desired behaviour that goes along with it:
1562  *
1563  *   SD_ASYM_PACKING        - describes SMT quirks
1564  */
1565 #define TOPOLOGY_SD_FLAGS		\
1566 	(SD_SHARE_CPUCAPACITY	|	\
1567 	 SD_CLUSTER		|	\
1568 	 SD_SHARE_PKG_RESOURCES |	\
1569 	 SD_NUMA		|	\
1570 	 SD_ASYM_PACKING)
1571 
1572 static struct sched_domain *
1573 sd_init(struct sched_domain_topology_level *tl,
1574 	const struct cpumask *cpu_map,
1575 	struct sched_domain *child, int cpu)
1576 {
1577 	struct sd_data *sdd = &tl->data;
1578 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1579 	int sd_id, sd_weight, sd_flags = 0;
1580 	struct cpumask *sd_span;
1581 
1582 #ifdef CONFIG_NUMA
1583 	/*
1584 	 * Ugly hack to pass state to sd_numa_mask()...
1585 	 */
1586 	sched_domains_curr_level = tl->numa_level;
1587 #endif
1588 
1589 	sd_weight = cpumask_weight(tl->mask(cpu));
1590 
1591 	if (tl->sd_flags)
1592 		sd_flags = (*tl->sd_flags)();
1593 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1594 			"wrong sd_flags in topology description\n"))
1595 		sd_flags &= TOPOLOGY_SD_FLAGS;
1596 
1597 	*sd = (struct sched_domain){
1598 		.min_interval		= sd_weight,
1599 		.max_interval		= 2*sd_weight,
1600 		.busy_factor		= 16,
1601 		.imbalance_pct		= 117,
1602 
1603 		.cache_nice_tries	= 0,
1604 
1605 		.flags			= 1*SD_BALANCE_NEWIDLE
1606 					| 1*SD_BALANCE_EXEC
1607 					| 1*SD_BALANCE_FORK
1608 					| 0*SD_BALANCE_WAKE
1609 					| 1*SD_WAKE_AFFINE
1610 					| 0*SD_SHARE_CPUCAPACITY
1611 					| 0*SD_SHARE_PKG_RESOURCES
1612 					| 0*SD_SERIALIZE
1613 					| 1*SD_PREFER_SIBLING
1614 					| 0*SD_NUMA
1615 					| sd_flags
1616 					,
1617 
1618 		.last_balance		= jiffies,
1619 		.balance_interval	= sd_weight,
1620 		.max_newidle_lb_cost	= 0,
1621 		.last_decay_max_lb_cost	= jiffies,
1622 		.child			= child,
1623 #ifdef CONFIG_SCHED_DEBUG
1624 		.name			= tl->name,
1625 #endif
1626 	};
1627 
1628 	sd_span = sched_domain_span(sd);
1629 	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1630 	sd_id = cpumask_first(sd_span);
1631 
1632 	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1633 
1634 	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1635 		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1636 		  "CPU capacity asymmetry not supported on SMT\n");
1637 
1638 	/*
1639 	 * Convert topological properties into behaviour.
1640 	 */
1641 	/* Don't attempt to spread across CPUs of different capacities. */
1642 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1643 		sd->child->flags &= ~SD_PREFER_SIBLING;
1644 
1645 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1646 		sd->imbalance_pct = 110;
1647 
1648 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1649 		sd->imbalance_pct = 117;
1650 		sd->cache_nice_tries = 1;
1651 
1652 #ifdef CONFIG_NUMA
1653 	} else if (sd->flags & SD_NUMA) {
1654 		sd->cache_nice_tries = 2;
1655 
1656 		sd->flags &= ~SD_PREFER_SIBLING;
1657 		sd->flags |= SD_SERIALIZE;
1658 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1659 			sd->flags &= ~(SD_BALANCE_EXEC |
1660 				       SD_BALANCE_FORK |
1661 				       SD_WAKE_AFFINE);
1662 		}
1663 
1664 #endif
1665 	} else {
1666 		sd->cache_nice_tries = 1;
1667 	}
1668 
1669 	/*
1670 	 * For all levels sharing cache; connect a sched_domain_shared
1671 	 * instance.
1672 	 */
1673 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1674 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1675 		atomic_inc(&sd->shared->ref);
1676 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1677 	}
1678 
1679 	sd->private = sdd;
1680 
1681 	return sd;
1682 }
1683 
1684 /*
1685  * Topology list, bottom-up.
1686  */
1687 static struct sched_domain_topology_level default_topology[] = {
1688 #ifdef CONFIG_SCHED_SMT
1689 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1690 #endif
1691 
1692 #ifdef CONFIG_SCHED_CLUSTER
1693 	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1694 #endif
1695 
1696 #ifdef CONFIG_SCHED_MC
1697 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1698 #endif
1699 	{ cpu_cpu_mask, SD_INIT_NAME(PKG) },
1700 	{ NULL, },
1701 };
1702 
1703 static struct sched_domain_topology_level *sched_domain_topology =
1704 	default_topology;
1705 static struct sched_domain_topology_level *sched_domain_topology_saved;
1706 
1707 #define for_each_sd_topology(tl)			\
1708 	for (tl = sched_domain_topology; tl->mask; tl++)
1709 
1710 void __init set_sched_topology(struct sched_domain_topology_level *tl)
1711 {
1712 	if (WARN_ON_ONCE(sched_smp_initialized))
1713 		return;
1714 
1715 	sched_domain_topology = tl;
1716 	sched_domain_topology_saved = NULL;
1717 }
1718 
1719 #ifdef CONFIG_NUMA
1720 
1721 static const struct cpumask *sd_numa_mask(int cpu)
1722 {
1723 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1724 }
1725 
1726 static void sched_numa_warn(const char *str)
1727 {
1728 	static int done = false;
1729 	int i,j;
1730 
1731 	if (done)
1732 		return;
1733 
1734 	done = true;
1735 
1736 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1737 
1738 	for (i = 0; i < nr_node_ids; i++) {
1739 		printk(KERN_WARNING "  ");
1740 		for (j = 0; j < nr_node_ids; j++) {
1741 			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1742 				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1743 			else
1744 				printk(KERN_CONT " %02d  ", node_distance(i,j));
1745 		}
1746 		printk(KERN_CONT "\n");
1747 	}
1748 	printk(KERN_WARNING "\n");
1749 }
1750 
1751 bool find_numa_distance(int distance)
1752 {
1753 	bool found = false;
1754 	int i, *distances;
1755 
1756 	if (distance == node_distance(0, 0))
1757 		return true;
1758 
1759 	rcu_read_lock();
1760 	distances = rcu_dereference(sched_domains_numa_distance);
1761 	if (!distances)
1762 		goto unlock;
1763 	for (i = 0; i < sched_domains_numa_levels; i++) {
1764 		if (distances[i] == distance) {
1765 			found = true;
1766 			break;
1767 		}
1768 	}
1769 unlock:
1770 	rcu_read_unlock();
1771 
1772 	return found;
1773 }
1774 
1775 #define for_each_cpu_node_but(n, nbut)		\
1776 	for_each_node_state(n, N_CPU)		\
1777 		if (n == nbut)			\
1778 			continue;		\
1779 		else
1780 
1781 /*
1782  * A system can have three types of NUMA topology:
1783  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1784  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1785  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1786  *
1787  * The difference between a glueless mesh topology and a backplane
1788  * topology lies in whether communication between not directly
1789  * connected nodes goes through intermediary nodes (where programs
1790  * could run), or through backplane controllers. This affects
1791  * placement of programs.
1792  *
1793  * The type of topology can be discerned with the following tests:
1794  * - If the maximum distance between any nodes is 1 hop, the system
1795  *   is directly connected.
1796  * - If for two nodes A and B, located N > 1 hops away from each other,
1797  *   there is an intermediary node C, which is < N hops away from both
1798  *   nodes A and B, the system is a glueless mesh.
1799  */
1800 static void init_numa_topology_type(int offline_node)
1801 {
1802 	int a, b, c, n;
1803 
1804 	n = sched_max_numa_distance;
1805 
1806 	if (sched_domains_numa_levels <= 2) {
1807 		sched_numa_topology_type = NUMA_DIRECT;
1808 		return;
1809 	}
1810 
1811 	for_each_cpu_node_but(a, offline_node) {
1812 		for_each_cpu_node_but(b, offline_node) {
1813 			/* Find two nodes furthest removed from each other. */
1814 			if (node_distance(a, b) < n)
1815 				continue;
1816 
1817 			/* Is there an intermediary node between a and b? */
1818 			for_each_cpu_node_but(c, offline_node) {
1819 				if (node_distance(a, c) < n &&
1820 				    node_distance(b, c) < n) {
1821 					sched_numa_topology_type =
1822 							NUMA_GLUELESS_MESH;
1823 					return;
1824 				}
1825 			}
1826 
1827 			sched_numa_topology_type = NUMA_BACKPLANE;
1828 			return;
1829 		}
1830 	}
1831 
1832 	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1833 	sched_numa_topology_type = NUMA_DIRECT;
1834 }
1835 
1836 
1837 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1838 
1839 void sched_init_numa(int offline_node)
1840 {
1841 	struct sched_domain_topology_level *tl;
1842 	unsigned long *distance_map;
1843 	int nr_levels = 0;
1844 	int i, j;
1845 	int *distances;
1846 	struct cpumask ***masks;
1847 
1848 	/*
1849 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1850 	 * unique distances in the node_distance() table.
1851 	 */
1852 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1853 	if (!distance_map)
1854 		return;
1855 
1856 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1857 	for_each_cpu_node_but(i, offline_node) {
1858 		for_each_cpu_node_but(j, offline_node) {
1859 			int distance = node_distance(i, j);
1860 
1861 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1862 				sched_numa_warn("Invalid distance value range");
1863 				bitmap_free(distance_map);
1864 				return;
1865 			}
1866 
1867 			bitmap_set(distance_map, distance, 1);
1868 		}
1869 	}
1870 	/*
1871 	 * We can now figure out how many unique distance values there are and
1872 	 * allocate memory accordingly.
1873 	 */
1874 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1875 
1876 	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1877 	if (!distances) {
1878 		bitmap_free(distance_map);
1879 		return;
1880 	}
1881 
1882 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1883 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1884 		distances[i] = j;
1885 	}
1886 	rcu_assign_pointer(sched_domains_numa_distance, distances);
1887 
1888 	bitmap_free(distance_map);
1889 
1890 	/*
1891 	 * 'nr_levels' contains the number of unique distances
1892 	 *
1893 	 * The sched_domains_numa_distance[] array includes the actual distance
1894 	 * numbers.
1895 	 */
1896 
1897 	/*
1898 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1899 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1900 	 * the array will contain less then 'nr_levels' members. This could be
1901 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1902 	 * in other functions.
1903 	 *
1904 	 * We reset it to 'nr_levels' at the end of this function.
1905 	 */
1906 	sched_domains_numa_levels = 0;
1907 
1908 	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1909 	if (!masks)
1910 		return;
1911 
1912 	/*
1913 	 * Now for each level, construct a mask per node which contains all
1914 	 * CPUs of nodes that are that many hops away from us.
1915 	 */
1916 	for (i = 0; i < nr_levels; i++) {
1917 		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1918 		if (!masks[i])
1919 			return;
1920 
1921 		for_each_cpu_node_but(j, offline_node) {
1922 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1923 			int k;
1924 
1925 			if (!mask)
1926 				return;
1927 
1928 			masks[i][j] = mask;
1929 
1930 			for_each_cpu_node_but(k, offline_node) {
1931 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1932 					sched_numa_warn("Node-distance not symmetric");
1933 
1934 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1935 					continue;
1936 
1937 				cpumask_or(mask, mask, cpumask_of_node(k));
1938 			}
1939 		}
1940 	}
1941 	rcu_assign_pointer(sched_domains_numa_masks, masks);
1942 
1943 	/* Compute default topology size */
1944 	for (i = 0; sched_domain_topology[i].mask; i++);
1945 
1946 	tl = kzalloc((i + nr_levels + 1) *
1947 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1948 	if (!tl)
1949 		return;
1950 
1951 	/*
1952 	 * Copy the default topology bits..
1953 	 */
1954 	for (i = 0; sched_domain_topology[i].mask; i++)
1955 		tl[i] = sched_domain_topology[i];
1956 
1957 	/*
1958 	 * Add the NUMA identity distance, aka single NODE.
1959 	 */
1960 	tl[i++] = (struct sched_domain_topology_level){
1961 		.mask = sd_numa_mask,
1962 		.numa_level = 0,
1963 		SD_INIT_NAME(NODE)
1964 	};
1965 
1966 	/*
1967 	 * .. and append 'j' levels of NUMA goodness.
1968 	 */
1969 	for (j = 1; j < nr_levels; i++, j++) {
1970 		tl[i] = (struct sched_domain_topology_level){
1971 			.mask = sd_numa_mask,
1972 			.sd_flags = cpu_numa_flags,
1973 			.flags = SDTL_OVERLAP,
1974 			.numa_level = j,
1975 			SD_INIT_NAME(NUMA)
1976 		};
1977 	}
1978 
1979 	sched_domain_topology_saved = sched_domain_topology;
1980 	sched_domain_topology = tl;
1981 
1982 	sched_domains_numa_levels = nr_levels;
1983 	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1984 
1985 	init_numa_topology_type(offline_node);
1986 }
1987 
1988 
1989 static void sched_reset_numa(void)
1990 {
1991 	int nr_levels, *distances;
1992 	struct cpumask ***masks;
1993 
1994 	nr_levels = sched_domains_numa_levels;
1995 	sched_domains_numa_levels = 0;
1996 	sched_max_numa_distance = 0;
1997 	sched_numa_topology_type = NUMA_DIRECT;
1998 	distances = sched_domains_numa_distance;
1999 	rcu_assign_pointer(sched_domains_numa_distance, NULL);
2000 	masks = sched_domains_numa_masks;
2001 	rcu_assign_pointer(sched_domains_numa_masks, NULL);
2002 	if (distances || masks) {
2003 		int i, j;
2004 
2005 		synchronize_rcu();
2006 		kfree(distances);
2007 		for (i = 0; i < nr_levels && masks; i++) {
2008 			if (!masks[i])
2009 				continue;
2010 			for_each_node(j)
2011 				kfree(masks[i][j]);
2012 			kfree(masks[i]);
2013 		}
2014 		kfree(masks);
2015 	}
2016 	if (sched_domain_topology_saved) {
2017 		kfree(sched_domain_topology);
2018 		sched_domain_topology = sched_domain_topology_saved;
2019 		sched_domain_topology_saved = NULL;
2020 	}
2021 }
2022 
2023 /*
2024  * Call with hotplug lock held
2025  */
2026 void sched_update_numa(int cpu, bool online)
2027 {
2028 	int node;
2029 
2030 	node = cpu_to_node(cpu);
2031 	/*
2032 	 * Scheduler NUMA topology is updated when the first CPU of a
2033 	 * node is onlined or the last CPU of a node is offlined.
2034 	 */
2035 	if (cpumask_weight(cpumask_of_node(node)) != 1)
2036 		return;
2037 
2038 	sched_reset_numa();
2039 	sched_init_numa(online ? NUMA_NO_NODE : node);
2040 }
2041 
2042 void sched_domains_numa_masks_set(unsigned int cpu)
2043 {
2044 	int node = cpu_to_node(cpu);
2045 	int i, j;
2046 
2047 	for (i = 0; i < sched_domains_numa_levels; i++) {
2048 		for (j = 0; j < nr_node_ids; j++) {
2049 			if (!node_state(j, N_CPU))
2050 				continue;
2051 
2052 			/* Set ourselves in the remote node's masks */
2053 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2054 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2055 		}
2056 	}
2057 }
2058 
2059 void sched_domains_numa_masks_clear(unsigned int cpu)
2060 {
2061 	int i, j;
2062 
2063 	for (i = 0; i < sched_domains_numa_levels; i++) {
2064 		for (j = 0; j < nr_node_ids; j++) {
2065 			if (sched_domains_numa_masks[i][j])
2066 				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2067 		}
2068 	}
2069 }
2070 
2071 /*
2072  * sched_numa_find_closest() - given the NUMA topology, find the cpu
2073  *                             closest to @cpu from @cpumask.
2074  * cpumask: cpumask to find a cpu from
2075  * cpu: cpu to be close to
2076  *
2077  * returns: cpu, or nr_cpu_ids when nothing found.
2078  */
2079 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2080 {
2081 	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2082 	struct cpumask ***masks;
2083 
2084 	rcu_read_lock();
2085 	masks = rcu_dereference(sched_domains_numa_masks);
2086 	if (!masks)
2087 		goto unlock;
2088 	for (i = 0; i < sched_domains_numa_levels; i++) {
2089 		if (!masks[i][j])
2090 			break;
2091 		cpu = cpumask_any_and(cpus, masks[i][j]);
2092 		if (cpu < nr_cpu_ids) {
2093 			found = cpu;
2094 			break;
2095 		}
2096 	}
2097 unlock:
2098 	rcu_read_unlock();
2099 
2100 	return found;
2101 }
2102 
2103 struct __cmp_key {
2104 	const struct cpumask *cpus;
2105 	struct cpumask ***masks;
2106 	int node;
2107 	int cpu;
2108 	int w;
2109 };
2110 
2111 static int hop_cmp(const void *a, const void *b)
2112 {
2113 	struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2114 	struct __cmp_key *k = (struct __cmp_key *)a;
2115 
2116 	if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2117 		return 1;
2118 
2119 	if (b == k->masks) {
2120 		k->w = 0;
2121 		return 0;
2122 	}
2123 
2124 	prev_hop = *((struct cpumask ***)b - 1);
2125 	k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2126 	if (k->w <= k->cpu)
2127 		return 0;
2128 
2129 	return -1;
2130 }
2131 
2132 /**
2133  * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2134  *                             from @cpus to @cpu, taking into account distance
2135  *                             from a given @node.
2136  * @cpus: cpumask to find a cpu from
2137  * @cpu: CPU to start searching
2138  * @node: NUMA node to order CPUs by distance
2139  *
2140  * Return: cpu, or nr_cpu_ids when nothing found.
2141  */
2142 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2143 {
2144 	struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2145 	struct cpumask ***hop_masks;
2146 	int hop, ret = nr_cpu_ids;
2147 
2148 	if (node == NUMA_NO_NODE)
2149 		return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2150 
2151 	rcu_read_lock();
2152 
2153 	/* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2154 	node = numa_nearest_node(node, N_CPU);
2155 	k.node = node;
2156 
2157 	k.masks = rcu_dereference(sched_domains_numa_masks);
2158 	if (!k.masks)
2159 		goto unlock;
2160 
2161 	hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2162 	hop = hop_masks	- k.masks;
2163 
2164 	ret = hop ?
2165 		cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2166 		cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2167 unlock:
2168 	rcu_read_unlock();
2169 	return ret;
2170 }
2171 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2172 
2173 /**
2174  * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2175  *                         @node
2176  * @node: The node to count hops from.
2177  * @hops: Include CPUs up to that many hops away. 0 means local node.
2178  *
2179  * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2180  * @node, an error value otherwise.
2181  *
2182  * Requires rcu_lock to be held. Returned cpumask is only valid within that
2183  * read-side section, copy it if required beyond that.
2184  *
2185  * Note that not all hops are equal in distance; see sched_init_numa() for how
2186  * distances and masks are handled.
2187  * Also note that this is a reflection of sched_domains_numa_masks, which may change
2188  * during the lifetime of the system (offline nodes are taken out of the masks).
2189  */
2190 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2191 {
2192 	struct cpumask ***masks;
2193 
2194 	if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2195 		return ERR_PTR(-EINVAL);
2196 
2197 	masks = rcu_dereference(sched_domains_numa_masks);
2198 	if (!masks)
2199 		return ERR_PTR(-EBUSY);
2200 
2201 	return masks[hops][node];
2202 }
2203 EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2204 
2205 #endif /* CONFIG_NUMA */
2206 
2207 static int __sdt_alloc(const struct cpumask *cpu_map)
2208 {
2209 	struct sched_domain_topology_level *tl;
2210 	int j;
2211 
2212 	for_each_sd_topology(tl) {
2213 		struct sd_data *sdd = &tl->data;
2214 
2215 		sdd->sd = alloc_percpu(struct sched_domain *);
2216 		if (!sdd->sd)
2217 			return -ENOMEM;
2218 
2219 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2220 		if (!sdd->sds)
2221 			return -ENOMEM;
2222 
2223 		sdd->sg = alloc_percpu(struct sched_group *);
2224 		if (!sdd->sg)
2225 			return -ENOMEM;
2226 
2227 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2228 		if (!sdd->sgc)
2229 			return -ENOMEM;
2230 
2231 		for_each_cpu(j, cpu_map) {
2232 			struct sched_domain *sd;
2233 			struct sched_domain_shared *sds;
2234 			struct sched_group *sg;
2235 			struct sched_group_capacity *sgc;
2236 
2237 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2238 					GFP_KERNEL, cpu_to_node(j));
2239 			if (!sd)
2240 				return -ENOMEM;
2241 
2242 			*per_cpu_ptr(sdd->sd, j) = sd;
2243 
2244 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2245 					GFP_KERNEL, cpu_to_node(j));
2246 			if (!sds)
2247 				return -ENOMEM;
2248 
2249 			*per_cpu_ptr(sdd->sds, j) = sds;
2250 
2251 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2252 					GFP_KERNEL, cpu_to_node(j));
2253 			if (!sg)
2254 				return -ENOMEM;
2255 
2256 			sg->next = sg;
2257 
2258 			*per_cpu_ptr(sdd->sg, j) = sg;
2259 
2260 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2261 					GFP_KERNEL, cpu_to_node(j));
2262 			if (!sgc)
2263 				return -ENOMEM;
2264 
2265 #ifdef CONFIG_SCHED_DEBUG
2266 			sgc->id = j;
2267 #endif
2268 
2269 			*per_cpu_ptr(sdd->sgc, j) = sgc;
2270 		}
2271 	}
2272 
2273 	return 0;
2274 }
2275 
2276 static void __sdt_free(const struct cpumask *cpu_map)
2277 {
2278 	struct sched_domain_topology_level *tl;
2279 	int j;
2280 
2281 	for_each_sd_topology(tl) {
2282 		struct sd_data *sdd = &tl->data;
2283 
2284 		for_each_cpu(j, cpu_map) {
2285 			struct sched_domain *sd;
2286 
2287 			if (sdd->sd) {
2288 				sd = *per_cpu_ptr(sdd->sd, j);
2289 				if (sd && (sd->flags & SD_OVERLAP))
2290 					free_sched_groups(sd->groups, 0);
2291 				kfree(*per_cpu_ptr(sdd->sd, j));
2292 			}
2293 
2294 			if (sdd->sds)
2295 				kfree(*per_cpu_ptr(sdd->sds, j));
2296 			if (sdd->sg)
2297 				kfree(*per_cpu_ptr(sdd->sg, j));
2298 			if (sdd->sgc)
2299 				kfree(*per_cpu_ptr(sdd->sgc, j));
2300 		}
2301 		free_percpu(sdd->sd);
2302 		sdd->sd = NULL;
2303 		free_percpu(sdd->sds);
2304 		sdd->sds = NULL;
2305 		free_percpu(sdd->sg);
2306 		sdd->sg = NULL;
2307 		free_percpu(sdd->sgc);
2308 		sdd->sgc = NULL;
2309 	}
2310 }
2311 
2312 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2313 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2314 		struct sched_domain *child, int cpu)
2315 {
2316 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2317 
2318 	if (child) {
2319 		sd->level = child->level + 1;
2320 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2321 		child->parent = sd;
2322 
2323 		if (!cpumask_subset(sched_domain_span(child),
2324 				    sched_domain_span(sd))) {
2325 			pr_err("BUG: arch topology borken\n");
2326 #ifdef CONFIG_SCHED_DEBUG
2327 			pr_err("     the %s domain not a subset of the %s domain\n",
2328 					child->name, sd->name);
2329 #endif
2330 			/* Fixup, ensure @sd has at least @child CPUs. */
2331 			cpumask_or(sched_domain_span(sd),
2332 				   sched_domain_span(sd),
2333 				   sched_domain_span(child));
2334 		}
2335 
2336 	}
2337 	set_domain_attribute(sd, attr);
2338 
2339 	return sd;
2340 }
2341 
2342 /*
2343  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2344  * any two given CPUs at this (non-NUMA) topology level.
2345  */
2346 static bool topology_span_sane(struct sched_domain_topology_level *tl,
2347 			      const struct cpumask *cpu_map, int cpu)
2348 {
2349 	int i;
2350 
2351 	/* NUMA levels are allowed to overlap */
2352 	if (tl->flags & SDTL_OVERLAP)
2353 		return true;
2354 
2355 	/*
2356 	 * Non-NUMA levels cannot partially overlap - they must be either
2357 	 * completely equal or completely disjoint. Otherwise we can end up
2358 	 * breaking the sched_group lists - i.e. a later get_group() pass
2359 	 * breaks the linking done for an earlier span.
2360 	 */
2361 	for_each_cpu(i, cpu_map) {
2362 		if (i == cpu)
2363 			continue;
2364 		/*
2365 		 * We should 'and' all those masks with 'cpu_map' to exactly
2366 		 * match the topology we're about to build, but that can only
2367 		 * remove CPUs, which only lessens our ability to detect
2368 		 * overlaps
2369 		 */
2370 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2371 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2372 			return false;
2373 	}
2374 
2375 	return true;
2376 }
2377 
2378 /*
2379  * Build sched domains for a given set of CPUs and attach the sched domains
2380  * to the individual CPUs
2381  */
2382 static int
2383 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2384 {
2385 	enum s_alloc alloc_state = sa_none;
2386 	struct sched_domain *sd;
2387 	struct s_data d;
2388 	struct rq *rq = NULL;
2389 	int i, ret = -ENOMEM;
2390 	bool has_asym = false;
2391 	bool has_cluster = false;
2392 
2393 	if (WARN_ON(cpumask_empty(cpu_map)))
2394 		goto error;
2395 
2396 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2397 	if (alloc_state != sa_rootdomain)
2398 		goto error;
2399 
2400 	/* Set up domains for CPUs specified by the cpu_map: */
2401 	for_each_cpu(i, cpu_map) {
2402 		struct sched_domain_topology_level *tl;
2403 
2404 		sd = NULL;
2405 		for_each_sd_topology(tl) {
2406 
2407 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2408 				goto error;
2409 
2410 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2411 
2412 			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2413 
2414 			if (tl == sched_domain_topology)
2415 				*per_cpu_ptr(d.sd, i) = sd;
2416 			if (tl->flags & SDTL_OVERLAP)
2417 				sd->flags |= SD_OVERLAP;
2418 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2419 				break;
2420 		}
2421 	}
2422 
2423 	/* Build the groups for the domains */
2424 	for_each_cpu(i, cpu_map) {
2425 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2426 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2427 			if (sd->flags & SD_OVERLAP) {
2428 				if (build_overlap_sched_groups(sd, i))
2429 					goto error;
2430 			} else {
2431 				if (build_sched_groups(sd, i))
2432 					goto error;
2433 			}
2434 		}
2435 	}
2436 
2437 	/*
2438 	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2439 	 * imbalanced.
2440 	 */
2441 	for_each_cpu(i, cpu_map) {
2442 		unsigned int imb = 0;
2443 		unsigned int imb_span = 1;
2444 
2445 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2446 			struct sched_domain *child = sd->child;
2447 
2448 			if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child &&
2449 			    (child->flags & SD_SHARE_PKG_RESOURCES)) {
2450 				struct sched_domain __rcu *top_p;
2451 				unsigned int nr_llcs;
2452 
2453 				/*
2454 				 * For a single LLC per node, allow an
2455 				 * imbalance up to 12.5% of the node. This is
2456 				 * arbitrary cutoff based two factors -- SMT and
2457 				 * memory channels. For SMT-2, the intent is to
2458 				 * avoid premature sharing of HT resources but
2459 				 * SMT-4 or SMT-8 *may* benefit from a different
2460 				 * cutoff. For memory channels, this is a very
2461 				 * rough estimate of how many channels may be
2462 				 * active and is based on recent CPUs with
2463 				 * many cores.
2464 				 *
2465 				 * For multiple LLCs, allow an imbalance
2466 				 * until multiple tasks would share an LLC
2467 				 * on one node while LLCs on another node
2468 				 * remain idle. This assumes that there are
2469 				 * enough logical CPUs per LLC to avoid SMT
2470 				 * factors and that there is a correlation
2471 				 * between LLCs and memory channels.
2472 				 */
2473 				nr_llcs = sd->span_weight / child->span_weight;
2474 				if (nr_llcs == 1)
2475 					imb = sd->span_weight >> 3;
2476 				else
2477 					imb = nr_llcs;
2478 				imb = max(1U, imb);
2479 				sd->imb_numa_nr = imb;
2480 
2481 				/* Set span based on the first NUMA domain. */
2482 				top_p = sd->parent;
2483 				while (top_p && !(top_p->flags & SD_NUMA)) {
2484 					top_p = top_p->parent;
2485 				}
2486 				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2487 			} else {
2488 				int factor = max(1U, (sd->span_weight / imb_span));
2489 
2490 				sd->imb_numa_nr = imb * factor;
2491 			}
2492 		}
2493 	}
2494 
2495 	/* Calculate CPU capacity for physical packages and nodes */
2496 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2497 		if (!cpumask_test_cpu(i, cpu_map))
2498 			continue;
2499 
2500 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2501 			claim_allocations(i, sd);
2502 			init_sched_groups_capacity(i, sd);
2503 		}
2504 	}
2505 
2506 	/* Attach the domains */
2507 	rcu_read_lock();
2508 	for_each_cpu(i, cpu_map) {
2509 		unsigned long capacity;
2510 
2511 		rq = cpu_rq(i);
2512 		sd = *per_cpu_ptr(d.sd, i);
2513 
2514 		capacity = arch_scale_cpu_capacity(i);
2515 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2516 		if (capacity > READ_ONCE(d.rd->max_cpu_capacity))
2517 			WRITE_ONCE(d.rd->max_cpu_capacity, capacity);
2518 
2519 		cpu_attach_domain(sd, d.rd, i);
2520 
2521 		if (lowest_flag_domain(i, SD_CLUSTER))
2522 			has_cluster = true;
2523 	}
2524 	rcu_read_unlock();
2525 
2526 	if (has_asym)
2527 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2528 
2529 	if (has_cluster)
2530 		static_branch_inc_cpuslocked(&sched_cluster_active);
2531 
2532 	if (rq && sched_debug_verbose) {
2533 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2534 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2535 	}
2536 
2537 	ret = 0;
2538 error:
2539 	__free_domain_allocs(&d, alloc_state, cpu_map);
2540 
2541 	return ret;
2542 }
2543 
2544 /* Current sched domains: */
2545 static cpumask_var_t			*doms_cur;
2546 
2547 /* Number of sched domains in 'doms_cur': */
2548 static int				ndoms_cur;
2549 
2550 /* Attributes of custom domains in 'doms_cur' */
2551 static struct sched_domain_attr		*dattr_cur;
2552 
2553 /*
2554  * Special case: If a kmalloc() of a doms_cur partition (array of
2555  * cpumask) fails, then fallback to a single sched domain,
2556  * as determined by the single cpumask fallback_doms.
2557  */
2558 static cpumask_var_t			fallback_doms;
2559 
2560 /*
2561  * arch_update_cpu_topology lets virtualized architectures update the
2562  * CPU core maps. It is supposed to return 1 if the topology changed
2563  * or 0 if it stayed the same.
2564  */
2565 int __weak arch_update_cpu_topology(void)
2566 {
2567 	return 0;
2568 }
2569 
2570 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2571 {
2572 	int i;
2573 	cpumask_var_t *doms;
2574 
2575 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2576 	if (!doms)
2577 		return NULL;
2578 	for (i = 0; i < ndoms; i++) {
2579 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2580 			free_sched_domains(doms, i);
2581 			return NULL;
2582 		}
2583 	}
2584 	return doms;
2585 }
2586 
2587 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2588 {
2589 	unsigned int i;
2590 	for (i = 0; i < ndoms; i++)
2591 		free_cpumask_var(doms[i]);
2592 	kfree(doms);
2593 }
2594 
2595 /*
2596  * Set up scheduler domains and groups.  For now this just excludes isolated
2597  * CPUs, but could be used to exclude other special cases in the future.
2598  */
2599 int __init sched_init_domains(const struct cpumask *cpu_map)
2600 {
2601 	int err;
2602 
2603 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2604 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2605 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2606 
2607 	arch_update_cpu_topology();
2608 	asym_cpu_capacity_scan();
2609 	ndoms_cur = 1;
2610 	doms_cur = alloc_sched_domains(ndoms_cur);
2611 	if (!doms_cur)
2612 		doms_cur = &fallback_doms;
2613 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2614 	err = build_sched_domains(doms_cur[0], NULL);
2615 
2616 	return err;
2617 }
2618 
2619 /*
2620  * Detach sched domains from a group of CPUs specified in cpu_map
2621  * These CPUs will now be attached to the NULL domain
2622  */
2623 static void detach_destroy_domains(const struct cpumask *cpu_map)
2624 {
2625 	unsigned int cpu = cpumask_any(cpu_map);
2626 	int i;
2627 
2628 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2629 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2630 
2631 	if (static_branch_unlikely(&sched_cluster_active))
2632 		static_branch_dec_cpuslocked(&sched_cluster_active);
2633 
2634 	rcu_read_lock();
2635 	for_each_cpu(i, cpu_map)
2636 		cpu_attach_domain(NULL, &def_root_domain, i);
2637 	rcu_read_unlock();
2638 }
2639 
2640 /* handle null as "default" */
2641 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2642 			struct sched_domain_attr *new, int idx_new)
2643 {
2644 	struct sched_domain_attr tmp;
2645 
2646 	/* Fast path: */
2647 	if (!new && !cur)
2648 		return 1;
2649 
2650 	tmp = SD_ATTR_INIT;
2651 
2652 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2653 			new ? (new + idx_new) : &tmp,
2654 			sizeof(struct sched_domain_attr));
2655 }
2656 
2657 /*
2658  * Partition sched domains as specified by the 'ndoms_new'
2659  * cpumasks in the array doms_new[] of cpumasks. This compares
2660  * doms_new[] to the current sched domain partitioning, doms_cur[].
2661  * It destroys each deleted domain and builds each new domain.
2662  *
2663  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2664  * The masks don't intersect (don't overlap.) We should setup one
2665  * sched domain for each mask. CPUs not in any of the cpumasks will
2666  * not be load balanced. If the same cpumask appears both in the
2667  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2668  * it as it is.
2669  *
2670  * The passed in 'doms_new' should be allocated using
2671  * alloc_sched_domains.  This routine takes ownership of it and will
2672  * free_sched_domains it when done with it. If the caller failed the
2673  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2674  * and partition_sched_domains() will fallback to the single partition
2675  * 'fallback_doms', it also forces the domains to be rebuilt.
2676  *
2677  * If doms_new == NULL it will be replaced with cpu_online_mask.
2678  * ndoms_new == 0 is a special case for destroying existing domains,
2679  * and it will not create the default domain.
2680  *
2681  * Call with hotplug lock and sched_domains_mutex held
2682  */
2683 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2684 				    struct sched_domain_attr *dattr_new)
2685 {
2686 	bool __maybe_unused has_eas = false;
2687 	int i, j, n;
2688 	int new_topology;
2689 
2690 	lockdep_assert_held(&sched_domains_mutex);
2691 
2692 	/* Let the architecture update CPU core mappings: */
2693 	new_topology = arch_update_cpu_topology();
2694 	/* Trigger rebuilding CPU capacity asymmetry data */
2695 	if (new_topology)
2696 		asym_cpu_capacity_scan();
2697 
2698 	if (!doms_new) {
2699 		WARN_ON_ONCE(dattr_new);
2700 		n = 0;
2701 		doms_new = alloc_sched_domains(1);
2702 		if (doms_new) {
2703 			n = 1;
2704 			cpumask_and(doms_new[0], cpu_active_mask,
2705 				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2706 		}
2707 	} else {
2708 		n = ndoms_new;
2709 	}
2710 
2711 	/* Destroy deleted domains: */
2712 	for (i = 0; i < ndoms_cur; i++) {
2713 		for (j = 0; j < n && !new_topology; j++) {
2714 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2715 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2716 				struct root_domain *rd;
2717 
2718 				/*
2719 				 * This domain won't be destroyed and as such
2720 				 * its dl_bw->total_bw needs to be cleared.  It
2721 				 * will be recomputed in function
2722 				 * update_tasks_root_domain().
2723 				 */
2724 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2725 				dl_clear_root_domain(rd);
2726 				goto match1;
2727 			}
2728 		}
2729 		/* No match - a current sched domain not in new doms_new[] */
2730 		detach_destroy_domains(doms_cur[i]);
2731 match1:
2732 		;
2733 	}
2734 
2735 	n = ndoms_cur;
2736 	if (!doms_new) {
2737 		n = 0;
2738 		doms_new = &fallback_doms;
2739 		cpumask_and(doms_new[0], cpu_active_mask,
2740 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2741 	}
2742 
2743 	/* Build new domains: */
2744 	for (i = 0; i < ndoms_new; i++) {
2745 		for (j = 0; j < n && !new_topology; j++) {
2746 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2747 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2748 				goto match2;
2749 		}
2750 		/* No match - add a new doms_new */
2751 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2752 match2:
2753 		;
2754 	}
2755 
2756 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2757 	/* Build perf. domains: */
2758 	for (i = 0; i < ndoms_new; i++) {
2759 		for (j = 0; j < n && !sched_energy_update; j++) {
2760 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2761 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2762 				has_eas = true;
2763 				goto match3;
2764 			}
2765 		}
2766 		/* No match - add perf. domains for a new rd */
2767 		has_eas |= build_perf_domains(doms_new[i]);
2768 match3:
2769 		;
2770 	}
2771 	sched_energy_set(has_eas);
2772 #endif
2773 
2774 	/* Remember the new sched domains: */
2775 	if (doms_cur != &fallback_doms)
2776 		free_sched_domains(doms_cur, ndoms_cur);
2777 
2778 	kfree(dattr_cur);
2779 	doms_cur = doms_new;
2780 	dattr_cur = dattr_new;
2781 	ndoms_cur = ndoms_new;
2782 
2783 	update_sched_domain_debugfs();
2784 }
2785 
2786 /*
2787  * Call with hotplug lock held
2788  */
2789 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2790 			     struct sched_domain_attr *dattr_new)
2791 {
2792 	mutex_lock(&sched_domains_mutex);
2793 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2794 	mutex_unlock(&sched_domains_mutex);
2795 }
2796