xref: /linux/kernel/sched/topology.c (revision 26b433d0da062d6e19d75350c0171d3cf8ff560d)
1 /*
2  * Scheduler topology setup/handling methods
3  */
4 #include <linux/sched.h>
5 #include <linux/mutex.h>
6 
7 #include "sched.h"
8 
9 DEFINE_MUTEX(sched_domains_mutex);
10 
11 /* Protected by sched_domains_mutex: */
12 cpumask_var_t sched_domains_tmpmask;
13 cpumask_var_t sched_domains_tmpmask2;
14 
15 #ifdef CONFIG_SCHED_DEBUG
16 
17 static __read_mostly int sched_debug_enabled;
18 
19 static int __init sched_debug_setup(char *str)
20 {
21 	sched_debug_enabled = 1;
22 
23 	return 0;
24 }
25 early_param("sched_debug", sched_debug_setup);
26 
27 static inline bool sched_debug(void)
28 {
29 	return sched_debug_enabled;
30 }
31 
32 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
33 				  struct cpumask *groupmask)
34 {
35 	struct sched_group *group = sd->groups;
36 
37 	cpumask_clear(groupmask);
38 
39 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
40 
41 	if (!(sd->flags & SD_LOAD_BALANCE)) {
42 		printk("does not load-balance\n");
43 		if (sd->parent)
44 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
45 					" has parent");
46 		return -1;
47 	}
48 
49 	printk(KERN_CONT "span=%*pbl level=%s\n",
50 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
51 
52 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
53 		printk(KERN_ERR "ERROR: domain->span does not contain "
54 				"CPU%d\n", cpu);
55 	}
56 	if (!cpumask_test_cpu(cpu, sched_group_span(group))) {
57 		printk(KERN_ERR "ERROR: domain->groups does not contain"
58 				" CPU%d\n", cpu);
59 	}
60 
61 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
62 	do {
63 		if (!group) {
64 			printk("\n");
65 			printk(KERN_ERR "ERROR: group is NULL\n");
66 			break;
67 		}
68 
69 		if (!cpumask_weight(sched_group_span(group))) {
70 			printk(KERN_CONT "\n");
71 			printk(KERN_ERR "ERROR: empty group\n");
72 			break;
73 		}
74 
75 		if (!(sd->flags & SD_OVERLAP) &&
76 		    cpumask_intersects(groupmask, sched_group_span(group))) {
77 			printk(KERN_CONT "\n");
78 			printk(KERN_ERR "ERROR: repeated CPUs\n");
79 			break;
80 		}
81 
82 		cpumask_or(groupmask, groupmask, sched_group_span(group));
83 
84 		printk(KERN_CONT " %d:{ span=%*pbl",
85 				group->sgc->id,
86 				cpumask_pr_args(sched_group_span(group)));
87 
88 		if ((sd->flags & SD_OVERLAP) &&
89 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
90 			printk(KERN_CONT " mask=%*pbl",
91 				cpumask_pr_args(group_balance_mask(group)));
92 		}
93 
94 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
95 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
96 
97 		if (group == sd->groups && sd->child &&
98 		    !cpumask_equal(sched_domain_span(sd->child),
99 				   sched_group_span(group))) {
100 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
101 		}
102 
103 		printk(KERN_CONT " }");
104 
105 		group = group->next;
106 
107 		if (group != sd->groups)
108 			printk(KERN_CONT ",");
109 
110 	} while (group != sd->groups);
111 	printk(KERN_CONT "\n");
112 
113 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
114 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
115 
116 	if (sd->parent &&
117 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
118 		printk(KERN_ERR "ERROR: parent span is not a superset "
119 			"of domain->span\n");
120 	return 0;
121 }
122 
123 static void sched_domain_debug(struct sched_domain *sd, int cpu)
124 {
125 	int level = 0;
126 
127 	if (!sched_debug_enabled)
128 		return;
129 
130 	if (!sd) {
131 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
132 		return;
133 	}
134 
135 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
136 
137 	for (;;) {
138 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
139 			break;
140 		level++;
141 		sd = sd->parent;
142 		if (!sd)
143 			break;
144 	}
145 }
146 #else /* !CONFIG_SCHED_DEBUG */
147 
148 # define sched_debug_enabled 0
149 # define sched_domain_debug(sd, cpu) do { } while (0)
150 static inline bool sched_debug(void)
151 {
152 	return false;
153 }
154 #endif /* CONFIG_SCHED_DEBUG */
155 
156 static int sd_degenerate(struct sched_domain *sd)
157 {
158 	if (cpumask_weight(sched_domain_span(sd)) == 1)
159 		return 1;
160 
161 	/* Following flags need at least 2 groups */
162 	if (sd->flags & (SD_LOAD_BALANCE |
163 			 SD_BALANCE_NEWIDLE |
164 			 SD_BALANCE_FORK |
165 			 SD_BALANCE_EXEC |
166 			 SD_SHARE_CPUCAPACITY |
167 			 SD_ASYM_CPUCAPACITY |
168 			 SD_SHARE_PKG_RESOURCES |
169 			 SD_SHARE_POWERDOMAIN)) {
170 		if (sd->groups != sd->groups->next)
171 			return 0;
172 	}
173 
174 	/* Following flags don't use groups */
175 	if (sd->flags & (SD_WAKE_AFFINE))
176 		return 0;
177 
178 	return 1;
179 }
180 
181 static int
182 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
183 {
184 	unsigned long cflags = sd->flags, pflags = parent->flags;
185 
186 	if (sd_degenerate(parent))
187 		return 1;
188 
189 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
190 		return 0;
191 
192 	/* Flags needing groups don't count if only 1 group in parent */
193 	if (parent->groups == parent->groups->next) {
194 		pflags &= ~(SD_LOAD_BALANCE |
195 				SD_BALANCE_NEWIDLE |
196 				SD_BALANCE_FORK |
197 				SD_BALANCE_EXEC |
198 				SD_ASYM_CPUCAPACITY |
199 				SD_SHARE_CPUCAPACITY |
200 				SD_SHARE_PKG_RESOURCES |
201 				SD_PREFER_SIBLING |
202 				SD_SHARE_POWERDOMAIN);
203 		if (nr_node_ids == 1)
204 			pflags &= ~SD_SERIALIZE;
205 	}
206 	if (~cflags & pflags)
207 		return 0;
208 
209 	return 1;
210 }
211 
212 static void free_rootdomain(struct rcu_head *rcu)
213 {
214 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
215 
216 	cpupri_cleanup(&rd->cpupri);
217 	cpudl_cleanup(&rd->cpudl);
218 	free_cpumask_var(rd->dlo_mask);
219 	free_cpumask_var(rd->rto_mask);
220 	free_cpumask_var(rd->online);
221 	free_cpumask_var(rd->span);
222 	kfree(rd);
223 }
224 
225 void rq_attach_root(struct rq *rq, struct root_domain *rd)
226 {
227 	struct root_domain *old_rd = NULL;
228 	unsigned long flags;
229 
230 	raw_spin_lock_irqsave(&rq->lock, flags);
231 
232 	if (rq->rd) {
233 		old_rd = rq->rd;
234 
235 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
236 			set_rq_offline(rq);
237 
238 		cpumask_clear_cpu(rq->cpu, old_rd->span);
239 
240 		/*
241 		 * If we dont want to free the old_rd yet then
242 		 * set old_rd to NULL to skip the freeing later
243 		 * in this function:
244 		 */
245 		if (!atomic_dec_and_test(&old_rd->refcount))
246 			old_rd = NULL;
247 	}
248 
249 	atomic_inc(&rd->refcount);
250 	rq->rd = rd;
251 
252 	cpumask_set_cpu(rq->cpu, rd->span);
253 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
254 		set_rq_online(rq);
255 
256 	raw_spin_unlock_irqrestore(&rq->lock, flags);
257 
258 	if (old_rd)
259 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
260 }
261 
262 static int init_rootdomain(struct root_domain *rd)
263 {
264 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
265 		goto out;
266 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
267 		goto free_span;
268 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
269 		goto free_online;
270 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
271 		goto free_dlo_mask;
272 
273 	init_dl_bw(&rd->dl_bw);
274 	if (cpudl_init(&rd->cpudl) != 0)
275 		goto free_rto_mask;
276 
277 	if (cpupri_init(&rd->cpupri) != 0)
278 		goto free_cpudl;
279 	return 0;
280 
281 free_cpudl:
282 	cpudl_cleanup(&rd->cpudl);
283 free_rto_mask:
284 	free_cpumask_var(rd->rto_mask);
285 free_dlo_mask:
286 	free_cpumask_var(rd->dlo_mask);
287 free_online:
288 	free_cpumask_var(rd->online);
289 free_span:
290 	free_cpumask_var(rd->span);
291 out:
292 	return -ENOMEM;
293 }
294 
295 /*
296  * By default the system creates a single root-domain with all CPUs as
297  * members (mimicking the global state we have today).
298  */
299 struct root_domain def_root_domain;
300 
301 void init_defrootdomain(void)
302 {
303 	init_rootdomain(&def_root_domain);
304 
305 	atomic_set(&def_root_domain.refcount, 1);
306 }
307 
308 static struct root_domain *alloc_rootdomain(void)
309 {
310 	struct root_domain *rd;
311 
312 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
313 	if (!rd)
314 		return NULL;
315 
316 	if (init_rootdomain(rd) != 0) {
317 		kfree(rd);
318 		return NULL;
319 	}
320 
321 	return rd;
322 }
323 
324 static void free_sched_groups(struct sched_group *sg, int free_sgc)
325 {
326 	struct sched_group *tmp, *first;
327 
328 	if (!sg)
329 		return;
330 
331 	first = sg;
332 	do {
333 		tmp = sg->next;
334 
335 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
336 			kfree(sg->sgc);
337 
338 		if (atomic_dec_and_test(&sg->ref))
339 			kfree(sg);
340 		sg = tmp;
341 	} while (sg != first);
342 }
343 
344 static void destroy_sched_domain(struct sched_domain *sd)
345 {
346 	/*
347 	 * A normal sched domain may have multiple group references, an
348 	 * overlapping domain, having private groups, only one.  Iterate,
349 	 * dropping group/capacity references, freeing where none remain.
350 	 */
351 	free_sched_groups(sd->groups, 1);
352 
353 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
354 		kfree(sd->shared);
355 	kfree(sd);
356 }
357 
358 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
359 {
360 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
361 
362 	while (sd) {
363 		struct sched_domain *parent = sd->parent;
364 		destroy_sched_domain(sd);
365 		sd = parent;
366 	}
367 }
368 
369 static void destroy_sched_domains(struct sched_domain *sd)
370 {
371 	if (sd)
372 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
373 }
374 
375 /*
376  * Keep a special pointer to the highest sched_domain that has
377  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
378  * allows us to avoid some pointer chasing select_idle_sibling().
379  *
380  * Also keep a unique ID per domain (we use the first CPU number in
381  * the cpumask of the domain), this allows us to quickly tell if
382  * two CPUs are in the same cache domain, see cpus_share_cache().
383  */
384 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
385 DEFINE_PER_CPU(int, sd_llc_size);
386 DEFINE_PER_CPU(int, sd_llc_id);
387 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
388 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
389 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
390 
391 static void update_top_cache_domain(int cpu)
392 {
393 	struct sched_domain_shared *sds = NULL;
394 	struct sched_domain *sd;
395 	int id = cpu;
396 	int size = 1;
397 
398 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
399 	if (sd) {
400 		id = cpumask_first(sched_domain_span(sd));
401 		size = cpumask_weight(sched_domain_span(sd));
402 		sds = sd->shared;
403 	}
404 
405 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
406 	per_cpu(sd_llc_size, cpu) = size;
407 	per_cpu(sd_llc_id, cpu) = id;
408 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
409 
410 	sd = lowest_flag_domain(cpu, SD_NUMA);
411 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
412 
413 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
414 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
415 }
416 
417 /*
418  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
419  * hold the hotplug lock.
420  */
421 static void
422 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
423 {
424 	struct rq *rq = cpu_rq(cpu);
425 	struct sched_domain *tmp;
426 
427 	/* Remove the sched domains which do not contribute to scheduling. */
428 	for (tmp = sd; tmp; ) {
429 		struct sched_domain *parent = tmp->parent;
430 		if (!parent)
431 			break;
432 
433 		if (sd_parent_degenerate(tmp, parent)) {
434 			tmp->parent = parent->parent;
435 			if (parent->parent)
436 				parent->parent->child = tmp;
437 			/*
438 			 * Transfer SD_PREFER_SIBLING down in case of a
439 			 * degenerate parent; the spans match for this
440 			 * so the property transfers.
441 			 */
442 			if (parent->flags & SD_PREFER_SIBLING)
443 				tmp->flags |= SD_PREFER_SIBLING;
444 			destroy_sched_domain(parent);
445 		} else
446 			tmp = tmp->parent;
447 	}
448 
449 	if (sd && sd_degenerate(sd)) {
450 		tmp = sd;
451 		sd = sd->parent;
452 		destroy_sched_domain(tmp);
453 		if (sd)
454 			sd->child = NULL;
455 	}
456 
457 	sched_domain_debug(sd, cpu);
458 
459 	rq_attach_root(rq, rd);
460 	tmp = rq->sd;
461 	rcu_assign_pointer(rq->sd, sd);
462 	dirty_sched_domain_sysctl(cpu);
463 	destroy_sched_domains(tmp);
464 
465 	update_top_cache_domain(cpu);
466 }
467 
468 /* Setup the mask of CPUs configured for isolated domains */
469 static int __init isolated_cpu_setup(char *str)
470 {
471 	int ret;
472 
473 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
474 	ret = cpulist_parse(str, cpu_isolated_map);
475 	if (ret) {
476 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
477 		return 0;
478 	}
479 	return 1;
480 }
481 __setup("isolcpus=", isolated_cpu_setup);
482 
483 struct s_data {
484 	struct sched_domain ** __percpu sd;
485 	struct root_domain	*rd;
486 };
487 
488 enum s_alloc {
489 	sa_rootdomain,
490 	sa_sd,
491 	sa_sd_storage,
492 	sa_none,
493 };
494 
495 /*
496  * Return the canonical balance CPU for this group, this is the first CPU
497  * of this group that's also in the balance mask.
498  *
499  * The balance mask are all those CPUs that could actually end up at this
500  * group. See build_balance_mask().
501  *
502  * Also see should_we_balance().
503  */
504 int group_balance_cpu(struct sched_group *sg)
505 {
506 	return cpumask_first(group_balance_mask(sg));
507 }
508 
509 
510 /*
511  * NUMA topology (first read the regular topology blurb below)
512  *
513  * Given a node-distance table, for example:
514  *
515  *   node   0   1   2   3
516  *     0:  10  20  30  20
517  *     1:  20  10  20  30
518  *     2:  30  20  10  20
519  *     3:  20  30  20  10
520  *
521  * which represents a 4 node ring topology like:
522  *
523  *   0 ----- 1
524  *   |       |
525  *   |       |
526  *   |       |
527  *   3 ----- 2
528  *
529  * We want to construct domains and groups to represent this. The way we go
530  * about doing this is to build the domains on 'hops'. For each NUMA level we
531  * construct the mask of all nodes reachable in @level hops.
532  *
533  * For the above NUMA topology that gives 3 levels:
534  *
535  * NUMA-2	0-3		0-3		0-3		0-3
536  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
537  *
538  * NUMA-1	0-1,3		0-2		1-3		0,2-3
539  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
540  *
541  * NUMA-0	0		1		2		3
542  *
543  *
544  * As can be seen; things don't nicely line up as with the regular topology.
545  * When we iterate a domain in child domain chunks some nodes can be
546  * represented multiple times -- hence the "overlap" naming for this part of
547  * the topology.
548  *
549  * In order to minimize this overlap, we only build enough groups to cover the
550  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
551  *
552  * Because:
553  *
554  *  - the first group of each domain is its child domain; this
555  *    gets us the first 0-1,3
556  *  - the only uncovered node is 2, who's child domain is 1-3.
557  *
558  * However, because of the overlap, computing a unique CPU for each group is
559  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
560  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
561  * end up at those groups (they would end up in group: 0-1,3).
562  *
563  * To correct this we have to introduce the group balance mask. This mask
564  * will contain those CPUs in the group that can reach this group given the
565  * (child) domain tree.
566  *
567  * With this we can once again compute balance_cpu and sched_group_capacity
568  * relations.
569  *
570  * XXX include words on how balance_cpu is unique and therefore can be
571  * used for sched_group_capacity links.
572  *
573  *
574  * Another 'interesting' topology is:
575  *
576  *   node   0   1   2   3
577  *     0:  10  20  20  30
578  *     1:  20  10  20  20
579  *     2:  20  20  10  20
580  *     3:  30  20  20  10
581  *
582  * Which looks a little like:
583  *
584  *   0 ----- 1
585  *   |     / |
586  *   |   /   |
587  *   | /     |
588  *   2 ----- 3
589  *
590  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
591  * are not.
592  *
593  * This leads to a few particularly weird cases where the sched_domain's are
594  * not of the same number for each cpu. Consider:
595  *
596  * NUMA-2	0-3						0-3
597  *  groups:	{0-2},{1-3}					{1-3},{0-2}
598  *
599  * NUMA-1	0-2		0-3		0-3		1-3
600  *
601  * NUMA-0	0		1		2		3
602  *
603  */
604 
605 
606 /*
607  * Build the balance mask; it contains only those CPUs that can arrive at this
608  * group and should be considered to continue balancing.
609  *
610  * We do this during the group creation pass, therefore the group information
611  * isn't complete yet, however since each group represents a (child) domain we
612  * can fully construct this using the sched_domain bits (which are already
613  * complete).
614  */
615 static void
616 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
617 {
618 	const struct cpumask *sg_span = sched_group_span(sg);
619 	struct sd_data *sdd = sd->private;
620 	struct sched_domain *sibling;
621 	int i;
622 
623 	cpumask_clear(mask);
624 
625 	for_each_cpu(i, sg_span) {
626 		sibling = *per_cpu_ptr(sdd->sd, i);
627 
628 		/*
629 		 * Can happen in the asymmetric case, where these siblings are
630 		 * unused. The mask will not be empty because those CPUs that
631 		 * do have the top domain _should_ span the domain.
632 		 */
633 		if (!sibling->child)
634 			continue;
635 
636 		/* If we would not end up here, we can't continue from here */
637 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
638 			continue;
639 
640 		cpumask_set_cpu(i, mask);
641 	}
642 
643 	/* We must not have empty masks here */
644 	WARN_ON_ONCE(cpumask_empty(mask));
645 }
646 
647 /*
648  * XXX: This creates per-node group entries; since the load-balancer will
649  * immediately access remote memory to construct this group's load-balance
650  * statistics having the groups node local is of dubious benefit.
651  */
652 static struct sched_group *
653 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
654 {
655 	struct sched_group *sg;
656 	struct cpumask *sg_span;
657 
658 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
659 			GFP_KERNEL, cpu_to_node(cpu));
660 
661 	if (!sg)
662 		return NULL;
663 
664 	sg_span = sched_group_span(sg);
665 	if (sd->child)
666 		cpumask_copy(sg_span, sched_domain_span(sd->child));
667 	else
668 		cpumask_copy(sg_span, sched_domain_span(sd));
669 
670 	atomic_inc(&sg->ref);
671 	return sg;
672 }
673 
674 static void init_overlap_sched_group(struct sched_domain *sd,
675 				     struct sched_group *sg)
676 {
677 	struct cpumask *mask = sched_domains_tmpmask2;
678 	struct sd_data *sdd = sd->private;
679 	struct cpumask *sg_span;
680 	int cpu;
681 
682 	build_balance_mask(sd, sg, mask);
683 	cpu = cpumask_first_and(sched_group_span(sg), mask);
684 
685 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
686 	if (atomic_inc_return(&sg->sgc->ref) == 1)
687 		cpumask_copy(group_balance_mask(sg), mask);
688 	else
689 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
690 
691 	/*
692 	 * Initialize sgc->capacity such that even if we mess up the
693 	 * domains and no possible iteration will get us here, we won't
694 	 * die on a /0 trap.
695 	 */
696 	sg_span = sched_group_span(sg);
697 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
698 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
699 }
700 
701 static int
702 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
703 {
704 	struct sched_group *first = NULL, *last = NULL, *sg;
705 	const struct cpumask *span = sched_domain_span(sd);
706 	struct cpumask *covered = sched_domains_tmpmask;
707 	struct sd_data *sdd = sd->private;
708 	struct sched_domain *sibling;
709 	int i;
710 
711 	cpumask_clear(covered);
712 
713 	for_each_cpu_wrap(i, span, cpu) {
714 		struct cpumask *sg_span;
715 
716 		if (cpumask_test_cpu(i, covered))
717 			continue;
718 
719 		sibling = *per_cpu_ptr(sdd->sd, i);
720 
721 		/*
722 		 * Asymmetric node setups can result in situations where the
723 		 * domain tree is of unequal depth, make sure to skip domains
724 		 * that already cover the entire range.
725 		 *
726 		 * In that case build_sched_domains() will have terminated the
727 		 * iteration early and our sibling sd spans will be empty.
728 		 * Domains should always include the CPU they're built on, so
729 		 * check that.
730 		 */
731 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
732 			continue;
733 
734 		sg = build_group_from_child_sched_domain(sibling, cpu);
735 		if (!sg)
736 			goto fail;
737 
738 		sg_span = sched_group_span(sg);
739 		cpumask_or(covered, covered, sg_span);
740 
741 		init_overlap_sched_group(sd, sg);
742 
743 		if (!first)
744 			first = sg;
745 		if (last)
746 			last->next = sg;
747 		last = sg;
748 		last->next = first;
749 	}
750 	sd->groups = first;
751 
752 	return 0;
753 
754 fail:
755 	free_sched_groups(first, 0);
756 
757 	return -ENOMEM;
758 }
759 
760 
761 /*
762  * Package topology (also see the load-balance blurb in fair.c)
763  *
764  * The scheduler builds a tree structure to represent a number of important
765  * topology features. By default (default_topology[]) these include:
766  *
767  *  - Simultaneous multithreading (SMT)
768  *  - Multi-Core Cache (MC)
769  *  - Package (DIE)
770  *
771  * Where the last one more or less denotes everything up to a NUMA node.
772  *
773  * The tree consists of 3 primary data structures:
774  *
775  *	sched_domain -> sched_group -> sched_group_capacity
776  *	    ^ ^             ^ ^
777  *          `-'             `-'
778  *
779  * The sched_domains are per-cpu and have a two way link (parent & child) and
780  * denote the ever growing mask of CPUs belonging to that level of topology.
781  *
782  * Each sched_domain has a circular (double) linked list of sched_group's, each
783  * denoting the domains of the level below (or individual CPUs in case of the
784  * first domain level). The sched_group linked by a sched_domain includes the
785  * CPU of that sched_domain [*].
786  *
787  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
788  *
789  * CPU   0   1   2   3   4   5   6   7
790  *
791  * DIE  [                             ]
792  * MC   [             ] [             ]
793  * SMT  [     ] [     ] [     ] [     ]
794  *
795  *  - or -
796  *
797  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
798  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
799  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
800  *
801  * CPU   0   1   2   3   4   5   6   7
802  *
803  * One way to think about it is: sched_domain moves you up and down among these
804  * topology levels, while sched_group moves you sideways through it, at child
805  * domain granularity.
806  *
807  * sched_group_capacity ensures each unique sched_group has shared storage.
808  *
809  * There are two related construction problems, both require a CPU that
810  * uniquely identify each group (for a given domain):
811  *
812  *  - The first is the balance_cpu (see should_we_balance() and the
813  *    load-balance blub in fair.c); for each group we only want 1 CPU to
814  *    continue balancing at a higher domain.
815  *
816  *  - The second is the sched_group_capacity; we want all identical groups
817  *    to share a single sched_group_capacity.
818  *
819  * Since these topologies are exclusive by construction. That is, its
820  * impossible for an SMT thread to belong to multiple cores, and cores to
821  * be part of multiple caches. There is a very clear and unique location
822  * for each CPU in the hierarchy.
823  *
824  * Therefore computing a unique CPU for each group is trivial (the iteration
825  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
826  * group), we can simply pick the first CPU in each group.
827  *
828  *
829  * [*] in other words, the first group of each domain is its child domain.
830  */
831 
832 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
833 {
834 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
835 	struct sched_domain *child = sd->child;
836 	struct sched_group *sg;
837 
838 	if (child)
839 		cpu = cpumask_first(sched_domain_span(child));
840 
841 	sg = *per_cpu_ptr(sdd->sg, cpu);
842 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
843 
844 	/* For claim_allocations: */
845 	atomic_inc(&sg->ref);
846 	atomic_inc(&sg->sgc->ref);
847 
848 	if (child) {
849 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
850 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
851 	} else {
852 		cpumask_set_cpu(cpu, sched_group_span(sg));
853 		cpumask_set_cpu(cpu, group_balance_mask(sg));
854 	}
855 
856 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
857 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
858 
859 	return sg;
860 }
861 
862 /*
863  * build_sched_groups will build a circular linked list of the groups
864  * covered by the given span, and will set each group's ->cpumask correctly,
865  * and ->cpu_capacity to 0.
866  *
867  * Assumes the sched_domain tree is fully constructed
868  */
869 static int
870 build_sched_groups(struct sched_domain *sd, int cpu)
871 {
872 	struct sched_group *first = NULL, *last = NULL;
873 	struct sd_data *sdd = sd->private;
874 	const struct cpumask *span = sched_domain_span(sd);
875 	struct cpumask *covered;
876 	int i;
877 
878 	lockdep_assert_held(&sched_domains_mutex);
879 	covered = sched_domains_tmpmask;
880 
881 	cpumask_clear(covered);
882 
883 	for_each_cpu_wrap(i, span, cpu) {
884 		struct sched_group *sg;
885 
886 		if (cpumask_test_cpu(i, covered))
887 			continue;
888 
889 		sg = get_group(i, sdd);
890 
891 		cpumask_or(covered, covered, sched_group_span(sg));
892 
893 		if (!first)
894 			first = sg;
895 		if (last)
896 			last->next = sg;
897 		last = sg;
898 	}
899 	last->next = first;
900 	sd->groups = first;
901 
902 	return 0;
903 }
904 
905 /*
906  * Initialize sched groups cpu_capacity.
907  *
908  * cpu_capacity indicates the capacity of sched group, which is used while
909  * distributing the load between different sched groups in a sched domain.
910  * Typically cpu_capacity for all the groups in a sched domain will be same
911  * unless there are asymmetries in the topology. If there are asymmetries,
912  * group having more cpu_capacity will pickup more load compared to the
913  * group having less cpu_capacity.
914  */
915 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
916 {
917 	struct sched_group *sg = sd->groups;
918 
919 	WARN_ON(!sg);
920 
921 	do {
922 		int cpu, max_cpu = -1;
923 
924 		sg->group_weight = cpumask_weight(sched_group_span(sg));
925 
926 		if (!(sd->flags & SD_ASYM_PACKING))
927 			goto next;
928 
929 		for_each_cpu(cpu, sched_group_span(sg)) {
930 			if (max_cpu < 0)
931 				max_cpu = cpu;
932 			else if (sched_asym_prefer(cpu, max_cpu))
933 				max_cpu = cpu;
934 		}
935 		sg->asym_prefer_cpu = max_cpu;
936 
937 next:
938 		sg = sg->next;
939 	} while (sg != sd->groups);
940 
941 	if (cpu != group_balance_cpu(sg))
942 		return;
943 
944 	update_group_capacity(sd, cpu);
945 }
946 
947 /*
948  * Initializers for schedule domains
949  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
950  */
951 
952 static int default_relax_domain_level = -1;
953 int sched_domain_level_max;
954 
955 static int __init setup_relax_domain_level(char *str)
956 {
957 	if (kstrtoint(str, 0, &default_relax_domain_level))
958 		pr_warn("Unable to set relax_domain_level\n");
959 
960 	return 1;
961 }
962 __setup("relax_domain_level=", setup_relax_domain_level);
963 
964 static void set_domain_attribute(struct sched_domain *sd,
965 				 struct sched_domain_attr *attr)
966 {
967 	int request;
968 
969 	if (!attr || attr->relax_domain_level < 0) {
970 		if (default_relax_domain_level < 0)
971 			return;
972 		else
973 			request = default_relax_domain_level;
974 	} else
975 		request = attr->relax_domain_level;
976 	if (request < sd->level) {
977 		/* Turn off idle balance on this domain: */
978 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
979 	} else {
980 		/* Turn on idle balance on this domain: */
981 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
982 	}
983 }
984 
985 static void __sdt_free(const struct cpumask *cpu_map);
986 static int __sdt_alloc(const struct cpumask *cpu_map);
987 
988 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
989 				 const struct cpumask *cpu_map)
990 {
991 	switch (what) {
992 	case sa_rootdomain:
993 		if (!atomic_read(&d->rd->refcount))
994 			free_rootdomain(&d->rd->rcu);
995 		/* Fall through */
996 	case sa_sd:
997 		free_percpu(d->sd);
998 		/* Fall through */
999 	case sa_sd_storage:
1000 		__sdt_free(cpu_map);
1001 		/* Fall through */
1002 	case sa_none:
1003 		break;
1004 	}
1005 }
1006 
1007 static enum s_alloc
1008 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1009 {
1010 	memset(d, 0, sizeof(*d));
1011 
1012 	if (__sdt_alloc(cpu_map))
1013 		return sa_sd_storage;
1014 	d->sd = alloc_percpu(struct sched_domain *);
1015 	if (!d->sd)
1016 		return sa_sd_storage;
1017 	d->rd = alloc_rootdomain();
1018 	if (!d->rd)
1019 		return sa_sd;
1020 	return sa_rootdomain;
1021 }
1022 
1023 /*
1024  * NULL the sd_data elements we've used to build the sched_domain and
1025  * sched_group structure so that the subsequent __free_domain_allocs()
1026  * will not free the data we're using.
1027  */
1028 static void claim_allocations(int cpu, struct sched_domain *sd)
1029 {
1030 	struct sd_data *sdd = sd->private;
1031 
1032 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1033 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1034 
1035 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1036 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1037 
1038 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1039 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1040 
1041 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1042 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1043 }
1044 
1045 #ifdef CONFIG_NUMA
1046 static int sched_domains_numa_levels;
1047 enum numa_topology_type sched_numa_topology_type;
1048 static int *sched_domains_numa_distance;
1049 int sched_max_numa_distance;
1050 static struct cpumask ***sched_domains_numa_masks;
1051 static int sched_domains_curr_level;
1052 #endif
1053 
1054 /*
1055  * SD_flags allowed in topology descriptions.
1056  *
1057  * These flags are purely descriptive of the topology and do not prescribe
1058  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1059  * function:
1060  *
1061  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1062  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1063  *   SD_NUMA                - describes NUMA topologies
1064  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1065  *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
1066  *
1067  * Odd one out, which beside describing the topology has a quirk also
1068  * prescribes the desired behaviour that goes along with it:
1069  *
1070  *   SD_ASYM_PACKING        - describes SMT quirks
1071  */
1072 #define TOPOLOGY_SD_FLAGS		\
1073 	(SD_SHARE_CPUCAPACITY |		\
1074 	 SD_SHARE_PKG_RESOURCES |	\
1075 	 SD_NUMA |			\
1076 	 SD_ASYM_PACKING |		\
1077 	 SD_ASYM_CPUCAPACITY |		\
1078 	 SD_SHARE_POWERDOMAIN)
1079 
1080 static struct sched_domain *
1081 sd_init(struct sched_domain_topology_level *tl,
1082 	const struct cpumask *cpu_map,
1083 	struct sched_domain *child, int cpu)
1084 {
1085 	struct sd_data *sdd = &tl->data;
1086 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1087 	int sd_id, sd_weight, sd_flags = 0;
1088 
1089 #ifdef CONFIG_NUMA
1090 	/*
1091 	 * Ugly hack to pass state to sd_numa_mask()...
1092 	 */
1093 	sched_domains_curr_level = tl->numa_level;
1094 #endif
1095 
1096 	sd_weight = cpumask_weight(tl->mask(cpu));
1097 
1098 	if (tl->sd_flags)
1099 		sd_flags = (*tl->sd_flags)();
1100 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1101 			"wrong sd_flags in topology description\n"))
1102 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
1103 
1104 	*sd = (struct sched_domain){
1105 		.min_interval		= sd_weight,
1106 		.max_interval		= 2*sd_weight,
1107 		.busy_factor		= 32,
1108 		.imbalance_pct		= 125,
1109 
1110 		.cache_nice_tries	= 0,
1111 		.busy_idx		= 0,
1112 		.idle_idx		= 0,
1113 		.newidle_idx		= 0,
1114 		.wake_idx		= 0,
1115 		.forkexec_idx		= 0,
1116 
1117 		.flags			= 1*SD_LOAD_BALANCE
1118 					| 1*SD_BALANCE_NEWIDLE
1119 					| 1*SD_BALANCE_EXEC
1120 					| 1*SD_BALANCE_FORK
1121 					| 0*SD_BALANCE_WAKE
1122 					| 1*SD_WAKE_AFFINE
1123 					| 0*SD_SHARE_CPUCAPACITY
1124 					| 0*SD_SHARE_PKG_RESOURCES
1125 					| 0*SD_SERIALIZE
1126 					| 0*SD_PREFER_SIBLING
1127 					| 0*SD_NUMA
1128 					| sd_flags
1129 					,
1130 
1131 		.last_balance		= jiffies,
1132 		.balance_interval	= sd_weight,
1133 		.smt_gain		= 0,
1134 		.max_newidle_lb_cost	= 0,
1135 		.next_decay_max_lb_cost	= jiffies,
1136 		.child			= child,
1137 #ifdef CONFIG_SCHED_DEBUG
1138 		.name			= tl->name,
1139 #endif
1140 	};
1141 
1142 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1143 	sd_id = cpumask_first(sched_domain_span(sd));
1144 
1145 	/*
1146 	 * Convert topological properties into behaviour.
1147 	 */
1148 
1149 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
1150 		struct sched_domain *t = sd;
1151 
1152 		for_each_lower_domain(t)
1153 			t->flags |= SD_BALANCE_WAKE;
1154 	}
1155 
1156 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1157 		sd->flags |= SD_PREFER_SIBLING;
1158 		sd->imbalance_pct = 110;
1159 		sd->smt_gain = 1178; /* ~15% */
1160 
1161 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1162 		sd->imbalance_pct = 117;
1163 		sd->cache_nice_tries = 1;
1164 		sd->busy_idx = 2;
1165 
1166 #ifdef CONFIG_NUMA
1167 	} else if (sd->flags & SD_NUMA) {
1168 		sd->cache_nice_tries = 2;
1169 		sd->busy_idx = 3;
1170 		sd->idle_idx = 2;
1171 
1172 		sd->flags |= SD_SERIALIZE;
1173 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1174 			sd->flags &= ~(SD_BALANCE_EXEC |
1175 				       SD_BALANCE_FORK |
1176 				       SD_WAKE_AFFINE);
1177 		}
1178 
1179 #endif
1180 	} else {
1181 		sd->flags |= SD_PREFER_SIBLING;
1182 		sd->cache_nice_tries = 1;
1183 		sd->busy_idx = 2;
1184 		sd->idle_idx = 1;
1185 	}
1186 
1187 	/*
1188 	 * For all levels sharing cache; connect a sched_domain_shared
1189 	 * instance.
1190 	 */
1191 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1192 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1193 		atomic_inc(&sd->shared->ref);
1194 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1195 	}
1196 
1197 	sd->private = sdd;
1198 
1199 	return sd;
1200 }
1201 
1202 /*
1203  * Topology list, bottom-up.
1204  */
1205 static struct sched_domain_topology_level default_topology[] = {
1206 #ifdef CONFIG_SCHED_SMT
1207 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1208 #endif
1209 #ifdef CONFIG_SCHED_MC
1210 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1211 #endif
1212 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1213 	{ NULL, },
1214 };
1215 
1216 static struct sched_domain_topology_level *sched_domain_topology =
1217 	default_topology;
1218 
1219 #define for_each_sd_topology(tl)			\
1220 	for (tl = sched_domain_topology; tl->mask; tl++)
1221 
1222 void set_sched_topology(struct sched_domain_topology_level *tl)
1223 {
1224 	if (WARN_ON_ONCE(sched_smp_initialized))
1225 		return;
1226 
1227 	sched_domain_topology = tl;
1228 }
1229 
1230 #ifdef CONFIG_NUMA
1231 
1232 static const struct cpumask *sd_numa_mask(int cpu)
1233 {
1234 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1235 }
1236 
1237 static void sched_numa_warn(const char *str)
1238 {
1239 	static int done = false;
1240 	int i,j;
1241 
1242 	if (done)
1243 		return;
1244 
1245 	done = true;
1246 
1247 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1248 
1249 	for (i = 0; i < nr_node_ids; i++) {
1250 		printk(KERN_WARNING "  ");
1251 		for (j = 0; j < nr_node_ids; j++)
1252 			printk(KERN_CONT "%02d ", node_distance(i,j));
1253 		printk(KERN_CONT "\n");
1254 	}
1255 	printk(KERN_WARNING "\n");
1256 }
1257 
1258 bool find_numa_distance(int distance)
1259 {
1260 	int i;
1261 
1262 	if (distance == node_distance(0, 0))
1263 		return true;
1264 
1265 	for (i = 0; i < sched_domains_numa_levels; i++) {
1266 		if (sched_domains_numa_distance[i] == distance)
1267 			return true;
1268 	}
1269 
1270 	return false;
1271 }
1272 
1273 /*
1274  * A system can have three types of NUMA topology:
1275  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1276  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1277  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1278  *
1279  * The difference between a glueless mesh topology and a backplane
1280  * topology lies in whether communication between not directly
1281  * connected nodes goes through intermediary nodes (where programs
1282  * could run), or through backplane controllers. This affects
1283  * placement of programs.
1284  *
1285  * The type of topology can be discerned with the following tests:
1286  * - If the maximum distance between any nodes is 1 hop, the system
1287  *   is directly connected.
1288  * - If for two nodes A and B, located N > 1 hops away from each other,
1289  *   there is an intermediary node C, which is < N hops away from both
1290  *   nodes A and B, the system is a glueless mesh.
1291  */
1292 static void init_numa_topology_type(void)
1293 {
1294 	int a, b, c, n;
1295 
1296 	n = sched_max_numa_distance;
1297 
1298 	if (sched_domains_numa_levels <= 1) {
1299 		sched_numa_topology_type = NUMA_DIRECT;
1300 		return;
1301 	}
1302 
1303 	for_each_online_node(a) {
1304 		for_each_online_node(b) {
1305 			/* Find two nodes furthest removed from each other. */
1306 			if (node_distance(a, b) < n)
1307 				continue;
1308 
1309 			/* Is there an intermediary node between a and b? */
1310 			for_each_online_node(c) {
1311 				if (node_distance(a, c) < n &&
1312 				    node_distance(b, c) < n) {
1313 					sched_numa_topology_type =
1314 							NUMA_GLUELESS_MESH;
1315 					return;
1316 				}
1317 			}
1318 
1319 			sched_numa_topology_type = NUMA_BACKPLANE;
1320 			return;
1321 		}
1322 	}
1323 }
1324 
1325 void sched_init_numa(void)
1326 {
1327 	int next_distance, curr_distance = node_distance(0, 0);
1328 	struct sched_domain_topology_level *tl;
1329 	int level = 0;
1330 	int i, j, k;
1331 
1332 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1333 	if (!sched_domains_numa_distance)
1334 		return;
1335 
1336 	/*
1337 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1338 	 * unique distances in the node_distance() table.
1339 	 *
1340 	 * Assumes node_distance(0,j) includes all distances in
1341 	 * node_distance(i,j) in order to avoid cubic time.
1342 	 */
1343 	next_distance = curr_distance;
1344 	for (i = 0; i < nr_node_ids; i++) {
1345 		for (j = 0; j < nr_node_ids; j++) {
1346 			for (k = 0; k < nr_node_ids; k++) {
1347 				int distance = node_distance(i, k);
1348 
1349 				if (distance > curr_distance &&
1350 				    (distance < next_distance ||
1351 				     next_distance == curr_distance))
1352 					next_distance = distance;
1353 
1354 				/*
1355 				 * While not a strong assumption it would be nice to know
1356 				 * about cases where if node A is connected to B, B is not
1357 				 * equally connected to A.
1358 				 */
1359 				if (sched_debug() && node_distance(k, i) != distance)
1360 					sched_numa_warn("Node-distance not symmetric");
1361 
1362 				if (sched_debug() && i && !find_numa_distance(distance))
1363 					sched_numa_warn("Node-0 not representative");
1364 			}
1365 			if (next_distance != curr_distance) {
1366 				sched_domains_numa_distance[level++] = next_distance;
1367 				sched_domains_numa_levels = level;
1368 				curr_distance = next_distance;
1369 			} else break;
1370 		}
1371 
1372 		/*
1373 		 * In case of sched_debug() we verify the above assumption.
1374 		 */
1375 		if (!sched_debug())
1376 			break;
1377 	}
1378 
1379 	if (!level)
1380 		return;
1381 
1382 	/*
1383 	 * 'level' contains the number of unique distances, excluding the
1384 	 * identity distance node_distance(i,i).
1385 	 *
1386 	 * The sched_domains_numa_distance[] array includes the actual distance
1387 	 * numbers.
1388 	 */
1389 
1390 	/*
1391 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1392 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1393 	 * the array will contain less then 'level' members. This could be
1394 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1395 	 * in other functions.
1396 	 *
1397 	 * We reset it to 'level' at the end of this function.
1398 	 */
1399 	sched_domains_numa_levels = 0;
1400 
1401 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1402 	if (!sched_domains_numa_masks)
1403 		return;
1404 
1405 	/*
1406 	 * Now for each level, construct a mask per node which contains all
1407 	 * CPUs of nodes that are that many hops away from us.
1408 	 */
1409 	for (i = 0; i < level; i++) {
1410 		sched_domains_numa_masks[i] =
1411 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1412 		if (!sched_domains_numa_masks[i])
1413 			return;
1414 
1415 		for (j = 0; j < nr_node_ids; j++) {
1416 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1417 			if (!mask)
1418 				return;
1419 
1420 			sched_domains_numa_masks[i][j] = mask;
1421 
1422 			for_each_node(k) {
1423 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1424 					continue;
1425 
1426 				cpumask_or(mask, mask, cpumask_of_node(k));
1427 			}
1428 		}
1429 	}
1430 
1431 	/* Compute default topology size */
1432 	for (i = 0; sched_domain_topology[i].mask; i++);
1433 
1434 	tl = kzalloc((i + level + 1) *
1435 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1436 	if (!tl)
1437 		return;
1438 
1439 	/*
1440 	 * Copy the default topology bits..
1441 	 */
1442 	for (i = 0; sched_domain_topology[i].mask; i++)
1443 		tl[i] = sched_domain_topology[i];
1444 
1445 	/*
1446 	 * .. and append 'j' levels of NUMA goodness.
1447 	 */
1448 	for (j = 0; j < level; i++, j++) {
1449 		tl[i] = (struct sched_domain_topology_level){
1450 			.mask = sd_numa_mask,
1451 			.sd_flags = cpu_numa_flags,
1452 			.flags = SDTL_OVERLAP,
1453 			.numa_level = j,
1454 			SD_INIT_NAME(NUMA)
1455 		};
1456 	}
1457 
1458 	sched_domain_topology = tl;
1459 
1460 	sched_domains_numa_levels = level;
1461 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1462 
1463 	init_numa_topology_type();
1464 }
1465 
1466 void sched_domains_numa_masks_set(unsigned int cpu)
1467 {
1468 	int node = cpu_to_node(cpu);
1469 	int i, j;
1470 
1471 	for (i = 0; i < sched_domains_numa_levels; i++) {
1472 		for (j = 0; j < nr_node_ids; j++) {
1473 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1474 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1475 		}
1476 	}
1477 }
1478 
1479 void sched_domains_numa_masks_clear(unsigned int cpu)
1480 {
1481 	int i, j;
1482 
1483 	for (i = 0; i < sched_domains_numa_levels; i++) {
1484 		for (j = 0; j < nr_node_ids; j++)
1485 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1486 	}
1487 }
1488 
1489 #endif /* CONFIG_NUMA */
1490 
1491 static int __sdt_alloc(const struct cpumask *cpu_map)
1492 {
1493 	struct sched_domain_topology_level *tl;
1494 	int j;
1495 
1496 	for_each_sd_topology(tl) {
1497 		struct sd_data *sdd = &tl->data;
1498 
1499 		sdd->sd = alloc_percpu(struct sched_domain *);
1500 		if (!sdd->sd)
1501 			return -ENOMEM;
1502 
1503 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1504 		if (!sdd->sds)
1505 			return -ENOMEM;
1506 
1507 		sdd->sg = alloc_percpu(struct sched_group *);
1508 		if (!sdd->sg)
1509 			return -ENOMEM;
1510 
1511 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1512 		if (!sdd->sgc)
1513 			return -ENOMEM;
1514 
1515 		for_each_cpu(j, cpu_map) {
1516 			struct sched_domain *sd;
1517 			struct sched_domain_shared *sds;
1518 			struct sched_group *sg;
1519 			struct sched_group_capacity *sgc;
1520 
1521 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1522 					GFP_KERNEL, cpu_to_node(j));
1523 			if (!sd)
1524 				return -ENOMEM;
1525 
1526 			*per_cpu_ptr(sdd->sd, j) = sd;
1527 
1528 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1529 					GFP_KERNEL, cpu_to_node(j));
1530 			if (!sds)
1531 				return -ENOMEM;
1532 
1533 			*per_cpu_ptr(sdd->sds, j) = sds;
1534 
1535 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1536 					GFP_KERNEL, cpu_to_node(j));
1537 			if (!sg)
1538 				return -ENOMEM;
1539 
1540 			sg->next = sg;
1541 
1542 			*per_cpu_ptr(sdd->sg, j) = sg;
1543 
1544 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1545 					GFP_KERNEL, cpu_to_node(j));
1546 			if (!sgc)
1547 				return -ENOMEM;
1548 
1549 #ifdef CONFIG_SCHED_DEBUG
1550 			sgc->id = j;
1551 #endif
1552 
1553 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1554 		}
1555 	}
1556 
1557 	return 0;
1558 }
1559 
1560 static void __sdt_free(const struct cpumask *cpu_map)
1561 {
1562 	struct sched_domain_topology_level *tl;
1563 	int j;
1564 
1565 	for_each_sd_topology(tl) {
1566 		struct sd_data *sdd = &tl->data;
1567 
1568 		for_each_cpu(j, cpu_map) {
1569 			struct sched_domain *sd;
1570 
1571 			if (sdd->sd) {
1572 				sd = *per_cpu_ptr(sdd->sd, j);
1573 				if (sd && (sd->flags & SD_OVERLAP))
1574 					free_sched_groups(sd->groups, 0);
1575 				kfree(*per_cpu_ptr(sdd->sd, j));
1576 			}
1577 
1578 			if (sdd->sds)
1579 				kfree(*per_cpu_ptr(sdd->sds, j));
1580 			if (sdd->sg)
1581 				kfree(*per_cpu_ptr(sdd->sg, j));
1582 			if (sdd->sgc)
1583 				kfree(*per_cpu_ptr(sdd->sgc, j));
1584 		}
1585 		free_percpu(sdd->sd);
1586 		sdd->sd = NULL;
1587 		free_percpu(sdd->sds);
1588 		sdd->sds = NULL;
1589 		free_percpu(sdd->sg);
1590 		sdd->sg = NULL;
1591 		free_percpu(sdd->sgc);
1592 		sdd->sgc = NULL;
1593 	}
1594 }
1595 
1596 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1597 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1598 		struct sched_domain *child, int cpu)
1599 {
1600 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
1601 
1602 	if (child) {
1603 		sd->level = child->level + 1;
1604 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1605 		child->parent = sd;
1606 
1607 		if (!cpumask_subset(sched_domain_span(child),
1608 				    sched_domain_span(sd))) {
1609 			pr_err("BUG: arch topology borken\n");
1610 #ifdef CONFIG_SCHED_DEBUG
1611 			pr_err("     the %s domain not a subset of the %s domain\n",
1612 					child->name, sd->name);
1613 #endif
1614 			/* Fixup, ensure @sd has at least @child cpus. */
1615 			cpumask_or(sched_domain_span(sd),
1616 				   sched_domain_span(sd),
1617 				   sched_domain_span(child));
1618 		}
1619 
1620 	}
1621 	set_domain_attribute(sd, attr);
1622 
1623 	return sd;
1624 }
1625 
1626 /*
1627  * Build sched domains for a given set of CPUs and attach the sched domains
1628  * to the individual CPUs
1629  */
1630 static int
1631 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1632 {
1633 	enum s_alloc alloc_state;
1634 	struct sched_domain *sd;
1635 	struct s_data d;
1636 	struct rq *rq = NULL;
1637 	int i, ret = -ENOMEM;
1638 
1639 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1640 	if (alloc_state != sa_rootdomain)
1641 		goto error;
1642 
1643 	/* Set up domains for CPUs specified by the cpu_map: */
1644 	for_each_cpu(i, cpu_map) {
1645 		struct sched_domain_topology_level *tl;
1646 
1647 		sd = NULL;
1648 		for_each_sd_topology(tl) {
1649 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
1650 			if (tl == sched_domain_topology)
1651 				*per_cpu_ptr(d.sd, i) = sd;
1652 			if (tl->flags & SDTL_OVERLAP)
1653 				sd->flags |= SD_OVERLAP;
1654 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1655 				break;
1656 		}
1657 	}
1658 
1659 	/* Build the groups for the domains */
1660 	for_each_cpu(i, cpu_map) {
1661 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1662 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
1663 			if (sd->flags & SD_OVERLAP) {
1664 				if (build_overlap_sched_groups(sd, i))
1665 					goto error;
1666 			} else {
1667 				if (build_sched_groups(sd, i))
1668 					goto error;
1669 			}
1670 		}
1671 	}
1672 
1673 	/* Calculate CPU capacity for physical packages and nodes */
1674 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
1675 		if (!cpumask_test_cpu(i, cpu_map))
1676 			continue;
1677 
1678 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1679 			claim_allocations(i, sd);
1680 			init_sched_groups_capacity(i, sd);
1681 		}
1682 	}
1683 
1684 	/* Attach the domains */
1685 	rcu_read_lock();
1686 	for_each_cpu(i, cpu_map) {
1687 		rq = cpu_rq(i);
1688 		sd = *per_cpu_ptr(d.sd, i);
1689 
1690 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1691 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1692 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1693 
1694 		cpu_attach_domain(sd, d.rd, i);
1695 	}
1696 	rcu_read_unlock();
1697 
1698 	if (rq && sched_debug_enabled) {
1699 		pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1700 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1701 	}
1702 
1703 	ret = 0;
1704 error:
1705 	__free_domain_allocs(&d, alloc_state, cpu_map);
1706 	return ret;
1707 }
1708 
1709 /* Current sched domains: */
1710 static cpumask_var_t			*doms_cur;
1711 
1712 /* Number of sched domains in 'doms_cur': */
1713 static int				ndoms_cur;
1714 
1715 /* Attribues of custom domains in 'doms_cur' */
1716 static struct sched_domain_attr		*dattr_cur;
1717 
1718 /*
1719  * Special case: If a kmalloc() of a doms_cur partition (array of
1720  * cpumask) fails, then fallback to a single sched domain,
1721  * as determined by the single cpumask fallback_doms.
1722  */
1723 static cpumask_var_t			fallback_doms;
1724 
1725 /*
1726  * arch_update_cpu_topology lets virtualized architectures update the
1727  * CPU core maps. It is supposed to return 1 if the topology changed
1728  * or 0 if it stayed the same.
1729  */
1730 int __weak arch_update_cpu_topology(void)
1731 {
1732 	return 0;
1733 }
1734 
1735 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1736 {
1737 	int i;
1738 	cpumask_var_t *doms;
1739 
1740 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
1741 	if (!doms)
1742 		return NULL;
1743 	for (i = 0; i < ndoms; i++) {
1744 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1745 			free_sched_domains(doms, i);
1746 			return NULL;
1747 		}
1748 	}
1749 	return doms;
1750 }
1751 
1752 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1753 {
1754 	unsigned int i;
1755 	for (i = 0; i < ndoms; i++)
1756 		free_cpumask_var(doms[i]);
1757 	kfree(doms);
1758 }
1759 
1760 /*
1761  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1762  * For now this just excludes isolated CPUs, but could be used to
1763  * exclude other special cases in the future.
1764  */
1765 int sched_init_domains(const struct cpumask *cpu_map)
1766 {
1767 	int err;
1768 
1769 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
1770 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
1771 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
1772 
1773 	arch_update_cpu_topology();
1774 	ndoms_cur = 1;
1775 	doms_cur = alloc_sched_domains(ndoms_cur);
1776 	if (!doms_cur)
1777 		doms_cur = &fallback_doms;
1778 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1779 	err = build_sched_domains(doms_cur[0], NULL);
1780 	register_sched_domain_sysctl();
1781 
1782 	return err;
1783 }
1784 
1785 /*
1786  * Detach sched domains from a group of CPUs specified in cpu_map
1787  * These CPUs will now be attached to the NULL domain
1788  */
1789 static void detach_destroy_domains(const struct cpumask *cpu_map)
1790 {
1791 	int i;
1792 
1793 	rcu_read_lock();
1794 	for_each_cpu(i, cpu_map)
1795 		cpu_attach_domain(NULL, &def_root_domain, i);
1796 	rcu_read_unlock();
1797 }
1798 
1799 /* handle null as "default" */
1800 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1801 			struct sched_domain_attr *new, int idx_new)
1802 {
1803 	struct sched_domain_attr tmp;
1804 
1805 	/* Fast path: */
1806 	if (!new && !cur)
1807 		return 1;
1808 
1809 	tmp = SD_ATTR_INIT;
1810 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
1811 			new ? (new + idx_new) : &tmp,
1812 			sizeof(struct sched_domain_attr));
1813 }
1814 
1815 /*
1816  * Partition sched domains as specified by the 'ndoms_new'
1817  * cpumasks in the array doms_new[] of cpumasks. This compares
1818  * doms_new[] to the current sched domain partitioning, doms_cur[].
1819  * It destroys each deleted domain and builds each new domain.
1820  *
1821  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1822  * The masks don't intersect (don't overlap.) We should setup one
1823  * sched domain for each mask. CPUs not in any of the cpumasks will
1824  * not be load balanced. If the same cpumask appears both in the
1825  * current 'doms_cur' domains and in the new 'doms_new', we can leave
1826  * it as it is.
1827  *
1828  * The passed in 'doms_new' should be allocated using
1829  * alloc_sched_domains.  This routine takes ownership of it and will
1830  * free_sched_domains it when done with it. If the caller failed the
1831  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1832  * and partition_sched_domains() will fallback to the single partition
1833  * 'fallback_doms', it also forces the domains to be rebuilt.
1834  *
1835  * If doms_new == NULL it will be replaced with cpu_online_mask.
1836  * ndoms_new == 0 is a special case for destroying existing domains,
1837  * and it will not create the default domain.
1838  *
1839  * Call with hotplug lock held
1840  */
1841 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1842 			     struct sched_domain_attr *dattr_new)
1843 {
1844 	int i, j, n;
1845 	int new_topology;
1846 
1847 	mutex_lock(&sched_domains_mutex);
1848 
1849 	/* Always unregister in case we don't destroy any domains: */
1850 	unregister_sched_domain_sysctl();
1851 
1852 	/* Let the architecture update CPU core mappings: */
1853 	new_topology = arch_update_cpu_topology();
1854 
1855 	if (!doms_new) {
1856 		WARN_ON_ONCE(dattr_new);
1857 		n = 0;
1858 		doms_new = alloc_sched_domains(1);
1859 		if (doms_new) {
1860 			n = 1;
1861 			cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
1862 		}
1863 	} else {
1864 		n = ndoms_new;
1865 	}
1866 
1867 	/* Destroy deleted domains: */
1868 	for (i = 0; i < ndoms_cur; i++) {
1869 		for (j = 0; j < n && !new_topology; j++) {
1870 			if (cpumask_equal(doms_cur[i], doms_new[j])
1871 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
1872 				goto match1;
1873 		}
1874 		/* No match - a current sched domain not in new doms_new[] */
1875 		detach_destroy_domains(doms_cur[i]);
1876 match1:
1877 		;
1878 	}
1879 
1880 	n = ndoms_cur;
1881 	if (!doms_new) {
1882 		n = 0;
1883 		doms_new = &fallback_doms;
1884 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
1885 	}
1886 
1887 	/* Build new domains: */
1888 	for (i = 0; i < ndoms_new; i++) {
1889 		for (j = 0; j < n && !new_topology; j++) {
1890 			if (cpumask_equal(doms_new[i], doms_cur[j])
1891 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
1892 				goto match2;
1893 		}
1894 		/* No match - add a new doms_new */
1895 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1896 match2:
1897 		;
1898 	}
1899 
1900 	/* Remember the new sched domains: */
1901 	if (doms_cur != &fallback_doms)
1902 		free_sched_domains(doms_cur, ndoms_cur);
1903 
1904 	kfree(dattr_cur);
1905 	doms_cur = doms_new;
1906 	dattr_cur = dattr_new;
1907 	ndoms_cur = ndoms_new;
1908 
1909 	register_sched_domain_sysctl();
1910 
1911 	mutex_unlock(&sched_domains_mutex);
1912 }
1913 
1914