1 /* 2 * Scheduler topology setup/handling methods 3 */ 4 #include <linux/sched.h> 5 #include <linux/mutex.h> 6 7 #include "sched.h" 8 9 DEFINE_MUTEX(sched_domains_mutex); 10 11 /* Protected by sched_domains_mutex: */ 12 cpumask_var_t sched_domains_tmpmask; 13 cpumask_var_t sched_domains_tmpmask2; 14 15 #ifdef CONFIG_SCHED_DEBUG 16 17 static __read_mostly int sched_debug_enabled; 18 19 static int __init sched_debug_setup(char *str) 20 { 21 sched_debug_enabled = 1; 22 23 return 0; 24 } 25 early_param("sched_debug", sched_debug_setup); 26 27 static inline bool sched_debug(void) 28 { 29 return sched_debug_enabled; 30 } 31 32 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 33 struct cpumask *groupmask) 34 { 35 struct sched_group *group = sd->groups; 36 37 cpumask_clear(groupmask); 38 39 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 40 41 if (!(sd->flags & SD_LOAD_BALANCE)) { 42 printk("does not load-balance\n"); 43 if (sd->parent) 44 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 45 " has parent"); 46 return -1; 47 } 48 49 printk(KERN_CONT "span=%*pbl level=%s\n", 50 cpumask_pr_args(sched_domain_span(sd)), sd->name); 51 52 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 53 printk(KERN_ERR "ERROR: domain->span does not contain " 54 "CPU%d\n", cpu); 55 } 56 if (!cpumask_test_cpu(cpu, sched_group_span(group))) { 57 printk(KERN_ERR "ERROR: domain->groups does not contain" 58 " CPU%d\n", cpu); 59 } 60 61 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 62 do { 63 if (!group) { 64 printk("\n"); 65 printk(KERN_ERR "ERROR: group is NULL\n"); 66 break; 67 } 68 69 if (!cpumask_weight(sched_group_span(group))) { 70 printk(KERN_CONT "\n"); 71 printk(KERN_ERR "ERROR: empty group\n"); 72 break; 73 } 74 75 if (!(sd->flags & SD_OVERLAP) && 76 cpumask_intersects(groupmask, sched_group_span(group))) { 77 printk(KERN_CONT "\n"); 78 printk(KERN_ERR "ERROR: repeated CPUs\n"); 79 break; 80 } 81 82 cpumask_or(groupmask, groupmask, sched_group_span(group)); 83 84 printk(KERN_CONT " %d:{ span=%*pbl", 85 group->sgc->id, 86 cpumask_pr_args(sched_group_span(group))); 87 88 if ((sd->flags & SD_OVERLAP) && 89 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 90 printk(KERN_CONT " mask=%*pbl", 91 cpumask_pr_args(group_balance_mask(group))); 92 } 93 94 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 95 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 96 97 if (group == sd->groups && sd->child && 98 !cpumask_equal(sched_domain_span(sd->child), 99 sched_group_span(group))) { 100 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 101 } 102 103 printk(KERN_CONT " }"); 104 105 group = group->next; 106 107 if (group != sd->groups) 108 printk(KERN_CONT ","); 109 110 } while (group != sd->groups); 111 printk(KERN_CONT "\n"); 112 113 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 114 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 115 116 if (sd->parent && 117 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 118 printk(KERN_ERR "ERROR: parent span is not a superset " 119 "of domain->span\n"); 120 return 0; 121 } 122 123 static void sched_domain_debug(struct sched_domain *sd, int cpu) 124 { 125 int level = 0; 126 127 if (!sched_debug_enabled) 128 return; 129 130 if (!sd) { 131 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 132 return; 133 } 134 135 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 136 137 for (;;) { 138 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 139 break; 140 level++; 141 sd = sd->parent; 142 if (!sd) 143 break; 144 } 145 } 146 #else /* !CONFIG_SCHED_DEBUG */ 147 148 # define sched_debug_enabled 0 149 # define sched_domain_debug(sd, cpu) do { } while (0) 150 static inline bool sched_debug(void) 151 { 152 return false; 153 } 154 #endif /* CONFIG_SCHED_DEBUG */ 155 156 static int sd_degenerate(struct sched_domain *sd) 157 { 158 if (cpumask_weight(sched_domain_span(sd)) == 1) 159 return 1; 160 161 /* Following flags need at least 2 groups */ 162 if (sd->flags & (SD_LOAD_BALANCE | 163 SD_BALANCE_NEWIDLE | 164 SD_BALANCE_FORK | 165 SD_BALANCE_EXEC | 166 SD_SHARE_CPUCAPACITY | 167 SD_ASYM_CPUCAPACITY | 168 SD_SHARE_PKG_RESOURCES | 169 SD_SHARE_POWERDOMAIN)) { 170 if (sd->groups != sd->groups->next) 171 return 0; 172 } 173 174 /* Following flags don't use groups */ 175 if (sd->flags & (SD_WAKE_AFFINE)) 176 return 0; 177 178 return 1; 179 } 180 181 static int 182 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 183 { 184 unsigned long cflags = sd->flags, pflags = parent->flags; 185 186 if (sd_degenerate(parent)) 187 return 1; 188 189 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 190 return 0; 191 192 /* Flags needing groups don't count if only 1 group in parent */ 193 if (parent->groups == parent->groups->next) { 194 pflags &= ~(SD_LOAD_BALANCE | 195 SD_BALANCE_NEWIDLE | 196 SD_BALANCE_FORK | 197 SD_BALANCE_EXEC | 198 SD_ASYM_CPUCAPACITY | 199 SD_SHARE_CPUCAPACITY | 200 SD_SHARE_PKG_RESOURCES | 201 SD_PREFER_SIBLING | 202 SD_SHARE_POWERDOMAIN); 203 if (nr_node_ids == 1) 204 pflags &= ~SD_SERIALIZE; 205 } 206 if (~cflags & pflags) 207 return 0; 208 209 return 1; 210 } 211 212 static void free_rootdomain(struct rcu_head *rcu) 213 { 214 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 215 216 cpupri_cleanup(&rd->cpupri); 217 cpudl_cleanup(&rd->cpudl); 218 free_cpumask_var(rd->dlo_mask); 219 free_cpumask_var(rd->rto_mask); 220 free_cpumask_var(rd->online); 221 free_cpumask_var(rd->span); 222 kfree(rd); 223 } 224 225 void rq_attach_root(struct rq *rq, struct root_domain *rd) 226 { 227 struct root_domain *old_rd = NULL; 228 unsigned long flags; 229 230 raw_spin_lock_irqsave(&rq->lock, flags); 231 232 if (rq->rd) { 233 old_rd = rq->rd; 234 235 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 236 set_rq_offline(rq); 237 238 cpumask_clear_cpu(rq->cpu, old_rd->span); 239 240 /* 241 * If we dont want to free the old_rd yet then 242 * set old_rd to NULL to skip the freeing later 243 * in this function: 244 */ 245 if (!atomic_dec_and_test(&old_rd->refcount)) 246 old_rd = NULL; 247 } 248 249 atomic_inc(&rd->refcount); 250 rq->rd = rd; 251 252 cpumask_set_cpu(rq->cpu, rd->span); 253 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 254 set_rq_online(rq); 255 256 raw_spin_unlock_irqrestore(&rq->lock, flags); 257 258 if (old_rd) 259 call_rcu_sched(&old_rd->rcu, free_rootdomain); 260 } 261 262 static int init_rootdomain(struct root_domain *rd) 263 { 264 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 265 goto out; 266 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 267 goto free_span; 268 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 269 goto free_online; 270 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 271 goto free_dlo_mask; 272 273 init_dl_bw(&rd->dl_bw); 274 if (cpudl_init(&rd->cpudl) != 0) 275 goto free_rto_mask; 276 277 if (cpupri_init(&rd->cpupri) != 0) 278 goto free_cpudl; 279 return 0; 280 281 free_cpudl: 282 cpudl_cleanup(&rd->cpudl); 283 free_rto_mask: 284 free_cpumask_var(rd->rto_mask); 285 free_dlo_mask: 286 free_cpumask_var(rd->dlo_mask); 287 free_online: 288 free_cpumask_var(rd->online); 289 free_span: 290 free_cpumask_var(rd->span); 291 out: 292 return -ENOMEM; 293 } 294 295 /* 296 * By default the system creates a single root-domain with all CPUs as 297 * members (mimicking the global state we have today). 298 */ 299 struct root_domain def_root_domain; 300 301 void init_defrootdomain(void) 302 { 303 init_rootdomain(&def_root_domain); 304 305 atomic_set(&def_root_domain.refcount, 1); 306 } 307 308 static struct root_domain *alloc_rootdomain(void) 309 { 310 struct root_domain *rd; 311 312 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 313 if (!rd) 314 return NULL; 315 316 if (init_rootdomain(rd) != 0) { 317 kfree(rd); 318 return NULL; 319 } 320 321 return rd; 322 } 323 324 static void free_sched_groups(struct sched_group *sg, int free_sgc) 325 { 326 struct sched_group *tmp, *first; 327 328 if (!sg) 329 return; 330 331 first = sg; 332 do { 333 tmp = sg->next; 334 335 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 336 kfree(sg->sgc); 337 338 if (atomic_dec_and_test(&sg->ref)) 339 kfree(sg); 340 sg = tmp; 341 } while (sg != first); 342 } 343 344 static void destroy_sched_domain(struct sched_domain *sd) 345 { 346 /* 347 * A normal sched domain may have multiple group references, an 348 * overlapping domain, having private groups, only one. Iterate, 349 * dropping group/capacity references, freeing where none remain. 350 */ 351 free_sched_groups(sd->groups, 1); 352 353 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 354 kfree(sd->shared); 355 kfree(sd); 356 } 357 358 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 359 { 360 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 361 362 while (sd) { 363 struct sched_domain *parent = sd->parent; 364 destroy_sched_domain(sd); 365 sd = parent; 366 } 367 } 368 369 static void destroy_sched_domains(struct sched_domain *sd) 370 { 371 if (sd) 372 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 373 } 374 375 /* 376 * Keep a special pointer to the highest sched_domain that has 377 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 378 * allows us to avoid some pointer chasing select_idle_sibling(). 379 * 380 * Also keep a unique ID per domain (we use the first CPU number in 381 * the cpumask of the domain), this allows us to quickly tell if 382 * two CPUs are in the same cache domain, see cpus_share_cache(). 383 */ 384 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 385 DEFINE_PER_CPU(int, sd_llc_size); 386 DEFINE_PER_CPU(int, sd_llc_id); 387 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); 388 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 389 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 390 391 static void update_top_cache_domain(int cpu) 392 { 393 struct sched_domain_shared *sds = NULL; 394 struct sched_domain *sd; 395 int id = cpu; 396 int size = 1; 397 398 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 399 if (sd) { 400 id = cpumask_first(sched_domain_span(sd)); 401 size = cpumask_weight(sched_domain_span(sd)); 402 sds = sd->shared; 403 } 404 405 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 406 per_cpu(sd_llc_size, cpu) = size; 407 per_cpu(sd_llc_id, cpu) = id; 408 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 409 410 sd = lowest_flag_domain(cpu, SD_NUMA); 411 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 412 413 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 414 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 415 } 416 417 /* 418 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 419 * hold the hotplug lock. 420 */ 421 static void 422 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 423 { 424 struct rq *rq = cpu_rq(cpu); 425 struct sched_domain *tmp; 426 427 /* Remove the sched domains which do not contribute to scheduling. */ 428 for (tmp = sd; tmp; ) { 429 struct sched_domain *parent = tmp->parent; 430 if (!parent) 431 break; 432 433 if (sd_parent_degenerate(tmp, parent)) { 434 tmp->parent = parent->parent; 435 if (parent->parent) 436 parent->parent->child = tmp; 437 /* 438 * Transfer SD_PREFER_SIBLING down in case of a 439 * degenerate parent; the spans match for this 440 * so the property transfers. 441 */ 442 if (parent->flags & SD_PREFER_SIBLING) 443 tmp->flags |= SD_PREFER_SIBLING; 444 destroy_sched_domain(parent); 445 } else 446 tmp = tmp->parent; 447 } 448 449 if (sd && sd_degenerate(sd)) { 450 tmp = sd; 451 sd = sd->parent; 452 destroy_sched_domain(tmp); 453 if (sd) 454 sd->child = NULL; 455 } 456 457 sched_domain_debug(sd, cpu); 458 459 rq_attach_root(rq, rd); 460 tmp = rq->sd; 461 rcu_assign_pointer(rq->sd, sd); 462 dirty_sched_domain_sysctl(cpu); 463 destroy_sched_domains(tmp); 464 465 update_top_cache_domain(cpu); 466 } 467 468 /* Setup the mask of CPUs configured for isolated domains */ 469 static int __init isolated_cpu_setup(char *str) 470 { 471 int ret; 472 473 alloc_bootmem_cpumask_var(&cpu_isolated_map); 474 ret = cpulist_parse(str, cpu_isolated_map); 475 if (ret) { 476 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids); 477 return 0; 478 } 479 return 1; 480 } 481 __setup("isolcpus=", isolated_cpu_setup); 482 483 struct s_data { 484 struct sched_domain ** __percpu sd; 485 struct root_domain *rd; 486 }; 487 488 enum s_alloc { 489 sa_rootdomain, 490 sa_sd, 491 sa_sd_storage, 492 sa_none, 493 }; 494 495 /* 496 * Return the canonical balance CPU for this group, this is the first CPU 497 * of this group that's also in the balance mask. 498 * 499 * The balance mask are all those CPUs that could actually end up at this 500 * group. See build_balance_mask(). 501 * 502 * Also see should_we_balance(). 503 */ 504 int group_balance_cpu(struct sched_group *sg) 505 { 506 return cpumask_first(group_balance_mask(sg)); 507 } 508 509 510 /* 511 * NUMA topology (first read the regular topology blurb below) 512 * 513 * Given a node-distance table, for example: 514 * 515 * node 0 1 2 3 516 * 0: 10 20 30 20 517 * 1: 20 10 20 30 518 * 2: 30 20 10 20 519 * 3: 20 30 20 10 520 * 521 * which represents a 4 node ring topology like: 522 * 523 * 0 ----- 1 524 * | | 525 * | | 526 * | | 527 * 3 ----- 2 528 * 529 * We want to construct domains and groups to represent this. The way we go 530 * about doing this is to build the domains on 'hops'. For each NUMA level we 531 * construct the mask of all nodes reachable in @level hops. 532 * 533 * For the above NUMA topology that gives 3 levels: 534 * 535 * NUMA-2 0-3 0-3 0-3 0-3 536 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 537 * 538 * NUMA-1 0-1,3 0-2 1-3 0,2-3 539 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 540 * 541 * NUMA-0 0 1 2 3 542 * 543 * 544 * As can be seen; things don't nicely line up as with the regular topology. 545 * When we iterate a domain in child domain chunks some nodes can be 546 * represented multiple times -- hence the "overlap" naming for this part of 547 * the topology. 548 * 549 * In order to minimize this overlap, we only build enough groups to cover the 550 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 551 * 552 * Because: 553 * 554 * - the first group of each domain is its child domain; this 555 * gets us the first 0-1,3 556 * - the only uncovered node is 2, who's child domain is 1-3. 557 * 558 * However, because of the overlap, computing a unique CPU for each group is 559 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 560 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 561 * end up at those groups (they would end up in group: 0-1,3). 562 * 563 * To correct this we have to introduce the group balance mask. This mask 564 * will contain those CPUs in the group that can reach this group given the 565 * (child) domain tree. 566 * 567 * With this we can once again compute balance_cpu and sched_group_capacity 568 * relations. 569 * 570 * XXX include words on how balance_cpu is unique and therefore can be 571 * used for sched_group_capacity links. 572 * 573 * 574 * Another 'interesting' topology is: 575 * 576 * node 0 1 2 3 577 * 0: 10 20 20 30 578 * 1: 20 10 20 20 579 * 2: 20 20 10 20 580 * 3: 30 20 20 10 581 * 582 * Which looks a little like: 583 * 584 * 0 ----- 1 585 * | / | 586 * | / | 587 * | / | 588 * 2 ----- 3 589 * 590 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 591 * are not. 592 * 593 * This leads to a few particularly weird cases where the sched_domain's are 594 * not of the same number for each cpu. Consider: 595 * 596 * NUMA-2 0-3 0-3 597 * groups: {0-2},{1-3} {1-3},{0-2} 598 * 599 * NUMA-1 0-2 0-3 0-3 1-3 600 * 601 * NUMA-0 0 1 2 3 602 * 603 */ 604 605 606 /* 607 * Build the balance mask; it contains only those CPUs that can arrive at this 608 * group and should be considered to continue balancing. 609 * 610 * We do this during the group creation pass, therefore the group information 611 * isn't complete yet, however since each group represents a (child) domain we 612 * can fully construct this using the sched_domain bits (which are already 613 * complete). 614 */ 615 static void 616 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 617 { 618 const struct cpumask *sg_span = sched_group_span(sg); 619 struct sd_data *sdd = sd->private; 620 struct sched_domain *sibling; 621 int i; 622 623 cpumask_clear(mask); 624 625 for_each_cpu(i, sg_span) { 626 sibling = *per_cpu_ptr(sdd->sd, i); 627 628 /* 629 * Can happen in the asymmetric case, where these siblings are 630 * unused. The mask will not be empty because those CPUs that 631 * do have the top domain _should_ span the domain. 632 */ 633 if (!sibling->child) 634 continue; 635 636 /* If we would not end up here, we can't continue from here */ 637 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 638 continue; 639 640 cpumask_set_cpu(i, mask); 641 } 642 643 /* We must not have empty masks here */ 644 WARN_ON_ONCE(cpumask_empty(mask)); 645 } 646 647 /* 648 * XXX: This creates per-node group entries; since the load-balancer will 649 * immediately access remote memory to construct this group's load-balance 650 * statistics having the groups node local is of dubious benefit. 651 */ 652 static struct sched_group * 653 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 654 { 655 struct sched_group *sg; 656 struct cpumask *sg_span; 657 658 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 659 GFP_KERNEL, cpu_to_node(cpu)); 660 661 if (!sg) 662 return NULL; 663 664 sg_span = sched_group_span(sg); 665 if (sd->child) 666 cpumask_copy(sg_span, sched_domain_span(sd->child)); 667 else 668 cpumask_copy(sg_span, sched_domain_span(sd)); 669 670 atomic_inc(&sg->ref); 671 return sg; 672 } 673 674 static void init_overlap_sched_group(struct sched_domain *sd, 675 struct sched_group *sg) 676 { 677 struct cpumask *mask = sched_domains_tmpmask2; 678 struct sd_data *sdd = sd->private; 679 struct cpumask *sg_span; 680 int cpu; 681 682 build_balance_mask(sd, sg, mask); 683 cpu = cpumask_first_and(sched_group_span(sg), mask); 684 685 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 686 if (atomic_inc_return(&sg->sgc->ref) == 1) 687 cpumask_copy(group_balance_mask(sg), mask); 688 else 689 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 690 691 /* 692 * Initialize sgc->capacity such that even if we mess up the 693 * domains and no possible iteration will get us here, we won't 694 * die on a /0 trap. 695 */ 696 sg_span = sched_group_span(sg); 697 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 698 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 699 } 700 701 static int 702 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 703 { 704 struct sched_group *first = NULL, *last = NULL, *sg; 705 const struct cpumask *span = sched_domain_span(sd); 706 struct cpumask *covered = sched_domains_tmpmask; 707 struct sd_data *sdd = sd->private; 708 struct sched_domain *sibling; 709 int i; 710 711 cpumask_clear(covered); 712 713 for_each_cpu_wrap(i, span, cpu) { 714 struct cpumask *sg_span; 715 716 if (cpumask_test_cpu(i, covered)) 717 continue; 718 719 sibling = *per_cpu_ptr(sdd->sd, i); 720 721 /* 722 * Asymmetric node setups can result in situations where the 723 * domain tree is of unequal depth, make sure to skip domains 724 * that already cover the entire range. 725 * 726 * In that case build_sched_domains() will have terminated the 727 * iteration early and our sibling sd spans will be empty. 728 * Domains should always include the CPU they're built on, so 729 * check that. 730 */ 731 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 732 continue; 733 734 sg = build_group_from_child_sched_domain(sibling, cpu); 735 if (!sg) 736 goto fail; 737 738 sg_span = sched_group_span(sg); 739 cpumask_or(covered, covered, sg_span); 740 741 init_overlap_sched_group(sd, sg); 742 743 if (!first) 744 first = sg; 745 if (last) 746 last->next = sg; 747 last = sg; 748 last->next = first; 749 } 750 sd->groups = first; 751 752 return 0; 753 754 fail: 755 free_sched_groups(first, 0); 756 757 return -ENOMEM; 758 } 759 760 761 /* 762 * Package topology (also see the load-balance blurb in fair.c) 763 * 764 * The scheduler builds a tree structure to represent a number of important 765 * topology features. By default (default_topology[]) these include: 766 * 767 * - Simultaneous multithreading (SMT) 768 * - Multi-Core Cache (MC) 769 * - Package (DIE) 770 * 771 * Where the last one more or less denotes everything up to a NUMA node. 772 * 773 * The tree consists of 3 primary data structures: 774 * 775 * sched_domain -> sched_group -> sched_group_capacity 776 * ^ ^ ^ ^ 777 * `-' `-' 778 * 779 * The sched_domains are per-cpu and have a two way link (parent & child) and 780 * denote the ever growing mask of CPUs belonging to that level of topology. 781 * 782 * Each sched_domain has a circular (double) linked list of sched_group's, each 783 * denoting the domains of the level below (or individual CPUs in case of the 784 * first domain level). The sched_group linked by a sched_domain includes the 785 * CPU of that sched_domain [*]. 786 * 787 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 788 * 789 * CPU 0 1 2 3 4 5 6 7 790 * 791 * DIE [ ] 792 * MC [ ] [ ] 793 * SMT [ ] [ ] [ ] [ ] 794 * 795 * - or - 796 * 797 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 798 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 799 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 800 * 801 * CPU 0 1 2 3 4 5 6 7 802 * 803 * One way to think about it is: sched_domain moves you up and down among these 804 * topology levels, while sched_group moves you sideways through it, at child 805 * domain granularity. 806 * 807 * sched_group_capacity ensures each unique sched_group has shared storage. 808 * 809 * There are two related construction problems, both require a CPU that 810 * uniquely identify each group (for a given domain): 811 * 812 * - The first is the balance_cpu (see should_we_balance() and the 813 * load-balance blub in fair.c); for each group we only want 1 CPU to 814 * continue balancing at a higher domain. 815 * 816 * - The second is the sched_group_capacity; we want all identical groups 817 * to share a single sched_group_capacity. 818 * 819 * Since these topologies are exclusive by construction. That is, its 820 * impossible for an SMT thread to belong to multiple cores, and cores to 821 * be part of multiple caches. There is a very clear and unique location 822 * for each CPU in the hierarchy. 823 * 824 * Therefore computing a unique CPU for each group is trivial (the iteration 825 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 826 * group), we can simply pick the first CPU in each group. 827 * 828 * 829 * [*] in other words, the first group of each domain is its child domain. 830 */ 831 832 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 833 { 834 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 835 struct sched_domain *child = sd->child; 836 struct sched_group *sg; 837 838 if (child) 839 cpu = cpumask_first(sched_domain_span(child)); 840 841 sg = *per_cpu_ptr(sdd->sg, cpu); 842 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 843 844 /* For claim_allocations: */ 845 atomic_inc(&sg->ref); 846 atomic_inc(&sg->sgc->ref); 847 848 if (child) { 849 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 850 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 851 } else { 852 cpumask_set_cpu(cpu, sched_group_span(sg)); 853 cpumask_set_cpu(cpu, group_balance_mask(sg)); 854 } 855 856 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 857 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 858 859 return sg; 860 } 861 862 /* 863 * build_sched_groups will build a circular linked list of the groups 864 * covered by the given span, and will set each group's ->cpumask correctly, 865 * and ->cpu_capacity to 0. 866 * 867 * Assumes the sched_domain tree is fully constructed 868 */ 869 static int 870 build_sched_groups(struct sched_domain *sd, int cpu) 871 { 872 struct sched_group *first = NULL, *last = NULL; 873 struct sd_data *sdd = sd->private; 874 const struct cpumask *span = sched_domain_span(sd); 875 struct cpumask *covered; 876 int i; 877 878 lockdep_assert_held(&sched_domains_mutex); 879 covered = sched_domains_tmpmask; 880 881 cpumask_clear(covered); 882 883 for_each_cpu_wrap(i, span, cpu) { 884 struct sched_group *sg; 885 886 if (cpumask_test_cpu(i, covered)) 887 continue; 888 889 sg = get_group(i, sdd); 890 891 cpumask_or(covered, covered, sched_group_span(sg)); 892 893 if (!first) 894 first = sg; 895 if (last) 896 last->next = sg; 897 last = sg; 898 } 899 last->next = first; 900 sd->groups = first; 901 902 return 0; 903 } 904 905 /* 906 * Initialize sched groups cpu_capacity. 907 * 908 * cpu_capacity indicates the capacity of sched group, which is used while 909 * distributing the load between different sched groups in a sched domain. 910 * Typically cpu_capacity for all the groups in a sched domain will be same 911 * unless there are asymmetries in the topology. If there are asymmetries, 912 * group having more cpu_capacity will pickup more load compared to the 913 * group having less cpu_capacity. 914 */ 915 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 916 { 917 struct sched_group *sg = sd->groups; 918 919 WARN_ON(!sg); 920 921 do { 922 int cpu, max_cpu = -1; 923 924 sg->group_weight = cpumask_weight(sched_group_span(sg)); 925 926 if (!(sd->flags & SD_ASYM_PACKING)) 927 goto next; 928 929 for_each_cpu(cpu, sched_group_span(sg)) { 930 if (max_cpu < 0) 931 max_cpu = cpu; 932 else if (sched_asym_prefer(cpu, max_cpu)) 933 max_cpu = cpu; 934 } 935 sg->asym_prefer_cpu = max_cpu; 936 937 next: 938 sg = sg->next; 939 } while (sg != sd->groups); 940 941 if (cpu != group_balance_cpu(sg)) 942 return; 943 944 update_group_capacity(sd, cpu); 945 } 946 947 /* 948 * Initializers for schedule domains 949 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 950 */ 951 952 static int default_relax_domain_level = -1; 953 int sched_domain_level_max; 954 955 static int __init setup_relax_domain_level(char *str) 956 { 957 if (kstrtoint(str, 0, &default_relax_domain_level)) 958 pr_warn("Unable to set relax_domain_level\n"); 959 960 return 1; 961 } 962 __setup("relax_domain_level=", setup_relax_domain_level); 963 964 static void set_domain_attribute(struct sched_domain *sd, 965 struct sched_domain_attr *attr) 966 { 967 int request; 968 969 if (!attr || attr->relax_domain_level < 0) { 970 if (default_relax_domain_level < 0) 971 return; 972 else 973 request = default_relax_domain_level; 974 } else 975 request = attr->relax_domain_level; 976 if (request < sd->level) { 977 /* Turn off idle balance on this domain: */ 978 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 979 } else { 980 /* Turn on idle balance on this domain: */ 981 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 982 } 983 } 984 985 static void __sdt_free(const struct cpumask *cpu_map); 986 static int __sdt_alloc(const struct cpumask *cpu_map); 987 988 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 989 const struct cpumask *cpu_map) 990 { 991 switch (what) { 992 case sa_rootdomain: 993 if (!atomic_read(&d->rd->refcount)) 994 free_rootdomain(&d->rd->rcu); 995 /* Fall through */ 996 case sa_sd: 997 free_percpu(d->sd); 998 /* Fall through */ 999 case sa_sd_storage: 1000 __sdt_free(cpu_map); 1001 /* Fall through */ 1002 case sa_none: 1003 break; 1004 } 1005 } 1006 1007 static enum s_alloc 1008 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1009 { 1010 memset(d, 0, sizeof(*d)); 1011 1012 if (__sdt_alloc(cpu_map)) 1013 return sa_sd_storage; 1014 d->sd = alloc_percpu(struct sched_domain *); 1015 if (!d->sd) 1016 return sa_sd_storage; 1017 d->rd = alloc_rootdomain(); 1018 if (!d->rd) 1019 return sa_sd; 1020 return sa_rootdomain; 1021 } 1022 1023 /* 1024 * NULL the sd_data elements we've used to build the sched_domain and 1025 * sched_group structure so that the subsequent __free_domain_allocs() 1026 * will not free the data we're using. 1027 */ 1028 static void claim_allocations(int cpu, struct sched_domain *sd) 1029 { 1030 struct sd_data *sdd = sd->private; 1031 1032 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1033 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1034 1035 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1036 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1037 1038 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1039 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1040 1041 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1042 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1043 } 1044 1045 #ifdef CONFIG_NUMA 1046 static int sched_domains_numa_levels; 1047 enum numa_topology_type sched_numa_topology_type; 1048 static int *sched_domains_numa_distance; 1049 int sched_max_numa_distance; 1050 static struct cpumask ***sched_domains_numa_masks; 1051 static int sched_domains_curr_level; 1052 #endif 1053 1054 /* 1055 * SD_flags allowed in topology descriptions. 1056 * 1057 * These flags are purely descriptive of the topology and do not prescribe 1058 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1059 * function: 1060 * 1061 * SD_SHARE_CPUCAPACITY - describes SMT topologies 1062 * SD_SHARE_PKG_RESOURCES - describes shared caches 1063 * SD_NUMA - describes NUMA topologies 1064 * SD_SHARE_POWERDOMAIN - describes shared power domain 1065 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies 1066 * 1067 * Odd one out, which beside describing the topology has a quirk also 1068 * prescribes the desired behaviour that goes along with it: 1069 * 1070 * SD_ASYM_PACKING - describes SMT quirks 1071 */ 1072 #define TOPOLOGY_SD_FLAGS \ 1073 (SD_SHARE_CPUCAPACITY | \ 1074 SD_SHARE_PKG_RESOURCES | \ 1075 SD_NUMA | \ 1076 SD_ASYM_PACKING | \ 1077 SD_ASYM_CPUCAPACITY | \ 1078 SD_SHARE_POWERDOMAIN) 1079 1080 static struct sched_domain * 1081 sd_init(struct sched_domain_topology_level *tl, 1082 const struct cpumask *cpu_map, 1083 struct sched_domain *child, int cpu) 1084 { 1085 struct sd_data *sdd = &tl->data; 1086 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1087 int sd_id, sd_weight, sd_flags = 0; 1088 1089 #ifdef CONFIG_NUMA 1090 /* 1091 * Ugly hack to pass state to sd_numa_mask()... 1092 */ 1093 sched_domains_curr_level = tl->numa_level; 1094 #endif 1095 1096 sd_weight = cpumask_weight(tl->mask(cpu)); 1097 1098 if (tl->sd_flags) 1099 sd_flags = (*tl->sd_flags)(); 1100 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1101 "wrong sd_flags in topology description\n")) 1102 sd_flags &= ~TOPOLOGY_SD_FLAGS; 1103 1104 *sd = (struct sched_domain){ 1105 .min_interval = sd_weight, 1106 .max_interval = 2*sd_weight, 1107 .busy_factor = 32, 1108 .imbalance_pct = 125, 1109 1110 .cache_nice_tries = 0, 1111 .busy_idx = 0, 1112 .idle_idx = 0, 1113 .newidle_idx = 0, 1114 .wake_idx = 0, 1115 .forkexec_idx = 0, 1116 1117 .flags = 1*SD_LOAD_BALANCE 1118 | 1*SD_BALANCE_NEWIDLE 1119 | 1*SD_BALANCE_EXEC 1120 | 1*SD_BALANCE_FORK 1121 | 0*SD_BALANCE_WAKE 1122 | 1*SD_WAKE_AFFINE 1123 | 0*SD_SHARE_CPUCAPACITY 1124 | 0*SD_SHARE_PKG_RESOURCES 1125 | 0*SD_SERIALIZE 1126 | 0*SD_PREFER_SIBLING 1127 | 0*SD_NUMA 1128 | sd_flags 1129 , 1130 1131 .last_balance = jiffies, 1132 .balance_interval = sd_weight, 1133 .smt_gain = 0, 1134 .max_newidle_lb_cost = 0, 1135 .next_decay_max_lb_cost = jiffies, 1136 .child = child, 1137 #ifdef CONFIG_SCHED_DEBUG 1138 .name = tl->name, 1139 #endif 1140 }; 1141 1142 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1143 sd_id = cpumask_first(sched_domain_span(sd)); 1144 1145 /* 1146 * Convert topological properties into behaviour. 1147 */ 1148 1149 if (sd->flags & SD_ASYM_CPUCAPACITY) { 1150 struct sched_domain *t = sd; 1151 1152 for_each_lower_domain(t) 1153 t->flags |= SD_BALANCE_WAKE; 1154 } 1155 1156 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1157 sd->flags |= SD_PREFER_SIBLING; 1158 sd->imbalance_pct = 110; 1159 sd->smt_gain = 1178; /* ~15% */ 1160 1161 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1162 sd->imbalance_pct = 117; 1163 sd->cache_nice_tries = 1; 1164 sd->busy_idx = 2; 1165 1166 #ifdef CONFIG_NUMA 1167 } else if (sd->flags & SD_NUMA) { 1168 sd->cache_nice_tries = 2; 1169 sd->busy_idx = 3; 1170 sd->idle_idx = 2; 1171 1172 sd->flags |= SD_SERIALIZE; 1173 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 1174 sd->flags &= ~(SD_BALANCE_EXEC | 1175 SD_BALANCE_FORK | 1176 SD_WAKE_AFFINE); 1177 } 1178 1179 #endif 1180 } else { 1181 sd->flags |= SD_PREFER_SIBLING; 1182 sd->cache_nice_tries = 1; 1183 sd->busy_idx = 2; 1184 sd->idle_idx = 1; 1185 } 1186 1187 /* 1188 * For all levels sharing cache; connect a sched_domain_shared 1189 * instance. 1190 */ 1191 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1192 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1193 atomic_inc(&sd->shared->ref); 1194 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1195 } 1196 1197 sd->private = sdd; 1198 1199 return sd; 1200 } 1201 1202 /* 1203 * Topology list, bottom-up. 1204 */ 1205 static struct sched_domain_topology_level default_topology[] = { 1206 #ifdef CONFIG_SCHED_SMT 1207 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1208 #endif 1209 #ifdef CONFIG_SCHED_MC 1210 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1211 #endif 1212 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1213 { NULL, }, 1214 }; 1215 1216 static struct sched_domain_topology_level *sched_domain_topology = 1217 default_topology; 1218 1219 #define for_each_sd_topology(tl) \ 1220 for (tl = sched_domain_topology; tl->mask; tl++) 1221 1222 void set_sched_topology(struct sched_domain_topology_level *tl) 1223 { 1224 if (WARN_ON_ONCE(sched_smp_initialized)) 1225 return; 1226 1227 sched_domain_topology = tl; 1228 } 1229 1230 #ifdef CONFIG_NUMA 1231 1232 static const struct cpumask *sd_numa_mask(int cpu) 1233 { 1234 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1235 } 1236 1237 static void sched_numa_warn(const char *str) 1238 { 1239 static int done = false; 1240 int i,j; 1241 1242 if (done) 1243 return; 1244 1245 done = true; 1246 1247 printk(KERN_WARNING "ERROR: %s\n\n", str); 1248 1249 for (i = 0; i < nr_node_ids; i++) { 1250 printk(KERN_WARNING " "); 1251 for (j = 0; j < nr_node_ids; j++) 1252 printk(KERN_CONT "%02d ", node_distance(i,j)); 1253 printk(KERN_CONT "\n"); 1254 } 1255 printk(KERN_WARNING "\n"); 1256 } 1257 1258 bool find_numa_distance(int distance) 1259 { 1260 int i; 1261 1262 if (distance == node_distance(0, 0)) 1263 return true; 1264 1265 for (i = 0; i < sched_domains_numa_levels; i++) { 1266 if (sched_domains_numa_distance[i] == distance) 1267 return true; 1268 } 1269 1270 return false; 1271 } 1272 1273 /* 1274 * A system can have three types of NUMA topology: 1275 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1276 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1277 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1278 * 1279 * The difference between a glueless mesh topology and a backplane 1280 * topology lies in whether communication between not directly 1281 * connected nodes goes through intermediary nodes (where programs 1282 * could run), or through backplane controllers. This affects 1283 * placement of programs. 1284 * 1285 * The type of topology can be discerned with the following tests: 1286 * - If the maximum distance between any nodes is 1 hop, the system 1287 * is directly connected. 1288 * - If for two nodes A and B, located N > 1 hops away from each other, 1289 * there is an intermediary node C, which is < N hops away from both 1290 * nodes A and B, the system is a glueless mesh. 1291 */ 1292 static void init_numa_topology_type(void) 1293 { 1294 int a, b, c, n; 1295 1296 n = sched_max_numa_distance; 1297 1298 if (sched_domains_numa_levels <= 1) { 1299 sched_numa_topology_type = NUMA_DIRECT; 1300 return; 1301 } 1302 1303 for_each_online_node(a) { 1304 for_each_online_node(b) { 1305 /* Find two nodes furthest removed from each other. */ 1306 if (node_distance(a, b) < n) 1307 continue; 1308 1309 /* Is there an intermediary node between a and b? */ 1310 for_each_online_node(c) { 1311 if (node_distance(a, c) < n && 1312 node_distance(b, c) < n) { 1313 sched_numa_topology_type = 1314 NUMA_GLUELESS_MESH; 1315 return; 1316 } 1317 } 1318 1319 sched_numa_topology_type = NUMA_BACKPLANE; 1320 return; 1321 } 1322 } 1323 } 1324 1325 void sched_init_numa(void) 1326 { 1327 int next_distance, curr_distance = node_distance(0, 0); 1328 struct sched_domain_topology_level *tl; 1329 int level = 0; 1330 int i, j, k; 1331 1332 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 1333 if (!sched_domains_numa_distance) 1334 return; 1335 1336 /* 1337 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1338 * unique distances in the node_distance() table. 1339 * 1340 * Assumes node_distance(0,j) includes all distances in 1341 * node_distance(i,j) in order to avoid cubic time. 1342 */ 1343 next_distance = curr_distance; 1344 for (i = 0; i < nr_node_ids; i++) { 1345 for (j = 0; j < nr_node_ids; j++) { 1346 for (k = 0; k < nr_node_ids; k++) { 1347 int distance = node_distance(i, k); 1348 1349 if (distance > curr_distance && 1350 (distance < next_distance || 1351 next_distance == curr_distance)) 1352 next_distance = distance; 1353 1354 /* 1355 * While not a strong assumption it would be nice to know 1356 * about cases where if node A is connected to B, B is not 1357 * equally connected to A. 1358 */ 1359 if (sched_debug() && node_distance(k, i) != distance) 1360 sched_numa_warn("Node-distance not symmetric"); 1361 1362 if (sched_debug() && i && !find_numa_distance(distance)) 1363 sched_numa_warn("Node-0 not representative"); 1364 } 1365 if (next_distance != curr_distance) { 1366 sched_domains_numa_distance[level++] = next_distance; 1367 sched_domains_numa_levels = level; 1368 curr_distance = next_distance; 1369 } else break; 1370 } 1371 1372 /* 1373 * In case of sched_debug() we verify the above assumption. 1374 */ 1375 if (!sched_debug()) 1376 break; 1377 } 1378 1379 if (!level) 1380 return; 1381 1382 /* 1383 * 'level' contains the number of unique distances, excluding the 1384 * identity distance node_distance(i,i). 1385 * 1386 * The sched_domains_numa_distance[] array includes the actual distance 1387 * numbers. 1388 */ 1389 1390 /* 1391 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1392 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1393 * the array will contain less then 'level' members. This could be 1394 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1395 * in other functions. 1396 * 1397 * We reset it to 'level' at the end of this function. 1398 */ 1399 sched_domains_numa_levels = 0; 1400 1401 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1402 if (!sched_domains_numa_masks) 1403 return; 1404 1405 /* 1406 * Now for each level, construct a mask per node which contains all 1407 * CPUs of nodes that are that many hops away from us. 1408 */ 1409 for (i = 0; i < level; i++) { 1410 sched_domains_numa_masks[i] = 1411 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1412 if (!sched_domains_numa_masks[i]) 1413 return; 1414 1415 for (j = 0; j < nr_node_ids; j++) { 1416 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1417 if (!mask) 1418 return; 1419 1420 sched_domains_numa_masks[i][j] = mask; 1421 1422 for_each_node(k) { 1423 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1424 continue; 1425 1426 cpumask_or(mask, mask, cpumask_of_node(k)); 1427 } 1428 } 1429 } 1430 1431 /* Compute default topology size */ 1432 for (i = 0; sched_domain_topology[i].mask; i++); 1433 1434 tl = kzalloc((i + level + 1) * 1435 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1436 if (!tl) 1437 return; 1438 1439 /* 1440 * Copy the default topology bits.. 1441 */ 1442 for (i = 0; sched_domain_topology[i].mask; i++) 1443 tl[i] = sched_domain_topology[i]; 1444 1445 /* 1446 * .. and append 'j' levels of NUMA goodness. 1447 */ 1448 for (j = 0; j < level; i++, j++) { 1449 tl[i] = (struct sched_domain_topology_level){ 1450 .mask = sd_numa_mask, 1451 .sd_flags = cpu_numa_flags, 1452 .flags = SDTL_OVERLAP, 1453 .numa_level = j, 1454 SD_INIT_NAME(NUMA) 1455 }; 1456 } 1457 1458 sched_domain_topology = tl; 1459 1460 sched_domains_numa_levels = level; 1461 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1462 1463 init_numa_topology_type(); 1464 } 1465 1466 void sched_domains_numa_masks_set(unsigned int cpu) 1467 { 1468 int node = cpu_to_node(cpu); 1469 int i, j; 1470 1471 for (i = 0; i < sched_domains_numa_levels; i++) { 1472 for (j = 0; j < nr_node_ids; j++) { 1473 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1474 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1475 } 1476 } 1477 } 1478 1479 void sched_domains_numa_masks_clear(unsigned int cpu) 1480 { 1481 int i, j; 1482 1483 for (i = 0; i < sched_domains_numa_levels; i++) { 1484 for (j = 0; j < nr_node_ids; j++) 1485 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1486 } 1487 } 1488 1489 #endif /* CONFIG_NUMA */ 1490 1491 static int __sdt_alloc(const struct cpumask *cpu_map) 1492 { 1493 struct sched_domain_topology_level *tl; 1494 int j; 1495 1496 for_each_sd_topology(tl) { 1497 struct sd_data *sdd = &tl->data; 1498 1499 sdd->sd = alloc_percpu(struct sched_domain *); 1500 if (!sdd->sd) 1501 return -ENOMEM; 1502 1503 sdd->sds = alloc_percpu(struct sched_domain_shared *); 1504 if (!sdd->sds) 1505 return -ENOMEM; 1506 1507 sdd->sg = alloc_percpu(struct sched_group *); 1508 if (!sdd->sg) 1509 return -ENOMEM; 1510 1511 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1512 if (!sdd->sgc) 1513 return -ENOMEM; 1514 1515 for_each_cpu(j, cpu_map) { 1516 struct sched_domain *sd; 1517 struct sched_domain_shared *sds; 1518 struct sched_group *sg; 1519 struct sched_group_capacity *sgc; 1520 1521 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1522 GFP_KERNEL, cpu_to_node(j)); 1523 if (!sd) 1524 return -ENOMEM; 1525 1526 *per_cpu_ptr(sdd->sd, j) = sd; 1527 1528 sds = kzalloc_node(sizeof(struct sched_domain_shared), 1529 GFP_KERNEL, cpu_to_node(j)); 1530 if (!sds) 1531 return -ENOMEM; 1532 1533 *per_cpu_ptr(sdd->sds, j) = sds; 1534 1535 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1536 GFP_KERNEL, cpu_to_node(j)); 1537 if (!sg) 1538 return -ENOMEM; 1539 1540 sg->next = sg; 1541 1542 *per_cpu_ptr(sdd->sg, j) = sg; 1543 1544 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1545 GFP_KERNEL, cpu_to_node(j)); 1546 if (!sgc) 1547 return -ENOMEM; 1548 1549 #ifdef CONFIG_SCHED_DEBUG 1550 sgc->id = j; 1551 #endif 1552 1553 *per_cpu_ptr(sdd->sgc, j) = sgc; 1554 } 1555 } 1556 1557 return 0; 1558 } 1559 1560 static void __sdt_free(const struct cpumask *cpu_map) 1561 { 1562 struct sched_domain_topology_level *tl; 1563 int j; 1564 1565 for_each_sd_topology(tl) { 1566 struct sd_data *sdd = &tl->data; 1567 1568 for_each_cpu(j, cpu_map) { 1569 struct sched_domain *sd; 1570 1571 if (sdd->sd) { 1572 sd = *per_cpu_ptr(sdd->sd, j); 1573 if (sd && (sd->flags & SD_OVERLAP)) 1574 free_sched_groups(sd->groups, 0); 1575 kfree(*per_cpu_ptr(sdd->sd, j)); 1576 } 1577 1578 if (sdd->sds) 1579 kfree(*per_cpu_ptr(sdd->sds, j)); 1580 if (sdd->sg) 1581 kfree(*per_cpu_ptr(sdd->sg, j)); 1582 if (sdd->sgc) 1583 kfree(*per_cpu_ptr(sdd->sgc, j)); 1584 } 1585 free_percpu(sdd->sd); 1586 sdd->sd = NULL; 1587 free_percpu(sdd->sds); 1588 sdd->sds = NULL; 1589 free_percpu(sdd->sg); 1590 sdd->sg = NULL; 1591 free_percpu(sdd->sgc); 1592 sdd->sgc = NULL; 1593 } 1594 } 1595 1596 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1597 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 1598 struct sched_domain *child, int cpu) 1599 { 1600 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 1601 1602 if (child) { 1603 sd->level = child->level + 1; 1604 sched_domain_level_max = max(sched_domain_level_max, sd->level); 1605 child->parent = sd; 1606 1607 if (!cpumask_subset(sched_domain_span(child), 1608 sched_domain_span(sd))) { 1609 pr_err("BUG: arch topology borken\n"); 1610 #ifdef CONFIG_SCHED_DEBUG 1611 pr_err(" the %s domain not a subset of the %s domain\n", 1612 child->name, sd->name); 1613 #endif 1614 /* Fixup, ensure @sd has at least @child cpus. */ 1615 cpumask_or(sched_domain_span(sd), 1616 sched_domain_span(sd), 1617 sched_domain_span(child)); 1618 } 1619 1620 } 1621 set_domain_attribute(sd, attr); 1622 1623 return sd; 1624 } 1625 1626 /* 1627 * Build sched domains for a given set of CPUs and attach the sched domains 1628 * to the individual CPUs 1629 */ 1630 static int 1631 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1632 { 1633 enum s_alloc alloc_state; 1634 struct sched_domain *sd; 1635 struct s_data d; 1636 struct rq *rq = NULL; 1637 int i, ret = -ENOMEM; 1638 1639 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1640 if (alloc_state != sa_rootdomain) 1641 goto error; 1642 1643 /* Set up domains for CPUs specified by the cpu_map: */ 1644 for_each_cpu(i, cpu_map) { 1645 struct sched_domain_topology_level *tl; 1646 1647 sd = NULL; 1648 for_each_sd_topology(tl) { 1649 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 1650 if (tl == sched_domain_topology) 1651 *per_cpu_ptr(d.sd, i) = sd; 1652 if (tl->flags & SDTL_OVERLAP) 1653 sd->flags |= SD_OVERLAP; 1654 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 1655 break; 1656 } 1657 } 1658 1659 /* Build the groups for the domains */ 1660 for_each_cpu(i, cpu_map) { 1661 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1662 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 1663 if (sd->flags & SD_OVERLAP) { 1664 if (build_overlap_sched_groups(sd, i)) 1665 goto error; 1666 } else { 1667 if (build_sched_groups(sd, i)) 1668 goto error; 1669 } 1670 } 1671 } 1672 1673 /* Calculate CPU capacity for physical packages and nodes */ 1674 for (i = nr_cpumask_bits-1; i >= 0; i--) { 1675 if (!cpumask_test_cpu(i, cpu_map)) 1676 continue; 1677 1678 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1679 claim_allocations(i, sd); 1680 init_sched_groups_capacity(i, sd); 1681 } 1682 } 1683 1684 /* Attach the domains */ 1685 rcu_read_lock(); 1686 for_each_cpu(i, cpu_map) { 1687 rq = cpu_rq(i); 1688 sd = *per_cpu_ptr(d.sd, i); 1689 1690 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 1691 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 1692 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 1693 1694 cpu_attach_domain(sd, d.rd, i); 1695 } 1696 rcu_read_unlock(); 1697 1698 if (rq && sched_debug_enabled) { 1699 pr_info("span: %*pbl (max cpu_capacity = %lu)\n", 1700 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 1701 } 1702 1703 ret = 0; 1704 error: 1705 __free_domain_allocs(&d, alloc_state, cpu_map); 1706 return ret; 1707 } 1708 1709 /* Current sched domains: */ 1710 static cpumask_var_t *doms_cur; 1711 1712 /* Number of sched domains in 'doms_cur': */ 1713 static int ndoms_cur; 1714 1715 /* Attribues of custom domains in 'doms_cur' */ 1716 static struct sched_domain_attr *dattr_cur; 1717 1718 /* 1719 * Special case: If a kmalloc() of a doms_cur partition (array of 1720 * cpumask) fails, then fallback to a single sched domain, 1721 * as determined by the single cpumask fallback_doms. 1722 */ 1723 static cpumask_var_t fallback_doms; 1724 1725 /* 1726 * arch_update_cpu_topology lets virtualized architectures update the 1727 * CPU core maps. It is supposed to return 1 if the topology changed 1728 * or 0 if it stayed the same. 1729 */ 1730 int __weak arch_update_cpu_topology(void) 1731 { 1732 return 0; 1733 } 1734 1735 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 1736 { 1737 int i; 1738 cpumask_var_t *doms; 1739 1740 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 1741 if (!doms) 1742 return NULL; 1743 for (i = 0; i < ndoms; i++) { 1744 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 1745 free_sched_domains(doms, i); 1746 return NULL; 1747 } 1748 } 1749 return doms; 1750 } 1751 1752 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 1753 { 1754 unsigned int i; 1755 for (i = 0; i < ndoms; i++) 1756 free_cpumask_var(doms[i]); 1757 kfree(doms); 1758 } 1759 1760 /* 1761 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 1762 * For now this just excludes isolated CPUs, but could be used to 1763 * exclude other special cases in the future. 1764 */ 1765 int sched_init_domains(const struct cpumask *cpu_map) 1766 { 1767 int err; 1768 1769 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 1770 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 1771 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 1772 1773 arch_update_cpu_topology(); 1774 ndoms_cur = 1; 1775 doms_cur = alloc_sched_domains(ndoms_cur); 1776 if (!doms_cur) 1777 doms_cur = &fallback_doms; 1778 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 1779 err = build_sched_domains(doms_cur[0], NULL); 1780 register_sched_domain_sysctl(); 1781 1782 return err; 1783 } 1784 1785 /* 1786 * Detach sched domains from a group of CPUs specified in cpu_map 1787 * These CPUs will now be attached to the NULL domain 1788 */ 1789 static void detach_destroy_domains(const struct cpumask *cpu_map) 1790 { 1791 int i; 1792 1793 rcu_read_lock(); 1794 for_each_cpu(i, cpu_map) 1795 cpu_attach_domain(NULL, &def_root_domain, i); 1796 rcu_read_unlock(); 1797 } 1798 1799 /* handle null as "default" */ 1800 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 1801 struct sched_domain_attr *new, int idx_new) 1802 { 1803 struct sched_domain_attr tmp; 1804 1805 /* Fast path: */ 1806 if (!new && !cur) 1807 return 1; 1808 1809 tmp = SD_ATTR_INIT; 1810 return !memcmp(cur ? (cur + idx_cur) : &tmp, 1811 new ? (new + idx_new) : &tmp, 1812 sizeof(struct sched_domain_attr)); 1813 } 1814 1815 /* 1816 * Partition sched domains as specified by the 'ndoms_new' 1817 * cpumasks in the array doms_new[] of cpumasks. This compares 1818 * doms_new[] to the current sched domain partitioning, doms_cur[]. 1819 * It destroys each deleted domain and builds each new domain. 1820 * 1821 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 1822 * The masks don't intersect (don't overlap.) We should setup one 1823 * sched domain for each mask. CPUs not in any of the cpumasks will 1824 * not be load balanced. If the same cpumask appears both in the 1825 * current 'doms_cur' domains and in the new 'doms_new', we can leave 1826 * it as it is. 1827 * 1828 * The passed in 'doms_new' should be allocated using 1829 * alloc_sched_domains. This routine takes ownership of it and will 1830 * free_sched_domains it when done with it. If the caller failed the 1831 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 1832 * and partition_sched_domains() will fallback to the single partition 1833 * 'fallback_doms', it also forces the domains to be rebuilt. 1834 * 1835 * If doms_new == NULL it will be replaced with cpu_online_mask. 1836 * ndoms_new == 0 is a special case for destroying existing domains, 1837 * and it will not create the default domain. 1838 * 1839 * Call with hotplug lock held 1840 */ 1841 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1842 struct sched_domain_attr *dattr_new) 1843 { 1844 int i, j, n; 1845 int new_topology; 1846 1847 mutex_lock(&sched_domains_mutex); 1848 1849 /* Always unregister in case we don't destroy any domains: */ 1850 unregister_sched_domain_sysctl(); 1851 1852 /* Let the architecture update CPU core mappings: */ 1853 new_topology = arch_update_cpu_topology(); 1854 1855 if (!doms_new) { 1856 WARN_ON_ONCE(dattr_new); 1857 n = 0; 1858 doms_new = alloc_sched_domains(1); 1859 if (doms_new) { 1860 n = 1; 1861 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 1862 } 1863 } else { 1864 n = ndoms_new; 1865 } 1866 1867 /* Destroy deleted domains: */ 1868 for (i = 0; i < ndoms_cur; i++) { 1869 for (j = 0; j < n && !new_topology; j++) { 1870 if (cpumask_equal(doms_cur[i], doms_new[j]) 1871 && dattrs_equal(dattr_cur, i, dattr_new, j)) 1872 goto match1; 1873 } 1874 /* No match - a current sched domain not in new doms_new[] */ 1875 detach_destroy_domains(doms_cur[i]); 1876 match1: 1877 ; 1878 } 1879 1880 n = ndoms_cur; 1881 if (!doms_new) { 1882 n = 0; 1883 doms_new = &fallback_doms; 1884 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 1885 } 1886 1887 /* Build new domains: */ 1888 for (i = 0; i < ndoms_new; i++) { 1889 for (j = 0; j < n && !new_topology; j++) { 1890 if (cpumask_equal(doms_new[i], doms_cur[j]) 1891 && dattrs_equal(dattr_new, i, dattr_cur, j)) 1892 goto match2; 1893 } 1894 /* No match - add a new doms_new */ 1895 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 1896 match2: 1897 ; 1898 } 1899 1900 /* Remember the new sched domains: */ 1901 if (doms_cur != &fallback_doms) 1902 free_sched_domains(doms_cur, ndoms_cur); 1903 1904 kfree(dattr_cur); 1905 doms_cur = doms_new; 1906 dattr_cur = dattr_new; 1907 ndoms_cur = ndoms_new; 1908 1909 register_sched_domain_sysctl(); 1910 1911 mutex_unlock(&sched_domains_mutex); 1912 } 1913 1914